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ABSTRACT: 

Solid-state  lighting  (SSL)  luminaires  containing  light 
emitting diodes (LEDs) have the potential of seeing excessive 
temperatures when being transported across country or being 
stored in non-climate controlled warehouses. They are also 
being used in outdoor applications in desert environments that 
see little or no humidity but will experience extremely high 
temperatures during the day. This makes it important to 
increase our understanding of what effects high temperature 
exposure for a prolonged period of time will have on the 
usability and survivability of these devices. The U.S. 
Department of Energy has made a long term commitment to 
advance the efficiency, understanding and development of 
solid-state lighting (SSL) and is making a strong push for the 
acceptance and use of SSL products to reduce overall energy 
consumption attributable to lighting. 

 
Traditional light sources “burn out” at end-of-life. For an 
incandescent bulb, the lamp life is defined by B50 life. 
However, the LEDs have no filament to “burn”. The LEDs 
continually degrade and the light output decreases eventually 
below useful levels causing failure. Presently, the TM-21 test 
standard is used to predict the L70 life of SSL Luminaires 
from LM-80 test data. The TM-21 model uses an Arrhenius 
Equation with an Activation Energy, Pre-decay factor and 
Decay Rates. Several failure mechanisms may be active in a 
luminaire at a single time causing lumen depreciation. The 
underlying TM-21 Arrhenius Model may not capture the 
failure physics in presence of multiple failure mechanisms. 
Correlation of lumen maintenance with underlying physics of 
degradation at system-level is needed. 

In this paper, a Kalman Filter and Extended Kalman Filters 
have been used to develop a 70% Lumen Maintenance Life 
Prediction Model for a LEDs used in SSL luminaires. This 
model can be used to calculate acceleration factors, evaluate 
failure-probability and identify ALT methodologies for 
reducing test time. Ten-thousand hour LM-80 test data for 
various LEDs have been used for model development. System 
state has been described in state space form using the 
measurement of the feature vector, velocity of feature vector 
change and the acceleration of the feature vector change. 
System state at each future time has been computed based on 
the state space at preceding time step, system dynamics 
matrix, control vector, control matrix, measurement matrix, 
measured vector, process noise and measurement noise. The 
future state of the lumen depreciation has been estimated based 
on a second order Kalman Filter model and a Bayesian 
Framework. The measured state variable has been related to 
the underlying damage using physics-based models. Life 
prediction of L70 life for the LEDs used in SSL luminaires 
from KF and EKF based models have been compared with the 
TM-21 model predictions and experimental data. 

 
INTRODUCTION: 

The LEDs (Light Emitting Diodes) have been widely used 
since the last decade. Also, there is a tendency that LEDs 
would dominate the lighting market because of the LEDs’ 
advantages in the light efficiency, energy saving, improved 
physical robustness and long operating hours. The industrial 
utilization of LEDs in some extreme environments requires 
the LEDs have a considerable long life. It is also required that 
those LEDs must withstand high temperature and high 
humidity environment without much lumen maintenance 
degradation after long term wearing. The most critical value 
for  the failure of LEDs is ‘L70’ (the Lumen  Maintenance 
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LED Light Emitting Diodes 
√(t) Lumen Maintenance 
L70 Lumen Maintenance at 70% 
KF Kalman Filter 

EKF Extended Kalman Filter 
TM-21 Technical Memorandum-21 
AES Activated Energy of System 
PHM Prognostic Health Management 

 

 

reaches 70% of the original and pristine starts at 100%). There 
is extremely long-term degradation for the LEDs to reach its 
L70 that is normally over 30,000 hours for the Philips 
LUXEON Rebel lamps. The former methodology to quantify 
the LED’s L70 is TM-21 (Technical Memorandum) wrote by 
the Philips, Osram, Nichia, Illumitex, GE and Cree. Here, we 
introduce another reliable method, the Extended Kalman 
Filtering, to quantify LED life. 

 
The life of LEDs can be affected by many facts, including: 

the manufacturers, junction temperatures, humidity as well as 
the LED working current. Somehow, the LED working 
temperatures and currents are the most severe conditions that 
shorten the LED life scope. Theoretically, the higher junction 
temperature it is, the less lumen output will be. The working 
current would be around 350 mA to 1A for the high power 
white LEDs. In the Philips experiment, the test temperatures 
are ranged from 55 °C, 85°C, 105 °C and 120 °C, and the test 
currents are ranged from 350 mA, 500 mA, 700 mA and 1A. 
Under those conditions, we suppose the lumen degradation 
conforms to the Arrhenius Equation, which is exponentially 
decaying. Thus, with the general model assumption and 
current lumen maintenance data, we can derive the pseudo 
L70 life for the Philips high power LEDs, and it is necessary 
to introduce the EKF algorithm that is reliable method and 
was previous verified in the BGA prognostic health 
management system, to meet the requirements and accomplish 
dynamic life prediction goal. 

 
The EKF algorithm has been previously used for 

monitoring and predicting the electronic system failures, 
which is a part from the Prognostic Health Management (PHM) 
of Electronic systems. [Lall 2004a-d, 2005a-b, 2006a-f, 2007a-
c, 2008a-f]. The EKF could watch out for the tendency of 
resistance change and monitor it when crossing the failure 
threshold. Similarly, in this paper, we use EKF to catch the 
Lumen Maintenance degradation lines and to make an 
extrapolation for the future space to generate the Remaining 
Useful Life (RUL) of L70 threshold. The exponential function 
has been incorporated into the EKF to make exponential 
extrapolations. Those extrapolations provide us life 
estimations of LEDs that calculated from  Newton Raphson 
method. Then, the L70 life could be viewed as following 
certain distributions, such as normal distribution, lognormal 
distribution and the weibull distribution. Once fitting the life 
data, we use the Maximum Likelihood Estimation (MLE) 
method to get the best fit for the life data. Then, we can get 
the cumulative probability function F(t) and obtain the 
reliability function R(t). 

 
NOMENCLATURE 

 

Xp Filter Projection 
Xe Filter Estimation 
H Measurement Matrix 
Q Process Noise 
F System Dynamic Matrix 
R Measurement Noise 

 (t ) Fundamental Matrix 
M k the First Covariance Matrix 
K Kalman Gain 

Pk +1 the Second Covariance Matrix 
A Pre-decay Factor 
α In-Situ temperature Coefficient 1 
β In-Situ temperature Coefficient 2 
Ea Activated Energy 

Lo Lumen Output 

LI 
Initial Lumen Maintenance 

C1 Decay Constant 1 

C2 Decay Constant 2 

T Life Time 
T0 Initial Life Time 

Ts Sampling Time 
 

LEDS’ LUMEN MEASUREMENT SYSTEM: 
The LEDs’ Lumen Measurement System (Figure 1) 

contains parts: (1) Light Emitting Device. (2) Light Gathering 
System. (3) Light Transmitting System. (4) Light Analyzing 
System.  The Light Emitting Device generates the light from 
the lamp, which made from our test LEDs. There are many 
kinds of LED lamps. Each LED lamp has its unique light 
generating system, which contains a LED driver and LED 
bulbs. The LED driver transfers the AC to the DC that is only 
allowed for LEDs. However, each driver, somehow, will 
produce the ripple current that would affect the quality and 
life of LEDs. The Light Gathering System collects all the light 
emitting from the LED, typically, the Light Gathering System 
includes the integrating sphere and cosine diffuser etc., and 
we use the integrating sphere to collect the light from LEDs. 
There is coating on the surface inside of Integrating Sphere, 
which makes the light to diffuse at all the inside can surface, 
which causes the light distribute evenly. Then the Light 
Transmitting System, including the cable optical fibers, can 
get the well-distributed light from the Integrating Sphere and 
transmit it into the Light Analyzing System. The Light 
Analyzing System mainly analyzes the Power of the light, the 
Luminous Flux, Luminance as well as the CCK that denotes 
the color shifting value of the light. 



 

 
Figure 1 LEDs Measurement System 

 
In general, we get the Lumen Maintenance data from the 

measurement system, which presents the power intensity of 
the light from LED bulb. The Lumen Maintenance says the 
percentage of the light power of LED compared to the pristine 
that is normalized and sets to be 100% at the beginning. For 
example, the test starts at the 100% lumen maintenance, and 
through many burning hours, the lumen maintenance drops to 
the 70% of its original. Therefore, it is the dropping 
percentage of lumen maintenance versus the time that we can 
use it to predict the pseudo life of LED throughout this system. 

 
ACCELERATING TEST AND ACCELERATING 
MODEL: 

The purpose of accelerated degradation is concerned with 
models and data analyses for degradation of product 
performance over time at overstress and design conditions. 
There are many advantages for the accelerated test. It can be 
analyzed in very early time. Also, it can estimate the time 
when the performance through the failure threshold. The 
extrapolation could let us explore the behaviors and 
consequences under the different stress level, and compare 
those results to generate much more accurate life prediction 
model. 

There are many assumptions for the accelerating model. 
Those assumptions include: (1) Degradation is not reversible. 
(2) Single Degradation process is applied. (3) Degradation of 
specimen performance before the test beginning is negligible. 
(4) Performance is measured with negligible random error. We 
also apply the statistic model for the L70 life, which shows 
the   typical   performance   around   obvious   value.   Those 
distributions are very important for the high reliability 
management of LED systems. 

In this paper, the exponential Arrhenius model is discussed, 
and the Arrhenius rate relationship is widely adopted for the 
temperature based accelerating experiments. For the 
Arrhenius rate relationship, in any temperature and exposure 
time, the distribution of performance µ is lognormal. 
Thus, y=log(µ) is normal. The standard deviation ⌠ of log 
performance is a constant, which does not depend on the 
temperature and current. 

PHILIPS DATASET: 
The  datasets  were  collected  by  the  PHILIPS  LUMILEDS, 
which published in documents DR05-1-LM80 and DR05-1- 
LM80. The test product is LUXEON LXM3-PW series LEDs, 
which is shown in the following Figure 2 . 

 

 
 

Figure 2  LED Test Product 
 

Those  documents  contain  the  LEDs’  lumen  maintenance 
degradation and chromatic shifting, the very vital indication 
for the failure of LEDs. In order to estimate the pseudo life of 
LED, thus, we use the lumen maintenance degradation for 
extrapolating the L70 life (the Lumen Maintenance reaches 70% 
of  the  original  and  pristine  starts  at  100%),  which  is  the 
standard criterion for industrial world to estimate the life of 
bulbs.  In this dataset, there are many test conditions; each test 
condition  includes 25  samples.  In  each  sample,  the lumen 
maintenance data was recorded from 0 to 9000 hours, the test 
matrix shows below Table 1: 

 
 Current T s CCT 

Test1 0.35A 55°C 3000K 
Test2 0.35A 85°C 3000K  

Test3 0.35A 105°C 3000K 

Test4 0.35A 120°C 3000K 
Test5 0.5A 55°C 3000K 
Test6 0.5A 85°C 3000K 
Test7 0.5A 105°C 3000K 
Test8 0.5A 120°C 3000K 
Test9 0.7A 55°C 3000K  

Test10 0.7A 85°C 3000K 
Test11 0.7A 105°C 3000K 
Test12 1A 55°C 3000K 
Test13 1A 85°C 3000K 
Test14 1A 105°C 3000K 

Table 1 Test Matrix 



 

x = Fx + w (1) 

x = f (x) + w (2) 

 

F = f ( x) 
x x= x̂ 

(3) 

H = h( x) 
x x= x̂ 

(4) 

 

In the test matrix, there are 14 tests under 4 different currents 
and 4 different temperatures, and the test CCT is 3000K. In 
this paper, we use the data from the last test, which the current 
is 1 A; test temperature is 105 °C and CCT is 3000K. The 
dataset from the selected test would look like below Figure 1. 
Different color represents the lumen outputs at each time from 
25 samples. There is a tendency of the degradation in the 
lumen maintenance (Figure 4), and we want to explore the 
degradation model in the degradation of lumen maintenance 
and to estimation the pseudo LEDs’ L70 life. The general 
degradation on the lumen maintenance shows on the Figure 4. 
Throughout the 9000 hours experiment, the lumen 
maintenance decays from 100 % to the 92 %. However, this 
degradation may not look like the linear since there are 
multiple elements affect the degradation of lumen 
maintenance. The degradation would tend to be much slower 
in the future, which is called decelerating process. Generally, 
we use the exponential degradation function to present this 
process, and use the exponential family functions to predict 
the pseudo L70 life for the LEDs. 

 

 
 

Figure 3 Test Lumen Degradation 

 
 

Extended Kalman Filter Algorithm 
System damage state estimation in the presence of 

measurement noise and process noise has been achieved using 
the Extended Kalman Filter (EKF). Previously, the Kalman 
Filter has been used in guidance and tracking applications 
[Kalman 1960,  Zarchan 2000]. 

 

 

Figure 5 the Recursive Algorithm and Extended Kalman Filter 

System state has been described in state space form using 
the measurement of the feature vector, velocity of feature vector 
change and the acceleration of the feature vector change. The 
equivalent Extended Kalman Filter equation for state space 
representation is in the presence of process noise and 
measurement noise is: 

 
 
 

Where the F is the system linear dynamic matrix; f(x) is non- 
linear dynamic matrix; the G is measurement matrix; u is 
measurement  vector;  and  w  is  system  white  noise;  the 
matrices are related to the nonlinear system and measurement 
equations according to 

 
 
 
 
 
 
 

the process noise can be calculated by taking the expectation 
of white noise: 
Q = E[ww T ] (5) 

Also,  the  EKF  Equations  require  the  measurement  to  be 
linearly related to the current state in the form of : 
Z = H ⊕ x + V (6) 

where the V is measurement noise. Similarly,  the measurement 
noise matrix is derived from the measurement noise as 
following: 
R = E[vvT  ] (7) 

 
 
 

Figure 4 General Degradation Relationship of Lumen Maintenance 



 

From the linear dynamic equations, we can 
clearly know that the world is linear as we 
supposed, and once we made this premise. All 
the problems can be simply solved through the 
matrix calculation. Therefore, we can get the first 
and second derivatives from the linear matrix 
calculation; the Equation 4- 



 

x = 〈 ⊕ e ⊕t
 (12) 

x =  ⊕ x (13) 

x =  ⊕ x =  2 ⊕ x (14) 

 

x = √(t)x̂ (19) 

 x x x  
x   x x b x  0  
   x x x    
   x x b     
�b  b b b �b �w 

  
� x x b  

(20) 

 

M   = √ P √ T   + Q 
k k    k      k K 

(22) 

K = M  H (HM  H  + R )1
 

k t k t k 
(23) 

Pk  = (I  KH )M k (24) 

 

 

 

  

1 is the model of the first order system while the Equation 4-2 
is the second order system: 

In the Kalman Filter, the Fundamental Matrix will be used 
directly to update the estimation from last time to the next. 

 x  x
 

(8) Generally speaking, the process to find the ideal estimation 
can be expressed as following steps:  First of all, we make the 

 x = F ⊕ x primary  estimation,  which  should  be  approximate  to  the 
    
�x 
 

�x
 

initiate value (the first data point) in the dataset, and secondly, 
we can find the first projection using the fundamental matrix 

The system dynamic matrix for the EKF is: √(t) and simply calculate as: 

 x 
 x 
 x FEKF  =  
 x 
 b 
 
� x 

x 
x 
x
 

x 
b
 

x 

x  
b 
 
x
 
b 
 
b 
 
b 
 

(9)  
 
 
 
 
 

x =  

 
 
 
 
 
 

 x + 0 

We  use  this  Jacobin  Matrix  to  linearize  the  non-linear 
problem; therefore it can use the classical KF updates. This is 
for the second order system, and thus we can find the transfer 
function F to describe certain system, which it is the key to 
find fundamental matrix √(t) . In this paper for the EKF, we 
used the system model: 

 
 
 
 

The  next  estimate  could  be  obtained  from  the  following 
equation: 

 

x = 〈 ⊕ e ⊕t
 

The state vector is: 

 

(10) 
x = x̂ + K (Z  H ⊕ x̂) 
K is Kalman Gain 
H is measurement matrix 

(21) 

xk  

= �x 
x
  
 

(11) Z  is measurement. 
Each  time  we  update  the  Kalman  Gain  and  Covariance 

This is an exponential function. The ‘〈 ’ and ‘  ’ are two 
coefficients that are decided by different systems. The first 
derivation x and the second derivation x are from: 

Matrix, which minimizes the errors and makes optimal 
calculation during each step. Thus, the Kalman Gain mainly 
conveys the information about how is our estimation close to 
the observation. The way to obtain Kalman Gain (K) is from 
three Riccati equations: 

 
 
 

Therefore  the  elements  in  system  dynamic  matrix  will  be 
calculated as: 

  1 x   (15) In the above equations, the M k  is the covariance matrix; the 

FEKF =  2 
 2x
 

√ is the fundamental matrix; the √T  is the transpose of that 

  � 0 0  



 

0 0 0 
  

 

�0 0 1 

(25) 

Ts 
Q  = √( ) ⊕ Q ⊕ √( )T d 

k + 
0 

(26) 

 

0   m
a
t
r
i
x
;  
P
k 

is  another  
covariance  matrix  
that  representing 

error according to the time; the Qk is  the discrete process 

Usually, the fundamental matrix √(t) can be obtained from 
two ways: the first way, we can get it from Laplace Transform, 
simply as: 

 

noise matrix, which is calculated from: 

√(t) = [(SI  F )1 ] (16) Q = √ s 0 0 0 

1 
Where the  is inverse of the Laplace Transform; However, 
the second way, known as the common way to find (t) , 
derives from the Tylor Serise expansion: 

 
√(t) = I + FT + 

(FT ) 2 

2! 
(FT ) 3 

+ +  3! 
(17)  

the H is the unit measurement matrix and H t  is transpose of 

Normally, we only use the first two terms for representing the 
fundamental  matrix √(t) , because  the  adding  more  terms 
cannot contribute much to the precision and filter convergence. 

it; the K is the Kalman Gain; Rk  represents the measurement 
noise according to the different system. We notice that those 
three  equations  run  like  in  the  recursions: for  the  initial 

The Fundamental Matrix in the Extended Kalman Filter is: covariance  error P0  ,  we  can  find  variance  matrix  M k that 

1 + T T xT     (18) represents the current error in the first equation according to 
 2  

√EKF (T ) Η I + FEKFT =   T 1 + T 2 ⊕ xT 

 

time. Then  we use  it  in  the  second  equation  to  find  the 

� 0 0 1
 
 

Kalman Gain K , after that, we substitute the Estimate Kalman 
Gain K into the third equation to update last covariance error 



 

x̂k  = xk  + x̂k 1T (27) 

x̂k  = xk  + x̂k 1T (28) 

 

xk  = x̂k  + K1 (Z  H ⊕ x̂k ) (29) 

xk  = x̂k  + K 2 (Z  H ⊕ x̂k ) (30) 

 

k +n 

Pk , thus we obtain the ‘next’ covariance error  Pk +1 . Therefore, 7. Extrapolate feature vector to threshold value: 

as we go back to the first equation, we can obtain the updated LM = x
 ⊕ 
e 

k 

+ n 
+ wk +n 

M k and updated Kalman Gain K .In the EKF, the Euler 
integration has been introduced to instead the performance of 
the KF’s fundamental matrix, it can be found that: 

8. Report predicted RUL (and uncertainty); 
9. Iterate to step 2 for next measurement (k = k +1); 

 

Prognostic Degradation Models: 
There are many prognostic models that could explain the 

degradation process for the lumen maintenance. Generally, we 
explore  some  simple  constant  rate  models.  The  simplest 
degradation relationship for typical log performance µ(t) ,the 

We  call  the  equation  above  is  the  update  equations, x̂k mean of the population distribution of log performance at age 
t, is a simple linear function of product t: 

represents the projection from the last time k ;  x̂k 1  is the first   ∝(t) = 〈   ' ⊕ t (31) 

derivative at time k-1; xk is the estimation at time k, xk is the For  a  degradation  accelerated  by  the  temperature  T,  the 

first derivative at time k; T  is the sample time. Arrhenius Degradation Rate is: 
 

 
(32) 

(-   ) 
‘ =  ⊕ e  T 

 
 

The above equations are the basic Extended Kalman Filter 

The β and γ are the coefficients for the typical product. With 
this rate parameter, the degradation model becomes: 

equations, which are to find the estimation and its ‘velocity’. 
Also,  in  those  equations,  it  uses  the  same  three  Riccati 

 

∝(t,T ) = 〈  t 
⊕  ⊕ e 

( 
 ) 
T 

(33) 

Equations that expressed in the Kalman Filter to obtain the 
Kalman Gain  K1 and K 2 . 

For a degradation accelerated by the current V, the Power 
Degradation Rate shows: 

Now, we can see that the Extended Kalman Filter actually 
have turned the non-linear problem into a linear one through  '  = V 


 

(34) 

integrating method. So at each step, the Extended Kalman With this rate parameter, the degradation model becomes: 

Filter made a small integration, and if the integrate time is 
small  enough,  then  the  answer  we  get  is  becoming  more ∝(t, V) = 〈 - t ⊕ V 


 

(35) 

precise. However, the difficulty within the Extended Kalman 
Filter is to find the dynamic non-linear model to describe the 

For a degradation accelerated by the exponential decay rate, 
the decay stress rate could be expressed as: 

system,  which  always  contains  the  unknown  coefficients. 
Therefore,  the  better  we  know  about  the  test  system,  for ‘ 

=  ⊕ e( ⊕V) 

(36) 

example, the theories and functions in the situation of LEDs With this rate parameter, the degradation model becomes: 

failure,  the  better  we  can  predict  system  model  in  the 
Extended   Kalman   Filter,   therefore,   the   prediction   of 

∝(t, V) = 〈 - t 
⊕  ⊕ eV

 

(37) 

Remaining Useful Life (RUL) would be close to the real RUL in our PHM. 



 

k 

Overall, since the µ taken from the natural logarithm, 
we can 
simplify the models above by using the initial 

degradation factor and overall degradation rate. We assumed 
the basic L70 extrapolation model is: 

Algorithm: Filtering and RUL prediction √ = 〈 ⊕ e(  ⊕t ) (38) 

1. Initiate  x0 

2. Make the projections: x̂k 

= xk  + x̂k 1T + w x̂ k  

= xk  + x̂k 1T + w 
3. Calculate error covariance matrix before updata: 

T 

In this model, the √ is the Lumen Maintenance (%), and the 
〈 is the initial degradation factor,  is the degradation rate. 
The model says the degradation line should be fitted within 
the exponential function. The coefficient 〈 denotes the current 
lumen maintenance estimation, and the coefficient  
expresses the decay rate of the lumen maintenance. The EKF 
mainly  incorporates  this  exponential  model  to  make  many 

M k   = √ k Pk √ k + QK extrapolations, which can calculate the time each 

4. Calculate the Kalman Gain: extrapolation reach the threshold of the failure criterion. 

K = M k H t (HM k H t + R )1
 

5. Update the estimation with measurement: 
xk  = x̂k  + K1 (Z  H ⊕ x̂k ) 

LED failure criterion 
Lumen Maintenance is described as the comparison between 

 

xk = x̂ k 

 

+ K 2 (Z  H ⊕ x̂k ) 
the time specified in the future and the brand new product. 
The Lumen Maintenance is 100% at the beginning.   Lumen 

6. Calculate error covariance after measurement update: 
Pk  = (I  KH )M k 

Maintenance often denotes as the L50 (50%) and L70 (70%). 
The customer decides a suitable lumen maintenance target for 



 

H (t) = x  + x ⋅ t + x⋅ t 2   f (EoL) 
0 

(39) 

Tn+1  = Tn   f (x) / f ' (x) (40) 

 

the LEDs. However, in the industrial world, the L70 (70%) is 
accepted as the LEDs failure criterion since the human eye 
cannot detect the change that light dropped 30% from 100%. 
Therefore, we apply the L70 for the failure threshold of 
LUXEON LEDs in this paper. Next, the EKF will extrapolate 
the degradation lines to reach the L70 threshold. Then, the 
Newton Raphson Method will calculate the Remaining Useful 
Life, which can be added with the current burning hours to 
generate the pseudo LEDs life. 

 
Newton Raphson Method 
When Kalman Filter made a prediction of the state vector 
from the data-set, and the remaining useful life could be 
estimated and calculated mathematically by solving the 
equation H(t) and find the time T-prediction: 

 
 
 

In order to find the root of above equation, we introduce the 
Newton Rapson’s Method: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 The LM Degradation Data and EKF Estimations 

The  following  histogram  (Figure  7)  shows  the  EKF 
estimations of L70 life. Those estimations are derived by the 
extrapolations using the previous exponential decay function. 
There have 234 estimations, and in the Gaussian distribution, 
the  mean  value  (EXP)  is  43265hours,  and  the  Standard 
Deviation (STD) is 2721 hours. 

Tn+1 

Tn 

f ' (x) 

is the estimated root at time n; 
 

is the estimated root at time n+1; 
is the derivation of target equation; 

The Predicted RUL is known as the End of Life (EoL) minus 
the  sampling  time.  So  the  algebra  equations  presents  as 
following: 
L70 = Tpredict  + Tsample 

 
Extended Kalman Filter Prognostic Life: 

(41) 

As we mentioned before, the prediction model that EKF 
uses to make the extrapolations is the exponential degradation 
model. The L70 estimation model: 
√ = 〈 ⊕ exp( ⊕ t) (42) 

The following Figure 6 shows the EKF estimations and data 
points; the blue dots present the EKF, and the red lines are the 
data points. We can see that in the first 9000 hours, the lumen 
maintenance drops to the 90%. Also, we need to eliminate the 
oscillation and unstable condition of the first 2000 hours 
estimation, therefore, we uses the 2000 to 9000 hours data to 
predict the LEDs L70 life. By tracking the current degradation 
lines, there is non-linear pattern in the degradation of lumen 
maintenance, which is close to the exponential decay. 
Therefore, the exponential function, we expressed above, is 
suitable for our lumen maintenance extrapolation and 
prediction. 

 
 
 

Figure 7 The Estimated L70 Distribution 
 

 



 

 
Table 2 Pseudo L70 Life 



 

 
 

The following pictures table 3 and table 4 show the estimated 
alpha and beta coefficients’ histogram and distribution. 

 
Table 3 Alpha Estimations 

 

 
Table 4  Beta Estimations (10-5 ) 

 
One sample (Figure 8) shows the EKF’ estimations and 

extrapolations, the blue line is the original data, the red line is 
estimations and the green line is extrapolations, which uses 
the exponential decay model. Obviously, there are two 
outliers for the estimation, and those two lines cannot be used 
for the true L70 distribution. The extrapolations tend to 
concentrate at 40,000 to 50,000 for L70 life. 

 
 

Figure 8   EKF  L70 Extrapolations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 All Sample L70 Extrapolations and Degradation Path 

It  is  the  pseudo  L70  life  boxplot  (Figure  10)  that 
estimated through 1000 to 9000 hours, however, there is 
distinct two patterns in those estimations, before 2000 hours, 
the life is predicted shorter than that after 2000 hours. So we 
mainly apply the more recent estimations to form the life 
distribution. Also, in the boxplot, the variations are almost 
the same and the mean value can be derived from the fitting 
distributions, which is normal, lognormal and weibull 
distribution. 

 
Figure 10 Distribution of Estimated L70 Life by Time 



 

Prognostic  Lumem  Degradation  at  16,000  hours  using 
training EKF model: 

The lumen degradation could be predicted at given time, 
for example it can predict the Lumen Maintenance at 16,000 
hours. We consider normal distribution for the estimation of 
training decay rates. The following plots show the normal 
distributed beta factor and lumen estimation using previous 
8,000 hours degradation information. 

 
 

 
Figure 13 Lumen Estimation Summary for 16,000 hours 

 
LED System Reliability Discussion 

A cumulative distribution function F(t) represents the 
population fraction failing by age t. Any such continuous F(t) 
has  the  Mathematical  properties:  (1)  It  is  a  continuous 
function   for   all   t.   (2) limF (t) = 0 

t �- 

and lim F (t) = 1 
t � +  

.(3) 

Figure 11 Fitted Distribution for Decay Rate F(t) δ F(t' ) for  all t < t2 .  The  range  of  t  for  most  life 

distribution is from 0 to ∞, but some useful distributions have 
a range from -∞ to ∞. The reliability function R(t) for a life 
distribution is the probability of survival beyond age t, namely, 
the survivor or survivorship function can be represented as: 
R(t) = 1 - F(t) (43) 

We can use the method that fitting the probability for the 
distribution of L70 life over the sample population. Here, we 
only use the normal distribution, lognormal distribution and 
Weibull distribution to fit the probability. The normal 
distribution has been used to describe the life of incandescent 
lamp filaments and of electrical insulations. It is also used as 
the distribution for product properties. 
1. Normal Cumulative Distribution Function. The population 
fraction failing by age y is: 

y -1/2 1  x - ∝ 2 (44) 

F(y) = + (2�⌠ 2 ) 
-  

[-   ( 

• e  
2    ⌠ 

)  ] 
dx,- < y < + 

Figure 12 Fitted Distribution for Lumen Estimation 2. Normal Probability Density. The probability density is: 

 
We  use  the  basic  exponential  degradation  function  to 

model the degradation path from 8,000 hours to 16,000 hours. 
f (y) = (2�⌠ 2 )-1/2 ⊕ e[-(y-u)2 /(2⌠ 2 

)] 
,- < y < + (45) 

In the plots, we can figure out that the lumen estimation and 
decay rate estimation are also normally distributed around its 

3. Normal  Reliability  Function.  The  population  fraction 
surviving age t is: 

mean  value  with  identified  variance.  The  histogram  plot R(t) = 1 - √[(t - ∝)/⌠ ] (46) 

showing below is the lumen estimation at 16,000 hours, the 
blue bar shows the counts of estimated lumen value, the red 

line is fitted distribution. The mean value of 16,000 hours lumen 
maintenance is 86.53%, and the mean value of 8000 



 

hours   is   92.21%.   Therefore,   the   lumen   maintenance 
degradation from 8000 hours to 16,000 hours is 5.68 %. The 
lumen maintenance variance at 8000 hours is 1.1196e-04, and 

The lognormal distribution is widely used for life data, 
including metal fatigue, solid state components and electrical 
insulation. The lognormal and normal distributions are related; 
this fact is used to analyze lognormal data with methods for 
normal data. 
1. Lognormal  Cumulative  Distribution. The  population 
fraction failing by age t is: 

the lumen maintenance variance at 16,000 hours is 1.2863e-04, 
so  the  variance  increases  1.667e-5,  which  indicates  the F (t) = √{[log(t) - ∝ ]/⌠ }, t > 0 (47) 

distribution shape is wider than our current’s. 2. Lognormal Probability Density. For a lognormal 
distribution, 



 

Goodness-Fit Tests for Three Distributions 
Distributions Cramer-von 

Mises Criterion 
P-Value 

Normal 0.0968 <0.005 
Lognormal 0.0981 <0.005 

Weibull 0.295 <0.010 
 

17.6 

17.6 

 

f (t) = {0.4343/[(2� )1/ 2 t⌠ ]}⊕ e{-[log(t)-∝ ]  /(2⌠ )} , t > 0 
(48) F(t) = √[(t - 43265)/2720.9] (53) 

2 2 

3. Lognormal Reliability Function. The population fraction The reliability function, R(t), can thereby be written by: 

surviving age t is: R(t) = 1 - F(t) = 1 - √[(t - 43265)/2720.9] (54) 

R(t) = 1 - √{[log(t) - ∝]/⌠ } = √{-[log(t) - ∝]/⌠ } (49) The L70 life follows the Lognormal Distribution with scale 

The weibull distribution is often used for product life, because 
it models either increasing or decreasing failure rates simply. 

parameter  ,  and  shape  parameter ⌠ ;  the  cumulative 
distribution can be written as: 

It is also used as the distribution for products properties such F (t) = √{[log(t /  )] / ⌠ } = √{log[(t /  )1 / ⌠ ] (55) 

as strength (electrical or mechanical), elongation resistance, 
etc., in accelerated tests. It is used to describe the life of roller 

Therefore the cumulative distribution of LEDs’ L70 life 
would be written as the following function: 

bearings,  electronic  components,  ceramics,  capacitors,  and 
dielectrics in accelerated test. F (t) = √{[log(t /10.7)] / 0.06} (56) 

1. Weibull Cumulative Distribution. The population fraction 
failing by age t is: 

〈  (50) 

This lognormal cumulative distribution function describes the 
population fraction failing by the age t.  is the mean time to 
failure (MTTF).  is in the same measurement units as t. In 

F(t) = 1- e-(t/   )
 ,t > 0 the  LEDs’  L70  distribution,  we  found  that  R(t)  could  be 

2. Weibull Probability Density. For a weibull distribution: 
 

represented as: 
R(t) = 1  √{[log(t /10.7)] / 0.06}  

(57) 

f (t) = ( /〈  )t  1 ⊕ e(t / 〈 )
 ,t > 0 (51)  

= √{[log(t)  44356] / 0.06} 

3. Weibull Reliability function. The population  fraction 
surviving age t is: 

〈  (52) 
The L70 life follows the Weibull distribution with the shape 
parameter β (17.6) and scale parameter α (45000). 

R(t) = e-(t/  )
 ,t > 0 

F(t) = 1- e[-(t/45000) 
] ,t > 0 (58) 

The following table (Table 5) shows the fitting statistics 
for the normal distribution, lognormal distribution and weibull 

 

The reliability function, R(t), can thereby be written by: 

distribution, the lower value of Cramer-von Mises Criterion, R(t) = 1 - F(t) = e[-(t/45000)
 

] , t > 0 (59) 

the  better  fitting  of  distribution  it  is. Here,  the  normal 
distribution fitting shows lowest criterion value, which says 
best fitting. 

 

 
 
 
 
 
 
 
 

Table 5 
 

 
Figure 14 Distribution of L70 Life 

 
As shown above, the L70 life (Figure 14) follows the normal 



 

distribution  with  expectation  µ  (43265)  and  variance  ⌠ 
(2720.9). 

The Normal Distribution, Lognormal Distribution and 
Weibull Distribution reliability function are shown 
below(Figure 15): the red line is the Log-normal reliability 
function of L70 life, the green line is the Normal reliability 
function of L70 life, and the blue one is Weibull reliability 
function of L70 life. Overall, the normal distribution could be 
the best fitting and description of distribution for LEDs L70 
life. Therefore, we apply the normal distribution in this 
situation to describe the LEDs’ reliability. The Figure 16 
describes the 95% confidence intervals (CI) of normal 
distribution. The parameters for the normal distribution fitting 
are estimated by the Maximum Likelihood Estimation. 

 
Figure 15 Three Reliability Functions based on three 

distributions 



 

 
 

Figure 16 the 95% CI for the Normal Distribution 
 

Conclusions: 
In this paper, the Extended Kalman Filter algorithm has 

been introduced into the prognostic L70 life for the LEDs. 
The exponential model has been applied to make 
extrapolations, which could across the L70 criterion line. 
Therefore, we can calculate out the Pseudo L70 life according 
to the Status quo. Then, the Pseudo L70 life distributions 
have been generated using the fitting  distribution  method. The 
normal distribution, lognormal distribution and Weibull 
distribution are used into it. The Goodness-Fit Test (Cramer- 
von Mises Criterion) proves that the normal distribution is 
better than other two distributions. The normal distribution 
shows the mean time to failure (MTTF) is 43265 hours, the 
lognormal distribution’s MTTF is 44356 hours, and the 
Weibull distribution has the longer MTTF, which shows 
45000 hours. At last, the 95% confidence interval (CI) has 
been obtained. The estimated MTTF provide us with the 
information that the life for the LEDs is generally long term, 
the reliability tells us there is no LEDs would fail before 
36,000 hours, so the reliability is ‘1’. When the time is at 
43265, the reliability drops to the 50%, which means a half 
mount of LEDs would fail at this time. The maximum L70 life 
time is 50000, which all of LEDs’ life will end before this 
time. So the LEDs life band will be from 36,000 to 50,000 
hours. In the future work, we need to verify this degradation 
model by burning those LEDs to the failure threshold, then we 
can compare the Pseudo L70 life and Real L70 life to generate 
a better LEDs’ prognostic model. 
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