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ABSTRACT:

Solid-state lighting (SSL) luminaires containing light
emitting diodes (LEDs) have the potential of seeing excessive
temperatures when being transported across country or being
stored in non-climate controlled warehouses. They are also
being used in outdoor applications in desert environments that
see little or no humidity but will experience extremely high
temperatures during the day. This makes it important to
increase our understanding of what effects high temperature
exposure for a prolonged period of time will have on the
usability and survivability of these devices. The U.S.
Department of Energy has made a long term commitment to
advance the efficiency, understanding and development of
solid-state lighting (SSL) and is making a strong push for the
acceptance and use of SSL products to reduce overall energy
consumption attributable to lighting.

Traditional light sources “burn out” at end-of-life. For an
incandescent bulb, the lamp life is defined by B50 life.
However, the LEDs have no filament to “burn”. The LEDs
continually degrade and the light output decreases eventually
below useful levels causing failure. Presently, the TM-21 test
standard is used to predict the L70 life of SSL Luminaires
from LM-80 test data. The TM-21 model uses an Arrhenius
Equation with an Activation Energy, Pre-decay factor and
Decay Rates. Several failure mechanisms may be active in a
luminaire at a single time causing lumen depreciation. The
underlying TM-21 Arrhenius Model may not capture the
failure physics in presence of multiple failure mechanisms.
Correlation of lumen maintenance with underlying physics of
degradation at system-level is needed.

In this paper, a Kalman Filter and Extended Kalman Filters
have been used to develop a 70% Lumen Maintenance Life
Prediction Model for a LEDs used in SSL luminaires. This
model can be used to calculate acceleration factors, evaluate
failure-probability and identify ALT methodologies for
reducing test time. Ten-thousand hour LM-80 test data for
various LEDs have been used for model development. System
state has been described in state space form using the
measurement of the feature vector, velocity of feature vector
change and the acceleration of the feature vector change.
System state at each future time has been computed based on
the state space at preceding time step, system dynamics
matrix, control vector, control matrix, measurement matrix,
measured vector, process noise and measurement noise. The
future state of the lumen depreciation has been estimated based
on a second order Kalman Filter model and a Bayesian
Framework. The measured state variable has been related to
the underlying damage using physics-based models. Life
prediction of L70 life for the LEDs used in SSL luminaires
from KF and EKF based models have been compared with the
TM-21 model predictions and experimental data.

INTRODUCTION:

The LEDs (Light Emitting Diodes) have been widely used
since the last decade. Also, there is a tendency that LEDs
would dominate the lighting market because of the LEDs’
advantages in the light efficiency, energy saving, improved
physical robustness and long operating hours. The industrial
utilization of LEDs in some extreme environments requires
the LEDs have a considerable long life. It is also required that
those LEDs must withstand high temperature and high
humidity environment without much lumen maintenance
degradation after long term wearing. The most critical value
for the failure of LEDs is ‘L70° (the Lumen Maintenance



reaches 70% of the original and pristine starts at 100%). There
is extremely long-term degradation for the LEDs to reach its
L70 that is normally over 30,000 hours for the Philips
LUXEON Rebel lamps. The former methodology to quantify
the LED’s L70 is TM-21 (Technical Memorandum) wrote by
the Philips, Osram, Nichia, [llumitex, GE and Cree. Here, we
introduce another reliable method, the Extended Kalman
Filtering, to quantify LED life.

The life of LEDs can be affected by many facts, including:
the manufacturers, junction temperatures, humidity as well as
the LED working current. Somehow, the LED working
temperatures and currents are the most severe conditions that
shorten the LED life scope. Theoretically, the higher junction
temperature it is, the less lumen output will be. The working
current would be around 350 mA to 1A for the high power
white LEDs. In the Philips experiment, the test temperatures
are ranged from 55 °C, 85°C, 105 °C and 120 °C, and the test
currents are ranged from 350 mA, 500 mA, 700 mA and 1A.
Under those conditions, we suppose the lumen degradation
conforms to the Arrhenius Equation, which is exponentially
decaying. Thus, with the general model assumption and
current lumen maintenance data, we can derive the pseudo
L70 life for the Philips high power LEDs, and it is necessary
to introduce the EKF algorithm that is reliable method and
was previous verified in the BGA prognostic health
management system, to meet the requirements and accomplish
dynamic life prediction goal.

The EKF algorithm has been previously used for
monitoring and predicting the electronic system failures,
which is a part from the Prognostic Health Management (PHM)
of Electronic systems. [Lall 2004a-d, 2005a-b, 2006a-f, 2007a-
¢, 2008a-f]. The EKF could watch out for the tendency of
resistance change and monitor it when crossing the failure
threshold. Similarly, in this paper, we use EKF to catch the
Lumen Maintenance degradation lines and to make an
extrapolation for the future space to generate the Remaining
Useful Life (RUL) of L70 threshold. The exponential function
has been incorporated into the EKF to make exponential
extrapolations. Those extrapolations provide wus life
estimations of LEDs that calculated from Newton Raphson
method. Then, the L70 life could be viewed as following
certain distributions, such as normal distribution, lognormal
distribution and the weibull distribution. Once fitting the life
data, we use the Maximum Likelihood Estimation (MLE)
method to get the best fit for the life data. Then, we can get
the cumulative probability function F(t) and obtain the
reliability function R(t).

NOMENCLATURE
LED Light Emitting Diodes
~ (@) Lumen Maintenance
L70 Lumen Maintenance at 70%
KF Kalman Filter
EKF Extended Kalman Filter
TM-21 Technical Memorandum-2 1
AES Activated Energy of System
PHM Prognostic Health Management

Xp Filter Projection
Xe Filter Estimation
H Measurement Matrix
0 Process Noise
F System Dynamic Matrix
R Measurement Noise
6 Fundamental Matrix
M, the First Covariance Matrix
K Kalman Gain
P, the Second Covariance Matrix
A Pre-decay Factor
o In-Situ temperature Coefficient 1
B In-Situ temperature Coefficient 2
E, Activated Energy
L, Lumen Output
L, Initial Lumen Maintenance
C Decay Constant 1
C, Decay Constant 2
T Life Time
T, Initial Life Time
Ts Sampling Time

LEDS’ LUMEN MEASUREMENT SYSTEM:

The LEDs’ Lumen Measurement System (Figure 1)
contains parts: (1) Light Emitting Device. (2) Light Gathering
System. (3) Light Transmitting System. (4) Light Analyzing
System. The Light Emitting Device generates the light from
the lamp, which made from our test LEDs. There are many
kinds of LED lamps. Each LED lamp has its unique light
generating system, which contains a LED driver and LED
bulbs. The LED driver transfers the AC to the DC that is only
allowed for LEDs. However, each driver, somehow, will
produce the ripple current that would affect the quality and
life of LEDs. The Light Gathering System collects all the light
emitting from the LED, typically, the Light Gathering System
includes the integrating sphere and cosine diffuser etc., and
we use the integrating sphere to collect the light from LEDs.
There is coating on the surface inside of Integrating Sphere,
which makes the light to diffuse at all the inside can surface,
which causes the light distribute evenly. Then the Light
Transmitting System, including the cable optical fibers, can
get the well-distributed light from the Integrating Sphere and
transmit it into the Light Analyzing System. The Light
Analyzing System mainly analyzes the Power of the light, the
Luminous Flux, Luminance as well as the CCK that denotes
the color shifting value of the light.
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Figure 1 LEDs Measurement System

In general, we get the Lumen Maintenance data from the
measurement system, which presents the power intensity of
the light from LED bulb. The Lumen Maintenance says the
percentage of the light power of LED compared to the pristine
that is normalized and sets to be 100% at the beginning. For
example, the test starts at the 100% lumen maintenance, and
through many burning hours, the lumen maintenance drops to
the 70% of its original. Therefore, it is the dropping
percentage of lumen maintenance versus the time that we can
use it to predict the pseudo life of LED throughout this system.

ACCELERATING
MODEL:

The purpose of accelerated degradation is concerned with
models and data analyses for degradation of product
performance over time at overstress and design conditions.
There are many advantages for the accelerated test. It can be
analyzed in very early time. Also, it can estimate the time
when the performance through the failure threshold. The
extrapolation could let us explore the behaviors and
consequences under the different stress level, and compare
those results to generate much more accurate life prediction
model.

There are many assumptions for the accelerating model.
Those assumptions include: (1) Degradation is not reversible.
(2) Single Degradation process is applied. (3) Degradation of
specimen performance before the test beginning is negligible.
(4) Performance is measured with negligible random error. We
also apply the statistic model for the L70 life, which shows
the typical performance around obvious value. Those
distributions are very important for the high reliability
management of LED systems.

In this paper, the exponential Arrhenius model is discussed,
and the Arrhenius rate relationship is widely adopted for the
temperature based accelerating experiments. For the
Arrhenius rate relationship, in any temperature and exposure
time, the distribution of performance p is lognormal.
Thus, y=log(p) is normal. The standard deviation rof log
performance is a constant, which does not depend on the
temperature and current.

TEST AND ACCELERATING

PHILIPS DATASET:
The datasets were collected by the PHILIPS LUMILEDS,

which published in documents DR05-1-LM80 and DROS5-1-
LMS0. The test product is LUXEON LXM3-PW series LEDs,
which is shown in the following Figure 2 .

Figure 2 LED Test Product

Those documents contain the LEDs’ lumen maintenance
degradation and chromatic shifting, the very vital indication
for the failure of LEDs. In order to estimate the pseudo life of
LED, thus, we use the lumen maintenance degradation for
extrapolating the L70 life (the Lumen Maintenance reaches 70%
of the original and pristine starts at 100%), which is the
standard criterion for industrial world to estimate the life of
bulbs. In this dataset, there are many test conditions; each test
condition includes 25 samples. In each sample, the lumen
maintenance data was recorded from 0 to 9000 hours, the test
matrix shows below Table 1:

Current Ts CCT
55°C | 3000K
85°C | 3000K
105°C | 3000K
120°C | 3000K
55°C | 3000K
85°C | 3000K
105°C | 3000K
120°C | 3000K
55°C | 3000K
85°C | 3000K
105°C | 3000K
55°C | 3000K

1A 85°C | 3000K
1A 105°C | 3000K

Table 1 Test Matrix



In the test matrix, there are 14 tests under 4 different currents
and 4 different temperatures, and the test CCT is 3000K. In
this paper, we use the data from the last test, which the current
is 1 A; test temperature is 105 °C and CCT is 3000K. The
dataset from the selected test would look like below Figure 1.
Different color represents the lumen outputs at each time from
25 samples. There is a tendency of the degradation in the
lumen maintenance (Figure 4), and we want to explore the
degradation model in the degradation of lumen maintenance
and to estimation the pseudo LEDs’ L70 life. The general
degradation on the lumen maintenance shows on the Figure 4.
Throughout the 9000 hours experiment, the
maintenance decays from 100 % to the 92 %. However, this
degradation may not look like the linear since there are
multiple elements affect the degradation of
maintenance. The degradation would tend to be much slower
in the future, which is called decelerating process. Generally,
we use the exponential degradation function to present this
process, and use the exponential family functions to predict
the pseudo L70 life for the LEDs.
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Extended Kalman Filter Algorithm

System damage state estimation in the presence of
measurement noise and process noise has been achieved using
the Extended Kalman Filter (EKF). Previously, the Kalman
Filter has been used in guidance and tracking applications
[Kalman 1960, Zarchan 2000].
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Figure 5 the Recursive Algorithm and Extended Kalman Filter

System state has been described in state space form using
the measurement of the feature vector, velocity of feature vector
change and the acceleration of the feature vector change. The
equivalent Extended Kalman Filter equation for state space
representation is in the presence of process noise and
measurement noise is:

x=Fx +w 1)

x=f (x) +w (2)

Where the F is the system linear dynamic matrix; f(x) is non-
linear dynamic matrix; the G is measurement matrix; U is
measurement vector; and W is system white noise; the
matrices are related to the nonlinear system and measurement
equations according to

| fl(x
F =

Wi
H =.H

the process noise can be calculated by taking the expectation
of white noise:

Q=E[ww'] ()

(3)

x=x

(4)

X=X

Also, the EKF Equations require the measurement to be
linearly related to the current state in the form of :
Z =H ®x+V (6)

where the V is measurement noise. Similarly, the measurement
noise matrix is derived from the measurement noise as
following:

R= E[VVT ] (7)

Figure 4 General Degradation Relationship of Lumen Maintenance



From the linear dynamic equations, we can
clearly know that the world is linear as we
supposed, and once we made this premise. All
the problems can be simply solved through the
matrix calculation. Therefore, we can get the first
and second derivatives from the linear matrix
calculation; the Equation 4-



1 is the model of the first order system while the Equation 4-2
is the second order system:
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The system dynamic matrix for the EKF is:
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We use this Jacobin Matrix to linearize the non-linear
problem; therefore it can use the classical KF updates. This is
for the second order system, and thus we can find the transfer
function F to describe certain system, which it is the key to

find fundamental matrix (). In this paper for the EKF, we
used the system model:

X :<®e®®l (10)
The state vector is:

. 11
X % (11)
=[x ®

]

This is an exponential function. The ‘<’ and < ®’ are two
coefficients that are decided by different systems. The first

derivation xand the second derivation Xare from:

x =(®e®” (12)
x=®®x (13)
P=E®i=0’ Ox (14)

Therefore the elements in system dynamic matrix will be
calculated as:
x ]

® 1 (15)

Fixr :|®2 ®

| 2®x

In the Kalman Filter, the Fundamental Matrix will be used
directly to update the estimation from last time to the next.

Generally speaking, the process to find the ideal estimation
can be expressed as following steps: First of all, we make the

primary estimation, which should be approximate to the

initiate value (the first data point) in the dataset, and secondly,
we can find the first projection using the fundamental matrix

\/(l‘ )and simply calculate as:
x=V(0)%

(19)
(20)
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The next estimate could be obtained from the following
equation:

X =X +K(Z [H ®%)
K is Kalman Gain
H is measurement matrix

(21)

Z is measurement.
Each time we update the Kalman Gain and Covariance

Matrix, which minimizes the errors and makes optimal
calculation during each step. Thus, the Kalman Gain mainly
conveys the information about how is our estimation close to
the observation. The way to obtain Kalman Gain (K) is from
three Riccati equations:

M =Py +0 (22)
k k k

K=M H (HM H +R )kEl (23)

P, =(1[RH)M, (24)

In the above equations, the A, is the covariance matrix; the

Vis the fundamental matrix; the VT is the transpose of that

10 0



is another

covariance matrix

Usually, the fundamental matrix \/(l‘ ) can be obtained from

two ways: the first way, we can get it from Laplace Transform,
simply as:

(@) =([(SI [B)™] (16)

(1}
Where the /  is inverse of the Laplace Transform; However,
the second way, known as the common way to ﬁndﬁl(l‘),

derives from the Tylor Serise expansion:
(FT)> (FT)’ (17)
2’ + 3’ P

N(2) =I +FT +

Normally, we only use the first two terms for representing the

fundamental matrix \/(t ), because the adding more terms
cannot contribute much to the precision and filter convergence.

The Fundamental Matrix in the Extended Kalman Filter is:

uU+er 71 xT ] (18)
| 2 |
\/EKF (T)H1 +F el :| ®T 1+®T 20@xT
|
10 0 1

that representing

error according to the time; the (), is the discrete process

noise matrix, which is calculated from:

00 o] (25
desl%o g 9
0 =Viheoav(l)dl (26)

V(
K+

0
the H is the unit measurement matrix and /1 ; 1s transpose of
it; the K is the Kalman Gain; R, represents the measurement

noise according to the different system. We notice that those

three equations run like in the recursions: for the initial

covariance error £y, we can find variance matrix A/, that
represents the current error in the first equation according to

time. Then we use it in the second equation to find the

Kalman Gain K , after that, we substitute the Estimate Kalman
Gain K into the third equation to update last covariance error



Pk , thus we obtain the ‘next’ covariance error Pk +1 - Therefore,

as we go back to the first equation, we can obtain the updated

M, and updated Kalman Gain K . In the EKF, the Euler
integration has been introduced to instead the performance of
the KF’s fundamental matrix, it can be found that:

X, =%, +¥,ql

We call the equation above is the update equations, fck

(28)

represents the projection from the last time k ; XkD is the first

derivative at time k-1; X, is the estimation at time k, )'ck is the

first derivative at time k; 7" is the sample time.

x, =x, +K,(Z[H ®x,) (29)
X :;ék +K,(Z [H @%,) (30)

The above equations are the basic Extended Kalman Filter

equations, which are to find the estimation and its ‘velocity’.
Also, in those equations, it uses the same three Riccati

Equations that expressed in the Kalman Filter to obtain the
Kalman Gain K,and K, .

Now, we can see that the Extended Kalman Filter actually
have turned the non-linear problem into a linear one through

integrating method. So at each step, the Extended Kalman

Filter made a small integration, and if the integrate time is
small enough, then the answer we get is becoming more

precise. However, the difficulty within the Extended Kalman
Filter is to find the dynamic non-linear model to describe the

system, which always contains the unknown coefficients.
Therefore, the better we know about the test system, for

example, the theories and functions in the situation of LEDs

failure, the better we can predict system model in the
Extended Kalman Filter, therefore, the prediction of

Remaining Useful Life (RUL) would be close to the real RUL

7. Extrapolate feature vector to threshold value:

®
LM =x o k +Wk+n

S)

e
k+n

8. Report predicted RUL (and uncertainty);
9. TIterate to step 2 for next measurement (k =k +1);

Prognostic Degradation Models:
There are many prognostic models that could explain the
degradation process for the lumen maintenance. Generally, we

explore some simple constant rate models. The simplest
degradation relationship for typical log performance p(t) ,the

mean of the population distribution of log performance at age
t, is a simple linear function of product t:

oo (1) =([® &1 (31)
For a degradation accelerated by the temperature T, the

Arrhenius Degradation Rate is:
© (32)

) )
® =®R®e T
The B and vy are the coefficients for the typical product. With
this rate parameter, the degradation model becomes:

it (33)
oc(t,T) =([1] T
PR®e

For a degradation accelerated by the current V, the Power
Degradation Rate shows:

® =®V (34)
©

With this rate parameter, the degradation model becomes:

oc(t, V) =(-t RV (35)
©

For a degradation accelerated by the exponential decay rate,
the decay stress rate could be expressed as:

® ‘ (36)
~®@e*

With this rate parameter, the degradation model becomes:

o (t, V) =(- =
O®®e®”

in our PHM.



Overall, since the p taken from the natural logarithm,
we can

simplify the models above by wusing the initial
Algorithm: Filtering and RUL prediction

1. [Initiate X,
2. Make the projections: )Ack
=X, Xyl W X,
=X, Xl AW
3. Calculate error Tcovariance matrix before updata:
M, :\/ch\/k +0k
4. Calculate the Kalman Gain:
K =M, H,(HM H, +R H"

5. Update the estimation with measurement:

%, =%, +K,(Z (B ®%,)

5, =%, K, (Z [ &%)

6. Calculate error covariance after measurement update:

B =(I[RH)M,

degradation factor and overall degradation rate. We assumed
the basic L70 extrapolation model is:

\/=<®€(@®l) (38)

In this model, the Vis the Lumen Maintenance (%), and the
<is the initial degradation factor, ®is the degradation rate.
The model says the degradation line should be fitted within
the exponential function. The coefficient <denotes the current
lumen maintenance estimation, and the coefficient ®
expresses the decay rate of the lumen maintenance. The EKF
mainly incorporates this exponential model to make many

extrapolations, which can calculate the time each

extrapolation reach the threshold of the failure criterion.

LED failure criterion
Lumen Maintenance is described as the comparison between

the time specified in the future and the brand new product.
The Lumen Maintenance is 100% at the beginning. Lumen

Maintenance often denotes as the L50 (50%) and L70 (70%).
The customer decides a suitable lumen maintenance target for



the LEDs. However, in the industrial world, the L70 (70%) is
accepted as the LEDs failure criterion since the human eye
cannot detect the change that light dropped 30% from 100%.
Therefore, we apply the L70 for the failure threshold of
LUXEON LEDs in this paper. Next, the EKF will extrapolate
the degradation lines to reach the L70 threshold. Then, the
Newton Raphson Method will calculate the Remaining Useful
Life, which can be added with the current burning hours to
generate the pseudo LEDs life.

Newton Raphson Method

When Kalman Filter made a prediction of the state vector
from the data-set, and the remaining useful life could be
estimated and calculated mathematically by solving the
equation H(t) and find the time T-prediction:

H(t)=x it +5-1" [J(EoL) (39)

T, =T, L)/ f'(x) (40)
In order to find the root of above equation, we introduce the
Newton Rapson’s Method:

T,,H is the estimated root at time n;

T, is the estimated root at time n+1;

f'(x) 1is the derivation of target equation;

The Predicted RUL is known as the End of Life (EoL) minus
the sampling time. So the algebra equations presents as
following:

L70=T,, .. +T. (41)

redict sample

Extended Kalman Filter Prognostic Life:

As we mentioned before, the prediction model that EKF
uses to make the extrapolations is the exponential degradation
model. The L70 estimation model:

V=(@exp(CRS1) (42)

The following Figure 6 shows the EKF estimations and data
points; the blue dots present the EKF, and the red lines are the
data points. We can see that in the first 9000 hours, the lumen
maintenance drops to the 90%. Also, we need to eliminate the
oscillation and unstable condition of the first 2000 hours
estimation, therefore, we uses the 2000 to 9000 hours data to
predict the LEDs L70 life. By tracking the current degradation
lines, there is non-linear pattern in the degradation of lumen
maintenance, which is close to the exponential decay.
Therefore, the exponential function, we expressed above, is
suitable for our lumen maintenance extrapolation and
prediction.

lumen maintenance

07 L i i
0

Figure 6 The LM Degradation Data and EKF Estimations

The following histogram (Figure 7) shows the EKF
estimations of L70 life. Those estimations are derived by the
extrapolations using the previous exponential decay function.
There have 234 estimations, and in the Gaussian distribution,

me is 43265hours, and the Standard
Deviation (STD) is 2721 hours.
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Figure 7 The Estimated L70 Distribution
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Table 2 Pseudo L70 Life



The following pictures table 3 and table 4 show the estimated

alpha and beta coefficients’ histogram and distribution.

3000 4000 5000 6000 7000, 8000 9000}
0.961993| 0.9635289| 0.9527311| 0.9420817| 0.9393379| 0.9372766| 0.9305935|
0.937616| 0.9342206| 0.9216239| 0.9069729| 0.8986258| 0.8934894| 0.8805254)
0.959097| 0.9607296| 0.9467554| 0.9349852| 0.9288427| 0.9280687| 0.9160077|
0.958559| 0.9599726| 0.9466625| 0.9323797| 0.9260369| 0.9256703| 0.9088278
0.965066| 0.9656636| 0.9531315| 0.9402767| 0.9362385| 0.9349759| 0.9254032

0.95484| 0.9527761| 0.937872| 0.9256752| 0.9210307| 0.9189774| 0.
0.944714| 0.9509839| 0.9363986| 0.9261648| 0.9198272| 0.920175| 0.9063263)
0.950053| 0.9505853| 0.9301131| 0.920365| 0.9109351| 0.9103754| 0.8912402]
0.957153| 0.9576653| 0.9418604| 0.9309728| 0.9179594| 0.921362| 0.8979404]
0.948171| 0.9497448| 0.9352865| 0.9254765, 0.9201315| 0.9231603| 0.9141067|
0.966171| 0.9740794| 0.9602684| 0.9459738| 0.9415278| 0.9402757| 0.9314073
0.967569| 0.9748613| 0.9589471| 0.9439791| 0.9390362| 0.9339845| 0.9241045|
0.955235| 0.9557078| 0.9423879| 0.9306645| 0.9267213| 0.9244834| 0.9160115|
0.945489| 0.9471913| 0.9322111| 0.9203693| 0.9148221| 0.9156708| 0.9042207
0.964381| 0.9659694| 0.9501657| 0.9385722| 0.9352281| 0.9296894| 0.9258915|
0.959966| 0.95811| 0.9411829| 0.9304608| 0.9251273| 0.9256756| 0.915913)

0.94846| 0.9479405| 0.9299221| 0.9144673| 0.9066235| 0.9081693| 0.8912387|
0.948476| 0.9512317| 0.9312296| 0.9172636| 0.9087244| 0.9100711| 0.8940357
0.951079| 0.9535201| 0.9359192| 0.9256563| 0.9214145| 0.9205814| 0.9129132
0.963322| 0.9651779| 0.9485779| 0.938266| 0.9338277| 0.9352703| 0.9274054
0.945034| 0.9465229| 0.9325028| 0.9224563| 0.9204115| 0.9231716| 0.9135207|
0.948656| 0.9501901| 0.9343075| 0.9173836| 0.9116235| 0.9129614| 0.8945405|
0.953756| 0.9615592| 0.9469918| 0.9300877| 0.9286157| 0.9293612| 0.9171219|
0.945612| 0.9485419| 0.930628| 0.9137691| 0.905822| 0.9104594| 0.8872595|

0.94996| 0.956279| 0.9388078| 0.9232796| 0.9171249| 0.9194599| 0.9052264

0.954014| 0.9560869| 0.9406903| 0.9278721| 0.9222274| 0.9220724| 0.9096201/

Table 3 Alpha Estimations

3000 2000] 5000] 6000 7000] 8000] 2000]
-0.87851| -0.70139| -0.733783| _0.74186| -0.722141] -0.712601| -0.718173| -0.7197786

-0.78077| -0.804508 -0.8008| -0.782389 -0.77582ﬂ -0.778375 -0.772@'
-0.87948( -0.70706| -0.739611| -0.744928| -0.724033] -0.71343| -0.720858] -0.719017
-0.88869| -0.72624| -0.754017| -0.758783| -0.739076| -0.729697| -0.736777| -0.730098
-0.88531| -0.70886| -0.737279] -0.745503| -0.726932| -0.717188| -0.722916] -0.722141]
-0.88654 -0.72566| -0.753404| -0.756996| -0.738589| -0.73098| -0.736348| -0.734181|
-0.89517| -0.75496| -0.782972| -0.78316| -0.766486] -0.750664]  -0.7658| -0.759352
-0.88912| -0.74376| -0.771505| -0.769758| -0.753118| -0.744655| -0.750663| -0.741125|
-0.71799| -0.747467| -0.752294] -0.734361] -0.719722| -0.729063] -0.719897]
~0.72676] _0.758068] 0.759777| -0.740777] -0.733047] -0.742555| _0.740968]
-0.73832| -0.765724| -0.769775| -0.750762| -0.743568| -0.749466] -0.74762]
-0.71638| -0.744992] 0.751272| -0.731261] -0.72204] -0.725744] -0.724635]
-0.75284| -0.777325| -0.778999] -0.762782| -0.757373 -0.761419] -0.758529
0.89314] -0.7586] -0.785235| -0.783672| -0.765994| -0.760466] -0.76754] -0.762491]
0.88694| -0.72213| -0.750633| -0.754932| -0.736903| -0.729888| -0.732426] -0.73457|
“0.8953| -0.74039| 0.764497| 0.766767 -0.751615| -0.744859] _0.750802| —0.747628]
-0.8953| -0.74039| -0.764497| -0.766767| -0.751615| -0.744859| -0.750802| -0.747628]
-0.7782| -0.800283] -0.795981] -0.779282| -0.773204| -0.780262| -0.771649
-0.90188| -0.77089| -0.794055| -0.791282| -0.776638] -0.77303| -0.777606] -0.774304)
-0.88987 -0.72987| -0.757068 -0.759931] -0.743294| -0.736408| -0.743635| -0.742324|
-0.90301| -0.76867| -0.791643| -0.791242| -0.776957| -0.774076| -0.781006| -0.775834
-0.89268| -0.75326| -0.779743| -0.778694] 0.757384| -0.751419] _0.760486] -0.750764)
-0.89011] -0.74212| -0.771837| -0.772918| -0.750224) -0.746175| -0.755215] -0.749773
-0.91022| -0.78737| -0.80792| -0.803738| -0.785622] -0.78001| -0.789829| -0.775605
-0.89409| -0.75143| -0.779286| -0.778236| -0.757527| -0.751234| -0.760777| -0.754435|
-0.8925] -0.7434 -0.770186] -0.771486] -0.753237] -0.746346] -0.752983| -0.748074]

Table 4 Beta Estimations (10™)

One sample (Figure 8) shows the EKF’ estimations and
extrapolations, the blue line is the original data, the red line is
estimations and the green line is extrapolations, which uses
the exponential decay model. Obviously, there are two
outliers for the estimation, and those two lines cannot be used
for the true L70 distribution. The extrapolations tend to
concentrate at 40,000 to 50,000 for L70 life.

Exponential Degradation Tracking
T

T Tl

LumenMaintenance

Lumen Maintenance

o 05 1 15 2 25 3 35 4 45
Time(hours) w10t

Figure 9 All Sample L70 Extrapolations and Degradation Path

It is the pseudo L70 life boxplot (Figure 10) that
estimated through 1000 to 9000 hours, however, there is
distinct two patterns in those estimations, before 2000 hours,
the life is predicted shorter than that after 2000 hours. So we
mainly apply the more recent estimations to form the life
distribution. Also, in the boxplot, the variations are almost
the same and the mean value can be derived from the fitting
distributions, which is normal, lognormal and weibull
distribution.

Distribution of Life by time

50000

47500

45000

Life

42500

40000

37500

35000

T T T T T T T
1000 2000 3000 4000 5000 6000 7000 8000 9000

time

Figure 10 Distribution of Estimated L70 Life by Time



Prognostic Lumem Degradation at 16,000 hours using
training EKF model:

The lumen degradation could be predicted at given time,
for example it can predict the Lumen Maintenance at 16,000
hours. We consider normal distribution for the estimation of
training decay rates. The following plots show the normal
distributed beta factor and lumen estimation using previous
8,000 hours degradation information.

25

] Tﬁ\x |
ol /|

Counts

-0.85 0.8 075 07 -0.65
Decay Rates

Figure 11 Fitted Distribution for Decay Rate

30

Counts
S

0
0.85 09 0.95 1 1.0
Lumen Estimations

Figure 12 Fitted Distribution for Lumen Estimation

We use the basic exponential degradation function to
model the degradation path from 8,000 hours to 16,000 hours.

In the plots, we can figure out that the lumen estimation and
decay rate estimation are also normally distributed around its

mean value with identified variance. The histogram plot

showing below is the lumen estimation at 16,000 hours, the
blue bar shows the counts of estimated lumen value, the red

16,000 Lumen Estimation
30 T T T

251

20

' A N T T )
0.85 0.86 0.87 0.88 0.89 0.9 091
Lumen Estimation for 16,000 hours

885 oes
Figure 13 Lumen Estimation Summary for 16,000 hours

LED System Reliability Discussion

A cumulative distribution function F(t) represents the
population fraction failing by age t. Any such continuous F(t)
has the Mathematical properties: (1) It is a continuous
function for all t. (2) li%lF(t) -0 and lianF(t)=1 3)

F(t) 8F(t') for all t <t2. The range of t for most life

distribution is from 0 to oo, but some useful distributions have
a range from -oo to o. The reliability function R(t) for a life
distribution is the probability of survival beyond age t, namely,
the survivor or survivorship function can be represented as:

R(t) =1-F(t) (43)

We can use the method that fitting the probability for the
distribution of L70 life over the sample population. Here, we
only use the normal distribution, lognormal distribution and
Weibull distribution to fit the probability. The normal
distribution has been used to describe the life of incandescent
lamp filaments and of electrical insulations. It is also used as
the distribution for product properties.

1. Normal Cumulative Distribution Function. The population
fraction failing by age y is:

(44)

y -1/2 1 x-06

[-—(

) 1
F(y) =E(2: (*) o e dx,-[dy <+

2. Normal Probability Density. The probability density is:

S =) @deel gy @)
i

3. Normal Reliability Function. The population fraction
surviving age t is:

(46)

R(t) =1-[(t-oc)/ (]

line is fitted distribution. The mean value of 16,000 hours lumen

maintenance is 86.53%, and the mean value of 8000



hours is 92.21%. Therefore, the Iumen maintenance
degradation from 8000 hours to 16,000 hours is 5.68 %. The
lumen maintenance variance at 8000 hours is 1.1196e-04, and

the lumen maintenance variance at 16,000 hours is 1.2863e-04,
so the variance increases 1.6676-5, which indicates the

distribution shape is wider than our current’s.

The lognormal distribution is widely used for life data,
including metal fatigue, solid state components and electrical
insulation. The lognormal and normal distributions are related;
this fact is used to analyze lognormal data with methods for
normal data.

1. Lognormal Cumulative Distribution.
fraction failing by age t is:
F(t) =V{[log(t)-oc]/ [}, t >0 (47)

The population

2. Lognormal
distribution,

Probability Density. For a lognormal



(48)
(1) ={0.4343/[(20)"*t (1} @e o1 12D 4 50

3. Lognormal Reliability Function. The population fraction
surviving age t is:

R(t) =1- V{[log(t) - o</ [} =V{-[log(t)-oc]/ [}  (49)

The weibull distribution is often used for product life, because
it models either increasing or decreasing failure rates simply.

It is also used as the distribution for products properties such

as strength (electrical or mechanical), elongation resistance,
etc., in accelerated tests. It is used to describe the life of roller

bearings, electronic components, ceramics, capacitors, and
dielectrics in accelerated test.

1. Weibull Cumulative Distribution. The population fraction

failing by age t< ®is: (50)

F(t)y=1-¢“’ ,t>0
2. Weibull Probability Density. For a weibull distribution:

SO =@/ @0 ey

,t >0
3. Weibull Reliability function. The population fraction

surviving ag(e@t 18: (52)

R(t)y=e""’ >0

The following table (Table 5) shows the fitting statistics
for the normal distribution, lognormal distribution and weibull

distribution, the lower value of Cramer-von Mises Criterion,
the better fitting of distribution it is. Here, the normal

distribution fitting shows lowest criterion value, which says
best fitting.

Goodness-Fit Tests for Three Distributions

Distributions Cramer-von P-Value
Mises Criterion
Normal 0.0968 <0.005
Lognormal 0.0981 <0.005
Weibull 0.295 <0.010
Table 5

F(t) =V[(t - 43265)/2720.9] (53)

The reliability function, R(t), can thereby be written by:
R(t) =1-F(t) =1 -[(t-43265)/2720.9] (54)
The L70 life follows the Lognormal Distribution with scale

parameter \, and shape parameter r; the cumulative
distribution can be written as:

F(t) =N{[log(t /V1/ [ =V {log[(¢ /)" ] (55)

Therefore the cumulative distribution of LEDs’ L70 life
would be written as the following function:

F(t) =N{[log(¢/10.7)]/0.06} (56)

This lognormal cumulative distribution function describes the

population fraction failing by the age t. \is the mean time to
failure (MTTF). \is in the same measurement units as t. In

the LEDs’ L70 distribution, we found that R(t) could be

TROES S A 110.77]/0.06} (57)

=V{[Tllog(¢) [34356]/0.06}

The L70 life follows the Weibull distribution with the shape
parameter  (17.6) and scale parameter o (45000).

F(t) =1 - el(v45000) vl >0 (58)

The reliability function, R(t), can thereby be written by:

17.6

R(t) =1-F(t) =eM*#%2 1450 (59)

Distribution of Life
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Figure 14 Distribution of L70 Life

As shown above, the L70 life (Figure 14) follows the normal



distribution with expectation u (43265) and variance r
(2720.9).

The Normal Distribution, Lognormal Distribution and
Weibull Distribution reliability function are shown
below(Figure 15): the red line is the Log-normal reliability
function of L70 life, the green line is the Normal reliability
function of L70 life, and the blue one is Weibull reliability
function of L70 life. Overall, the normal distribution could be
the best fitting and description of distribution for LEDs L70
life. Therefore, we apply the normal distribution in this
situation to describe the LEDs’ reliability. The Figure 16
describes the 95% confidence intervals (CI) of normal
distribution. The parameters for the normal distribution fitting
are estimated by the Maximum Likelihood Estimation.

1 | I
, ; Lognormal R(t)
] I St Wk W Normal Rit) [
: : ; Weibull R(t)
L % ; :
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Figure 15 Three Reliability Functions based on three
distributions



95% CI for the Normal Distribution Reliability Function

1 T J T T I I I I
: : : = Normal Distribution R(t)
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h, : =a=u= | gwer 5% Cl
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Figure 16 the 95% CI for the Normal Distribution

Conclusions:

In this paper, the Extended Kalman Filter algorithm has
been introduced into the prognostic L70 life for the LEDs.
The exponential model has been applied to make
extrapolations, which could across the L70 criterion line.
Therefore, we can calculate out the Pseudo L70 life according
to the Status quo. Then, the Pseudo L70 life distributions
have been generated using the fitting distribution method. The
normal distribution, lognormal distribution and Weibull
distribution are used into it. The Goodness-Fit Test (Cramer-
von Mises Criterion) proves that the normal distribution is
better than other two distributions. The normal distribution
shows the mean time to failure (MTTF) is 43265 hours, the
lognormal distribution’s MTTF is 44356 hours, and the
Weibull distribution has the longer MTTF, which shows
45000 hours. At last, the 95% confidence interval (CI) has
been obtained. The estimated MTTF provide us with the
information that the life for the LEDs is generally long term,
the reliability tells us there is no LEDs would fail before
36,000 hours, so the reliability is ‘1’. When the time is at
43265, the reliability drops to the 50%, which means a half
mount of LEDs would fail at this time. The maximum L70 life
time is 50000, which all of LEDs’ life will end before this
time. So the LEDs life band will be from 36,000 to 50,000
hours. In the future work, we need to verify this degradation
model by burning those LEDs to the failure threshold, then we
can compare the Pseudo L70 life and Real L70 life to generate
a better LEDs’ prognostic model.
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