‘ ! ! . LLNL-CONF-701798

LAWRENCE
LIVERM ORE
NATIONAL

oo | QPtIMIzINng Multi-Image Sort-Last
Parallel Rendering

M. Larsen, K. Moreland, C. Johnson, H. Childs

August 29, 2016

IEEE Large Data Analysis and Visualization (LDAV)
Baltimore, MD, United States
October 23, 2016 through October 23, 2016




Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.



Optimizing Multi-lmage Sort-Last Parallel Rendering

Kenneth Moreland *
Sandia Nat’l Lab

Matthew Larsen *
Lawrence Livermore Nat'l Lab
University of Oregon

ABSTRACT

Sort-last parallel rendering can be improved by considering the ren-
dering of multiple images at a time. Most parallel rendering algo-
rithms consider the generation of only a single image. This makes
sense when performing interactive rendering where the parame-
ters of each rendering are not known until the previous rendering
completes. However, in situ visualization often generates multiple
images that do not need to be created sequentially. In this paper
we present a simple and effective approach to improving parallel
image generation throughput by amortizing the load and overhead
among multiple image renders. Additionally, we validate our ap-
proach by conducting a performance study exploring the achievable
speed-ups in a variety of image-based in situ use cases and render-
ing workloads. On average, our approach shows a 1.5 to 3.7 fold
improvement in performance, and in some cases, shows a 10 fold
improvement.

1 INTRODUCTION

In this paper, we explore new algorithms for multi-image sort-
last parallel rendering, which is becoming increasingly common
for scientific visualization. The algorithm frequently used for this
problem has evolved from approaches from interactive exploration
within visualization tools. However, with multi-image rendering,
the desired images are all known prior to rendering, which opens
the door to improve efficiency.

In a traditional scientific visualization setting, the list of images
to generate are not known a priori. End users interact with visu-
alization software and view the imagery produced from their di-
rection, iteratively exploring their data by repeatedly selecting and
rendering. End users want to see surfaces or volumes from a spe-
cific position, the visualization software renders the data from that
position, and the end users view it. This process is repeated as the
user navigates to new camera positions. As a result, visualization
software renders images one at a time in response to user guidance.

This “render images one at a time” model is likely not effi-
cient for sort-last parallel rendering. Sort-last parallel rendering
frequently has load imbalance, and it is difficult to achieve effi-
cient rendering without taking extra steps (i.e., rebalancing geome-
try, etc.) when rendering just a single image. The traditional model
for sort-last parallel rendering consists of two phases — rendering
(or sub-image generation) and compositing — and the total time
for sort-last parallel rendering is the sum of the times for these two
phases. In the rendering phase, each processing element generates
the image from its portion of the larger data set. The resulting im-
age contains depth information (i.e., the z-buffer), so that the com-
positing phase can combine the sub-images into a single image,
as if all data was rendered on a single processing element. The
compositing phase occurs after the rendering phase, since all sub-
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images are needed to generate the final picture. This compositing
phase has been the subject of several research efforts to understand
the most efficient communication patterns for combining the sub-
images|[14, 19, 7, 20].

There are multiple sources of load imbalance with sort-last par-
allel rendering. For the rendering phase, the amount of geometry
on each processing element will almost certainly be varied, and
maybe significantly so. For example, when rendering the results
of an isosurface, one processing element may have many triangles
(if the field was complex in the spatial region it owned), and another
processing element may have zero triangles (if the field was homo-
geneous in its region). Further, rendering time is often affected by
how many pixels need to be updated (fill rate). Therefore, a second
source of load imbalance for rendering stems from camera position.
That is, two processing elements may have the same amount of data
to render, but one may take much longer to render if the camera is
zoomed in on its spatial region. Further, for the compositing phase,
the time to execute is much longer than the time it takes to compare
pixels from other processing elements. Specifically, network trans-
fers have latencies that affect performance. Additionally, it is diffi-
cult to ensure that all processing elements have meaningful work to
perform, although algorithms such as binary swap and radix-k aim
to balance work as effectively as possible.

Recently, a new paradigm for in situ processing has emerged that
makes heavy use of sort-last parallel rendering. The idea behind this
paradigm is to eschew saving of meshes and fields, and, instead, to
generate many images for a given time slice while the simulation is
running. These images come from many camera positions and may
consider different sets of geometry as well. Further, the images can
be “explorable,” meaning that they could contain information aside
from colors, such as scalar fields, or view normals so that coloring
and lighting can be done interactively in a post hoc fashion. Several
researchers have explored the idea of multi-image in sifu rendering,
but in this paper we refer to this use case as Cinema-style render-
ing, in reference to the Cinema software being developed following
this paradigm. Cinema-style rendering opens the door for new ap-
proaches with sort-last parallel rendering. If R; is the task of doing
rendering for image i and C; is the task of doing compositing for
image i, then the only necessary constraint for parallel rendering is
that R; takes place before C; for all i.

However, the traditional model imposes more constraints,
namely a sequencing of Ry, Cy, R, Cy,..., Ry, Cy. That said,
sequencing for Cinema-style rendering can be different, such as
Ro, Ry,..., Ry, Cy, Cy,..., Cy. Further, compositing phases can be
combined to save on latencies, i.e., replacing Cy, Cy,..., Cy with
one compositing algorithm (MC) that takes multiple images as in-
put. With this work, we hypothesized that changing the order of
rendering tasks could lead to significant savings in overall render-
ing times. To evaluate our hypothesis, we designed a study that
compared several algorithms (i.e., orderings of R;’s and C;’s) over
workloads that varied camera configurations, number of images to
produce, amount of geometry and distribution, and concurrency.
We found that reordering rendering phases for multi-image render-
ing was consistently better. Specific improvements varied heavily
based on workload and algorithm, with many tests achieving an
average speed-up of 2.3x, and others achieving as much as 10.0x
speed-up and more. We believe the result of this study is impact-



ful and is applicable anytime multiple images are rendered. In the
Cinema-style rendering paradigm, the simulation code will allocate
finite time to visualization routines to generate its imagery. There-
fore, rendering images more quickly can be beneficial either by al-
lowing the in situ rendering routines to fit within the time budget
or by allowing more images to be captured within the time budget,
thus better preserving the state of the simulation.

2 RELATED WORK

In this section, we discuss the related work of image-based in situ
and image compositing.

2.1 Image-Based In Situ

An unsurprisingly common operation for in situ visualization is the
rendering of images. However, one oft noted shortcoming of in situ
rendering is that the rendering parameters must be established a pri-
ori, and interactive visualization is unavailable [5]. In response to
this shortcoming, several researchers propose generating additional
information, often in the form of multiple images, to recapture some
of the exploratory process.

Chen et al. [4] note that if there is a finite space of camera po-
sition and visualization operations, then it may be feasible to pre-
calculate all of the images before hand. Likewise, Kageyama and
Yamada [8] propose creating a spherical shell of camera positions
around the data object to be interactively viewed with a special
movie player later. Tikhonova et al. [21] provide an alternate “ex-
plorable images” approach where images are saved with extra lay-
ers of information that provide some level of interactivity. However,
interactions like camera movements are limited, so the explorable
images technique must be combined with the other approaches us-
ing multiple images for a truly interactive experience.

Cinema [2, 18] is a generalization on this concept of generating
multiple images to recapture interactivity. With Cinema, any visu-
alization parameter can become explorable by providing multiple
images rendered with different parameter values. Rendering multi-
ple camera angles is typical, but other parameters such as isosurface
value can be expressed as well.

Cinema provides the motivation for our work. When produc-
ing Cinema databases, in situ visualization generates many images,
possibly hundreds, for a given time step. Our work sees an opportu-
nity to optimize sort-last parallel rendering while generating many
pre-defined images as in the case of a Cinema database.

2.2 Image Compositing

Sort-last parallel rendering has been the preferred method of ren-
dering in distributed-memory environments because, unlike other
parallel rendering modes, it scales very well with respect to the
amount of geometry being rendered [22]. Consequently, it is uti-
lized by industry standard visualization tools such as ParaView [1]
and Vislt [6]. In this paradigm, data are distributed across ranks,
and each rank is responsible for rendering the data it owns. The
resulting images are then composited together into a single image
of the entire data set using depth information. The sort-last ap-
proach naturally lends itself to in situ use cases since simulations
discretize problems spatially, and sort-last rendering generally does
not require redistribution.

Sort-last parallel rendering is an extremely well studied prob-
lem. This research generally focuses on the image compositing
step. One of the earliest image compositing algorithms that is still
commonly used today is binary swap [14]. Binary swap is a parallel
divide and conquer approach that is simple to implement but effi-
cient and load balanced. The compositing algorithm used for the
work in this paper is radix-k [19]. Radix-k is a derivation of binary
swap that achieves better efficiency by overlapping the data com-
munication and the computation required for compositing. A more

thorough review of sort-last parallel rendering algorithms, includ-
ing other compositing algorithms, is given by Peterka and Ma [20].

Parallel image compositing can be further accelerated by incor-
porating optimizations such as active-pixel encoding and image in-
terlacing. The details of the image compositing algorithm and the
relevant optimizations employed are summarized by Moreland et
al. [17]. The implementation is encapsulated in the IceT image
compositing library [15], which is made publicly available. Finally,
Grosset [7] et al. addressed load balancing issues in the rendering
phase by scheduling compositing so that the data from the longest
running ranks are only required at the latter stages of the reduction.

3 ALGORITHMS FOR MULTI-IMAGE SORT-LAST PARALLEL
RENDERING

We consider four algorithms. The first algorithm is the traditional
approach that comes from applying sort-last parallel rendering re-
peatedly. However, since all desired camera positions and render-
ing configurations are known prior to Cinema-style rendering, it is
possible to reorder the rendering and compositing steps. The final
three algorithms take advantage of this property and also consider
combined compositing steps. For each algorithm, we consider the
equation governing the time complexity to generate n images. We
use the following terms to define our equations:

e T is the total time to generate n images

® R, ;is the time for rank p to render its i sub-image (1 <i<n)

e (; is the time to composite image i (1 < i < n), assuming that
all ranks have completed rendering their inputs

e (., is the time to composite a single large image composed of
n sub-images and to collect all n sub-images to the first rank
element

e (j., is the time to composite a single large image composed
of n sub-images and to leave the n sub-images scattered across
the ranks

3.1 Algorithm 1: Traditional Approach

The traditional approach is to render images one at a time, based on
user guidance. This approach stems from the usage where camera
positions are created on demand as the user manipulates the view
to explore the data set, and the main concern is the ability to de-
liver high frame rates in the requested order. However, although
this is the approach that has been used for multi-image rendering
in the Cinema-style paradigm so far, we believe it may not be the
most efficient approach. We include this algorithm in our study as
a reference, so that we can compare it with algorithms designed
for multi-image rendering. With the traditional approach, all ranks
must render their images before compositing can begin. As a result,
there is an implicit barrier between the two phases of the sort-last
rendering process, and the total render time is limited by the slow-
est rank. Cores sit idle as they wait to proceed past the barrier, and
this inefficiency is inherent to approaches where full interactivity
is paramount. In the multi-image setting, these effects are exacer-
bated as an image database is generated. Equation 1 represents the
time to generate n images with Algorithm 1:

n

T =Y (maxy(Ry;)+Ci) (L

i=1

3.2 Algorithm 2: Render-Then-Composite

This method generates n images by first rendering all sub-images
and then compositing n images. The key difference is that each rank
renders its images independently of other ranks, which reduces the
number of implicit barriers from n to 1. Equation 2 represents the
time to generate n images with Algorithm 2:
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In this model, rendering time is bound by the slowest rank, but
it is the slowest rank to render all of its sub-images. Algorithm 2
contrasts with Algorithm 1, where the rendering time is bound by
the slowest rank for each individual image, which can change from
image to image.

3.3 Algorithm 3: Render-Then-Multi-Composite

Algorithm 3 extends Algorithm 2 by using a multi-composite step.
That is, rather than applying a compositing algorithm n times to
generate n images, the multi-composite combines the n images into
one (very large) image, and then applies compositing on this single
image. Our intuition suggests that compositing n images sequen-
tially will add additional inefficiencies, and that compositing them
as one large image will remove these inefficiencies by amortizing
the overhead.

n

T =max,(Y Rp;)+Ci (3)

i=1

3.4 Algorithm 4: Render-Then-No-Gather-Multi-Comp-
osite

Parallel compositing hierarchically sub-divides computational
work among all participating processors. When all computation
is complete, contiguous portions of the final image exist on all pro-
cessors, and the final image is assembled through a final gathering
step. With multi-image rendering, the images are not immediately
displayed, so this gather step is not needed. Instead, we only need
to save the resulting images to a parallel file system. With this strat-
egy, individual images can be left in place, and then each rank can
save the images it owns to the parallel file system. The authors of
IceT anticipated this use case and included necessary functional-
ity inside the API. Further, the IceT implementation allows for the
creation of “tiles” corresponding to whole images, meaning that im-
ages will not straddle ranks, and thus there is no need for additional
communication between ranks. Equation 4 represents the time to
generate n images with Algorithm 4:

™=
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4 STUDY OVERVIEW

Our study was designed to explore the opportunities for improve-
ment within sort-last parallel rendering. In this section, we provide
details on our software implementation, study factors, and architec-
tures for testing.

4.1 Software Implementation

For our in situ infrastructure, we used Strawman [11], a light-
weight library that comes integrated with three physics simu-
lations. We used two out of the three simulations available:
Lulesh [9], a hydrodynamics code using unstructured hexahedrons,
and Kripke [10], a deterministic neutron transport code using a
structured grid. We integrated Strawman with VTK-m [16], which
is a many-core version of VTK targeting performance portability
across heterogeneous architectures. We used VTK-m’s existing iso-
surface and external faces filters, but we added a slice filter to sup-
port this study. For rendering, we used ray-tracing, since recent
research has indicated that rendering with ray-tracing is faster than
rasterization when BVH build costs are amortized [12]. Further,
the ray-tracer in VTK-m has been demonstrated to be competitive
with industry standards, specifically within a factor of two or bet-
ter [16, 13]. Finally, we used IceT for image compositing, since it

is widely used and has demonstrated good scaling at massive con-
currency.

4.2 Study Phases and Factors
In our study, we varied the following factors:

Algorithm (4 options)

Camera configuration (3 options)
Image counts (5 options)

Image type (2 options)
Rendering workload (4 options)
Concurrency (9 options)

To manage the number of configuration combinations, we di-
vided the study into two phases. In phase 1, we tested the cross-
product of all testing options except concurrency, resulting in 480
tests. In phase 2, we held camera configuration, image count, and
rendering workload constant, and varied concurrency, algorithm,
and image type, resulting in 72 tests. Therefore, we conducted 552
total tests between both phases. The details of the factors are dis-
cussed in the following subsections.

4.2.1 Algorithm

We use the four algorithms described in Section 3. They are:

Algorithm 1: Traditional approach (see Section 3.1)
Algorithm 2: Render-then-composite (see Section 3.2)
Algorithm 3: Render-then-multi-composite (see Section 3.3)
Algorithm 4: Render-then-no-gather-multi-composite

(see Section 3.4)

4.2.2 Camera Configurations

Camera configuration is closely tied to performance. If all camera
positions share a focal point, then the rank that contains that focal
point will likely do significant rendering work for each position,
which limits speed-ups of Algorithms 2 to 4. Therefore, we wanted
to consider multiple arrangements of camera positions. When con-
sidering this factor, we anticipate one finding will be that some
choices of camera positions are not suitable for significant speed-up
with multi-image sort-last parallel rendering, and that others are.
The three camera configurations we consider are:

e Cinema: The Cinema specification uses a spherical camera
that assigns positions based on regular divisions of phi and
theta. In our study, we chose to use a Fibonacci spiral, which
allowed us to assign an arbitrary number of camera positions
and avoid clustering the camera position around the poles.
Camera distance and field-of-view were chosen to minimize
the number of background pixels.

e Surface Reconstruction: Images with depth information can
be treated as point clouds by surface reconstruction algo-
rithms [3] in order to rebuild the original surface from the
compressed representation. We reduced the camera field-of-
view proportionally to the number of camera positions, which
increases the resolution of the point cloud and reduces redun-
dant information by minimizing image overlap. Further, this
camera setup exposes greater rendering work imbalances (i.e.,
fewer ranks will have any work for a single frame), which will
allows us to better explore the space of all possible configura-
tions.

e Inverse Cinema: This configuration places the camera at the
sphere center, and the view direction points towards locations
on the surface of the sphere. These directions correspond to
the same points as the Cinema configuration camera positions.
The inverse Cinema configuration allows the user to move the
camera view direction instead of the position.



4.2.3 Image Counts

Image count refers to the number of images rendered. We con-
sider 5 image counts in our study, ranging from 20 to 100 images
in increments of 20. We consider this factor because we hypothe-
size that larger image counts create opportunities for larger savings
compared to the traditional technique.

4.2.4 Image Type

Images can be either Static or Explorable. Static images contain
only color data, and so interactivity is limited to changing the cam-
era position. Explorable images contain different types of data, for
example scalars and view normals, which allows for changing color
maps and lighting parameters when doing post hoc exploration in a
database viewer.

We consider both image types in our study:

e Static: represented with an RGBA format using 32 bits for
each pixel, which reduces compositing time due to less com-
munication overhead.

e Explorable: represented with 128 bits for each pixel, which
increases compositing time due to additional communication
overhead.

A resolution of 1024 was used for both image types.

4.2.5 Rendering Workload

In a distributed memory simulation using tightly-coupled in situ,
the rendering workload per rank varies depending on the current
time step and the type of visualization operation that generates the
geometry. On the one hand, the rendering workload could be com-
pletely balanced (i.e., each rank contains the same amount of ge-
ometry), and, on the other hand, the rendering workload could be
highly imbalanced (i.e., only a subset of ranks have any geometry).
The set of all possible workloads falls somewhere in between these
two cases, and to explore this space, we used four workloads that
are representative over the spectrum:

e Balanced: each rank renders the external faces of the rank’s
domain.

e Imbalanced: only the external faces of the entire data set are
rendered.

e Slice: the entire data set is sliced along the xy, xz, and yz axis
planes

e Isosurface: generated from an isovalue with approximately
65% of the ranks with rendering work.

The geometry for the balanced, imbalanced, and slice workloads
is created from Lulesh, which is run on 512 ranks with a total data
set size of 20483, a total of 8.5 billion elements, and each rank
contains 2567 unstructured hexahedrons. The balanced workload
renders 393,216 faces per rank (i.e., 768K triangles), and the im-
balanced workload renders a total of 25.1 million faces (i.e., 50.2M
triangle) spread across 224 ranks. The geometry for the isosurface
was created using Kripke running on 512 ranks with a total data set
size of 10243 and resulted in 73M total triangles.

4.2.6 Concurrency

Since IceT does not use hybrid-parallelism, we ran our rendering
and visualization using one MPI rank per core. For phase 1, we used
a total of 512 MPI ranks. For ghase 2, we ran 9 options, ranging
between 512 (8%) and 4096 (16°) MPI ranks. We were only able to
run with MPI rank counts that were perfect cubes, due to constraints
from Lulesh.

Type Alg Average Speed-up
Static 2 2.0
Static 3 2.4
Static 4 2.8
Explorable 2 1.5
Explorable 3 2.9
Explorable 4 3.7

Figure 1: The speed-ups of each algorithm averaged over all image
counts and camera configurations.

4.3 Hardware Architecture

Phase 1 and phase 2 of our study used different machines, due to
machine availability; we had access to a small machine where we
could run many jobs (phase 1) and a large machine where we could
run few jobs (phase 2). In terms of hardware specifics:

e Phase 1 ran on Surface, a visualization cluster at Lawrence
Livermore National Laboratory. Each node has two Intel
Xeon E5-2670 running at 2.6 GHz with 16 total cores and
256 GB of memory per node.

e Phase 2 ran on Cab, a large capacity machine also at Lawrence
Livermore National Laboratory. Each node has same config-
uration as Surface but with 32 GB of memory per node.

5 RESULTS
In this section we discuss the results of the two phases of our study.

5.1 Phase 1

For the first phase of the study, we hold concurrency constant and
vary all other study options. We begin by presenting the over-
all speed-up of Algorithms 2 to 4 compared to the traditional ap-
proach (Section 5.1.1). Then, we analyze the individual compo-
nents of the speed-ups of sort-last parallel rendering — rendering
(Section 5.1.2) and compositing (Section 5.1.3) — to explain the
reasons behind the overall speed-ups.

5.1.1  Overall Speedups

For each of the image formats, Figure 1 shows the average speed-
ups over Algorithm 1 for all camera configurations and image
counts, and Figure 2 shows the overall speed-ups for all factors of
the study configuration when rendering 100 images. For brevity, we
omitted the other image counts from the figure since those results
are presented in detail when we analyze the individual components.
Each algorithm incrementally introduces new improvements over
the traditional method. Algorithm 2 renders all images at once to
reduce rendering imbalances, while the compositing stage is iden-
tical to the traditional method. Algorithm 3 improves compositing
efficiency by treating all renderings as a single image, and Algo-
rithm 4 eliminates the final gathering of images to a single process.
In almost all cases, each successive algorithm improved the speed-
up over the previous one.

Overall, the speed-ups over the traditional methods ranged be-
tween 1.0x (i.e., no improvement) and 10.2x (i.e., ran more than
10 times faster), with the Imbalanced workload providing the most
significant improvements, and on average, the speed-ups ranged
between 1.5x and 3.7x. The Cinema camera configuration varied
between 1.4x and 1.9x with the Static image type, and it varied
between 1.0x and 3.5x with the Explorable image type. The In-
verse Cinema and Surface Reconstruction camera configurations



Overall Speed-ups (100 Images)

Workload Type Alg Cinema Inverse Surface

Balanced  Static 2 1400 19000 17000

Balanced  Static 3 1.6 1.9l 1700

Balanced Static 4 1.8- 1.9- 1.8-

Balanced  Explorable 2  1.2[0 1o 1.6

Balanced Explorable 3 2.6- 1.9- 1.9-

Balanced ~ Explorable 4 3.3 19000 2.0

imbalanced St 2 141 o.0 I 71—
imbalanced St & 1.7[] s s
imotanced Staic 4 1.9 0.9 [ o2 F
Imbalanced Explorable 2 1.2J8 25 s2n

imbalanced Explorable 3 2.7 6.9 7> I
imbalanced Bxplorable 4 .5 [l 9.5 [ o
Slice Static 2 12 1.3 1300

Slice Static 3 140 1500 1400

Slice Static 4 160 1500 1400

Slice Explorable 2 1.1 . 1.5 - 1 .3-

Slice Explorable 3 2.6/ 1500 1601

Slice Explorable 4 3.4 15000 17000

Isosurface  Static 2 1.1 . 1 .7- 1.9 -

Isosurface ~ Static 3 130 20 210

Isosurface  Static 4 15000 2.3 22

Isosurface  Explorable 2 1.0l 1300 1500

Isosurface  Explorable 3 2.5- 2.8- 2.5-

Isosurface  Explorable 4 3.2- 3.5- 2.8-

Figure 2: Summary of the overall speed-ups compared to Algorithm 1 for all configurations at 100 images. As an example of how to interpret the
figure, the entry of 1.4 in the first row means that balanced workload with the Static image type and the camera positions defined by Cinema is

1.4x faster with Algorithm 2 than it is with Algorithm 1.

Ratio of Compositing Over Rendering

Wrkld Type Algo Cinema Inverse Surface
1 0.52 0.25 0.11
S 2 0.59 0.46 0.20
3 0.32 0.25 0.11
Iso 4 0.15 0.12 0.05
1 2.36 1.17 0.53
E 2 2.60 2.21 1.03
3 0.53 0.46 0.21
4 0.19 0.17 0.09

Table 1: An example of the impact of on the ratio of time spent com-
positing over rendering with the isosurface workload at 100 images.
Values greater than 1.0 means that more time is spent compositing,
and values less than 1.0 mean that more time is spent rendering. For
image type, S denotes the Static and E denotes the Explorable.

had speed-ups ranging between 1.3x and 10.2x. Excluding the Im-
balanced workload, which had the largest speed-ups, both configu-
rations had speed-ups between 1.3x and 3.5x.

The overall speed-ups in the study varied based on the relative
speed-ups of each phase. Table 1 provides an example of the ratio
of time spent rendering and compositing for the Isosurface work-
load. Compositing times for the Static image representation were
approximately four times faster than for the Explorable image type,
due to shear data size. Within each image data representation, com-

positing times for the different algorithms generally stayed rela-
tively uniform, although there were variations due to different ren-
dering workloads. For the Explorable image type, rendering times
tended to be equal to compositing times for Algorithms 1 and 2,
but rendering began to more heavily influence overall times as com-
positing times became faster with Algorithms 3 and 4. For the Static
image type, rendering times always played a more important role in
overall time.

5.1.2 Rendering

The speed-ups across all workloads and camera configurations are
summarized in Figure 4. The speed-ups range between 1.1x and
9.0x. Note that Algorithms 2 to 4 operate identically for the render-
ing phase, so they are reported jointly. Figure 3 plots the max terms
in the equations for Algorithm 1 and Algorithms 2 through 4. In
this section, we discuss the speed-ups of the various workloads and
the effects of the different camera configurations.
To simplify discussion, we define two terms:

e [LR: the set of limiting ranks for Algorithm 1, which are ranks
that have the highest rendering workload for each frame.

e LRj: the single limiting rank for Algorithms 2 to 4, which
is the rank that has the highest rendering workload over all
frames.

Balanced The speed-ups for the Balanced workload ranged
between 1.6x and 1.9x, and remained unchanged as the number of



Comparison of Rendering Algorithms
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Figure 3: A comparison of rendering times between Algorithm 1 and Algorithms 2-4 described in section. The y-axis is rendering time, where
lower is better, and the x-axis is frame number. In the above figures, the red line is the slowest render time for each frame (Algorithm 1 rendering
time), and the slowest rank can change from frame to frame. The blue line is the slowest rank over all frames (Algorithms 2-4 rendering times),
and each data point is that rank’s render time. From top to bottom, the rows represent the different camera configurations of Cinema, Inverse
Cinema, and Surface Reconstruction. From left to right, the columns represent the Balanced, Imbalanced, Slice, and Isosurface rendering
workloads. The difference in areas under the two curves is the maximum potential difference between the traditional approach and ours with
respect to rendering. Further, the ratio of the two areas indicates the relative speed-up.

images increased. The effect of each camera configuration can be
seen in the first column of Figure 3.

In the Cinema configuration, each rank contains an equal amount
of geometry, and ranks directly in front of the camera have the
largest amount of work. For any given image, LR is always di-
rectly in front of the camera. LR, is only sometimes in front of the
camera, since the camera could be focused on the other side of the
data set. Because LR, has a much lower rendering workload while
not in front of the camera, on average we observed a 1.6x speed-up.

The Inverse Cinema configuration had the largest speed-up of the
three configurations at 1.9x with the Balanced rendering workload.
Here the camera is at the center of the data set looking out, and
the limiting ranks are at the center of the data set in front of the
camera. Of the four ranks surrounding the center point of the data
set, each is in front of the camera about a quarter of the time. Our
method averaged out the work imbalance and was able to produce

almost twice the number of images than did Algorithm 1 in the
same amount of time.

The Surface Reconstruction camera configuration achieved a
1.7x speed-up over Algorithm 1. With a tight camera field of view,
only ranks directly in front of the camera, at the center of the data
set, and on the far side of the data set had any rendering work for a
given camera position. LR; was always on the surface of the data
set. LRy was located at the center of the data set, and it had consis-
tent work over all camera positions. Thus LR and LR, are never
the same for Surface Reconstruction, in contrast to the other camera
configurations.

Imbalanced The Imbalanced workload offered the largest op-
portunity for rendering time improvements and the speed-ups
ranged from 1.6x to 9.0x. The summary of the limiting factors is
found in the second column of Figure 3.

The Cinema camera configuration showed the lowest speed-ups



Rendering Speed-ups

Workload Camera 20 Images 40 Images 60 Images 80 Images 100 Images
Balanced Cinema 1.57 1.58 1.63 1.62 1.61
Balanced Inverse Cinema 1.82 1.92 1.89 1.90 1.89
Balanced Surface 1.68 1.68 1.74 1.72 1.71
Imbalanced Cinema 1.64 1.63 1.66 1.67 1.68
Imbalanced Inverse Cinema 6.01 7.27 7.81 8.05 8.00
Imbalanced Surface 2.88 4.54 6.62 7.95 9.04
Slice Cinema 1.32 1.31 1.33 1.32 1.32
Slice Inverse Cinema 1.44 1.50 1.50 1.48 1.50
Slice Surface 1.36 1.34 1.34 1.33 1.33
Isosurface  Cinema 1.10 1.08 1.1 1.10 1.12
Isosurface  Inverse Cinema 1.76 1.88 1.98 1.90 1.89
Isosurface  Surface 1.33 1.26 1.52 1.77 1.99

Figure 4: The rendering speed-ups for Algorithms 2-4 compared to Algorithm 1 for each image count, workload, and camera configuration. The
rendering times for each of Algorithm 2, 3, and 4 are identical, so they are reported as a single number for each test.

at around 1.6x. Since the entire data set is in view of the camera
from any position, all ranks with geometry always performed some
amount of work, and the opportunity to improve on Algorithm 1
is limited. Similar to the Balanced workload, LR; was directly in
front of the camera. The speed-up did improve as the image count
increased, but the increase was negligible for the image counts in
our study.

The Inverse Cinema and Surface Reconstruction camera config-
urations achieved speed-ups over 8x. For each image, only a por-
tion of the data set is within the view of the camera, which enabled
large speed-ups over Algorithm 1. Further, the observed speed-up
steadily increased as the image counts increased. The Surface Re-
construction configuration amplified the work imbalance since the
field of view narrowed as the image count increased. Consequently,
the speed-up was proportional to the image count.

Slice The Slice workload achieved the most modest speed-up
of the four workloads, ranging from 1.3x to 1.5x. The summary of
the limiting factors is in the third column of Figure 3.

The slice along the xy, xz, and zy axis planes produces regu-
lar amounts of geometry on both the inside and outside of the data
set. All three camera configurations exhibited similar limiting ranks
that alternated between ranks at the center and on the outside. Addi-
tionally, the Cinema and Surface Reconstruction configuration bot-
tleneck produced near identical plots in Figure 3 that resulted in
similar achievable speed-ups.

Isosurface The Isosurface workload achieved speed-ups be-
tween 1.1x and 2.0x. The summary of the limiting factors is in the
fourth column of Figure 3.

The achievable speed-up of this workload was heavily impacted
by the triangle distribution and camera configuration. The isosur-
face contained approximately 75M triangles, and 65% of all ranks
contained geometry. The majority of ranks had between 10K and
250K triangles. However, eight ranks had between 500K and 1.9M
triangles, and these ranks dominated rendering time over most im-
ages.

In the Cinema camera configuration, the two curves in Figure 3
nearly mirror each other, meaning the longest running rank and the
per image maximum were mostly the same rank. That is, the ranks
with 1.9M triangles were always in view of the camera and were
almost always the bottleneck, which limited the speed-up to 1.1x.
With the Inverse Cinema configuration, the ranks with 1.9M trian-
gles were only within view of the camera for a few frames, and the
work imbalance was able to average out, resulting in a speed-up of

2.0x. The Surface Reconstruction camera configuration was limited
by a rank with a smaller amount of triangles at the center of the data
set, and that rank was almost always within the view of the camera.

The speed-ups of both the Inverse Cinema and Surface Recon-
struction increased as the number of images increased. This in-
crease indicates that much higher speed-ups are possible, and that
the observed speed-ups were limited by the particular data set and
isovalue value.

5.1.3 Compositing

The speed-ups for the different camera configurations of the study
are summarized in Figures 5, 6, and 7. In the figures, we included
only Algorithms 3 and 4, since Algorithm 2 improves only render-
ing performance. Overall, we observed speed-ups of 1.3x to 22.2x,
depending on the exact configuration. Among the different con-
figurations, the speed-ups naturally varied the greatest between the
image data sizes and image compositing algorithm, although the
rendering workload indirectly had an impact on compositing time.

IceT performs image compression to minimize the communica-
tion and processing overhead during compositing. When images
are sent to IceT, the depth buffer is scanned to determine exactly
how many pixels each rank contains, and images are compressed
using run-length encoding. The rendering workload and camera
configuration determine the exact amount of compositing work, and
these differences produced minor variations in the speed-ups of our
method in the compositing stage.

Other than the reduced communication overhead, several other
factors contributed to the increased compositing efficiency of a sin-
gle large image. When compositing a single image, it is more likely
to have a pixel imbalance across ranks, leaving many portions of the
reduction tree without work, but when compositing many images
simultaneously, it is much more likely to have better distribution
of work at the base of the tree, which increases compositing effi-
ciency. For Algorithm 4, the final gather of the image fragments is
omitted because we have no need to display the image immediately,
and we just write out the pieces to the parallel file system. As con-
currency gets larger, the overhead of this step can quickly become
the bottleneck of sort-last parallel rendering.

Static Images The Static image type contains only color in-
formation, which is 32 Bytes per pixel. While the resulting image
database is explorable (i.e., changing camera position by loading
image-after-image), color maps and lighting values are static. As



Cinema Compositing Speed-up

Workload Type Alg 20 Images 40 Images 60 Images 80 Images 100 Images
Balanced  Static 3 1.3] 1.60 1.8]] 1.90 1.90
Balanced  Static 4 48 4.4 4.2 4.0/ 3.8
Balanced  Explorable 3 4.1 5.1 4.8 5.1 5.0
Balanced  Explorable 4 140NN SR ssEUMMN  csoRMMEN s
Imbalanced Static 3 13] 2.00 1.8[] 200 1.90
Imbalanced Static 4 5000 57000 4.2 4.4 4100
Imbalanced Explorable 3 3.9 5.2 4800 480 5.0
imbalanced Explorable 4 14.5[ NN 173 [ 17.5 00 7.0 L 172 [
Slice Static 3 13] 1.70 1.70 1.9 210
Slice Static 4 5300 5.0 4600 4.3 4300
Slice Explorable 3 4.0[01 4.9/ 4700 5.0 51000
Sice  Explorable 4 14.6[ M 6.0 M (7S (7S 176
Isosurface  Static 3 1.3] 1.5[ 1.8[] 1.6 1.90
Isosurface  Static 4 55001 4700 4.6 4100 4100
Isosurface  Explorable 3 3.3 3.9 4.4 460
Isosurface  Explorable 4 142 142l 44 o 13. 9_

Figure 5: Summary of the compositing speed-up with the Cinema camera configuration.

Inverse Cinema Compositing Speed-up

Workload Type Alg 20 Images 40 Images 60 Images 80 Images 100 Images
Balanced  Static 3 19[ 23] 2.5 29[ 29[
Balanced  Static 4 610 5100 4700 4.8 450
Balanced  Explorable 3 4.4 4.9 4.4 45010 4500
Balanced  Explorable 4  9.7[000 9.6 8.6 8.4y 7600
Imbalanced ~ Static 3 15] 1.8 240 2.6 270
Imbalanced ~ Static 4 5500 6.1 6.3 6.1 5.9
Imbalanced Explorable 3 4.4 5.3 5.0 5.2 5.4
imbalanced Explorable 4 167NN 190N oS[NN e LM 19.sl N
Slice Static 3 1.4] 1.5]] 1.90 1.9] 2.3
Slice Static 4 5700 5.4 5100 5.0 4.8-
Slice Explorable 3 3.8 5.6 470 5.0 5.3
Siice Explorable 4 16,6 204 NN 220 L 217 L 222
Isosurface  Static 3 1.4] 1.6] 1.8[] 1.7] 2.0
Isosurface ~ Static 4 53[0 4.9/ 5.2 451 4.4
Isosurface  Explorable 3 3.3/ 4.0 4.4 4.6 4.9
Isosurface  Explorable 4 13.9[ 149N 184000 1410 133

Figure 6: Summary of the compositing speed-up with the Inverse Cinema camera configuration.

a result, there is less data movement and communication overhead,
which in turn leads to modest compositing speed-ups.

For Algorithm 3, the Static image type achieved speed-ups of
1.3x to 2.9x. In all cases, the speed-up increased as the number
of images became higher, so we can achieve even greater image
throughput at higher image counts. Conversely, Algorithm 4 expe-
rienced the greatest speed-ups at lower image counts, although the
Surface Reconstruction and Imbalanced workload remained rela-
tively flat for all image counts. With Algorithm 4, the speed-ups
ranged between 3.8x and 6.1x.

Explorable Images The Explorable image type produces a
database that contains scalar field and lighting values, which en-
ables users to dynamically change color maps and lighting during

exploration. Since the Explorable image type contains more data,
improvements in efficiency lead to greater speed-ups over Algo-
rithm 1. For Algorithm 3, the speed-ups ranged between 3.9x and
5.3x, and for Algorithm 4, the speed-ups varied between 5.6x and
22.2x.

5.2 Phase 2

For the second phase of our study, we held camera configuration,
rendering workload, and image count constant, and varied all other
study options. We ran the Cinema camera configuration, Imbal-
anced rendering workload, and both the Static and Explorable im-
age types. Additionally, we reduced the per MPI rank simulation
domain size to 323 zones per node, and we ran the study on Cab,



Surface Compositing Speed-up

Workload Type Alg 20 Images 40 Images 60 Images 80 Images 100 Images
Balanced Static 3 1.5 2.2 2.4 2.6 2.5
Balanced Static 4 5.5 4.7 4.0 3.7 3.5
Balanced Explorable 3 3.9 4.4 3.7 3.7 3.5
Balanced Explorable 4 10.7 8.1 6.9 6.1 5.6
Imbalanced Static 3 1.4 21 2.4 2.7 2.8
Imbalanced Static 4 5.4 6.1 5.8 5.5 5.7
Imbalanced Explorable 3 4.2 5.3 4.8 5.0 5.0
Imbalanced Explorable 4 14.3 15.7 16.1 16.1 15.7
Slice Static 3 1.3 1.8 2.1 2.2 2.3
Slice Static 4 5.1 4.7 4.0 3.5 3.4
Slice Explorable 3 4.1 5.1 3.8 3.8 3.5
Slice Explorable 4 12.1 10.3 8.4 7.2 6.2
Isosurface  Static 3 1.3 1.7 1.9 1.8 2.0
Isosurface  Static 4 5.1 4.7 4.6 4.4 4.1
Isosurface  Explorable 3 3.1 41 4.6 4.8 5.0
Isosurface  Explorable 4 12.5 12.8 12.7 13.2 12.3

Figure 7: Summary of the compositing speed-up with the Surface Reconstruction camera configuration.

MPI Ranks

A/l 512 1000 1728 3375 4096

/S | 1.0(1.2) 1.0(1.5) 1.0@.7) 1.0(155 1.0(21.3)
3/S | 23(04) 25(04) 42(0.5 13.1(0.6) 16.8(0.6)
4/S | 2.6(0.2) 2.8(0.2) 4.7(0.3) 153(04) 11.8(0.6)
I/E | 1.044) 1039 10@3.3) 1014 10042
3/E | 41(0.7) 34(0.8) 2.8(0.8) 6.9(.1) 7.8 (1.0)
4/E | 5.6 (0.3) 4.6(0.3) 3.8(0.3) 9.4(0.5) 11.5 (0.7)

Table 2: Scaling of rendering and compositing using the Cinema
camera configuration, 40 images, and the Imbalanced rendering
workload using 323 zones per rank. A denotes algorithm and I de-
notes image type (S for Static and E for Explorable). The upper por-
tion of the table contains the Static image type and the bottom portion
contains the Explorable image type. Each entry shows the speed-up
over Algorithm 1; in parentheses is the ratio of compositing time over
rendering time. Algorithm 2 was omitted from the table since it did
not provide any additional information.

which has more nodes than the Surface machine.

Table 2 summarizes the results of the second phase. Algorithm
2 did not show significant improvements for this configuration, so
we omitted the results from the table. The tables show the speed-
up over Algorithm 1; in parentheses is the ratio of the time spent
compositing and rendering. As concurrency increased, composit-
ing time quickly dominated rendering time for Algorithm 1. The
final compositing times for both the Static and Explorable image
types are over 9.0s, but for Algorithms 3 and 4, the maximum com-
positing time never exceeds 0.65s for either image type. Over-
all,the speed-ups increased with concurrency. At 512 MPI ranks,
the speed-ups ranged between 2.3x and 5.6x, and at 4096 MPI
ranks, they varied between 7.8x and 16.8x.

Communication overhead increases as the number of MPI ranks
becomes larger. Within compositing, the communication cost is
composed of two stages: round communication and a final gather.
Round communication occurs during the intermediate stages of
compositing, where pieces of the images are exchanged between
processors, and the number of rounds is proportional to the number

of participating ranks. After the rounds are complete, the final im-
age is distributed in pieces throughout the participating MPI ranks.
Finally, the pieces of the complete image are gathered to a single
rank and reassembled.

Algorithm 1 performs both stages for every image. Algorithm 3
performs compositing in a single step for all images, after which it
performs a single gather. Finally, algorithm 4 omits the final gather
step of algorithms 1 and 3. Thus, the overall communication cost
for algorithm 1 is much higher than algorithms 3 and 4. Conse-
quently, the compositing growth rate of algorithm 1 is significantly
higher than algorithms 3 and 4.

Rendering times trend in the opposite direction. With the bal-
anced workload, the amount of geometry per rank stays constant,
but as concurrency increases, there is a decrease in the number of
pixels each rank contributes to the final image. That is, at higher
concurrency, ranks have less rendering work. Consequently, the
compositing cost grows faster than the rendering cost.

5.3 Memory Usage Trade-Off

With in situ visualization, memory is a constrained resource, and
the memory trade-off between algorithm 1 and algorithms 2-4 is
straight-forward. A single Static image consumes 4MB of memory
at a resolution of 1024, and at the same resolution, an Explorable
image consumes 16MB, i.e. four times the amount of the Static im-
age. If we renderer 10 images, then algorithm 1 only uses the mem-
ory of a single image, but algorithms 2-4 consume 10x more mem-
ory. Using one MPI rank per node, the memory requirements of
algorithms 2-4 would likely be acceptable, given the performance
gains they offer, but using one MPI rank per core, the memory re-
quirements would likely be unreasonable.

Given a memory budget, image resolution, and image format,
it is simple to calculate the memory usage. If a simulation can
accommodate that memory budget, then the algorithms presented
in this work can, on average, either render 1.5 to 3.7 times faster,
giving the simulation more time to advance, or render 1.5 to 3.7
more images, creating a larger image database. Ultimately, users
will have to make these trade-offs based on what is appropriate for
their use case.



6 CONCLUSION

We have described a straight-forward method that increases the ef-
ficiency of multi-image sort-last parallel rendering over the tradi-
tional approach. We found that our new algorithms were help-
ful in all cases, with average performance increases ranging from
1.5x to 3.7x. In some configurations, the speed-ups were more
than 10x, which in turn would allow for Cinema-style rendering
to either cause less burden on the simulation code, or to save 10x
more images. In other configurations, the effects were more mod-
est. Further, we believe our results are applicable anytime multiple
images are rendered, not just in a Cinema-style use case. In terms
of future work, we believe more study should be placed on how to
choose rendering workloads that deliver consistently good results
(i.e., more 10x speed-ups and less 1.5x speed-ups). Camera con-
figuration will be an important factor in achieving this goal. We
believe that modifying the camera layouts to de-emphasize the cen-
ter portion of the data set would significantly reduce bottlenecks.
However, user studies are needed to understand which camera con-
figurations would be acceptable to end users, which we felt was
out of scope for this study. Another direction of future work is to
overlap rendering and compositing. We decided not to pursue this
strategy since we felt that a key finding of this study is that a simple
change in practice can make a significant difference.
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