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1 Introduction

In this paper we continue the development of the Large N formulation of the Sachdev-
Ye-Kitaev (SYK) model begun in our earlier work. The SYK model [5-8] and the earlier
Sachdev-Ye (SY) model [1-4] represent valuable laboratories for understanding of hologra-
phy and quantum features of black holes. They represent fermionic systems with quenched
disorder with nontrivial properties [9-12] and gravity duals. In addition to models based on
random matrices, they represent some of the simplest models of holography (see also [13]).



The framework for accessing the IR critical point and the corresponding AdSs dual can
be provided by the large N expansion at strong coupling. In this limit, Kitaev [6] has
demonstrated the chaotic behavior of the system in terms of the Lyapunov exponent and
has exhibited elements of the dual black hole.

Recently, in-depth studies [14-16] have given large N correlations and spectrum of
two-particle states of the model. In these (and earlier works [6, 7]), a notable feature is
the emergence of reparametrization symmetry showing characteristic features of the dual
AdS Gravity.

The present work continues the development of systematic Large IN representation of
the model given in [15] (which we will refer to as I), through a nonlinear bi-local collective
field theory. This representation systematically incorporates arbitrary n-point bi-local
correlators through a set of 1/N vertices and propagator(s) and as such gives the bridge
to a dual description. It naturally provides a holographic interpretation along the lines
proposed more generally in [22, 23], where the relative coordinate is seen to represents
the radial AdSy coordinate z. The Large N SYK model represents a highly nontrivial
nonlinear system. At the IR critical point (which is analytically accessible) there appears
a zero mode problem which at the outset prevents a perturbative expansion. In (I), this
is treated through introduction of collective ‘time’ coordinate as a dynamical variable as
in quantization of extended systems [25]. Its Faddeev-Popov quantization was seen to
systematically project out the zero modes, providing for a well defined propagator and
expansion around the IR point. What one has is a fully nonlinear interacting system of
bi-local matter with a discrete gravitational degree of freedom governed by a Schwarzian
action. In [16] the zero modes were enhanced away from the IR defining a near critical
theory, and correspondence. We will be able to demonstrate that the nonlinear treatment
that we employ leads to very same effects (‘big’ contributions) at the linearized quadratic
level, it is expected hoverer to be exact at all orders.

In the present work, we present perturbative calculations (around the IR point) using
this collective formulation. A particular scheme that we employ for perturbative calcu-
lations is an e expansion, where ¢ represents a deviation from the exactly solvable case.
Using this scheme we are able to perform analytic calculations in powers of 1/J (where J
represents the strong coupling constant). These calculations are compared with and are
seen to be in agreement with numerical evaluations of [16]. The content of this paper is
as follows: in the rest of section 1, we give a short summary of our formulation with the
treatment of symmetry modes. In section 2, we perform a perturbative evaluation of the
Large N classical background, to all orders in the inverse of the strong coupling defining
the IR. In section 3, we discuss the two-point function in the leading and sub-leading order.
In section 4, we deal with the finite temperature case and give the free energy to several
orders. Comments are given in section 5.

1.1 The method

In this subsection, we will give a brief review of our formalism [15]. The Sachdev-Ye-
Kitaev model [6] is a quantum mechanical many body system with all-to-all interactions



on fermionic N sites (N > 1), represented by the Hamiltonian

N
1

H = 1 § Jijhi Xi X5 Xk X1 » (1.1)
ijdd=1

where y; are Majorana fermions, which satisfy {x;,x;} = di;. The coupling constant
Jijii are random with a Gaussian distribution. The original model is given by this four-
point interaction; however, with a simple generalization to analogous g-point interacting
model [6, 16]. In this paper, we follow the more general ¢ model, unless otherwise specified.
Nevertheless, our main interest represents the original ¢ = 4 model. After the disorder
averaging for the random coupling J;jx;, there is only one effective coupling J and the
effective action is written as

S, /dtZfoatxz % Nq — /dtldtg Z

i=1 a=1 a,b=1

(Z X@ tl Xz t? ) ’ (12)

where a, b are the replica indexes. Throughout this paper, we only use Euclidean time. We
do not expect a spin glass state in this model [7] and we can restrict to replica diagonal
subspace [15]. Therefore, introducing a (replica diagonal) bi-local collective field:

N
‘I/ tl,tg = Z tl Xi t2 (1.3)
the model is described by a path-integral
[ ¥ (1. t2) () e Scarl¥], (1.4)

t1,t2
with an appropriate measure p and the collective action:

J2N

N N
Seol[¥] = 2/dt [atxp(t,t’)}t_t + Q/dt log W(t,t) —

/dtldtQ W9t t5). (1.5)

This action being of order N gives a systematic G = 1/N expansion, while the measure
found as in [24] begins to contribute at one loop level (in 1/N). Here the first linear term
represents a conformal breaking term, while the other terms respect conformal invariance.!

In the strong coupling limit |¢|J > 1, the collective action is reduces to the critical action

J2N

SC[‘I’] = ];]/dt log\Il(t,t) — /dtldtg \IJq(tl,tg), (16)

which exhibits the emergent conformal reparametrization symmetry ¢ — f(¢) with

Q=

W(ty,t2) — Wy(ts,t2) = ‘f/(t1>f/(t2) W(f(t), f(t2))- (1.7)

1Such linear breaking term was seen previously in [27].



The critical solution is given by

NIOONE "
[ft) = f(t2)] ) '

where b is a time-independent constant. This symmetry is responsible for the appearance

U ¢(t1,t2) = b<

of zero modes in the strict IR critical theory. This problem was addressed in [15] with
analog of the quantization of extended systems with symmetry modes [25]. The above
symmetry mode representing time reparametrization can be elevated to a dynamical vari-
able introduced according to [26] through the Faddeev-Popov method which we summarize
as follows: we insert into the partition function (1.4), the functional identity:

/HDf(t) Ha(/u.qff> 0(Ju- )

=1, 1.9
- (19)
so that after an inverse change of the integration variable, it results in a combined repre-

sentation
Z = / [I2r@) ] DOt t2) u(f,‘l’)5< / u-\Iff) e~ Searl 1] (1.10)
t t1,t2

with an appropriate Jacobian. After separating the critical classical solution ¥ from the
bi-local field: ¥ = ¥, + U, the total action is now given by

N _
Se[¥, f] = S[f] + z/dt[ﬁt‘llf(t,t’)}t/:t bS], (1.11)
where the action of the time collective coordinate is
N
= — | dt o r(t1,t . 1.12
S[f] 2/ 1[31 o,f(t1, 2)}152:151 (1.12)

We have given the explicit evaluation of the nonlinear action S[f] for the case of ¢ = 2
in [15]. This evaluation is based on expanding the critical solution in the t; — to limit
and taking the derivative; the result producing the form of a Schwarzian derivative. For
general ¢, and in particular ¢ = 4 which is our main interest we employ an e-expansion
with ¢ = 2/(1 — ¢) in appendix A. So in general the action S[f] always comes in the form
of the Schwarzian derivative but with a constant overall coefficient, which is in e-expansion
found to be a« =1 — &2 = 4(q — 1)/¢*

_Na g [ s
ﬂﬂ_mw/ﬁ[f@_2<ﬂw>]' (119

At the linearized level this action was deduced as the action of enhanced zero mode in [16]

through numerical evaluation. Our value of « for ¢ = 4 is @ = 3/4, which agrees very
well with a numerical result found there, the corresponding numerical value being a =~
0.756. Summarizing the f(¢) is now introduced as a dynamical degree of freedom, with
the combined action of eq. (1.11) showing interaction with the bi-local field and possessing



a reparametrization symmetry which is now present at but also away from the IR point.
The delta function condition can be understood as gauge fixing condition projecting out a
state associated with wave function u(t1,t2). This wave function is arbitrary (representing
different gauges), it will be chosen to eliminate the troublesome zero mode of the IR. This
formulation then allows systematic perturbative calculations around the IR point.

1.2 Relation to zero mode dynamics

Before we proceed with our perturbative calculations it is worth comparing the above
exact treatment of the reparametrization mode (1.13) with a linearized determination of
the zero mode dynamics, as considered in [16]. We will be able to see that the latter
follows from the former.

Expanding the critical action around the critical saddle-point solution ¥, we have in
I generated [15], the quadratic kernel (which defines the propagator) and a sequence of

higher vertices. This expansion is schematically written as
1 1
v 2N}:N Vol + = [0 Koy + —— . o (114
Sc[oJr /Nn Sc[0]+2/77 77+\/N/V(3) nnn + (1.14)

where the kernel is
628.[Wo)
5Wo(t1,t2)0Wo(ts, ta)
= W5ty t3) W5 (ta, ta) + (¢ — 1) 8(t13)0(tas) WL 2 (b1, 82),  (1.15)

K(t1,t2;t3,t4) =

with ¢;; = t; — t;. For other detail of the expansion, please refer to [15]. Then, the bi-local
propagator D is determined as a solution of the following Green’s equation:

/dtgdt4 K(tl,tg;tg,t4) D(tg,t4;t5,t6) = 5(t15)(5(t26). (116)

In order to inverse the kernel K in the Green’s equation (1.16) and determine the bi-local
propagator, let us first consider an eigenvalue problem of the kernel K:

/dt3dt4 KC(t1,tast3,ta) un(ts, ta) = knguni(ti,ta), (1.17)

where n and t are labels to distinguish the eigenfunctions. The zero mode, whose eigenvalue

is kg = 0 is given by
0Wo,f (1, t2)

of®) =t

Now, we consider the zero mode quantum fluctuation around a shifted classical background

uo7t(t1,t2) = (1.18)

U(ty,ta) = Vot t2) + /dt,é‘(t/) ug ¢ (t1,t2), (1.19)

with o = U+ T® where UM is a shift of the classical field from the critical point. Then,
the quadratic action of ¢ in the first order of the shift is given by expanding S¢[W. + ¢ - ug].
This quadratic action can be written in terms of the shift of the kernel 6K as

N
Sole] = — n / dtdt’ e(t) e(t') / dtydtadtsdty ug(t1, t2) 6K (t1, ta; ts, ta) uop (ts, ta)
(1.20)



where

538 [Wo)
(t1,t2)0W0(t3,t4)0W0 (L5, t6)
Let us formally denote the ¢; - t4 integrals in eq. (1.20) by

OK(t1,t2;t3,ts) = /dt5dt6 50, V) (ts, te) - (1.21)

Ok 5(75 — t/) = /dtldtgdt3dt4 UD,t(tl, tg) (5]C(t1, to;ts, t4) Ug ¢/ (tg, t4) , (1.22)

because this is related to the eigenvalue shift due to §/C up to normalization. Then, we can
write the quadratic action (1.20) as

Sole] = -7 dt 0k; £2(t) . (1.23)

We now give a formal proof that the quadratic action (1.23) is equivalent to the
quadratic action of eq. (1.13). To show this, we need the following identity:

§3Sc[Wo]
6Wo(t1,t2)6Wo(ts, t4)dWo(ts, te
82 £ (ts,ts)

SfFOFW) =

This identity can be derived as follows. In the zero mode equation [ K -uy = 0, rewriting

/dtldthtgdt4 uoyt(tl, tg) ) ont/ (tg, t4)

= — /dtgdt4 K(ts, ta;t5,t6) (1.24)

the kernel as derivatives of S; as in the first line of eq. (1.15), and taking a derivative of
this equation respect to f(t'), one finds
5\1’0,)0(251,152)
o (t)
2 2
+ /dt3dt4 O SelVo,] : g Wo’f(t37f4) )
50 1 (L3, 14)0%0 (15 t5)  3J (ST (F) | 1yt

where we used the zero mode expression (1.18). Since S. is invariant under the

. 3°Se[Po,y] 0o, f(t3, t4)
f(t)=t 5\1’0,f(t17t2)5‘110.,f(t37t4)5\1’0,f(t5at6) Sf(t) FH)=t'

0= /dt1dt2dt3dt4

(1.25)

reparametrization, we can change the argument of S. from Wy, to Wo. Then, we get
the identity (1.24). Now for the zero mode eigenvalue shift (1.22), rewriting the kernel
shift 0/C as in eq. (1.21) and using the above identity, one can show that dk is given as

82 (ts,t
Skt —t) = — /dtgdt4dt5dt6 K(tg,t4;t5,t6)\If(”(tl,tQ)W (1.26)
f)=t
Next we use the equation of motion of U):
/dt3dt4 K(t1, tos ts, t4) 0D (ts, t4) = 10(t12) . (1.27)
Then, one finds
2W ¢(ty,t
Sky = /dt1 o EALEAGEL) va; 1, t2) : (1.28)
Of* ) lpw=t],,_,,
and from eq. (1.23)
N 82Wq ¢(ty,t
Sole] = —/dt/dt1 o, | Yol ) £2(1). (1.29)
4 6f (t) f(t):t to=t1

This agrees with the quadratic action of eq. (1.12).



2 Shift of the classical solution

In large N limit, the exact classical solution W is given by the solution of the saddle-point
equation of the collective action (1.5). This classical solution corresponds to the one-point
function:

<\I/(t1,t2)> = \Ifd(tl,tg). (2.1)

At the strict strong coupling limit, the classical solution is given by the critical solution
Uy, which is a solution of the saddle-point equation of the critical action (1.6). Now we
would like to consider a first order shift W) of the classical solution from the critical
solution induced by the kinetic term. Substituting W, = ¥y + \If(l) into the collective
action Sco (1.5) and expanding it up to the first order of the shift, one finds

/dt:«;dt4 K(t1,tasts, ta) W1y (ts, ta) = 010(t12), (2.2)

where the kernel is given in eq. (1.15). This is the equation which determines W) with
the delta function source.

In the following, we will consider even integer ¢ and perform this perturbative evalua-
tion for the corrections of the classical field.

2.1 Inhomogeneous solution ¥ (y)

In this subsection, we will determine ¥ ;) from the eq. (2.2). For explicit evaluations, it is
actually useful to separate the J dependence from the bi-local field by

_2
Vot t2) = J 9 Uo(tr,t2) + -+, (2.3)
where we separated J dependence from the critical solution ¥y, which now reads

sgn(t12)

Uo(ty,te) = b 3
|t12]9

, (2.4)

with

b= tan(Z)<1—2> ;. (2.5)

27 q

By excluding .J dependence in this way, the kernel (1.15) does not have the explicit .J? factor
in the second term, and we will refer this new kernel as K in the rest of the paper. Since

_ pa-1 sen(tiz)

\Ilal(tlth) = 9_2
[t12|™ 9

) (2.6)

we know the kernel has dimension K ~ |t|~*+%/¢. Therefore, from dimension analysis L2

has to be the form of

t
Uy (t,ta) = A w, (2.7)

|t12]e



where A is a t-independent coefficient. Now we are going to check this ansatz actually
solves eq. (2.2) and fix the coefficient A. The integral for the first term of the Lh.s. of
eq. (2.2) is given by

t ' t
Ap22 / dtydty S ffjgn( in)gsgn( ?;4). (2.8)
[t13|™ 9 [toa|™ 9 [t34]e

This type of integral is already evaluated in appendix A of [14]. In general, the result is

/dt dQt sgn(t13) sgn(taq) sgn(tss) _ 2 [ sin(2ra) + 2sin(27(a + A)) + sin(27(a + 2A))

N PN N sin(2ma) sin(27A) sin(27(a + A)) sin (27 (a + 2A))

[sin(ZﬂA) + sin(27(a + A))}F(l —2A) sgn(tiz2) 9
T(20)T(2A)0(3 — 2a — 4A) |t |20 H1A-2 " (2.9)

X

Our interest is A =1 — 1/q. For this case, the result is inversely proportional to I'(4/q —
2c0 — 1). If we plug o« = 2/q into this equation, we can see that the Gamma function in
the denominator gives infinity: I'(4/q — 2a — 1) = I'(—1) = oo, while other part is finite.
Therefore, the first term of the Lh.s. of eq. (2.2) vanishes. The second term is trivial to
evaluate and the equation is now reduced to

sgn(t12)

— 1)AbT2
(g—1) TNE

= 810(t12). (2.10)
In order to determine the coefficient A, let us use the Fourier transform of the both hand
sides. For the Lh.s., we use for example eq. (2.11) of [16]. However, the result is pro-
portional to I'(0) = oo, and the Fourier transform of the right-hand side of eq. (2.10) is
just —iw. Therefore, A = 0. Since we saw that from dimensional analysis, only possible
solution was Wy ~ |t12|~%/4 form, the conclusion is

Uy (t,ta) = 0. (2.11)

Here we have concluded that A = 0 started from the ansatz (2.7). However, for ¢ = 2 case
we could take another type of ansatz: W(y)(t1,t2) = A 8’ (t12), where A is a t-independent
coefficient. This ansatz is antisymmetric and has the correct dimension when ¢ = 2. Indeed,
this is the correct solution for ¥ (1) when ¢ = 2, and we will present a detail analysis of this
ansatz in appendix B.2. Similarly, one might expect an ansatz Wy (t12) ~ 6(t12) when ¢ =
4, because this has the correct dimension. To make this ansatz antisymmetric, one has to
multiply sng(t12). However, now W y(t12) ~ sgn(t12)6(t12), and this function is essentially
zero for all value of ¢12. Hence, we do not have any delta function type of ansatz for ¢ = 4.

2.2 Homogeneous solution ¥,

In the previous subsection, we concluded that W) = 0. However, we recall that a general
solution of a non-homogeneous differential equation is given by a linear combination of
a specific non-homogeneous solution and a general corresponding homogeneous solution.
Therefore, a general solution for the non-homogeneous differential equation (2.2) is given by
v = (1) + ¥y, where ¥(q) is a specific non-homogeneous solution, which we concluded



V(1) = 0 in the previous subsection. In this subsection, we consider the corresponding
homogeneous differential equation:

/ dtadts K(t1, to; ta, £0) U1 (t, 1) = 0, (2.12)

to determine Wy. This equation looks like a zero-mode equation. However, we can find
another mode which satisfies this equation. Since the r.h.s. of the equation (2.12) is zero,
we cannot determine the scaling dimension of W a priori. Nevertheless, the dimension of
W, should be less than the scaling dimension of Wg. Hence, we use a general ansatz for W:

sgn(tlg)

Uy(ti,t2) = B 5 ;

(2.13)

where Bj is a t-independent coefficient and s > 0. Now we are going to fix s by requiring
this ansatz solves the homogenous equation (2.12). The integral of the first term of Lh.s.
of eq. (2.12) is evaluated from eq. (2.9) with A=1—-1/g and o = s+ 1/q as

2q—2 2 s 2
Bl b1 T cot <6) r (a — 1) Sgn(tIQ)

o ) P e ) Y R T o T e I

(2.14)
Hence, after a slight manipulation the Lh.s. of eq. (2.12) becomes
/dtgdt4 ’C(t1,t2;t3,t4)\1/1(t3,t4) (215)
nl (2
—(g=1)Bib" 2|1 — () sgnhia)
gsin (7r (% + s)) cos (7r (s — é)) r (% + 25) r (3 — %) r (% — 25— 1) \t12\2_5+2"

where we used eq. (2.5). Therefore, in order to determine s, we need to solve the equation
obtained by setting the inside of the bracket in r.h.s. to zero. A solution of this equation is
given by s = 1/2. We note that since the r.h.s. of the eq. (2.12) is zero, we cannot determine
the coefficient B from the equation. However, we will fix this coefficient B; in section 2.5 by
relating ¥; to the dynamical collective coordinate action (1.13) found in the previous sec-
tion as we did in section 1.2. Hence, the expansion of the classical solution is now given by

2
\Ifcl(tl,tg) = JﬁE[\Ifo(tl,tz) + Jil \I/1<t1,t2) + -, (2.16)
where
sen(t sen(t
Wo(ty,ts) = b w, Ui (t, 1) = By %. (2.17)
|t12]e [t12]a

2.3 Evaluation of ¥,

Now we would like to go further higher order term in the expansion of the classical solution.
This term is given by

2
\Ifcl(tl,tg) = J « [\Ifo(tl,tg) + J_l \Ifl(tl,tg) + J_2 \Ifg(tl,tQ) + -, (2.18)



with
sgn(tlg)

Uy(ty,t2) = Bo 3
|t12|a+2

, (2.19)
where Bs is a t-independent coefficient. The dimension of Wy is already fixed by ¥y, so
what we need to do is just to fix the coefficient By. Substituting the above expansion of the
classical field into the critical action S, (1.6) and expanding it, one finds that the equation
determining ¥, is given by

/dtgdt4 /C(tl,tg;tg,t4)\l/2(t3,t4) (2.20)

(¢=1)(g~-2)
2
where the star product is defined by [A  B](t1,t2) = [ dts3 A(t1,t3)B(ts,t2). Now, we are
going to evaluate each term of this equation. For the first term in the L.h.s. is again given

by eq. (2.9) with A=1—-1/gand a=1/¢+1 as

(Lh.s. 1st) = 27 Bo p2a—2 q(q —1)(3¢ — 2) sgn(ti2)

(¢° = tan(g) g ,45

= [t x Uy x UG Uy U (f, tg) — W3, 1) W21y, ta)

(2.21)

For the first term of the r.h.s., we need to use eq. (2.9) twice. First for the middle of the
term: Wy % \Ilal * W1, and then for the result sandwiched by the remaining \Ilgl’s. Then,

we have )
(¢—1) 27°q"(¢ — 1)(3¢ — 2) sgn(t12)
(¢ —2)? 1| @

The second terms in the L.h.s. and r.h.s. are trivially evaluated. Therefore, now one can

(rhs. 1st) = — B3bp®

(2.22)

see that all terms have the same t15 dependence. Then, comparing their coefficients, we

finally fix By as
B? (q+2 T
By = — =1 (1= -2 —Ntan? (= )| . 2.2
. ( - )[@ )+ (3 — 2) tan (q)] (2.23)

2.4 All order evaluation in g > 2

In this subsection, we extend our previous perturbative expansion of the classical solution
to all order contributions in the 1/.J expansion. Because of the dimension of ¥; (2.17), the
time-dependence is already fixed for all order as in eq. (2.28). Therefore, we only need to
determine the coefficient B,,, and in this subsection we will give a recursion relation which
fixes the coefficients. However, we will not use this subsection’s result in the rest of the
paper, so readers who are interested only in the first few terms in the 1/J expansion (2.18)
may skip this subsection and move on to section 2.5. As we saw in section 2.2 and ap-
pendix B.2, the structure of the classical solution in ¢ = 2 model is different from ¢ > 2
case. In this subsection, we focus on ¢ > 2 case.
We generalize the expansion (2.18) to all order by

(e 9]

Valti,te) = J70 3 T Up(tr, b)) (2.24)
m=0

~10 -



Now, we substitute this expansion into the critical action S. (1.6). As we saw before, the
kinetic term does not contribute to the perturbative analysis when ¢ > 2; therefore, we
discard the kinetic term here. The contribution of the kinetic term will be recovered in
the full classical solution with correct UV boundary conditions. Hence, the saddle-point

equation is now formally written as

0o q—1
> Tt t2)] . (2.25)
m=0

0 = [Z J MW, ()
m=0

Using the multinomial theorem, each term can be reduced to polynomials of W¥,,’s. Sub-
stituting these results into eq. (2.25) leads the saddle-point equation written in terms
polynomials with all order of 1/.J expansion. From this equation, one can further pick up
order O(J~ ™) terms. For n = 0, it is the equation of Wy. Therefore, we consider n > 1
case, which is given by

o (k1 + ko 4! B Nk ks
0= > (phrr %x [\1101*(\1:1*\1/01) e (wanvgt) z*...}(tm)
k142ko+--=n 1:K2:!R3:

—1)!
" Z % X \Illgo(thb) ‘I/lfl(thtz) ‘1152(151,152)--- , (2.26)
ki+2ko+--=n 0!k1'lka!

with kg = ¢ — (1 + k1 + --- + kn—1). Let us consider this order O(J™") equation more.
Because of the constraint ki +2ky +- - - = n, we know that k,4+1 = kpq0 = --- = 0. Also the
same constraint implies that k,, = 0 or 1, and when k, = 1, then ki = ky=---=k,_1 =0.
Therefore, it is useful to separate k, = 1 terms from k, = 0 ones. After this separation,
the order O(J™") equation is reduced to a more familiar form:

/dtgdt4 K (t1, to; s, t4) Wy (t3, 4) (2.27)

_ _ Z (_1)]§1+‘..+kn71 (kl +---+ kn—l)!

k! k1!
k1 +2ka+-++ (n—1)kn_1=n ! -l

[ (xyl*xp ) *...*(wnl*%l)’“"‘l] (t1,t2)
)!

—1)!
a Z k lk( k X \Ij (t17t2) \Il}fl(tlatQ) e W n l(tl,tg)
k1 +2ky ot (n—kp_1=n 0 1! n—1!

where kg = ¢ — (1 + k1 + -+ + kn—1). This is the equation which determines ¥,, from
{Up, ¥y, ,¥,_1} sources. However, we already know the ¢12 dependence of W, (¢, t2).
Namely,

sgn(t12)

U, (t1,t2) = By (2.28)

2
’t12|5+n
Therefore, we only need to determine the coefficient B,,. Probably it is hard to evaluate
the star products in the r.h.s. of eq. (2.27) by direct integrations of t’s, and it is better to

use momentum space representations.

d
U, (t1,t2) = B, / 2“’ e W2 g (W), (2.29)
7['
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where we excluded the coefficient B,, from V¥,,(w) for later convenience, and ¥,,(w) =

2
Chn [w]a ™™ sgn(w), with

Cn = i27 " ay/m (2.30)

With this definition of C,,, we can write the inverse of the critical solution as

d - d 4 _2
W' (1, ta) = / e U (W) = b Gy / S e ol T sg(w). (2:31)

Now, we can evaluate each term in eq. (2.27) using these Fourier transforms. Then, every
term has the same w integral; therefore, comparing the coeflicients, one obtains

bq—2[(q —-1) C2+n_§ e 022_3 Cn:|Bn

_ Z (_1)k1+...+kn_1 (k;l + 4 kn—l)!

kil k1!
k1 +2ka -+ (n—1)kn_1=n ! -l

(—bq Lo,

( ! k Eo_
_ Z ]{: ']{: k‘ X kaBll e anll C2+n7% ’ (232)
ki 42kt (n—Dkn_1=n O 1 n—1!

>k1+ Ak 141 (B1 Cl)kl N (Bn—l Cn_l)kn_l
)

— »am

with kg = ¢— (1+k1+---+kp—1). This is the recursion relation which determines B,, from
{By,Bs, -+ ,B,_1}. Note that C,’s are a priori known numbers as defined in eq. (2.30).

2.5 B;j from consistency condition

Now we can fix the so-far-unfixed coefficient B; of ¥; from a consistency condition of the
equivalence of the two methods shown in section 1.2. This is done by evaluating the zero
mode eigenvalue shift explicitly. We will also give a comparison of our result of B; with
the numerically approximated result found in [16].

Since the evaluation of the zero mode eigenvalue shift (1.22) is slightly technical, we
present a derivation in appendix C. Here, we simply give the result:

Sk(ta,ty) = YB1 020 6(tap) (2.33)

with

¥ = - — (¢* — 6q +6) (2.34)

12mbg qsm(2q7r)

tan(%) [27['((] —1)(¢g—2)

Now we can fix By by equating the two results of the quadratic action of the collective
coordinates. From the result of 0k, eq. (1.23) is reduced to

Sl = - N f]” / at (/1)) (2.35)

On the other hand, in eq. (1.13), taking f(t) = t+¢(t) and from quadratic order of €, we find

Sole] = — 4(;5 o (='m)". (2.36)
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Figure 1. The red line represents ag and the blue line represents the right hand side of eq. (2.40).

Equating the coefficients of the above two results, we obtain
o 8b(q — 1) cos?(%)

127y 2m(g—1)(g— 2) — q(¢® — 6q + 6)sin(2T)

By =

(2.37)

where we used o = 1 — &2 = 4(q¢ — 1)/¢?>. We note that for ¢ = 2, B; = 0 and then the
recursion relation (2.32) implies B,, = 0 for all order. Therefore, the series of the ¢ = 2
classical solution is triggered by a different solution as we discussed in appendix B.2.

Finally, we compare our result for By with the numerical result found in [16] . Their
aq is related to our By in the following way

ag B
— = —, 2.38
7 =7 (2.38)
where their numerical approximated value of ag is
2(q —2)
~ . 2.39
G 16/7 +6.18(q — 2) + (q — 2)2 (2:39)
Since J = %J , we need to compare
2 1
q B
ac = \qC 71 . (2.40)
275

The figure 1 shows the both hand sides of this equation. We can see that they agree very
well from ¢ = 2 to ¢ = 4.

3 Two-point function
In this section, we consider the bi-local two-point function:
(W(t1,12)¥(ts, 1)) (3.1)

where the expectation value is evaluated by the path integral (1.4). After the Faddeev-
Popov prosedure and changing the integration variable as we discussed in section 1, this
two-point function becomes

<\1/f(t1, t2) W (13, t4)> : (3.2)
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where now the expectation value is evaluated by the gauged path integral (1.10).
Now, we expand the bi-local field around the shifted background classical solution
Uy =Wy + J_I\Ifl. Namely,

1 /2
\If(tl,tg) = \Ilo(tl,tQ) + jqfl(tl,tg) + N ﬁ(tl,tz), (3.3)

where we have rescaled the entire field ¥ by J2/9, and 7 is a quantum fluctuation, but the
zero mode is eliminated from its Hilbert space. Therefore, the two-point function is now
decomposed as

<\ij(t17t2)\1’f(t3at4)> = <\I/cl7f(t1atQ)WCl,f(t3>t4)> + %<ﬁ(t1,t2)ﬁ(t3,t4)> . (3'4)

The second term in the r.h.s. is the bi-local propagator D determined by eq. (1.16), which
was already evaluated in I for ¢ = 4 (and also in [14, 16]) as

—zw (t4—t) p2
D(t1,ta;t3,t4) = — t_t m 3.5
ottt = —seu-) 5o Z/ inmp) 7+ (3127 &)
Pm + 3
x [J-pmuwt_\) RS AN ] T (),
m T 3
where p,, are the solutions of 2p,,/3 = —tan(np,,/2), and t+ = (t1 = t2)/2 and t/, =

(ts = t4)/2.
Therefore, in this section let us focus on the first term in the r.h.s. of eq. (3.4). Ex-
panding the classical field up to the second order, one has

<‘I’c1,f(t1,tz)qfcl,f(t37t4)> (3.6)

1 t1 <t
_ <1110,f(t1,t2)\110,f(t3,t4)> + 5 [<\Ifo,f(t1,tg)\Ifl,f(tg,t4)> + <t; - ti)] b
where
1

T Wo(f(t), f(t2)),

1

G (F), £(ta) (3.7)

Wos(tts) = |£(01)f (t2)

Wy f(t1,te) = | f/(t1) [ (t2)

Now, we consider an infinitesimal reparametrization f(t) = ¢ + &(t). Then, the classical

s
e

fields are expanded as

\Ifof(t1,t2) = \If() tl,tQ —l— dt€ U()t tl,tQ) + -

\Ifl f(tl,tQ) = \Ifl tl,tg + th ult tl,tg) + -y (3.8)
where
0%, f(t1,t2) oWy (t1,t2)
uot(ti,te) = —F 7 , ug(tite) = — 25— . (3.9)
of(t) F(6)=t of(t) F(t)=t
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Therefore, in the quadratic order of ¢, the classical field two-point function is now written
in term of the two-point function of €. For later convenience, it is better to write down

this as momentum space integral as

<\I/c1,f(t1,tz)‘I’c1,f(t3,t4)> (3.10)

:/;L: (e(W)e(=w)) [uaw(tl,tg)uo,w(t;;,t;;) n % <ug,w(t1,t2)ul,w(t3,t4) n (tl < t3>> n } ,

to >ty

Let us first evaluate the € two-point function. The collective coordinate action is given
in eq. (1.13). Expanding f(t) = t 4 £(t), the quadratic action of ¢ is given by eq. (2.36).
Hence, the two-point function in momentum space is

(@) = 222 = (3.11)

One can also Fourier transform back to the time representation to get

(e(t1)e(t2)) = N |t12]* . (3.12)

Next, we evaluate up and u;. Taking the derivative respect to f(t), one obtains

U07t(t1,t2) — 2 |:(5,(t1 —t) + (5,(752 —t) _9 (5(t1 —t) - 5(t2 - t)>:| \I’(](tl,tg),

i1 —t2
2+ 0ty —t) —o6(ta —t
U,Lt(tl,tg) = Wq |:5/(t1 —t) + (5’(t2 —t) — 2 < ( ! tz —tg( 2 ))] \Ifl(tl,tg)
(2+ q)B1 uo(t1,t2)
= J 3.13
2b [t12] ( )

After some manipulation, one can show that the momentum space expressions are given by

by \w|% sgn(wt_)

oty ta) = ) et gy (Jwt-]),
q |2¢_|a"2 2
24+ q)By ugw(ti,t
wr(tn,te) = 42) : °“|§ 1| 2) (3.14)

Using the two-point function of € and above ug and w; expressions, finally the two-point
function (3.4) up to order JY is given by

3¢> 2+q¢)By [ 1 1 dw
<\I/f(t17t2)‘lff(t3,t4)> == m |:J + Tb) @—"m /Juo’w(tlat2)u0,w(t37t4)

+ D(ty,ta;t3,t4) . (3.15)

What we have established therefore is the following. What one has is first the leading
“classical” contribution to the bi-local two-point function which usually factorizes, due to
the dynamics of the reparametrization symmetry mode. It now represents the leading ‘big’
contribution, as in [16], and a sub-leading one. This is followed by the matter fluctuations
given by the zero mode projected propagator of I [15].
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4 Finite temperature classical solution

Up to here, we have been considering only zero-temperature solutions in the SYK model. In
this section, we will determine the finite-temperature solutions ¥, g3 and ¥, g and evaluate
their contributions to the tree-level free energy.

As we saw in section 2, the 1/J expansion of the classical solution in the strongly
coupling region is given by

_2
\Ifcl(tl,tg) =J « [\Ifo(tl,tg) + J_l ‘1’1(751,752) + J_2 ‘Ifg(tl,tg) + -, (41)
where
sen(t sen(t sen(t
‘1’0(t17t2)=bw7 Ui(t1,t2) = B %a Uo(t1,t2) = B L;f).(m)
[t12]4 |t12]9 |t12]4

In order to evaluate tree-level free energy, we first need finite-temperature versions of
these classical solutions. Wq is the solution of the strict strong coupling limit, where the
model exhibits an emergent conformal reparametrization symmetry: ¢ — f(t) with the
U transformation (1.7). Therefore, to obtain the finite-temperature version of ¥y, we
just need to use f(t) = gtan(%t) with the above transformation [6]. This map maps the
infinitely long zero-temperature time to periodic thermal circle. Thus, this gives us

\Ifoﬂ(tl,tz) =b [ )] ' sgn(tlg). (4.3)

o
58111(%

Since ¥ and ¥y are the shifts of the classical solution from the strict IR limit, they
do not enjoy the reparametrization symmetry. Therefore, we cannot use the above method
to get their finite-temperature counterparts. However, we can obtain finite-temperature
solutions by mapping the zero-temperature solutions onto a thermal circle and summing
over all image charges:

o0

Ug(ti) = D (=) Wp—oo(tiz + ). (4.4)
m=—00
By defining the finite-temperature solution by this way, the thermal two-point function (in
terms of the fundamental fermions) trivially satisfies the KMS condition. Of course, this
method works order by order in the 1/.J expansion. Therefore, after separating positive m
and negative m and changing the labeling, one finds

> —( > i +1 ] . (4.5)

m=0 (/Bm + t12) m=1 Bm - t12)

The summations of m can be evaluated to give the Hurwitz zeta functions. However, this

Uy 5(t12) = By

form is more convenient for later evaluations of tree level free energy, so we stop here. In
the same way, we obtain finite-temperature ¥, as

3 (— 3 )" +2] . (4.6)

Uy 5(t12) = Bo
m=0 (ﬁm-l-tm) m=1 Bm—tlz)
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Figure 2. fo(y) and Fy(y,q) with ¢ = 2,4,1000 in the range of —5 <y <

1 1
2 2°

In [16], Maldacena and Stanford found a first order shift of the classical solution in
finite-temperature through a numerical solution of the exact Schwinger-Dyson equation.
Therefore, let us compare our result of ¥y g with their result before we consider free energy.
The solution of [16] is shown in their eq. (3.122) reading:
27T‘t12‘

5G(t1,t2) lo7e] ™=

= ——— fo(ti2), fo(ti2) = 2 + ————. (4.7)
tan|%|

Ge(t1,t2) BT

with the notation, G. = ¥g 3 and dG = ¥, g. This thermal two-point function does not
satisfy the KMS condition; but as we will see below it gives a pretty good approximation.

It is more convenient to introduce a new variable

[t12] 1 1 1
= = — -, ——<y< = 4.
vE=Tg o 5SYS5 (4.8)
Then, we have
foly) = 2 + 2nytan(my). (4.9)

Now, we can see that 6G(y) is even function of y. This can be understood as a combination
of the following two anti-symmetries. (i) the two-point function is anti-symmetric under
t12 — to1. (i) the two-point function is anti-symmetric under t; — t1 + 3, (or to — to+ ).
We also note that

2

T q
St te) = Wog(tinte) = b |—— | 41
Gultn 1) = Wosltnta) = b | 7 (4.10)

Next, we consider our result of ¥; 3. We can rewrite eq. (4.5) in the form of

B e G (=)™
Uy gts) = o o+ . (4.11)
gatl mz (m + 72 mZ:O (m+1 - t2)a*!

Using an integral representation of the Hurwitz Zeta Function (for example, see 25.11.35
of [28]), one can see that indeed our result is also even function of y. We can also perform
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the summation in eq. (4.11) directly to get

B 2 1 y 2 1 y 2 3 vy 2 3 vy
Tala)= oo [C (Graes) (o)< (Gr1vg) < (q“fz” |
4.1

Therefore, together with eq. (4.10), we have

\I/l,ﬁ(tIQ) _ Bl |: <2 1) B <2 3> :|
Yos(tiz)  o(2m)ang ¢ q g ¢ p +1.7) | xFoly,9), (4.13)

where

2pni4g) +c(24ni-1) - (2413+y) - c(2+13-%)
(o)
(4714)

Here, we adjusted the normalization of Fj so that Fy(y = 0,q) = 2 = fo(y = 0). A
numerical plots are given in figure 2, where we plotted fy(y) and Fy(y, ¢) with ¢ = 2,4, 1000.

2 [¢(
Fo(y.q) = (cosmy)

We can see that for any value of ¢, Fp is pretty close to fy in all range of y.

4.1 'Tree-level free energy

Now we use our finite-temperature solutions to determine their contributions to the tree-
level free energy. The order (3.J)° contribution to the tree-level free energy, which comes
from S.[V ], was already evaluated in [6, 16, 18]. Therefore in this section, we will
evaluate higher order contributions of the 1//5.J expansion to the tree-level free energy.

4.1.1 Contribution from S[f]

The action of the collective time coordinate was evaluated in appendix A by using e-
expansion with ¢ = 2/(1 — ¢). The result is given by eq. (1.13). Now, we use the classical
solution: f(t) = %tan(%’f). Then, the integral can be evaluated to give 272/3. Therefore,
the S[f] contribution to the tree-level free energy is

m(l—¢?) N
Fop = ————. 4.15
BF ) 12 BJ (4.15)
Equivalently, this can be written as
c m(l—¢?) N
log Zy = — BFg) = — h —re-e) 4.1
0g Z(0) BE o) 25 where c G 7 (4.16)

For ¢ =4 (¢ = 1/2), we find ¢ = (7/8) x (N/J) ~ 0.393 x N/J, which agrees very well
with the value found in [16].

4.1.2 Contribution from ¥, g

Now we evaluate the contribution to tree-level free energy from the kinetic term of ¥y g:

N B
S[¥1,6] = 2J2/o dtq [31‘111,,3(751,&) . (4.17)

to—t1
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Substituting the solution (4.5) into this kinetic term, the contribution to free energy is

given by
o= o P o] S [ [t
2J2 m=0 0 (Bm+t12)275 ta—ty m=1 0 (Bm_ t12)276 ta—ty 7

(4.18)
where we used ¢ = 2/(1 — ). Then, we use e-expansion to evaluate the limit and integral.
First, to make sure the contribution has the correct dimension, we rewrite the integrand as

1 1 1
(ﬁm + t12)2—5 /Bsz (1 + };17”21)2—5 ’

(4.19)

We are interested in low temperature expansion (3 > t12). Therefore, together with
e-expansion, we have

1 1 t12 (2—¢)
= I 14+ — =1 —t S 4.20
(=52 <1igﬁ>2“"p[€ °g< fxmﬂ T o 2t (420

Therefore, now the limit and derivative in the free energy can be evaluated to lead

— > (—1)ym+l —
by = NBE 9 (U 3398w N o)

m? 4 (B2
We note that for ¢ = 2, By = 0. Therefore, this agrees with the result (B.14) in
appendix B.3. The delta function type of solution for ¥y in ¢ = 2 model does not have

m=1

any non-zero finite contribution to the free energy.

Now we evaluate the contribution to tree-level free energy from the critical action
Sc[¥1,8]. The critical action is given by eq. (1.6). Substituting the expansion of the
classical field (4.1) into this critical action, one can find two terms in O(J 1) and four terms
in O(J~2). The order O(J~!) contribution is zero, due to the equation of motion of Wg.
Next, among the order O(J~2) contributions, two terms proportional to Wo are canceled
each other due to the W equation of motion again. The other terms can be written as

N

— @ dtldthtgdt4 \Ill(tl,tg)lc<t1,t2;t3,t4) ‘Ifl(tg,t4) =0. (4.22)

This contribution is again zero due to the equation of motion of Wy.

4.1.3 Contribution from ¥, g

Now, we consider the kinetic term of ¥y g:

N (B
S[Wys] = — [ dt [a\p t,t} . 4.23
This evaluation is completely parallel to the one with W; 3. The contribution to free
energy is
_NBy | & m [° 1 = m [? 1
BE )= 573 [mo( 1) /0 dty {31 (5m+t12)3_5]t2_>t1 :1( 1) /o dt, [81 (Bmt12)3_5]52_>t1] .

(4.24)
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Again, we expand the integrand as in egs. (4.19) and (4.20), and the free energy is now
given by

o 0 _1\ym+1 o 7.[.4

= m? 720 (BJ)3

Now we evaluate the contribution to tree-level free energy from the critical action
Sc[Wa 5]: we again expand Sc[W] with the expansion of the classical solution (4.1). For
the order O(J~?), one finds six terms. Two terms proportional to W3 are cancels each
other due to the ¥y equation of motion. Using the equation of motion for Ws, the other

four terms can be combined as

oN [P

ﬁF(O) = ﬁ dtidtadtsdty \I’Q(tl,tz) Kﬂ(tl, t2;t3, t4) \Ifl(tg, t4) . (4.26)
0

For ¢ > 2 case, this is zero due to the ¥y equation of motion. However, when ¢ = 2, the

equation of Wy has the delta function source term. Therefore, using this we can rewrite

the contribution as

o
373 J,

7B N
dty [31‘112,,8(t17t2)]t = - 2

Fo) = .
bF) N 180 (BJ)?

(g=2,e=0)
(4.27)
In the last step, we used the result of the kinetic term of ¥ 3. Combining with the kinetic

term contribution, for ¢ = 2 the total contribution to order O(J~3) free energy is

By, N 7 N
720 (BJ)3 2880 (BJ)3’

BFo) = — (¢=2) (4.28)

where we used By = —1/47 for ¢ = 2. This result completely agrees with eq. (B.14).

4.1.4 Summary

Up to here, we have the following perturbative result for tree-level free energy.

T e 1
BFo/N="1557 * 3ss0 G7p T (2=2) (429
(1= 3(2-e)Bi¢(3) 1 7(3—e)m*By 1
BF(O)/N_* 1237 + 1 (BJ)Q 720 (BJ)3+ (q>2) (4.30)

5 Conclusion

In the present paper we have in the framework of the formulation given in (I) performed
perturbative calculations in the SYK model around the conformal IR point. These cal-
culations are systematic in the inverse of the strong coupling J. We are able to present
analytical calculations through the use of a suitably defined £ expansion representing a
perturbation around the exactly solvable ¢ = 2 case. It turned out that in a number of
quantities (most notably the coefficient of the Schwarzian action S[f]) this expansion trun-
cates. Our analytical calculations, for all quantities considered, agreed within the margin
of error with the numerical evaluations of [16]. It will be interesting to perform further
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analytical calculations in this strong coupling expansion, with further comparison with
improved numerical calculations. Also, the present calculations are done at tree level in
1/N. The formalism that we have given allows for loop level calculations with no difficulty,
due to projection of the zero mode the perturbation expansion is well defined, while the
Jacobian(s) of the changes of variables provide exact counter terms which are expected to
cancel infinities appearing in loop diagrams.

These higher order calculations and further detailed study of the model will be of
definite usefulness regarding the question of the exact AdS, Gravity dual representing
this theory. A class of dilation Gravities related to the models developed by Almheiri and
Polchinski [17] shows features contained in SYK model [18-21]. The representation that we
have given with exact action featuring interaction between the dynamical (time) coordinate
and bi-local matter is the system that one might hope to recover from the corresponding
AdS, theory.
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A e-expansion for general g

In this appendix, we will give a derivation of the Schwarzian action (1.13) for general q.
This is done by using e-expansion with ¢ = 2/(1 — €) and treating ¢ as a small parameter.
We note that for any ¢ in the range of 2 < g < oo, the value of € is 0 < ¢ < 1. Therefore,
the convergence of this e-expansion is guaranteed. Even though we use the e-expansion,
we can nevertheless calculate all order contributions of ¢ as we will see below. We first
rewrite the critical solution in the following way:

g (MPRIFE | & [ VIFETFGL
! 51g<um>—ﬂmn)+' (l O (H) T

where the first term is the contribution from ¢ = 2 case, which leads to the result eq. (1.13)
with a = 1. To evaluate higher order & contributions, we use the following expansions of
the logarithm in the t; — 9 limit:

|/ (t1) f' (22)] L[ f"(t2)]? 2 1 If"(ta)| 2,
bg(um>—ﬂwn>_'_b““_”‘ SFaE e+ 5 (g

(A.2)
The first log term gives an f-independent divergent term which we will eliminate in the
following. One also expands the factor representing ¢ = 2 reparametrized critical solution
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and then one finds O(¢) = 0. For order O(g?) contribution, from eq. (A.2), one can find

. N LR 11 ()
O(e?) = _élm]/dtl o1 [<4|f,(t?)’2 6 ()] ) |t1 — t2| log |t1 _t2|]t2—>t1

_ Ne? () 3 ()’
B 247TJ/dt1 [ flt) 2 <f’(t1)> ] ’ (4.3)

where we again eliminated the divergence term and used integration by parts. Hence, the

total contribution up to O(e?) for ¢ = 2/(1 — ¢) action is given by
__ Na OGN
sl =~ 247rJ/d7f [ fi 2 (f’(t)) ] ’ (A4

ale) =1 — 2 + 0. (A.5)

In fact, there is no higher order contributions from O(e3), and the expression for a in

eq. (A.5) is exact for all order of e. Namely, a(e) = 1 — &2 This can be seen from an

where

expansion
OGN
(l‘)g 7~ F(B) ) (4.6)

_ n PP 1)
= (st —tal) " = (G 1 gy ) 1ol (sl —a)

This expansion together with the expansion of ¢ = 2 reparametrized critical solution does
not give any non-zero finite contribution to the action after the limit when n > 3. Namely,
the (log |t1 — t2])™ factor gives a strong divergence when n is large. However, if one wants
to lower the power of this logarithm, then one gets a higher power of |t; — t2|™, which
strongly vanishes after setting t2 = ;. Therefore, we don’t have O(e3) order contributions
and o = 1 —¢? is exact. Finally, we comment that our exact analytical results, for example,
a=1(¢g=2)and a = 3/4 (¢ = 4) agree very well with the numerical results found in [16].

B g = 2 model

B.1 Exact classical solution

In section 2, we considered a shift of the classical solution from the critical IR point for a
general even integer ¢ case. However, for ¢ = 2 case the problem becomes very easy and
we can indeed obtain the exact classical solution as discussed in [16], which is valid for any
region from UV to IR.
The exact classical solution is determined by the saddle-point equation of the collective
action (1.5):
o1 (5(t12) = \I/al(tl,tQ) + J? \I/Zl_l(tl,tQ). (B.l)

This equation can be solved exactly when ¢ = 2. Using the Fourier transform defined as
in eq. (2.29), the exact solution is given by

—iw 4 isgn(w)vVw? +4J2 2
2.J2 iw + isgn(w)V4I2 + w?

‘;[jcl(w) = (BQ)
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The expansion of this exact solution in the strong coupling region J/w > 1 is given by

iw isgn(w) w?
v =——+ — |14+ —= + - ]. B.3
al@) = =33+ =7 ( TsE T > (B:3)
We can also go back to the bi-local time representation by the Fourier inverse transforma-
tion as ((t12)
0" (t12 1 1
Wty te) = — cee B4
Cl( b 2) 2J2 + 7TJt12 47T(Jt12)3 + ( )

B.2 Perturbative classical solution

Even though we know the exact solution for ¢ = 2 model, we can also obtain the expan-
sion (B.4) of the exact solution by the perturbative analysis we did in section 2, and this
is what we will do in this subsection.

As we described in section 2.2, W (y(t12) ~ |t12]~%/7 type of solution does not exist for
any gq. However when ¢ = 2, we could have another type of ansatz:

Uy (t,t2) = Ay (), (B.5)

where Kl is a t-independent coefficient. This ansatz is antisymmetric and has the correct
dimension when ¢ = 2. Therefore, let us start to analyze whether this ansatz satisfies
eq. (2.2):

/ dtsdty ’C(tl , 1233, t4)\11(1) (tg, t4) = 81(5(7512) , (BG)

with the kernel
K(ty, tasts, ta) = Wol(ty, ta) Wy (ta, ts) + 6(t13)0(t24) - (B.7)

For this purpose, it is convenient to use momentum space representation. The Fourier
transforms give us

dw _
/dtgdt4 K(t1, ta; ts, t4)\I/(1)(t3, ty) = —i / wa e~ Wi 2A1w . (B.S)

i
Also expressing the r.h.s. of eq. (B.6) in momentum representation, one finds A =1 /2.

This agrees with the expansion of the exact solution (B.4).
Let us keep going this perturbative evaluation. For W) we have an ansatz:

sgn(tlg)

Vo (ty,t2) = Ay TP

(B.9)

where A, is a t-independent coefficient. Then, we study eq. (2.20) to fix the coefficient A,.
Note that the second term in the r.h.s. is absent for ¢ = 2. To evaluate the equation, we
again use Fourier transform. Then, we can obtain

s

~ fdw .
/dt3dt4 K(ty, tosts, t4)¥(9)(t3,14) = —Z'Trz‘12/2w€_“"t12 w? sgn(w), (B.10)
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and

ol d '
— Wt x Wy x Uyt Wy x U (t, t2) = i / % e~ wh2 )2 son(w). (B.11)
Therefore, now the coefficient is fixed as Ay =—1 /4. This again agrees with the expansion

of the exact solution (B.4). We expect that higher order perturbative calculation results
will also agree with the expansion of the exact solution. As we explained in section 2.2, the
delta function type ansatz for Wy is only available when ¢ = 2. Also from the analysis in
section 2.5, we saw that B; = 0 when g = 2, which implies B,, = 0 for all order. Therefore,
in this sense the expansion of the classical solution of ¢ = 2 model is a different series from
that of ¢ > 2 model.

B.3 Tree-level free energy

In [16], Maldacena and Stanford computed the exact tree-level free energy of ¢ = 2 model
using the free fermion picture. The result is given in eq. (2.34) of [16]. We want to give
an expression for the low temperature (5J > 1) expansion of this free energy. This can be
done as follows. First, we expand the logarithm by Taylor series, because SJ > 1. Then,
the 0 integral is now given by the modified Struve function

1 o (=1t
logZ/N:—z/Bjnzl S Mu(28n). (B.12)

Using the large argument expansion of the modified Struve function (for example, see 11.6.2
of [28]), one finds

1 & (—)ntt RN (S L N (=1t
s Z/N = 33 S R e T OB,
! ! ! (B.13)
After evaluating the summations, the low temperature expansion of the free energy is
given by
logZ/N = % ™ 1 8w 1 (’)((BJ)_7) . (B.14)
128J 2880 (BJ)3 161280 (B8J)°

C Explicit integrations of dk

In this subsection, we explicitly evaluate the integrals of Jk in eq. (1.22):
5]{3,5 5(t — t,) = /dtldtgdtgdt4 U07t(t1, tg) 5/C(t1, tQ; t3, t4) U07tl(t3, t4) s (Cl)

where the zero mode ug; is given in eq. (3.13). For the integrals in eq. (C.1), it is more
convenient to use the momentum representation of this zero mode:

dw —tw
uo¢(t1,t2) = /%6 Pugw(ta, ta) (C.2)
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where

1 ) ) eiwtl o eiwtz
upw(ti,te) = — [z‘w(ewh - eMtg) -2 <>} Wo(t1,12). (C.3)
q 1 —t2

After some manipulation, one can obtain the expression given in eq. (3.14), which we will
use in the following calculation. Next, we consider the shift of the kernel §/C defined in
eq. (1.21). The explicit form is given by

OK(tr, tasts, ts) = — / dtadty Uyt (t1,ta) Uy (tas ts) Ut (e, t3) Uo t (t2, ta)

— /dtadtb ot (t,t3) Ug t(ta, ta) Oy (tas t) Ug  (te, ta)
+ (g — 1)(q — 2) 8(t13) 8(t2a) WE > (t1,t2) Wy (t1, ta) - (C4)

It’s useful to perform the t, and t; integrals first of all. For these integrals, we again use
eq. (2.9). Then, now we can write the shift of the kernel as

OK(t1,t2;t3,ta) =

+ (t13 > t24)

2
q

_ 2mq(q — 1)B1b39=3 | sgn(ti3)sgn(tag)
(¢ - 2) tan(3) 13 [t2al®

— BubT(g — 1)(q — 2)8(t13)8(tar) — = - (C.5)

[t1a]*

We denote the first line in the r.h.s. as K () and the second line as K ;). These are
analog of what called “rail” and “rung” in [16], respectively. The contribution to dk from
the second line is easily evaluated. Using the Fourier transform for the zero modes, we have

dwdw’ i U*wt,tuw/t,t
Oko)(tarts) = — Bib*(g — 1)(q - 2)/ o letamielty /dtldtz bt fa)ouy i1, 12).
(2m) Ita]® @
(C.6)
The t1,t2 integrals are evaluated by changing the integral variables to t4+ = (¢] £¢2)/2 as
follows.
uh (1, t2)ug o (1, 2p2 dt_
[ dnes 2 o faiowr (o ta) _ 8 5 — ) [ 5 Tyt Tyt
3—= q ‘t_P 2 2
[t12]™ @
b2
= ?wd‘&(w—w'). (C.7)
Substituting this result into eq. (C.6), one finds
Bibi (g —1)(g—2
St ta) = = =D g2 5251, (©3)

The contribution from the first line is more involved, but can be evaluated (for example,
see appendix.E of [16]). After evaluating the integrals, the total contribution is given by

Sk(ta,ty) = YB1 02 0F 6(tap) (C.9)
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with
_tan(g) f2m(g —1)(g - 2)
127wbg qsin(%’r)

v = —(¢*—6q+6)| . (C.10)
This result is used in section 2.5 to fix the coefficient B; of ¥ together with the consistency
condition.
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