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Abstract—This paper proposes and analyzes a new packet
detection and timing acquisition method for spread spectrum
systems. The proposed method provides an enhancement over
the typical thresholding techniques that have been proposed for
direct sequence spread spectrum (DS-SS). The effective imple-
mentation of thresholding methods typically require accurate
knowledge of the received signal-to-noise ratio (SNR), which
is particularly difficult to estimate in spread spectrum systems.
Instead, we propose a method which utilizes a consistency metric
of the location of maximum samples at the output of a filter
matched to the spread spectrum waveform to achieve acquisition,
and does not require knowledge of the received SNR. Through
theoretical study, we show that the proposed method offers a low
probability of missed detection over a large range of SNR with
a corresponding probability of false alarm far lower than other
methods. Computer simulations that corroborate our theoretical
results are also presented. Although our work here has been
motivated by our previous study of a filter bank multicarrier
spread-spectrum (FB-MC-SS) system, the proposed method is
applicable to DS-SS systems as well.

I. INTRODUCTION

Despite the ever increasing interest in OFDM-based tech-
niques, such as LTE-A and emerging 5G waveforms, there still
remains a need to improve upon spread spectrum techniques
due to their unique solutions to numerous technologies. For
instance, device-to-device (D2D) communication underlaying
cellular networks has been considered, e.g., [1], [2]. Spread
spectrum techniques offer tremendous advantages to this appli-
cation due to their robustness and minimal interference charac-
teristics. Recently, it has been shown that one spread spectrum
system, namely filter bank multicarrier spread spectrum (FB-
MC-SS), provides an attractive solution to both D2D commu-
nications and an underlay control channel (UCC) for dynamic
spectrum access (DSA) [3], [4]. A full implementation of the
FB-MC-SS system was recently reported in [4], providing
credibility to its theoretical usefulness in these technologies.
However, the timing acquisition methods that had previously
been established for spread spectrum systems were determined
to be insufficient for FB-MC-SS due to the wide variation
in the signal-to-interference plus noise ratio (SINR) seen
in these applications. A novel technique which allows for
reliable synchronization with extremely low probabilities of
false alarm was determined. This paper presents a detailed
mathematical analysis of the method proposed in [4].

In spread spectrum communications, the transmitted signal
spreads its data over a large amount of bandwidth while
maintaining a low power spectral density (PSD). In order for

the receiver to demodulate the spread signal, it must first syn-
chronize the received signal with its spreading sequence. The
initial synchronization is coarse (within a chip interval) and is
known as acquisition, and subsequent tracking is performed to
achieve fine-tuning. It is well known that the limiting factor in
the performance of spread spectrum systems is the acquisition
stage [5], [6], making it the most crucial stage to optimize.
Most of the strategies proposed in the past have been tailored
towards direct-sequence spread spectrum (DS-SS), in which
a pseudo-noise (PN) sequence of a given length (chosen a
priori) is used to spread its data. Minor modifications are
made to account for problems unique to other classes of spread
spectrum techniques, e.g., the presence of multiple acquisition
phases and a larger search space in ultra-wideband (UWB) [7],
but typically follow similar procedures.

Acquisition techniques can either employ (i) a pro-
grammable correlator to test the delays sequentially until
synchronization is achieved (active method) or (ii) utilize a
filter matched to the spreading code and subsequently deter-
mine where synchronization was achieved (passive method).
It has been noted that passive methods are better suited
for packetized communication [6], [8], [9]. Typical passive
methods can be detailed as follows: (a) pass the received signal
through a filter matched to the PN sequence; (b) take the power
of the matched filter output to remove any carrier frequency or
phase offset; (c) determine if any of the samples exceed some
threshold; (d) pass any sample which exceeds the threshold
to a verification stage to confirm that despreading has been
achieved. Different passive methods change how the respective
thresholds are determined and, accordingly, the verification
step which follows in order to satisfy particular constraints
on a spread spectrum system. In this paper, we argue that
none of the previously proposed passive methods operate
satisfactorily in a spread spectrum system which operates in a
large dynamic range of signal-to-noise ratio (SNR), and that
a novel method which focuses on local maximums instead of
utilizing a threshold results in a considerable improvement in
performance.

The least computationally expensive acquisition method is
to choose a fixed threshold which gives reasonable results
at some a priori minimum SNR, say SNRmin [5], [6], [10].
In such systems, the probability of missed detection quickly
increases if the SNR drops below SNRmin. On the other hand,
it has been noted in [6] that if an automatic gain control (AGC)
is utilized, the probability of false alarm increases as the SNR



increases. Alternatively, it has been noted that thresholds may
be chosen according to a constant false alarm rate (CFAR)
[9], [11], [12]. This requires an accurate knowledge of the
SNR at the receiver input. However, measurement of the
SNR in a spread spectrum system is nearly impossible before
despreading has been achieved [13], making this technique
unreliable. Instead, adaptive thresholds can be utilized to
increase the reliability of a threshold over unknown SNR
values in real time. The most common adaptive thresholding
methods use a moving average at the output of the power
calculation to estimate the variance of the noise after the
matched filter [8], [13], [14]. This average is then multiplied
by some fixed parameter β to give the desired threshold. This
allows the threshold to adapt with varying SNR without having
to explicitly estimate it first. The parameter β is typically
chosen to guarantee some performance metric at SNRmin.
This optimization decreases the system performance at more
common operational SNR values which are much higher than
SNRmin. Additionally, the reported probabilities of false alarm
associated with this method are quite high (around 10−3) [8],
[14]. This forces the verification stage to be more thorough and
ultimately leads to a longer mean acquisition time (MAT).

Others have noted that maximum-based schemes perform
better than threshold-based ones, but are more difficult to
implement [5], [9]. Maximum-based methods reported in the
literature require knowledge of a packet’s arrival before search-
ing for a maximum value, implying that some packet detection
algorithm must be implemented before acquisition can be
achieved. Packet detection can be particularly difficult in
spread spectrum communications, and the additional hardware
associated with the algorithm becomes costly. Once a packet is
detected, the maximum-based scheme compares the amplitude
of samples after the matched filter over some observation time,
chosen a priori, and determines the location of the maximum
value to be the correct timing. The false alarm rate must
therefore account for false alarms in both the packet detection
algorithm and in determining the maximum value. Note that
in a high noise environment, there may be noise samples with
similar magnitude to the pulses associated with the correct
timing. In this scenario, this method is likely to fail.

Instead, we propose a maximum-based scheme which per-
forms packet detection and acquisition simultaneously. This
is done by utilizing a consistency metric of the location of
maximum values across windows of samples instead of finding
the location of a single maximum value across multiple win-
dows. Not only will this limit the number of resources required
in hardware compared to other maximum-based schemes but
also will allow correct acquisition in high noise environments.
Additionally, the probability of acquisition remains high over
a large range of SNR values without having to estimate the
SNR beforehand, similar to adaptive thresholding techniques.
However, this method also provides a CFAR significantly
lower than the adaptive thresholding methods. Our proposed
scheme leads to a CFAR of 10−9 or lower, allowing the
verification stage to be removed entirely and ultimately result
in a much shorter MAT.

The rest of this paper is organized as follows. A brief
introduction to the FB-MC-SS waveform and its main features
is given in Section II. Equations related to the received signal
during the preamble are discussed in Section III. An overview
of the packet detection and timing acquisition algorithm is
given in Section IV. The probability density function (PDF)
of the signal as it moves through the proposed algorithm
is given in Section V. Sections VI and VII use the derived
PDF’s to determine the probability of false alarm and missed
detection, respectively. Section VIII considers the degradation
of performance in the presence of subsample offsets, and pro-
poses a modified method to combat this effect. The concluding
remarks of this paper are given in Section IX.

II. FB-MC-SS OVERVIEW

In FB-MC-SS, the transmit signal is constructed according
to the equation

x(t) = s(t) ? g(t) (1)

where ? denotes linear convolution,

s(t) =
∑
n

s[n]δ(t− nT ) (2)

is a train of impulses carrying the data symbols s[n] with
symbol interval T ,

g(t) =

N−1∑
k=0

hk(t) (3)

is the transmit pulse-shape, N is the number of subcarriers,

hk(t) = γkh(t)ej2πfkt (4)

is the pulse-shape associated with the kth subcarrier, γk are
a set of spreading gains (in the form of γk = ejθk ), fk are
the subcarrier frequencies, and h(t) is a square-root Nyquist
pulse-shape. In [3], h(t) is chosen to be a square-root raised-
cosine pulse with a roll-off factor of 1.

III. RECEIVED PREAMBLE SEQUENCE

By assuming that, during the preamble, the transmit se-
quence s[n] alternates between BPSK signals, (2) becomes

s(t) =
∑
n

(−1)nδ(t− nT ). (5)

We observe that this choice of s(t) is a periodic function with
a period of 2T . It thus can be expanded as

s(t) =
1

T

∑
k

ej
(2k+1)π

T t. (6)

This indicates that s(t) is a summation of infinite tones at
frequencies {f = (2k+1)

2T ,−∞ < k < ∞}. When s(t) is
passed through the pulse-shaping filter, those tones that are
within the band of transmission will be retained and the rest
will be removed. The receiver first demodulates the received
signal to baseband, yielding y(t), and passes it through a



matched filter g∗(−t). After straight-forward derivations, one
finds the signal at the matched filter output to be

y′(t) =
1

2

(
N−1∑
k=−N

ej
(2k+1)π

T t

)
? c(t) + v′(t) (7)

where c(t) is the channel impulse response and v′(t) is the
filtered channel noise.

Noting that the summation enclosed in parentheses of (7)
is a truncated (equivalently, rectangular windowed) version of
the summation in (6), (7) leads to

y′(t) =

(∑
k

(−1)kNsinc
(
t− kT
T/(2N)

))
? c(t) + v′(t). (8)

To have a better understanding of this result, consider the case
where c(t) = δ(t), i.e., there is only a line of sight path with
the gain of unity. In that case, (8) reduces to

y′(t) =
∑
k

(−1)kNsinc
(
t− kT
T/(2N)

)
+ v′(t). (9)

We note that the sinc pulses have a main lobe width of T/N .
For typical choices of N , this is a relatively narrow pulse.
Accordingly, one may think of the sinc pulses as an approx-
imation to a sequence of impulses and, hence, (9) resembles
the preamble sequence (5). The gain factor N in front of the
sinc pulses arises from the processing gain of the matched
filter. Note that although perfect carrier synchronization has
been assumed, a carrier frequency offset only slightly reduces
the gain factor N for a large range of ∆fc [3].

IV. PACKET DETECTION AND TIMING ACQUISITION
ALGORITHM

To introduce the packet detection and timing acquisition
methods, and present an analysis of their expected perfor-
mance, we limit our presentation to the case where c(t) = δ(t).
The developed results are trivially extendable to the case where
the channel consists of a number of multipaths clustered in a
time span that is a small fraction of one symbol period T [3].
Also, since the receiver is implemented based on samples of
the received signal, we continue our discussion starting with
the following sampled version of (9):

y′[n] =
∑
k

(−1)kNsinc
(
n− kL
L/(2N)

)
+ v′[n]. (10)

Here, L denotes the number of samples within a symbol period
of T seconds. According to (10), the transmit sequence of al-
ternating +1 and −1 preamble symbols buried in background
noise have been recovered and amplified with a gain of N .

Following the standard passive-search scheme, we take the
power of the matched filter output as

z[n] = |y′[n]|2. (11)

The power calculation removes any carrier phase offset present
in the signal, and limits the computational costs of the decision
device by allowing faster hypothesis rejection [11]. We can
see from (10) that the output of the power calculation consists

of peaks every L samples, with an ideal amplitude of N2 .
The goal of the packet detection is to recognize the presence
of these periodic peaks. The timing acquisition, then, takes
the position of these samples as the correct timing phase for
the rest of the processing steps at the receiver. The combined
packet detection and timing acquisition algorithm can be
detailed as follows:
Step 1: Find Maximum Location – take most recent L samples

from z[n], and find the index τmax
0 of the maximum

value
Step 2: Store Maximum Location – save τmax

0 along with the
M − 1 most recent maximum indices in vector τ

Step 3: Find Common Occurences – determine if K out of
M values in τ share the same value

Step 4: Detection – if K indices share common value τmax
C ,

exit algorithm with acquisition timing of τmax
C ; oth-

erwise, repeat Steps 1-3 with next L samples
This method offers a clear distinction from typical thresh-

olding methods by maintaining the location of the maximum
sample instead of its value. Rather than finding a threshold
which offers an acceptable tradeoff between the probability
of acquisition and false alarm in a large range of SNR, we
rely on the fact that the maximum location should remain
stationary over windows of L samples when the packet is
present. However, in presence of a strong background noise,
these peaks may not be easily observable. Therefore, we
introduce flexibility into our algorithm by choosing K < M .
To visualize this scenario, we introduce the matrix Z, whose
columns are built of L consecutive samples of z[n] (i.e., the
first column of Z contains samples z[n] through z[n−L+ 1],
the second column contains z[n− L] through z[n− 2L+ 1],
and so on).

Fig. 1 presents a gray scaled example of matrix Z, where
L = 32 and the signal-to-noise ratio (SNR) at the receiver
input is equal to −6 dB. In this example, the packet arrives
at symbol number (column) 15 and a sequence of consistent
strong samples can be seen following this symbol. However,
there are also many elements of Z that are comparable with
these observably strong samples. In the following sections,
the probabilities associated with this strategy and the related
parameters are derived. This allows us to make an informed
decision of the selection of the parameters M and K that
lead to low values of Pfa (probability of false alarm) and Pmd

(probability of missed detection).

V. EVOLUTION OF PROBABILITY DENSITY FUNCTION

A. FB-MC-SS Signal Not Present

We begin by assuming that the received signal y[n] is made
up entirely of the additive noise signal v[n] (i.e., no packet is
present). If we assume that v[n] is a complex white Gaussian
signal with zero mean and variance σ2

v , the probability density
function (PDF) of the in-phase portion of the received signal
is given by

f IY (y) =
1√
π σ2

v

exp

(
−y2

σ2
v

)
. (12)
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Fig. 1. Diagram of Timing Acquisition

Note that the variance used in (12) is actually σ2
v/2 because

we have assumed that the quadrature portion of the signal has
an identical probability density function. The matched filter
introduces coloring to the complex white Gaussian signal,
but its distribution is still determined by a complex Gaussian
variable. The matched filter introduces a gain of

√
N , changing

its variance to σ2
v′ = Nσ2

v and giving the distribution

f IY ′(y
′) =

1√
π σ2

v′

exp

(
−y′2

σ2
v′

)
. (13)

The quadrature portion of y′[n] also has the same distribution.
The distribution after the power calculation can be found

by noting that the addition of k squared zero mean, complex
Gaussian signals is determined by a generalized chi-squared
distribution with k degrees of freedom for x ≥ 0. Clearly, we
have k = 1 (single complex Gaussian variable) with variance
σ2
v′ , giving the desired PDF of z[n] to be

fZ(z) = λe−λzu(z) (14)

where u(·) is the unit step function, and the substitution
λ = 1/σ2

v′ has been made to give a standard exponential
distribution.

B. FB-MC-SS Signal Present

Next, we assume that the received signal y[n] is made up of
the FB-MC-SS signal plus additive noise v[n], defined to be
complex white Gaussian with zero mean and variance σ2

v . If
we consider the signal after the matched filter (10), we see that
the samples which correspond to incorrect timings lie outside
the main lobe of the sinc function. Therefore, these samples
can be considered zero mean with a very low variance and
in the case of interest, where the signal is transmitted at or
below the noise floor, these samples will be made up almost
entirely of v′[n]. Therefore, this section will describe the PDF
of the correct timing (center of main lobe) only, as we have
described the PDF of all other timings in the previous section.

It is clear from (10) that the pulses associated with the
correct timing, after the matched filter, have a gain of ±N .
Let the random variable Y ′+ represent the complex distribution

associated with the pulses of gain +N . By including v′[n], we
see that the in-phase portion of Y ′+ is Gaussian with mean +N
and variance σ2

v′/2, represented by

f IY ′+(y′) =
1√
πσ2

v′

exp

(
−(y′ −N)2

σ2
v′

)
. (15)

A similar distribution is found for the negative pulses, where
its mean has changed to −N . As the signal portion of
y′[n] is entirely real, the PDF associated with its quadrature
components is Gaussian with zero mean and variance σ2

v′/2,
yielding

fQY ′(y
′) =

1√
π σ2

v′

exp

(
−y′2

σ2
v′

)
. (16)

The power calculation multiplies Y ′ by its conjugate. If
we consider Y ′+ only, this calculation implies the summation
of two squared Gaussian distributions: the in-phase Gaussian
with mean +N and the quadrature Gaussian with mean
0. This is determined by a scaled noncentral chi-squared
distribution, where the scaling is performed in order to have
unit variance of the respective random variables. Note that
the distribution of the Gaussian associated with the negative
pulses, after the power calculation, will be identical to that
of the positive pulses; therefore, the final distribution can be
determined without this case. Note that the conjugate of the
quadrature distribution is a time-reversed version of (16), an
even function, making the quadrature distribution identical to
(16). This is given by

Z =
(
Y ′+

I
)2

+
(
Y ′

Q
)2
. (17)

To guarantee unit variance, we must divide each of the random
variables by their respective standard deviations. With these
new random variables, we can use the noncentral chi-squared
distribution to get

Z ′ =

(
Y ′+

I√
σ2
v′/2

)2

+

(
Y ′

Q√
σ2
v′/2

)2

=
2

σ2
v′

((
Y ′+

I
)2

+
(
Y ′

Q
)2)

. (18)

Therefore, we can find the PDF of Z ′, and scale its distribution
by σ2

v′/2 to attain the desired PDF of Z.
To solve (18), we note that the degrees of freedom is k = 2

and the noncentrality parameter is λ = 2 (N/σv′)
2, giving the

distribution of

fZ′(z
′) =

∞∑
i=0

e−(N/σv′ )
2

(N/σv′)
2i

i!
fC2+2i

(z′) (19)

where fCq is the chi-squared distribution with q degrees of
freedom. The final modification needed to obtain the desired
distribution of Z is to apply the scaling factor σ2

v′/2 by

fZ(z) =
2

σ2
v′
fZ′

(
2z

σ2
v′

)
=

2

σ2
v′

∞∑
i=0

e−(N/σv′ )
2

(N/σv′)
2i

i!
fC2+2i

(2z/σ2
v′). (20)



VI. PROBABILITY OF FALSE ALARM

A false alarm occurs when there is no incoming packet, but
the packet detection algorithm perceives a packet has arrived.
Under this condition, for a given column of Z, each of the
L timings are equally likely to be the maximum value, as
they all belong to the distribution given in (14). It is worth
noting that the magnitude response of the matched filter is
not white which implies that some correlation exists between
samples after the power calculation. However, the elements
across each row of Z make up an L-fold decimated version of
z[n], which spreads out the magnitude response to produce a
flat spectrum. Therefore, the elements across rows of Z are a
set of independent random variables. With these observations,
the probability of false alarm, after adding a new column
to Z, narrows down to the following: given a set of M
independent integer random variables (the number of columns
to be analyzed), uniformly distributed in the interval 0 to L−1,
what is the likelihood that at least K of them are equal. This
is similar to the famous ‘Birthday Problem’ probability [15],
which determines how likely it is that at least K = 2 of M
people share the same birthday. This probability becomes more
difficult to find for K > 2, but it can be closely approximated
by a Poisson distribution [15]:

Pfa = 1− e−(MK)L−(K−1)

(21)

where
(
M
K

)
is the binomial coefficient.

Fig. 2 presents plots of Pfa for choices of M = 8, 12, and
16 in a range of K. Also, to confirm the accuracy of (21), we
have included the results of simulations for K ≤ 5. Higher
values of K become infeasible to determine in simulation as
their probabilities are too small to find within a reasonable
amount of time.

As seen, simulations match theoretical formula (21). Very
low probability of false alarm can be guaranteed, with moder-
ate values of M and an informed selection of the correspond-
ing value for K. Rather than maintaining a typical value of
Pfa around 10−3 or 10−4 [8], [12], [14], we argue that a Pfa

around 10−9 gives reliable acquisition rates and allows one to
remove the verification block from the synchronization process
entirely. Ultimately, this will lead to a decreased MAT.

VII. PROBABILITY OF MISSED DETECTION

A missed detection occurs whenever a preamble passes
through the packet detection algorithm without a successful
detection being made. Here, we develop mathematical for-
mulations that allow us to evaluate the probability of missed
detection for different choices of parameters M and K, and
as the SNR varies.

In order for a preamble to pass through without a detection,
an incorrect timing (L − 1 choices) must be greater than the
correct timing for M−K+1 or more columns within every M -
column window of the preamble. Let the samples associated
with the correct timing belong to the random variable Zx, with
distribution (20), and the incorrect timing samples belong to
the random variable Zv , with distribution (14).
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Fig. 2. Probability of false alarm: Theoretical (line) and Simulated (*)

If we consider a single column of Z, the probability of
missed detection at this column may be expressed as

P 1
md = P (zmv > zx) (22)

where zmv is the maximum of the L − 1 zv terms in the
considered column. If we assume that the zv terms are a set of
independent exponential random variables, the distribution of
zmv can be found with ease. First, the cumulative distribution
factor (CDF) of each of the L − 1 exponential random
variables, given by

FZ(z) =
(
1− e−λz

)
u(z) (23)

should be multiplied together, giving the CDF of zmv . The
corresponding PDF is then found by taking the derivative of
the CDF, by

fZm
v

(zmv ) =
d

dzmv

(
FZ(zmv )L−1

)
= (L− 1)(1− e−λz

m
v )L−2λe−λz

m
v u(zmv ). (24)

Next, we define zd = zmv − zx and note that

fZd(zd) = fZm
v

(zd) ? fZx(−zd) (25)

where ? denotes linear convolution. Analytical evaluation of
this convolution, given the form of the functions fZx(zx) and
fZm

v
(zmv ), is not trivial. Here, we choose to obtain fZd(zd)

numerically. Once fZd(zd) is obtained, P 1
md is evaluated as

P 1
md = P (zd > 0)

=

∫ ∞
0

fZd(zd)dzd. (26)

We note that (26) gives the probability of a missed detection
in a single column of Z (i.e., probability that an incorrect
timing has a higher amplitude than the correct timing). The
packet detection algorithm uses a sliding window of M
columns across Wpa columns of Z, where Wpa is the length
of the preamble, and indicates a detection if K or more
columns in any window are associated with a single timing.
This indicates that in order for a missed detection to occur,
P 1
md must occur M −K + 1 or more times in every window
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Fig. 3. Probability of Missed Detection: Theoretical (line) and Simulated (*)

across the Wpa preamble columns of Z. The probability of
such an event can be evaluated by taking the following steps.

We use a Markov chain process [16] with 2M states
describing the sign of zd in the latest M columns of Z. The
transitional matrix, Π, of this process can then be constructed
using P 1

md. The Markov chain is started with a state that
assumes zd has been positive in the past columns of Z, i.e.,
we are near the start of a preamble. Assuming that this is
the first state of the Markov chain, the initial value of the
state probability vector in the process will be the vector
p0 = [1, 0, 0, · · · ]T. As the Markov chain process proceeds
(equivalently, the preamble samples are processed), the state
probability vector of the process evolves as

pn = Πpn−1 (27)

where n = 1, 2, · · · is the time index.
The probability of missed detection at time index n is

obtained by adding the elements of pn that correspond to
missed detection states. For a preamble with length Wpa,
the probability of missed detection is calculated when n has
reached a fraction of Wpa. The rest of the preamble is reserved
for channel estimation.

Fig. 3 presents a set of plots of Pmd as a function of
SNR, for parameters M = 8, K = 6, and a few choices
of L and N . The segment of preamble that is considered
for packet detection is equal to 88. These parameters were
chosen to mimic the implementation that has been presented
in [4]. This specification allows the FB-MC-SS system to wait
extended periods of time for a packet to arrive without getting
false alarms, due to Pfa ≈ 10−9, while guaranteeing a high
likelihood of correct synchronization when packets arrive, due
to Pmd < 10−4. However, these parameters can be easily
adjusted to operate in the scenarios which other proposed
acquisition strategies assume, e.g., Pfa = 10−3, which will
further decrease Pmd.

Besides missed detection of a packet, the content of a packet
may be unrecoverable when a wrong timing phase is picked.
Nevertheless, in the presence of high-powered sinc pulses
associated with the symbols of a packet, such events are very
unlikely and their probability of occurrence is much lower than

Pmd. Hence, their consideration has very minor impact to our
conclusions and, on that basis, they are not considered in this
paper.

VIII. SUBSAMPLE OFFSET

In hardware, the sampling done on the receiver using the
analog-to-digital converter (ADC) introduces some offset that
is a fraction of one sample due to the uncertainty of the
propagation delay. In DS-SS, these subsample offsets can
cause dramatic SNR degradation, consequently decreasing
the acquisition performance [17]. This forces the acquisition
methods to oversample the received signal, which increases
complexity and does not solve the problem entirely. Therefore,
additional processing algorithms have been proposed to further
alleviate this problem. A parabolic interpolation algorithm is
used to construct the correct timing samples in [11], but it has
a downside of increased system complexity and power con-
sumption. Alternatively, [17] takes the power of the summation
of adjacent samples as an additional decision variable to be
used with an independent threshold. Similarly, [12] introduces
another threshold (lower than the conventional threshold) that
must be jointly passed by adjacent samples as an additional
decision variable.

Degradation is also seen in FB-MC-SS in the presence of
a subsampling offset, although oversampling is not required
and the degradation is not as severe. Consider L samples of
the power calculation z[n] in an ideal channel with no noise
present. With ideal sampling, the sample associated with the
correct timing will be at the center of the sinc pulse with
amplitude N2, and the remaining samples will be centered
around zero. If we assume that Ts is the time between samples,
and there exists a subsample offset 0 < |ε| < Ts/4, the sample
associated with the correct timing will move away from the
center of the sinc pulse and decrease in magnitude. Clearly,
this will result in a degradation in the timing acquisition per-
formance in terms of SNR. Even more concerning, however, is
the case where a subsample offset Ts/4 < |ε| < Ts/2 exists.
Not only will the magnitude of the sample associated with
the correct timing decrease further, but a neighboring point
(dependent on the sign of ε) will approach the same magnitude.
In this case, the proposed algorithm is equally likely to choose
either as maximum (depending on the additive noise), and the
K out of M requirement may be difficult to satisfy.

To alleviate this problem, we propose the following modi-
fication to the original acquisition algorithm. When the max-
imum value of the current L samples is found (Step 1), its
neighboring points (τmax

0 ± 1) are also determined. All three
values are then shifted into τ , and its three oldest elements
are shifted out (Step 2). This modification will force τ to hold
3M indices, and the new condition of K out of 3M elements
in τ being equal will allow one of the samples associated
with the main lobe of the sinc to pass. Note that if the passed
sample happens to be a neighbor of the ‘ideal’ timing, FB-MC-
SS will work with negligible degradation, whereas DS-SS can
see massive degradation if this is the case. This modification
significantly reduces the probability of missed detection in the



−15 −10 −5 0

10
−4

10
−2

10
0

SNR (dB)

P
ro
b
ab

ili
ty

of
M
is
se
d
D
et
ec
ti
on

 

 
Ideal Sampling
ǫ= Ts/2 (Original)

ǫ= Ts/2 (Modified)

Fig. 4. Probability of Missed Detection Using Neighbor Technique

1 2 3 4 5 6 7 8
10

−10

10
−5

10
0

Number of Detections, K

P
ro
b
ab

ili
ty

of
F
al
se

D
et
ec
ti
on

 

 

M = 8
M = 12
M = 16

Fig. 5. Probability of false alarm Using Neighbor Technique: Theoretical
(line) and Simulated (*)

presence of subsample offset, as shown from simulations in
Fig 4. However, it will also increase the probability of false
alarm.

At first glance, one may think that the probability of false
alarm can be found by replacing M in (21) with 3M . At
closer inspection, however, the additional 2M samples are
not uniformly distributed, and have a direct correlation with
the M maximum timings. A closed form solution has not yet
been determined, but a close approximation was found using
simulations, indicating that M should be replaced by 2.5M .
This approximation is shown in Fig 5.

IX. CONCLUSION

In this paper, we proposed a timing acquisition strategy
for the filter bank multicarrier spread-spectrum (FB-MC-SS)
system that utilizes a maximum-based scheme instead of the
conventional thresholding techniques. The novelty of the pro-
posed method lies in its consistency metric, which allows the
utilization of maximum values without relying on a separate
packet detection algorithm. This allows the method to work in
a large dynamic range of SNR without explicitly estimating it
or determining a proper threshold to utilize, making it ideal for
protocols that experience large changes in SNR continuously,
e.g., the underlay control channel (UCC) for dynamic spectrum

access (DSA), or a communication channel in underlaying
cellular networks.

The probability of false alarm and missed detection of the
proposed algorithm were determined and indicate how well
the algorithm will perform in a complex AWGN channel.
Subsample offsets present in hardware due to the analog-to-
digital converter (ADC) were also considered, and a small
modification to the algorithm was given to combat this effect.
In addition to the analyses, simulations were presented to
confirm the validity of the probabilities found.
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