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Abstract. Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in
climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes
scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models
for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of
patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist.
Of the possible techniques used to generate patterns, the two most prominent are the delta and least squares
regression methods. We explore the differences and statistical significance between patterns generated by each
method and assess performance of the generated patterns across methods and scenarios. Differences in patterns
across seasons between methods and epochs were largest in high latitudes (60-90° N/S). Bias and mean errors
between modeled and pattern-predicted output from the linear regression method were smaller than patterns
generated by the delta method. Across scenarios, differences in the linear regression method patterns were more
statistically significant, especially at high latitudes. We found that pattern generation methodologies were able
to approximate the forced signal of change to within < 0.5 °C, but the choice of pattern generation methodology
for pattern scaling purposes should be informed by user goals and criteria. This paper describes our library of
least squares regression patterns from all CMIP5 models for temperature and precipitation on an annual and
sub-annual basis, along with the code used to generate these patterns. The dataset and netCDF data generation
code are available at doi:10.5281/zenodo.495632.

Projections of future climate are bound by a limited number
of possible forcing scenarios, making the task of robustly ex-
ploring uncertainties in climate projections difficult. In the
absence of a large sample of model experiments to draw
upon, extrapolation from and interpolation between scenar-
ios can be used to reduce uncertainty from future forcing by
spanning a much larger range of emission scenarios (San-
ter et al., 1990; Dessai et al., 2005). One such computation-
ally efficient method to emulate many different future forcing
scenarios scaled from general circulation models (GCMs) is
pattern scaling.

Published by Copernicus Publications.

Pattern scaling was initially established to enable the cre-
ation of transient climate projections from the steady state
response of a GCM to a doubling of the preindustrial CO,
concentration (Santer et al., 1990). Under the assumption
that a climate variable from a GCM scales proportionally
with global mean temperature (GMT) change, patterns are
derived from multiple GCMs. Those patterns can then be
scaled in magnitude by a specified GMT change or by the
GMT change obtained from a simple climate model (SCM)
to span a wide range of future scenarios (Moss et al., 2010)
that have not been simulated by full GCMs (Fig. 1).

Pattern estimation methodologies have evolved into two
general types. The first and most common is the time-slice
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Figure 1. Generalized flowchart of pattern scaling process.

method or the “delta” method, where local future change in
a climate variable is normalized by future GMT change aver-
aged over some chosen time period, hereafter referred to as
an epoch (Osborn, 2009; Tebaldi and Arblaster, 2014; Herger
et al., 2015). The second is the linear regression method,
which uses ordinary least squares regression coefficients to
fit local trends to a GMT time series (Mitchell, 2003; Ruos-
teenoja et al., 2007; Lopez et al., 2013; Osborn et al., 2015).
In terms of computational efficiency, the delta method is
the fastest, which is a reason why it is predominantly used
(Herger et al., 2015). However, in terms of skill in trend esti-
mation and adaptability to additional predictors, the linear re-
gression method is preferable (Mitchell, 2003; Frieler et al.,
2012; Lustenberger et al., 2014; Barnes and Barnes, 2015).

In pattern scaling several broad assumptions are made.
First, it is assumed that patterns generated under different
forcing scenarios are not significantly different. Tebaldi and
Arblaster (2014) found that patterns from different scenarios
were highly spatially correlated, and that choice of scenario
did not explain a significant proportion of variability in pat-
terns when using the delta pattern scaling method. For the
linear regression methodology, Mitchell (2003) found that
the linear regression method reduces the influence of the non-
linearities arising from differing rates of warming, but the
magnitudes of estimation errors vary between scenarios and
climate variables due to nonlinearity in GMT relationships.

Second, it is assumed that responses to external forcing
and internal variability are independent, implying that an-
thropogenic forcings do not modify the internal variability of
the climate system (Mitchell, 2003; Lopez et al., 2013), but
this premise is not always true (Screen, 2014). Changes in
variability may introduce estimation errors in pattern fit; in
practice, estimation errors introduced through this assump-
tion at the global scale were small, although they can be large
enough at the regional scale to mislead adaptation decisions
(Lopez et al., 2013).

Third, it is assumed that local change scales proportionally
with GMT change, and that the relationship is stationary over
time (Mitchell, 2003). This assumption is not always true in
the climate system, especially considering different forcing
scenarios and spatial heterogeneity of projected change. For
temperature variables, the assumption of stationarity is gen-
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erally valid, but the magnitudes of estimation errors vary be-
tween scenarios for non-temperature variables (Frieler et al.,
2012) and temperature extremes on the upper tail of the tem-
perature distribution (Lustenberger et al., 2014). Lopez et al.
(2013) found that when pattern scaling temperature extremes
over southern Europe, the magnitude of the error in the pat-
tern estimates was large. In linear regression, the error term
is assumed to have a normal distribution with a mean of zero.
So it is likely that outliers or climate extremes would be in
the very end of the tails and yield high error terms. This can
be problematic when constructing confidence intervals but is
not necessarily a limitation in the pattern scaling methodol-
ogy, nor in the resulting patterns (Lustenberger et al., 2014).

Currently there are three prominent online tools and soft-
ware that generate climate patterns and scale them with spe-
cific SCM scalers (Wigley, 2008; Osborn, 2009; Castruccio
et al., 2014). These tools lock the user into using a specific
SCM and do not provide pattern data and diagnostics, which
can be important for understanding individual model scaled
patterns. For uncertainty quantification and probabilistic sta-
tistical analysis, a library of patterns with descriptive statis-
tics for each file would be beneficial, but such a library does
not presently exist.

Using a sub-selection of climate models, this paper first
examines surface temperature patterns generated by the two
primary pattern generation methods, and explores the dif-
ferences in patterns across two forcing scenarios. We focus
on spatial heterogeneity and magnitude of the local response
to GMT change (hereafter called “pattern sensitivity”’) from
both pattern estimation methodologies. We then present a de-
scription of our pattern library and code to generate the pat-
terns.

2 Data/methods

2.1 Climate models

We employed three sets of experiments from the Coupled
Model Intercomparison Project Phase 5 (CMIP5; Taylor
et al., 2011). The “historical” experiment was used to con-
struct reference epochs for use in pattern creation via the
delta method. Model historical runs varied in length, so we
used 1861 as the start of the historical period, and 2005 as the
end. For future projections, we used the high-forcing rcp8.5
scenario, in which radiative forcing increases to 8.5 W m 2
through the 21st century (Riahi et al., 2011), and the mid-
forcing rcp4.5 scenario, in which radiative forcing increases
to 45Wm~2 through the 2Ist century (Thomson et al.,
2011) achieved by limiting future emissions. For the future
simulations, the start year was 2006, and the end year was
2100.

For assessment of patterns we chose a subset of 12 cli-
mate models (Table 1 and Supplement) from the 41 avail-
able models that included historical and rcp4.5/rcp8.5 exper-
iments. We used the first realization from each model and
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chose not to average over multiple realizations from each
model. This was done because some modeling centers only
archived/produced one realization for each model-scenario
combination, and the magnitude of the local response to
GMT change across realizations is assumed to be consistent.

For this study, only seasonal and annual surface air tem-
perature was analyzed, and in some cases, the influence of
the land—ocean contrast was examined. For such cases, a land
mask was applied using each model’s native resolution, with
100 % of the grid cell either land or ocean. Assessment of
patterns generated by each methodology was done by exam-
ining the multi-model ensemble mean as well as the uncer-
tainty represented by the model spread.

All model output was regridded to the lowest spatial res-
olution of the multi-model ensemble prior to the calculation
of an ensemble mean or median (Table 1). This was done
for averaging purposes, as each model had a different spatial
resolution. Regridding to the lowest resolution of the multi-
model ensemble is a conservative assumption that avoids in-
terpolation errors.

2.2 Data analysis

The delta pattern (DP) is described as follows:

DPyis = . ey

For each model (M) and future scenario (S), local (two-
dimensional, a value for each latitude and longitude pair)
temperature change (TL) is normalized by global (scalar
value) mean temperature change (TG), with respect to a 30-
year reference epoch from the CMIP5 historical simulation.

All epochs were 30 years in length, as it was assumed
that the length of epochs used should not alter the result-
ing pattern. Barnes and Barnes (2015) argue that the ideal
epoch length is dependent on minimizing variable variance
by selecting a epoch length with a high signal-to-noise ra-
tio, which is largely dependent on length of time series, and
whether the trend in the time series is linear. They found
that for temperature, one-third the length of the time series
is ideal, and for a 100-year time series (or longer) a 30-year
epoch length is sufficient. Throughout the IPCC Fifth As-
sessment Report (ARS; Stocker et al., 2013) a 20-year refer-
ence epoch of 1986-2005 was used for discussion of pro-
jected anomalies; previous assessment reports used earlier
epochs. In impact studies, a later reference epoch is more
suitable because it is more representative of the current cli-
mate, and hence what socioeconomic systems were already
somewhat adapted to (Fowler et al., 2007; Herger et al.,
2015). In adaptation/mitigation analyses, a preindustrial con-
trol simulation epoch is often used as the baseline from which
change is diagnosed, as this period has little to no anthro-
pogenic forcing. However, for pattern generation, an epoch
in the later half of the 20th century is often used (Osborn,
2009; Tebaldi and Arblaster, 2014).
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For the aforementioned epoch variations, we used two ref-
erence epochs to generate patterns: a late 19th (1861-1890)
and a late 20th (1971-2000) century average, hereafter re-
ferred to as L19C and L20C, respectively. The bulk of the
epoch patterns use a future epoch that spans the last 30 years
of the 21st century (2071-2100), but a mid-21st century
(2041-2070) epoch was also used when examining epoch
pattern differences. These epochs were hereafter referred to
as L21C and M21C, respectively, in the figures and text.

The least squares regression (LSR) patterns were calcu-
lated from future forcing scenarios only. We use a least
squares approach, which provides the best fit for calculating
the regression pattern:

TLms = ams + Bms X TGus + ems.- ()

In this equation, TG is the GMT time series (one-
dimensional, unsmoothed), and TL is the gridded time series
(three dimensional). 8 is a two-dimensional field of regres-
sion slopes, and € is a three-dimensional residual term (error)
stemming from linearly fitting the dependent variable to the
predictor. « is the y intercept, which we take to be 0 by only
computing change, not absolute temperature.

To examine the assumption that the multi-model ensemble
probability distribution and the sample mean between pat-
terns and scenarios generated by each method were not sig-
nificantly different, we calculated the Student’s z-distribution
probability. This was done because the ensemble consists of
only 12 models, which poorly samples the space of possi-
ble modeled climate realizations, and because we assume the
ensemble variance for each pattern is the same. The resulting
probability indicates where there is a significant difference
between patterns generated by each method.

Pattern estimation can be skewed by local variability be-
cause large variability can mask the local warming signal. To
identify areas where pattern fit is poor due to high variabil-
ity, we calculated the detrended 21st century variance and
the signal-to-noise ratio as defined by Hawkins and Sutton
(2012). The signal-to-noise ratio identifies regions where the
magnitude of the warming signal in relation to historical vari-
ability is large. The signal calculation in the signal-to-noise
ratio makes an assumption that local temperature changes
scale with global temperature (Hawkins and Sutton, 2012),
similar to pattern scaling methodologies.

Performance metrics for pattern scaling across methodolo-
gies is difficult. For this study we quantified the differences
between the reconstruction B and the actual model output
B via the root mean square error (RMSE) over the area-
weighted difference at the end of the 21st century. In this
instance RMSE is used to describe how well the predicted
pattern emulates the actual model change, with lower RMSE
indicating that the predicted pattern better captures the actual
model change:
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Table 1. List of the CMIP5 models and their respective spatial resolution and organization used in this analysis.

Models Spatial resolution ~ Organization
(latitude x longitude)

ACCESS1-0 1.2x 1.8 Commonwealth Scientific and Industrial Research Organisation, and
Bureau of Meteorology, Australia

CanESM2 2.8 x2.8 Canadian Centre for Climate Modelling and Analysis, Canada

CCSMm4 1x1 NCAR, University Corporation for Atmospheric Research, USA

CMCC-CMS 1.8 x 1.8 Centro Euro-Mediterraneo per Cambiamenti Climatici, Bologna, Italy

CNRM-CM5 1.4 x 1.4 Centre National de Recherches Meteorologiques/Centre Europeen de
Recherche et Formation Avancees en Calcul Scientifique, France

CSIRO-MK3.6 1.8 x 1.8  Commonwealth Scientific and Industrial Research Organisation, Australia

GFDL-CM3 2x2 NOAA, Geophysical Fluid Dynamic Laboratory, USA

HadGEM2-ES 1.2x 1.8  Meteorological Office Hadley Centre, UK

INMCM4 1.5 x2 Institute for Numerical Mathematics, Russian Academy of Sciences, Russia

IPSL-CM5A-MR 1.25 x 2.5 Laboratoire de Meteorologique Dynamique, Institut Pierre-Simon Laplace, France

MIROC-ESM 3x3 Atmosphere and Ocean Research Institute, National Institute for Environmental
Studies, and Japan Agency for Marine-Earth Science and Technology, Japan

MPI-ESM-MR 1.8 x 1.8 Max Planck Institute for Meteorology, Germany

NorESM1-M 2 x 2 Norwegian Climate Centre, Norway

RMSE = \/ZX [(é(X) _ B(x)) . A(X)]z, 3)

> 1A

where A(x) is the area of the grid box x and sums were cal-
culated over all x.

3 Pattern results

3.1 Pattern differences

For the delta methodology, choice of epoch can be important.
In our ensemble at the local spatial scale, absolute tempera-
ture differences between reference epochs were small, but
differences in future epochs often exceeded 2 °C in rcp8.5,
particularly over land and at high latitudes (Fig. 2). Patterns
across epochs were similar despite differences in the rate of
GMT change and absolute temperature differences in epochs
(Fig. 3). Differences between reference epoch patterns were
largest in the Northern Hemisphere mid- and high latitudes,
but differences were generally not significant, except for the
Great Lakes region of North America in December through
February (DJF) and over the North Pacific Basin and eastern
Asia in June through July (JJA). These differences in patterns
across reference epochs were amplified when the mid-21st
century future epoch is used, as compared to the late 21st
century future epoch.

Regardless of epoch chosen for the delta method, the
resulting patterns were similar to the regression patterns
(Fig. 4). The key idea in either pattern scaling method is
that local temperature change scales with global tempera-
ture change, despite different ways of calculating the local—
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global relationship. With the exception of the high latitudes,
the differences in the annual pattern were small (< 0.2 °C).
Pattern differences were similar across seasons, but differ-
ences in patterns were the largest in DJF, particularly for the
delta pattern with the earlier reference period. The regres-
sion patterns have a stronger temperature sensitivity to GMT
change in the Northern Hemisphere and a weaker tempera-
ture sensitivity in the Southern Hemisphere at high latitudes
as compared to the delta methods. These differences in sen-
sitivity stem from how each methodology captures the effect
of Arctic amplification, where the warming trend in the Arc-
tic is almost twice as large as the trend in the global average,
but the effect of Arctic amplification on pattern generation is
not explored here.

There were few regions where the patterns differ signifi-
cantly (Fig. 4), and there were fewer significant differences
between the regression method and the delta method using
the L20C epoch over the L19C epoch. Significant differences
between patterns generated from each method were shown
in the Baltic/northern European region for both epochs in
the annual and DJF pattern, but in the earlier epoch, signifi-
cant differences across seasons were shown in the northwest-
ern Pacific region. In general, the temperature patterns across
methods were very similar.

To evaluate pattern performance from each methodology,
we compared the generated patterns to the ensemble local
mean change when the linear GMT change is 1°C. The
delta patterns largely underestimate the spatial pattern, par-
ticularly over land and mid-high northern latitudes (Fig. 5).
The Antarctic region is both overestimated (L21C/L19C pat-
tern) and underestimated (L21C/L20C pattern) by a magni-
tude of > 0.15 °C, which is generally larger than the error in
the regression pattern estimates. Also, as shown in Fig. 3, the
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Figure 2. Ensemble mean temperature difference (°C) between the L20C (1971-2000) and L19C (1861-1890) epoch; the L21C (2071-
2100) and M21C (2041-2070) epoch from the rcp8.5 scenario; and the L21C and M21C epoch from the rcp4.5 scenario for mean annual,

DIJF, and JJA.
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Figure 3. Ensemble mean delta method pattern differences between L21C (2071-2100)/L19C (1861-1890) and L21C/L20C (1971-2000);
L21C/L19C and M21C (2041-2070)/L19C; and M21C/L19C and M21C/ L20C for mean annual, DJF, and JJA using future forcing scenario
rcp8.5. Significance values below the 95 % confidence interval using a Student’s 7-distribution probability statistic are stippled.

delta patterns have a strong temperature sensitivity over the
Baltic/northern European region. Assuming that the GMT
trend is linear, it appears that the regression pattern scaling
method underestimates the relationship between global tem-
perature and local temperature when GMT change is 1°C.
However, the degree to which it overestimates the relation-
ship is small (< 0.08 °C).

www.earth-syst-sci-data.net/9/281/2017/

Emulator performance was also approximated by exam-
ining the RMSE between the actual and pattern predicted
anomaly (Table 2). For this metric, the regression patterns
also outperform the delta patterns regardless of epoch. DJF
RMSE was higher than the JJA RMSE, and the rcp4.5 RMSE
was consistently lower than the rcp8.5 across methods. This
may be because the rcp8.5 patterns largely underestimate the
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Figure 4. Ensemble mean regression method pattern and delta method pattern differences in °C/°C for L21C (2071-2100)/L19C (1861-
1890) and L21C/L20C (1971-2000) for annual, DJF and JJA for future forcing scenario rcp8.5. Significance values below the 95 % confi-
dence interval using a Student’s ¢-distribution probability statistic are stippled.

Table 2. Root mean square difference between actual and pattern
predicted global mean anomalies in °C/°C for each pattern method-
ology at the end of the 21st century.

L21C/L19C L21C/L20C  LSR

Annual  rcp8.5 0.156 0.110 0.039
rcp4.5 0.149 0.103  0.034

DIJF rcp8.5 0.179 0.127  0.059
rcp4.5 0.173 0.120  0.050

JJA rcp8.5 0.136 0.095 0.034
rcp4.5 0.130 0.089  0.028

relationship between global and local temperature as seen in
Fig. 6. Nevertheless, Table 2 indicates that the both method-
ologies do well emulating actual model output.

Overall, the annual and seasonal patterns from each
method were not significantly different from each other, re-
gardless of reference epoch for the delta method. The dif-
ferences were slightly larger when using an earlier reference
epoch, but the regions where the ensemble differences were

Earth Syst. Sci. Data, 9, 281-292, 2017

significant (above the 95 % significance level) were small.
Our small ensemble size (12 models with only one realiza-
tion) may have contributed to the lack of significance in dif-
ferences across epoch patterns, particularly when using para-
metric tests like calculating p values for the Student’s 7 test.
A more robust analysis would include multiple realizations
from all available models.

3.2 Scenario differences

There were significant differences between patterns gener-
ated across scenarios, and the resulting pattern differed by
more than 0.5 °C/°C in some regions (Fig. 6). For the delta
patterns, the largest differences across scenarios were in the
Northern Hemisphere at high latitudes, areas where temper-
ature variability is large. The differences in patterns gener-
ated by the regression method under different forcing sce-
narios were generally larger with statistically significant dif-
ferences in the mid-high latitudes, particularly in the Arctic,
land areas bordering the Mediterranean, and the subtropical
South Pacific. The rcp4.5 also has a lower signal-to-noise ra-
tio than the rcp8.5 (Fig. 7), which makes the pattern for the

www.earth-syst-sci-data.net/9/281/2017/
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Figure 5. Difference between patterns predicted from L21C (2071-2100)/L19C (1861-1890), L21C/L20C (1971-2000), and LSR methods
and annual multi-model mean change, when GMT change = 1 °C for future forcing scenarios rcp8.5 and rcp4.5 in °C/°C.

rcp4.5 scenario more difficult to estimate because the signal
is harder to distinguish from the noise in this scenario.

Temperature change at high latitudes cannot be approxi-
mated by a linear relationship due to strong regional feed-
backs, for example Arctic amplification (Holland and Bitz,
2003), and therefore is not well predicted when using pat-
tern scaling methods. The differences between scenarios are
larger in the regression method, but both methods show
similar spatial patterns. To further examine why the regres-
sion method produces larger differences across scenarios, we
looked at the linear fit of local temperature to GMT (Fig. 8).
In the rcp8.5 scenario, the R? values, between local tem-
perature and GMT with respect to time, were large, but in
the rcp4.5 scenario, R? values were much lower particularly
along the Antarctic continent and in the North Atlantic. Even
though the global/local fit is poorer in the rcp4.5 scenario,
the lower forcing scenario predicted pattern is more like the
actual model output (Table 2).

Large differences in patterns across scenarios were mainly
due to a larger local/global ratio at high latitudes in the
rcp4.5 scenario as compared to the rcp8.5 scenario (Fig. 9).
These differences at high latitudes result from the nonlinear
evolution of temperature due to retreating sea ice. Sensitiv-

www.earth-syst-sci-data.net/9/281/2017/

ity of high latitudes to even small changes in GMT is evi-
dent across scenarios, but the rcp4.5 scenario overestimates
this relationship, resulting in substantial differences in pat-
terns between the scenarios, particularly for the regression
methodology.

Differences between patterns across scenarios is further
examined by separating the land and ocean patterns (Fig. 10).
The differences between scenarios for the regression method
when isolating the land/ocean pattern were comparatively
large, especially over the Arctic and Antarctic regions. For
the regression method, the rcp4.5 ocean-only pattern sensi-
tivity is > 0.5 °C greater than the rcp8.5 (ocean only) pat-
tern sensitivity over the Arctic, and the rcp4.5 land-only pat-
tern sensitivity is > 0.5 °C greater than the rcp8.5 (land only)
pattern sensitivity over the Antarctic. The differences in pat-
terns across scenarios for the delta method when isolating the
land/ocean pattern were small except over the Arctic region,
which shows strong seasonal differences (> 0.5 °C) in boreal
autumn (SON). In this way the delta method is more consis-
tent across future forcing scenarios, which should be taken
into consideration when choosing methodology.

Differences in patterns across scenarios were not surpris-
ing as pattern scaling has been shown to be less accurate

Earth Syst. Sci. Data, 9, 281-292, 2017
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Figure 6. Ensemble annual average difference in °C/°C and significance of difference using a Student’s ¢-distribution probability statistic
between future forcing scenarios rcp8.5 and rcp4.5 for L21C (2071-2100)/L19C (1861-1890), L21C/L20C (1971-2000), and LSR patterns.
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Figure 7. Ensemble mean detrended standard deviation of surface temperature in °C for the 21st century and signal-to-noise ratio at year
2100 for rcp8.5 and rcp4.5.
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Figure 8. Ensemble mean of the square of the correlation coefficient between GMT and local surface temperature over the 21st century for

rcp8.5 and rep4.5 scenarios for annual mean, DJF, and JJA.
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Figure 9. Ensemble mean annual average difference in °C/°C in
the ratio of local/ global linear trend over the 21st century (2006—
2100) between rcp8.5 and rcp4.5.

for scenarios with stronger mitigation (May, 2011; Ishizaki
et al., 2012), even though we found that, for the models and
scenarios we used, the lower forcing scenario patterns better
emulated the actual model response. A weaker GMT signal
coupled with nonlinear relationships between GMT change
and local climate change (particularly in the Arctic) under

www.earth-syst-sci-data.net/9/281/2017/

strong mitigation scenarios result in larger pattern errors. We
found that differences in patterns between scenarios are more
evident in the regression method as compared to the delta
method, but similar features appear in the patterns produced
by the delta method. How models incorporate sea ice may
also add to the variability of patterns across models, but this
is a subject we have not explored.

4 Code and data availability

CMIP5 model data are publicly available via the Earth
System Grid Federation website (ESGF, https://pcmdi.llnl.
gov/). Code used to construct this analysis is available
on GitHub through the Joint Global Change Research
Institution repository (https://github.com/JGCRI/CMIPS5_
patterns/). Any additional data can be obtained from Cary
Lynch (cary.lynch@pnnl.gov).

5 Conclusions
The differences in patterns generated by each method were

minor except at Northern Hemisphere high latitudes and
along the Antarctic margin. The local to global fit is strong,

Earth Syst. Sci. Data, 9, 281-292, 2017
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Figure 10. Ensemble mean temperature pattern differences in
°C/°C between rcp8.5 and rcp4.5 in zonal monthly means for land
only and ocean only for L21C (2071-2100)/L19C (1861-1890),
L21C/L20C (1971-2000), and LSR patterns.

and with the assumption of linearity, the regression method-
ology pattern outperforms the delta methodology pattern.
The regression methodology patterns also have lower RMSE,
and better emulates actual model output. The simplistic de-
sign of the regression method allows for additional pre-
dictors (e.g., land/ocean term, latitudinal position, non-CO;
aerosols) in the pattern equation and confidence intervals to
be easily calculated. The delta method introduces complexity
in choice of reference epoch and length of reference epoch,
but we have found little difference between patterns across
epochs.

Choice of scenario can affect the resulting pattern, particu-
larly at high latitudes. With the regression methodology pat-
tern, the GMT temperature sensitivity is stronger when using
the rcp4.5 scenario because the GMT trend is proportionally
smaller and changes in GMT have a stronger effect on local
temperature, particularly when strong mitigation is employed
later in the simulation. Delta method patterns were more con-
sistent across scenarios with less heterogeneity in local tem-
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poral and spatial GMT sensitivity. With the assumption that
different future forcing scenarios should not change the re-
sulting pattern, the delta pattern is more consistent across
scenarios, regardless of epoch chosen, despite differences in
epoch means being large.

Our pattern library was created because the online tools
and software that generates pattern scaling products do not
provide pattern data and diagnostics, and do not offer flexi-
bility in use of a SCM for scaling. Based on our analysis, we
have created a library of patterns using the least squares re-
gression methodology. We also provide descriptive statistics
for each output file, which we believe to be beneficial for un-
certainty quantification and probabilistic statistical analysis.

While this paper did not analyze precipitation, precipi-
tation patterns are included in the library. The relationship
between global mean temperature and local precipitation is
complex and requires a more in-depth examination of pattern
scaling methodologies and the resulting patterns. Therefore,
we have written an entirely separate paper which discusses
precipitation patterns (Kravitz et al., 2016).

Creation of a pattern library is the first step in our goal of
exploring inter-model and future forcing uncertainty in cli-
mate projections. Our next steps will be to push the current
boundaries of pattern scaling by exploring scaling measures
of climate variability and scaling of different variables, such
as pH. Our efforts will be documented in future papers, and
all patterns will be added to the repository.

6 Pattern library

The pattern library is available on GitHub through
the Joint Global Change Research Institution repository
(https://github.com/JGCRI/CMIP5-patterns). GitHub is a
web-based version control repository and Internet hosting
service which uses git concepts and commands. The purpose
of creating this pattern library was to allow for researchers
across various fields to be able to efficiently use the statistical
patterns generated by the described regression method to ex-
amine model response to change in global mean temperature
for all the available CMIP5 models (41 models, at present).
We also further intend for those patterns to be easy to scale
using a scaler generated from a SCM of ones choosing.

The pattern library contains patterns, generated by the
least squares regression methodology, for the first realiza-
tion of the 41 CMIP5 climate models. Annual, seasonal, and
monthly patterns are provided for surface temperature and
precipitation. For temperature patterns, units in degrees Cel-
sius were used as this is the standard temperature unit for
impact analysis.

The following are included in each netCDF file for each
model:

1. the individual model pattern (2-D);
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2. the adjusted R? between the predictor and dependent
terms (2-D);

3. the standard error of the estimated regression coefficient
(2-D);

4. a historical climatology based on the 1961-1990
average from each model (2-D), which can be used to
construct absolute values at time X;

5. the 95th percentile confidence level pattern for model
parameters.

The patterns from all 41 CMIPS models range in size (165 kB
to 1 MB) due to spatial resolution, but all patterns were kept
at the native resolution of the dependent variable and no re-
gridding of input/output variables was done. This was done
to retain model specific information, which may have been
lost if regridded to a common spatial resolution.

All source code used to produce patterns is available in
the aforementioned repository. Source code is written in
NCAR Command Language (version 6.3.0; http://dx.doi.org/
10.5065/D6WD3XHS5).

The Supplement related to this article is available online
at doi:10.5194/essd-9-281-2017-supplement.
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