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Abstract—Channel estimation techniques are crucial for re-
liable communications. This paper is concerned with channel
estimation in a filter bank multicarrier spread spectrum (FBMC-
SS) system. We explore two channel estimator options: (i) a
method that makes use of a periodic preamble and mimics the
channel estimation techniques that are widely used in OFDM-
based systems; and (ii) a method that stays within the traditional
realm of filter bank signal processing. For the case where the
channel noise is white, both methods are analyzed in detail and
their performance is compared against their respective Cramer-
Rao Lower Bounds (CRLB). Advantages and disadvantages of
the two methods under different channel conditions are given to
provide insight to the reader as to when one will outperform the
other.

I. INTRODUCTION

Filter bank multicarrier (FBMC) has been proposed as a
desirable alternative to orthogonal frequency division mul-
tiplexing (OFDM) in applications where spectral efficiency
and spectral mobility are important [1]. A special class of
spread spectrum waveforms that are built based on FBMC
(FBMC-SS) was introduced in [2]. It was noted that FBMC-SS
offers robust performance in high noise and high interference
applications. The robustness of the FBMC-SS can be attributed
to the recombining of the spread data symbols in the receiver
though the principle of maximum ratio combining (MRC),
which naturally filters out those portions of the spectrum that
have received a high level of interference. The combining
equation requires a reasonable estimate of the communications
channel, which motivated the study and development of the
channel estimation algorithms presented in this paper.

The problem of estimating the channel has been well studied
in OFDM literature. The presence of the cyclic prefix (CP)
in OFDM introduces a periodicity in its waveform which in
turn leads to channel estimators that easily achieve the CRLB
[3]. The CP absorbs the channel transient and the samples
of a single OFDM symbol contain sufficient information that
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can provide an unbiased estimate of the channel frequency
response at [V equally spaced frequency points, where NV is the
length of FFT in OFDM. When the number of pilot subcarriers
is less than N, the channel estimates will be limited to the
positions of the pilots. The first contribution of this paper is
to show how the channel estimation methods that have been
developed for OFDM-based system can be extended to FBMC-
based systems. This method is referred to as the OFDM-like
ML channel estimator in this paper.

In filter bank literature, many channel estimation methods
are based on the assumption that the channel over each
subcarrier band can be approximated by a flat-gain [2], [4], [5].
Additional measures/steps for improving the channel estimate
have also been explored for OFDM that can be applied to
filter bank systems, e.g., the transform-domain noise reduction
techniques [6]-[8]. Nevertheless, several works assert that
the flat-gain assumption in many cases may be too coarse
and thus alternative methods such as per-subcarrier multi-tap
equalization [9] have to be sought. In the second part of this
paper, we examine the flat-gain assumption in FBMC channel
estimation and provide a detailed mathematical comparison of
its performance to the approximation-free channel estimator
that is presented in the first part of the paper. This second
method is referred to as the flat-gain ML channel estimator.
The results of both channel estimators are bench-marked
against the CRLB. We find that our proposed approximation-
free channel estimator performs at the CRLB regardless of the
frequency selectivity of the channel, whereas the channel esti-
mator that assumes a flat channel gain across each subcarrier
is limited by the delay spread of the channel.

The rest of the paper is organized as follows. Section II
provides a brief introduction to the FBMC-SS waveform and
describes the structure of the pilot symbols used for chan-
nel estimation. Section III derives the maximum likelihood
channel estimator for an OFDM-inspired algorithm and the
maximum likelihood channel estimator formulated with the
flat gain assumption. Section IV derives expressions for the
mean square error for both channel estimation algorithms in
order to provide a quantitative measure of their performance.
Section V-A derives the CRLB for each estimation algorithm
and relates the bound to the mean square error expression
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Fig. 1. FBMC-SS Transmitter Model

for each estimator. Section VI presents simulated results of
the described methods and confirms the theoretical work
developed in this paper. Concluding remarks are given in
section VIIL.

II. FBMC-SS SIGNAL MODEL

FBMC-SS builds its waveform using a filter bank consisting
of many subcarriers. The case of interest is this paper is when
the same data symbol is spread across all of the subcarriers
[2]. In this case, the transmitter baseband processing can
be simplified to the one presented in Fig. 1. The transmit
data symbols are up-sampled by a factor of L and passed
through a synthesis filter bank g(n) with N active subcarriers.
Accordingly, the synthesized transmit signal can be expressed
as

z(n) = s(m)g(n —mL) )

m

where s(m) are data symbols. At the beginning of each
data packet, s(m) is replaced by a sequence of training/pilot
symbols, a(m), that will be used for packet detection and
channel estimation.

In this paper, we assume a(m) is a periodic sequence
with a period of K. When this sequence is up-sampled by a
factor of L and passed through g(n), the result, after passing
through its transient period, will be a sequence with a period
of LK samples. Periodicity of this signal implies that it is
a summation of LK complex sine waves with frequencies
fr = % for k =0,1,--- , LK — 1. This mathematically is
written as

LK—1

S(n) = L % (k)ed
x(n)f\/m kzzo X (k)

where Z(n) is the periodic part of x(n) that arises from the
periodic preamble a(m), and X (k) are the Fourier series
coefficients of Z(n).

The derivations in the rest of this paper will be greatly
simplified through use of a set of vectors and matrices. With
this regard, here, we define the column vectors

27kn
LK

2

#(0) X(0)
X = x(:l) and xp = X:(D
i<LK -1) )?(Lf( —1)

Here, and the rest of this paper, we adhere to the notation of
using bold lower case for column vectors and add the subscript
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Fig. 2. System Model for the OFDM-Like channel estimator

‘f” when a vector carries a set of frequency domain samples.
We also note the x and x¢ are related according to the equation

3)

where F is the normalized discrete Fourier transform (DFT)
matrix such that F7F = L.

The DFT of the transmitted samples x¢ will be represented
as a diagonal matrix when presenting an equation for the
system model. The diagonal matrix, Xy, is related to x¢
according to the equation

xr = FX

Xy = diag (Fx) 4)

where diag(-) refers to forming a diagonal matrix with the
indicated elements.

III. CHANNEL ESTIMATION
A. OFDM-Like ML Channel Estimator

After the transmitted signal passes through a channel and
leaves the corresponding transient period behind, the periodic
sequence Z(n) leads to a periodic received signal with the
same period. The result, when expressed in the form of a
Fourier series expansion, has the following form:

1 KL-1 . .
i) = g7 2 COTWe

2wkn

RE 4 w(n)

&)

where the factors C(k) are the channel frequency response
samples at the frequencies fj and w(n) is the channel noise.
Note that w(n) is, in general, an aperiodic sequence.

Taking a single period of §(n) and applying a DFT to it,
the result in the frequency domain may be written as

(6)

where ¢ is a column vector with elements
c(0),C(1),--- ,C(KL — 1), and definitions of y; and
w¢ should be clear from the context. The goal here is to find
and estimate the unknown vector c; from (6).

Equation (6) has the familiar form of a linear model (see
[10], Chapter 7). Accordingly, assuming w¢ has a proper
complex Gaussian distribution with covariance matrix 3, (6)
leads to the ML estimate

ye = X¢cr + Wi

¢ = (XFE~1Xy) ' XFEyy. )



This portion needs to be rewritten The above derivations
assume that the duration of the channel impulse response (in
the time domain) is less than a period of Z(n) (K L samples),
but does not take any advantage of it to improve the channel
estimate. Many wireless channels encountered in practice have
a duration of at most 1 or 2 us, e.g., see [11]-[13]. But,
for typical designs and, particularly, the case of interest in
this paper, a period of x,(n) may be one or two orders of
magnitudes longer. Making use of this information reduces the
MSE of the channel estimate by the same factor; i.e., orders of
magnitude improvement in the channel estimates is possible.
Such improved channel estimates are obtained by adding the
following modification to the previous formulations.

Let ¢ be a length L, < KL column vector denoting the
channel impulse response in the time domain. The frequency
domain channel response c; is obtained from c by appending
KL — L. zeros (to extend its length to K'L) and applying a
DFT to the result. Equivalently, c¢ can be obtained by

cr=F,c (3

where F, is a partial DFT matrix containing the first L.
columns of F.

Replacing (8) in (6), we get new linear equation from which
we obtain the ML estimate of c as

ep = (Xt F)"E 1 X Fp)  HXeFp) B tyr, (9)

where the subscript D has been added to indicate that this is
a ‘denoised’ estimate of the channel. Taking the DFT of ¢p
leads to the improved estimate

Ctp = FpC. (10)

B. Flat-Gain FBMC ML Channel Estimator

The estimator in this subsection makes the assumption that
the channel frequency response is flat across each of the N
total subcarriers. We also assume that the combination of the
transmitter pulse-shaping filter and its match at the receiver
makes a perfect Nyquist filter. The matched filter in this case
corresponds to the analysis filter bank, which has the structure
defined in [2, Fig. 13]. With these assumptions and noting that
the pilot subcarriers are non-overlapping, the pilot symbols
will be affected by the channel gains (the samples of channel
frequency response) at the respective subcarriers. In the sequel,
we use this property to develop the flat-gain ML channel
estimator.

A system model depicting the placement of the flat-gain ML
Channel Estimator is shown in Fig. 3. The matched filtered
data out of the analysis filter bank’s kth subcarrier can be
written as

(1)

where ay(n) are the pilots symbols that are known to the
receiver. Also, in Fig. 3, the packet detection and timing
recovery block assures that the receiver is correctly aligned
with the pilot symbols. Note that, in (11), k is the subcarrier
index corresponding to frequency fj and n is the time index

z(n) = Crag(n) + vi(n).
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Fig. 3. System Model for the flat-gain channel estimator

of the pilot symbols. Moreover, vy (n) are samples originating
from the channel noise.

For estimating the channel at each subcarrier, we refer to
(11) and note that ag(n) is known to the receiver. Therefore,
we can multiply the received symbol by the inverse of ay(n)
to obtain

2,(n) = Cr +vi(n), (12)
where z;(n) = zp(n)/ar(n) and vy (n) = vi(n)/ar(n).
Assuming that the channel noise is Gaussian and white, the use
of a square-root Nyquist filter at the receiver input implies that
the noise samples v (n), forn =0,1,--- , K—1, are Gaussian
and uncorrelated. Furthermore, if we assume that |a(k)| = 1,
one will find the noise samples v},(n) are independent and
identically distributed for all values k and n. We use o2 to
denote the variance of these samples.

Next considering the form of (12), for each choice of m and
k=0,1,---, K—1, the minimum-variance unbiased (MVUB)
estimator of C'(m) is obtained as [10]

R 1 M
Cr = M;z;(m (13)

Obviously, this estimate has a mean value of C} and vari-
ance 0,3 /M, which implies the variance of the estimate Cj
decreases as M increases.

Additionally, no assumption about the finite duration of the
channel has been made. If the same assumption about the
channel impulse response being constrained to a finite length
L. is made as for the OFDM-Like ML Estimator, an algorithm
can be developed to only retain useful channel information and
remove noise information in the time domain.

The estimated impulse response in the FBMC-SS receiver
exists in an N-dimensional subspace, where NV is the number
of subcarriers used. This N-dimensional subspace corresponds
to a limitation in time to 1/fy seconds, where f; represents
the distance in Hz of adjacent subcarriers. Additionally, the
additive white noise introduced in the channel exists in the
sampled N-dimensional subspace. If L. is less than N, the
N impulse response samples can be projected onto the L.-
dimensional subspace to remove noise without any loss of
channel impulse response information.



Our denoising algorithm begins by taking the IDFT of the
scaled received filter bank output across all subcarriers at time
n, which is denoted as

2 = F les + Flv, (14)
where the vectors ¢y and v represent the channel and noise
components across all N subcarriers at time n, and F —1is
the inverse DFT matrix. To remove a portion of the noise, the
data is multiplied by an orthogonal projection matrix P, that
projects the data onto the subspace of the channel impulse
response. The form of P, is simply a diagonal matrix of ones
that has zeros in the last N — L. diagonal entries, giving the
denoised time vector

zi.p =F ‘et + PF v (15)
The product of the projection matrix P. and the channel
impulse response is simply the channel impulse response in
(15), which results in only the noise term being affected by
the projection. The information can be transformed back to the
frequency domain by multiplying by a DFT matrix, leaving

zp = c; + FP.F v, (16)

In order to quantify the effects of the projection operation
on the noise power, let us assume that o = o for all values

of k. The probability density function of (16) can be written
as:

P(zp,0?) ~ CN(ct, 0> FP.F 1)

~ CN(ct,0?Zp). (17)
The covariance matrix in (17) can be interpreted as the
IDFT of a truncated DFT matrix. The rows of the truncated
DFT matrix contain frequency shifted rectangular windows,
and taking the IDFT results in a circulant matrix containing
. mLe(i—k
1 sin( %)
. i—k
N Sln(LZN ))

27j(i—k)(Lec—1)
2N

3p, (ki) = exp (18)

L’Hospital’s rule can be used to evaluate the diagonal elements
of the covariance matrix as

1 sin(TLe@y
3D (k=i) = — i _— N = 19
D,(k=i) N (k—lir)n—>0 Sln(%) N ( )

The denoising process removes noise from the impulse re-
sponse estimate derived from a single FBMC-SS symbol.
The resulting channel estimate has a covariance Xp, which
is described in (18). If M successive FBMC-SS symbols
are denoised and averaged, we form the flat-gain channel
estimator. The PDF of this channel estimator is given below
as

. o?
Cf,D ~ CN (Cf, MZD> . (20)

IV. PERFORMANCE ANALYSIS

The performance of the two channel estimators can be
expressed in terms of total mean square error (MSE). It will
be shown that the ML estimator derived under the flat-gain
assumption achieves similar performance to the OFDM-like
ML Estimator under various conditions. When the flat-gain
ML Estimator achieves does not achieve similar performance,
it can be attributed to two factors. In [7], it was noted that
the DFT of samples with non-integer timing intervals will
result in spectral leakage. The spectral leakage introduced by
non-ideal sample timing will spread out the energy of the
channel impulse response, and some of the dispersed energy
will be truncated by the denoising operation. Additionally, the
flat-gain ML Estimator will become increasingly biased as
the coherence bandwidth of the channel frequency response
decreases.

A. OFDM-Like MLE Performance

To derive an expression for the OFDM-like channel estima-
tor’'s MSE, we first will prove that the ML channel estimator
derived in Section III-A is unbiased. Starting with (9), and
denoting Z = F,((XiFp) X 1XF,) 1 (X Fp)HE L,
the probability distribution of the MLE has a mean

E[P(EMLJ)] =ZXFyeyp 201
and covariance
cov[P(Cnr f)] = ZXZH. (22)
By eliminating terms in the mean and covariance expressions,
the Gaussian PDF can be simplified to
P(EMLJ) ~ CN(]:pCp,
fp((xffp)Hzlefp)ly-'g‘). (23)

The mean of the probability density function in (23) is
the channel frequency response. Therefore, the estimator is
unbiased. The MSE of this unbiased estimator is expressed as

MSE=F ((Ef — Cf)H(Ef - Cf)) (24)

The expression in (24) is simply the sum of the variances
of the estimator. If the additive noise is white and Gaussian
with variance o2, the covariance of the ML estimator can be

expressed as
cov(Emug) = o Fp(FIXPX Fp) 1 FY. (25)

Given that the estimator is unbiased, the MSE can be computed
using the covariance matrix in (25).
MSE = tr anp(fgx?xffp)*lfﬂ . ©6)

It will be shown in the following section that the mean square
error corresponds to the CRLB.



B. Flat-Gain MLE Performance

The probability distribution of the flat-gain ML Estimator
was derived in (20). Additionally, the estimator was estab-
lished to be theoretically unbiased if the flat-gain assumption
holds. However, as noted in the introduction to this section,
there are several practical conditions that will introduce a bias.
The practical bias will be represented by the error term e
in the following equations. Using the fact that the estimator
is theoretically unbiased, the total MSE of the flat-gain ML
Estimator is computed as

MSE = E ((/C\ﬂD — Cf)H(/C\f’D — Cf))
2

S fe=tT
I DV B VR

V. CRAMER-RAO LOWER BOUND DERIVATION

27)

A common metric for estimators is the CRLB, which
provides a lower bound on the variance of any unbiased
estimator. We proceed to derive the CRLB for both channel
estimation methods in the following subsections and compare
the results to each estimator.

A. CRLB for the OFDM-Like Formulation

In this section, we compute the CRLB for the OFDM-
like ML estimator and show that it is efficient, which means
that it achieves the CRLB. In order to reduce the complexity
of the derivation for the CRLB, we choose to compute the
CRLB for estimating the impulse response vector c,. To
relate the CRLB for the impulse response estimate to the
frequency domain estimate, we note that the efficiency of
estimators is maintained over linear transformations [10, p.
37], [3]. Therefore, the objective of this section is to relate
the IDFT of the channel frequency response estimate in (9)
to the time domain CRLB. Once it is shown that the channel
impulse response estimator’s covariance matrix corresponds to
the CRLB, the frequency domain channel estimator is proven
to meet the CRLB because it is a linear transformation of the
time domain estimate. Starting with the PDF of the receiver
input data defined in (6) and assuming the channel impulse
response has a finite length where ¢; = Fcp,, the score
function is

3ln(P(Yf,Cp)) _ _1 _ 27PXF271Yf+
dc, 2

2F XS X Frep|. (28

From (28), the Hessian of the score function can be computed
as

O*In(P(Y i cp))
dcpdey
The Fisher Information Matrix F(c,) is derived from the
Hessian as

= —FIXFSIX F,. (29)

82ln(P(Yf; cp))
dcpdey
= (X¢F)HE X F,.

F(c,) =—-F

(30)

An estimator meets the CRLB if it satisfies the following rela-
tion between its covariance matrix and the Fisher Information

Matrix: 1
e, = . 31D
F(cp)

In order to compute the covariance matrix of the time domain
channel estimate, we begin by taking the IDFT of (9):

¢, = F, ¢ (32)

The equation in (32) is simply the product of a complex
Gaussian vector with a linear operator, which results in the
following PDF:

P(€,,c) ~CN <fp1fpcp,
f;lfp((xffp)Hz—lefp)—1f§(f;1)H)

~ cN<cp, ((Xffp)Hz—lefp)—1)>. (33)
The covariance matrix of the channel impulse estimate in (33)
clearly satisfies the relationship defined in (31). Additionally,
the time domain estimator remains unbiased. Therefore, the
OFDM-like channel estimator achieves the CRLB.

B. CRLB For the Flat-Gain Formulation

In this section, we show that the flat-gain ML channel
estimator derived in (20) achieves the CRLB if the flat-gain
assumption is true. In addition to performing the standard
derivation for the CRLB, we note that the expression for mean
square error for the flat-gain ML estimator should be condi-
tioned by the known length of the channel impulse response
L. In the time domain, this conditioning can be expressed as
limiting the noise to only the samples that corrupt the impulse
response samples ¢(n) in the range 0 < n < L. — 1, which
reduces the noise power by a factor L./N for a white noise
environment. Relating this result to the frequency domain
noise process, we note the the statistics of the white noise
don’t change in the frequency domain and the variance of the
noise at each subcarrier is also scaled by L./N. Starting by
writing the conditional PDF as p(z;, c(fx) | len{c} = L.),
the Fisher Information can be written as

Ler(fi) = _E[Wln(p(z@, (i) | lenfe} = L))

Oct(fi)Oc (fi)
MN MN
B [_U%C] - (34)

The CRLB can be written in terms of the Fisher Information
as

var(&(f)) = m
0'2Lc
= MN >

where M is the number of samples used in the computation
of the estimate. If the error term ¢ is zero in (27), it can
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be seen that the flat-gain Channel Estimator meets the CRLB
according to the following relation:
2
o _
M [ZD]ii = [I 1(cf)]ﬁ .
However, we will show in the results section that the e can
have a significant effect on the MSE of the estimator.

(36)

VI. RESULTS

In this section, we provide MATLAB simulation results to
check the theoretical work developed in the previous sections
and provide intuition for practical applications. The simulation
configuration is given below:

i) Filter Bank Size = 128.

ii) Number of Active Subcarriers = 64.

iii) Periodic Pilot Sequence Length (K) = 16.
iv) The channel is static over the duration of the FBMC-SS
Packet.
v) Pilot symbols are transmitted on all subcarriers during the
preamble.
vi) The filter bank subcarrier spacing = 500 kHz.
vii) The channel length (L.) is known apriori by the receiver
for both estimation methods.
viii) White Gaussian noise is added to the channel output with
the SNR swept from -10dB Es/No to 100dB Es/No.

ix) Perfect timing synchronization and carrier synchroniza-
tion are assumed.

x) The transient introduced by the channel is absorbed by the
beginning of the preamble during packet detection such
that the estimate is performed on non-transient data.

In order to compare the relative performance of the estima-
tors, we compute the Normalized Mean Square Error (NMSE)
of each estimator using the following equation:

(€ —co)" (€ —cr)

NMSE = ¥
Cy Ct

(37

In order to quantify the measured NMSE, we proceed to
normalize the theoretical expressions that met the CRLB.
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Fig. 5. NMSE vs. Received SNR for LTE EPA 5 Hz Multipath Channel
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The theoretical MSE for the OFDM-like estimator in (26) is
normalized according to the following equation:

tr (o2 Fo(FEXEX,Fy) 1P

H
Cf Cf

NMSEtheory,OL =
(38)

Additionally, the flat-gain channel estimator’s theoretical MSE
in (27) is normalized as follows:

tr [(]TT;ED}

H
C¢ Ct

NMSEheory,rG = (39)
The NMSE measured in simulation is compared to the nor-
malized theoretical MSE for each estimator.

Two different channel models are used to evaluate the
OFDM-like channel estimator and the flat-gain channel es-
timator. The first channel model used is an LTE EPA channel
with a Doppler frequency of 5Hz, as defined in [11]. The
impulse response of the LTE EPA channel is shown alongside
the impulse response estimates for the channel in Fig. 4.
This channel model is time-limited to approximately 410 ns,
which results in a larger coherence bandwidth in the frequency
domain and increases the validity of the flat-gain assumption.
To measure the accuracy of the flat-gain assumption and
compare the performance of the estimators, the measured
NMSE of the estimators and the theoretical NMSE for the
estimators are shown in Fig. 5. It can be seen that the flat-
gain channel estimator matches theory until the bias begins
to dominate the NMSE at high SNR. The bias, modeled as ¢
in (27), is considered negligible in this scenario. Additionally,
we note that the OFDM-like estimator does not suffer from
any bias and matches theory across all SNR points. It is also
worth noting that both theoretical NMSE curves are identical.

The second channel model used to evaluate the estimators
is an LTE EVA channel with a Doppler frequency of 5Hz, as
defined in [11]. We chose to use this channel model to illustrate
the effectiveness of the estimators when the channel impulse
response has a longer duration in time. In the comparison of
the impulse response to the estimated impulse responses in
Fig. 6, the bias of the flat-gain Channel Estimator is apparent.
The stronger bias, dominated by the inaccuracy of the flat-gain
assumption, is also reflected in the plot of the estimator NMSE
in Fig. 7, where the NMSE floors at approximately 1072
These results show that the flat-gain Channel Estimator is an
effective method for estimating time-limited channels, but has
limited performance in urban environments where the channel
delay spread is larger. On the other hand, the OFDM-like
channel estimator is very effective for most practical channels.

VII. CONCLUSION

In this paper, we presented two maximum likelihood chan-
nel estimation schemes for FBMC-SS and evaluated their per-
formance against the Cramer Rao Lower Bound. An OFDM-
like channel estimator was derived that utilizes the tones
generated by a periodic pilot sequence to estimate the channel

frequency response, and it was shown through detailed analy-
sis that this estimator meets the CRLB. A standard alternative
channel estimation method, denoted as the flat-gain channel es-
timator, was analyzed and shown to also meet the CRLB when
the assumptions surrounding the formulation of the estimator
are valid. We provided simulation results that highlighted the
validity of the flat-gain assumption for the flat-gain channel
estimator using several LTE channel models, and confirmed
that the flat-gain channel estimator only meets the CRLB for
relatively time-limited channels at lower signal to noise ratio
levels. On the other hand, the simulation results confirmed
that the OFDM-like channel estimator maintains excellent
performance across the different simulation conditions. Based
on these results, we propose the flat-gain ML estimator as a
good choice for applications where the channel delay spread
is small and low computational complexity is desirable. For
urban environments where the propagation channel becomes
more diverse, the OFDM-like channel estimator is a superior
choice. Our future work will focus on further developing the
OFDM-like channel estimator by reducing its computational
complexity and analyzing its performance in the presence of
partial band interference.
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