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1. Abstract

In facilities that process special nuclear material (SNM) it is important to account accurately for 
the fissile material that enters and leaves the plant. Although there are many stages and processes 
through which materials must be traced and measured, the focus of this project is material that 
is “held-up” in equipment, pipes, and ducts during normal operation and that can accumulate 
over time into significant quantities. Accurately estimating the holdup is essential for proper SNM 
accounting (vis-à-vis nuclear non-proliferation), criticality and radiation safety, waste 
management, and efficient plant operation. 

Usually it is not possible to directly measure the holdup quantity and location, so these must be 
inferred from measured radiation fields, primarily gamma and less frequently neutrons. Current 
methods to quantify holdup, i.e. Generalized Geometry Holdup (GGH), primarily rely on simple 
source configurations and crude radiation transport models aided by ad hoc correction factors. 
This project seeks an alternate method of performing measurement-based holdup calculations 
using a predictive model that employs state-of-the-art radiation transport codes capable of 
accurately simulating such situations. Inverse and data assimilation methods use the forward 
transport model to search for a source configuration that best matches the measured data and 
simultaneously provide an estimate of the level of confidence in the correctness of such 
configuration.  

In this work the holdup problem is re-interpreted as an inverse problem that is under-determined, 
hence may permit multiple solutions. A probabilistic approach is applied to solving the resulting 
inverse problem. This approach rates possible solutions according to their plausibility given the 
measurements and initial information. This is accomplished through the use of Bayes’ Theorem 
that resolves the issue of multiple solutions by giving an estimate of the probability of observing 
each possible solution. To use Bayes’ Theorem, one must have a model y(x) that maps the state 
variables x (the solution in this case) to the measurements y. In this case, the unknown state 
variables are the configuration and composition of the heldup SNM. The measurements are the 
detector readings. Thus, the natural model is neutral-particle radiation transport where a wealth 
of computational tools exists for performing these simulations accurately and efficiently. The 
combination of predictive model and Bayesian inference forms the Data Integration with Modeled 
Predictions (DIMP) method that serves as foundation for this project. The cost functional 
describing the model-to-data misfit is computed via a norm created by the inverse of the 
covariance matrix of the model parameters and responses. Since the model y(x) for the holdup 
problem is nonlinear, a nonlinear optimization on Q is conducted via Newton-type iterative 
methods to find the optimal values of the model parameters x. 

This project comprised a collaboration between NC State University (NCSU), the University of 
South Carolina (USC), and Oak Ridge National Laboratory (ORNL). The project was originally 
proposed in seven main tasks with an eighth contingency task to be performed if time and funding 
permitted; in fact time did not permit commencement of the contingency task and it was not 
performed. The remaining tasks involved holdup analysis with gamma detection strategies and 
separately with neutrons based on coincidence counting. Early in the project, and upon 
consultation with experts in coincidence counting it became evident that this approach is not 
viable for holdup applications and this task was replaced with an alternative, but valuable 
investigation that was carried out by the USC partner. Nevertheless, the experimental 
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measurements at ORNL of both gamma and neutron sources for the purpose of constructing 
Detector Response Functions (DRFs) with the associated uncertainties were indeed completed. 

This report captures the final status of this project by detailing the work performed on each of the 
proposed tasks and highlighting its accomplishments. A brief summary of these tasks follows: 

Task A: Verify radiation transport packages & data for computing fluxes at a detector 

This task was successfully completed in the second quarter of the third budget period. The 
graduate student assigned to this task composed a manual for the DIMP code system, and the 
Postdoctoral Fellow who assisted with this task composed an installation guide for Denovo since 
it underlies DIMP. 

Task B: Equip transport packages with capability to compute neutron multiplicities & sensitivities 

Expert colleagues at ORNL advised that the original objective of this task is not viable for holdup 
applications because of the low multiplicity signal. Hence this task, as assigned to USC, was 
redefined at no additional cost to establish a broader theoretical foundation of DIMP using a 
paradigm problem configuration. The modified task entitled “Analyze DIMP in the Context of a 
Paradigm Inverse Source Determination Problem” was completed via transmission of a final 
report composed by the USC PI in the first quarter of the third budget period. 

Task C: Validate gamma detector response functions and their uncertainties 

This task was successfully completed in the fourth quarter of the second budget period. The 
graduate student who worked on this task defended and published his MS thesis on the 
measurements, construction of the gamma DRF and computation of its uncertainties. 

Task D: Develop & validate neutron detector response functions and their uncertainties 

This task was successfully completed in the third quarter of the second budget period. The 
postdoctoral fellow who worked on this task composed a report on the measurements, 
construction of the neutron DRF and computation of its uncertainties. 

Task E: Implement data integration and inverse methods 

This task was successfully completed by the USC collaborators in the fourth quarter of the one-
year No-Cost-Extension Period. They published the report “MULTI-PRED: A Software Module for 
Reducing Uncertainties in Predicted Results through Data Assimilation, Model Calibration and 
Validation MULTI-PRED User’s Manual Version 1” authored by Dan G. Cacuci and Madalina C. 
Badea. 

Task F: Perform high-quality holdup measurements 

This task was successfully completed in the fourth quarter of the third budget period. The 
graduate student who worked on this task in collaboration with the ORNL PI reported these 
results in the student’s doctoral proposal that he successfully defended in December 2016. That 
document includes more than just the report on this task. 
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Task G: Validate DIMP method against measured and manufactured data 

Progress was made on this Task that continued into a No-Cost-Extension Period until December 
31, 2016, to permit the main graduate student assigned to this project to defend his proposal, a 
goal that has been achieved. However, several unforeseen difficulties in the progress of his 
research delayed full accomplishment of this task. Due to his investment of time and effort in this 
work, the graduate student, supported by the NCSU PI, are committed to completion of this task 
under separate funding. The current status of this task comprises a paper that has been accepted 
for publication and will be presented at the American Nuclear Society’s Mathematics and 
Computation Topical Meeting, April 16-20, 2017, in Jeju, South Korea. 

2. Introduction

In a nuclear materials processing facility, it is important to account accurately for the fissile 
material that enters and leaves the plant. Incorrect accounting could lead to issues with 
radiological safety, criticality safety, and nuclear security and safeguards. Although there are 
many stages and processes through which materials must be traced and measured, the focus of 
this project is the material that is left behind in equipment, pipes, and ducts. During normal 
operation, small amounts of material stick to pipe walls or get trapped in processing equipment. 
Over time, these small material “holdups” accumulate into significant quantities, sometimes 
several kilograms.1 Thus, accurately estimating the holdup is an important component of material 
accounting. Although preventing the diversion of special nuclear material (SNM) is a key 
motivation for performing holdup calculations, it is not the only reason. Reilly lists a number of 
reasons that plant operators need to know the location and quantity of holdup:1 criticality safety, 
radiation safety, waste management, and efficient plant operation. 

Without accurate knowledge of the heldup material, it is possible that the processing plant will 
eventually evolve into an unsafe and/or insecure operating regime. While a criticality accident 
could be deadly, additional exposure to workers through unknown holdup deposits must also be 
avoided. Additionally, inaccurate accounting for SNM, and accumulated amounts of such 
materials pose serious proliferation risks. Therefore, facilities that process nuclear materials in 
general depend on accurate and precise estimates of the holdup to assure the public and the 
international community at large that their operations are safe and secure. Directly measuring 
the quantity of holdup is usually not possible, as it would require thoroughly cleaning out every 
piece of equipment. Thus, the quantities and locations of holdup must be measured indirectly. 
Since the nuclides of interest are radioactive, it is possible to infer their presence through the 
detection of their natural decay radiation. Gamma ray spectra are typically measured and this is 
facilitated, at least in part, by the availability and portability of detectors that can be held at pre-
specified locations likely for holdup accumulation. Neutron measurements are also used, but less 
frequently. 

The energies of photopeaks in the gamma spectrum indicate the identity of nuclides present, 
while the magnitude of the count rate provides clues to the amount of accumulated radioactive 
material. Current methods to compute the quantity of holdup material, i.e., Generalized 

1 T. D. Reilly, "Nondestructive assay of holdup," in Passive Nondestructive Assay of Nuclear 
Material: 2007 Addendum, LA-UR-07-5149, 2007. 
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Geometry Holdup (GGH), primarily rely on a calculation of the geometric attenuation across the 
distance between the source and detector, assuming that the geometric shape of the source can 
be represented as a point, line, or plane.1 With this basic estimate, the analysts apply corrections 
to compensate for various effects, such as attenuation in equipment or deviations from the simple 
source shapes. This project seeks an alternate method of performing these holdup calculations 
that are based on measured radiation fields using a predictive model that would naturally account 
for effects currently treated with simplified, hence potentially inaccurate, correction factors. 
Radiation transport codes can accurately simulate such situations. Inverse and data assimilation 
methods can then use a forward transport model to search for a source configuration that best 
matches the measured data and simultaneously provide an estimate of the level of confidence in 
the correctness of such configuration. This Data Integration with Modeled Predictions (DIMP) 
method comprises the backbone of this project. 

3. Approach and Objectives

To be specific, the holdup problem is defined in terms of information that is known and 
information that is unknown. First, the configuration of the modeled space and equipment around 
the holdup measurement is considered known. There are two aspects comprising this 
information: the geometric configuration, i.e. shapes and dimensions, and the elemental/isotopic 
composition of each item occupying the volume. Engineering drawings or a CAD model should 
provide a complete description of the geometric configuration. Each distinct material, except the 
holdup material, in the room should have a known density and elemental composition, either 
natural abundance or isotopically enriched. These details could be estimated for most standard 
materials (such as concrete block walls). Small components in complex equipment should be 
included in the computational model of the configuration space if they could significantly affect 
the radiation fields around the detector or SNM. 

Of course, in the specification of the room’s geometry and material composition, the detailed 
distribution of the SNM, and potentially its nuclear composition, is fully or partly unspecified. In 
the problems considered here, the SNM geometric configuration is unknown. However, the SNM 
should be contained in only a few small (relative to the space volume) geometric bodies. Although 
theoretically possible, allowing the SNM to be anywhere in the room would make the problem 
significantly more difficult and would require many more detector measurements to achieve a 
sufficient level of confidence in the determined solution. Confining the nuclear materials to small 
volumes such as pipes or boxes makes the problem more tractable. Although the exact 
configuration of the held-up radiation sources is unknown, there may be certain patterns which 
it typically follows. For instance, the holdup in a pipe must be connected to the pipe wall, and 
material in a box may tend to accumulate in corners. These physically deductible patterns may be 
helpful in constraining the possible solutions. 

The nuclides present in the SNM may or may not be known from the start. If the plant consistently 
processes one type of material, then it should be possible to estimate the nuclide composition in 
each component. However, in most plants, the type of input material varies widely, making it 
difficult to estimate a composition without first detecting gamma radiation and identifying the 
source nuclides from the measured peaks. In this project, the isotopic composition of the 
radioactive SNM is considered unknown. 
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The density of the held-up SNM is likely unknown also, although this value could be estimated 
with some certainty. A related unknown is the mass in the held-up SNM of each nuclide of 
interest. However, this is solely dependent on the geometric configuration of the holdup, the 
density of the holdup, and the isotopic composition of the holdup. 

The amount of holdup is measured indirectly using radiation detectors. As stated above, both 
gamma and neutron detectors are used for this purpose, but gamma detectors are more common. 
Sodium iodide detectors are favored for their portability, but their energy resolution is poor.2 
Semiconductor detectors are increasingly available; they feature better peak resolution than NaI 
scintillation detectors. The resolution of the detector will certainly influence the ability to discern 
peaks in the spectrum that, in turn, identify the source nuclides in the SNM. The gamma detectors 
deployed in holdup measurements are typically collimated in order to cut down on the 
background radiation and radiation coming from other components at the expense of attaining 
lower count rates with larger statistical errors.  

The use of neutron detectors is more difficult because they are larger, heavier, and due to the 
necessary moderating material, but they can provide useful and complementary data. They are 
also more difficult to collimate due to neutrons’ typically lower interaction probabilities. While 
collimated neutron detectors are possible, they are large and must be transported on carts.1 
Neutron detectors are useful to peer into larger and heavier equipment, for which gamma rays 
are strongly attenuated and have limited penetration. 

The quality of the counting statistics of the detector measurements is limited by the available time 
that the technicians are able to spend measuring each component. Most SNM processing plants 
contain many components, so any one part can only consume a brief length of time to measure. 
In the case of Y-12 HEU plant, several hundred spectra are acquired and saved in an hour.3 
Likewise, the time available for the processing of the detector data and computing the holdup 
amount and spatial distribution is limited as well. Although completing the calculation in a few 
minutes would be ideal, the longest acceptable run time is overnight, where the analyst would 
start the calculation during the workday and it would be complete by the next morning. For these 
calculations, it is assumed that the analyst has available a desktop workstation computer, and 
that generally there is no access to a high-performance computing cluster. 

Our new approach that was attempted in this project is distinct from current approaches for 
estimating the holdup in that it casts it as an inverse problem. Although the precise definition of 
an “inverse problem” is difficult to pin down, the closely related ill-posed label is clearly defined. 
A well-posed problem has a unique solution that is stable and continuous.4 An ill-posed problem 
lacks one or more characteristics of the well-posed problem. In a typical holdup situation, there 
are significantly more unknowns (mostly in the spatial location of the nuclides) than there are 
measurements. This means that the problem is under-determined, which implies that there will 

2 G. Knoll, Radiation Detection and Measurement, Wiley, 2010. 
3 P. Russo, H. Smith, J. J.K. Sprinkle, C. Bjork, G. Sheppard and S. Smith, "Evaluation of an 
integrated holdup measurement system using the GGH formalism with the M3CA," in 
Transactions of the ANS, Jackson Hole, WY, 1996. 
4 J. Idier, Bayesian approach to inverse problems, Wiley, 2008. 
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be many permissible solutions. Thus, the problem is ill-posed and can be thought of as an inverse 
problem. 

Based on this viewpoint of the holdup problem we adapt the Data Integration with Modeled 
Predictions (DIMP) method for this application.  

Solving the holdup problem using the DIMP approach has several benefits. One of the strongest 
advantages of DIMP is the consistent integration of all available measurements and prior 
information. This is especially relevant for holdup problems where both gamma and neutron 
measurements are conducted. In addition, there would likely be prior information about the 
holdup distribution based on past experience, which can be included in the method through the 
prior PDF. 

The Bayesian inference component of DIMP is designed to estimate the confidence level in a 
particular solution, or solutions. The method can account for various uncertainties, whether from 
detector measurements, nuclear data, or geometric uncertainties. The method will provide a 
best-estimate of the mass and location of materials remaining, as well as the variance (or 
confidence level) of these quantities. Additionally, the width of the confidence interval of the 
solution could be used as a figure-of-merit to optimally select and locate subsequent confirmatory 
measurements.  

One more advantage of the DIMP approach is the modularity of its requirements. Each of the 
functions can be performed by a dedicated module. In most cases, much time and effort has 
already been poured into implementing and verifying each module in its own right and for a broad 
variety of applications. Most of the computational tools necessary for this work, or at least parts 
thereof, are readily and publicly available and have been utilized in this project at no cost to the 
sponsor. 

The combination of these tools makes a solution to the holdup problem tractable. However, the 
robustness and accuracy of the solution depends on the information content of the 
measurements. In the case of information-poor measurements, a high variance in the final 
estimate will indicate that the computed estimate of the held-up mass and spatial distribution is 
unreliable. 

4. Detailed Report on Project Tasks

In this section we provide a detailed description of the accomplishment of each task using the 
same numbering sequence as in the awarded proposal. The responsible party for delivery of each 
task is stated together with a brief description of the task as envisioned in the original proposal. 
This is followed for each task by the corresponding final report on that task as composed by the 
responsible party. 
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4.1. Task A: Verify radiation transport packages & data for computing 
fluxes at a detector 

These are the primary predictive models needed for the holdup problem. The model is the time-
independent neutral-particle linear Boltzmann transport equation, valid for both gamma rays and 
neutrons with the appropriate cross section data. These simulators are part of the kernel of the 
inverse calculation. They will be called many times during the course of one holdup calculation. 
Thus, they must be both accurate and efficient. Deterministic methods for solving these problems 
are favored due to their computational efficiency. Here code packages like SCALE are useful, 
providing the benefit of decades of research and years of software engineering effort invested in 
the simulation tools. Specifically, we use Denovo, that is distributed as part of the SCALE package. 
The fine multigroup shielding cross section library from SCALE will suffice for the multigroup 
calculations, while ENDF/B-VII pointwise cross sections is employed for continuous or uncollided 
calculations. For accurate uncollided flux calculations we use the semi-analytical ray tracing 
technique, while for computing the fully-collided flux we employ the discrete ordinates 
approximation. In addition, all utilized transport codes must be equipped to compute the adjoint 
flux, as this is necessary to efficiently compute the sensitivity of the response to various model 
parameters. NC State University was responsible for completing this task. 

The accomplishment of this task was reported in: Noel Nelson and Yousry Y. Azmy, Data 
Integration with Modeled Predictions (DIMP) Code User Manual, Department of Nuclear 
Engineering, NC State University, July 20, 2015. Additionally, a manual for the installation of the 
Denovo code that underlies the radiation transport functionality of DIMP was composed: Cyrus 
Proctor, Denovo Installation Guide Mined from MediaWiki Installation Guide, NC State University, 
2015. These two documents are replicated on the following pages. 
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1 DIMP Model and Theory

The Data Integration with Modeled Predictions (DIMP) model employs several
steps to predict a photon radiation source model and solve the inverse transport
problem. Unlike a forward transport problem (using source information to pre-
dict responses at some set of points) the inverse problem uses a priori information
(known parameters) and adjoint sensitivities to predict the most probable value
of the unknown parameters (posterior information). In the first section we will
discuss the known model parameters (geometry, cross-sections, etc.) and the un-
known parameters in this model. Next, we explain how responses are processed
(whether these responses are generated synthetically or experimentally) and used
in the DIMP model. Then, adjoint calculations performed with the discrete ordi-
nates code, DENOVO [1], and their use in optimization of the source distribution
will be discussed. Finally, an outline of the nonlinear Newton algorithm employed
in the optimization procedure will be given to allow for a basic understanding of
its function.

1.1 Parameters

1.1.1 Known Parameters

The known parameters of the DIMP model are extensive and often case dependent.
Such parameter sets include but are not limited to: objects and structures (local
geometry and nuclide composition), detector responses, source emission particle
types and energies (from response spectra). These sets may be broken down further
into useful parameter subsets.

The local geometry of a facility (pipe structures, ducts, and equipment) are
generally well characterized in space and material composition. This information
is usually known from factory specifications and measurements, but can be sub-
stituted for a 3-D image taken by a precision imaging system such as LIDAR.
The spatial information and material cross-sections are processed by MAVRIC
[1] (Monaco with Automated Variance Reduction using Importance Calculations)
and Python to generate meshes for the adjoint transport and source mapping
algorithms.

Detector response information comes directly from processed measured spec-
tra. Specifically, response peak information is extracted by a combination of peak
fitting and combined with detector efficiency to produce required uncollided flux
information. In the absence of a measurement (e.g. for the purpose of verification
and testing of the methods and code), this information may also be artificially
synthesized with MCNP [2] (Monte Carlo N-Particle Transport code) flux tallies.
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The final set of information (source energy and ID) will generally be known
in certain applications (such as holdup). In cases where it is not, spectral peak
identification may be used from detection measurements to identify the source
material of interest and peak energies to be used by DIMP.

1.1.2 Unknown Parameters

The unknown parameters are the unknown quantities of interest. Such parameters
include the source strength and distribution in energy and space (also called the
source map, ~q(~x,E)). Together with the known parameters, the inverse problem
can be posed as follows

~r = S~q (1)

where S is the adjoint flux solution of the uncollided transport equation and ~r
is the vector containing the corresponding detector responses. Frequently, the
number of unknown parameters exceeds the number of response measurements,
and the solution is not unique. Instead of using an inversion operator a more
stable Bayesian probabilistic method is used to find the most probable source map
[3] (described further in Section 1.4).

1.2 Response Processing

Detector response information is spectral information collected by a detector at a
known location. However, in its raw form a detector response is not very useful.
For the Bayesian solution, response spectra must be processed into scalar fluxes
at the detector locations. In general, a typical NaI detector response appears as
follows (Figure 1)
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Figure 1: Example of a typical detector response and response peak. [4]

A typical response spectrum can be quite complex, and radiation interaction
physics allows for many features in the continuum region of the spectrum. Because
those continuum features can be difficult to predict and model, DIMP uses only
the full energy peak of a detector response spectrum. A full energy peak represents
photons that have deposited their full energy within the detector, and therefore
can be used to estimate the uncollided photon flux.

DIMP code handles raw detector spectra according to the following procedure.
First, all of the responses for a given case (listed by number of channels, location
of detector, and potentially collimation angle) are compiled into a database. Then
the user would manually identify peak channel ranges for source and background
peaks from previous knowledge and observation. Next, an energy calibration is
performed for the given detector by the user via the method of least-squares. Peak
centroids are fit quadratically to known peak energies. [3] The background and
measured spectra are rebinned according to energy, and background is subtracted
from measured spectra. The net spectra are then fit via least squares according
to the standard Gaussian model. Finally, the area under each gaussian peak (Ap)
is determined and used to calculate the scalar flux (φ(E)) effective locally within
the detector’s volume according to the following equations. [3]

J− =
Ap
εip
, (2)

φ(E) =
〈l〉J−(E

V
), (3)
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where εip is the intrinsic peak detector efficiency, 〈l〉 the average chord length
of the detector crystal, J−(E) the uncollided partial current on the detector face,
and V the detector volume. The detector efficiencies and the average chord length
can be calculated by MCNP [2] simulation of the detector of interest. The chord
length comes from tracing particle trajectories through the detector crystal using
PTRAC. For the intrinsic peak efficiency, the given detector is simulated with 1E9
particle histories and tallies are taken of the number of particles that cross the
detector crystal face and the number that terminate in the crystal without leaving
its volume. These numbers are divided to estimate the detector peak efficiency.
[5]

1.3 DENOVO and Sensitivities

Sensitivity is often only thought of for the calculation of uncertainty for measure-
ment and model parameters. However, in inverse problems model uncertainties are
highly useful for in determining the most probable solution of the unknown param-
eters. In the case of inhomogeneous transport, the sensitivities are the scalar flux
solutions to the adjoint transport equations. The details of the inhomogeneous
transport equations and adjoint formulation can be found in Ref. [5]. Consider
the detector response

R = 〈φ, σd〉, (4)

where 〈〉 is the inner product, and φ is the scalar flux. Where φ is the solution to
the forward transport problem

Lφ = q. (5)

L is the transport operator, and q is the source. Vacuum boundary conditions are
assumed. The adjoint transport problem can be defined as

L†φ† = q†, (6)

and choose q† = σd where q† is the adjoint source and σd the detector response
function. This makes L† is the adjoint transport operator and φ† the adjoint scalar
flux or the importance. Next, take the inner product of Equation 5 with φ† (7)

〈Lφ, φ†〉 = 〈q, φ†〉, (7)

and use the adjoint property

〈φ, L†φ†〉 = 〈q, φ†〉. (8)

Substitute the adjoint source condition (Equation 6)

〈φ, σd〉 = 〈q, φ†〉, (9)
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and finally, substitute the definition for detector response (Equation 4)

R = 〈q, φ†〉 (10)

where R is the continuous representation of the detector response vector (~r) defined
earlier. Hence, Equation (1) has been derived from an adjoint transport formula-
tion under vacuum boundary conditions. This also means that the forward flux
when folded with the detector response function should produce the same response
as the adjoint flux folded with a given source. However, in practice this is not quite
true as transport codes introduce discretization error and truncation errors into
solutions. Therefore, DENOVO was chosen (over TORT) for calculation of the
adjoint flux, as it minimized the relative error between forward calculated and
adjoint calculated responses.

1.4 Optimization

The general inverse problem has been posed (Equation 1) and the known pa-
rameters (geometry, cross-sections, and detector responses) and adjoint sensitivi-
ties considered. In order to determine the most probable values of the unknown
(source) parameters, a nonlinear Newton optimization method [?] has been im-
plemented in the DIMP code. The Newton optimization method maximizes the
posterior. Assuming “quadratic loss,” the posterior is

p(~z|C) =
1√
|2πC|

exp
[
− 1

2
Q(~z)

]
, (11)

where

~z ≡
[
~α− ~α0

~r − ~rm

]
=

[
~zα
~zr

]
, Q(~z) ≡ ~zTC−1~z,

~α0 are the means of the prior on ~α, ~rm are the measured responses, and C is the
combined covariance matrix defined by

C ≡
[
Cα Cαr
CT
αr Cm

]
(12)

where Cα is the covariance matrix for ~α, Cm is the ~r covariance matrix, and Cαr
is the ~α-to-~r covariance matrix.

Newton’s method uses the first- and second-derivative information of the func-
tional, more specifically the gradient ~∇αQ(~zk) and Hessian ∇2

αQ(~zk) in the update
step

~αk+1 = ~αk − λk(∇2
αQ(~zk))

−1~∇αQ(~zk). (13)
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The line search parameter λk ∈ [0, 1] adjusts the Newton step length for improved
stability. At each iteration (~αk) the parameter sensitivities are recomputed. This
update procedure continues until the convergence criterion is met, and ideally, the
most probable source distribution has been converged. This approach is described
in more detail in Ref. [3]

2 System and Program Requirements

System: 64-bit linux operating system with Ubuntu 12.04 LTS or 14.04 LTS. List
of all required dependent codes and scripting languages required for running DIMP.

List of Codes

1. Python 2.7

2. Many Python Modules including:

(a) Numpy

(b) Scipy

(c) Tables

(d) unumpy

(e) matplotlib

3. DENOVO

(a) DENOVO Constituent Programs (described in Cyrus’s installation man-
ual) [8]

4. SCALE

5. MCNP

3 User Manual

3.1 Installation

3.1.1 Python Modules

Many of the control scripts for DIMP are written in Python language. First make
sure the intended version of Python and the editor are installed. All work has
been done with Python 2.7 which should be installed by default as part of the
core code underlying the Ubuntu O.S. If using an alternate version of Python (like
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Anaconda), then make sure all of the Python modules are installed there and the
bash paths point to it.

Next, install the Python modules listed in Section 2. This can be done directly
by downloading the .egg and setup.py files from PYPI (Python Package Index) at
https://pypi.python.org/pypi, and then configuring them. The easier method of
installation is to use an auto-installer such as pip. pip can be installed using the
Ubuntu software databases using either the Ubuntu Software center or Synaptic.

3.1.2 DENOVO

DENOVO is a powerful discrete ordinates transport solver developed by and main-
tained by ORNL. [1] It is usually included in the SCALE package, however, DIMP
was made using an older developer’s version. The original DENOVO tarball is
included with the DIMP software package.

The developer’s version of the code can be tricky to install and is a lengthy
process. Please refer Proctor’s installation guide for further details. [8]

3.1.3 SCALE and MCNP

SCALE (Standardized Computer Analyses for Licensing Evaluation) [1] is a mass
collection of government radiation physics codes distributed and controlled by the
Radiation Safety Information Computational Center (RSICC). To gain permission
to use SCALE, one may register and file requests for codes at https://rsicc.ornl.gov.
Upon obtaining the SCALE package discs from RSICC, simply follow the instal-
lation directions included on the discs.

MCNP [2] is used for generating synthetic detector responses. This is useful to
generate data for use as test synthetic cases. MCNP can be obtained from RSICC
in the same manner as with SCALE.

3.2 Input/Output

This section is designed to guide the user in the creation of new case geometries.
For the problem of interest, each input script that requires modification will be
named and described. Finally, the resulting output results and format will be
discussed.

3.2.1 Designing a New Case

First, the user should create a copy of the base case in the templates folder, and
rename it according to the new case. Remove the master Python control scripts
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”pmaster.py” and ”inputs.py” from the new case folder and move them to the
desired working directory ($Path to work directory$/Case name”). Open both
files in the new case folder of the working directory to make the following changes.

pmaster
Update the first group of lines (12-21) to reflect the correct directory paths (i.e.
change “$working directory$/Case name” and “$Path to DIMP$” to their true
values). No other lines need to be changed in the master Python script. Other
changes should only be made for debugging purposes if the user is sufficiently ex-
perienced with programming.

inputs
This file controls many options available to the user. Some are system dependent
and will require system knowledge, while others are merely dependent on case data.

There are seven options. The first is merely a switch that allows the incorpo-
ration of experimental response data. If any experimental spectra are to be used
then make sure the flag is set to False. Otherwise, set it to True to use purely
synthetic responses from MCNP. The next two switches govern the number of
computing processors DENOVO will run in parallel. The number of processors
chosen depends on system resources available (e.g. 4,8,16,32.. CPU).

The next three options control which energy groups DENOVO will use. The
first switch is the net total number of energy groups DENOVO will use. The
second switch depicts the number available from the MAVRIC gip (cross-section
file). The third switch informs DENOVO which energy group to start from in the
MAVRIC gip file. Adjust to include the range of emission energies produced by the
expected source material. Note: the MAVRIC file (local.mavrici) energy groups
will have to be adjusted to match these groups. The final option controls whether
or not to include the compton continua of the detector response spectra used in
the source search. The default is False (peak response only). The algorithm for
the inclusion of continua creates inconsistent results and is not recommended in
the present version of DIMP.

In future versions, a consistent switch for eliminating cells containing only empty
space is in development. This will decrease convergence times required by the
Newton optimizerand enhance source location accuracy.
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3.2.2 Local Geometry

Several files control the geometry simulated by DIMP. The three branches of code
that require consistent source-detector geometric description include: MAVRIC,
MCNP, and the DIMP source mapper. Each branch has a set of Python pars-
ing/tool files that also need subsequent adjustment.

MAVRIC
Return to the new case directory of the templates folder in DIMP and navigate
to the following file: “inputs/mavric/local.mavric”. Edit the file to update the
source geometry. Materials, object shapes and positions, and mesh dimensions
for DENOVO adjoint transport calculations should be specified by the user. More
detailed guidelines on correct MAVRIC programming may be found in the SCALE
software manual. [1]

MCNP
Navigate to the mcnp folder in the inputs folder of the base case template and
update the following files: inputs/mcnp/bare/2144.inp
inputs/mcnp/bare/parse bare.py
inputs/mcnp/shielded/2144.inp
inputs/mcnp/shielded/parse shielded.py
2144.inp is the MCNP5 input file for the detector configuration. The file in the
shielded directory is designed for a collimated detector, and the one in the bare
directory for a bare (unshielded) detector. Currently, both are set to generate
synthetic responses, but a future update will allow the use of pure directional (col-
limated detectors). However, use of only an uncollimated detector is not recom-
mended. Without directional detector responses, DIMP’s capabilities are severely
limited.

Input the new geometry and material cards along with the detector and (rela-
tive) source positions according to MCNP format [2]. In the case of an unknown
source, just use a rough estimate of source position and strength. Also, be sure
to match the detector flux tally bin edges with those of the actual detector after
energy calibration.

Currently, the appropriate line corresponding to the peak (uncollided) fluxes in the
flux tallies need to be selected in the parsing files (parse bare.pyorparse shielded.py).
It is intended that an automatic way to choose these values from the MCNP mctal
files be created to remove this step in the future.
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DIMP Scripts
Navigate to the following file to update the mapping algorithm’s internal geometry
(outputs/(eors)mapper/directional/bu2144 geometry.py). Choose emapper for
the experimental case or smapper for the synthetic. Note: this geometry can be
left empty and only changed to match the mesh outer dimensions to purely plot
the source characteristics. Inputing the local geometry in this script only puts it
on the source map for reference, not calculation.

3.2.3 Detector Model and Responses

A one time calibration of the detector model must be performed based off of the
detector specifications for the holdup measurement field detector. The base model
that comes with DIMP is a 2x2” bare detector where collimation was added using
a lead brick enclosure around the sides of the detector (creating a 2π detection win-
dow). Also, experimental detector response processing scripts must be adjusted
based on the desired source of interest. The base setting is for U-235.

Detector Model
This section details the process to calculate the detector efficiency database (det-
eff.npz). This database is needed for all experimental cases. In the detspecs folder
there is a script called volume-averaged-eff.py. Simply edit the detector volume by
adjusting the radius and height entries (lines 55 and 56). Also, input the number
of peak energies of interest (line 99).

Next, navigate to the shielded and bare folders separately. Open each det peak n.inp
file for the number of energy peaks desired and edit. Update the three tally energy
bins to fit the user’s detector and choose the peak energy of interest by updating
the source card. Then run detbatch.sh. This will usually take quite some time as
several groups of tallies must be run for each peak of interest. After detbatch.sh
finishes, the file det-eff.npz will be produced containing all of the necessary detector
peak effciencies. Move this file to $path to DIMP$/templates/Case name/inputs/exp resp/.
Note: this section of the code is still under construction and will be updated in
future versions of DIMP.

Experimental Response Processing
Experimental processing has yet to be standardized, so as of now, the following
scripts will need significant modification to fit the user’s case.
inputs/exp resp/measured responses.py (choose which measurements to use from
processed hdf5 database)
inputs/exp resp/processdata/create raw table.py (organize measurements)
inputs/expresp/processdata/processrawspectra.py (choose peaks to fit)
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A more generalized processing procedure is in developement for this purpose.

3.2.4 Execution and Outputs

After setup of a new case has been concluded (make sure all changes were made
to files in the desired case folder in the templates directory), navigate back to the
case folder in the working directory. To execute DIMP run pmaster.py with the
command ”python pmaster.py.” Be patient. The code usually take several hours
to several days to run depending on the complexity of the case geometry and the
capabilities of the computing platform. Several run messages will show in the
terminal starting with MAVRIC details and ending with execution of the DIMP
mapping and plotting subroutines.

The resulting output will be produced in the following path of the case directory:
$Path to working directory$/Case name/outputs/mapper/directional/figures/
frames/. In this file, colormap cross-sections of the source and room geometry
will be displayed as well as a colormap of the resulting uncertainty for each peak
energy group selected. Cross-sections will lie along the z-axis mesh gridlines. An
example of such a source map cross-section is shown in Figure 2.
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Figure 2: Example of a source map. Source is a Co-60 line source along the front
wall. This is a reproduction of a case run in Ref. [5].
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The white space in the center of the graphs is just a feature of excluding empty
air space cells for this case where a radiation source is neither possible or permit-
ted. The technique has been mentioned in Section 3.2.1 to be included in future
versions of DIMP as an optional switch. As of now, it requires manual modification
of cell choices in the mapping algorithm, which isn’t recommended for beginning
users.

The line source is mapped close to its true location, but only as a point. The
source was fairly weak in this case and only the ends of the line source appeared in
the source map. More consistent results are expected with stronger sources (over
3 µCi). The color scales are logarithmic (uncertainty is not relative). For more
details consult Ref. [5].
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1 Installation Guide

Denovo requires several third-party dependencies in order to be properly compiled. This
guide is one of many possible ways that configuration and installation may take place.
This guide assumes the user is on a 64-bit Linux-based machine with a gcc-based compiler
version >4.6. For this particular guide, the focus will be on installation for Ubuntu 12.04.
Each of the dependencies should be installed in the order given below as some depend on
each other. The user will need to know a couple of things before getting started. The line
/path/to/install or </path/to/install> will need to be replaced by the installation location
for Denovo and friends. Generally, this would be system-wide at, say, /opt/simplex. Or it
could be locally for a single user, such as /home/user/simplex. The other thing to know is
the name of the host computer. This will be useful for designation of configuration files in
the case of multiple computer installs. The user may find out the hostname by typing echo
$HOSTNAME on the command line.

1.1 Third-Party Dependencies
• MPI1
• CMake2
• zlib3
• HDF4
• Silo5
• LAPACK6

• ATLAS7
• Python Modules8
• Trilinos9
• SCALE10

1 http://10.72.10.4/wiki/index.php/MPI
2 http://10.72.10.4/wiki/index.php/CMake
3 http://10.72.10.4/wiki/index.php/Zlib
4 http://10.72.10.4/wiki/index.php/HDF
5 http://10.72.10.4/wiki/index.php/Silo
6 http://10.72.10.4/wiki/index.php/LAPACK
7 http://10.72.10.4/wiki/index.php/ATLAS
8 http://10.72.10.4/wiki/index.php/Python_Modules
9 http://10.72.10.4/wiki/index.php/Trilinos
10 http://10.72.10.4/wiki/index.php/SCALE
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Installation Guide

1.2 Denovo Installation

A fixed source version of Denovo is available via the release version of SCALE. A devel-
opment version circa summer 2012 has been passed down which has the capability for
eigenvalue solves as well as inhomogeneous adjoint sensitivity analysis. The difference in
installation is only one flag which will be pointed out below. When running on Ubuntu-
based systems there is also an extra flag to add. This writeup will assume a development
version of Denovo is being installed be default.

• Obtain a Denovo tarball (or potentially a git repository)
• cd /path/to/install
• mkdir denovo
• cd denovo
• mv /path/to/tarball/denovo_tarball.tar.gz /path/to/install/denovo
• tar xvfz denovo_tarball.tar.gz
• cd denovo
• ./denovo_config
• Assuming nemesis is contained within the directory
/path/to/install/denovo/denovo/nemesis and the user is located at
/path/to/install/denovo/denovo we need to add four symbolic links

• ln -s nemesis/config .
• ln -s nemesis/tools .
• cd src
• ln -s ../nemesis/src/harness .
• ln -s ../nemesis/src/comm .
• cd /path/to/install/denovo
• mkdir build
• cd build
• vim <hostname>_configure add/update with the following/save/quit

#!/bin/bash

LDFLAGS=-L/usr/lib64
LIBS=-lgfortran
F90=gfortran

CFLAGS=
CXXFLAGS=
F90FLAGS=

/path/to/install/denovo/denovo/configure \
--prefix=/path/to/install/denovo/install \
--enable-shared \
--enable-python \
--enable-pykba \
--enable-mpi-compilers \
--without-superlu \
--without-brlcad \
--without-metis \
--with-trilinos-dir=/path/to/install/trilinos/install \
--with-silo-dir=/path/to/install/silo/install \
--with-hdf5-dir=/path/to/install/hdf5/install \
--with-lapack=atlas \
--with-lapack-dir=/path/to/install/atlas/install \
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Denovo Installation

--with-opt=3 \
--with-dbc=0 -C

• This installs a release version of the code with optimization turned on and design by
contract turned off. To install a debug version, change the --with-opt flag to 0 and the
--with-dbc to 7.

• If development version, add flag --enable-suq
• If on Ubuntu-based systems, add flag --with-ldflags="-Xlinker --no-as-needed"
• chmod +x <hostname>_configure
• ./<hostname>_configure
• Thoroughly check configuration logs for errors or problems
• make
• Edit <hostname>_configure and remove the flag --enable-shared. Save.
• ./<hostname>_configure
• make
• This sequence allows for the shared and static versions of the Denovo library to built.
• Open ˜/.bashrc and add

PATH=/path/to/install/denovo/install/bin:$PATH
export PATH

LD_LIBRARY_PATH=/path/to/install/denovo/install/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Note: You may need to install aclocal and automake via apt-get install autotools-dev and
apt-get install automake, swig via apt-get install swig, graphviz via apt-get install graphviz
and install doxygen via apt-get install doxygen.
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2 MPI

MPICH Download1

• Download the mpich-3.0.4 stable release as a tar.gz file.
• cd /path/to/install
• mkdir mpich
• cd mpich
• mv /path/to/download/mpich-3.0.4.tar.gz /path/to/install/mpich
• tar xvfz mpich-3.0.4.tar.gz
• mkdir build
• cd build
• vim <hostname>_gcc_configure add/update with the following/save/quit

#!/bin/bash

CFLAGS=-fPIC
CXXFLAGS=-fPIC
FC=gfortran
F77=gfortran
/path/to/install/mpich/mpich-3.0.4/configure \
--prefix=/path/to/install/mpich/install/gcc \
--enable-fc \
--enable-cxx \
--enable-shared \
--enable-sharedlibs=gcc \
2>&1 | tee config_gcc_hostname.log

• chmod +x <hostname>_gcc_configure
• ./<hostname_gcc_configure
• Thoroughly check configuration logs for errors or problems
• make
• make install
• Open ˜/.bashrc and add

PATH=/path/to/install/mpich/install/gcc/bin:$PATH
export PATH

LD_LIBRARY_PATH=/path/to/install/mpich/install/gcc/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

1 http://www.mpich.org/downloads
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3 CMake

CMake Download1 Check to see if CMake is already available on your system with which
cmake If your system does not automatically come with CMake, check with your distribution
repository. For Debian/Unbuntu-based systems use: sudo apt-get install cmake The version
should be greater than 2.8. The above link will provide a download for a manual source
install which hopefully is unnecessary but provided nonetheless.

1 http://www.cmake.org/cmake/resources/software.html
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4 Zlib

zlib Download1

• Download version 1.2.8 or greater as a tar.gz file
• cd /path/to/install
• mkdir zlib
• cd zlib
• mv /path/to/download/zlib-1.2.8.tar.gz /path/to/install/zlib
• tar xvfz zlib-1.2.8.tar.gz
• mkdir build
• cd build
• vim <hostname>_configure add/update with the following/save/quit

#!/bin/bash

cmake \
-D CMAKE_INSTALL_PREFIX:PATH=/path/to/install/zlib/install \
-D BUILD_SHARED_LIBS:BOOL=ON \
$*

• chmod +x <hostname>_configure
• ./<hostname>_configure ../zlib-1.2.8
• Thoroughly check configuration logs for errors or problems
• make
• make install
• make test

1 http://www.zlib.net
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5 HDF

HDF Download1

• Download HDF5 version 1.8.9 as a tar.gz file

Code Rot Notice: Most likely must stay below 1.8.10 to maintain compatibility.

• cd /path/to/install
• mkdir hdf5
• cd hdf5
• mv /path/to/download/hdf5-1.8.9.tar.gz /path/to/install/hdf5
• tar xvfz hdf5-1.8.9.tar.gz
• mkdir build
• cd build
• vim <hostname>_configure add/update with the following/save/quit

#!/bin/bash

CFLAGS=$CFLAGS -fPIC
CC=mpicc
CXX=mpicxx
FC=mpif90

/path/to/install/hdf5/hdf5-1.8.9/configure \
--prefix=/path/to/install/hdf5/install \
--w
ith-zlib=/path/to/install/zlib/install/include,/path/to/install/zlib/install/lib
\
--enable-parallel \
--enable-shared \
--enable-fortran

• chmod +x <hostname>_configure
• ./<hostname>_configure
• Thoroughly check configuration logs for errors or problems
• make
• make install
• cd /path/to/install/hdf5/install/include
• ln -s /path/to/install/mpich/install/gcc/include/mpi.h
• ln -s /path/to/install/mpich/install/gcc/include/mpio.h

1 http://www.hdfgroup.org
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6 Silo

SILO Download1

• Download version 4.9.1 or greater as a tar.gz file
• cd /path/to/install
• mkdir silo
• cd silo
• mv /path/to/download/silo-4.9.1.tar.gz /path/to/install/silo
• tar xvfz silo-4.9.1.tar.gz
• mkdir build
• cd build
• vim <hostname>_configure add/update with the following/save/quit

#!/bin/bash

F77=mpif77
FC=mpif90
CC=mpicc
CXX=mpicxx
CFLAGS=-fPIC
CXXFLAGS=-fPIC
LDFLAGS=-L/usr/lib64
LIBS=-lstdc++

/path/to/install/silo/silo-4.9.1/configure \
--prefix=/path/to/install/silo/install \
--w
ith-hdf5=/path/to/install/hdf5/install/include,/path/to/install/hdf5/install/lib
\
--w
ith-zlib=/path/to/install/zlib/install/include,/path/to/install/zlib/install/lib
\
--disable-silex \
--without-qt \
--with-readline \
--enable-pythonmodule \
--with-gnu-ld

• chmod +x <hostname>_configure
• ./<hostname>_configure
• Thoroughly check configuration logs for errors or problems
• make
• make install
• Open ˜/.bashrc and add

PATH=/path/to/install/silo/install/bin:$PATH

1 https://wci.llnl.gov/codes/silo
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Silo

export PATH

LD_LIBRARY_PATH=/path/to/install/silo/install/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Note: You may need to install the development version of Python with sudo apt-get install
python-dev
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7 LAPACK

LAPACK Download1

• Download version 3.5.0 or greater as a .tgz file
• cd /path/to/install
• mkdir lapack
• cd lapack
• mv /path/to/download/lapack-3.5.0 /path/to/install/lapack
• tar xvfz lapack-3.5.0.tgz
• mkdir build
• cd build
• vim <hostname>_configure add/update with the following/save/quit

#!/bin/bash

cmake \
-D CMAKE_INSTALL_PREFIX:PATH=/path/to/install/lapack/install \
-D CMAKE_Fortran_COMPILER:PATH=/usr/bin/gfortran \
$*

• chmod +x <hostname>_configure
• ./<hostname>_configure ../lapack-3.5.0
• Thoroughly check configuration logs for errors or problems
• make
• make install

1 http://www.netlib.org/lapack
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8 ATLAS

ATLAS Download1

• Download version 3.10.1 or greater as a tar.bz2 file
• cd /path/to/install
• mkdir atlas
• cd atlas
• mv /path/to/download/atlas3.10.1.tar.bz2 /path/to/install/atlas
• tar xvfj atlas3.10.1.tar.bz2
• mv ATLAS atlas-3.10.1
• mkdir build
• cd build
• vim <hostname>_configure add/update with the following/save/quit
• Note: CPU Throttling must be disabled. For GUI Ubuntu and sudo permissions, see
here2. For command-line, with sudo rights, use sudo indicator-cpufreq and set to perfor-
mance. This may also be set in the BIOS. And it may also be set by: sudo apt-get install
cpufrequtils; sudo /usr/bin/cpufreq-set -g performance

#!/bin/bash

/path/to/install/atlas/atlas-3.10.1/configure \
--prefix=/path/to/install/atlas/install \
--shared \
-Fa alg -fPIC \
--with-netlib-lapack-tarfile=/path/to/install/lapack/lapack-3.5.0.tgz \
-D c \
-DPentiumCPS=CPU-Frequency in Mhz \
-b 64

• Note: You may find CPU-Frequency in Ubuntu with the command lscpu | grep "MHz"
• chmod +x <hostname>_configure
• ./<hostname>_configure
• Thoroughly check configuration logs for errors or problems
• make build
• make check
• make ptcheck
• make time
• make install
• Open ˜/.bashrc and add

LD_LIBRARY_PATH=/path/to/install/atlas/install/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

1 http://math-atlas.sourceforge.net
2 http://askubuntu.com/questions/142688/cpu-frequency-scaling-for-12-04
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9 Python Modules

NumPy and SciPy Downloads1 There are numerous ways to install NumPy and SciPy
including cloud repositories and with the help of pip. With that mentioned, the seemingly
most universal and reliable way has been via source build. Plus, one can specify the proper
locally tuned BLAS library to use for the most efficient computations.

9.1 Numpy
• Download version 1.7.2 or greater as a tar.gz file
• cd /path/to/install
• mkdir python
• cd python
• mv /path/to/download/numpy-1.7.2.tar.gz /path/to/install/python
• tar xvfz numpy-1.7.2.tar.gz
• mkdir build
• cd build
• vim <hostname>_numpy_configure add/update with the following/save/quit

#!/bin/bash

export BLAS=/path/to/install/atlas/install/lib/libtatlas.so
export LAPACK=/path/to/install/atlas/install/lib/libtatlas.so
export ATLAS=/path/to/install/atlas/install/lib/libtatlas.so

python /path/to/install/python/numpy-1.7.2/setup.py build
python /path/to/install/python/numpy-1.7.2/setup.py install

• chmod +x <hostname>_numpy_configure
• ./<hostname>_numpy_configure
• Thoroughly check configuration logs for errors or problems

9.2 SciPy
• Download version 0.13.3 or greater as a tar.gz file
• cd /path/to/install/python
• mv /path/to/download/scipy-0.13.3.tar.gz /path/to/install/python
• tar xvfz scipy-0.13.3.tar.gz
• cd build
• vim <hostname>_scipy_configure add/update with the following/save/quit

1 http://www.scipy.org/scipylib/download.html
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#!/bin/bash

#
# Run in source directory!
#

export BLAS=/path/to/install/atlas/install/lib/libtatlas.so
export LAPACK=/path/to/install/atlas/install/lib/libtatlas.so
export ATLAS=/path/to/install/atlas/install/lib/libtatlas.so

python /path/to/install/python/scipy-0.13.3/setup.py build
python /path/to/install/python/scipy-0.13.3/setup.py install

• chmod +x <hostname>_scipy_configure
• cd /path/to/install/python/scipy-0.13.3
• ../build/<hostname>_scipy_configure
• Thoroughly check configuration logs for errors or problems
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10 Trilinos

Trilinos Download1

10.1 Code Rot Notice

The version of Denovo that is being used for compilation is a version circa June 2012. This
was the last point in which access to the git repository server angmar (Tom Evan's box in
his office) was available. As a result, this version of Denovo requires a version of Trilinos
that is also of this time period since both are working codes. Be sure to download version
no later than 10.10.1. At some point soon after this release, there was a restructuring
and splitting of libraries that Denovo expects under one static library. The options are to
manually repackage the split libraries together using gcc (not tested) or to use an older
version of Trilinos. Next, as a result of choosing an older version of Trilinos, compilation
errors can arise using a gcc compiler version > 4.6.3. A preprocessor directive in a particular
file will be accepted using a version of gcc < 4.6.3 and an error thrown for versions > 4.6.3
(I've only tried 4.6.3 and 4.8.2 so it's an assumption). To check your version of gcc, go to
the command line and type gcc -v. Adapt the instructions below based on your version
number.

10.2 Installation
• Download version 10.10.1 or LESS as a tar.gz file
• cd /path/to/install
• mkdir trilinos
• cd trilinos
• mv /path/to/download/trilinos-10.10.1.tar.gx /path/to/install/trilinos
• tar xvfz trilinos-10.10.1-Source.tar.gz
• mkdir build
• cd build
• vim <hostname>_configure add/update with the following/save/quit

#!/bin/bash

EXTRA_ARGS=$@

cmake \
-D CMAKE_INSTALL_PREFIX:PATH=/path/to/install/trilinos/install \
-D CMAKE_BUILD_TYPE:STRING=RELEASE \
-D Trilinos_ENABLE_TESTS:BOOL=OFF \

1 http://trilinos.sandia.gov
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-D Trilinos_ENABLE_Amesos:BOOL=ON \
-D Trilinos_ENABLE_Anasazi:BOOL=ON \
-D Trilinos_ENABLE_AztecOO:BOOL=ON \
-D Trilinos_ENABLE_EpetraExt:BOOL=ON \
-D Trilinos_ENABLE_Ifpack:BOOL=ON \
-D Trilinos_ENABLE_ML:BOOL=ON \
-D Trilinos_ENABLE_NOX:BOOL=ON \
-D BUILD_SHARED_LIBS:BOOL=ON \
-D CMAKE_C_FLAGS:STRING=-fPIC \
-D CMAKE_CXX_FLAGS:STRING=-fPIC \
-D CMAKE_Fortran_FLAGS:STRING=-fPIC \
-D TPL_ENABLE_MPI:BOOL=ON \
-D MPI_INCLUDE_DIRS:PATH=/path/to/install/mpich/install/gcc/include \
-D MPI_LIBRARY_DIRS:PATH=/path/to/install/mpich/install/gcc/lib \
-D TPL_ENABLE_BLAS:BOOL=ON \
-D BLAS_LIBRARY_NAMES:STRING=tatlas \
-D BLAS_INCLUDE_DIRS:PATH=/path/to/install/atlas/install/include \
-D BLAS_LIBRARY_DIRS:PATH=/path/to/install/atlas/install/lib \
-D Trilinos_EXTRA_LINK_FLAGS:STRING=-lgfortran \
-D TPL_ENABLE_LAPACK:BOOL=ON \
-D LAPACK_LIBRARY_NAMES:STRING=tatlas \
-D LAPACK_LIBRARY_DIRS:PATH=/path/to/install/atlas/install/lib \
$EXTRA_ARGS \
/path/to/install/trilinos/trilinos-10.10.1-Source/

• chmod +x <hostname>_configure
• ./<hostname>_configure ../trilinos-10.10.1-Source
• Thoroughly check configuration logs for errors or problems
• If gcc version > 4.6.3
• vim </path/to/install>/trilinos/trilinos-10.10.1-Source/packages/zoltan/src/zz/murmur3.c
• edit line 15 from

#define FORCE_INLINE __attribute__((always_inline))

to

#define FORCE_INLINE inline __attribute__((always_inline))

• make
• make install
• Open ˜/.bashrc and add

LD_LIBRARY_PATH=/path/to/install/trilinos/install/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH
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11 SCALE

SCALE Registration1 SCALE is released by ORNL's RSICC. Each user must register and
request a DVD pack to be mailed to them. Different versions of SCALE will produce
varying formats of Denovo xkba input generated via MAVRIC. The release version allows
for ascii versions of xkba input while the development version (circa summer 2012) allows
for binary xkba input. Follow the installation instructions that come with the DVD's. For
reference, install to /path/to/install/scale6.1. SCALE will be used to process cross section
information for use with Denovo.

1 http://scale.ornl.gov/index.shtml

25

http://scale.ornl.gov/index.shtml


53 

4.2. Task B: Analyze DIMP in the Context of a Paradigm Inverse Source 
Determination Problem 

This task was modified from its original intent based on advice from holdup experts at ORNL. The 
University of South Carolina was responsible for completing this task. 

The accomplishment of this task was reported in: Dan G. Cacuci, Comparative Analysis of Methods 
for Inverse Problems with Applications to Radiation Transport, University of South Carolina, 
December 30, 2014. This document is replicated on the following pages. 
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COMPARATIVE ANALYSIS OF METHODS FOR 
INVERSE PROBLEMS WITH APPLICATIONS TO 

RADIATION TRANSPORT 
 
 

Dan G. Cacuci 
December 30, 2014 

 

ABSTRACT 

The assessment of material “held-up” in equipment, pipes, and ducts in a plant that 
processes nuclear materials must be inferred from measured radiation fields, primarily 
gamma and less frequently neutrons. Thus, the “holdup problem” falls under the category 
of “source identification problem”. Such “inverse problems” are computationally unstable, 
so a naïve solution will be overcome by round-off errors or noise in the data, which can 
amplify to a degree that renders the computed solution useless.  
 
This work presents the most popular methods for addressing inverse problems, starting with 
the Levenberg (1944)-Marquardt (1963) method, which is possibly the easiest to apply but 
also the least sophisticated. Tichonov’s (1963) method, discussed next, subsumes elements 
of the LM-method, but has an additional term that controls the solution’s smoothness. 
When implemented correctly, Tichonov’s method provides convexity and compactness in 
the problem. However, even when done correctly, Tichonov’s method actually changes the 
original problem into new ones (depending on the value of the parameter 2λ ), and solutions 
to the new problems may not be close to those of original problem. Moreover, because of 
the discretionary user-parameter 2λ , it is not possible to compute quantitatively the error 
between the true, but actually unknown solution and the “regularized” solution.  
 
The more modern method use Bayes’ theorem to combine all of the available information 
to construct a posterior distribution for solving the inverse problem in a probabilistic sense, 
providing a range of possible “outcomes.” The method presented Tarantola’s book (2005) 
is also reviewed briefly, and shown to not only comprise Tichonov’s, but to eliminate the 
appearance of Tichonov’s discretionary user-parameter 2λ  my replacing it with a 
functional that contains the actual covariance matrices for modeling the respective 
uncertainties. The most recent and comprehensive method, which unifies both the forward 
and the inverse problems in the presence of computational and experimental uncertainties, 
is Cacuci’s method (2014) for “predictive modeling of coupled multi-physics systems”, 
which is also compared to the older methods.  
 
Cacuci’s (2014) method treats efficiently and explicitly coupled multi-physics systems in 
the presence of computational and experimental uncertainties. When reduced to a single 
multi-physics system, Cacuci’s method is shown to comprise the Levenberg-Marquardt, 
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Tichonov, and Tarantola methods as particular cases, even. Cacuci’s methodology (2014) 
uses the maximum entropy principle to construct an optimal approximation of the unknown 
a priori distribution for the a priori known mean values and covariances characterizing the 
parameters and responses for both multi-physics models. This approximate a priori 
distribution is combined using Bayes’ theorem with the “likelihood” provided by the two 
multi-physics simulation models. Subsequently, the posterior distribution is evaluated using 
the saddle-point method to obtain analytical expressions for the optimally predicted values 
for the parameters and responses of both multi-physics models, along with corresponding 
reduced uncertainties for both the model parameters and responses. This methodology 
enables predictive modeling for coupled multi-physics systems, taking fully into account 
the coupling terms between the systems but using only the computational resources that 
would be needed to perform predictive modeling on each system separately. 
 
The comparative analysis presented in this work highlights the following important 
conclusions: 

(i) Cacuci’s method (2014) calibrates simultaneously all of the model parameters as 
well as the model responses. In contradistinction, the other methods calibrate 
only the model responses. Therefore, even for a single model, Cacuci’s method 
yields additional results by comparison to all of the other methods currently 
available. 

(ii) Cacuci’s method (2014) takes into account correlations between model 
parameters and model responses. No other method has this capability. 
Importantly, the predicted responses and parameters will become correlated, 
even if they were uncorrelated initially.  

 
Noteworthy, Cacuci’s (2014) methodology for coupled systems is constructed such that the 
systems can be considered sequentially rather than simultaneously, while preserving 
exactly the same results as if the systems were treated simultaneously. Consequently, very 
large coupled multi-physics systems, which could perhaps exceed the available 
computational resources if treated simultaneously, can be treated with Cacuci’s (2014) 
methodology sequentially and without any loss of generality or information, requiring just 
the resources that would be needed if the systems were treated sequentially. This feature 
enables the treatment of very large systems which would currently exceed the 
computational resources available if treated with conventional data assimilation procedures. 
In particular, Cacuci’s (2014) methodology would be ideally suited for performing large-
scale coupled neutron-gamma inverse transport problems, in which the neutron and, 
respectively, the gamma transport computations would be performed using distinct 
computational tools.  
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1. INTRODUCTION 
 
 
As is well known, the particle and/or radiation transport equation strives to describe all 
possible interactions of particles within the host medium while taking into account the 
medium’s detailed material properties and geometry. One can distinguish between two 
fundamental types of problems in the mathematical description of the transport of particles 
through the host medium. The most common type are the direct problems, in which one is 
given the composition and geometry of the medium, as well as the location and magnitude 
of all sources of particles, and asked to determine the distribution of particles in the 
medium. Thus, the “direct problem” solves the “parameter-to-output” mapping that 
describes the “cause-to-effect” relationship in the particle transport process. The second, 
and far more difficult type of problems are the inverse problems, in which one is given 
(usually just partially) the particle distribution and is asked to determine the characteristics 
of the host medium or characteristics of the sources that have generated the respective 
particles. In general, two problems are called inverses of one another if the formulation of 
each involves all or part of the solution of the other. In particular, “measurement problems” 
are “inverse” to the direct problem in that they seek to determine (from measurements) the 
properties of the host medium (e.g., composition, geometry, including internal interfaces), 
or the properties of the source (e.g., strength, location, direction), and/or the size of the 
medium on its boundaries. Some authors further group such inverse problems into 
“invasive”, when the interior particle distribution is accessible for measurements, as 
opposed to “non-invasive” ones, in which only particle distributions on the boundaries of 
(or exterior to) the medium can be measured. Such inverse problems are encountered in 
fields as diverse as astrophysics (in which one measures the intensity and spectral 
distribution of light in order to infer properties of starts), nuclear medicine (where 
radioisotopes are injected into patients and the radiation emitted is used in diagnostics to 
reconstruct body properties, e.g. tumors), non-destructive fault detection in materials, 
underground (oil, water) logging, and detection of sensitive materials. The “holdup 
problem” also falls under the category of “source identification problem”. Recall that this 
problem arises because special nuclear (fissile) material (SNM) is “held-up” over time in 
plant equipment (e.g., pipes, ducts). Since it is not possible to measure directly the holdup 
quantity and location, these must be inferred from measured radiation fields, primarily 
gamma and less frequently neutrons. 
 
The existence of a solution for an inverse problem is in most cases secured by defining the 
data space to be the set of solutions to the direct problem. This approach may fail if the data 
is incomplete, perturbed or noisy. Furthermore, problems involving differential operators 
are notoriously ill-posed, because the differentiation operator is not continuous with respect 
to any physically meaningful observation topology. If the uniqueness of a solution cannot 
de secured from the given data, additional data and/or a priori knowledge about the solution 
need to be used to further restrict the set of admissible solutions. In particular, stability of 
the solution is the most difficult to ensure and verify. If an inverse problem fails to be 
stable, then small round-off errors or noise in the data will amplify to a degree that renders 
a computed solution useless. 
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The historically older methods used for solving approximately an ill-posed problem were 
called regularization procedures. These procedures attempted to manipulate explicitly the 
direct (forward) equation in conjunction with measurements in order to estimate explicitly 
the unknown source and/or other unknown characteristics of the medium. On the other 
hand, the more modern “implicit” methods combine measurements with repeated solutions 
of the direct problem obtained with different values of the unknowns, iterating until an a 
priori selected functional, usually representing a user-defined “goodness of fit” between 
measurements and direct computations, is reduced to a value deemed to be “acceptable” by 
the user. The fundamental characteristics of inverse problems (namely that they are ill-
posed and/or ill-conditioned, unstable to errors in the transport model parameters and the 
experimental measurements) have increasingly inclined the balance towards the 
development of implicit methods, which allow, to various degrees, the inclusion of the 
effects of such errors in the “inverse problem” algorithms.  
 
This work is organized as follows: Section 2 presents a new methodology for predictive 
modeling of coupled multi-physics systems, which was recently conceived by Cacuci 
(2014), extending the predictive modeling methodology of Cacuci and Ionescu-Bujor 
(2010) from a single multi-physics system to two or more coupled multi-physics systems. 
Noteworthy, Cacuci’s methodology enables coupled systems to be treated sequentially 
rather than simultaneously, while preserving exactly the same results as if the systems had 
been treated simultaneously, thus requiring just the resources that would be needed if the 
systems were treated simultaneously. Cacuci’s methodology (2014) uses the maximum 
entropy principle to construct an optimal approximation of the unknown a priori 
distribution for the a priori known mean values and uncertainties characterizing the 
parameters and responses for both multi-physics models. This approximate a priori 
distribution is subsequently combined using Bayes’ theorem with the “likelihood” provided 
by the multi-physics computational models. Finally, the posterior distribution is evaluated 
using the saddle-point method to obtain analytical expressions for the optimally predicted 
values for the parameters and responses of both multi-physics models, along with 
corresponding reduced uncertainties.  
 
Section 3 reviews the previous methods for solving inverse problems with uncertain data, in 
chronological order of their appearance. Section 3.1 reviews the Levenberg (1944) -
Marquard (1963) method. This method was used by Bledsoe et al (2011) to solve several 
inverse transport problems by minimizing an “a priori” chosen chi-square-type functional 
to estimate the “differences between measured and computed quantities of interest”. 
Section 3.2 reviews Tichonov’s method (1963), which takes into account not only the 
“misfits” between measurements and computations, but also takes into account the 
solution’s smoothness, albeit at the expense of introducing an arbitrary parameter 
(“tunable” by the user). Section 3.3 reviews the so-called “Bayesian least squares 
methods”, noting that all of the more recent methods use Bayes theorem in some form to 
deduce the posterior distribution of interest, and then further noting that, if the distributions 
are Gaussian, the evaluation of the posterior amounts to solving a least-squares problem. 
The most sophisticated of these is Tarantola’s (2005) “functional inverse least-squares” 
(FILS-T) method, which replaces Tichonov’s arbitrary parameter 2λ  by an expressions that 
contains uncertainties in the form of a priori parameter covariances. In addition, the FILS-T 
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method provides a “goodness of fit” metric, 2χ −FILS T , which no other method, except for 
Cacuci’s method, provides. The capabilities, advantages and disadvantages of these 
methods are discussed in Section 4. Appendix A provides the mathematical details of 
Cacuci’s method, while Appendix B summarizes the salient equations underlying the 
transport of neutrons and gamma radiation underlying the modeling of hold-up problems.  
 
 
 
 

2. CACUCI’ S (2014) METHODOLOGY FOR PREDICTIVE 
MODELING OF DIRECT AND INVERSE PROBLEMS IN 
THE PRESENCE OF EXPERIMENTAL AND 
COMPUTATIONAL ERRORS 

 

This Section presents the “predictive modeling” methodology developed by Cacuci (2014), 
which encompasses the concepts of “data assimilation”, “model calibration”, and “inverse 
problems” into a unifying conceptual and mathematical framework; this methodology 
yields best estimate predictions, with reduced predicted uncertainties. Cacuci (2014) 
considers two coupled computational models, called henceforth “Model A” and “Model B,” 
where each model represents a large-scale multi-physics system; furthermore, 
experimentally measured responses are available for both models, so that the ultimate goal 
is to perform predictive modeling for the coupled models. Cacuci’s methodology is 
particularly useful when the number of computed and measured responses, as well as the 
number of parameters, are very large, since it takes fully into account the coupling terms 
between the systems but uses only the computational resources that would be needed to 
perform predictive modeling on each system separately.  
 
 

2.1 A Priori Information for the Two Multi-Physics Models: 
Mathematical Description 

 

Consider a multi-physics model, henceforth called “Model A” comprising Nα  system 
(model) parameters nα ; Model A is used to compute results, henceforth called responses, 
which can also be measured experimentally. Consider now a second physical system, 
henceforth called “Model B,” comprising Nβ  system (model) parameters mβ , and which is 
also used to compute responses that can be measured experimentally. Model A and Model B 
are considered to be coupled. In reactor analysis and design, for example, Model A may 
comprise the neutron transport and depletion equations which are coupled to Model B 
computing the thermal-hydraulics conservation (mass, momentum, energy) equations. For 
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hold-up problems, Model A may be a code that simulates the transport of neutrons to 
neutron detectors, while Model B could simulate the transport of gamma-radiation to 
gamma detectors. 
 
Consider next that there are rN  experimentally measured responses ir  associated mostly, 
but not necessarily exclusively, with Model A. Furthermore, consider also that there are qN  
experimentally measured responses jq  associated mostly, but not necessarily exclusively, 
with Model B. For example, measurement of reaction rates and power (or flux) distributions 
could be considered to be responses of type ir , while measurements of flow rates and 
temperature distributions could be considered responses of type jq . In the same spirit, cross 
sections can be considered to be model parameters of type nα , while heat transfer 
correlations can be considered model parameters of type mβ . Parameters modeling the 
geometry of the system, for example, could be considered to belong to either type of model 
parameters (i.e., either nα  or mβ ), since they affect both the neutron transport equation and 
the thermal-hydraulics conservation equations. 
 
In practice, the values of the parameters nα and mβ  are determined experimentally. 
Therefore, these parameters cannot be known exactly, but can be considered to behave 
stochastically, obeying some probability distribution function which-for large-scale 
systems, as customarily encountered in practice-is unknown. Such stochastic quantities will 
be called variates in this work; thus, the parameters nα  and mβ , as well as the measured 
responses ir  and jq  are variates. To simplify the mathematical derivations to follow in this 
section, the model parameters nα  will be considered to constitute the components of the 
(column) vector α  of, defined as   
 

{ }| 1, ,n n Nαα= =α  ,     (2.1) 
 
while the model parameters mβ  will be considered to constitute the components of the 
(column) vector β  defined as 
 

{ }| 1,...,m m Nββ= =β .     (2.2) 
 
By convention, all of the vectors considered in this work (e.g., α  and β ) are column 
vectors; (e.g., †α  and †β ) are row vectors; a dagger ( † ) will be used to denote 
“transposition.” Similarly, the rN  experimentally measured responses ir  will be considered 
to be components of the column vector 
 

{ }| 1, ,i rr i N= =r  ,      (2.3) 
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while the qN  experimentally measured responses jq  will be considered to be components 
of the column vector 

{ }| 1, ,j qq j N= =q  .     (2.4) 
 
Most generally, the parameters nα  and mβ , as well as the responses ir  and jq  can be 

considered to obey some a priori probability distribution function ( ), , ,P α β r q . For large-
scale systems, as customarily encountered in practice, the probability distribution

( ), , ,P α β r q cannot possibly be known. The information usually available in practice 
comprises the mean values of the model parameters and responses together with the 
corresponding uncertainties (standard deviations and, occasionally, correlations) computed 
about the respective mean values. For notational simplicity, we will use angular brackets, 

f , to denote the integral of the quantity ( ), , ,f α β r q  over the joint probability 

distribution ( ), , ,P α β r q , i.e.,  
 

( ) ( ), , , , , , .f f P d d d d≡ ∫ α β r q α β r q α β r q     (2.5) 
 
Using the above convention, we will denote the mean values of the model parameters nα  as 

0
n nα α≡ , and will consider them to constitute the components of the vector 0α  defined as  

 
{ }0 0 | 1, ,n n Nαα= =α  .     (2.6) 

 
Similarly, the mean values of the parameters nβ  are considered to be known, and will be 

denoted as 0
n nβ β≡ . These mean values are considered to be the components of the 

vector 0β  defined as  
 

{ }0 0 | 1, ,n n Nββ= =β  .     (2.7) 
 
We also consider that the parameters’ second-order central moments, namely the standard 
deviations and correlations, are known. For the parameters nα , the second-order central 

moments are the components of covariance matrices ( )N Nα α
αα

×C  defined as  
 

( ) ( ) ( )( )0 0cov , ; , 1, ,N N
i j i i j jN N N N

i j Nα α

α α α α
αα αα α α α α α×

× ×
 ≡ ≡ − − = C  , (2.8) 

 
while the second-order central moments (i.e., the standard deviations and correlations) for 
the parameters mβ  form covariance matrices ( )N Nβ β

ββ
×C  defined as  
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( ) ( ) ( )( )0 0cov , ; , 1, ,N N
i j i i j jN N N N

i j Nβ β

β β β β
ββ ββ β β β β β×

× ×
 ≡ ≡ − − = C  . (2.9) 

 
In general, the components of the vectors α  and β  may be correlated. The correlations 

among the parameters α  and β  are quantified by correlation matrices ( )N Nα β

αβ
×C  defined as 

 
( ) ( ) ( ) ( ) ††0 0N N N Nα β β α

αβ βα
× × ≡ − − =   

C α α β β C .    (2.10) 

 
These experimentally measured responses are also considered to be characterized by known 
mean measured values and measured variances and covariances. Thus, for the rN  
experimentally measured responses ir , the mean measured values will be denoted as m

ir , 
and will be considered to constitute the components of the vector mr  defined as  
 

{ }| 1, , , , 1, , ,m m m
i r i i rr i N r r i N= = ≡ =r      (2.11) 

 
while the corresponding measured covariance matrix, denoted as ( )r rN N

rr
×C , is defined as 

 
( ) ( ) ( ) , , 1, , .r r

r r

N N m m
rr i i j j rN N

r r r r i j N×

×
≡ − − =C     (2.12) 

 
Similarly, the qN  experimentally measured responses jq  are characterized by mean 

measured values, denoted as m
jq , and constituting the components of the vector mq  defined 

as  
 

{ }| 1,..., , , 1, , ,m m m
j q j j qq j N q q j N= = ≡ =q     (2.13) 

 
and by the measured covariance matrix ( )q qN N

qq
×C  defined as  

 
( ) ( ) ( ) , , 1, , .q q

q q

N N m m
qq i i j j qN N

q q q q i j N×

×
≡ − − =C 

  (2.14) 

 
Furthermore, the responses r  and q  may also be correlated; such correlations would be 
quantified by correlation matrices defined as 
 

( ) ( ) ( ) ( ) ††
r q q rN N N Nm m

rq qr
× × ≡ − − =   

C r r q q C .    (2.15) 

 
In the most general case, correlations my also exist among all parameters and responses. 
Such correlations would be quantified through matrices defined as follows:  
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( ) ( ) ( ) ( ) ††0 ,r rN N N Nm
r r

α α
α α

× × ≡ − − =  C α α r r C     (2.16) 

 
( ) ( ) ( ) ( ) ††0 ,q qN N N Nm

q q
α α

α α
× × ≡ − − =   

C α α q q C     (2.17) 

 
( ) ( ) ( ) ( ) ††0 ,r rN N N Nm

r r
β β

β β
× × ≡ − − =   

C β β r r C     (2.18) 

 
( ) ( ) ( ) ( ) ††0 .q qN N N Nm

q q
β β

β β
× × ≡ − − =   

C β β q q C     (2.19) 

 
 
 

2.2 Construction of the A Priori Distribution Function ( ), , ,p α β r q  as 
the Maximum Entropy Principle Approximation of the True 
but Unknown A Priori Distribution Function ( ), , ,P α β r q  

 

The quantities defined in Eqs. (2.1) through (2.19) constitute the prior information 
regarding the uncertain parameters and measured responses in the two-model multi-physics 
system considered in the previous Section. As discussed, this prior information prescribes 
the means (i.e., the first-order moments) and covariances (i.e., the second-order moments) 
of an otherwise unknown distribution function ( ), , ,p α β r q . Mathematically, these means 

and covariances are functionals of ( ), , ,p α β r q , having the generic form  
 

( ) ( ) ( ), , , , , , 1, 2, ,k kF p F d d d d d d k K= ≡ ≡ =∫ x x x x α β r q x α β r q  ,       (2.20) 
 
with ( )kF x  representing, in turn, the quantities: ( )0

n nα α− , ( )0
n nβ β− , ( )m

n nr r− , ( )m
n nq q−

( )( )0 0
i i j jα α α α− − , ( )( )0 0

i i j jβ β β β− − , ( )( )m m
i i j jr r r r− − , ( )( )m m

i i j jq q q q− − , 

( )( )0 0
i i j jα α β β− − , ( )( )0 m

i i j jr rα α− − , ( )( )0 m
i i j jq qα α− − ,  ( )( )0 m

i i j jr rβ β− − , 

( )( )0 m
i i j jq qβ β− − ,  and ( )( )m m

i i j jr r q q− − .  
 
The total number of first- and second-order moments is 
 

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

.
r q r q

r q r q r q

K N N N N N N N N

N N N N N N N N N N N N
α β α β

α β α α β β

≡ + + + + + + +

+ × + × + × + × + × + ×
 (2.21) 

 



10 

An optimal way to approximate the true but unknown probability distribution function 
( )P x  using the information given in Eq. (2.20) is to apply the maximum entropy formalism 

(Jaynes, 1983). The maximum entropy formalism enables the determination of an 
approximate probability distribution function, denoted here as ( )p x , which approximates 

the unknown distribution ( )P x  by maximizing over ( )p x  the Shannon information 
entropy (Shannon, 1948), defined as  
 

( ) ( )
( )

ln
p

S d p
m

= −∫
x

x x
x

,     (2.22) 

 
where ( )xm  is a prior density that ensures form invariance under change of variable, while 
satisfying the constraints given in Eq. (2.20). This maximum entropy principle insures that 
the approximate distribution function ( )p x  maximizes the optimal compatibility with the 
available information, namely the constraints given in Eq. (2.20), while simultaneously 
ensuring minimal spurious information content. 
 
Maximizing the information entropy S  over ( )p x  subject to the constraints expressed by 
Eq. (2.20) constitutes a variational problem that can be solved by using the method of 
Lagrange multipliers to obtain a member of the exponential family, namely 
 

( ) ( ) ( )1 exp k k
k

p m F
Z

λ = −  
∑x x x ,    (2.23) 

 
where the quantities kλ  are the Lagrange multipliers. The normalization constant Z  in Eq. 
(2.23) is defined as  
 

( ) ( )exp k k
k

Z d m Fλ ≡ −  
∑∫ x x x .    (2.24) 

 
The Lagrange multipliers kλ  must be found directly from the constraints [i.e., using Eqs. 
(2.20) and (2.23)] or from the equivalent equations 
 

ln , 1, 2, ,k
k

F Z k K
l
∂

= − =
∂

 ,   (2.25) 

 
which are more convenient if Z can be expressed as an analytic function of the Lagrange 
parameters. 
 
In the case of discrete distributions, if only the alternatives can be enumerated but the 
macroscopic data kF  are not known,  then ( ) 1m =x , and the maximum entropy algorithm 
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described in the foregoing yields the uniform distribution, as would be required by the 
principle of insufficient reason. Therefore, the maximum entropy principle can be 
considered as a far-reaching generalization of the principle of insufficient reason, ranging 
from discrete alternatives with no other information given, to cases with given global or 
macroscopic information, and also encompassing continuous distributions. Physicists will 
recognize the maximum entropy algorithm described above as the essence of the Gibbs-
formalism for statistical mechanics, where Z is the partition function (or sum over states), 
carrying all information about the possible states of the system, from which the expected 
macroscopic parameters can be obtained by differentiation with respect to the Lagrange 
multipliers. If only the possible energies of a system and the average energy (i.e., the 
temperature) are given, one finds Gibbs’ canonical ensemble, with probabilities 
proportional to the Boltzmann factors ( )exp jEλ− , the Lagrange multiplier λ being 
essentially the inverse temperature. If, in addition, the average particle number is given, one 
finds the grand-canonical ensemble, with a second Lagrange multiplier equal to the 
chemical potential, etc.  
 
Performing the respective (lengthy but straightforward) computations indicated in Eq. 
(2.25), solving the resulting system of equation for the Lagrange multipliers kλ , and 

replacing the resulting expressions in Eq. (2.23) leads to the following expression for ( )p x  
 

( )
( ) ( )

( )

† 11exp ,
2 ,

det 2
j

d
p d x

p

− − − −  = − ∞ < < ∞
x x C x x x

x | x ,C x
C

, (2.26) 

 
where the dagger ( † ) denotes transposition (Hermitean conjugation of real vectors and 
matrices), and the matrix C  is defined as 
 

0

0

, ,

C C C C α α
C C C C β β

C x x
C C C C r r
C C C C q q

r q

r q
m

r r rr rq
m

q q qr qq

with

αα αβ α α

βα ββ β β

α β

α β

    
    
    ≡ ≡ ≡    
            

.   (2.27) 

 
Thus, the foregoing considerations show that, when only mean values and covariances are 
known, the maximum entropy algorithm yields the Gaussian probability distribution shown 
in Eq. (2.27) as the most objective probability distribution consistent with the available 
information. Although all of the above results are valid for jx−∞ < < ∞ , these results can 
also be used for 0 jx< < ∞  after introduction of a logarithmic scale (which leads to 
lognormal distributions on the original scale). 
 
Gaussian distributions are often considered appropriate only if many independent random 
deviations act together so that the central limit theorem is applicable. At other times, 
Gaussian distributions are invoked for mere convenience, with accompanying warnings 
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about consequences if the true distribution is not Gaussian. The maximum entropy principle 
cannot eliminate these consequences, but it reassures the data user who is given only mean 
values and their (co)variances that the corresponding Gaussian is the best choice for all 
further inferences, whatever the unknown true distribution may happen to be. In contrast to 
the central limit theorem, the maximum entropy principle is also valid for correlated data.  
 
 

2.3 Construction of the A Posteriori Predicted Mean Values and 
Covariances for the Given Models (Likelihood Function) and 
Maximum Entropy Prior Distribution 

 

Consider next that the coupled Models A and B are used to compute the ( )r qN N+  
experimentally measured responses. These computed responses will be denoted as 

( ) { }, | 1, ,c c
i rr i N= =r α β   and ( ) { }, | 1, ,c c

i qq i N= =q α β  , respectively, where the 
superscript “c” indicates “computed.” In principle, the computed responses may depend on 
some or all of the components of α  and β . Consequently, ( ),cr α β  and ( ),cq α β  are also 
variates, characterized by probability distribution functions, which cannot, in general, be 
obtained in explicitly closed forms.  
 
The next step is to combine the experimental and computational information in order to 
obtain the posterior distribution of ( ), , ,≡x α β r q . This combination is rigorously 
performed by using Bayes’ theorem, in which the (maximum entropy) prior is the Gaussian 
distribution computed in Eq. (2.26), while the likelihood is provided by the computational 
models ( ),cr α β  and ( ),cq α β . When the numerical and/or modeling errors are not 
explicitly taken into account, but are considered to be amenable to treatment via uncertain 
model parameters that are included among the components of α , the computational models 
are considered to be “hard constraints” of the form  
 

( ) ( ), , ,c c= =r r α β q q α β .     (2.28) 
 
It is clear the posterior distribution, which consists of the prior given in Eq. (2.26) together 
with the likelihood expressed by Eq. (2.28), cannot be computed exactly. Nevertheless, the 
main contribution to the posterior distribution, and, in particular, the main contributions to 
the posterior distribution’s means and covariances, can be obtained by applying the saddle-
point method to evaluate the Gaussian prior in Eq. (2.26) subject to the constraints 
expressed by Eq. (2.28). As is well known, the saddle-point is the point where the gradient 
of exponent of the Gaussian prior in Eq. (2.26) vanishes subject to the constraints in        
Eq. (2.28). The method of Lagrange multipliers can be used to determine this saddle-point, 
by setting to zero the (partial) gradients with respect to , , ,α β r q  of the following 
functional:  
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( ) ( ) ( ) ( ) ( )† 1 † †1, , , , ,
2

c c
r qP −    ≡ − − − + − + −   α β r q x x C x x λ r r α β λ q q α β , (2.29) 

 
where rλ  and qλ  are vectors of (yet undetermined) Lagrange multipliers of sizes rN  and 

qN , respectively. Thus, the saddle point of ( ), , ,P α β r q  is attained at 

( ), , ,pred pred pred pred pred≡x α β r q  where the following conditions are simultaneously fulfilled: 
  

( ) ( ), ; , ;
r q

c cP Pλ λ∇ = − = ∇ = − =r r α β 0 q q α β 0     (2.30) 
 

; ; ; .r qP P P Pα β∇ = ∇ = ∇ = ∇ =0 0 0 0     (2.31) 
 
The conditions expressed in Eq. (2.30) simply ensure that the saddle-point will satisfy the 
constraints imposed by the numerical simulation Models A and B. On the other hand, the 
conditions imposed in Eq. (2.31) can be written in block-matrix form as   
 

† †0

† † †0

† †

† † †

pred
r q r r q q

pred
r q r r q q

pred m
r r rr rq r

pred m
q q rq qq q

αα αβ α α α α

αβ ββ β β β β

α β

α β

 − −  −
    − −−     =    −
       −    

C C C C S λ S λα α
C C C C S λ S λβ β
C C C C λr r
C C C C λq q

   (2.32) 

 
where the matrices ( )0 0,rαS α β , ( )0 0,rβS α β , ( )0 0,qαS α β , and ( )0 0,qβS α β  comprise first-
order response-derivatives with respect to the model parameters, computed at the nominal 
parameter values ( )0 0,α β , and are defined as follows:  
 

1 11 1

11

1 1

, ,rr

r r r r

NN
N NN N

r r

N N N N

N N

r rr r

r r r r

βα

βα

α β

α β

β βα α

α α β β

××

 ∂ ∂ ∂ ∂
   ∂ ∂∂ ∂   
  ≡ ≡
  

∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂    

S S





     

 

  (2.33) 

 

1 11 1

11

1 1

, .q q

q q q q

NN
N N N N
q q

N N N N

N N

q qq q

q q q q

βα

α β

α β

α β

β βα α

α α β β

× ×

   ∂ ∂∂ ∂
   ∂ ∂∂ ∂   
  ≡ ≡   
 ∂ ∂ ∂ ∂ 
  

∂ ∂ ∂ ∂      

S S





     

 

  (2.34) 
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Note that no approximations have been introduced thus far, i.e., Eq. (2.32) is exact for the a 
priori information considered to be known (i.e., known means and covariance matrices for 
the parameters and measured responses).  
 
The results obtained by evaluating Eq. (2.32) to first-order in response sensitivities are 
presented in Appendix A, and are also summarized below.  
 

1. The predicted optimal values for the model parameters: 
 

( ) [ ] ( )0 † 0 0 0 0
11 12 12 22, ,pred d d

α α α α = − + − + α α X D Y D r α β X D Y D q α β ; (C.1) 
 

( ) ( )0 † 0 0 0 0
11 12 12 22, ,pred d d

β β β β   = − + − +  β β X D Y D r α β X D Y D q α β ; (C.2) 
 

2. The predicted optimal values for the model responses: 
 

( ) [ ] ( )† 0 0 0 0
11 12 12 22, ,pred m d d

r r r r = − + − + r r X D Y D r α β X D Y D q α β ; (C.3) 
 

( ) ( )† 0 0 0 0
11 12 12 22, ,pred m d d

q q q q   = − + − +  q q X D Y D r α β X D Y D q α β ; (C.4) 
 

3. The predicted optimal covariance matrix pred
ααC  for the parameters α  of Model A:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
αα

αα α α α α α α

≡ − −

 = − + + + 

C α α α α

C X D X D Y Y D X D Y
  (C.5) 

 
4. The predicted covariance matrix pred

rrC  for the responses r  of Model A:  
 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
rr

rr r r r r r r

≡ − −

 = − + + + 

C r r r r

C X D X D Y Y D X D Y
   (C.6) 

 
5. The predicted correlation matrix pred

rαC  for the parameters α  and r  responses of 
Model A:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
r

r r r r r

α

α α α

≡ − −

 = − + + + 

C α α r r

C X D X D Y Y D X D Y
  (C.7) 

 
6. The predicted covariance matrix pred

ββC  for the parameters β  of Model B:  
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( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
ββ

ββ β β β β β β

≡ − −

 = − + + + 

C β β β β

C X D X D Y Y D X D Y
  (C.8) 

 
7. The predicted covariance matrix pred

qqC  for the responses q  of Model B:  
 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
qq

qq q q q q q q

≡ − −

 = − + + + 

C q q q q

C X D X D Y Y D X D Y
   (C.9) 

 
8. The predicted correlation matrix pred

qβC  for the parameters β  and the responses q  of 
Model B:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

opt pred pred
q

q q q q q

β

β β β

≡ − −

 = − + + + 

C β β q q

C X D X D Y Y D X D Y
   (C.10) 

 
9. The predicted correlation matrix pred

αβC  for the parameters α  of Model A and the 
parameters β  of Model B: 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
αβ

αβ α β β α β β

≡ − −

 = − + + + 

C α α β β

C X D X D Y Y D X D Y
  (C.11) 

 
10. The predicted correlation matrix pred

qαC  for the parameters α  of Model A and the 
responses q  of Model B:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
q

q q q q q

α

α α α

≡ − −

 = − + + + 

C α α q q

C X D X D Y Y D X D Y
  (C.12) 

 
11. The predicted correlation matrix pred

rβC  for the parameters β  of Model B and the 
responses r  of Model A:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
r

r r r r r

β

β β β

≡ − −

 = − + + + 

C β β r r

C X D X D Y Y D X D Y
  (C.13) 
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12. The predicted correlation matrix pred
rqC  for the responses r  of Model A and the 

responses q  of Model B:  
 

( )( )
( ) ( )

†

† † † †
11 12 21 22 .

pred pred pred
rq

rq r q q r q q

≡ − −

 = − + + + 

C r r q q

C X D X D Y Y D X D Y
   (C.14) 

 
Note also that, to first-order in response sensitivities, the covariance matrices of the 
computed responses arising from the uncertainties in the model parameters can be 
computed from Eqs. (2.39) and (2.40), respectively, to obtain: 
 

( ) ( ) †0 0 0 0

† † †

, ,

2 ,

C r r α β r r α β

S C S S C S S C S

comp c c
rr

r r r r r rα αα α α αβ β β ββ β

   ≡ − −   

= + +
    (C.15) 

 

( ) ( ) †0 0 0 0

† † †

, ,

2 ,

comp c c
qq

q q q q q qα αα α α αβ β β ββ β

   ≡ − −   

= + +

C q q α β q q α β

S C S S C S S C S
   

(C.16) 

 

( ) ( ) †0 0 0 0

† † † † †

, ,

.

comp c c
rq

r q r q r q r qα αα α α αβ α β αβ α β ββ β

   ≡ − −   

= + + +

C r r α β q q α β

S C S S C S S C S S C S
  (C.17) 

 
13. The 2χ -distribution is a measure of the deviation of a “true distribution” (in this 

case – the distribution of experimental responses) from the hypothetic one (in this 
case – a Gaussian). Recall that the mean and variance of x  are x n=  and

( )var 2x n= . The value of 2χ  is computed using Eq. (2.86) to obtain 
 

( ) ( ) ( ) ( ) ( ) ( )† † †2
11 12 222 .χ≡ = − − + − − + − −χ m χ m χ m χ m χ m χ m

C CV r r D r r r r D q q q q D q q
 (C.18) 

 
The value of CV  computed using Eq. (C.18) provides a very valuable quantitative indicator 
for investigating the agreement between the computed and experimental responses, 
measuring essentially the consistency of the experimental responses with the model 
parameters. For example, if CV  is much larger than the number of “degrees of freedom” in 
the inverse problem, then some violation of the “first-order, Gaussian” hypotheses 
underlying the derivation of Eqs. (C.1)-(C.17) may have occurred. On the other hand, an 
improbably small value of CV  would indicated that some uncertainties (in the parameters or 
measured responses) may have been overestimated. The value of CV  can thus be used as a 
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validation metric for measuring the consistency between the computed and experimentally 
measured responses.  
 
The following definitions were used in the above expressions: 
 

† †
r r rα αα α αβ β α≡ + −X C S C S C ,  † † ,q q qα αα α αβ β α≡ + −Y C S C S C     

† † † ,r r rβ αβ α ββ β β≡ + −X C S C S C   † † ,q q qβ βα α ββ β β≡ + −Y C S C S C    
† † † †

r r r r r rrα α β β≡ + −X C S C S C ,  † † † † †
r r q r q rqα α β β≡ + −Y C S C S C     

† † † † † ,q q r q r rqα α β β≡ + −X C S C S C   † † † † .q q q q q qqα α β β≡ + −Y C S C S C     
 

1 1 † 1
11 22rr rr rq rq rr

− − −≡ +D D D D D D D , 1
12 22rr rq

−≡ −D D D D ,     
† † 1
12 22 rq rr

−≡ −D D D D ,   ( ) 1† 1
22 qq rq rr rq

−−≡ −D D D D D ,    
 

( ) ( )† † † † † † † † † ,rr r r r r r r r r r r r r rrα αα α αβ β α β αβ α ββ β β α α β β≡ + − + + − − − +D S C S C S C S C S C S C C S C S C  

( ) ( )† † † † † † † † † ,rq r q q q r q q q r q r q rqα αα α αβ β α β αβ α ββ β β α α β β≡ + − + + − − − +D S C S C S C S C S C S C C S C S C  

( ) ( )† † † † † † † † † † † ,α αα α αβ β α β αβ α ββ β β α α β β≡ + − + + − − − + =qr q r r r q r r r q r q r rq rqD S C S C S C S C S C S C C S C S C D

( ) ( )† † † † † † † † † ,qq q q q q q q q q q q q q qqα αα α αβ β α β αβ α ββ β β α α β β≡ + − + + − − − +D S C S C S C S C S C S C C S C S C  
 

( ) ( ) ( ) ( )0 0 0 0 0 0 0 0, , ; , , .d c m d c m≡ − ≡ −r α β r α β r q α β q α β q     
 
 
 
 

3. PREVIOUS METHODS FOR SOLVING INVERSE 
PROLEMS 

 
Section 3.1 through 3.4 will review the salient features of the most important methods that 
have been used in various application fields, including radiation transport, for 
“regularizing” inverse problems.   
 
 

3.1 The Levenberg-Marquardt (LM) Method 
 

The Levenberg-Marquardt method [] approximately solves inverse problems by minimizing 
the following functional: 
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     (LM) 

 
where ,0dM  denotes a measured quantity for measurement ( )1,...,=d d D , ,0σ d  denotes 

the associated statistical standard deviation associated with measurement d, and ( )dM u  
denotes the value of the computed quantity, using nominal (“postulated”) values for the 
vector ( )1,...,= Nu uu  of model parameters (sources, material densities, etc.). The minimum 

of Eq. (3.LM) is obtained by computing the “updated” parameter values ( )1 ,...,=up up up
Nu uu  

such that they satisfy the condition 
 

( )
( )1

2
2

,...,

0, 1,..., .χχ
 ∂

∇ = → = = ∂ 
up

up up
N

k u u

k N
uu

0      

 
Bledsoe et al [] used the LM-method to identify shield materials, material density, and 
source compositions in one- and two-dimensional inverse radiation transport problems. 
 

3.2 Tichonov’s Method 
 

The “Tichonov solution” to a problem of the form  
 

Ax = b        
 
with “noisy” (uncertain or unknown) parameters b  is defined as the solution to the 
minimization problem of the following sum of “squared 2-norms”: 
 

{ }2 22
2 2

min λ− +
x

Ax b x ,     (T) 

where 
 

(i) The term 2

2
−Ax b  measures the “goodness of fit“, i.e., how well the solution x  

predicts the given noisy data b . If this term is too large, then x  cannot be 
considered to be a „good“ solution because it does not “solve the problem”. 
Intuitively, on the other hand, if this term is smaller than the average size of the 
errors in the data b , then x  would be „fitting“ the “noise” in the data. 

(ii) The term 2

2
x  measures the regularity of the solution. The incorporation of this 

term is based on the intuitive knowledge that the “naïve” solution is dominated 
by high-frequency components with large amplitudes, and the hope is that most 
(if not all) of these components could be suppressed by controlling the 2-norm 
of x .   
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(iii) The balance between the above terms is controlled in Eq. (T) by the parameter 
2λ , with 0λ > . The larger the positive parameter λ , the more weight is given 

to the solution’s smoothness. On the other hand, as 0λ → , the more weight is 
given to fitting the noisy data, so the solution tends to the less regular (noisy) 
“naïve” solution. 

 

3.3 Bayesian and Functional Inverse Least-Squares Methods  
 
As has been discussed in the Introduction, inverse problems are mathematically ill-posed, 
so their solutions are afflicted by existence, uniqueness, and stability difficulties. Therefore, 
naïvely inverting an operator to solve an inverse problem is usually a poor strategy. Instead, 
inverse problems are casts into a probabilistic framework, as has been described in Section 
2 while reviewing Cacuci’s method (2014). Using Bayes’ theorem  
 

( ) ( ) ( ), ,p hypothesis data I p data hypothesis I p hypothesis I ,   (B) 
 
probabilistic methods represent the input as a range of possible values and an 
accompanying probability of observing each of those values, and returning a range of 
possible values for the unknowns. In the above (un-normalized) relation, the “hypothesis” 
represents the unknowns of the system, the “data” represents measurements taken to 
resolve the values of the unknowns, and all additional prior knowledge is represented by 
the “information” I. As is well known, the three probability distributions in Eq. (B) are as 
follows:  

(i) ( )p hypothesis I  represents the prior information about the hypothesis based 
only on other information I, before considering the data; 

(ii) ( ),p data hypothesis I  denotes the likelihood, which quantifies how well the 
data agrees with a given hypothesis; 

(iii) ( ),p hypothesis data I  denotes the posterior distribution, representing the 
updated probability for the hypothesis after having assimilated the information 
in the data. 

 
Jarman et al (2011) applied directly Bayes’ theorem to localize radiation sources, using a 
parametrization of the radiation source distribution as the “hypothesis”, and radiation and 
particle detector measurements as the “data”.  
 
The exact posterior distribution is not available except perhaps in trivially simple problems. 
Therefore, the posterior distribution is evaluated to obtain posterior (“predicted”) means 
and covariances. If the distributions are Gaussian, the evaluation of the posterior amounts 
to solving a least-squares problem in which the predicted parameters are obtained as the 
solution that minimizes a “misfit” functional (also called the “cost” functional, “objective” 
functional, “least-squares” functional, “chi-squared” functional). For example, Tarantola 
(2005) minimizes the following least-squares functional  
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min ,− −

− + −

   = − − + − −          

obs priorD M

obs D obs prior M prior

m

m

g m d m m

g m d C g m d m m C m m
(FILS-T) 

 
where 
 

(i) The a priori information that the (unknown) model m  is a sample of a known 
Gaussian probability density whose mean is priorm  and whose covariance matrix 
is MC . The probability density is assumed to be a priori in the sense that it is 
independent of the measurements on the observable parameters d  (considered 
below). 

(ii) A relation of the form ( ) =g m d  that solves the „forward problem“ (i.e., that 
predicts the values of the observable parameters d which should correspond to 
the model m ). This theoretical prediction is assumed to be “perfect” (i.e., free 
of any errors).  

(iii) Measurements of the observable parameters d  that can be represented by a 
Gaussian probability density whose mean is obsd  and whose covariance matrix 
is DC .  

 
The solution to the above minimization problem yields [Tarantola, 2005]:  
 

1. The “best-estimate” parameter values, m , in the form 
 

( ) ( )1† † ,
−

= + + − prior M M D obs priorm m C G GC G C d Gm   (FILS-T.1) 
 

2.  The corresponding “best-estimate” predicted covariance matrix  
 

( ) 1† † ,
−

= − +

M M M M D MC C C G GC G C GC     (FILS-T.2) 
 
where G  represents the matrix of first-order derivatives with elements { }∂ ∂i jg m . 

3. The “goodness of fit” 2χ −FILS T , which measures the degree of consistency between 
the model and the observations,  of the form  
 

( ) ( ) ( )1†2 † .χ
−

− = − + −FILS T prior obs M D prior obsGm d GC G C Gm d  (FILS-T.3) 
 

It is important to note that the method above has many similarities with the state-of-the-art 
methods for data assimilation in the earth and atmospheric sciences [see, e.g., Refs. ]. The 
FILS-T method, as well as the considerably more sophisticated method of Cacuci and 
Ionescu-Bujor (2012), were used by Hykes and Azmy (2014) for several radiation source 
mapping problems.  
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4. COMPARATIVE DISCUSSION AND CONCLUSIONS 
 
It is clear from the presentation in Sections 2 and 3 that the Levenberg-Marquardt method 
is not only the oldest (chronologically) but also the least sophisticated and possibly the 
easiest to apply. Tichonov’s method represents the next level of complexity and 
sophistication. Comparing Eq. (LM) with Eq. (T), it becomes apparent that the first term in 
Eq. (T) subsumes elements of the LM-method, bur has an additional term that controls the 
solution’s smoothness. When implemented correctly, Tichonov’s method provides 
convexity and compactness in the problem. However, even when done correctly, 
Tichonov’s method actually changes the original problem into new ones (depending on the 
value of the parameter 2λ ), and solutions to the new problems may not be close to those of 
original problem. Moreover, because of the discretionary user-parameter 2λ , it is not 
possible to compute quantitatively the error between the true, but actually unknown 
solution and the “regularized” solution.  
 
Comparing Eq. (FILS-T) to Eq. (T), indicates that both expressions have similar terms, but 
the FILS-T functional contains the actual covariance matrices for modeling the respective 
uncertainties, while Tichonov’s method contains the arbitrary parameter 2λ  in their stead. 
In addition, the FILS-T method provides a “goodness of fit” metric, 2χ −FILS T , which no other 
method, except for Cacuci’s method, provides. 
 
Cacuci’s method can be compared to the FILS-T method by comparing Eq. (2.29) to Eq. 
(FILS-T). Clearly, Cacuci’s method is considerably more comprehensive than the others, 
treating efficiently and explicitly coupled multi-physics systems. In fact, even when 
reduced to a single multi-physics system, Cacuci’s method is more general than all of the 
other methods, comprising them as particular cases (see Appendix A), which are 
reproduced below, for convenience:  
 

( ) ( )10 † † † † ,αα α α α αα α α α α α

−
 = − − − − + − 

pred c m
r r r r r r r r rrα α C S C S C S S C C S C r r  (C.1a) 

 

( ) ( )1† † † † † ,α α α αα α α α α α

−
 = − − − − + − 

pred m c m
r r rr r r r r r r rrr r C S C S C S S C C S C r r  (C.3a) 

 

( ) ( )†1† † † † † ,αα αα αα α α α αα α α α α α αα α α

−
 = − − − − + − 

pred
r r r r r r r r rr r rC C C S C S C S S C C S C C S C   (C.5a) 

 

( ) ( )†1† † † † † † †
α α α αα α α α α α α α

−
 = − − − − + − 

pred
rr rr r r rr r r r r r r rr r r rrC C C S C S C S S C C S C C S C ,      (C.6a) 

 

( ) ( )†1† † † † † † .α α αα α α α αα α α α α α α α

−
 = − − − − + − 

pred
r r r r r r r r r r rr r r rrC C C S C S C S S C C S C C S C     (C.7a) 

 

( ) ( )†2 .χ≡ = − −χ m χ m
C C rrV r r D r r     (C.18a) 
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The following features become apparent by comparing the above results with the results in 
Eqs. (FILS-T.1) -(FILS-T.3): 
 

(iii) Cacuci’s method calibrates simultaneously all of the model parameters as well 
as the model responses. In contradistinction, the FILS-T method (as well as all 
of the other methods used thus far) calibrates only the model responses. 
Therefore, even for a single model, Cacuci’s method yields additional results 
[e.g., Eqs. (C.3a) and (C.6a), above] by comparison to all of the other methods 
currently available. 

(iv) Cacuci’s method takes into account correlations between model parameters and 
model responses. No other method has this capability. Therefore, Cacuci’s 
method yields predicted covariance matrices between parameters and responses, 
cf. Eq. (C.7a), above, for a single model. Note that after having applied Cacuci’s 
method to assimilate the experimentally available information, the responses 
and parameters will become correlated, even if they were uncorrelated initially; 
in other words, 0α ≠pred

rC  even if 0α =rC .  
(v) Setting 0α =rC  (i.e., assuming no prior correlations among the model’s 

parameters and responses) in Cacuci’s results for a single model reduce to those 
of the FILS-T method. Specifically, when 0α =rC , we note that: Eq. (C.1a) = 
Eq. (FILS-T.1); Eq. (C.6a) = Eq. (FILS-T.2), Eq. (C.18a) = Eq. (FILS-T.3).  

 
The discussion above highlights the fact that Cacuci’s methodology (2012) for “predictive 
modeling of coupled multi-physics systems” provides the most comprehensive methodology 
to date for analyzing inverse problems in the presence of computational and experimental 
uncertainties. This methodology enables predictive modeling for coupled multi-physics 
systems, taking fully into account the coupling terms between the systems but using only 
the computational resources that would be needed to perform predictive modeling on each 
system separately. The methodology uses the maximum entropy principle to construct an 
optimal approximation of the unknown a priori distribution for the a priori known mean 
values and covariances characterizing the parameters and responses for both multi-physics 
models. This approximate a priori distribution is combined using Bayes’ theorem with the 
“likelihood” provided by the two multi-physics simulation models. Subsequently, the 
posterior distribution is evaluated using the saddle-point method to obtain analytical 
expressions for the optimally predicted values for the parameters and responses of both 
multi-physics models, along with corresponding reduced uncertainties for both the model 
parameters and responses. 
 
Noteworthy, Cacuci’s methodology for coupled systems is constructed such that the 
systems can be considered sequentially rather than simultaneously, while preserving 
exactly the same results as if the systems were treated simultaneously. Consequently, very 
large coupled multi-physics systems, which could perhaps exceed the available 
computational resources if treated simultaneously, can be treated with Cacuci’s 
methodology sequentially and without any loss of generality or information, requiring just 
the resources that would be needed if the systems were treated sequentially. This feature 
enables the treatment of very large systems which would currently exceed the 
computational resources available if treated with conventional data assimilation procedures. 
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In particular, Cacuci’s methodology would be ideally suited for performing large-scale 
coupled neutron-gamma inverse transport problems, in which the neutron and, respectively, 
the gamma transport computations would be performed using distinct computational tools.  
 
 
 
 

REFERENCES 
 
Bledsoe, K.C., Favorite, J. A., and Aldemir, T., 2011, “Using the Levenberg-Marquardt 
Method for Solutions of Inverse Transport Problems in One- and Two-Dimensional 
Geometries”, Nucl. Techn., 176, 106. 

Cacuci, D.G., 1981a, “Sensitivity theory for nonlinear systems: I. Nonlinear functional 
analysis approach”. J., Math. Phys. 22, 2794–2802. 
 
Cacuci, D.G., 1981b, “Sensitivity theory for nonlinear systems: II. Extensions to additional 
classes of responses”., J. Math. Phys. 22, 2803–2812. 
 
Cacuci, D.G., 2003, Sensitivity and Uncertainty Analysis: Theory, Vol. 1, Chapman & 
Hall/CRC, Boca Raton. 
 

Cacuci, D.G., 2014, “Predictive modeling of coupled multi-physics systems: I. Theory”, 
Ann. Nucl. Energy, 70, 266–278.  

 
Cacuci, D.G., Badea, M. C., 2014, “Predictive Modeling of Coupled Multi-Physics 
Systems: II. Illustrative Application to Reactor Physics,” Annals of Nuclear Energy, 70, 
279 –291. 
 
Cacuci, D.G., Ionescu-Bujor, M., 2010, “Model Calibration and Best-Estimate Prediction 
Through Experimental Data Assimilation: I. Mathematical Framework,” Nucl. Sci. Eng., 
165, 18-44. 
 
Cacuci, D.G., Navon, M.I., Ionescu-Bujor, M., 2013, Computational Methods for Data 
Evaluation and Assimilation. Chapman & Hall/CRC, Boca Raton. 
 

Faragó, I., Havasi, Á., and Zlatev, Z., (Editors), 2014, Advanced Numerical Methods for 
Complex Environmental Models: Needs and Availability, Bentham Science Publishers. 

 



24 

Hykes, J. M., and Azmy, Y. Y., 2014, “Radiation Source Mapping with Bayesian Inverse 
Methods,” Nucl. Sci. Eng.,   

 

Jarman, K.D., Miller, E.I, Wittman, R. S., and Gesh, C.J.,2011, “Bayesian Radiation Source 
Localization”, Nuclear Technology, 175, 326–334. 
 

Levenberg, K., 1944, “A method for the solution of certain nonlinear problems in least 
squares”, Quart. Appl. Math., 2, 164–168. 

 

Marquardt, D.W., 1963, “An algorithm for least-squares estimation of nonlinear 
parameters,” J. Soc. Indust. Appl. Math., 11, 431–441. 

 
Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation, 
Society for Industrial & Applied Mathematics. 
 
Tichonov, A. N., 1963, “Regularization of Non-Linear Ill-Posed Problems”, Doklady 
Akademii Nauk, 49(4). See also: A. N. Tichonov, “Solution of Incorrectly Formulated 
Problems and the Regularization Method”, Soviet Math. Doklady, 4, 1035 (1963).  

 
 

 

APPENDIX A: EXPLICIT RESULTS FOR CACUCI’S 
INVERSE PREDICTIVE MODELING METHODOLOGY 

 
 
Note: The numbering of equations in this Appendix connects without interruption to the 
numbering of equations in Section 2, since the equations in this Appendix are the logical 
continuation of Cacuci’s inverse modeling methodology presented in Section 2. 
 
To first-order in the parameter variations the model responses r (for Model A) and q  (for 
Model B) would be linear functions of the parameter variations of the form 
 

( ) ( ) ( )0 0 0 0, ,c
r r higher order termsα β= + − + − +r r α β S α α S β β   (2.39) 

 
( ) ( ) ( )0 0 0 0, .c

q q higher order termsα β= + − + − +q q α β S α α S β β   (2.40) 
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In particular, for the predicted parameter values predα  and predβ , the responses predicted by 
the linearized models would be given the following expressions: 
 

( ) ( ) ( )0 0 0 0, ,pred c pred pred
r r higher order termsα β= + − + − +r r α β S α α S β β  (2.41) 

 
( ) ( ) ( )0 0 0 0, .pred c pred pred

q q higher order termsα β= + − + − +q q α β S α α S β β  (2.42) 
 
The following intermediate steps are now performed in order to eliminate the Lagrange 
multipliers: (i) replace predr  and predq  from Eqs. (2.41) and (2.42) into Eqs. (2.35) through 
(2.38) to obtain a system of four equations for the four unknowns ( ), , ,pred pred

r qα β λ λ ; (ii) 

from this system, eliminate the quantities ( )0pred −α α  and ( )0pred −β β ; and (iii) re-arrange 
the resulting equations to obtain the following coupled equations for the Lagrange 
multipliers:  
 

( )
( )

0 0

0 0

,
,

,

d
rr rq r

d
qr qq q

      =          

r α βD D λ
D D λ q α β

    (2.43) 

 
where the block-matrix of known quantities on the left-side, and the block-vector of known 
quantities on the right-side of the above equations are defined as follows:  
 

( ) ( )† † † † † † † † † ,rr r r r r r r r r r r r r rrα αα α αβ β α β αβ α ββ β β α α β β≡ + − + + − − − +D S C S C S C S C S C S C C S C S C
(2.44) 

 
( ) ( )† † † † † † † † † ,rq r q q q r q q q r q r q rqα αα α αβ β α β αβ α ββ β β α α β β≡ + − + + − − − +D S C S C S C S C S C S C C S C S C

(2.45) 
 

( ) ( )† † † † †

† † † † † † ,
qr q r r r q r r r

q r q r rq rq

α αα α αβ β α β αβ α ββ β β

α α β β

≡ + − + + −

− − + =

D S C S C S C S C S C S C

C S C S C D
   (2.46)  

 
( ) ( )† † † † † † † † † ,qq q q q q q q q q q q q q qqα αα α αβ β α β αβ α ββ β β α α β β≡ + − + + − − − +D S C S C S C S C S C S C C S C S C

    
(2.47) 

 
( ) ( ) ( ) ( )0 0 0 0 0 0 0 0, , ; , , .d c m d c m≡ − ≡ −r α β r α β r q α β q α β q   (2.48) 

 
Note that the vectors ( )0 0,dr α β  and ( )0 0,dq α β  measure the differences (“deviations”) 
between the computed and measured responses. Note also that the matrices defined in Eqs. 
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(2.44) through (2.47) have the following dimensions: ( )dim rr r rN N= ×D ; 

( )dim rq r qN N= ×D ; ( )†dim qr rq q rN N= = ×D D ; and ( )dim qq q qN N= ×D . 
 
(i) The matrix rrD  is actually the covariance matrix of the vector of response “deviations” 
for Model A, i.e.,  

 

( ) ( ) †0 0 0 0, , ;d d
rr

 =  D r α β r α β     (2.49) 

 
 
(ii) The matrix qqD is actually the covariance matrix of the vector of response “deviations” 
for Model B, i.e.,  

 

( ) ( ) †0 0 0 0, , ;D q α β q α βd d
qq

 =       (2.50) 

 
(iii) The matrix †

rq rq=D D  is actually the correlation matrix between the vector of response 
“deviations” for Model A and Model B, i.e.,  

 

( ) ( ) ( ) ( )† †0 0 0 0 0 0 0 0, , ; , , .d d d d
rq qr

   = =   D q α β r α β D r α β q α β   (2.51) 

 
The Lagrange multipliers rλ  and qλ  are obtained by solving Eq. (2.41), which requires the 
inverse of the matrix 
 

†
rr rq

rq qq

 
≡  

 

D D
D

D D
      (2.52) 

 
The above matrix can be inverted by partitioning it to obtain  
 

11 121
†
12 22

,−  
≡  

 

D D
D

D D
      (2.53) 

where 
1 1 † 1

11 22rr rr rq rq rr
− − −≡ +D D D D D D D ,     (2.54) 

1
12 22rr rq

−≡ −D D D D ,      (2.55) 
† † 1
12 22 rq rr

−≡ −D D D D ,      (2.56) 

( ) 1† 1
22 qq rq rr rq

−−≡ −D D D D D .     (2.57) 
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After obtaining the expressions of rλ  and qλ  by solving Eq. (2.43), they are replaced in 
Eqs. (2.35)-(2.38) to obtain the following expressions for the optimally predicted values of 
model parameters and responses: 
 

( ) [ ] ( )0 † 0 0 0 0
11 12 12 22, ,pred d d

α α α α = − + − + α α X D Y D r α β X D Y D q α β , (2.58) 
 

( ) ( )0 † 0 0 0 0
11 12 12 22, ,pred d d

β β β β   = − + − +  β β X D Y D r α β X D Y D q α β , (2.59) 
 

( ) [ ] ( )† 0 0 0 0
11 12 12 22, ,pred m d d

r r r r = − + − + r r X D Y D r α β X D Y D q α β , (2.60) 
 

( ) ( )† 0 0 0 0
11 12 12 22, ,pred m d d

q q q q   = − + − +  q q X D Y D r α β X D Y D q α β , (2.61) 
 
where  

† †
r r rα αα α αβ β α≡ + −X C S C S C ,      (2.62) 
† † ,q q qα αα α αβ β α≡ + −Y C S C S C       (2.63) 

† † † ,r r rβ αβ α ββ β β≡ + −X C S C S C       (2.64) 
† † ,q q qβ βα α ββ β β≡ + −Y C S C S C      (2.65) 

† † † †
r r r r r rrα α β β≡ + −X C S C S C ,      (2.66) 

† † † † †
r r q r q rqα α β β≡ + −Y C S C S C ,      (2.67) 

† † † † † ,q q r q r rqα α β β≡ + −X C S C S C       (2.68) 
† † † † .q q q q q qqα α β β≡ + −Y C S C S C       (2.69) 

 
The computations of the optimal predicted covariance matrices for the responses and 
parameters involve tedious. We present below just the final results:  
 

14. The predicted optimal covariance matrix pred
ααC  for the parameters α  of Model A:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
αα

αα α α α α α α

≡ − −

 = − + + + 

C α α α α

C X D X D Y Y D X D Y
  (2.70) 

 
15. The predicted covariance matrix pred

rrC  for the responses r  of Model A:  
 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
rr

rr r r r r r r

≡ − −

 = − + + + 

C r r r r

C X D X D Y Y D X D Y
   (2.71) 
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16. The predicted correlation matrix pred
rαC  for the parameters α  and r  responses of 

Model A:  
 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
r

r r r r r

α

α α α

≡ − −

 = − + + + 

C α α r r

C X D X D Y Y D X D Y
  (2.72) 

 
17. The predicted covariance matrix pred

ββC  for the parameters β  of Model B:  
 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
ββ

ββ β β β β β β

≡ − −

 = − + + + 

C β β β β

C X D X D Y Y D X D Y
  (2.73) 

 
18. The predicted covariance matrix pred

qqC  for the responses q  of Model B:  
 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
qq

qq q q q q q q

≡ − −

 = − + + + 

C q q q q

C X D X D Y Y D X D Y
   (2.74) 

 
19. The predicted correlation matrix pred

qβC  for the parameters β  and the responses q  of 
Model B:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

opt pred pred
q

q q q q q

β

β β β

≡ − −

 = − + + + 

C β β q q

C X D X D Y Y D X D Y
   (2.75) 

 
20. The predicted correlation matrix pred

αβC  for the parameters α  of Model A and the 
parameters β  of Model B: 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
αβ

αβ α β β α β β

≡ − −

 = − + + + 

C α α β β

C X D X D Y Y D X D Y
  (2.76) 

 
21. The predicted correlation matrix pred

qαC  for the parameters α  of Model A and the 
responses q  of Model B:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
q

q q q q q

α

α α α

≡ − −

 = − + + + 

C α α q q

C X D X D Y Y D X D Y
  (2.77) 
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22. The predicted correlation matrix pred

rβC  for the parameters β  of Model B and the 
responses r  of Model A:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 ;

pred pred pred
r

r r r r r

β

β β β

≡ − −

 = − + + + 

C β β r r

C X D X D Y Y D X D Y
  (2.78) 

 
23. The predicted correlation matrix pred

rqC  for the responses r  of Model A and the 
responses q  of Model B:  

 

( )( )
( ) ( )

†

† † † †
11 12 21 22 .

pred pred pred
rq

rq r q q r q q

≡ − −

 = − + + + 

C r r q q

C X D X D Y Y D X D Y
   (2.79) 

 
Note also that, to first-order in response sensitivities, the covariance matrices of the 
computed responses arising from the uncertainties in the model parameters can be 
computed from Eqs. (2.39) and (2.40), respectively, to obtain: 
 

( ) ( ) †0 0 0 0

† † †

, ,

2 ,

C r r α β r r α β

S C S S C S S C S

comp c c
rr

r r r r r rα αα α α αβ β β ββ β

   ≡ − −   

= + +
    (2.80) 

 

( ) ( ) †0 0 0 0

† † †

, ,

2 ,

comp c c
qq

q q q q q qα αα α α αβ β β ββ β

   ≡ − −   

= + +

C q q α β q q α β

S C S S C S S C S
   

(2.81) 

 

( ) ( ) †0 0 0 0

† † † † †

, ,

.

comp c c
rq

r q r q r q r qα αα α α αβ α β αβ α β ββ β

   ≡ − −   

= + + +

C r r α β q q α β

S C S S C S S C S S C S
  (2.82) 

 
 

Construction of the A Posteriori Predicted Consistency Metrics 
for Model Validation 
 
At the saddle-point ( ), , ,pred pred pred predα β r q , the functional ( ), , ,P α β r q defined in Eq.(2.29),  
and the first-order computational model equations become  
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†0 0

0 0
min 1

pred pred

pred pred

pred m pred m

pred m pred m

P −

   − −
   

− −   =
   − −
      − −   

α α α α
β β β β

C
r r r r
q q q q

    (2.83) 

 
( ) ( ) ( ) ( )0 0 0 0, ,pred c pred pred c pred pred

r rα β= + − + − =r r α β S α α S β β r α β  (2.84) 
 

( ) ( ) ( ) ( )0 0 0 0, ,pred c pred pred c opt opt
q qα β= + − + − =q q α β S α α S β β q α β  (2.85) 

 
The values ( ), , ,pred pred pred predα β r q  can be eliminated from the expression of by using Eqs. 
(2.84) and (2.85) together with Eq. (2.32) to obtain  
 

( ) ( )
( )
( )

0 0
† † 11 12min

† 0 0
12 22

,
,

,

d

d d

d
P V

     ≡ =         

r α βD D
r q

D D q α β
.    (2.86) 

 
Note that the quadratic form on the rightmost-side of Eq. (2.86) is distributed according to a 

2χ  distribution with ( )r qN N+  degrees of freedom. Note that V can be evaluated directly 
from the originally given data (i.e., from given parameters and responses, together with 
their original uncertainties), once the response sensitivities have been computed by either 
forward or adjoint methods (see, e.g., Cacuci 1981a, 1981b, 2003). Recall that the 2χ    
(chi-square) distribution with n  degrees of freedom of the continuous variable 

, 0 ,x x≤ < ∞  is defined as 

 

( ) ( ) ( )2 2 1 2
2

1 , 0, 1, 2, .
2 2

n x
nP x x dx dx x e dx x n

n
χ − −< < + = > =

Γ
>   (2.87) 

 
The 2χ -distribution is a measure of the deviation of a “true distribution” (in this case – the 
distribution of experimental responses) from the hypothetic one (in this case – a Gaussian). 
Recall that the mean and variance of x  are x n=  and ( )var 2x n= . The value of 2χ  is 
computed using Eq. (2.86) to obtain 
 

( ) ( ) ( ) ( ) ( ) ( )† † †2
11 12 222 .c m c m c m c m c m c mV c≡ = − − + − − + − −r r D r r r r D q q q q D q q

 (2.88) 
 
The value of 2χ  computed using Eq. (2.88) provides a very valuable quantitative indicator 
for investigating the agreement between the computed and experimental responses, 
measuring essentially the consistency of the experimental responses with the model 
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parameters. The value of V  can be used as a validation metric for measuring the 
consistency between the computed and experimentally measured responses.  
 
 

DISCUSSION AND PARTICULAR CASES 
 
The derivations in the previous section were carried out in the response-space because in 
large-scale practical problems, the number of measured responses is smaller than the 
number of model parameters. The only matrix inversion required in the response space is 
the computation of 1−D in Eq. (2.53), which is of size ( )2

r qN N+ . If this matrix is too large 
to be inverted directly, as has been assumed in this work, its inversion can be performed by 
partitioning it as shown in Eqs. (2.54) – (2.57). The inversion of D  by partitioning requires 
only the inversion of the matrix rrD of size rN , and the inversion of the matrix 

( )† 1
qq rq rr rq

−−D D D D , which is of size qN .  
 
Cacuci’s predictive modeling methodology presented in Section 2 can also be used if one 
starts with the data assimilation and model calibration for one of the Models (either Model 
A or Model B), and subsequently couples the second model to the first one. Without the 
PMCMPS methodology, when the second Model (e.g., Model B) is coupled to the first one 
(e.g., Model A), both models would have to be calibrated anew, simultaneously, and the 
work performed initially for calibrating Model A alone would become useless. Using this 
methodology, however, the work initially performed for calibrating Model A would not 
become useless, but would simply be augmented by the specific additional terms arising 
from Model B, thus performing predictive modeling of coupled multi-physics systems in a 
sequential and more efficient way.  
 
It is also important to note that the explicit separation, in Eqs. (2.85) through (2.88), of 
contributions from Model A and Model B to the overall validation metric V  enables the 
explicit evaluation of adding or subtracting measured responses. As is well known, large 
contributions to V  indicate that the respective responses may be inconsistent or discrepant, 
and such discrepancies warrant further investigations.   
 
It often happens in practice that, after one has already performed a model calibration, e.g., 
using Model A (involving Nα  model parameters nα  and rN  experimentally measured 
responses ir ), additional measurements may become available and/or additional 
parameters (which were not considered in the initial data assimilation/model 
calibration/predictive modeling procedure) may need to be taken into account (e.g., model 
parameters for which quantified uncertainties became available only after the initial data 
assimilation/model calibration/predictive modeling procedure was already performed), all 
for the same Model A. The predictive modeling methodology presented in Section 2 can 
also be used as a most efficient procedure for systematically adding or subtracting 
responses and/or parameters for performing a subsequent data assimilation/model 
calibration/predictive modeling procedure on the same model. In this interpretation/usage 
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of the predictive modeling methodology presented in Section 2, Model B is considered to 
be identical to Model A (i.e., Model B and Model A represent the same physical phenomena, 
described by identical mathematical equations). In this context, “efficient” means “without 
wasting the information already obtained in previous predictive modeling computations 
involving a different (higher or lower) number of responses and/or model parameters.” As 
will be shown in the next Sub-section, the mathematical methodology for performing data 
assimilation/model calibration/predictive modeling by adding and/or subtracting 
measurements (responses) and/or model parameters to the same model-without needing to 
discard previous predictive modeling computations-actually amounts to considering 
particular cases of Cacuci’s general predictive modeling methodology presented in Section 
2.   
 
 

Particular Cases 
 
 

a) “One-Model” Case: Predictive modeling solely for Model A, involving Nα  

model parameters nα  and rN  experimentally measured responses ir  

In this case, Eq. (2.44) through (2.47) become 
 

† † †, , , .rq qr qq rr r r r r r r rrα αα α α α α α= = = = − − +D 0 D 0 D 0 D S C S S C C S C  (A.1) 
 

† † †, 0, , .r r r r r rr rα αα α α α α α≡ − ≡ ≡ − =X C S C Y X C S C Y 0    (A.2) 
 
Furthermore, the predictive modeling equations (2.58) through (2.79) reduce to the final 
results presented originally by Cacuci and Ionescu-Bujor (2010), namely: 
 

( )[ ] ( )10 † 0 ,pred d
r r rrαα α α

−= − −α α C S C D r α     (A.3) 
 

( )[ ] ( )1† † 0 ,pred m d
r r rr rrα α

−= − −r r C S C D r α     (A.4) 
 

( )[ ] ( )†1† † ,pred
r r rr r rαα αα αα α α αα α α

−= − − −C C C S C D C S C   (A.5) 
 

( )[ ] ( )†1† † † † ,pred
rr rr r r rr rr r r rrα α α α

−= − − −C C C S C D C S C    (A.6) 
 

( )[ ] ( )†1† † † .pred
r r r r rr r r rrα α αα α α α α

−= − − −C C C S C D C S C   (A.7) 
 
Note that if the model is perfect (i.e., αα =C 0  and rα =C 0 ), then Eqs. (A.3) through (A.7) 

would yield 0pred =α α  and ( )0 0,pred c=r r α β , predicted “perfectly," without any 
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accompanying uncertainties (i.e., pred
rr =C 0 , pred

αα =C 0 , pred
rα =C 0 ). In other words, for a 

perfect model, Cacuci’s methodology predicts values for the responses and the parameters 
that coincide with the model’s values (assumed to be perfect), and the experimental 
measurements would have no effect on the predictions (as would be expected, since 
imperfect measurements could not possibly improve the “perfect” model’s predictions).  
 
On the other hand, if the measurements were perfect, (i.e., rr =C 0  and rα =C 0 ), but the 
model were imperfect, then Eqs. (A.3) through (A.7) would yield  

( )10 † † 0 ,pred d
r r rαα α α αα α

−
 = −  α α C S S C S r α  

1† †pred
r r r rαα αα αα α α αα α α αα

−
 = −  C C C S S C S S C , 

pred m=r r , pred
rr =C 0 , pred

rα =C 0 . In other words, in the case of perfect measurements, the 
predicted values for the responses would coincide with the measured values (assumed to be 
perfect), but the model’s uncertain parameters would be calibrated by taking the 
measurements into account to yield improved nominal values and reduced parameters 
uncertainties. 
 
 

b) Predictive modeling for Model A with β  additional parameters, but no 

additional responses 

 
In this case, Eq. (2.44) through (2.47) become 
 

, , ,rq qr qq= = =D 0 D 0 D 0      (A.8) 
 

( ) ( )† † † † †

† † † † .
rr r r r r r r r r

r r r r rr

α αα α αβ β α β αβ α ββ β β

α α β β

= + − + + −

− − +

D S C S C S C S C S C S C

C S C S C
  (A.9) 

 
† †
r r rα αα α αβ β α≡ + −X C S C S C ,      (A.10) 

 
† † † ,r r rβ αβ α ββ β β≡ + −X C S C S C       (A.11) 

 
† † † †

r r r r r rrα α β β≡ + −X C S C S C ,      (A.12) 
 

, , , , ,q r qα β≡ ≡ ≡ ≡ ≡X 0 Y 0 Y 0 Y 0 Y 0     (A.13) 
 

1 † †
11 12 12 12 22, , , , ,rr

−≡ = = = =D D D 0 D 0 D 0 D 0    (A.14) 
 

( )0 0 0
11 ,pred d

α= −α α X D r α β ,    (A.15) 
 

( )0 0 0
11 , ,pred d

β= −β β X D r α β     (A.16) 
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( )0 0

11 , ,pred m d
r= −r r X D r α β      (A.17) 

 
†

11 ,pred
αα αα α α= −C C X D X      (A.18) 

†
11 ,pred

rr rr r r= −C C X D X      (A.19) 
†

11 ,pred
r r rα α α= −C C X D X      (A.20) 

†
11 ,opt

ββ ββ β β= −C C X D X      (A.21) 
†

11 ,pred
αβ αβ α β= −C C X D X      (A.22) 

†
11 .pred

r r rβ β β= −C C X D X      (A.23) 
 
As the above expressions clearly demonstrate, the predictive modeling formulation in the 
“response space” (as has been developed in Section 2) allows the consideration of 
additional parameters for a model without increasing the size of the matrix rrD to be 
inverted. 
 
 

c) Predictive modeling for Model A with q additional responses, but no additional 

parameters 

 
In this case, Eq. (2.44) through (2.47) become 
 

( ) ( )† † † , ,rr r r r r r r rr d rr r rDim N Nα αα α α α α α= − − + ≡ = ×D S C S S C C S C C D  (A.24) 
 

( ) ( )† † † , ,rq r q r q r q rq rq r qDim N Nα αα α α α α α= − − + = ×D S C S S C C S C D   (A.25) 
 

( ) ( )† † † † , ,qr q r q r q r rq qr q rDim N Nα αα α α α α α= − − + = ×D S C S C S S C C D   (A.26) 
 

( ) ( )† † † , .qq q q q q q q qq qq q qDim N Nα αα α α α α α= − − + = ×D S C S S C C S C D  (A.27) 
 

†
r rα αα α α≡ −X C S C ,      (A.28) 

† ,q qα αα α α≡ −Y C S C       (A.29) 
, ,β β≡ ≡X 0 Y 0       (A.30) 
† †

r r r rrα α≡ −X C S C ,      (A.31) 
† † †

r r q rqα α≡ −Y C S C ,      (A.32) 
† † † ,q q r rqα α≡ −X C S C       (A.33) 
† † ,q q q qqα α≡ −Y C S C       (A.34) 
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( ) [ ] ( )0 † 0 0 0 0
11 12 12 22, , ,pred d d

α α α α = − + − + α α X D Y D r α β X D Y D q α β  (A.35) 
 

( ) [ ] ( )† 0 0 0 0
11 12 12 22, , ,pred m d d

r r r r = − + − + r r X D Y D r α β X D Y D q α β  (A.36) 
 

( ) ( )† 0 0 0 0
11 12 12 22, , ,pred m d d

q q q q   = − + − +  q q X D Y D r α β X D Y D q α β  (A.37) 
 

( ) ( )† † † †
11 12 21 22 ,pred

αα αα α α α α α α
 = − + + + C C X D X D Y Y D X D Y   (A.38) 

 
( ) ( )† † † †

11 12 21 22 ,pred
rr rr r r r r r r

 = − + + + C C X D X D Y Y D X D Y    (A.39) 

 
( ) ( )† † † †

11 12 21 22 ,pred
r r r r r rα α α α

 = − + + + C C X D X D Y Y D X D Y   (A.40) 

 
( ) ( )† † † †

11 12 21 22 ,pred
qq qq q q q q q q

 = − + + + C C X D X D Y Y D X D Y    (A.41) 

 
( ) ( )† † † †

11 12 21 22 ,pred
q q q q q qα α α α

 = − + + + C C X D X D Y Y D X D Y   (A.42) 

 
( ) ( )† † † †

11 12 21 22 ,pred
rq rq r q q r q q

 = − + + + C C X D X D Y Y D X D Y    (A.43) 

 
, , , .pred opt pred opt

r qαβ ββ β β= = = =C 0 C 0 C 0 C 0     (A.44) 
 
Note also that (to first-order in response sensitivities) the covariance matrices of the 
computed responses arising from the uncertainties in the model parameters become: 
 

( ) ( ) †0 0 0 0 †, , ,comp c c
rr r rα αα α

   ≡ − − =   C r r α β r r α β S C S    (A.45) 

 

( ) ( ) †0 0 0 0 †, , ,comp c c
qq q qα αα α

   ≡ − − =   C q q α β q q α β S C S    
(A.46) 

 

( ) ( ) †0 0 0 0 †, , .comp c c
rq r qα αα α

   ≡ − − =   C r r α β q q α β S C S    (A.47) 

 
 

APPENDIX B: DIRECT AND INVERSE RADIATION 
TRANSPORT PROBLEMS 
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The processes which neutrons and/or photons undergo while propagating through a 
medium are modeled by the linear integro-differential equation bearing Boltzmann’s name. 
The processes described by the Boltzmann equation include the scattering of neutrons 
and/or photons off nuclei, the capture of neutrons, the creation of neutrons through fission 
events, and the streaming of neutrons from one collision site to the next. The traditional 
mathematical formulation of the neutron transport equation is: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

4 0

4 0

1 , , , , , ,

, , , , ,

, , , , , , ,
4

t

s

p
f

E t E E t
v t

d dE E E E t

E
d dE E E E t Q E t

p

p

ϕ ϕ ϕ

ϕ

χ
ν ϕ

p

∞

∞

∂
+ ⋅∇ + Σ =

∂

′ ′ ′ ′ ′ ′Σ → →

′ ′ ′ ′ ′ ′+ Σ +

∫ ∫

∫ ∫

Ω r Ω, r r Ω

Ω r Ω Ω r Ω

Ω r r Ω r Ω

  (B.1) 

where ( ), , ,E tϕ r Ω denotes the neutron flux at time t , position r , direction Ω  , and kinetic 
energy E . The notation and quantities in Eq. (B.1) have their usual meaning: on the left 
side of Eq. Eq. (B.1), first term represents the time rate of change of the flux, the second 
term represents the net leakage rate out of an incremental volume dV , while the third term 
represents the collision rate in dV . On the right side of Eq. (B.1), the first term represents 
the “in-scattering” rate, the second term represents the rate of production of prompt 
neutrons through fissions, while the third term represents the rate at which neutrons are 
produced by flux-independent sources. For investigating processes in which the delayed 
neutrons are important, Eq. (B.1) is augmented by a term (on the right side) to account for 
their production, and additional equations to describe their decay. Delayed neutrons will not 
be involved in the transport processes considered here. Also, we do not consider here the 
“criticality problem”, for which Eq. (B.1) becomes an eigenvalue problem with a non-zero 
solution for the angular flux, in the absence of external sources. The integro-differential Eq. 
(B.1) becomes a well-posed problem by specifying an initial condition for the angular flux, 
i.e., 
 

( ) ( ), , ,0 , , , , 4 , 0iE E V Eϕ ϕ π=   ∈   ∈   < < ∞r Ω r Ω r Ω ,   (B.2) 
 
along with boundary conditions appropriate to the problem under consideration. The most 
frequently used boundary conditions for Eq. (B.1) are as follows: 

i) Specification of a boundary source ( ), , ,b
s E tϕ r Ω , representing particle fluxes 

that enter the physical system V  through its outer boundary V∂ . In this work, 
the volume V  will be assumed to be convex, so that particles that leak out of V  
cannot reenter through V∂ . Thus, the boundary flux ( ), , ,b

s E tϕ r Ω  is an 
external source, independent of the flux within the system, which must be 
specified for: all points on the system’s outer boundary s V∈∂r ; all (incoming) 
directions of flight pointing into the system 0,⋅ <  Ω n  where n  is the unit outer 
normal vector at s V∈∂r ); all energies and all times after the initial time. On the 
boundary, the angular flux is required to satisfy  
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( ) ( ), , , , , , , , 0, 0 , 0 .b
s s sE t E t V E tϕ ϕ=   ∈∂   ⋅ <   < < ∞ <r Ω r Ω r Ω n   (B.3) 

 
In particular, a “vacuum boundary condition” is specified by setting 0bϕ = .  

 
ii) The albedo boundary condition is used to relate the incoming flux with the 

known outgoing flux. This boundary condition is written as  
 

( ) ( ), , , , , , , , 0, 0 , 0 ,s s sE t E t V E tϕ βϕ ′=   ∈∂   ⋅ <   < < ∞ <r Ω r Ω r Ω n   (B.4) 
 

where ′Ω  represents the direction of the outgoing particle. The scalar β  takes 
the values 0 1β≤ ≤ , with 0β =  representing vacuum and 1β =  representing 
total reflection. Specular reflection corresponds to the case when 

( ) 0.and′ ′⋅ = − ⋅ ⋅ ⋅ =Ω n Ω n Ω Ω n  
 

iii) The white boundary condition is a reflective condition where all particles 
striking the boundary turn back into V  with an isotropic angular distribution. 
This boundary condition is written as 

 

( ) ( ) ( )
0

, , , , , , 0, 0 , 0 .s sE t E t d E tβϕ ϕ
π ′⋅ >

′ ′ ′ ′= ⋅ ,  ⋅ <   < < ∞ <∫
Ω n

r Ω Ω n r Ω Ω Ω n  (B.5) 

 
 

iv) The periodic boundary condition describes a system in which the flux on one 
boundary is equal to the flux on another parallel boundary in a periodic lattice 
grid. In this case 

 
( ) ( ), , , , , , 0 ,0 ,s sE t E t E tϕ ϕ= + ∆ ,   < < ∞ <r Ω r r Ω    (B.6) 

 
where ∆r  is the lattice pitch. 
 

v) Boundary conditions describing system symmetries (planar, spherical, 
cylindrical) dependent on the flux and which can be generally denoted in the 
form  

 
( ) ( ), , , ,E tϕ=   r r r Ω α x .      (B.8) 

 
where ( )α x  is a vector representing parameters (cross sections, number densities, etc.) that 
appear in the model and in defining the detector. Thus, the “direct problem” solves the 
“parameter-to-output” mapping that describes the “cause-to-effect” relationship in the 
particle transport process. 
 



38 

The transport equation for photons (gamma rays) has the same form as the neutron 
transport equation. Its stationary (time-independent) form is presented below, for future 
reference: 
 

( ) ( ) ( )

( ) ( ) ( )
4 0

, , ,

, , , , , , ,s

I I

d d I S E t
π

λ µ λ λ

λλ µ λ λ λ λ
λ

∞

⋅∇ + =

′ ′ ′ ′ ′ ′→ → +
′∫ ∫

Ω r Ω, r r Ω,

Ω r Ω Ω r Ω , r Ω
  (B.9) 

 
where ( ),I λr Ω,  denotes the radiation intensity (also called the doubly differential energy 

flux density) at position r , direction Ω  , and wave length λ . The quantity ( ),µ λr  denotes 
the total interaction coefficient (or attenuation coefficient, or macroscopic cross section), 
while the secondary production coefficient ( ), ,sµ λ λ′ ′→ →r Ω Ω  usually comprises only 
the three dominant photon-medium interactions, namely Compton scattering, pair 
production and photoelectric absorption, and is generally represented in the form 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , , , 2 , 1
4

, , , .
4

s c pp

ph ph

N
N

N
N
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In the above expression, ( )N r  denotes the atomic density of the medium at position r , and 
the spatial dependence of ppσ  (the pair production cross section), phσ  (the photoelectric 

absorption cross section), and ( ), ,phN λ λ′r  (the number of photons in unit wave length 
emitted per photon at wave length absorbed in a photoelectric interaction at r ) is due only 
o atomic composition variations. The transport equation (B.1) comprises several 
approximations which are customarily made when one is interested in the “dose” arising 
from the deposition of photon energy in the medium. The most important approximations 
concern the treatment of fluorescence radiation, bremsstrahlung and pair production. Thus, 
since fluorescence radiation is generally small both in energy and intensity, it is generally 
assumed that the entire energy of the photoelectric event is carried away by the 
photoelectron. Also, the neglect of bremsstrahlung implies that all kinetic energy of the 
secondary electrons is transferred directly to the medium. Such approximations ultimately 
imply that the energy is ultimately deposited in a different spatial location than would be 
predicted by a more rigorous computation. This observation is important in that it identifies 
a source of spatial error that would be present even if the transport equation were solved 
with perfect numerical accuracy.   
 
Many measurement problems are “inverse” to the direct problem in that they seek to 
determine (from measurements) the properties of the medium (i.e., various cross sections), 
or the properties of the source ( ), , ,Q E tr Ω , and/or the size of the medium on its 
boundaries. Some authors further group such inverse problems into “invasive”, when the 
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interior flux ( ), , ,E tϕ r Ω  is accessible for measurements, as opposed to “non-invasive” 
ones, in which only fluxes on the boundary of (or exterior to) the medium can be measured. 
 
In general, two problems are called inverses of one another if the formulation of each 
involves all or part of the solution of the other. Several “inverse problems” that correspond 
to the setting of Eqs. (B.1)-(B.5) can be formulated, as follows: 

(a) The classical “inverse problem”: given the source ( ), , ,Q E tr Ω , determine the 

fluxes ( ), , ,E tϕ r Ω ; 

(b)  “Source identification problem”: given the responses ( ) ( ),=   r r α x u x  and the 

model parameters (cross sections, geometry, materials, etc.), denoted here as ( )α x , 

determine the sources ( ), , ,Q E tr Ω ;  

(c) “Parameter identification problem”: given the responses ( ) ( ),=   r r α x u x  and the 

sources ( ), , ,Q E tr Ω , determine (some or all of) the model parameters;  
(d) “Parameter and source identification problem”: given the responses 

( ) ( ),=   r r α x u x , determine the sources and the model parameters; 

(e) When the domain xΩ  contains inhomogeneous materials, and the responses 

( ) ( ),=   r r α x u x are given, identify internal boundaries between the 
inhomogeneous materials, identify the description of the system’s structure 
(“structural identification”), etc. 
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4.3. Task C: Validate gamma detector response functions and their 
uncertainties 

In the past decade, significant research has been done on the calculation of DRFs. Many NaI DRFs 
were published in the literature. This data is essential for converting between the gamma 
flux/spectrum and the resulting multichannel detector response. Fully accounting for the 
uncertainties in the DRF was the main hurdle in this task. Without well-quantified DRF 
uncertainties, the predictive model was expected to be severely lacking, even if the radiation 
transport model is flawless. NC State University was responsible for completing this task. 

The accomplishment of this task was reported in: Noel Benjamin Nelson, Validation and 
Uncertainty Quantification of a 1x2" NaI Collimated Detector Using Detector Response Functions 
Created by g03, Masters of Science Thesis, NC State University, 2014. This document is replicated 
on the following pages. 



ABSTRACT

NELSON, NOEL BENJAMIN. Validation and Uncertainty Quantification of a 1x2" NaI Collimated
Detector Using Detector Response Functions Created by g03. (Under the direction of Yousry Azmy.)

Detector response functions (DRFs) are relatively new theoretical constructs most useful for

inverse analysis of radiation sources and elemental composition. A DRF is formally defined as a

function that transforms the incident flux of radiation on a detector into a differential pulse height

spectrum or detector response (as measured by a physical detector). Such functions have not yet

been derived from first principles of physics, so semi-empirical and Monte Carlo based methods are

generally used. One such method, based on semi-empirical modeling and Monte Carlo simulation

of photon interactions with a sodium iodide (NaI) detector, is implemented by a code named

g03 developed in the Center for Engineering Applications of Radioisotopes (CEAR). g03 has been

validated for simple geometries (e.g. centered on-axis sources) with bare (i.e. uncollimated) detectors

with 3x3" and 6x6" crystal dimensions. This work uses measurements from three radioactive sources

with a 1x2" collimated NaI detector for complex geometries (e.g. off-axis and attenuated sources) to

validate the DRF constructed with g03. Three measurement campaigns were performed: on-axis

detection of calibration sources, off-axis measurements of a highly enriched uranium disc (HEU) at

41 cm, and on-axis measurements of the HEU disc at 11 cm with steel plates in between to provide

attenuation. Simulated responses were created using MCNP computed fluxes folded with a DRF

determined via g03. Furthermore, this work quantifies the uncertainty of the Monte Carlo (MC)

simulations used in and with g03, as well as the uncertainties associated with each semi-empirical

model employed in the full DRF representation. Most of the uncertainties associated with Monte

Carlo simulations were controlled by the number of histories run. The uncertainties in the empirical

model were determined by either Frequentist or Bayesian methods. In the case of many data points

(degree of freedom, DOF, four or higher), direct Frequentist calculation of uncertainty by least

squares and parameter derivatives proved more expedient than the Bayesian method (factor of 100

less computation time). However, in cases where fewer measurements were available (DOF less

than four), a delayed rejection adaptive Metropolis (DRAM) algorithm was used instead. Overall,

the response computed by the DRF for the prediction of the full energy peak region of responses

was very good (well within two standard deviations of the experimental response), but tended to

overestimate the Compton continuum by about 45-65 % due to physics associated with electron

transport in the case of the calibration sources. For the HEU disc measurements, DRF responses

tended to significantly underestimate (more than 20%) secondary full energy peaks due to scattering

with the detector collimator and aluminum can which is not accounted for in the g03 model of

the DRF. Though immediate outside detector scattering is thought to be the main reason for the

underestimation, some contribution may also come from unsimulated geometry and uranium



daughter product decay radiation. All of the Monte Carlo uncertainties were constrained to the

lowest experimental counting bin (peak channel) relative standard deviation by running a sufficient

number of histories. The uncertainties associated with least squares fits to the experimental data

tended to have parameter relative standard deviations lower than the peak channel relative standard

deviation in most cases and good reduced chi-square values (close to one). However, two fits out of

the sixty considered did not meet these criteria: the energy calibration and the Ba-133 Gaussian peak

fits for the power law. Fortunately, the energy calibration still proved to be fairly accurate (within

1% of the true incident gamma ray energies) and had a negligible effect on the validation exercise.

The other misfit had to be resolved by weighting the power law by the standard deviation of the

Gaussian peak standard deviations.
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CHAPTER

1

INTRODUCTION

1.1 Research Motivation and Goals

Detector response functions (DRF) have become an area of increasing scientific interest for the last

thirty years in several industrial detection applications. These applications include coal spectrometry

for composition and location in the interest of mining, oil-well logging, radio-tracing in medicine,

computerized tomography (CT) scans, and holdup source characterization. DRF uses could be

extended to nuclear safeguards and security applications as well such as border monitoring for

illegal transport of radioactive materials, cargo and package monitoring, and unknown source

identification at source recovery sites. However, a rigorous mathematical formulation of the DRF

has yet to be developed. Therefore, a few working empirical and stochastic approaches have been

developed instead to create DRFs.

The concept of a DRF is defined in Section 2.3. For basic purposes a DRF can be considered

a function that converts the energy-dependent flux of incoming source particles incident on a

detector into a detector response spectrum similar to what is observed in experimental detector

measurements. The DRF can also be used in the reverse sense in an inverse problem setting, as a

step in the process of predicting the physical characteristics of an unknown source (e.g. holdup

problem).

1



1.2. SUMMARY OF RESULTS AND CONCLUSION CHAPTER 1. INTRODUCTION

Much of the most recent work on DRFs has been performed by Dr. Robin Gardner and his

research group at North Carolina State University. Gardner has developed a fairly accurate DRF

model through empirical curve fitting and Monte Carlo analysis. The DRF has been validated against

experimental measurements taken by Heath and was found to agree within two standard deviations

of the experimental results from Heath. The measurements were taken with 3x3" and 6x6" NaI

detectors and Cs-137 sources centered on the detector’s front axis at a distance of 10 cm. There was

agreement with the Heath benchmark detector measurements of the same sizes up to two standard

deviations of the measured Poisson error. [16][4]

Some validation work has been carried out on the source positioned off-axis relative to the

detector and with intervening material placed between the source and detector pair. This was done

in the interest of developing spectrum analysis software specific to the Compton continuum in

order to identify attenuators and account for off-axis geometries. The software that accomplishes

this purpose is still under development, but once it reaches fruition it should be considered for

incorporation into future works that employ DRFs.

The goal of this work was to use the NaI DRF model developed by Gardner to characterize a

NaI 1x2" detector for on-axis geometries, off-axis geometries and attenuated configurations and

to validate it against experimental measurements. Also, uncertainty in the model was calculated

by Frequentist and Bayesian methods, and compared to measurement and Monte Carlo transport

uncertainties. The overarching goal is to incorporate an accurate DRF model into an holdup problem

approach to the holdup application to characterize special nuclear material (SNM) deposits at

nuclear production and processing facilities.

1.2 Summary of Results and Conclusion

There were three major sets of measurements: on-axis detection of calibration sources, off-axis

measurements with a highly enriched uranium (HEU) disc, and the HEU disc with steel plate

attenuation between the source and detector. In terms of the calibration source spectra with one or

two peaks and a Compton continuum, the computed spectrum predicted the peak well within two

standard deviations of the experimental count rate, but overestimated the continuum and valley

between the peak and Compton edge. This problem likely came from miscalibration of the electron

range multiplier (Equation 2.4) used originally for an uncollimated 3x3" detector, as the same effect

was observed in Gardner’s original validation work when the multiplier was set too low.

However, this effect did not appear in the two major experimental campaigns involving the HEU

disc, as the highest energy peak observed was of too low an energy to create a Compton continuum.

The model reproduced the main peak (186 keV) and its shoulder peak (205 keV) well, again within

2
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two standard deviations of the measured count rate, but underestimated the convolved peak at

(150 keV) and did not reproduce the lead backscatter peak near 100 keV. This was due to scattering

with the lead collimator that was unaccounted for by the DRF model, as the model currently only

reproduces the effects of scattering within the detector crystal.

Finally, uncertainty quantification of the model took place on every calculated quantity from the

flux calculation in MCNP to the Gaussian peak fits for shifting the program. Where the uncertainty

was controllable by the number of particle histories chosen in Monte Carlo simulations, it was

reduced below the lowest measured uncertainty. Where it was constrained to the accuracy of the

model for least squares fitting, the reduced chi-square test was performed to check for goodness of

fit.

Two mediocre least squares fits were encountered out of many: the energy calibration and the

Ba-133 Gaussian peak fits used for the power law fit. The effects of the energy calibration were found

to be inconsequential to the validation results. While the Ba-133 peaks effects on the power law

were minimized through a special sum of the least squares weighted by the uncertainties in the

Gaussian peak uncertainties (σσT ).

3



CHAPTER

2

REVIEW OF THE LITERATURE

The purpose of this literature review is to lay the foundation for the development of the sodium

iodide (NaI) detector response function and the corresponding uncertainty quantification based

on the results and discoveries of previous scientists in the field of gamma radiation transport and

detection. First, the history and development of the NaI detector and its supplementary equipment

will be summarized. Then the major developments in Monte Carlo based transport theory relevant

to the construction of DRFs will be discussed. The third section will detail the creation of detector

response models. Finally, the last section will concern relevant Bayesian uncertainty quantification

methods.

2.1 NaI Detection and Detector Response

Before detector response functions were even considered, detector responses and operation prin-

ciples had to be developed. The detector of interest in our work is a sodium iodide scintillation

detector. Scintillation is simply the emission of a visible photon from a material by dexcitation of an

electron following its interaction with incident gamma. The favorable scintillation properties of NaI

doped with trace amounts of Thallium (NaI(Tl))were first discovered by Robert Hofstadter in 1948

[20].

4
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Hofstadter concluded that NaI(Tl) would be an efficent detector of ionizing radiation. He deter-

mined this based off of the duration of light emission, distribution of light pulses, particle energy

discrimination (therefore radioactive source discrimination), and the proportionality of counting

events to voltage and amplifier gain. He compared some of these characteristics with another detec-

tion material, anthracene, while merely verifying other materials to conclude that NaI(Tl) is a viable

detector.

A NaI(Tl) crystal alone does not make a detector. Light emitted from the crystal after an interac-

tion is captured via a photoelectric effect interaction with the photocathode of the detector. The

freed electrons are multiplied and amplified into a detectable electronic signal pulse by the photo-

multiplier tube (PMT). The first photmultiplier tube was developed by Harley Iams and Bernard

Salzberg much earlier than Hofstadter, in 1935. [6]

They observed the amplification of the primary photocurrent (a stream of electrons) through the

effects of secondary emission and the photoelectric effect. Secondary emission is when an electron

current strikes a charged plate and releases more electrons than were absorbed by the plate. Iams

and Salzberg found that their photomultiplier tube was superior to gas phototubes as they had

no interference at high audio frequencies from small fluctuations in its current supply, while still

comparable to the vacuum phototubes (other detector PMT candidates). This model is the basis for

modern PMT’s.

The small electronic output signal from the PMT is then amplified and reshaped from a sharp

edged pulse into a wider pulse (based on the difference between a rising and falling exponential) for

easy processing. This wider pulse is passed to the multichannel analyzer (MCA), which outputs a

differential pulse height spectrum (DPHS) also known as a detector response. A DPHS is created

simply by setting a small pulse amplitude window to count pulses of varying heights within the

window within a counting period between two energies called a channel. An MCA does this for

hundreds of channels at once across the entire detector’s energy range. The detector’s energy range

is determined partially by size and pulse amplitude gain settings. Low energy photons are resolved

better by higher gain and the inverse is true for high energy photons. Also, large detectors have

better interaction cross sections with higher energy gammas.

The first MCA was invented by George Kelly at Oak Ridge National Laboratories (ORNL) in 1953.

Kelly prized his method as being much faster than older methods using single channel analyzers and

more reliable with channel width and position errors meeting statistical standards set at the time.

[7] Since then MCAs and pulse processing equipment have become more efficient and compact,

such that they are often combined together into one machine that is controlled by local desktop

software.

Figure 2.1 summarizes and illustrates the whole basic NaI detection process. For further details
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of the detection process and pulse processing equipment, please refer to KNOLL’s book on Radiation

Detection and Measurement.

Figure 2.1 A basic NaI detector schematic. [14]

In most cases, the current pulse is sent to the pulse processing equipment and MCA to convert

the small collection of electrons from the PMT into a response spectrum. Detector response spectra

can be used to locate and identify sources of gamma radiation since the response peak channel

is proportional to the incident energy of the incident radiation. It is proportional because the

relationship between the energy deposited by radiation in the NaI crystal to the scintillation light

yield is fairly linear for energies above 100 keV. A quadratic energy calibration using at least three

known sources can account for the slight nonproportionality of detector channel to energy, and

thereby be used to identify the energy of the incident radiation from other unknown sources.

In this case, detector response measurements of known sources will be validated against syn-

thetic responses for attenuated and off-axis geometries. A typical detector response spectrum for a

small detector is shown in Figure 2.2.
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Figure 2.2 Predicted detector response spectrum of a medium sized detector with labeled regions of inter-
est [15]

Every section of the response spectrum is the result of a combination of one or more photon

interactions with the detector crystal or its casing material. The three major types of photon in-

teractions with matter include: photoelectric effect, Compton scatter, and pair production. The

photoelectric effect occurs when a photon is absorbed by an atom, and a bound electron is then

expelled from that atom. Compton scatter occurs when a photon is merely deflected by an atom,

and thereby loses a fraction of its energy and changes direction. The third interaction occurs when

a high energy photon (greater than 1.022 MeV) interacts with the nuclear electromagnetic field and

creates an electron-positron pair that are propelled in opposing directions. Further details of basic

particle interactions can be found in Hubbell’s report on Photon Cross Sections. [5]

Knoll’s book mentions several spectral components that appear in a typical response spectrum

as a result of the three basic particle interactions. These include the full energy peak, Compton

continuum, and the several other types of peaks that appear in Figure 2.2.

The full energy peak of the spectrum is produced by a combination of all three basic gamma

particle interactions with the detector crystal resulting in full energy deposition. Ideally, the full-

energy peak would be a straight vertical line, but due to the finite energy resolution of a detector, the

spectrum is blurred or spread to a Gaussian profile centered around the true peak channel, or energy.

The sources of the spread can be usually attributed to statistical fluctuations in the total number of

information carriers (scintillation photons for scintillators) created during a given detection event.

Other reasons include electronic noise (radio signals, other electronic equipment, etc.), variations in

the active detector volume (ie. defects, nonuniformity), and changes in operating parameters during

measurements. In an investigation to validate a Monte Carlo calculated NaI detector response,

a good representation for NaI energy resolution was measured to vary inversely (improve) with
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increasing incident particle energy. For most measurements it varies from 8-15%. [17]

The continuum is created by the probable set of energy depositions from Compton scatter

at various angles of deflection with incomplete energy deposition in the detector crystal. The

continuum can also be affected by Compton scattering outside of the detector where the deflected

photon is detected instead of the electron that is freed when the scatter occurs in the detector crystal.

One example is a backscatter peak where the photon scatters at a 180o angle from the rear detector

wall into the detector crystal. [9] The shape of the continuum and backscatter peaks can also be

significantly affected if an attenuator is in placed front of the source, or if the source is off-axis

affecting the number of photons that scatter off of the detector casing into the crystal at a given

energy. It is useful in many applications to be able to match different continuum shapes to their

most probable cause.

Escape peaks arise when pair production occurs in the detector crystal, but one (single) or both

(double) the photons that are created from the annihilation of the resulting positron escape. These

events typically occur in small detectors near the edge of the crystal where it is easy for electrons

to escape the crystal. When the positron-electron pair is created, the original photon loses the

amount of energy required to create the mass of an electron and a positron. The rest mass of both an

electron and a positron are approximately 511 keV. The electron created will not contribute much

to the response, but the positron does once it annihilates with another electron. The annihilation

event creates two photons equivalent to the lost rest mass of each particle, 511 keV, which travel in

opposite directions. If both photons escape frequently without depositing energy in the detector

crystal, then a double escape will appear in the spectrum at the energy of the incident gamma minus

two times the electron rest mass (Eo −1.022M e V ). If only one of the photons deposit their energy in

the crystal frequently, then a single escape peak will appear in the spectrum at the original incident

gamma energy minus one electron rest mass (Eo −0.511M e V ).

An annihilation peak is observed when pair production occurs in the detector shielding, or

alternatively in the source shielding, and one of the 0.511 MeV photons created in the following

positron annihilation event is detected. Finally, characteristic X-rays (usually EX−r a y < 100k e V ) are

created from the de-excitation of atoms that were involved in a photoelectric event with an incident

photon. Typically, the emitted X-rays is reabsorbed by the detector medium and contributes to

the full energy peak. However, if the detector is fairly small and these X-rays escape, then an X-ray

escape peak is observed in the response slightly below the full-energy peak (Eo −EX−r a y ).

Any detector can produce a response, but NaI(Tl) scintillators are some of the most commonly

used in practice. This is because they are cheap and fairly easy to manufacture in varying sizes,

have fairly high light emission among scintillators, have high scintillation efficiency (heavy material

Z=53) and fairly linear radiative energy deposited to light yield. The two major weaknesses of
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NaI(Tl) detectors are their large decay times between pulses and fairly low energy resolution (wide

full-energy peaks).

Decay time simply refers to the amount of time it takes for the ionized electrons from a detection

event to decay from an excited state at the Thallium activator sites back to the ground state and

produce scintillation photons for the detector pulse. Subsequent incident gamma rays cannot be

detected during this decay time. For NaI(Tl), the decay time is 230 ns, which is much slower than an

organic scintillator which have typial decay times around 2 ns. Therefore, organic scintillators are

preferred for fast counting experiments where spectral information is less important than timing.

Knoll defines Energy resolution as R = F W H M
Ho

where F W H M is the full width at half the

maximum of the full energy peak and Ho is the height of the peak at its center. Therefore, a lower

resolution means the peak is narrower compared to its height and requires fewer channels to define

the peak (better for distinguishing peaks that are close together in energy). Because FWHM is energy

dependent and dependent on the statistical fluctuation in a given measurement, for a given detector

type the Poisson limit of the resolution is defined as R |P o i s s o nl i mi t = 2.35/
p

N , where N is the total

number of information carriers. For NaI detectors, the theoretical limit would be about 1.2%, since

it produces around N=38,000 information carriers (scintillation photons), whereas a semiconductor

detector with N = 105−106 has a much lower limit of about 2.25%. NaI does not approach this limit

closely though, as their is further loss of those scintillation photons from emission to absorption in

the photocathode.

However, NaI(Tl) is the best scintillation detector for spectroscopy applications (not fast pulse

timing experiments) because it has one of the highest photon absorption to light yield of 38,000

photons/MeV. Only CsI(Tl) and Cs(Na) are higher with 65,000 and 39,000 photons/MeV respectively.

Cs(Na) has pretty equivalent properties to NaI, but has a much slower decay time between pulses.

Additionally, CsI(Tl) has a bad emission wavelength (540 nm) that doesn’t couple well with standard

PMTs absorption spectrum (400-450 nm). Due to these weaknesses, generally NaI(Tl) is preferred

among scintillators. [9]

For fine measurement applications in the lab, however, a semiconductor detector made of high

purity Germanium (HPGe) is usually preferred. It has better resolution overall ranging from 0.13-1%.

[21] So, the full-energy peaks of the HPGe would be at least ten times thinner than a NaI peak at

the same energy. However, the major weaknesses of HPGe are that it requires cryogenic cooling,

it is difficult to manufacture in large sizes, and it is generally expensive. Therefore, for field work

(e.g. uranium holdup measurements), NaI(Tl) detectors are generally used due to their greater

affordability and portability. Field application is the goal of this work, plus continuum effects are

more important than peak resolution for determining source strength and location. Hence, a 1x2"

NaI(Tl) scintillation detector was chosen to conduct the validation exercise reported here.
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2.2 Monte Carlo Based Radiation Transport

Detector responses can be predicted mathematically by taking the product of the detector’s response

function (DRF) with the flux (particle speed per volume) of the radiation incident on the detector

[9]. The particle flux can be predicted from the solution of the Boltzmann transport equation at

the location of the detector crystal due to a given source. The equation was first derived by Ludwig

Boltzmann in 1872. [8] Since then, many approximate methods have been developed for solving the

Boltzmann equation under certain assumptions suitable for a variety of applications.

One of the more popular transport methods is the Monte Carlo method. The Monte Carlo

method does not solve the transport equation itself, instead it simulates the particles and their

trajectories through the modeled materials using sequences of pseudo-random numbers. Then it

determines the average state of the physical system from the average behavior of the particles. [13]

The software chosen for these calculations is the Monte Carlo Neutron-Particle (MCNP) transport

code. It was created formally in 1977, though its roots extend back to the late 1940s, at the dawn of

the nuclear age. This section outlines the basics of MC transport for calculating incident flux on the

detector for the purpose of validating the DRF.

First, particles are simulated and transported according to Boltzmann physics within the volume

of interest. Instead of solving the transport explicitly for the entire volume to obtain the flux, the

fluence is calculated inside the detector volume only. The fluence, Φ, is defined as

Φ= lim
∆V→0

[

∑

i si

∆V
]. (2.1)

If a large number of particles were simulated, this quantity could be calculated directly. [10]

Simply by tracking particles through a cell of interest and summing up all of the particle tracks

within the very small discrete spheres, the flux is approximated. For large volumes like nuclear power

reactors this method becomes inefficient and less accurate. For small detector volumes, however, it

works quite well. [2]

That is how Monte Carlo simulation works by simulating moving particles directly and tracking

them through simulated media. Particle tracks from birth in a source to death (absorption or escape)

from the system including all intervening scatters are called histories. The number of particle

histories (N) executed in an MCNP run is chosen in order to obtain the desired level of uncertainty

in the calculated quantities.

A typical particle history proceeds as follows. First, particles are initialized with random location,

energy, and direction of motion according to a defined source distribution. Particles then interact

or pass through the specified media according to well defined, material dependent, probability
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distributions called cross sections. A photon microscopic cross section,σr e a c t i o n t y p e is defined

as the probability of a photon-nuclear reaction with a nucleus. [1] It can also be thought of as the

effective cross sectional area presented by the nucleus to the beam of incident photons, and cross

sections have units of c m 2. Cross sections depend on energy, material, and interaction type.

Often microscopic cross sections are multiplied by the atom density of the medium to make a

macroscopic cross section. Photon macroscopic cross sections,µi n t e r a c t i o n , (also called attenuation

coefficients) are simply the probability of a certain interaction with the medium occurring per unit

path length traveled. [1] Summing the macroscopic cross sections of every interaction type yields

the total attenuation cross section, µ. There are several minor interaction cross sections (Raleigh

scattering, Thompson scattering, etc.), but the largest contributions for photons come from the

three aforementioned interactions: photoelectric effect, Compton scatter, and pair production.

If these interactions produce secondary particles, they too are stored and tracked as new histories

after the original particles terminate. Finally, after each particle history has been recorded, the

particle track (si ) through the detector volume is added to the running tally calculating the flux

according to the average of Equation (1) piece by piece until all the histories are tallied.

The Monte Carlo transport method is very effective and simple, but can be inefficient and have

high variances if variance reduction techniques are not applied. Variance in Monte Carlo is based

on the number of histories run, so the simplest way to reduce variance in such a calculation is to run

more particle histories. Sometimes this is not feasible (rare events), therefore variance reduction

techniques are used instead. In Exploring Monte Carlo Methods by Dunn and Shultis the most

common variance techniques are described, which include particle weighting, truncation, splitting,

and Russian roulette.

The first method is called weighting. A biased multiplier (called a weight) may be applied to

particles undergoing desired physical events in order to force rare interactions to occur more often

without running as large numbers of histories. The biased particles’ contribution to the tally (the

score) is then renormalized by mulitplying by 1/w e i g h t . This ensures that desired events are well

sampled, but the tally still represents an unbiased system.

Further subtypes of this technique include importance sampling, and implicit absorption. In

importance sampling a particle’s contribution to the tally may be taken as the product of the

particle’s weight and the probability of the occurrence of the event of interest. The probability

density function (PDF) that describes this event may be adjusted to an alternate simpler PDF, as

long as a multiplicative correction factor is applied to the weight equivalent to the original PDF

divided by the alternate PDF. When optimum adjoint transport solutions are applied, the variance

can theoretically be reduced to zero. Similarly, alternate PDFs may also be used to force interactions

or affect the distance between collisions.
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For implicit absorption, particles are never allowed to be killed by absorption. Instead, every

time an absorption event would occur, the particle’s weight is reduced by multiplying its weight by

the probability of survival (1− µa
µ ). Then a particle interaction is chosen for the particle from the

remaining non-absorption interaction probabilities. Therefore, in this scenario, a particle may only

be killed by leaking out of the system. To prevent buildup of low weight particles in the system, this

technique is usually paired with the Russian roulette technique.

Truncation methods set cutoff limits for when a particle should be terminated. For example,

if a particle reaches a position outside of the system of interest (leakage), then tracking would be

terminated. Other examples, include unfavorable directions, low energies, and low weights unlikely

to contribute much to the tally of interest. Truncation helps to kill particles early that are only

wasting computational resources.

Finally, splitting and Russian roulette schemes are almost always applied together. Splitting

occurs when a particle enters a region designated of higher importance and interest (e.g. the cell

where a tally is calculated, and it is split into m particles. Each particle weight is then given by a 1/m

fraction of the weight of the original particle. Russian roulette is exactly the opposite of splitting.

Particles that travel into regions of low interest may be killed by random selection. Some 1/m fraction

of particles are killed, and the remainder increased in weight by a factor of m. [2]

All of the variance reduction techniques reduce variance without biasing the tallies, if used

correctly. Often these techniques increase computational efficiency and decrease computation

times. Many production Monte Carlo transport codes apply some of these techniques automatically,

while allowing the others to be chosen as options.

In this work, the Los Alamos National Laboratories (LANL) code Monte Carlo Neutron Transport

code (MCNP) was used to compute flux tallies incident on the 1x2" NaI detector model. The code

was originally implemented for neutron transport, but can also be used for other particle transport,

such as photon transport. Monte Carlo based calculation was also used in part to calculate the DRF.

2.3 Detector Response Functions

The DRF (R (E , h )) is defined as the probability that a photon incident on the detector with energy

E will give rise to a pulse with height h . [18]DRFs are useful for converting flux to counting spectra,

calculating detector efficiencies, and also for the reverse, transforming responses back into flux.

The latter purpose will be explored more in future research, but in this work focus will remain on

the former purpose.

At the present, no fully physical model exists to describe DRFs, but there are several stochastic

(MC) and empirical models. Gardner’s NaI DRF model is one that combines empirical relations with
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Monte Carlo simulation. Gardner’s original work with his colleague Avneet Sood validated 3x3 NaI

synthetic detector responses to the Heath benchmark Cs-137 spectrum. Gardner’s model was found

to be more efficient (required far less particle histories for accurate calculation) and was shown

to match better with the Heath experiments than MCNP’s F8 response tally. [16] It was chosen for

our work for these reasons and also because MCNP simulates responses according to direct energy

deposition in the detector crystal. It generates no DRF, and a DRF will be needed for future holdup

work.

The Heath experiments were performed on a 3x3" NaI detector in 1964 as a benchmark for

a number of gamma sources. All measurements were very high fidelity. The measurements were

performed in a lead shielded box to reduce background radiation and all spectra were counted

well over 10,000 counts in the peak channel for less than 1% counting uncertainty. For further

information, see Heath’s Gamma Ray Spectrum Catalogue. [4]

Gardner’s model generates a DRF for a desired detector size, source distance, and source energy

(single peak), through the following set of steps. First, Gardner’s model takes into account the non-

linear dependence of NaI scintillation efficiency ( s c i n t i l l a t i o n l i g h t y i e l d
e ne r g y d e p o s i t e d ) on the energy deposited

in the detector by the incident photon. As mentioned before (section 2.1), the nonlinearity in scin-

tillation efficiency is an inherent property of NaI(Tl) crystals, and it is particularly pronounced at

energies below 100 keV. However, this nonlinearity is still significant for all incident energies below

3 MeV. Gardner used the following nonlinear empirical relationship (from fits to experimental data)

to calculate scintillation efficiency for his DRF

S (Ee ) = 1+k1e x p [−(l n Ee −k2)
2/k3],

Ee ≥ 10 k e V ,

S (Ee ) = 1+k1e x p [−(l n Ee −k2)
2/k4], (2.2)

Ee ≤ 10 k e V ,

where Ee is electron energy in keV. k1 is 0.245, and k2 is l n 10= 2.30258. k3 is 7.1635, and k4 is

5.1946. The electrons are the very same electrons that are involved in interactions with photons

incident on the detector crystal. The second step involves Monte Carlo particle transport simulation

in which each scattered electron that deposits energy in the detector is multiplied by the scintillation

efficiency (Equation 2.2) at the energy deposited. [16]

The Monte Carlo calculation is conducted with Peplow’s code called DRFNCS. It simulates several

hundred detector response spectra through Monte Carlo transport where photon interactions are

forced in the detector, but leakage of secondary particles is allowed producing the continuum of
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the spectra. Only about 100,000 particle histories are necessary to produce results with uncertainty

under 1%, whereas MCNP F8 Gaussian energy broadened (GEB) spectra require on the order of

billions of particles to produce the same precision. The difference typically saves about a day in

computation time.

Next, the peaks were stripped from the response spectra so that each contiuum could be pro-

cessed alone. Principle component analysis (PCA) was performed on the correlated response vari-

ables and the covariance matrix to produce a small set of uncorrelated variables (principal com-

ponents). The principal components and the mean vector were stored as data and can reproduce

accurate continuum easily when multiplied with the desired channels vector.Essentially, the contin-

uum can be recalled quickly without the need to be regenerated by Monte Carlo simulation for each

DRF generated.

So, when a new DRF needs to be generated, the algorithm need only to generate the full-energy

peak of interest by Monte Carlo transport simulation and adds this contribution to the continuum

to produce the desired DRF. [22] The modified version of Peplow’s code (adjusted by the nonlinear

scintillation efficiency) is called g03. The code is in the process of being updated and is proprietary

to the Center for Engineering Applications of Radioisotopes (CEAR).

Finally, the Monte Carlo simulation of g03 is modified by several empirical equations to correct

pieces of the spectra that are not simulated fully by the Monte Carlo calculation. The g03 DRF peak

section is spread according to the following power law (Equation (2.3))

σT (EI ) = a E b
I , (2.3)

where a and b are empirical fit parameters, and EI is the energy of the incident gamma ray. This

law is simply an empirical relation that comes from a Least Squares fit of the standard deviations of

experimentally measured full-energy peak responses produced by the detector of interest. [16]

The flat Compton continuum of the DRF is produced by various empirical fits of entire experi-

mental responses (not only the peaks). This is necessary because there is as of yet, some undiscovered

phenomena causing a higher magnitude of the continuum than predicted by current physics models

and data. Simple Compton scatter and pair production physics and partial energy deposition due

to electron or photon leakage through the detector walls can predict the shape of the Compton

continuum but underestimates its magnitude. A normalization factor was developed to account for

this effect called the electron range multiplier, since the effect causing the underestimation of the

continuum was believed to be connected to the electron range. The empirical relation is given by

Equation 2.4
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Re = 1+A1e x p (−A2EI ) +A3e x p (−A4EI ) (2.4)

A1 = 39.662, A2 = 3.4052, A3 = 1.5434, A4 = 0.1576,

where EI is the energy of the incident photon, and A1−A4 are parameters fit from experimental

responses. This factor is a pseudo-electron range equation designed to correct the magnitude of the

synthetic Compton continuum produced by the Gardner’s DRF. It was fit through trial and error for

3x3" NaI detectors and may not apply to the detector of interest in this work (1x2" NaI detector). [23]

Responses, thus, may be measured or calculated. Validation of Gardner’s model has already

been completed on some levels, but almost no uncertainty quantification of the model has been

performed. The primary goal of this work is to conduct a validation exercise of the DRF for a specific

NaI detector of interest and account for its uncertainties.

2.4 Uncertainty Quantification

In the process of comparing measured to computational model results there are three types of

uncertainty in practice. There is measurement uncertainty, model uncertainty, and numerical

(simulation) uncertainty. Quantifying uncertainty is important in determining the precision of the

model and the computed results. The more precise a result is, the more likely it can be reproduced,

and the higher the level of confidence in the applicability of the computational model.

Measurement uncertainty for detection and counting was found to follow a Poisson distribution

for a single measurement. This is because the decay of a nucleus is a binary process. It either

decays or it does not. The chance of decay per unit time is constant and rather small for a large

number of nuclei and a short measurement time (compared to the nuclide’s half-life). A binomial

distribution under these conditions (constant and small probability of success) will reduce to a

Poisson distribution. [9]

In a Poisson distribution the variance is equal to the mean (the number of counts). Therefore,

the variance of the measurement is equal to the mean number of counts. In a single measurement

this would be the number of counts measured in a detector channel. The standard deviation is

then simply the square root of this count, and the fractional standard deviation (relative to the total

count) is one divided by the root of the count.

To then extend this measurement uncertainty to count rates and net counts (gross count - back-

ground count), one simply uses propagation of uncertainty. Anytime a basic operation (addition,

subtraction, multiplication, or division) is performed on the measured count, likewise a transforma-

tion must be made to the variance of the counts. If the variables involved (e.g. counts and time) are
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independent of one another, then a general formula exists for calculating total uncertainty of the

final quantity (Equation 2.5)

σ2
u = (

∂ u

∂ x
)2σ2

x + (
∂ u

∂ y
)2σ2

y + (
∂ u

∂ z
)2σ2

z + /l d o t s , (2.5)

where u = u (x , y , z , . . .) is the quantity derived from basic quantities (x , y , z , . . .) with known

variances (σ2
v a r i a b l e ). The formula is useful for determining the associated uncertainties of many

quantities (e.g. count rates and net counts) for various purposes, such as those used in the reduced

chi-square test described near the end of this section. [9]

It turns out that simulation uncertainty for Monte Carlo transport calculation is very similar

to that of measurement uncertainty. This is due to the fact that the particles themselves are being

simulated and tracked as a psuedo-random process. Measurement standard deviation is equivalent

to the square root of the number of counts (the mean) in a channel. So it makes sense that the Monte

Carlo standard deviation is simply the square root of the number of particle histories in a tally bin.

The fractional standard deviation is simply equivalent to the reciprical of the standard deviation. [2]

Determination of the model parameter uncertainty is a more difficult task. For this purpose,

there are two major statistical methods to choose from: Bayesian and Frequentist Theory. Since

the core of Frequentist Theory requires a large number of data points, a Bayesian method was

naturally chosen for the power law Gaussian fits, power law, and the energy calibration fits. Whereas

Freqentist methods were chosen for the normal Gaussian fits for shifting spectra and the Gaussian

fits of the peaks of experimental spectra for the energy calibration due to the abundance of channels

in the peaks of those spectra and for efficient calculation.

Smith’s book, Uncertainty Quantification, describes Frequentist and Bayesian statistics quite well.

In both methods, parameter means of each relationship were found via the method of nonlinear least

squares. This method solves for the mean parameter values that produced the lowest value of the

L2 norm (sum of the squares) of the error. Frequentist methods treat these values as the parameter

means and subsequently calculates a Chi squared and covariance matrix to determine the parameter

uncertainties. Bayesian methods only use the means for an initial guess (priori information). Further

details of least squares methods can typically be found in advanced linear algebra texts. With

parameter derivatives and error variance, the Chi squared and covariance matrices can be calculated.

First, however, the error variance must be calculated from the residuals. The error variance is

defined as follows

σ2 =
1

n −p
R T R (2.6)

where R is the residual vector of the differences between the model evaluated at the means predicted
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by least squares and the experimental data (R = Ye x p e r i me n t a l − fmo d e l (q )). Also, n is the number of

parameters, and p is the number of model parameters. Next theχ matrix can be calculated as simply

the derivative of the model with respect to each parameter, k at each data point i (χi k (q ) =
∂ fi (q )
∂ qk

).

Using the square of the χ matrix and the error variance the covariance matrix can simply be defined

as

V =σ2[χT (q )χ(q )]−1. (2.7)

The covariance matrix contains each parameter variance along its diagonal. Simply take the square

root of the diagonal values to find the parameter standard deviations. The Frequentist method is

very accurate and quick to calculate for cases where there are many more experimental data points

than the number of parameters. However, when confidence in a fit is lower due to fewer data points,

Bayesian codes fair better. [11]

Bayes theorem expressed in words simply states that parameters are random variables with

associated probabilistic densities that make use of known information or new information obtained

from conducted measurements. This method picks the best posterior density that reflects the distri-

bution of parameter values based on sampled observations. In other words it finds the probability

density functions (pdfs) of model parameters that maximizes the likelihood function. Further details

of the likelihood function and Bayesian theory are given in Smith’s Book or his reference D. Calvetti

and E. Somersalo, Introduction to Bayesian Scientific Computing.

DRAM was used to calculate Bayesian model parameter uncertainties. From Haario’s article

"DRAM: Efficient adaptive MCMC" one learns that DRAM stands for Delayed Rejection Adaptive

Metropolis algorithm. In this work it is used to estimate the most likely means of the model of

interests parameters to verify those determined by least squares fits by employing Monte Carlo

random sampling of the parameter values, called chains. DRAM also determines the uncertainty in

the parameters from the direct statistical variations in the parameter chains.

The basis of DRAM comes from the Random Walk Metropolis algorithm (RWM). RWM comes

from Monte Carlo principles and is fairly easy to implement. First, the variance is obtained in the

same way that the error variance is typically calculated: from the sum of the square of the residuals

divided by the number of degrees of freedom (Equation 2.6). Second, the covariance is estimated

from the inverse of the χ squared distribution which come from partial parameter derivatives of

the model (as defined by Equation 2.7). A Choleski factorization of the covariance matrix is formed.

Lastly, with the factored matrix, the parameters are varied in a semi-random way with psuedo-

random numbers chosen from a set of different distributions. Based on likelihoods of randomly

chosen parameter values the algorithm either chooses to accept (if the likelihood is increased) or

possibly reject and the rejection probability increases every time the likelihood function decreases.
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Using regular statistical methods, again the parameter standard deviations can be estimated from

the chains of random parameter values.

DRAM works along the same principles, except that the rejection condition is augmented with a

more advanced algorithm that increases the probability of acceptance (promoting mixing or broader

exploration of the chains). Also, DRAM adapts by suggesting a Gaussian proposal distribution

centered at each chain position and retrieves more information about the posterior using it to

update the covariance matrix. Together these advancements make a much more efficient algorithm

than basic RWM. [19]

Additionally, both Frequentist and Bayesian methods give estimates of the model parameters

that best reproduce a curve along the measured data points. Sometimes, least squares fits and

maximum likelihood estimates can produce poor curve fits. So, from Bevington and Robinson’s

Data Reduction and Error Analysis, one can obtain two useful tools for model examination: the

reduced chi-square test and linear correlation coefficients.

The reduced chi-square test helps to provide a quantified measurement of the goodness of fit.

The definition of the reduced chi-square is shown by Equation 2.8.

χ2 =
n
∑

j=1

[h (x j )− y (x j )]2

σ j (h )2

χ2
v =χ

2/v, (2.8)

where n is the total number of data points. h (x j ) is the measurement, and y (x j ) is the model

solution at data point j. Also, σ j (h )2 is the variance in the measurement at data point j, and v is

the number of degrees of freedom (v = n −p ) where p is the number of parameters. In our work,

the variance will likely be the poisson variance for a simple count spectrum, or the propagated

uncertainty for net counts and count rates. A reduced chi-square test will produce a value equal to

one for an ideal case, however, it is generally considered to be still a good fit for values less than ten.

Values less than one simply mean that the spectrum was overfit, and may have required a simpler

model or fewer data points to produce a similar result.

Furthermore, in the event of a poor fit, the model can be examined more closely by examining

the linear correlation coefficients. The linear correlation coefficient matrix can be calculated as

follows (Equation 2.9):

ρ j k =
σ2

j k

σ jσk
(2.9)

whereσ j k is the covariance at row i and column j as calculated by Equation 2.7, andσ j andσk
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are the diagonal standard deviations of the parameters from the covariance matrix (σ j j andσk k ).

The linear correlation coefficients of a model can reveal a weak parameter in the model that might

not be contributing much to the model fit. Parameters with many correlation coefficients under 0.2

should be considered for removal or substitution. [3]
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CHAPTER

3

EXPERIMENTAL SETUP AND

COMPUTATIONAL MODEL

This section will detail the experimental setup and the Monte Carlo computational transport models

used to simulate the experiment’s geometric configuration and calculate the flux incident on the

detector. A detector description will also be provided, as well as how the detector intrinsic efficiency

was calculated. The Monte Carlo calculated quantities are necessary for calculating response spectra

for comparison against those obtained via experimental measurements with the actual detector.

3.1 Experimental Setup

The entire experimental campaign was designed and performed at the Safeguards Laboratory at

Oak Ridge National Laboratory. The initial campaign was completed over the course of a couple

of weeks in June of 2013. Further measurements (such as those for the power law fit) were taken

on various days over the course of the spring of 2014, courtesy of ORNL personnel. All sources and

detection equipment were provided by ORNL. Each measurement was taken with the same detector,

detection equipment, and settings.

The detector of interest for validation of Gardner’s DRF model is a 1 inch diameter by 2 inches
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height right cylinder EFC Model 1X2P collimated NaI detector. This small detector is one used in

uranium holdup experiments at ORNL and is an example of a detector used for field measurements

of holdup within the holdup measurement system, HMS. A schematic of the detector is shown in

Figure 3.1.
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As can be seen, the detector is well shielded with lead except on the front face where the col-

limator aperture allows radiation into the detector from a limited extent of directions covering

the corresponding fraction of the unit sphere. Hence, the detector has approximately a 45 degree

in-axial-plane angle of vision from the center of its circular front. Contributions to the detector

response from any source of radiation far enough off of the axis of the cylindrical detector will be

significantly attenuated and radiation incident on the side or rear of the detector will not likely

contribute to the measured response spectrum (except for very high energy photons that are not suf-

ficiently attenuated by the detector’s lead collimator). The rest of the detector components are fairly

standard. It has a PMT, an aluminum sheath (container), etc., as shown in the detector schematic,

Fig. 3.1.

Overall, measurements were taken far away from the walls on a table with at most a aluminum

tee in the setup. Scattering off of the plastic table, walls, and floor were very unlikely since there is a

high probability for interaction of gamma-ray photons with high Z materials. The tee included a

small scattering possibility, but it was considered negligible. Therefore, the room geometry and the

aluminum tee were not simulated. Only the source, detector, and the air in between were simulated.

In the first set of experiments, a source was placed at a set distance from the detector center

(on-axis). The source was held in place on a ring stand, or taped to the front of the detector (for quick

counts). The source was typically a button calibration source with known activity and dimensions.

These measurements were performed for base validation, energy calibration of the detector, and

power law fitting for the DRF.

The parameters of all of the calibration sources used for validation are listed in Table 3.1. Details

of the sources used for the energy calibration and the power law fit are not reported here, as these

measurements were only intended for determining detector properties.

Table 3.1 Dimensions and activities of calibration sources used for experimental measurements

Source A.R. (cm) Thick. (cm) Act. (µC i ) Created Measured Act. Meas. (µC i )
Cs-137 0.25 0.318 5.01 9/28/2005 2/20/2014 4.13±0.62
Co-60 0.25 0.318 0.8516 3/1/2002 6/21/2013 0.1927±0.029

Note: All calibration sources used in this work were created by Eckert and Ziegler, and the active source dimensions
(active radius, A.R., and thickness) used in the MCNP model were taken from the Type D disc model in the catalog.
Furthermore, according to the supplier "Sources are manufactured with contained activity (Act.) values of ±15%
of the requested activity value unless otherwise noted in the catalog.” [27]

Note that only the active volume of these sources was simulated in MCNP and not the plastic
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case surrounding them, since attenuation was assumed to be negligible. The emission energies and

relative intensities of the gamma-rays of interest for each source used are tabulated in Table 3.2.

Table 3.2 Gamma ray energies and relative intensities of all sources measured were taken from
Brookhaven National Laboratory’s Nudat2.6 database. [28]Unlisted uncertainties were assumed to be
one in the last digit.

Source Peak No. Energy (keV) Relative Intensity (%)
Am-241 1 59.5409(1) 35.9(4)
U-235 1 105.0(1) 2.00(3)*

U-235 2 109.0(1) 2.16(13)*

U-235 3 143.76(2) 10.96(14)
U-235 4 163.356(3) 5.08(6)
U-235 5 185.715(5) 57.0(6)
U-235 6 202.12(1) 1.080(23)
U-235 7 205.316(10) 5.02(6)
Ba-133 1 80.9979(11) 35.6(3)*

Ba-133 2 356.0129(7) 62.05(1)
Cs-137 1 661.657(3) 85.10(20)
Mn-54 1 834.848(3) 99.9760(10)
Na-22 1 1274.537(7) 99.941(14)
Co-60 1 1173.228(3) 99.85(3)
Co-60 2 1332.492(4) 99.9825(6)

*Note: gamma-rays from the same source that were within 1 keV of each
other were averaged and their intensities summed together.

The next set of experiments focused on the source of interest (uranium-235 or U-235) and were

specifically conducted for the DRF validation exercise. Since it is very unlikely that a detector will be

directly pointed at a holdup material deposit when the deposit has an unknown location, strength,

and shape, off-axis detector spectra are of great interest in the holdup field. This is also necessary

for holdup configurations where the source is distributed and thus contributes to the response of a

stationary detector from broad angles of incidence. So, a source was affixed to an aluminum tee and

prepared specifically for accurate off-axis measurements.

The detector was placed on the center steel bar while the source was put on the crossbar held by

a vice and a steel ring holder at a distance of 38 cm from the detector face (41 cm from the front face

of the detector crystal). The source was then moved laterally left and right of center, or the axially

aligned position, in 5 cm intervals up to 20 cm. Measurements ceased at 20 cm because the source
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started to become indistinguishable from background beyond that distance. For visual reference, a

photograph of the lateral off-axis experimental setup is shown in Figure 3.2.

Figure 3.2 Photograph of the HEU disc off-axis experiment 41 cm from the detector and 15 cm to the right
(x=+15cm).

The source was a highly enriched uranium (HEU) disc source of known activity, dimensions,

and enrichment. The dimensions of the U-235 source are given in Figure 3.3.
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The source in the disc is composed of U3O8, uranium’s naturally occurring chemical form. The

uranium compound is set on polyethylene epoxy and encased in stainless steel. The activity of the

disc was 736 µ Ci on December 1, 2004. However, since uranium-235 has a very long half life (703.8

million years for U-235), the activity of the source at the time of the measurement was similar to

its initial activity. The individual uranium nuclides that comprise the disc source employed in our

experimental campaign are listed in Table 3.3.

Table 3.3 Enrichment of the uranium disc source

Nuclide Weight %
U-234 1.016
U-235 93.162
U-236 0.400
U-238 5.421

C (natural) 1.009E-3

The disc is of a high enrichment of U-235. U-235 is a common target material for holdup problems

in the nuclear fuel production industry because holdup material deposits present a proliferation

risk and can become a criticality safety concern. The typical holdup measurement in this case will

seek to detect the naturally emitted low energy gamma radiation. Hence, the focus of the validation

experiments has been on the low energies of the detector spectrum where the highest intensity

(most probable) gamma rays of U-235 are emitted (140-190 keV). This also explains the choice of

the smaller NaI detector size, as high energy detection that would necessitate larger detectors to

improve detection efficiency is of lower interest in the holdup field.

The last set of experiments were also performed on the highly enriched uranium disc but with

a few modifications. First, one or two steel plates taped to the front of the NaI detector to provide

attenuation. Second, the lateral distance between detector and source was reduced from 38 cm to 8

cm (11 cm from the crystal), and finally only on-axis measurements were taken. These measurements

simulated the attenuation that would be provided by steel pipe and equipment walls that normally

stand between the detector and a holdup material deposit. The dimensions of the first steel plate

were 105.22mm x 157.75mm (±0.02mm) with a thickness of 0.86 ±0.04mm . The second plate was

101.62mm x 152.66mm (±0.02mm) and 0.90 ±0.02mm . For visual reference, a photograph of the

HEU attenuation experiment at 11 cm is shown in Figure 3.4.
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Figure 3.4 Photograph of the HEU disc attenuation experiment with two stainless steel plates attached to
the detector (11 cm from the source).

For simplicity, in the MCNP simulation the isotopic compositions of the stainless steel plates

were kept the same as the steel used to encase the detector and to encase the HEU source. The

weight percent of each elemental isotope used in the steel alloy is listed in Table 3.4.
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Table 3.4 Stainless steel alloy composition used in the MCNP simulations.

Nuclide Weight %

Cr-50 0.800

Cr-52 16.2

Cr-53 0.200

Cr-54 0.400

Mn-55 2.00

Fe-54 4.20

Fe-56 64.8

Fe-57 1.50

Fe48 0.200

Ni-58 6.60

Ni-60 2.50

Ni-61 0.100

Ni-62 0.300

Ni-64 0.100

This composition of steel was taken directly from the MCNP model created by ORNL. The

original model is available upon request from the Safeguards & Security Technology Group at ORNL.

3.2 Monte Carlo Transport Models

Version five of the Monte Carlo (MC) code MCNP (Monte Carlo N-Partical Transport Code) was used

to calculate the incident gamma-ray photon flux on the 1x2 NaI detector crystal. MCNP is a radiation

transport code developed by Los Alamos National Laboratory (LANL) that simulates a large number

of random particle histories (particle tracks through a medium as well as collisions with its nuclei) in

a user specified geometric configuration according to specified material cross sections (taken from

the Evaluated Nuclear Data Files, ENDF). On the order of a few billion particle histories were run for

each flux calculation to keep the MC statistical errors smaller than the measurement uncertainties.

The computational geometry specified for MCNP was simplified from the actual experimental

geometric setups described in Sec. 3.1. Instead of including all details (i.e. objects) within the

room, only the detector and all of its components and the source were simulated within a sphere

of air. Only immediately adjacent objects like the table, the aluminum tee, and source holding
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apparatuses would be likely to contribute in a small way to the collided fluence tally. There would

be no contribution to the uncollided fluence tally as at least one Compton scatter with one of these

objects would be required before the particle struck the detector. The detector collimator reduces

the likelihood of these events further by reducing the detector solid angle by which particles can

strike the detector crystal. So, the secondary geometry (table, tee, etc.) would only make a small

contribution to the Compton continuum portion of detector spectra and hence was excluded from

the MC models.

With the simplified geometry, an F4 (average fluence) tally was taken in the detector crystal cell

by MCNP. MCNP calculates the fluence in a manner very similar to the fluence definition given by

Equation 2.1, by summing the particle track lengths over the given cell volume for each discrete

energy bin as specified by the user. In our case, 512 equal and discrete energy bins were chosen to

match the energy range given by the DRF, and to match the 512 channels observed in the measured

spectra. The average fluence tally over cell volume V was approximated discretely as follows,

Φ̄V (E )'
1

N V ∆E

N
∑

i=1

ni
∑

j=1

W
j

i s
j

i [
1

c m 2
], (3.1)

where ni is the number of times the ith particle enters V at energy Ek within energy bin k, s
j

i is

that particle’s jth track length in V, and W
j

i is the particle’s weight when entering V for the jth time.

Also, N is the total number of histories simulated by MCNP, and∆E is the width of the tally’s energy

bin centered at energy E. This relation is only an approximation of the average fluence, but if a large

number of particle histories pass through the cell volume, then it is a fairly accurate tally. [2]

However, as the MCNP fluence is based on the total number of particle histories, it can be

converted to a flux as follows

φ̄(E ) = Φ̄V (E ) ·Aγ [
p ho t o n s

c m 2 · s e c ·M e V
] (3.2)

where A is the activity of the source in Becquerels (Bq) or decays/sec, and γ is the yield in

particles/decay. So simply multiplying the F4 tally (fluence) by the source activity and yield converts

the tally to the approximate scalar flux effective over the volume of the detector crystal.

Again, the detector response can be predicted by multiplying the DRF by the incident flux.

However, Gardner’s DRF does not fully include a direct property of specific NaI detectors, absolute

efficiency, so it must be considered in the formal definition (Equation 3.3). [24] A differential pulse

height spectrum (detector response), dN/dH is defined as
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d N

d H
=

∫

R (H , E )S (E )d E ≈
G
∑

i=1

RG (H , Ei )φ̄(Ei )εa b s (Ei ). (3.3)

The formal definition from Knoll is listed first and is approximated by the more directly applicable

second definition. R(H,E) is the differential probability that a quanta of energy within dE about

E leads to a pulse with amplitude within dH about H (DRF). S(E)dE is the differential number of

incident radiation quanta with energy within dE about E. [9] RG (H , Ei ) is Gardner’s DRF, which is the

differential probability that a flux of energy Ei leads to a pulse with amplitude within dH about H

(DRF), and εa b s (Ei ) is the absolute efficiency. φ̄(Ei ) is the flux. To fully determine a detector response

using Gardner’s model, a new quantity must be defined and calculated: absolute efficiency.

Detector efficiency in general determines the percentage of radiation particles detected to the

number emitted. There are two main classes of detector efficiency, absolute efficiency and intrinsic

efficiency. Knoll defines absolute efficiency as simply the ratio of the number of detector pulses

recorded to the number of particles with energy E emitted from the source. Absolute efficiency is

dependent mainly on detector properties (cross-sections) and the counting geometry (source to

detector position). Whereas the intrinsic efficiency is the ratio of the number of detector pulses

recorded to the number of radiation quanta incident on the detector. The intrinsic efficiency is

accounted for by the DRF, however, the absolute efficiency is not. Therefore it must be approxi-

mated as the energy deposited along the average path length through the detector crystal in MCNP

simulation. [9]

In other words, the total absolute efficiency is the probability of particles incident on the detector

interacting with the detector crystal over all energies (thereby creating a pulse at energy E). This

probability is defined as

ε
j
a b s (E ) = Pi n t e r a c t i o n = 1− e −µt o t (E )·s j (E ) (3.4)

where µt o t (E → E ′,Ω→Ω′) is the NaI photon macroscopic cross section and probability that an

incident particle of energy E interacts per unit path length. s j (E ) is the track length and an MCNP

program called ptrac was used to record a large number of possible particle track lengths. This

distribution was then averaged over all track lengths to produce an average absolute efficiency

ε̄a b s (E ) as shown in Equation 3.5.

ε̄a b s (E ) =
1

Nt

Nt
∑

j=1

ε
j
a b s (E ) (3.5)

Nt is the total number of track lengths recorded by ptrac. Again, the absolute efficiency is
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multiplied by the DRF and the incident flux to produce a response spectrum (Equation 3.3). However,

since Gardner’s model typically underestimates the flat continuum under the response due to

electron physics concerning channeling or possibly NaI impurities the resulting computed response

must be normalized to the experimental response. [16] In our work, the normalization factors (the

ratio of the areas under each curve) necessary to pull up the computed response to the experimental

were found to be between two and eighteen. This is in good agreement with Gardner and Sood’s

results as they had experimental measurements that were up to around an order of magnitude

greater than the responses predicted by g03.
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CHAPTER

4

VALIDATION

Overall, the simulated detector responses predicted by Gardner’s model predicted the highest

intensity peak region of the experimental spectra fairly well, but had some difficulty in the continuum

and secondary peak regions. In the highest intensity peak region of the response, most of the

computed spectrum lay within two standard deviations of the experimental spectrum’s centroid.

The continuum discrepancies between the predicted and measured responses in the calibration

sources appear to stem from miscalibration of the electron range multiplier (Equation 2.4) for

the collimated 1x2" NaI detector. Gardner’s current model was validated only for larger bare NaI

detectors and not for collimated detectors and therefore some differences were expected. Whereas,

significant underestimation of the secondary peaks occurred in the highly enriched uranium (HEU)

disc spectra most likely due to outside crystal scattering with the detector collimator and other

components.

4.1 Cs-137 Measurement

The first measurement was of a Cs-137 source. The Cs-137 source measurement was taken at a

distance of 10 cm from the center of the detector face with the calibration source described by Table

3.1. The high source activity (4.13 µC i ) allowed for for a precise measurement with less than one
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percent uncertainty in the peak region in terms of counts (according to Poisson counting statistics),

and it was counted for 4000 seconds. This source was used for validation and as one of the data

points for the power law fit but not for the final energy calibration. The resulting spectra computed

and measured are given in Figure 4.1a and compared with the computed response without the lead

collimator and aluminum sheath simulated in the MCNP flux calculation (Figure 4.1b).
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Figure 4.1 Measured and normalized computed responses for the Cs-137 calibration source at 10 cm
(normalized across bounds) with aluminum can (a) and without aluminum can and collimator (b).

It is apparent that the backscatter peak is overestimated and the peak underestimated. However,

the greatest difference lies in the area between Compton edge and the peak, which will henceforth

be referred to the valley of the response. At first this effect was thought to be just a product of

the model being unable to account for the collimator geometry. In Sood’s PhD thesis, a similar

problem was occurring in the valley region of the response for their NaI 3x3" detector. However, the

effect was reversed. For a bare NaI crystal simulation in MCNP for the flux calculation, the resulting

response underestimated the valley. Simulating the detector aluminum sheath or can corrected this

underestimation. [12]

In that manner, the same effect is observed here. Taking away the collimator and aluminum

sheath from the MCNP geometry resulted in a response with a lower valley. This means that the

collimator and can geometry were not the source of the shallow valley discrepancy.
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Another difference between this validation exercise and Gardner and Sood’s validation exercises,

was how the computed spectrum was normalized to the measured response. Gardner and Sood

chose to normalize to the peak channel only, whereas in this work, normalization to the area under

the section of interest bounded by the normalization bounds was chosen instead. The normal-

ization factor used to normalize the computed to the measured response spectrum is described

mathematically by Equation 4.1

Ac =
nb 2
∑

nb 1

R c
i ,

Am =
nb 2
∑

nb 1

R m
i ,

Nf =
Am

Ac
, (4.1)

where R c
i is the computed count rate, and R m

i is the measured count rate at channel i. nb 1 and

nb 2 are the normalization bounds. Normalization bounds were chosen on a case by case basis. In

this case the bounds were chosen to avoid bins artificially augmented by the rebinning process and

unnecessary noise after the full energy peaks. Rebinning was accomplished by assuming the count

rates within the old bins were uniformly distributed, and then collecting them into the new bins

according to the fractions of the old bins determined by the uniform pdf. All contribution from the

negative energy bins created from the energy calibration were lumped into the first two bins by the

rebinning algorithm. Therefore those two bins were not included in the normalization.

The main reason for the normalization according to sections was chosen to minimize the effects

of response error in parts of the spectrum. The other reason was to avoid choosing between multiple

peaks in a spectrum. However, in this case normalizing to the peak channel revealed the true source

of the valley problem as shown by the renormalized spectrum in Figure 4.2a and Gardner’s responses

resulting from various electron range multipliers: Figure 4.2b.
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Figure 4.2 (a) Measured and normalized computed responses for the Cs-137 calibration source at 10 cm
(normalized to the peak). (b) 3x3" NaI detector computed responses over a varying electron range multi-
plier compared with the measured response from the Heath benchmark.

Now, as can be seen, the whole response spectrum is overestimated to the left of the peak for

the figure on the left. A similar effect is observed by a spectrum with an electron range factor that

is too low in Gardner’s figure (right). [16] A range multiplier that is too high underestimates the

continuum and a valley, while the reverse is true for one that is too low. Since the size of the detector

and number of channels of the 1x2" ORNL detector is very different from Gardner’s detector it is not

surprising that the value of the electron range multiplier may no longer be optimal. Furthermore,

the psuedo-electron range multiplier (Equation 2.4) was fit for Gardner’s detector by trial and error.

For this reason, and the fact that the HEU spectrum of interest contains far less contribution from

Compton scatter, the correction of the factor is reserved for future work.

4.2 Co-60 Measurement

The next measurement concerned the Co-60 source described in Table 3.1 taped directly to the

detector face. The low source activity (0.1927µC i ) required 1600 seconds for a reasonable number of

counts ( 400 counts, 5% Poisson uncertainty) even on the detector face, so no further measurements

were taken with this source. However, this source was only used for the detector energy calibration
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and a simple baseline validation (shown in Figure 4.3a). The energy calibration and its parameter

uncertainties are discussed further in Section 5.2.
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Figure 4.3 (a) Measured and normalized computed responses for the Co-60 calibration source on the
detector face using normalization across a range of channels (a) and normalized to the highest intensity
peak (b).

As expected, the measured spectrum shows some significant fluctuation in the confidence

interval along the response due to the low number of counts (higher uncertainty). The normalized

computed response stays mostly well within the confidence interval of the measured response

except at the backscatter peak around 2 MeV and the peaks are slightly underestimated. The two

Compton edges and most of the continuum are predicted fairly well, however the backscatter peak

region around 0.2 MeV is overestimated and the full energy peaks are slightly underestimated.

The overestimation may appear to be less significant in this case due to wider confidence bounds

(from the lower fidelity of the measurement), but it is still apparent on closer inspection. The cause

is most likely the same as the Cs-137 case, miscalibration of the electron range fit in the g03 source

code. Normalization bounds were chosen for the same reasons as the Cs case.
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4.3 Axial HEU Disc Measurement Set

The first set of HEU disc measurements were performed in order to test the performance of the

DRF model for off-axis geometry. All measurements were carried out at a distance of 41 cm on-

axis (y direction) from the crystal (38 cm from the face) and in set increments of 5 cm in the x

direction. The central and first two positions used a 400 s background count, whereas the last two

positions (x=15,20 cm) used background count times equivalent to the measurement count times.

All background count times were chosen based on propagation of the net count uncertainty.

The HEU disc source at the central position (x=0 cm) was counted for four hundred seconds. The

normalized computed and measured responses are given by Figure 4.4. The HEU disc specifications

and composition can be found along with further details of the source geometry for the entire

measurement set in Section 3.1.
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Figure 4.4 Measured and normalized computed responses for the HEU disc at the central position.

The normalized computed spectrum approximated the measured spectrum fairly well (within

two standard deviations of the experimental response) for the main full energy peak at 186 keV and

its shoulder peak at 205 keV with only a slight overestimation, however the secondary peaks at 163

and 144 keV are underestimated to compensate through normalization. The HEU gamma radiation

energies are too low in this case to produce much of a Compton continuum, and any continuum

that was produced is obscured by secondary peaks. So, it follows that absorption from the collimator
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created a significant decrease in flux unaccounted for by the DRF. The cross sections from Table 4.1

verify this line of thought by demonstrating an absorption cross section that is about 10 times larger

than the scattering cross section at 200 keV.

Table 4.1 Various photon cross sections (c m 2/g ) from 60 keV to 2 MeV. [25]

Energy (MeV) Coh. Scattering Inc. Scattering Absorp. Total
6.000E-02 4.900E-01 9.734E-02 4.432E+00 5.020E+00
8.000E-02 3.078E-01 9.923E-02 2.012E+00 2.419E+00
8.800E-02 2.632E-01 9.928E-02 1.547E+00 1.910E+00
8.800E-02 2.632E-01 9.928E-02 7.321E+00 7.684E+00
1.000E-01 2.128E-01 9.894E-02 5.237E+00 5.549E+00
1.500E-01 1.049E-01 9.484E-02 1.815E+00 2.015E+00
2.000E-01 6.260E-02 8.966E-02 8.464E-01 9.986E-01
3.000E-01 2.988E-02 8.036E-02 2.930E-01 4.032E-01
4.000E-01 1.746E-02 7.310E-02 1.417E-01 2.323E-01
5.000E-01 1.143E-02 6.734E-02 8.257E-02 1.613E-01
6.000E-01 8.060E-03 6.263E-02 5.406E-02 1.248E-01
8.000E-01 4.621E-03 5.537E-02 2.871E-02 8.870E-02
1.000E+00 2.991E-03 4.993E-02 1.810E-02 7.102E-02
1.022E+00 2.865E-03 4.944E-02 1.732E-02 6.962E-02
1.250E+00 1.930E-03 4.476E-02 1.168E-02 5.875E-02
1.500E+00 1.347E-03 4.075E-02 8.321E-03 5.222E-02
2.000E+00 7.626E-04 3.482E-02 5.034E-03 4.607E-02

In terms of mean free paths (mfp), the 3 cm of lead provided by the collimator is approximately

29 mfp in terms of absorption and only three mfp in terms of incoherent scattering. The collimator

is now optically thick in terms absorption but still thin in terms of scatter. While scattering will still

only reduce the flux of the highest full energy peak of the spectrum, it would add to the flux of the

lower energy peaks. This explains the overestimation of the high energy peak balanced with the

underestimation of the lower peak. The scattering also distorted the shape of the two convolved

peaks at 163 and 144 keV really only producing a peak at about 150 keV. Since simulation of the

low fidelity results with the peaks combined and averaged in position and intensity yielded better

results than the two simulated separately, they were kept together for all subsequent simulations.

The comparison of the low fidelity runs with the peaks separated and combined can be found in the

Appendix A.1.

The lowest energy peaks below the normalization bounds were originally thought to be a set of
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four very low intensity peaks. However, upon further investigation it was found that the backscatter

peaks from the three main full energy peaks were of the same energy. Using the Compton scattering

equation in terms of energy, it was calculated that the backscatter peaks from the lead shielding

would be centered at 114, 108, and 95 keV for the full energy peaks at 205, 186, and 150 keV, respec-

tively. Backscattering that occurs inside the detector crystal is accounted for by the DRF, but that

which occurs in the lead shielding is not. Therefore, the backscatter peaks are acknowledged, but

excluded from the normalization region in order to avoid skewing the other validation regions.

It is worthy to note that two other factors could have also contributed to the underestimation

of the two secondary peaks besides scattering in the collimator. Scattering within the table and

aluminum tee that were not simulated in the MCNP fluence model, and gamma rays emitted by the

decay products of U-234, U235, and U-238 could also have made some contribution. It was assumed

that scattered photons from the table and tee would be negligible due to shielding provided by

the collimator. Gamma radiation from uranium daughter products, however, were not simulated

simply because there were too many low energy gamma rays with low relative yields (probability of

emission per decay).

The HEU disc at the first position: 5 cm off-axis, was counted for a total of five hundred seconds.

Measurements were taken in both the positive and negative x directions. The normalized computed

and measured responses of both measurements are shown by Figure 4.5.
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Figure 4.5 Measured and normalized computed responses for the HEU disc source at y=41 cm and (a) five
centimeters left of center x=-5 cm and (b) five centimeters right of center x= 5 cm.

As expected, the entire count rate for both spectra have decreased slightly (about 25%) from

the central position due to attenuation with the collimator and increased distance from the source.

The lead backscatter peaks have also consolidated into a slightly different shape to accommodate a

new more favorable set of scattering angles. The computed response again overestimates the main

full energy peak and underestimates the secondary peaks due to the increased scatter from the

collimator. Finally, normalization bounds remained the same as the central case.

The second position was 10 cm off-axis, and the HEU disc source was counted for 750 seconds.
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The source at the third position (15 cm off-axis) was counted for 1600 seconds. The normalized

computed and measured repsonses for the positive and negative axis positions at x=10 cm and

x=15 cm are contained in Figure 4.6
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Figure 4.6 Measured and normalized computed responses for the HEU disc source at y=41 cm and (a) ten
centimeters left of center x=-10 cm, (b) ten centimeters right of center x=10 cm, (c) fifteen centimeters left
of center x=-15 cm, and (d) fifteen centimeters right of center x=15 cm.

The decreasing response trend continues for both positions (10,15 cm) with increased atten-

uation from the collimator and increased distance. At 15 cm, the secondary peak and the lead
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backscatter peaks become nearly indistinguishable from background radiation. The reason for this

high background is that the experiment was designed to ensure only the visibility of the main 186

keV peak. Even the least squares fit for the linear shifting process could not fit a Gaussian peak to the

150 keV peak for the x=-15 cm position in Figure 4.8c. So, only a one peak based shift was performed

on this spectrum. Normalization bounds remained the same as previous cases for simplicity.

The final position (20 cm off-axis) was most influenced by background and required a long count

time in order to overcome it. The HEU disc at 20 cm was counted for 4800 seconds. The normalized

computed and measured responses are shown by Figure 4.7.
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Figure 4.7 Measured and normalized computed responses for the HEU disc source at y=41 cm and (a)
twenty centimeters left of center x=-20 cm and (b) twenty centimeters right of center x= 20 cm.

The count rate for this position was the lowest and most attenuated. Again, in order to focus on

the main peak and maintain reasonable count times, only the main peak at 186 keV was resolved

from background. Furthermore, the normalization was narrowed to only contain the main peak

range. The normalized simulated response approximates peak behavior quite easily in spite of

collimation and geometry when isolated from the rest of the spectrum.
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4.4 HEU Disc Attenuation Measurement Set

The second set of HEU disc measurements were done in the interest of testing the DRF model’s

simulation of purely attenuated responses. Each measurement was performed centered on-axis at a

distance of 11 cm from the crystal (only 8 cm from the face). The first measurement was counted

without any attenuators. The second and third cases involved taping one and two stainless steel

plates, respectively, to the face of the detector. The count time was kept constant at 300 s for all

three measurements. The normalized computed and measured responses for all three cases are

contained in Figure 4.8
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Figure 4.8 Measured and normalized computed responses for the HEU disc source with (a) no, (b) one,
and (c) two stainless steel sheets taped to the detector face.

The same effects as observed before for the central position at 41 cm is observed for the unat-

tenuated response: imbalance between the two full energy peaks and no prediction of the lead

backscatter peak. However, the count rate is higher due to the closer proximity of the source. Nat-

urally, the normalization bounds were kept the same as the inner axial HEU measurements. As

stainless steel sheets are added to the face of the detector, a decrease in count rate across the entire

spectrum is observed. The effect is very similar to that of the off-axis cases, except the background

shape does not change since the angle of incident radiation is constant.
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CHAPTER

5

UNCERTAINTY QUANTIFICATION

The other major goal is to quantify the uncertainties associated with the simulated responses that

were used to validate the 1x2" NaI ORNL field detector. Validation reveals the accuracy of the model

whereas uncertainty yields the expected precision of the simulated responses providing a level

of confidence in the results. Each step in calculating the detector responses for each case has an

associated uncertainty that has been calculated and compared to the experimental uncertainty

where applicable.

Uncertainties that were easily reducible (e.g. MCNP uncertainties are based on the number of

histories run), were always reduced below the peak channel uncertainty for each measurement case.

Fitting uncertainties were based on the number of data points and the data uncertainty and therefore

constrained to the quality of measurements performed. Even so, most of the fixed uncertainties

tended to be under the respective measurement’s experimental uncertainty.

5.1 Monte Carlo Based Uncertainties

The first quantity required to calculate a simulated response is the MCNP fluence calculated by

particle track length tallies in MCNP. The fluence tally was divided into small energy bins according

to the energy structure of the DRF calculated by g03. MCNP calculates the relative uncertainty of
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each bin based on the number of particle track lengths that fall into that bin. Therefore, the number

of total tallies were chosen in order to make the energy bin with the highest standard deviation

have the same uncertainty as the lowest experimental uncertainty for each measurement excluding

the Am-241 seed peak region. The number of histories required was then easily predicted, since

again Monte Carlo standard deviation is equal to the inverse square root of the number of particle

histories. In all cases, excluding Co-60, the number of histories required was on the order of billions.

Similarly, in the Cs-137, Co-60, and HEU attenuation cases the highest computational uncertainties

above 80 keV were ensured to be below the lowest uncertainty of the experimental results.

In certain cases of the HEU disc measurements at forty one centimeters, meeting the lowest

experimental uncertainty for every tally energy bin was difficult to do in a reasonable amount of

computational time. Certain MCNP modeling measures were taken to compensate and reduce

computation times. First, the lowest energy bins below 80 keV were excluded for two reasons. These

bins had the highest computational uncertainty, and they were overshadowed by leftover noise

from the background subtraction of the Am-241 seed peak in the measured spectrum anyway.

The other change involved simply reducing the source definition from an isotropic source to

only producing particle histories within the solid angle calculated to actually strike the detector

whole, not just the face. All particles were then weighted using a form of importance sampling called

forcing to prevent biasing the fluence tally, where the alternate pdf was uniform over the reduced

angle and the original pdf was uniform in all directions. The modified pdf ( f̃ (x )) and the weighting

factor (w ) can be derived from Equations 5.1 and 5.2 respectively.

f̃ (x ) =
f (x )
∫ x2

x1
f (x )d x

f o r xmi n ≤ x1 ≤ x ≤ x2 ≤ xma x , (5.1)

w =w0

∫ x2

x1
f (x )d x
∫ xma x

xmi n
f (x )d x

, (5.2)

where w is the forced weight of the particle and w0 is the original weight of the particle. f (x )

is the original pdf, and x1 and x2 are the new bounds to be imposed on the pdf in order to only

sample the important region contained by them. [26] In our work, the initial source distribution

direction was modified from being isotropic in all directions to being contained within the angle

cosine relative to a directional vector ( ~v ) aligned with the center of the detector face but still isotropic

in the other directions. A diagram of the detector to source geometry is shown for reference in Figure

5.1.
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Figure 5.1 Diagram of the detector to source geometry and the solid angle chosen for the initial source
distribution forcing pdf.

Ifµc is the cosine of angle θ (chosen to include the whole detector surface area), and the original

pdf is f (x ) = dµ/2. The solid angle bounds are set to x1 = µc and x2 = 1 for a narrower forward

direction. The modified pdf becomes

f̃ (µ) =
dµ
2
∫ 1

µc

dµ
2

=
dµ

1−µc
, (5.3)

which is sampled from instead of the full isotropic pdf. The corresponding weight can be derived

as

w =w0

∫ 1

µc

dµ
2
∫ 1

−1
dµ
2

=w0
1−µc

2
, (5.4)

which is multiplied by the original weight of each particle emitted from the source. This change

reduced the variance significantly allowing a more reasonable amount of particles to be run for the

x =±15 cm and x =±20 cm cases.

Since the table and room geometry are not simulated in the MCNP model anyway, it is a small

approximation assuming that off direction photons would likely escape the system of interest.

Rather than show all of the bin uncertainties for each case, the case with the highest uncertainty

(HEU disc at x=41 cm, y=-20 cm) excluding the Co-60 measurement will be given as an example.

The fluence F4 tally is plotted with its uncertainty bounds in Figure 5.2.
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Figure 5.2 MCNP computed fluence and two sigma confidence interval

The bounds are fairly narrow beyond 80 keV. Each spike in the fluence corresponds to an incident

gamma ray energy from the HEU disc starting from 105 keV and ending at 205 keV. The highest

relative standard deviation greater than 80 keV was 2.44% at 195 keV. This was well below the lowest

relative standard deviation of the HEU disc measurements at 41 cm which was 2.72%. As can be

seen, the confidence bound between the 186 keV peak and the maximum energy peak at 205 keV is

wider than anywhere else above 80 keV. Even the bins in under 80 keV did not exceed 5% relative

standard deviations.

The DRF itself contains a Monte Carlo calculation that fully calculates the probabilities of a

count in each channel based on contributions from all other channels using the fit parameters. Once

again, the number of particle histories controls the relative uncertainty of the DRF, and the same

threshold of the lowest experimental uncertainty for each case was selected for the highest DRF

channel uncertainty. The order of particles required was much less than that of the flux calculations

and only on the order of hundreds of thousands for all DRF Monte Carlo calculations.

Again, it is not feasible to show every uncertainty for each measurement, so only the highest

uncertainty case (excluding Co-60) will be shown. As expected, this case would be the HEU disc at

forty one centimeters for the off-axis experiments. Furthermore, six DRFs (one for each incident

photon energy) are summed together to produce the total DRF, so the peak DRF with the highest

uncertainty was chosen (105 keV peak). Because g03 did not have a second axis distance variable,

only one total DRF was used for the off-axis HEU disc experiments. Now, since the full DRF depends
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on two variables and would produce a three dimensional surface plot it will be easier to display the

uncertainty bounded along the peak channel densities, as displayed in Figure 5.3.
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Figure 5.3 HEU disc at 41 cm with DRF densities for the 105 keV peak at channel 33 and the two sigma
confidence interval

The highest probability density channel contributions for channel 33 are the immediate channels

above that channel as expected from the spread of Gaussian uncertainty. However, the peak of the

densities is actually about five to six channels over channel 33 which might explain the need to shift

the computed spectra about the same number of channels. Channels above the spread have no

contribution (density=zero), and the channels below are fairly constant. When the entire DRF is

multiplied by the flux, the entire row of densities for each channel is multiplied by the flux vector and

summed, so naturally the uncertainty is constant for each channel. The relative standard deviation

for this channel was 0.420% and well under the 2.72% experimental uncertainty. Each channel row

in the DRF possesses a similar density curve, so the highest flux channel will produce the highest

response automatically. The highest relative standard deviation of all the DRF channels was for the

last channel (512) and was only 1.80%.

The total absolute efficiency calculation was carried out through calculation with an XCOM

NaI cross section and particle track lengths through the crystal volume in MCNP as described by

Equation 3.5. The number of histories were increased accordingly until the proper number of path

lengths were acquired to reduce the highest relative standard deviation to approximately that of
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the lowest experimental uncertainties. The highest uncertainty case is shown for the HEU disc at

forty one centimeters. The resulting density curve with a two sigma confidence interval is shown in

Figure 5.4.
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Figure 5.4 Absolute efficiency of the HEU disc at 41 and two standard deviation confidence interval

This curve is essentially the probability of an interaction of energy E, occurring within the crystal.

So, low energies are almost certain to be absorbed and higher energies are more likely to escape.

The relative uncertainty is fairly small at low energies, but grows as energy increases. The relative

standard deviation was 2.78% at the highest energy which was close to the lowest experimental

relative uncertainty of 2.72%. At 0.2 MeV or less where the majority of the HEU spectrum lies the

relative uncertainty is much lower and well below 1%. The higher uncertainty at higher energies is

purely a factor of lack of information or no particle tracks at those energies.

5.2 Parameter Uncertainties

The first set of parameters are associated with both the measured and computed results: the energy

calibration. The energy calibration is simply a polynomial that converts channel data to energy

data based off of the nonlinear scintillation behavior of NaI detectors. This is a necessary piece for

verifying physical measurements and a required conversion for the empirical power law of the DRF.

The energy polynomial is given by Equation 5.5
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E (k e V ) =α2 x 2+α1 x +α0, (5.5)

where x is the channel, E is energy in keV, and α0, α1, and α2 are the polynomial parameters.

The energy calibration parameters were found by a least squares fit of measurements of known

sources with known energies at the gain settings discussed in Section 3.1. Three sources were used

to determine the energy calibration polynomial: the Am-241 seed source, and the Cs-137 and Co-60

sources detailed in Table 3.1. Each channel mean for the energy calibration was found by taking

the peak section of the measured responses for each source and fitting them according to a simple

Gaussian plus linear background empirical model. The linear Gaussian model is given by Equation

5.6

Gy =
B

p
2πσT

e −
1
2 (

x−x̄
σT
)2 +a1(x − x̄ ) +a0. (5.6)

where x is the detector channel and Gy is the resulting point in the Gaussian curve. B is the

normalization constant, andσ is the standard deviation of the Gaussian. Finally, x̄ is the mean of

the Gaussian, and a0 and a1 form the linear background term. The Gaussian channel means and

parameter standard deviations are shown in Table 5.1.

Table 5.1 Channel means and associated standard deviations (STD) of the Gaussian fits for the energy
calibration.

Source Pk. No. Mean Chan., x̄ STD,σx̄ Rel. STD,σx̄
r e l (%) Red. Chi-Square, χ2

v
Am-241 1 20.92 2.767E-3 1.323E-2 0.8973
Cs-137 1 195.79 1.804E-2 9.212E-3 2.569
Co-60 1 341.64 0.2214 6.479E-2 1.059
Co-60 2 386.38 0.1761 4.557E-2 0.7260

Each least squares fit was performed by a nonlinear least squares algorithm in MATLAB called

lsqnonlin. The standard deviation was found through the simple Frequentist methods described

in Section 2.5 from the parameter covariance matrix. Classical Frequentist methods were used in

lieu of Bayesian for all Gaussian peak fitting except for the power law measurements because there

were usually a larger number of points in each peak. Also, Frequentist calculations require less

calculation time than DRAM (about 100 times less). The algorithm had no trouble fitting these

peaks, as each relative standard deviation of the mean channel is well under 1%. Co-60, as expected,

had the highest uncertainty because it had the lowest source strength and a low count time (low
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fidelity measurement). However, all peaks were well approximated by the model producing reduced

chi-squares well under ten.

A similar least squares fit was performed by lsqnonlin using the energy polynomial (Equation

5.5). The resulting parameter means and standard deviations are tabulated in Table 5.2.

Table 5.2 Energy calibration parameter means and standard deviations.

Parameter Mean STD.,σ Rel. STD,σr e l (% ) χ2
v

a2 2.104E-4 4.352E-5 20.68 530.4
a1 3.395 1.762E-2 0.5188
a0 -11.07 1.382 12.48

Since there were a low number of data points for the energy calibration fit, the Bayesian code

DRAM was used to calculate the standard deviations and optimize the parameter means from the

least squares starting values. NaI is fairly linear in terms of scintillation to energy deposited ratio

for low energies, so it is no surprise that the second order term is very small. Unfortunately, this

also means that it has a larger relative standard deviation. The y-intercept term (a0) has a little more

effect but also has more uncertainty than the first order term (which holds the lowest uncertainty at

about half of a percent).

In order to check DRAM for a possible error in the fit and uncertainty calculations, a standard

linear regression fit with Frequentist calculations was calculated for comparison. A slightly better

reduced chi-squared value of 430.5 was found, and the parameter values were modulated within

1% of the Bayesian values. The uncertainties were also halved. So, in this case, it may actually have

been slightly better to use the standard linear regression, however, the improvement in the results

would have been marginal.

Overall, the calibration still performed well in spite of the poor reduced chi-squared value, as

each channel mean converted to energy was found to be within two keV (1% relative error) from its

true value for all peaks that were not convolved with another peak (e.g. the 150 keV convolved HEU

peak). This is acceptable because the same energy calibration is used for both computed spectra

and measured spectra. So, any additional error would offset both spectra by the same amount.

The next set of parameters involves the power law of the DRF model itself. g03 not only uses

Monte Carlo simulation to calculate DRFs, but requires an empirically fit power law based on

Gaussian spread data from the detector of interest. The power law is the very same described in the

DRF model section of the Literature review by Equation 2.3.
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Again, linear Gaussian (Equation 5.6) least squares fits of several sources were required to obtain

mean Gaussian standard deviations for the power law. Five sources were used: Am-241 (seed source),

Ba-133, Cs-137 (same as in Table 3.1), Mn-54, and Na-22. Since Ba-133 has two full energy peaks, a

total of six full energy peaks were fit.

Source geometry and activity were not required for the power law fit. However, each peak was

counted until 10,000 counts were registered in the peak channel to keep the experimental uncer-

tainty close to one percent in the peak region. Some weak sources needed multiple measurements

added together to meet 10,000 counts due to the MCA timer limit. Furthermore, there should be

no added uncertainty in the measurements because the spectra were checked for gain drift and

perfomred immediately after one another. The mean Gaussian standard deviations (σT (EI )) and

their uncertainties are compiled in Table 5.3.

Table 5.3 Channel means and associated standard deviations of the Gaussian fits for the power law.

Source Pk. No. Energy (MeV) Gauss. STD,σT STD,σσT Rel. STD,σσT
r e l (%) χ2

v
Am-241 1 5.954E-2 4.454E-3 2.128E-5 0.4778 0.9191
Ba-133 1 8.100E-2 4.879E-3 4.478E-4 9.177 56.51
Ba-133 2 3.560E-1 1.499E-2 2.106E-4 1.405 13.09
Cs-137 1 6.617E-1 2.137E-2 7.599E-5 0.3556 2.295
Mn-54 1 8.348E-1 2.468E-2 8.469E-5 0.3432 1.011
Na-22 1 1.275 3.207E-2 8.001E-5 0.2495 1.611

Some of the peaks involved in the Gaussian fits for the power law spread data were sparse in data

points, so DRAM was used to optimize the Gaussian spread parameter means (σT ) and determine

their respective standard deviations (σσT ). The first Ba-133 peak suffered quite a bit of background

interference from convolution with the Am-241 peak, and had fewer points to fit the linear Gaussian

curve to resulting in the highest uncertainty and a reduced chi-square well over ten (χ2
r e d ≤ 10 is

considered a good fit). The first peak’s data was almost thrown out for its poor Gaussian fit. The

second Ba-133 peak was also over 1% in relative uncertainty and had a reduced chi-square over ten

(to a much lesser extent than the first). This was probably due to some interference with a third

lower intensity peak at 300 keV obscuring the left tail of the Gaussian.

As a follow up, examining the linear correlation coefficients of a model can reveal weak model

parameters. If the correlation coefficients of a parameter are all under about 0.2, then that parameter

shares no linear relationship to any of the other parameters. Sometimes, removing such parameters

from the model can improve the fit. An example of this model will be provided using the worst fit
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case to check for model weaknesses. The linear correlation coefficient matrix for the first Ba-133

peak (81 keV) is listed as Table 5.4.

Table 5.4 Linear correlation coefficients for the 81 keV Ba-133 linear Gaussian model fit.

Parameter σT x̄ B a0 a1

σT 1 -0.9594 0.9901 -0.9838 0.9737
x̄ -0.9594 1 -0.9727 0.9664 -0.9801
B 0.9901 -0.9727 1 -0.9978 0.9922
a0 -0.9838 0.9664 -0.9978 1 -0.9936
a1 0.9737 -0.9801 0.9922 -0.9936 1

All of the coefficients are very highly correlated (>0.9), so there are no weak parameters. This

does not mean that the model cannot be improved, just no terms should be removed. Maybe a few

terms could be added to account for the nonlinear tail of the 60 keV Am-241 seed peak, however, a

more practical alternative was found by weighting the power law fit by the x-data uncertainties at

each point.

This alternative was developed in response to the higher uncertainty in the Ba-133 peaks and

the distrust in the Am-241 seed peak due to lack of exact knowledge of the seed’s position relative

to the center of the crystal. Originally, only three sources were used to calibrate the DRF power

law, but results showed some error in the peak widths of some of the validation measurements.

To counter this issue, the power law fit was thought to be improved with extra measurements at

energies between the three original points. However, rather than throw out less than ideal data

points for the power law, the least squares fit was simply adjusted to weight each data point by its

uncertainty. Instead of purely minimizing the sum of squares (classical least squares), the weighted

sum of squares (Equation 5.7) was minimized.

W SSq =
n
∑

i=1

(
Υi − f (xi , pj )

σ(xi )
)2 (5.7)

Above, n is the total number of data points. Υi is the measured result at data point i, and f (xi , pj )

is the value of the function being fit to the data at i. pj are the parameters, andσ(xi ) is the standard

deviation of Υi used as a weight. In this case the function fit was the power law, Equation 2.3, and Υ

was simplyσT (E ).

The rest of the least squares and uncertainty calculations remained the same. The resulting

parameter means and standard deviations of the weighted power law fit are in Table 5.5.
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Table 5.5 Power law parameter means and standard deviations.

Parameter Mean Standard Deviation,σ Relative STD,σr e l (%) χ2
v

a 0.027608 1.684E-4 0.6100 8.500E-6
b 0.644237 5.719E-3 0.8877

There were several data points for the power law, and it was uncertain if the weighted sum of

squares would behave well with the Bayesian code. So, the classical Frequentist values were used

in the DRF calculations for expedience. The Bayesian code was tested later and gave comparable

results which are given in Appendix A.2. The parameter values are on the order of Peplow and Heath’s

power law coefficients, and the relative standard deviations are under 1%. The power law is a bit

overfit, but that is somewhat expected as several extra measurements were taken when the three

point fit proved insufficient.

The final process requiring uncertainty quantification is the linear energy shift required to

allign the computed and measured spectra. g03 contains a small bug that tends to offset the entire

spectrum by several channels to the right. A program called gshift (courtesy of Gardner’s group)

corrects this issue by linearly interpolating between the channels and shifting the pulse height

spectrum to the desired channels according to Equation 5.8

xc ha n = A ·Ep +B , (5.8)

Ep = E · f (E ),

where xc ha n is the channel number, and A is a normalization constant. B is the number of

background channels, and Ep is the energy of the original pulse-height spectrum. Finally, E is the

true energy of the gamma-ray (or desired energy to shift the peak to), and f(E) is the functional

relationship of the ratio: Ep/E. A and B are adjusted accordingly to shift the peak(s) to the desired

location, while f(E) is chosen by the user. Either f(E) is based off of the natural NaI nonlinearity (for

two or more peaks), or directly proportional (for one peak).

In order to determine the linear shift required, the mean peak channels of both the measured

and computed spectra had to be found. The means were found in the same manner as those for the

energy calibration fit, by fitting the spectral peaks to the linear Gaussian model (Equation 5.6). The

Gaussian peak channel means and the associated uncertainties for the computed spectra are given

by Table 5.6 and those of the measured spectra by Table 5.7.
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Table 5.6 Computed spectrum channel means and associated standard deviations of the Gaussian fits for
the energy energy shift.

Source Pk. No. Mean Chan., x̄ Stand. Dev.,σx̄ Rel. STD,σx̄
r e l (%) χ2

v
Cs-137 1 204.67 9.799E-3 4.788E-3 1.528E-4
Co-60 1 354.68 1.310E-2 3.692E-3 3.867E-6
Co-60 2 397.71 7.363E-3 1.851E-3 1.985E-6

HEU Rad.
Center 1 52.22 1.610E-2 3.084E-2 3.257E-3
Center 2 64.51 1.093E-2 1.695E-2 0.2371

L1 1 52.22 1.596E-2 3.056E-2 1.586E-3
L1 2 64.51 1.072E-2 1.661E-2 0.1116
L2 1 52.23 1.527E-2 2.924E-2 4.388E-4
L2 2 64.51 1.069E-2 1.656E-2 3.294E-2
L3 1 52.24 1.442E-2 2.760E-2 1.318E-4
L3 2 64.51 1.090E-2 1.689E-2 1.127E-2
L4 1 52.26 1.272E-2 2.433E-2 3.262E-5
L4 2 64.52 1.174E-2 1.819E-2 4.119E-3
R1 1 52.22 1.592E-2 3.049E-2 1.576E-3
R1 2 64.51 1.073E-2 1.663E-2 0.1122
R2 1 52.23 1.523E-2 2.916E-2 4.344E-4
R2 2 64.52 1.073E-2 1.663E-2 3.309E-2
R3 1 52.24 1.450E-2 2.775E-2 1.318E-4
R3 2 64.52 1.095E-2 1.698E-2 1.141E-2
R4 1 52.25 1.282E-2 2.453E-2 3.303E-5
R4 2 64.52 1.156E-2 1.791E-2 3.971E-3

HEU atten.
0 sheets 1 52.15 2.380E-2 4.564E-2 2.151E-2
0 sheets 2 64.46 3.873E-3 6.008E-3 7.474E-2
1 sheet 1 52.13 2.600E-2 4.987E-2 2.249E-2
1 sheet 2 64.45 3.312E-3 5.139E-3 4.582E-2
2 sheets 1 52.12 2.818E-2 5.407E-2 2.286E-2
2 sheets 2 64.44 2.891E-3 4.487E-3 2.658E-2

58



5.2. PARAMETER UNCERTAINTIES CHAPTER 5. UNCERTAINTY QUANTIFICATION

Table 5.7 Experimental net spectrum channel means and associated standard deviations of the Gaussian
fits for the energy shift.

Source Pk. No. Mean Chan., x̄ Stand. Dev.,σx̄ Rel. STD,σx̄
r e l (%) χ2

v
Cs-137 1 195.79 1.804E-2 9.212E-3 2.569
Co-60 1 341.64 0.2214 6.479E-2 1.059
Co-60 2 386.38 0.1761 4.557E-2 0.7260

HEU Rad.
Center 1 46.90 0.8512 1.815 0.5671
Center 2 58.30 3.464E-2 5.942E-2 8.139E-2

L1 1 45.84 0.1005 0.2192 6.329E-2
L1 2 58.54 0.1584 0.2706 0.9686
L2 1 46.2 0.4500 0.9740 1.626
L2 2 58.55 0.2289 0.3910 1.060
L3 1 X X X X
L3 2 58.51 0.1789 0.3057 0.8369
L4 1 X X X X
L4 2 58.23 0.1407 0.2416 1.837
R1 1 45.94 0.1990 0.4332 0.8888
R1 2 58.34 0.1473 0.2525 1.168
R2 1 46.02 0.3772 0.8197 0.8361
R2 2 58.35 0.1200 0.2057 0.5307
R3 1 46.25 0.4760 1.029 0.9318
R3 2 58.20 0.2007 0.3449 2.701
R4 1 X X X X
R4 2 58.54 0.2326 0.3973 1.716

HEU atten.
0 sheets 1 46.02 0.2425 0.5269 3.488
0 sheets 2 58.37 6.708E-2 0.1149 1.298
1 sheet 1 46.12 0.3239 0.7023 4.015
1 sheet 2 58.32 7.000E-2 0.1200 1.248
2 sheets 1 45.99 0.3881 0.8438 5.661
2 sheets 2 58.33 5.568E-2 9.545E-2 1.104

All of the computational channel relative standard deviations were well under 1% (lowest Poisson

uncertainty estimated from highest peak channels), but not all of the net (background subtracted)

experimental ones were. However, the experimental channel uncertainties that were over 1% oc-

curred only in the lower intensity 150 keV peak of forty one centimeter HEU disc measurements.

Furthermore, those uncertainties were expected to be higher as the lowest peak channel poisson

uncertainty of the forty one centimeter HEU measurements was 2.72%. Some of the reduced chi-
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square values showed some overfitting (perhaps the linear background was unnecessary for the

computed results), but none of the values were over ten.

All of the computational peak fits naturally had much lower uncertainties then the experimental

peak fits. Some of the 150 keV experimental peaks of the far off-axis HEU disc measurements were

not well developed, and could not be fit. In these cases, the shifting program employed the single

peak shift algorithm (Equation reference if available here) instead using only the main 186 keV peak

channel means to shift the computed spectrum in alignment with the measured.
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CHAPTER

6

CONCLUSION AND FUTURE WORK

The goal of this work was to validate and quantify the uncertainty of Gardner’s DRF model for several

source types and geometric configurations of a 1x2" NaI detector. How these goals were met has

already been detailed in the body of this thesis, but the implications of the results of this work and

extensions to future work will be discussed in this section.

6.1 Conclusion

Validation of calibration sources The model aligned within two standard deviations of the measured

spectrum of the full energy peaks of the Co-60 and Cs-137 button source spectra, but significantly

overestimated the Compton continuum by about 45-60%. At first this discrepancy was thought to

be simply an effect of the collimator being unaccounted for by the DRF model, but this hypothesis

proved to be incorrect. More light was shed on the discrepancy when a peak normalization of the

spectrum instead of the sectional normalization was performed in order to compare spectra with a

previous one from Gardner’s validation work.

Under peak normalization, the computed spectrum nearly matched with the peak of the mea-

sured response, but overestimated the rest of the spectrum. This effect was very similar to one of

Gardner’s spectra in which the electron range multiplier (Equation 2.4) was set too low. The electron
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range multiplier is a semi-empirical model of the electron range that was fit by trial and error. Further

details of the fit were not given.

Validation of HEU disc The HEU validation campaigns consisted of two sets of experiments:

one concerning x-axis off-sets of the source from the origin at a y-axis distance of 41 cm, and another

one involving attenuation using steel plates for the disc centered on the x-axis at a distance of 11

cm. Both campaigns showed predictable physics effects in terms of backscatter peak distortion

and attenuation for each type of geometrical configuration change, but a markedly different effect

occurred instead of the continuum overestimation witnessed in the calibration source validation.

Since the full energy peak of U-235 is too low for any sizable Compton scatter losses from the

detector crystal, there is no visible Compton continuum in the HEU spectra. Without a continuum,

there are only four main peaks observed in the measured spectrum: the main full energy peak

(186 keV), the shoulder peak (205 keV), the convolved peak (150 keV), and a few backscatter peaks

(around 100 keV). The model reproduced the main peak and its shoulder peak well, again within

two standard deviations of the measured count rate, but underestimated the convolved peak and

did not reproduce the backscatter peak. The backscatter peak is an artifact of the lead collimator

around the detector. This collimator is not accounted for by the DRF model because the model

currently only reproduces the effects of scattering within the detector crystal. It is also possible that

not accounting for the local geometry of the table and aluminum tee and the daughter product

decay photons of the uranium may also have contributed to the secondary peak underestimation.

Uncertainty quantification Finally, uncertainty quantification of the model was conducted

on every calculated quantity from the flux calculation by MCNP to the Gaussian peak fits for the

spectral shifting program. Where the uncertainty was controllable by the number of particle histories

chosen in Monte Carlo simulations, it was reduced below the lowest measured uncertainty. Where

it was constrained to the accuracy of the model for least squares fitting, it was compared to the

experimental uncertainty and the reduced chi-square test was performed to check for goodness of

fit.

Only two poor fits were observed, out of a total of sixty examined in this work, (in terms of

parameter variance and chi-square): the energy calibration and the Ba-133 Gaussian peak fits used

for the power law fit. The first was compared with other data points to verify a working accuracy, since

the measurement of further known sources was impractical. The largest error between the calculated

energy of a peak and its known value was approximately one percent for any non-convolved full

energy peak. Because the energy calibration is applied to both the measured and computed spectrum

(not affecting any differences between the spectra), it was deemed acceptable.

The poor Ba-133 peak fits were largely caused by the peak convolutions with other peaks. The

fit was necessary to obtain the peak standard deviation for the power law fit. Rather than discard
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the Ba-133 points, the problem was resolved by weighting the power law fit by the uncertainty in

the Gaussian peak width data points using a weighted least squares technique (Equation 5.7). All

other parameter uncertainties fell well under the lowest experimental uncertainty and passed the

chi-square test, hence they are considered reliable for use in future work.

6.2 Future Work

There are many parameters that could affect the shape of the normalized computed responses

produced by the DRF. In order to narrow down the parameters that contribute most to the secondary

peaks and the Compton continuum of the spectrum, a parameterization study could be performed.

Parameters such as the electron range multiplier, collimator thickness and density, source position

and peak intensity, and input cross-sections would be incrementally changed to test the resulting

sensitivity of the normalized computed response. The most sensitive parameters could then be

prioritized for further study.

The electron range multiplier This factor was originally said to have been fit by trial and error.

Details of experimental data used and how it was fit have not yet been found. Further investigation

could be helpful for tuning the factor for new detector configurations. However, it is possible that the

parameters were not fit but guessed until a favorable result was found. If so, then it is clear that future

experiments should be performed not only to determine the electron range of the 1x2" detector in

order to better fit this equation in the g03 source code, but to verify the original parameter choices

for Gardner’s detectors. A better fit could potentially correct the continuum overestimation problem

observed in the calibration validation work reported in this thesis.

Outside detector crystal scattering g03 could eventually be modified to account for outside

detector crystal scattering. Doing so would be highly valuable for a variety of reasons. For one

thing, it might allow distinguishing of detector geometry from attenuation by the distortion versus

decreased amplitude of the backscatter peak. Being able to do this would be very helpful in inverse

problems focusing on unknown radiation source characterization. Some members of Gardner’s

research group are already addressing this problem.

Verify Assumptions Several assumptions were made throughout this work, such as modeling

the detector PMT and the electronic housing as void, only modeling the photons emitted directly by

U-235, and not using the table and aluminum tee in the MCNP model. Further work could be done

to check the validity of these assumptions. For example, the detector PMT could be modeled as a

homogeneous mixture of its constituent components to better model scattering within it. Simulation

of the decay products of all of the uranium isotopes and the local geometry (table and tee) could

improve the HEU computed response spectrum in the secondary peak regions.
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APPENDIX

A

ALTERNATIVE METHODS AND MODELS

This appendix contains a couple of alternative methods for parts of the validation and uncertainty

quantification work, as well as an alternative model for the simulation of detector responses. The

alternatives are compared with the chosen primary methods, and then the reasoning behind the

method chosen is discussed briefly.

A.1 HEU Disc Response: Separate Versus Combined Peaks

At first, the number of full energy peaks chosen to be entered into g03 for simulation were only

those that were over 1% in relative intensity. Seven peaks met this criteria, and so the seven peaks

were matched with their relative channel locations and entered into g03. The resulting spectrum

did not approximate the large lower intensity peak next to the main peak at 186 keV very well in

early simulations. This peak was the result of the interaction between three full energy peaks: one at

144, 163, and the 186 keV peak.

It was thought that combining the two lower energy and intensity peaks may improve the result.

So, their energies were averaged to 150 keV and their intensities summed before entering them into

g03, leaving only six peaks. A comparison of the two responses for the HEU disc case centered at

forty one centimeters from the detector is shown in Figure A.1.
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A.2. FREQENTIST AND BAYESIAN POWER LAW UNCERTAINTY APPENDIX A. ALT. M&M
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Figure A.1 Full simulation of seven peaks vs. six peaks with two combined at 150 keV.

Both responses underestimate the lower energy peaks while slightly overestimating the main

full energy peak at 186 keV. Note: this was a low number of histories run, so the added uncertainty

in the calculation made the 100 keV peaks appear closer to the lead backscatter peaks. In the high

fidelity runs, the underestimation of the backscatter peaks is more apparent.

It is clear though that the combined peak aligns much better with the center of the peak around

150 keV and more closely approximates its amplitude. As a consequence of this result, the six peak

scheme was chosen for the final results.

A.2 Freqentist and Bayesian Power Law Uncertainty

In the main body of this work, it was mentioned that Frequentist uncertainty analysis was performed

on the power law model due to the lack of confidence in the Bayesian code’s ability to analyze

the weighted least squares scheme. Later, the Bayesian code was tested and compared with the

Frequentist calculation. The results of both analyses for the power law parameters are contained in

Table A.1.
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A.3. ALTERNATIVE RESPONSE CALCULATION: MCNP F8 TALLY APPENDIX A. ALT. M&M

Table A.1 Power law parameter means and standard deviations for Frequentist and Bayesian methods.

Frequentist
Parameter Mean Standard Deviation,σ Relative STD,σr e l (%) χ2

v
a 0.027608 1.684E-4 0.6100 8.500E-6
b 0.644237 5.719E-3 0.8877

Bayes
a 0.027608 1.606E-4 5.818E-3 8.501E-6
b 0.64436 5.75E-3 8.923E-3

The values of the parameters and their respective uncertainties are very similar for both methods.

The Bayesian parameters gain a slightly less overfit reduced chi-squared value, and exchange slightly

lower uncertainty in a for greater uncertainty in b. Again, the Frequentist method was chosen for

expedience and direct application of the weighted least squares, however, the methods prove to be

essentially equivalent in this case.

A.3 Alternative Response Calculation: MCNP F8 Tally

Gardner’s DRF model proved to be able to simulate the full energy peaks of responses fairly well, but

needs recalibration for some detectors to reproduce good Compton continua. Additionally it suffers

under the strain of advanced geometries being unable to reproduce the effects of outside detector

scattering events on the detector response. One alternative model was considered and compared to

g03 responses: MCNP’s F8 tally with Gaussian energy broadening (GEB).

MCNP can approximate a detector response to a fair degree with the correct geometry. The same

detector and source model as was used for the the F4 flux tally was used for the F8 tally. Additionally

the power law equation for MCNP (Equation A.1) was fit to the same sources used for Gardner’s

model

f w hm = a + b
p

E + c E 2 (A.1)

where E is the energy of the incident gamma ray, a,b and c the parameters, and fwhm is the full

width at half maximum of the peak. This information was used in a special GEB input of the F8

tally in order to spread the peak to the appropriate width in the resulting response from MCNP. The

response from MCNP is compared with the response created by g03 and the experimental response

in Figure A.2
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A.3. ALTERNATIVE RESPONSE CALCULATION: MCNP F8 TALLY APPENDIX A. ALT. M&M
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Figure A.2 Peak normalized computed responses from MCNP with and without the collimator simulated
and g03 versus the measured response.

Both methods approximate the full-energy peak well, however, where g03 overestimates the

continuum MCNP underestimates. MCNP predicts the electron physics of the valley region better

than g03 (without recalibration of the range law), but underestimates the rest of the Compton

continuum by a good margin. The response from MCNP without the collimator is shown to illustrate

a possible cause of they underestimation. There is a great shift in the continuum without the lead,

so it seems likely that some physics with the lead collimator and aluminum can of the detector are

not well approximated by MCNP’s F8 tally.

g03 was chosen as the main model mainly for two reasons. First, g03 calculates a DRF with far

fewer histories (four orders of magnitude) with similar accuracy and thereby taking much less time

for computation. Second, g03 produces a full DRF for the user which will be useful in further research

with inverse problems, whereas MCNP produces a response directly without a DRF. However, it

may still be useful to give the MCNP calculation a closer examination for its approximations of the

physics in the valley region in order to improve future models.
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178 

4.4. Task D: Develop & validate neutron detector response functions and 
their uncertainties 

In addition to the gamma DRFs, neutron DRFs are necessary to include neutron measurements in 
the DIMP procedure. Unlike gamma detectors, neutron detectors typically only measure an 
energy-integrated count rate. Gas-filled neutron detectors, commonly used for passive neutron 
assay, are relatively insensitive to the incident neutron energy. This is especially true when the 
detectors are encased with low-A moderator to increase the probability of neutron interaction. 
Thus, the neutron DRF is simpler than for the gamma detector. The main task here was estimating 
the detector efficiency as a function of incident neutron energy, as well as quantifying the 
associated errors in this estimate. While the efficiencies can be estimated with Monte Carlo 
simulations, comparisons with experimental data was expected to demonstrate the level of error 
in the simulation. The University of South Carolina was originally assigned to complete this task 
but in fact NC State University ended up completing it. 

The accomplishment of this task was reported in: Cyrus Proctor, Accurate Holdup Calculations 
with Predictive Modeling and Data Integration: Neutron Experimental and Computational Study, 
NC State University, January 20, 2015. This document is replicated on the following pages. 
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I Introdution

This work was completed under NEUP 2012 narrative 3494, “Accurate Cal-

culations with Predictive Modeling and Data Integration”. The overall ob-

jective was to develop and validate neutron detector response functions and

their associated uncertainties for later use in data integration and inverse

methodologies. These methodologies are being explored to more accurately

locate, identify and quantify nuclear holdup using non-destructive passive

assay techniques.

Neutron holdup was the focus for this work. Experiments were conducted

at Oak Ridge National Lab with californium-252 sources and a moderated

five helium-3 tube neutron detector manufactured by Canberra. Simulations

of the experimental setups were created in both MCNP and SCALE/Denovo

as a valdiation exercise. Overall detector response values and their associated

uncertainties from stochastic, cross section data, source emission rate, and

experimental measurement are quantified and addressed.

Section II covers the details of the experimental setup, calibration and

results obtained from the experimental campagin. Section III addresses the

setup and details related to MCNP and Denovo simulations that are created

as a validation exercise. Lastly, Section IV compares the simulated and

experimental results along with their associated uncertainties.
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II Experiment

This section details work completed at the ORNL Safeguards Laboratory

June 10th through June 21st, 2013. This write-up is meant to be a compre-

hensive guide to understand and reproduce the experiments conducted during

this time period. The specific experiments documented were conducted by

W. Cyrus Proctor and supervised by Louise Worrall, Steven Cleveland, and

Tyler Guzzardo, with input from Stephen Croft

II.A Detector Components and Spatial Setups

All experimental work was conducted in Room D104 of Building 5800 located

on the ORNL campus. Results were recorded on a Lenovo T60 laptop running

Windows XP connected to a JSR-15 shift register provided by Canberra

with the detector. The software to collect and store the data included two

versions of International Neutron Coincidence Counting; INCC 5.0.4 and

5.1.2 [1]. The detector setup used throughout the measurement campaign is

illustrated in Figure 1 and includes all relevant connections to the detector,

shift register and laptop computer.

The detector itself, manufactured in January of 2013 by Canberra In-

dustries Inc., includes five Reuter-Stokes helium-3 tubes, model RS-P4-0820-

103, which are 1 inch in diameter and have a 20 inch active length. The

five tubes are configured in a row to maximize efficiency and connected via

JAB-01 board within the high voltage junction box. The entire length of the

7
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Figure 1: Detector setup used throughout the measurement campaign.
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Figure 2: Bare detector assembly including five helium-3 tubes, junction box,
high density polyethylene, cadmium and aluminum sheaths.

helium-3 tubes are encased in a removable sheath of high density polyethy-

lene (HDPE) and surrounded first by a cadmium sheath on four sides (front

and top excluded) which is then surrounded by an aluminum sheath on five

sides (top excluded). The holes for the detector tubes in the HDPE sheath

are drilled all the way through. Figure 2 illustrates what will be referred to

as the bare detector assembly throughout the remainder of this document.

While the helium-3 tubes are not technically bare within the assembly, this

particular configuration does lack the other inner and outer housing and

cadmium front face described in subsequent assemblies.

The bare detector assembly can then be housed within the inner housing

assembly. This includes an aluminum inner cradle and inner HDPE housing

illustrated in Figure 3. The inner housing assembly is held together by a set

9
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Figure 3: Inner housing assembly including bare detector assembly, alu-
minum inner cradle, and inner HDPE housing.
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of four threaded bolts that penetrate from the outside of the HDPE housing

and inner cradle to secure to matching threads of the bare detector assembly.

Lastly, the inner housing assembly is contained within the outer housing

assembly which includes the hand truck, the outer housing, the outer HDPE

housing and the outer cradle. Four of the outer HDPE housing components

are loosely held in the outer housing while the two side components are

directly screwed. The outer cradle is then screwed directly to the outer

housing which is then bolted to the hand truck to hold all outer components

in place. The inner housing assembly is held in place by a metal tab at the

lower end while a metal latch is used towards the top. Figure 4 shows the

exploded components of the outer housing assembly while Figure 5 shows all

components exploded in one view. Each component is shown in full detail in

Appendix A.

Overall, twenty major components (including the front cadmium shield

not shown) constitute relevant structures for use in neutron transport mod-

eling. The entire detector assembly weighs approximately 282 pounds and is

transported via a Magliner model 112-UA-1060 hand truck with 500 pound

carrying capacity. The detector serial number is 13000001 and/or 7077236.

The default settings for this particular detector were set as a high voltage of

1680 V, a gate width of 64 µs and a pre-delay of 4.5 µs.

Three distinct spatial setups were used during the experimental measure-

ment campaign. One setup in particular, the upright spatial setup, shown in

Figure 6, has been used in computation validation exercises. The detector,
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Figure 4: Outer housing assembly including inner housing assembly, alu-
minum outer cradle, outer HDPE housing, aluminum outer housing, and
aluminum hand truck.
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Figure 5: All detector components exploded in one view including the outer
housing assembly, inner housing assembly, and bare detector assembly.
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fully assembled, is stood upright on the floor, while a neutron source sus-

pended from a laboratory ring stand is placed in front of the detector’s face

and is subsequently moved along the axis perpendicular.

The horizontal spatial setup, shown in Figure 7, tilts the detector’s front

face parallel to the floor facing upwards. Lastly, the table-top spatial setup,

shown in Figure 8, utilizes only the bare detector assembly placed on an

aluminum cart also with the detector face parallel with the floor facing up-

wards. In both of these setups, the ring stand’s height is adjusted for varying

distance measurements with a neutron source.
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(a) Computer aided design (CAD) model.

(b) Picture of experimental upright spatial setup.

Figure 6: This upright spatial setup includes the fully assembled detector
stood perpendicular to the floor and a neutron source suspended from a ring
stand which may be moved to different measurement locations.
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(a) Computer aided design (CAD) model.

(b) Picture of experimental horizontal spatial setup.

Figure 7: This horizontal spatial setup includes the fully assembled detector
resting parallel to the floor and a neutron source suspended from a ring stand
which may be moved to different measurement heights.

15



Figure 8: This table-top spatial setup includes only the bare detector assembly
resting on an aluminum table parallel to the floor with a neutron source
suspended from a ring stand which may be moved to different measurement
heights. Laboratory picture not taken.
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II.B Neutron Source Descriptions

Two neutron sources, manufactured by Frontier Technologies Inc., were used

during the experimental campaign. The sources, identified by their serial

numbers FTC-CF-053 and FTC-CF-004 are reported as models 10s and 10

respectively via Oak Ridge National Lab’s (ORNL) radiation source inven-

tory (RASIN). Each source consists of a 304L stainless steel capsule, see

Figure 9 and Figure 10, which contains a small palladium wire in which cal-

ifornium has been deposited on [2]. The wire is packed inside of the capsule

which is then tungsten-inert-gas (TIG) welded shut.

According to Frontier’s records, FTC-CF-053 was calibrated on December

11, 1988 while FTC-CF-004 was calibrated on April 21, 1986. Through non-

trivial comparison with ORNL’s records and via computational simulation, it

became necessary to perform a recalibration of the absolute source strength

via a cross-calibration with another Frontier source, FTC-CF-1830, using

passive neutron correlation counting outlined in [3]. This process was carried

out for FTC-CF-004 using ORNL’s californium shuffler to obtain an absolute

source strength of 157755± 2.4% neutrons per second corrected to June 30,

2013 – just after the end of the experimental campaign. Experimental and

computational results are compared for FTC-CF-004 in this work.
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II.C Detector Calibration

To begin, a 15 minute background count was taken while the detector was

in the upright spatial setup; as seen in Figure 6. INCC is able to repeat and

record a “cycle” a certain number of times for a specific duration. For the

preliminary background count, 15 cycles, each for a duration of 60 seconds,

was performed. The measured background rate is reported as 2.058± 0.047

counts per second.

Following the background count, a preliminary count at the default detec-

tor settings mentioned above was conducted for each of the two californium

sources that were available. Both sources were manufactured by Frontier

Technology with the serial numbers FTC-CF-053 and FTC-CF-004 for the

model 10s and model 10 sources respectively. To complete this set of counts,

one source at a time was taped to the center of the detector’s front face. Five

and fifteen minute counts were conducted with 60 second cycle lengths. The

overall count rate, absolute uncertainty and relative percent uncertainty are

reported in both Table 1 and Table 2 for each of the californium sources.

It is clear that FTC-CF-004 is producing roughly an order of magnitude

more counts directly on the detector face than its counterpart, FTC-CF-

053. This close to the detector, both sources exhibit excellent singles rate

counting statistics of well below 1% relative uncertainty for both the 5 minute

and fifteen minute counts.

With confirmation that counting times could proceed in reasonable (and

relatively short) lengths of time without having to be particularly mindful

20



Table 1: FTC-CF-053 preliminary count.

FTC-CF-053

- Count Rate
(c/s)

Count Rate
Uncertanity

(c/s)

Count Rate
Uncertainty

(Rel.%)
5 Minute Count

Singles 873.126 0.534 0.06
Doubles 46.937 0.550 1.17
Triples 1.281 0.150 11.71

15 Minute Count
Singles 872.494 1.129 0.13
Doubles 46.454 0.530 1.14
Triples 1.126 0.105 9.33

Table 2: FTC-CF-004 preliminary count.

FTC-CF-004

- Count Rate
(c/s)

Count Rate
Uncertanity

(c/s)

Count Rate
Uncertainty

(Rel.%)
5 Minute Count

Singles 9610.822 5.836 0.06
Doubles 521.057 6.573 1.26
Triples 6.913 5.720 82.74

15 Minute Count
Singles 9606.098 4.008 0.04
Doubles 509.716 2.852 0.56
Triples 3.208 1.803 56.20
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about the magnitude of counting uncertainties, a series of high voltage (HV)

plateau curves were acquired. Two separate setups were used in the collection

of the HV plateau data.

Each plateau curve was completed using INCC version 5.1.2 because it

had an automated function that allowed one to set necessary input parame-

ters and be able leave overnight to come back to a completed data set over

a particular voltage range. In all, four separate plateaus were gathered, each

voltage point taken in one 1000 second cycle.

First, two plateaus were taken with only background present, i.e. no

sources. One plateau was taken in the horizontal spatial setup (Figure 7)

and the other was taken in the table-top spatial setup (Figure 8). These

two are plotted together in Figure 11. They show that background count

rates never exceed 4 counts per second in any typical voltage range to be

considered in this work.

Next, while the detector was in the horizontal spatial setup, the FTC-CF-

004 source was added. Later, a cesium source was added to the californium

source to see the effects of having an appreciable gamma source present.

Both of these plateau curves are plotted below in Figure 12.

With the 1000 second count times, a clean, well-rounded knee is visible for

the high voltage plateau curves. It was decided based on the characteristics

of the curves that the operating voltage of 1725 V was to be adopted over

the default voltage of 1680 V due to the farther proximity to the knee of the

curve.
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II.D Experimental Results

Next, at nominal operation settings and a high voltage setting of 1725V , the

detector was placed in the upright spatial setup with neutron source FTC-

CF-004 attached to a ring stand and positioned collinear to the center of the

detector’s front face. The ring stand was moved along the axis orthogonal to

the detector front face in increments of 5 cm starting at distance of 16.1275 cm

and ranging to 61.1275 cm between the centerpoint of the neutron source and

the centerpoint of the central helium-3 tube within the detector.

Singles and doubles count rates and their uncertainties were measured

via INCC and are displayed in Figure 13 and Table 3. The experimental

uncertainties for both singles and doubles are also displayed in Figure 13 and

in Table 4. Counts were taken in 10 cycles of 60 seconds each for a total

count time of 600 seconds per data point.
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Table 3: Detector response experimental measure-
ments including singles and doubles count rates.
Source distances are measured from the center
of the central helium-3 tube to the center of
the californium-252 source (FTC-CF-004) which is
placed collinear with the centerpoint of the detec-
tor front face.

Distance
from

Detector
(cm)

Singles
Count Rate

(c/s)

Doubles
Count Rate

(c/s)

16.1275 4565.001 121.780
21.1275 3402.641 67.828
26.1275 2610.021 42.117
31.1275 2058.254 24.832
36.1275 1676.399 19.292
41.1275 1378.492 12.302
46.1275 1161.146 8.423
51.1275 1000.609 6.038
56.1275 861.684 4.667
61.1275 758.584 3.800
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Table 4: Detector response experimental measure-
ment uncertainties including singles and doubles
count rate uncertainties.

Distance
from

Detector
(cm)

Singles
Uncertainty

(c/s)

Doubles
Uncertainty

(c/s)

16.1275 3.973 2.217
21.1275 2.025 2.295
26.1275 1.846 1.249
31.1275 2.419 1.250
36.1275 1.936 0.808
41.1275 1.151 0.517
46.1275 1.997 0.624
51.1275 1.780 0.451
56.1275 1.521 0.321
61.1275 1.372 0.362
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III Simulation

This section details work completed from summer of 2013 until winter of

2014. Included in this write-up is all the information necessary to reproduce

the simulated results from MCNP and Denovo. The specific computational

work was conducted by W. Cyrus Proctor and supervised by Yousry Azmy

and Dan Cacuci, with input from John Mattingly.

III.A Simulation Setup

The californium sources were spatially modeled based on the design given via

the Frontier Technologies website described in Section II.B. For the modeling

of the sources’ energy spectrums, a Watt energy spectrum of the form

f(E) = e
− E/asinh

(√
bE
)
, (1)

was assumed for the spontaneous fission neutron energy probability dis-

tribution where the parameters a and b are fit for a particular isotope.

The discrepancies between spectrum parameters a and b in MCNP 5 and

MCNP 6.1 manuals for californium-252 are of note [4, 5]. MCNP 5 gives

a = 1.025MeV and b = 2.296MeV −1 while MCNP 6 gives a = 1.18MeV

and b = 1.03419MeV −1. Further investigation led to the experimental work

of Mannhart located and summarized within Valentine’s MCNP-DSP manual

[6, 7].
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Mannhart used a corrected Maxwellian distribution of the form

f(E) = R(E)
√

4E
πT 3 e

−E
T , (2)

to fit his experimental results where the nuclear temperature, T , is typically

1.42MeV for californium-252. The Maxwellian does not agree precisely with

the measured spectrum for californium-252; therefore, Mannhart developed

an energy dependent correction factor, R(E), which when multiplied by the

Maxwellian spectrum would reproduce the measured spectrum. A least-

squares polynomial regression model was used to obtain a functional form for

Mannhart’s correction factor. For energies less than 5MeV , the correction

factor is represented by

R(E) = 0.955 + 0.0707E − 0.0444E2 + 0.01998E3

−0.00457E4 + 0.000368E5. (3)

For energies greater than 5MeV , the correction factor is represented as

R(E) = 1.16− 0.0432E + 0.00185E2 − 0.0000316E3. (4)

The energy ranges were chosen such that the functional representation

adequately reproduces Mannhart’s discrete points. Other fits could be ap-

plied to Mannhart’s correction factor that when multiplied by the Maxwellian

should adequately reproduce the measured spectra. The average neutron en-
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ergy obtained from the corrected spectrum is 2.13MeV , which agrees well

with the measured value. The integral of the corrected spectrum as a func-

tion of energy was normalized to unity. The two Watt fission spectrum dis-

tributions recommended by MCNP and the modified Maxwellian spectrum

distribution by Mannhart are normalized, subdivided into one thousand en-

ergy bins and compared in Figure 14. In Figure 15, the three corresponding

cumulative distribution functions are plotted. In addition, the Mannhart

spectrum was re-binned within the SCALE6.1 ENDF/B-VII.0 200 and 27

group energy boundaries for comparison.

It is evident that the MCNP 6 parameters match more closely to the

experimental distribution staying within roughly 5% up to about 13MeV .

To determine the range of effect that the differences within the californium-

252 spontaneous fission spectrum would have on the count rate response of

the MCNP simulations as a function of distance, cases in which the source

FTC-CF-004 was located at the closest and farthest experimentally measured

distances (16 and 61 cm respectively) were configured using the upright spa-

tial setup. A total of four preliminary runs were completed, two with MCNP

5 and two with MCNP 6, then compared in Table 5. Roughly, a change in

response of 2.5% resulted from the shift in Watt spectrum parameters. From

this point forward in this work, the MCNP 6 spectrum parameters will be

used.

31



-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

P
e

rc
e

n
t 

D
if

fe
re

n
ce

 (
%

)

In
te

gr
al

 o
f 

P
D

F

Energy (MeV)

Semilog Integral of Cf-252 Spontaneous Fission Spectrum 
Probability Density Function Comparison

MCNP5 MCNP6 Experimental Fit -- Mannhart

MCNP5 Percent Difference MCNP6 Percent Difference

Figure 14: Californium-252 fission spectrum probability density function
comparison per MeV . Mannhart’s fitted experimental distribution is used as
reference in comparison against MCNP 5 and MCNP 6 reported Watt fission
spectrums.

Table 5: Preliminary californium-252 spontaneous fission spectrum com-
parison between MCNP 5 and MCNP 6 recommended Watt fission spec-
trum parameters using neutron source FTC-CF-004 within the upright
spatial setup configuration. 107 histories were used for each run. Re-
sponse count rates reported.

Spectrum (c/s) at 16 cm (c/s) at 61 cm
MCNP 5 Watt 4554.86 749.84
MCNP 6 Watt 4684.74 768.37
% Difference -2.77% -2.41%
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III.B Material Specifications

Most Material compositions were based upon Pacific Northwest National

Laboratory’s “Compendium of Material Composition Data for Radiation

Transport Modeling” [8] with one notable exception, the detector’s fill gas

described in the paragraphs below. The input specifications for MCNP and

SCALE are summarized in Table 6. The constants used include the ideal gas

constant R = 0.08205746 Latm
Kmol

, a temperature T = 293.15K and Avogadro’s

Number Na = 6.0220434469282E23 atoms
mol

.

Detector Tubes are set at 4 atm partial pressure of helium-3 and 1 atm

partial pressure of P-10 gas. The density of helium-3 may be found using the

ideal gas law

PHe3V = nHe3RT, (5)

where PHe3 is the partial pressure of the helium-3, V is the volume, nHe3 is

the number of moles of helium-3, R is the ideal gas constant, and T is the

temperature of the gas. This may be rearranged by multiplying through by

the molecular mass of helium-3

mHe3

V
= ρHe3 = MHe3PHe3

RT
, (6)

where ρHe3 is the density of the helium-3 gas, m is the mass, and MHe3 is

the molecular mass of helium-3. By substitution, the helium-3 gas density

is ρHe3 = 5.0151924e− 4 g/cm3. P-10 gas consists of 10% by volume methane
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Table 6: Material specifications used in MCNP and Denovo simulations.

Constituent
Molecular
Weight(

g
mol

) Weight
Fraction

(-)

Atomic
Fraction

(-)

Atomic
Density(
atoms
barn cm

)
Air (Dry, Near Sea Level); 0.001205 g

mol

C 12.01070000 0.00012400 0.00015019 7.49176761E-09
N 14.00674000 0.75526800 0.78443022 3.91286576E-05
O 15.99940000 0.23178100 0.21074847 1.05124772E-05
Ar 39.94800000 0.01282700 0.00467111 2.33002717E-07

Aluminum; 2.6989 g
mol

Al 26.98153800 1.00000000 1.00000000 6.02370890E-02
Cadmium; 8.65 g

mol

Cd 112.4110000 1.00000000 1.00000000 4.63394826E-02
Californium-252; 15.1 g

mol

Cf-252 252.0816196 1.00000000 1.00000000 3.60727832E-02
Concrete (NBS 03); 2.35 g

mol

H-1 1.00782500 0.00848500 0.14985422 1.19145726E-02
C 12.01070000 0.05006400 0.07419241 5.89887201E-03

O-16 15.99491460 0.47348300 0.52689579 4.18923007E-02
Mg 24.30500000 0.02418300 0.01770993 1.40807665E-03

Al-27 26.98153860 0.03606300 0.02379016 1.89150236E-03
Si 28.08550000 0.14510000 0.09195758 7.31134032E-03
S 32.06500000 0.00297000 0.00164865 1.31080157E-04
K 39.09830000 0.00169700 0.00077255 6.14236633E-05
Ca 40.07800000 0.24692400 0.10966285 8.71904681E-03
Fe 55.84500000 0.01103100 0.00351587 2.79538954E-04

Fill Gas (He-3 + P-10 Quench); 0.0020628254 g
mol

He-3 3.01602931 0.24312247 0.74074074 1.00137306E-04
C 12.01070000 0.02420460 0.01851852 2.50343266E-06
H 1.00794000 0.00812502 0.07407407 1.00137306E-05
Ar 39.94800000 0.72454791 0.16666667 2.25308939E-05

High Density Polyethylene; 0.95 g
mol

C 12.01070000 0.85628143 0.33333333 4.07864303E-02
H 1.00794000 0.14371857 0.66666667 8.15728606E-02
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Table 7: Material specifications used in MCNP and Denovo simulations
(continued).

Constituent
Molecular
Weight(

g
mol

) Weight
Fraction

(-)

Atomic
Fraction

(-)

Atomic
Density(
atoms
barn cm

)
Stainless Steel 304 L; 8.0 g

mol

C 12.01070000 0.00030000 0.00137279 1.20333572E-04
Si-28 27.97692650 0.00459400 0.00902490 7.91088116E-04
Si-29 28.97649470 0.00024100 0.00045711 4.00686829E-05
Si-30 29.97377020 0.00016500 0.00030255 2.65201785E-05
P-31 30.97376150 0.00022500 0.00039925 3.49963249E-05
S-32 31.97207070 0.00014200 0.00024410 2.13969293E-05
S-33 32.97145850 0.00000100 0.00000167 1.46115306E-07
S-34 33.96786680 0.00000700 0.00001133 9.92804273E-07

Cr-50 49.94604960 0.00793000 0.00872616 7.64902208E-04
Cr-52 51.94051190 0.15903100 0.16827778 1.47505915E-02
Cr-53 52.94065380 0.01837800 0.01907920 1.67241024E-03
Cr-54 53.93888490 0.00466100 0.00474929 4.16304409E-04
Mn-55 54.93804960 0.01000000 0.01000410 8.76921331E-04
Fe-54 53.93961480 0.03999600 0.04075303 3.57225613E-03
Fe-56 55.93494210 0.64476400 0.63353234 5.55330414E-02
Fe-57 56.93539870 0.01502600 0.01450482 1.27143713E-03
Fe-58 57.93328050 0.00203900 0.00193437 1.69559831E-04
Ni-58 57.93534790 0.06234000 0.05913905 5.18390519E-03
Ni-60 59.93079060 0.02465400 0.02260938 1.98185217E-03
Ni-61 60.93106040 0.00108500 0.00097868 8.57876702E-05
Ni-62 61.92834880 0.00350400 0.00310975 2.72589089E-04
Ni-64 63.92796960 0.00091700 0.00078837 6.91054495E-05

Zircaloy-2; 6.56 g
mol

O-16 15.99491460 0.00119700 0.00679928 2.95637791E-04
Cr 51.99610000 0.00099700 0.00174211 7.57481642E-05
Fe 55.84500000 0.00099700 0.00162204 7.05275158E-05
Ni 58.69340000 0.00049900 0.00077243 3.35860555E-05
Zr 91.22400000 0.98234800 0.97837825 4.25406359E-02
Sn 118.7100000 0.01396200 0.01068589 4.64630861E-04
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Table 8: Calculated weight fractions for a 4 atm
helium-3, 1 atm P-10 tube.

Species Weight Fraction
ρC
ρtotal

0.02420459821
ρH
ρtotal

0.00812501610
ρAr
ρtotal

0.72454791170
ρHe3
ρtotal

0.24312247390

and 90% by volume Argon. The density of the P-10 gas may be calculated

in a manner similar to helium-3

mP10

V
= ρP10 = MP10PP10

RT
. (7)

For an ideal gas, the volume fractions of the gas mixtures equals the molar

fractions. Therefore, the molecular mass of the P-10 gas is given by

MP10 = 0.10MCH4 + 0.90MAr = 37.5574460 g/mol, (8)

which gives a P-10 density of 1.561306196 g/mol. To determine the individual

species’ densities, divide both sides of Equation 7 by MP10 and interchange

the mass fraction of P-10 with the molar fractions of carbon, hydrogen and

argon. Adding all densities together yields a total gas density of ρtotal =

0.0020628254 g/cm3 with partial gas weight fractions summarized in Table 8.
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III.C MCNP Simulations

An MCNP model of the neutron detector was created to compute the de-

tector response function (DRF) σd(E). To compute the DRF, an isotropic

point source with uniform intensity from 1E− 11 to 20MeV , was placed at

the same locations as in the experimental setup detailed in Section II.D. A

bounding box was placed just around the volume of the detector to tally the

surface current as a function of energy that was entering from the uniform

source. The current entering the front surface of the detector is labeled as

Tfsc(E). Figure 16 is a summary of incoming F1 surface current tallies of the

front face of the detector as a function of energy and distance away from the

helium-3 proportional counter tubes embedded within the detector. Slight

deviations from a uniform current are attributed to neutron interactions with

materials outside the bounding box of the detector (i.e. floor, hand truck,

and surrounding air)

Another tally was created to calculate the average number of (n, p) re-

actions occurring within the active region of the helium-3 tubes – which

contains 4 atm partial pressure He-3 and 1 atm P-10 gas – labeled Tnp(E).

To calculate Tnp(E), the average flux was multiplied by the energy dependent

microscopic cross section, σ3He
(n,p), and the number density, N , within the cell

via an FM card, i.e. Nσ3He
(n,p)φ̄

ActiveReg. This gives units of interactions/cm3.

The volume of the active regions of the helium-3 tubes was calculated based

on a radius of 1.190625 cm and an active length of 50.8 cm to give V =

1131.185 cm. Multiplying the volume gives the average number of (n, p)
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the helium-3 tubes per source neutron as a function of energy and source
distance from helium-3 tubes.

reactions per source neutron as function of energy. Figure 17 gives these

reactions, Tnp(E), and their statistical uncertainties as a function of source

distance away from the helium-3 tubes.

To determine the detector response function, σd(E), the average number

of (n, p) reactions, Tnp(E), was divided by the incoming surface current on

the front face of the detector, Tfsc(E),

σd(E) = Tnp(E)
Tfsc(E) =

Nσ
3He
(n,p)φ̄

ActiveReg.V

Tfsc(E) . (9)
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Figure 18: Detector efficiency as a function of energy and source distance
away from the central He-3 tube.

The result for σd(E) is provided via Figure 18 along with its statistical un-

certainty for all experimentally measured source distances. The detector

response function is also summarized in Table 9 through Table 12.

Next, given the available information about the FTC-CF-004 used in the

lab, a MCNP input deck was constructed to serve as an accurate model of the

source spectrum and geometry. This input deck contained the same detector

bounding box as the previous input decks minus the detector itself; the goal

being to accurately tally the incoming surface current impending on the front

face of the detector bounding box as a function of energy – labeled Ts(E). By
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Table 9: Detector efficiency as a function of energy and
source distance away from the central He-3 tube (Part 1).

Average
Energy
(MeV)

16 cm 21 cm 26 cm 31 cm 36 cm

5.0E-12 1.2998E-02 1.1890E-02 1.1195E-02 1.0564E-02 1.0149E-02
1.5E-11 1.3247E-02 1.2098E-02 1.1250E-02 1.0599E-02 1.0265E-02
2.5E-11 1.3723E-02 1.2387E-02 1.1529E-02 1.0865E-02 1.0394E-02
3.5E-11 1.4124E-02 1.2765E-02 1.1765E-02 1.0990E-02 1.0516E-02
4.5E-11 1.4311E-02 1.2903E-02 1.1947E-02 1.1108E-02 1.0647E-02
5.5E-11 1.4648E-02 1.3198E-02 1.2117E-02 1.1284E-02 1.0826E-02
6.5E-11 1.4712E-02 1.3269E-02 1.2252E-02 1.1445E-02 1.0910E-02
7.5E-11 1.4940E-02 1.3462E-02 1.2356E-02 1.1489E-02 1.0928E-02
8.5E-11 1.5113E-02 1.3637E-02 1.2489E-02 1.1694E-02 1.1041E-02
9.5E-11 1.5112E-02 1.3666E-02 1.2610E-02 1.1651E-02 1.1065E-02
1.5E-10 1.5727E-02 1.4130E-02 1.2969E-02 1.2147E-02 1.1409E-02
2.5E-10 1.6244E-02 1.4611E-02 1.3399E-02 1.2422E-02 1.1917E-02
3.5E-10 1.6686E-02 1.5015E-02 1.3718E-02 1.2875E-02 1.2163E-02
4.5E-10 1.6993E-02 1.5243E-02 1.3935E-02 1.2943E-02 1.2320E-02
5.5E-10 1.7284E-02 1.5493E-02 1.4142E-02 1.3197E-02 1.2476E-02
6.5E-10 1.7492E-02 1.5715E-02 1.4446E-02 1.3454E-02 1.2588E-02
7.5E-10 1.7633E-02 1.5876E-02 1.4463E-02 1.3481E-02 1.2755E-02
8.5E-10 1.7827E-02 1.5993E-02 1.4685E-02 1.3615E-02 1.2837E-02
9.5E-10 1.8001E-02 1.6145E-02 1.4667E-02 1.3721E-02 1.2968E-02
1.5E-09 1.8573E-02 1.6776E-02 1.5373E-02 1.4300E-02 1.3422E-02
2.5E-09 1.9539E-02 1.7614E-02 1.6130E-02 1.4939E-02 1.3987E-02
3.5E-09 2.0453E-02 1.8490E-02 1.6785E-02 1.5616E-02 1.4657E-02
4.5E-09 2.1284E-02 1.9072E-02 1.7577E-02 1.6234E-02 1.5378E-02
5.5E-09 2.2118E-02 1.9840E-02 1.8143E-02 1.6819E-02 1.5774E-02
6.5E-09 2.2675E-02 2.0403E-02 1.8703E-02 1.7327E-02 1.6271E-02
7.5E-09 2.3343E-02 2.1120E-02 1.9232E-02 1.7817E-02 1.6691E-02
8.5E-09 2.4145E-02 2.1640E-02 1.9813E-02 1.8352E-02 1.7227E-02
9.5E-09 2.4599E-02 2.2163E-02 2.0340E-02 1.8754E-02 1.7480E-02
1.5E-08 2.7293E-02 2.4630E-02 2.2443E-02 2.0801E-02 1.9455E-02
2.5E-08 3.0824E-02 2.7807E-02 2.5284E-02 2.3372E-02 2.1782E-02
3.5E-08 3.3581E-02 3.0223E-02 2.7519E-02 2.5555E-02 2.4002E-02
4.5E-08 3.6177E-02 3.2798E-02 2.9854E-02 2.7626E-02 2.5928E-02
5.5E-08 3.8768E-02 3.4937E-02 3.1892E-02 2.9505E-02 2.7521E-02
6.5E-08 4.1325E-02 3.7181E-02 3.3947E-02 3.1263E-02 2.9407E-02
7.5E-08 4.4063E-02 3.9776E-02 3.6182E-02 3.3596E-02 3.1352E-02
8.5E-08 4.6471E-02 4.2101E-02 3.8315E-02 3.5359E-02 3.3064E-02
9.5E-08 4.8970E-02 4.4007E-02 4.0292E-02 3.7246E-02 3.4734E-02
1.5E-07 5.8375E-02 5.3002E-02 4.8456E-02 4.4648E-02 4.1642E-02
2.5E-07 6.6508E-02 6.0069E-02 5.4912E-02 5.0860E-02 4.7262E-02
3.5E-07 7.2876E-02 6.5733E-02 6.0345E-02 5.5626E-02 5.2354E-02
4.5E-07 7.6478E-02 6.9460E-02 6.3286E-02 5.8509E-02 5.4762E-02
5.5E-07 7.9524E-02 7.2102E-02 6.5852E-02 6.1183E-02 5.6877E-02
6.5E-07 8.1727E-02 7.3844E-02 6.7682E-02 6.2392E-02 5.8476E-02
7.5E-07 8.3336E-02 7.5584E-02 6.9238E-02 6.3992E-02 5.9830E-02
8.5E-07 8.5184E-02 7.7153E-02 7.0286E-02 6.5071E-02 6.0987E-02
9.5E-07 8.6269E-02 7.8148E-02 7.1569E-02 6.6049E-02 6.1547E-02
1.5E-06 9.1067E-02 8.2567E-02 7.4997E-02 6.9281E-02 6.5170E-02
2.5E-06 9.6045E-02 8.6817E-02 7.9234E-02 7.3477E-02 6.8449E-02
3.5E-06 9.8798E-02 8.9253E-02 8.1607E-02 7.5231E-02 7.0373E-02
4.5E-06 1.0132E-01 9.1456E-02 8.3649E-02 7.7606E-02 7.2548E-02
5.5E-06 1.0281E-01 9.2932E-02 8.4911E-02 7.8642E-02 7.3380E-02
6.5E-06 1.0365E-01 9.3561E-02 8.5477E-02 7.9014E-02 7.3974E-02
7.5E-06 1.0457E-01 9.4561E-02 8.6156E-02 7.9867E-02 7.4887E-02
8.5E-06 1.0505E-01 9.4948E-02 8.7116E-02 8.0463E-02 7.5050E-02
9.5E-06 1.0571E-01 9.5574E-02 8.7399E-02 8.0765E-02 7.5575E-02
1.5E-05 1.0691E-01 9.6744E-02 8.8331E-02 8.1561E-02 7.6308E-02
2.5E-05 1.0849E-01 9.8142E-02 8.9341E-02 8.2988E-02 7.7772E-02
3.5E-05 1.0966E-01 9.8929E-02 9.0300E-02 8.3574E-02 7.7978E-02
4.5E-05 1.0988E-01 9.8955E-02 9.0372E-02 8.3754E-02 7.8272E-02
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Table 10: Detector efficiency as a function of energy and
source distance away from the central He-3 tube (Part 2).

Average
Energy
(MeV)

16 cm 21 cm 26 cm 31 cm 36 cm

5.5E-05 1.0981E-01 9.8884E-02 9.0381E-02 8.3477E-02 7.8253E-02
6.5E-05 1.1012E-01 9.9049E-02 9.0725E-02 8.3766E-02 7.8121E-02
7.5E-05 1.0997E-01 9.9302E-02 9.0323E-02 8.3686E-02 7.8367E-02
8.5E-05 1.1047E-01 9.9411E-02 9.0664E-02 8.3600E-02 7.8388E-02
9.5E-05 1.1034E-01 9.9359E-02 9.0868E-02 8.3829E-02 7.8552E-02
1.5E-04 1.1034E-01 9.9345E-02 9.0287E-02 8.3373E-02 7.7968E-02
2.5E-04 1.1043E-01 9.9200E-02 9.0527E-02 8.3744E-02 7.7956E-02
3.5E-04 1.1078E-01 9.9060E-02 9.0483E-02 8.3688E-02 7.8060E-02
4.5E-04 1.0991E-01 9.8941E-02 8.9902E-02 8.3414E-02 7.8080E-02
5.5E-04 1.0987E-01 9.8407E-02 9.0194E-02 8.2757E-02 7.7828E-02
6.5E-04 1.0955E-01 9.8633E-02 8.9756E-02 8.2982E-02 7.7684E-02
7.5E-04 1.0937E-01 9.8196E-02 8.9551E-02 8.2976E-02 7.7237E-02
8.5E-04 1.0921E-01 9.8465E-02 8.9792E-02 8.2776E-02 7.7450E-02
9.5E-04 1.0908E-01 9.8061E-02 8.9177E-02 8.2609E-02 7.7240E-02
1.5E-03 1.0852E-01 9.7588E-02 8.9164E-02 8.2386E-02 7.6872E-02
2.5E-03 1.0771E-01 9.6765E-02 8.8271E-02 8.1550E-02 7.6521E-02
3.5E-03 1.0694E-01 9.6687E-02 8.7928E-02 8.1119E-02 7.6227E-02
4.5E-03 1.0682E-01 9.6212E-02 8.7634E-02 8.0825E-02 7.6097E-02
5.5E-03 1.0473E-01 9.4250E-02 8.6170E-02 7.9385E-02 7.4189E-02
6.5E-03 1.0606E-01 9.5280E-02 8.6841E-02 8.0427E-02 7.5096E-02
7.5E-03 1.0632E-01 9.5617E-02 8.6934E-02 8.0636E-02 7.5301E-02
8.5E-03 1.0628E-01 9.5043E-02 8.7232E-02 8.0208E-02 7.5332E-02
9.5E-03 1.0616E-01 9.5413E-02 8.6612E-02 8.0206E-02 7.5616E-02
1.5E-02 1.0562E-01 9.4834E-02 8.6514E-02 7.9839E-02 7.4712E-02
2.5E-02 1.0546E-01 9.4605E-02 8.6657E-02 8.0047E-02 7.5051E-02
3.5E-02 9.6813E-02 8.6732E-02 7.9465E-02 7.3409E-02 6.9201E-02
4.5E-02 1.0365E-01 9.2841E-02 8.4607E-02 7.8226E-02 7.3287E-02
5.5E-02 1.0476E-01 9.4255E-02 8.5672E-02 7.8951E-02 7.4199E-02
6.5E-02 1.0519E-01 9.4480E-02 8.5765E-02 7.9306E-02 7.4565E-02
7.5E-02 1.0445E-01 9.3984E-02 8.5229E-02 7.8401E-02 7.3618E-02
8.5E-02 9.7385E-02 8.7510E-02 7.9570E-02 7.3469E-02 6.9146E-02
9.5E-02 1.0083E-01 8.9805E-02 8.2064E-02 7.6041E-02 7.1433E-02
1.5E-01 1.0395E-01 9.2526E-02 8.4440E-02 7.7724E-02 7.2457E-02
2.5E-01 1.0521E-01 9.2797E-02 8.4129E-02 7.7158E-02 7.3331E-02
3.5E-01 1.0509E-01 9.2452E-02 8.3258E-02 7.6759E-02 7.2100E-02
4.5E-01 1.0296E-01 9.1060E-02 8.1777E-02 7.4954E-02 7.0730E-02
5.5E-01 1.0162E-01 8.9762E-02 8.1084E-02 7.4375E-02 6.9562E-02
6.5E-01 1.0041E-01 8.8689E-02 7.9217E-02 7.3247E-02 6.8075E-02
7.5E-01 9.8216E-02 8.5787E-02 7.7748E-02 7.1087E-02 6.7064E-02
8.5E-01 9.6372E-02 8.4911E-02 7.6018E-02 6.9724E-02 6.5214E-02
9.5E-01 9.4549E-02 8.3389E-02 7.4274E-02 6.8663E-02 6.4317E-02
1.5E+00 8.4752E-02 7.4169E-02 6.6171E-02 6.1107E-02 5.6659E-02
2.5E+00 7.0967E-02 6.1177E-02 5.4948E-02 5.1079E-02 4.8394E-02
3.5E+00 6.0120E-02 5.3003E-02 4.7064E-02 4.3517E-02 4.1100E-02
4.5E+00 5.3772E-02 4.6605E-02 4.1400E-02 3.8111E-02 3.5915E-02
5.5E+00 4.7166E-02 4.1565E-02 3.7302E-02 3.4012E-02 3.2135E-02
6.5E+00 4.2757E-02 3.6812E-02 3.2997E-02 3.0568E-02 2.8494E-02
7.5E+00 3.8889E-02 3.3913E-02 2.9969E-02 2.7740E-02 2.6579E-02
8.5E+00 3.4561E-02 2.9990E-02 2.6569E-02 2.5425E-02 2.3630E-02
9.5E+00 3.0665E-02 2.6711E-02 2.3708E-02 2.2188E-02 2.1110E-02
1.1E+01 2.9440E-02 2.5624E-02 2.2699E-02 2.1397E-02 1.9805E-02
1.2E+01 2.7301E-02 2.3978E-02 2.1460E-02 1.9698E-02 1.8585E-02
1.3E+01 2.6007E-02 2.3133E-02 2.0991E-02 1.9135E-02 1.8021E-02
1.4E+01 2.4690E-02 2.2031E-02 2.0141E-02 1.8755E-02 1.7237E-02
1.5E+01 2.4419E-02 2.0981E-02 1.8951E-02 1.7363E-02 1.6393E-02
1.6E+01 2.3551E-02 2.0627E-02 1.8246E-02 1.6889E-02 1.6047E-02
1.7E+01 2.2311E-02 1.9178E-02 1.7535E-02 1.6432E-02 1.5594E-02
1.8E+01 2.1352E-02 1.8836E-02 1.6790E-02 1.5524E-02 1.5119E-02
1.9E+01 2.0836E-02 1.8382E-02 1.6587E-02 1.5285E-02 1.4721E-02
2.0E+01 2.0234E-02 1.7645E-02 1.5891E-02 1.4826E-02 1.4512E-02

43



Table 11: Detector efficiency as a function of energy and
source distance away from the central He-3 tube (Part 3).

Average
Energy
(MeV)

41 cm 46 cm 51 cm 56 cm 61 cm

5.0E-12 9.9196E-03 9.7276E-03 9.7362E-03 9.5643E-03 9.6218E-03
1.5E-11 9.8670E-03 9.7492E-03 9.8005E-03 9.6869E-03 9.7522E-03
2.5E-11 1.0019E-02 9.8800E-03 9.7906E-03 9.6746E-03 9.7104E-03
3.5E-11 1.0209E-02 9.9009E-03 9.8405E-03 9.7187E-03 9.7217E-03
4.5E-11 1.0252E-02 1.0012E-02 9.8916E-03 9.8482E-03 9.8174E-03
5.5E-11 1.0410E-02 1.0169E-02 1.0026E-02 9.8592E-03 9.9726E-03
6.5E-11 1.0514E-02 1.0304E-02 9.9949E-03 9.9664E-03 9.9864E-03
7.5E-11 1.0520E-02 1.0274E-02 1.0056E-02 9.9736E-03 9.9783E-03
8.5E-11 1.0736E-02 1.0459E-02 1.0270E-02 1.0199E-02 1.0154E-02
9.5E-11 1.0661E-02 1.0344E-02 1.0218E-02 1.0100E-02 1.0129E-02
1.5E-10 1.0924E-02 1.0732E-02 1.0483E-02 1.0325E-02 1.0349E-02
2.5E-10 1.1392E-02 1.1085E-02 1.0828E-02 1.0753E-02 1.0547E-02
3.5E-10 1.1639E-02 1.1207E-02 1.1110E-02 1.0875E-02 1.0784E-02
4.5E-10 1.1735E-02 1.1420E-02 1.1289E-02 1.1119E-02 1.0969E-02
5.5E-10 1.1909E-02 1.1570E-02 1.1266E-02 1.1139E-02 1.0964E-02
6.5E-10 1.2109E-02 1.1815E-02 1.1429E-02 1.1233E-02 1.1109E-02
7.5E-10 1.2245E-02 1.1821E-02 1.1479E-02 1.1253E-02 1.1139E-02
8.5E-10 1.2304E-02 1.1922E-02 1.1655E-02 1.1451E-02 1.1236E-02
9.5E-10 1.2354E-02 1.1984E-02 1.1740E-02 1.1632E-02 1.1643E-02
1.5E-09 1.2792E-02 1.2387E-02 1.2037E-02 1.1886E-02 1.1743E-02
2.5E-09 1.3312E-02 1.2834E-02 1.2558E-02 1.2313E-02 1.2101E-02
3.5E-09 1.4026E-02 1.3596E-02 1.3195E-02 1.2954E-02 1.2845E-02
4.5E-09 1.4668E-02 1.4136E-02 1.3769E-02 1.3436E-02 1.3222E-02
5.5E-09 1.5004E-02 1.4434E-02 1.3978E-02 1.3708E-02 1.3523E-02
6.5E-09 1.5475E-02 1.4880E-02 1.4456E-02 1.4069E-02 1.3778E-02
7.5E-09 1.5844E-02 1.5239E-02 1.4805E-02 1.4507E-02 1.4213E-02
8.5E-09 1.6362E-02 1.5772E-02 1.5309E-02 1.4962E-02 1.4532E-02
9.5E-09 1.6722E-02 1.6103E-02 1.5521E-02 1.5147E-02 1.4790E-02
1.5E-08 1.8318E-02 1.7621E-02 1.7245E-02 1.6696E-02 1.6312E-02
2.5E-08 2.0741E-02 1.9922E-02 1.9199E-02 1.8762E-02 1.8147E-02
3.5E-08 2.2642E-02 2.1465E-02 2.0657E-02 1.9952E-02 1.9564E-02
4.5E-08 2.4561E-02 2.3465E-02 2.2727E-02 2.1985E-02 2.1196E-02
5.5E-08 2.6072E-02 2.4781E-02 2.3914E-02 2.3153E-02 2.2703E-02
6.5E-08 2.7637E-02 2.6417E-02 2.5432E-02 2.4650E-02 2.4049E-02
7.5E-08 2.9578E-02 2.7896E-02 2.6814E-02 2.6000E-02 2.5306E-02
8.5E-08 3.1283E-02 2.9669E-02 2.8539E-02 2.7770E-02 2.7194E-02
9.5E-08 3.2807E-02 3.1224E-02 3.0015E-02 2.9078E-02 2.8311E-02
1.5E-07 3.9503E-02 3.7572E-02 3.6011E-02 3.4891E-02 3.3935E-02
2.5E-07 4.4636E-02 4.2630E-02 4.0910E-02 3.9616E-02 3.8161E-02
3.5E-07 4.9275E-02 4.6784E-02 4.5085E-02 4.3727E-02 4.2262E-02
4.5E-07 5.1372E-02 4.9113E-02 4.7475E-02 4.5771E-02 4.4280E-02
5.5E-07 5.3543E-02 5.1010E-02 4.9339E-02 4.7740E-02 4.6064E-02
6.5E-07 5.5289E-02 5.2579E-02 5.0625E-02 4.9022E-02 4.7492E-02
7.5E-07 5.6545E-02 5.3649E-02 5.1758E-02 4.9929E-02 4.8387E-02
8.5E-07 5.7505E-02 5.4773E-02 5.2611E-02 5.0902E-02 4.9418E-02
9.5E-07 5.8281E-02 5.5611E-02 5.3281E-02 5.1186E-02 5.0141E-02
1.5E-06 6.1866E-02 5.8746E-02 5.6590E-02 5.4710E-02 5.3128E-02
2.5E-06 6.4750E-02 6.1907E-02 5.9443E-02 5.7487E-02 5.5843E-02
3.5E-06 6.6380E-02 6.3553E-02 6.0954E-02 5.9491E-02 5.7741E-02
4.5E-06 6.8681E-02 6.5209E-02 6.2687E-02 6.0852E-02 5.9036E-02
5.5E-06 6.9437E-02 6.6269E-02 6.3683E-02 6.1689E-02 6.0054E-02
6.5E-06 7.0197E-02 6.7141E-02 6.4563E-02 6.2446E-02 6.0451E-02
7.5E-06 7.0649E-02 6.7279E-02 6.4688E-02 6.3037E-02 6.1153E-02
8.5E-06 7.1198E-02 6.7908E-02 6.5133E-02 6.2975E-02 6.0795E-02
9.5E-06 7.1720E-02 6.7992E-02 6.5152E-02 6.3303E-02 6.1565E-02
1.5E-05 7.2374E-02 6.9216E-02 6.6501E-02 6.4445E-02 6.2738E-02
2.5E-05 7.3269E-02 6.9835E-02 6.7307E-02 6.5126E-02 6.3742E-02
3.5E-05 7.4052E-02 7.0875E-02 6.7652E-02 6.5767E-02 6.3693E-02
4.5E-05 7.4564E-02 7.0961E-02 6.8554E-02 6.5720E-02 6.4117E-02
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Table 12: Detector efficiency as a function of energy and
source distance away from the central He-3 tube (Part 4).

Average
Energy
(MeV)

41 cm 46 cm 51 cm 56 cm 61 cm

5.5E-05 7.3733E-02 7.0605E-02 6.7900E-02 6.5970E-02 6.3899E-02
6.5E-05 7.3782E-02 7.0411E-02 6.8077E-02 6.5976E-02 6.4223E-02
7.5E-05 7.4191E-02 7.0819E-02 6.8121E-02 6.6143E-02 6.4361E-02
8.5E-05 7.4415E-02 7.0979E-02 6.7991E-02 6.5765E-02 6.4234E-02
9.5E-05 7.4261E-02 7.1272E-02 6.8061E-02 6.5878E-02 6.3852E-02
1.5E-04 7.3873E-02 7.0416E-02 6.8398E-02 6.5914E-02 6.4263E-02
2.5E-04 7.4265E-02 7.1137E-02 6.8011E-02 6.5864E-02 6.4124E-02
3.5E-04 7.4148E-02 7.0746E-02 6.8017E-02 6.6041E-02 6.4236E-02
4.5E-04 7.3837E-02 7.0594E-02 6.7911E-02 6.5998E-02 6.4290E-02
5.5E-04 7.3736E-02 7.0631E-02 6.7947E-02 6.6229E-02 6.4405E-02
6.5E-04 7.3450E-02 7.0333E-02 6.7693E-02 6.5718E-02 6.4210E-02
7.5E-04 7.3399E-02 7.0333E-02 6.7307E-02 6.5643E-02 6.4532E-02
8.5E-04 7.3245E-02 7.0500E-02 6.7799E-02 6.5824E-02 6.3526E-02
9.5E-04 7.3415E-02 7.0168E-02 6.7512E-02 6.5621E-02 6.4382E-02
1.5E-03 7.2457E-02 6.9567E-02 6.7025E-02 6.5015E-02 6.3523E-02
2.5E-03 7.2626E-02 6.9149E-02 6.6895E-02 6.4737E-02 6.3237E-02
3.5E-03 7.2472E-02 6.9137E-02 6.6884E-02 6.4715E-02 6.3358E-02
4.5E-03 7.2264E-02 6.9063E-02 6.5811E-02 6.4142E-02 6.2678E-02
5.5E-03 7.0613E-02 6.7231E-02 6.4645E-02 6.2862E-02 6.1656E-02
6.5E-03 7.1347E-02 6.8107E-02 6.5383E-02 6.3855E-02 6.2207E-02
7.5E-03 7.1604E-02 6.8323E-02 6.5660E-02 6.3443E-02 6.2445E-02
8.5E-03 7.1517E-02 6.8330E-02 6.6069E-02 6.4221E-02 6.2427E-02
9.5E-03 7.1463E-02 6.7970E-02 6.5426E-02 6.3713E-02 6.1888E-02
1.5E-02 7.0321E-02 6.7377E-02 6.4886E-02 6.3612E-02 6.2090E-02
2.5E-02 7.0728E-02 6.8142E-02 6.5433E-02 6.3720E-02 6.2139E-02
3.5E-02 6.5749E-02 6.2508E-02 6.0928E-02 5.9555E-02 5.7634E-02
4.5E-02 6.9465E-02 6.6790E-02 6.4257E-02 6.2757E-02 6.0858E-02
5.5E-02 7.0707E-02 6.7610E-02 6.5483E-02 6.3269E-02 6.1836E-02
6.5E-02 7.0121E-02 6.6850E-02 6.4421E-02 6.2714E-02 6.1188E-02
7.5E-02 7.0066E-02 6.6852E-02 6.4521E-02 6.2613E-02 6.1109E-02
8.5E-02 6.5322E-02 6.2676E-02 6.0739E-02 5.8730E-02 5.7486E-02
9.5E-02 6.7831E-02 6.4902E-02 6.2326E-02 6.0824E-02 5.9640E-02
1.5E-01 6.8713E-02 6.5938E-02 6.4020E-02 6.1710E-02 6.0649E-02
2.5E-01 6.8525E-02 6.6281E-02 6.3005E-02 6.2183E-02 5.9304E-02
3.5E-01 6.8147E-02 6.5295E-02 6.2909E-02 6.0922E-02 5.9467E-02
4.5E-01 6.6951E-02 6.3814E-02 6.1423E-02 6.0308E-02 5.8648E-02
5.5E-01 6.5987E-02 6.3072E-02 6.1293E-02 5.9898E-02 5.8176E-02
6.5E-01 6.4825E-02 6.1933E-02 5.9850E-02 5.8413E-02 5.7147E-02
7.5E-01 6.3363E-02 6.0952E-02 5.8912E-02 5.7616E-02 5.6560E-02
8.5E-01 6.2609E-02 5.9648E-02 5.7256E-02 5.5818E-02 5.5385E-02
9.5E-01 6.1631E-02 5.9349E-02 5.7359E-02 5.5378E-02 5.5181E-02
1.5E+00 5.3677E-02 5.2105E-02 5.1019E-02 5.0251E-02 4.8966E-02
2.5E+00 4.5699E-02 4.3514E-02 4.2101E-02 4.0419E-02 4.0830E-02
3.5E+00 3.9968E-02 3.8050E-02 3.6739E-02 3.6587E-02 3.5357E-02
4.5E+00 3.4537E-02 3.3313E-02 3.1819E-02 3.1631E-02 3.1799E-02
5.5E+00 3.0552E-02 2.9090E-02 2.8661E-02 2.8996E-02 2.7598E-02
6.5E+00 2.7656E-02 2.6543E-02 2.6673E-02 2.5951E-02 2.5454E-02
7.5E+00 2.5405E-02 2.4999E-02 2.4369E-02 2.3650E-02 2.2747E-02
8.5E+00 2.2629E-02 2.2437E-02 2.2141E-02 2.1528E-02 2.0949E-02
9.5E+00 2.0037E-02 1.9591E-02 1.9310E-02 1.8998E-02 1.9316E-02
1.1E+01 1.9436E-02 1.8772E-02 1.8570E-02 1.8184E-02 1.7699E-02
1.2E+01 1.8255E-02 1.7730E-02 1.7282E-02 1.7570E-02 1.7631E-02
1.3E+01 1.7709E-02 1.7880E-02 1.7361E-02 1.7068E-02 1.6943E-02
1.4E+01 1.6219E-02 1.6036E-02 1.5901E-02 1.6387E-02 1.6234E-02
1.5E+01 1.6313E-02 1.6226E-02 1.5926E-02 1.5880E-02 1.5543E-02
1.6E+01 1.5726E-02 1.5097E-02 1.5380E-02 1.5295E-02 1.5131E-02
1.7E+01 1.4959E-02 1.4716E-02 1.4754E-02 1.4650E-02 1.3960E-02
1.8E+01 1.4331E-02 1.3861E-02 1.3923E-02 1.3696E-02 1.3642E-02
1.9E+01 1.4077E-02 1.3768E-02 1.3587E-02 1.3489E-02 1.3384E-02
2.0E+01 1.3932E-02 1.3776E-02 1.3264E-02 1.3206E-02 1.3487E-02
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Front Surface Incoming Current Spectrum for FTC-CF-004 Source 
Encapsulated in 304L Stainless Steel per Source Neutron at 36 cm

Figure 19: Representative detector bounding box front surface incoming neu-
tron spectrum from FTC-CF-004.

removing the detector, this allows for far quicker simulation wall clock times.

Figure 19 shows a representative incoming spectrum. The spectrum is very

similar to the Watt spectrum that is used to characterize the californium-252

spontaneous fission neutron source. The particular energy binning structure,

which is graduated in decades, creates the ‘step’ seen in Figure 19.

To calculate the detector response, and ultimately the expected counts

per second from the MCNP simulations to compare with experiment, the

sum product between the detector response function, σd(E), and the source

spectrum tally, Ts(E), was computed. This quantity was then multiplied by
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the source activity, S,

RDRF ≡ S
∫
σd(E)Ts(E)dE ≈ S

∑
i

σd(Ei)Ts(Ei). (10)

The associated uncertainty for the MCNP DRF response, ∆RDRF , is due to a

combination of stochastic uncertainties from MCNP Tallies, from the source

emission strength uncertainty, and from estimated response uncertainty due

to input cross section uncertainty calculated via Denovo. ∆RDRF is given by

∆RDRF ≡

√√√√(√Crc
R

)2

+ ξ2, (11)

where Crc is defined in Equation 41 and ξ is given as

ξ ≡ |R|

√√√√(∆S
S

)2

+ ζ2, (12)

where ∆S is the source emission uncertainty, S is the source emission rate

in counts per second, and ζ is given by

ζ ≡

√∑
i (σd (Ei)Ts (Ei))2

[(
∆σd(Ei)
σd(Ei)

)2
+
(

∆Ts(Ei)
Ts(Ei)

)2
]

∑
i σd (Ei)Ts (Ei)

, (13)

where ∆Ts (Ei) is the absolute stochastic uncertainty for tally Ts at each
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energy Ei and ∆σd (Ei) is given by

∆σd (Ei) ≡ |σd (Ei)|

√√√√(∆Tnp (Ei)
Tnp (Ei)

)2

+
(

∆Tfsc (Ei)
Tfsc (Ei)

)2

, (14)

where ∆Tnp (Ei) and ∆Tfsc (Ei) are the absolue stochastic uncertainties for

tallies Tnp and Tfsc at each energy Ei respectively.

In addition to using the detector response function approximation to com-

pare against experiment, MCNP input decks were created that contained

both a detailed source and detector. These input decks were run to directly

calculate the detector response via an F4 tally, Trr (E), that computed the

helium-3 (n, p) reaction rate with an FM card. The full response, Rfull, is

given as

Rfull ≡ SV
∑
i

Trr (Ei) = SV N
∑
i

σ
3He
(n,p) (Ei) φ̄ActiveReg. (Ei) (15)

where V is the total active helium-3 tube volume.The associated uncertainty

for the MCNP full response, ∆Rfull, is due to a combination of stochastic

uncertainties from MCNP Tallies, from the source emission strength uncer-

tainty, and from estimated response uncertainty due to input cross section

uncertainty calculated via Denovo. ∆Rfull is given by

∆Rfull ≡

√√√√(√Crc
R

)2

+ θ2, (16)
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where Crc is defined in Equation 41 and θ is given as

θ ≡ |V |
∣∣∣∣∣S∑

i

Trr (Ei)
∣∣∣∣∣
√√√√(∆S

S

)2

+ ω2, (17)

where ω is defined as

ω ≡

√∑
i (∆Trr (Ei))2∑
i Trr (Ei)

, (18)

where ∆Trr (Ei) is the absolute stochastic uncertainty for tally Trr at each

energy Ei.

Results for both RDRF and Rfull, along with their associated uncertain-

ties, ∆RDRF and ∆Rfull are compared against experiment in Section IV.

A sensitivity study was conducted to help bound the effects of uncertain

quantities to the resulting count rates. The study was carried out for source

FTC-CF-004 at 16, 36 and 61 cm away from the central helium-3 tube. For

each of the 84 MCNP runs, there were a total of 1 billion neutron histories

run. Results are summarized in Table 13.

For this particular source and setup combination, the source position and

presence of the floor have the greatest effect on the response count rate. As

the source moves farther away from the detector, the floor becomes increas-

ingly important for reflecting neutrons that otherwise would not have reached

the helium-3 tubes. Inversely, as the source moves closer to the detector, the

detector occupies a larger solid angle with respect to the source. This prox-

imity means a small change in source position has a larger effect on response

count rates.
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Table 13: Sensitivities of neutron source FTC-CF-004 at three collinear
distances away from the center of the detector face computed via perturbed
MCNP upright spatial setup models. Nominal conditions are given inside
(parentheses).

Model 10 Source (FTC-CF-004) MCNP Simulations
Percent Changes from Prescribed Nominals

Distance
From 16 cm 36 cm 61 cm

Detector
Source Orientation (Upright 0°)

-90° -1.13% ± 0.0215% -2.11% ± 0.0357% -2.23% ± 0.0522%
90° -1.68% ± 0.0214% -3.72% ± 0.0354% -5.40% ± 0.0523%

Source Capsule Material (304L Stainless Steel)
Zircaloy 0.02% ± 0.0216% 0.08% ± 0.0360% 0.05% ± 0.0527%

No Capsule -0.68% ± 0.0215% -0.80% ± 0.0359% -0.65% ± 0.0526%
Source Position r0 + r′ (r′i = 0 cm)

r′i =-5 -28.94% ± 0.0204% -18.91% ± 0.0343% -11.56% ± 0.0512%
r′i =-1 -6.16% ± 0.0214% -3.99% ± 0.0354% -2.41% ± 0.0521%
r′i =1 6.16% ± 0.0219% 4.00% ± 0.0364% 2.38% ± 0.0526%
r′i =5 29.50% ± 0.0235% 19.56% ± 0.0376% 11.66% ± 0.0544%

Detector High Density Polyethylene Density (0.95 g/cc)
Den. +1% 0.53% ± 0.0216% 0.51% ± 0.0361% 0.44% ± 0.0528%

Den. +10% 4.42% ± 0.0218% 4.31% ± 0.0361% 3.72% ± 0.0530%
Detector Fill Gas Density (2.0628E-3 g/cc; 4 atm He-3 and 1 atm P-10)
Den. +1% 0.26% ± 0.0216% 0.26% ± 0.0361% 0.26% ± 0.0528%

Den. +10% 2.48% ± 0.0218% 2.48% ± 0.0364% 2.48% ± 0.0537%
Floor Presence (Concrete NBS 03)

No Floor -2.52% ± 0.0213% -7.00% ± 0.0351% -14.23% ± 0.0511%
Stochastic uncertainties represent a 1σ

confidence interval in absolute percent. (1E9 Histories)
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III.D Denovo Simulations

III.D.1 Theory

An input model was created for Denovo to obtain response sensitivity and

uncertainty information with regard to microscopic cross section uncertain-

ties via capabilities implemented by R. T. Evans [9]. Denovo is a code de-

velopment from ORNL that solves the three dimensional time-independent

Boltzmann transport equation given as

Ω · ~∇ψ(~r,Ω, E) + Σt(~r, E)ψ(~r,Ω, E) =∫
4π
dΩ′

∫ ∞
0

dE ′Σs(~r,Ω′ → Ω, E ′ → E)ψ(~r,Ω′, E ′) +Q(~r,Ω, E). (19)

With the adjoint, first-order sensitivities are obtained for responses such as

nuclide density and reaction rates of the form

rk ≡ 〈σ, φ〉w (20)

where σ represents (usually but not necessarily) cross sections (microscopic or

macroscopic), φ the scalar flux and 〈·, ·〉w may denote a user-defined inner-

product space. For convenience, the inner-product can be taken over the

state space. To solve the fixed source problem, recast Equation 19 into an
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equation of the form

Ω · ~∇ψ(~r,Ω, E) + Σt(~r, E)ψ(~r,Ω, E) = q(~r,Ω, E)+∫
4π
dΩ′

∫ ∞
0

dE ′Σs(~r,Ω′ → Ω, E ′ → E)ψ(~r,Ω′, E ′)+

χ (~r, E)
4π

∫
4π
dΩ′

∫ ∞
0

dE ′ νf (~r, E ′)Σf (~r, E ′)ψ(~r,Ω′, E ′), (21)

where the angular flux ψ is implicitly a function of the cross sections Σt,

Σs and Σf , the fission spectrum χ and neutron multiplicity νf which are all

considered input parameters α and, in general, functions of space ~r, energy

E and neutron angle Ω. In this work, the external source, q, corresponds to

the spontaneous fission occurring within the californium-252 sources.

For convenience, Equation 21 may be written in operator form as

Mψ = q, (22)

where

M ≡ L− S − F ,

and

L ≡ Ω · ~∇ψ(~r,Ω, E) + Σt(~r, E)ψ(~r,Ω, E),

S ≡
∫

4π
dΩ′

∫ ∞
0

dE ′Σs(~r,Ω′ → Ω, E ′ → E)ψ(~r,Ω′, E ′),

F ≡ χ (~r, E)
4π

∫
4π
dΩ′

∫ ∞
0

dE ′ νf (~r, E ′)Σf (~r, E ′)ψ(~r,Ω′, E ′).
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This forward system may be solved to obtain ψ. From this, the response rk

may then be computed.

Given the forward, nominal fixed source system in Equation 22

M
(
α0
)
ψ0 = q0, (23)

with superscript “0” denoting the nominal state and with a slightly more

general (but no less enlightening) response than in Equation 20

R
(
e0
)

= R
(
ψ0,α0

)
= R0 =

〈
σ0, ψ0

〉
w
, (24)

the sensitivity of the response with respect to a variation in parameters α

is represented as δR (e0;h); where e0 ≡ (u0,α0) denotes the nominal values

of the state vector u and parameter vector α while h ≡ (hu,hα) represent

arbitrary increment vectors in state (hu) and parameter (hα) spaces. In this

particular case, the state vector contains the angular flux while the parameter

vector contains the cross sections mentioned in the previous section.

As will be shown shortly, because δR (e0;h) is linear in the state variable,

the variation in R can consequently be written as

δR
(
e0;h

)
= R′u

(
e0
)
hu +R′α

(
e0
)
hα (25)

where R′u (e0) and R′α (e0) denote, respectively, the partial Gâteaux deriva-
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tives at e0 of R (e) with respect to u and α. Taking the Gâteaux derivative

d

dε

{(
R0 + εδR

)
=
〈(
σ0 + εδσ

)
,
(
ψ0 + εhψ

)〉
w

} ∣∣∣∣
ε=0
. (26)

Expanding and noting that only the terms that are first-order in ε will survive,

the variation is

δR
(
e0;h

)
=
〈
σ0, hψ

〉
w

+
〈
δσ, ψ0

〉
w
. (27)

The first term only contains variations (hψ) in the angular flux while the

second term only contains variations (δσ) contained within the parameter

vector. It is the variations in the state which, at this point, are unknown.

To obtain hψ either the forward sensitivity analysis procedure (FSAP) or the

adjoint sensitivity analysis procedure (ASAP) from [10] may be performed.

In lieu of the fact that the typical number of input parameters far exceed the

typical number of output parameters in a transport model calculation, the

ASAP will prove computationally more efficient.

To utilize the ASAP and, thus, remove the dependence on hψ in the

sensitivity of the response, first, the Gâteaux derivative of the system (Equa-

tion 23) is taken:

d

dε

{(
M 0 + εδM

)
−
(
ψ0 + εhψ

)} ∣∣∣∣
ε=0

= d

dε

{(
q0 + εδq

)} ∣∣∣∣
ε=0

(28)
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Again, expanding, only terms first-order in ε will survive, yielding

ψ0δM +M 0hψ = δq. (29)

Equation 29 is termed the forward sensitivity analysis equation. The un-

known is the variation in the flux, hψ. Given a variation(s) in an input

parameter cross section(s), subsequent variations in M and q are readily

available and the system may be solved for hψ. To continue towards elimi-

nation of the hψ dependency in both Equation 27 and Equation 29, multiply

Equation 29 with an (as of yet) arbitrary function ψ† and integrate over the

same space utilized in the response

〈
ψ†, δMψ0

〉
w

+
〈
ψ†,M 0hψ

〉
w

=
〈
ψ†, δq

〉
w

(30)

The term multiplying hψ may be transferred to ψ† by taking the adjoint of

the operator (denoted here as a “dagger” †)

〈
ψ†, δMψ0

〉
w

+
〈
M †ψ†, hψ

〉
w

=
〈
ψ†, δq

〉
w
. (31)

ψ† may be chosen specifically such that

M †ψ† = q† = σ0 (32)

This apropos choice is exercised by multiplying Equation 32 by hψ and inte-
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grating over the appropriate space

〈
M †ψ†, hψ

〉
w

=
〈
σ0, hψ

〉
w

(33)

recalling Equation 27 and Equation 32, this leads to the following expression

for the response variation

δR
(
e0;h

)
=
〈
ψ0, δσ

〉
w
−
〈
ψ†, ψ0δM

〉
w

+
〈
ψ†, δq

〉
w

(34)

To obtain the first order sensitivities for response R, a Taylor series expansion

around a nominal point e0 is carried out

R (e,h) = R
(
e0,h

)
+

∑
i=1,Nα

∂R

∂αi

∣∣∣∣
e0
δαi + . . . ,

R (e,h)−R
(
e0,h

) ∼= ∑
i

∂R

∂αi

∣∣∣∣
e0
δαi,

δR (e,h) ∼=
∑
i

∂R

∂αi

∣∣∣∣
e0
δαi. (35)

Varying the ith parameter while leaving the rest zero gives

δRi

δαi
∼=
∂R

∂αi
= Sai ≡

〈
ψ0,

∂σ

∂αi

〉
w

−
〈
ψ†, ψ0∂M

∂αi

〉
w

+
〈
ψ†,

∂q

∂αi

〉
w

, (36)

where Sai is referred to as the absolute sensitivity of response R with respect

to input parameter αi.

Sri = Sai
αi
R
, (37)
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is referred to as the relative sensitivity of response R with respect to input

parameter αi.

Thus, the sensitivity of response R (e0) with respect to the input pa-

rameters α can be computed via Equation 36 which only depends on the

forward angular flux (ψ0), the adjoint angular flux
(
ψ†
)
, and variations in

the operators due to variations in the parameters. Given other responses,

r = (rk; k = 1, . . . ,Nr), of the same form as Equation 24, only Nr ad-

joint runs need be completed to acquire sensitivities to every parameter in

α = (αi; i = 1, . . . ,Nα). This is opposed to Nα homogeneous forward runs

if one were to utilize just the forward sensitivity analysis equation.

III.D.2 Application

A SCALE input deck, shown in Appendix C, was created based on the upright

spatial setup used in the MCNP validation exercise [11]. Simulations were

completed with FTC-CF-004 at 16 and 61 cm away from the central helium-3

tube. A simulation at 16 cm with the cadmium front cover was also performed

for comparison.

A three-dimensional, orthogonal mesh was generated with 124× 95× 56

cells for the 16 cm simulations while a 92 × 121 × 56 mesh was used for

the 61 cm simulation. In all three runs, the detector was split down the

center and a reflective boundary condition was used. While the detector is

not perfectly symmetric due to the access port for high voltage and data

acquisition cabling, a verification run on a coarser mesh showed a change

57



in response of 0.001327% due to reflection. Each simulation was completed

using SCALE’s 200 energy group shielding library “V7-200N47G”. A Gauss-

Legendre quadrature was used with 12 polar and 14 azimuthal angles per

octant, a total of 1344 angles, while a P1 expansion was utilized for the

scattering kernel. A step characteristics discretization approximation was

used throughout with an inner and outer iteration absolute solution tolerance

of 1.0E-9.

These discretization choices were necessitated by the restriction of com-

putational resources. The simulations were run in parallel via MPI on a dual

machine cluster with a total of 64 cores and 256 GB of RAM. A finer spatial

mesh would be necessary to obtain response values on the order of accuracy

of the MCNP simulations. Nonetheless, the results presented here serve as a

sound basis for estimates on the sensitivity of the response value with respect

to changes in the cross section input parameters.

A discretization study, utilizing a coarser spatial mesh of 73×71×125 cells

and 27 group energy structure is presented in Table 14. The final run, using

a P5 expansion, Gauss-Legendre quadrature of 12 × 14 angles per octant,

step-characteristics and tolerance of 1.0E−9 serves as a reference point from

which all other percent differences are based.

Figure 20 illustrates the spatial mesh for the 16 cm simulations. The

detector and californium-252 source are split and reflected on their vertical

axis. The source is located collinear with the center of the detector’s front

face 16.1275 cm away from the central point of the central helium-3 detector.
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Table 14: Various combinations of spatial discretizations (weighted di-
amond differencing, step characteristics), angular discretizations (level
symmetric, Gauss-Legendre product), Pn expansion orders (0 – 5), and
solver tolerances (1E-3, 1E-6, 1E-9) were simulated with a fixed spatial
and energy mesh to estimate the amount of discretization error incurred.
Percent differences based on the simulation with the highest number of
degrees of freedom.

Spa.
Des.

Ang.
Des. Sn Pol. Azi. Pn Tol. % Diff.

WDD LS 4 - - 0 1.00E-03 -97.1134
WDD LS 8 - - 3 1.00E-06 -33.7336
WDD LS 16 - - 5 1.00E-09 -3.5827
WDD GL - 6 8 3 1.00E-06 -63.4713

SC GL - 6 8 3 1.00E-06 -49.5191
SC GL - 8 10 3 1.00E-09 -0.0887
SC GL - 10 12 3 1.00E-09 -0.0247
SC GL - 12 14 3 1.00E-09 -0.0006
SC GL - 12 14 0 1.00E-09 -16.4770
SC GL - 12 14 1 1.00E-09 0.2445
SC GL - 12 14 2 1.00E-09 0.0223
SC GL - 12 14 3 1.00E-09 -0.0006
SC GL - 12 14 4 1.00E-09 0.0003
SC GL - 12 14 5 1.00E-09 0.0000
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Figure 20: Spatial mesh generated via SCALE’s Maverick input sequence.
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Next, Figure 21, Figure 22, and Figure 23 show the top five largest mag-

nitude relative sensitivities of response

R ≡
〈
Nσ

3He
(n,p) (~r, E) , φ (~r, E)

〉
=
〈
Σ3He

(n,p) (~r, E) , φ (~r, E)
〉
, (38)

where

〈f, g〉 ≡
∫
Vactive

d3~r
∫ ∞

0
dEfg, (39)

and

φ (~r, E) ≡
∫

4π
dΩΩψ (~r,Ω, E) , (40)

with Vactive as the volume associated with the active region of the five helium-

3 detectors. Each helium-3 tube has an active length of 50.8 cm and an inner

radius of 1.190625 cm, the total active volume is 1131.185 cm3.

Associated with each sensitivity figure are the corresponding microscopic

cross sections plotted on a secondary axis for reference. The most notable

change from 16 to 61 cm is the increase in the absolute magnitude of the sensi-

tivity of the response with respect to cadmium-113 (n, γ) reaction type within

the cadmium sheath around the bare detector assembly. For the particular

(predominantly fast) source spectrums of FTC-CF-004 and FTC-CF-053,

the cadmium front cover yields very little change in response and response

sensitivity.

Shown in Table 15 and Table 16, are the top 60 combined relative sen-

sitivities from all three simulations. Each is ranked by its absolute value
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and each is designated by the source distance and whether or not the cad-

mium cover was present. Relative sensitivities range from just over 1.0 for the

californium-252 spontaneous fission rate to just under 6E-5 for the cadmium-

113 elastic scatter cross section for the 16 cm no cover simulation.

Lastly, the generated sensitivity information was combined with cross

section covariance data to propagate the uncertainty contribution from the

cross section information to the response value. This process is achieved via

Crc ≡ SCαST , (41)

where Crc is the output response covariance matrix, S =
(
Sr1 . . . S

r
Nα

)T
is

a Nα × 1 dimension vector of relative sensitivities, and Cα is an Nα ×

Nα dimension matrix of relative cross section covariances. The covariances

are obtained from SCALE’s 44 group covariance library (revision 5) and

transformed onto the 200 group energy mesh. In this particular work, the

one response, R, yields a 1 × 1 dimension Crc, i.e. one scalar response

variance. The overall percent standard deviation, i.e.

√
Crc
R
× 100

was found to be 0.3664% of the response value.

To understand the contributions of each individual material, isotope and

reaction type to the overall response uncertainty, the sensitivity vector, S,
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Table 15: Largest magnitude microscopic cross section sensitivities inte-
grated over energy group for response

〈
Σ3He

(n,p), φ
〉

for distances 16 and 61 cm,
with and without the cadmium front cover.

Distance +
Cd Cover Material Nuclide Rxn. Value (-)

61 cm No Cov Source Cf-252 S.F. 1.000075E+00
16 cm No Cov Source Cf-252 S.F. 1.000013E+00
16 cm Cover Source Cf-252 S.F. 1.000008E+00

61 cm No Cov Act. Fill Gas He-3 (n, p) 6.975793E-01
16 cm Cover Act. Fill Gas He-3 (n, p) 6.798563E-01

16 cm No Cov Act. Fill Gas He-3 (n, p) 6.798367E-01
16 cm Cover HDPE Sheath H-1 El. 5.981877E-01

16 cm No Cov HDPE Sheath H-1 El. 5.959725E-01
61 cm No Cov HDPE Sheath H-1 El. 5.570021E-01
16 cm No Cov HDPE Sheath H-1 (n, γ) -2.257094E-01
16 cm Cover HDPE Sheath H-1 (n, γ) -2.256494E-01

61 cm No Cov HDPE Sheath H-1 (n, γ) -2.176688E-01
61 cm No Cov HDPE In. Crdle H-1 El. -2.486313E-02
61 cm No Cov Cd Sheath Cd-113 (n, γ) -2.404090E-02
61 cm No Cov Concrete H-1 El. 1.466112E-02
16 cm No Cov Cd Sheath Cd-113 (n, γ) -1.287175E-02
61 cm No Cov Inact. Fill Gas He-3 (n, p) -8.230846E-03
16 cm Cover Cd Sheath Cd-113 (n, γ) -6.598353E-03

61 cm No Cov HDPE Sheath C El. -5.636768E-03
61 cm No Cov HDPE In. Crdle H-1 (n, γ) -5.279760E-03
16 cm No Cov HDPE Sheath C El. -4.428016E-03
16 cm Cover HDPE Sheath C El. -4.401700E-03

16 cm No Cov HDPE In. Crdle H-1 El. 3.264912E-03
16 cm Cover HDPE In. Crdle H-1 El. 3.262812E-03

16 cm No Cov Inact. Fill Gas He-3 (n, p) -2.250142E-03
16 cm Cover Inact. Fill Gas He-3 (n, p) -2.246392E-03

61 cm No Cov Concrete O-16 El. 1.910412E-03
16 cm Cover HDPE In. Crdle H-1 (n, γ) -1.822845E-03

16 cm No Cov HDPE In. Crdle H-1 (n, γ) -1.820148E-03
16 cm No Cov Concrete H-1 El. 1.284364E-03
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Table 16: Largest magnitude microscopic cross section sensitivities integrated
over energy group for response

〈
Σ3He

(n,p), φ
〉

for distances 16 and 61 cm, with
and without the cadmium front cover (continued).

Distance +
Cd Cover Material Nuclide Rxn. Value (-)

16 cm Cover Concrete H-1 El. 1.066591E-03
16 cm Cover HDPE In. Crdle C El. 1.019100E-03

16 cm No Cov HDPE In. Crdle C El. 1.016441E-03
61 cm No Cov Concrete C El. 9.064406E-04
61 cm No Cov HDPE Out Crdle H-1 (n, γ) -8.442705E-04
61 cm No Cov HDPE Out Crdle H-1 El. -7.992698E-04
16 cm No Cov HDPE Out Crdle H-1 El. 5.409009E-04
16 cm Cover HDPE Out Crdle H-1 El. 5.357247E-04

61 cm No Cov HDPE In. Crdle C El. 5.113292E-04
61 cm No Cov Air N-14 El. -4.762717E-04
61 cm No Cov Concrete H-1 (n, γ) -4.281808E-04
16 cm Cover Al Sheath Al-27 El. -3.663768E-04

16 cm No Cov He-3 Al Tube Al-27 (n, γ) -3.380107E-04
16 cm Cover He-3 Al Tube Al-27 (n, γ) -3.379881E-04

61 cm No Cov He-3 Al Tube Al-27 (n, γ) -3.217216E-04
61 cm No Cov Al Sheath Al-27 El. -2.851055E-04
16 cm No Cov Al Sheath Al-27 El. -2.579803E-04
61 cm No Cov Concrete Si-28 El. 2.167939E-04
16 cm No Cov HDPE Out Crdle H-1 (n, γ) -2.160516E-04
16 cm Cover HDPE Out Crdle H-1 (n, γ) -2.139809E-04

16 cm No Cov HDPE Sheath C (n, γ) -2.025254E-04
16 cm Cover HDPE Sheath C (n, γ) -2.024716E-04
16 cm Cover Cd Sheath Cd-114 El. -1.992028E-04
16 cm Cover Cd Sheath Cd-112 El. -1.578123E-04

16 cm No Cov Concrete O-16 El. 1.521616E-04
16 cm Cover Concrete O-16 El. 1.445626E-04
16 cm Cover Cd Sheath Cd-111 El. -8.830421E-05

16 cm No Cov Al In. Crdle Al-27 El. 8.078568E-05
16 cm No Cov Concrete C El. 7.220300E-05
16 cm No Cov Cd Sheath Cd-113 El. 5.960251E-05
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can be distributed along the diagonal of an identity matrix

diag (S) ≡


Sr1 0 0

0 . . . 0

0 0 SrNα

 , (42)

and then used as

diag (S)Cαdiag (S) . (43)

This block-wise multiplication produces a Nα ×Nα matrix where each ele-

ment contains the uncertainty contribution from its corresponding material,

isotope and reaction type. Figure 24 plots the top contributing uncertainties

in an illustrative way so as to highlight the overall magnitude of the individ-

ual uncertainty contributions as well as the magnitude of the corresponding

relative sensitivities involved.

The helium-3 (n, p) reaction cross section is responsible for over 90% of the

overall response uncertainty due to cross section uncertainty. Hydrogen-1’s

(n, γ) and elastic cross sections follow suit at roughly 8.8 and 2.4%. Table 17

lists the top 25 contributing constituents to response uncertainty. Note that

off-diagonal terms will come in symmetric pairs.
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Figure 24: Largest contributors to uncertainty in the response due to uncer-
tainties in microscopic cross sections. Each point defines two constituents
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plied. Total response uncertainty contribution (percent standard deviation
of response value) from cross section uncertainties is 0.3664%. The uncer-
tainty contribution shown above is a percentage of this standard deviation.
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Table 17: Largest contributors to uncertainty in the response due to uncer-
tainties in microscopic cross sections. Each row defines the two constituents
whose relative sensitivities and parameter covariance submatrix are multi-
plied. Total response uncertainty contribution (percent standard deviation
of response value) from cross section uncertainties is 0.3664%. The uncer-
tainty contribution shown below is a percentage of this standard deviation.

Constituent 1 Constituent 2 Squared
Sensitivities

% Un-
certainty
Contrib.

Active Fill Gas, He-3, (n, p) Active Fill Gas, He-3, (n, p) 4.866168E-01 90.61756
HDPE Sheath, H-1, (n, γ) HDPE Sheath, H-1, (n, γ) 4.737970E-02 8.82229

HDPE Sheath, H-1, El. HDPE Sheath, H-1, El. 3.102513E-01 2.35062
Active Fill Gas, He-3, (n, p) Inactive Fill Gas, He-3, (n, p) -5.741667E-03 -2.13842

Inactive Fill Gas, He-3, (n, p) Active Fill Gas, He-3, (n, p) -5.741667E-03 -2.13842
Cd Sheath, Cd-113, (n, γ) Cd Sheath, Cd-113, (n, γ) 5.779647E-04 1.60104

HDPE Inner Crdle, H-1, (n, γ) HDPE Sheath, H-1, (n, γ) 1.149239E-03 0.42793
HDPE Sheath, H-1, (n, γ) HDPE Inner Crdle, H-1, (n, γ) 1.149239E-03 0.42793

HDPE Inner Crdle, H-1, El. HDPE Sheath, H-1, El. -1.384882E-02 -0.21196
HDPE Sheath, H-1, El. HDPE Inner Crdle, H-1, El. -1.384882E-02 -0.21196
HDPE Sheath, H-1, El. Floor Concrete, H-1, El. 8.166275E-03 0.11676
Floor Concrete, H-1, El. HDPE Sheath, H-1, El. 8.166275E-03 0.11676

HDPE Sheath, H-1, (n, γ) HDPE Outer Crdle, H-1, (n, γ) 1.837713E-04 0.06843
HDPE Outer Crdle, H-1, (n, γ) HDPE Sheath, H-1, (n, γ) 1.837713E-04 0.06843

HDPE Sheath, H-1, (n, γ) Floor Concrete, H-1, (n, γ) 9.320160E-05 0.03469
Floor Concrete, H-1, (n, γ) HDPE Sheath, H-1, (n, γ) 9.320160E-05 0.03469

Inactive Fill Gas, He-3, (n, p) Inactive Fill Gas, He-3, (n, p) 6.774682E-05 0.01262
HDPE Outer Crdle, H-1, El. HDPE Sheath, H-1, El. -4.451949E-04 -0.00650

HDPE Sheath, H-1, El. HDPE Outer Crdle, H-1, El. -4.451949E-04 -0.00650
Floor Concrete, H-1, El. HDPE Inner Crdle, H-1, El. -3.645214E-04 -0.00605

HDPE Inner Crdle, H-1, El. Floor Concrete, H-1, El. -3.645214E-04 -0.00605
HDPE Sheath, C, El. HDPE Sheath, C, El. 3.177315E-05 0.00589

HDPE Inner Crdle, H-1, (n, γ) HDPE Inner Crdle, H-1, (n, γ) 2.787586E-05 0.00519
HDPE Inner Crdle, H-1, El. HDPE Inner Crdle, H-1, El. 6.181755E-04 0.00489

Floor Concrete, H-1, El. Floor Concrete, H-1, El. 2.149485E-04 0.00318
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IV Overall Results Comparison

Comparison between the MCNP DRF and full simulations versus experimen-

tal measurements are presented. For both sets of simulations, uncertainties

pertaining to the stochastic nature of the MCNP results, response uncertain-

ties introduced due to uncertainties in input cross section information, and

uncertainty due to the californium source emission rates are addressed.

Table 18 and Table 19 represent the computed count rates of the DRF and

full simulations compared directly to experimentally measured count rates

which are displayed in Figure 25 and Figure 26 respectively. Uncertainty

information about experimental uncertainty (Exp. Unc.), stochastic uncer-

tainty (Sto.), response uncertainty due to cross section data (XS), source

emission rate uncertainty (Src.), and the total combination of stochastic,

cross section data, and source emission uncertainties (Sim. Total) are given

in Table 20 and Table 21 and also displayed as error bars in Figure 25 and

Figure 26.

The DRF approximation simulations add a noticeable positive bias on

the order of 1% as compared to the full simulations. Both simulation sets

fall within the 1σ total uncertainty ranges. The largest contributor to un-

certainty is the source emission rate with an uncertainty of 2.4% of 157755

neutrons per second. Next, at roughly an order of magnitude smaller, is the

uncertainty due to cross section data uncertainty which was estimated at

0.3664% of the response value. Then, enough histories within MCNP were
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used to minimize the stochastic uncertainty to the order of the experimen-

tal count rate uncertainty; roughly on the order of 0.25% depending on the

source distance away from the detector.

Overall, this validation exercise serves as a sound base for which to test

inverse algorithm methodologies while attempting to locate and identify nu-

clear holdup via passive neutron assay techniques. If plans to more accurately

bound the source emission data are sucessful, then this would serve to narrow

the overall uncertainties within this work. One other possibility that may be

worth pursuing would be to recreate the experimental Mannhart californium-

252 fission spectrum for use with the MCNP DRF and full simulation runs.

This could potentially bring the simulated response values even closer to the

experimentally measured values.

Appendices A, B, and C give detailed information for the detector used

and inputs for the MCNP, SCALE, and Denovo codes used to generate the

simulated output dislpayed throughout this work.
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Table 18: Comparison of detector response between simulated MCNP
DRF run and experimental measurements.

Distance
from

Detector
(cm)

Experimental
Count Rate

(c/s)

Simulated
Count Rate

(c/s)

Percent
Difference

(%)

16 4565.001 4587.164 0.4855
21 3402.641 3445.572 1.2617
26 2610.021 2648.537 1.4757
31 2058.254 2103.065 2.1771
36 1676.399 1705.077 1.7107
41 1378.492 1409.865 2.2759
46 1161.146 1186.093 2.1485
51 1000.609 1013.279 1.2662
56 861.684 878.595 1.9625
61 758.584 768.335 1.2855

Table 19: Comparison of detector response between simulated MCNP
Full run and experimental measurements.

Distance
from

Detector
(cm)

Experimental
Count Rate

(c/s)

Simulated
Count Rate

(c/s)

Percent
Difference

(%)

16 4565.001 4525.103 -0.8740
21 3402.641 3393.595 -0.2659
26 2610.021 2616.302 0.2407
31 2058.254 2069.340 0.5386
36 1676.399 1680.829 0.2643
41 1378.492 1381.307 0.2042
46 1161.146 1161.272 0.0109
51 1000.609 991.550 -0.9053
56 861.684 859.007 -0.3106
61 758.584 754.228 -0.5742

75



Table 20: Comparison of absolute detector response uncertainties
between MCNP DRF run and experimental measurements.

Distance
from

Detector
(cm)

Exp.
Unc.
(c/s)

Sto.
(c/s)

XS
(c/s)

Src.
(c/s)

Sim.
Total
(c/s)

16 3.973 8.779 16.807 110.092 111.713
21 2.025 7.534 12.625 82.694 83.990
26 1.846 6.529 9.704 63.565 64.632
31 2.419 5.827 7.706 50.474 51.390
36 1.936 5.160 6.247 40.922 41.716
41 1.151 4.637 5.166 33.837 34.542
46 1.997 4.225 4.346 28.466 29.104
51 1.780 3.914 3.713 24.319 24.910
56 1.521 3.627 3.219 21.086 21.637
61 1.372 3.370 2.815 18.440 18.956

Table 21: Comparison of absolute detector response uncertainties
between MCNP Full run and experimental measurements.

Distance
from

Detector
(cm)

Exp.
Unc.
(c/s)

Sto.
(c/s)

XS
(c/s)

Src.
(c/s)

Sim.
Total
(c/s)

16 3.973 6.966 16.580 108.602 110.081
21 2.025 5.991 12.434 81.446 82.607
26 1.846 5.273 9.586 62.791 63.737
31 2.419 4.697 7.582 49.664 50.459
36 1.936 4.235 6.159 40.340 41.026
41 1.151 3.818 5.061 33.151 33.752
46 1.997 3.503 4.255 27.871 28.410
51 1.780 3.251 3.633 23.797 24.291
56 1.521 3.031 3.147 20.616 21.074
61 1.372 2.835 2.763 18.101 18.529
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A Detector CAD Model

Detector measurements were taken at ORNL during the measurement cam-

paign. The detector was disassembled for each piece to be individually mea-

sured. The following figures contained within Appendix A are a close ap-

proximation to the detector measurements. Approximations were used when

geometry translation to implicit equations were prohibitive. Specific approx-

imations include the hand truck scoop, shown in Figure 42, the internals of

the junction box, shown in Figure 31, and various bolt or screw holes that

may appear in the CAD drawings but are absent from the actual input deck.

The CAD drawings represent measurements in millimeters and each of

the numbered surfaces is used within the MCNP input deck template. Origin

labels designate the locate origin chosen for input within the MCNP input

deck. If necessary, a piece was then translated and/or rotated to the ap-

propriate global coordinate in MCNP. The drawings in this appendix are no

longer drawn to the scale represented in the title blocks.
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B MCNP Template and Run Scripts

The following Python scripts and input templates give all the necessary

tools to run a sample sensitivity analysis similar to the results in Table 13.

“run all.py” takes three command-line arguments. “run all.py” will read in

information from “energy.list”, “sample perturbations.list”, and

“upright spatial setup FTC-CF-004.mcnp.inp.template”.

Using “spawn mcnp child.py”, “run all.py” will manage all jobs based on the

total number of CPU’s its given until all MCNP runs are complete. “sam-

ple post process.py” will read the directory names given in “sample dir.list”

and mine relevant tally data in each of the runs to produce several comma

separated value files.

Also, “fission spectrum.txt” was used to generate the comparison fission

spectrums in Maple17 used in Figure 14.

#!/ usr/bin/env python

# W. Cyrus Proctor

import os
import sys
import numpy as np
import math

from spawn_mcnp_child import spawn_mcnp_children

def run_mcnp_jobs ():

# Takes three arguments
# 1.) Which file prefix to run
# 2.) Number of processes per file to use
# 3.) Total number of processes to use at once

file_prefix = sys.argv [1]
processes_per_file = int(sys.argv [2])
total_num_processes = int(sys.argv [3])

print "File Prefix :",file_prefix
print " Processes per File:",processes_per_file
print " Total Number of Processes :",total_num_processes

if total_num_processes % processes_per_file !=0:
print " WARNING : you will have idle processes !"

# Current working directory
cwd = os. getcwd ()

template_filename = " upright_spatial_setup_FTC -CF -004. mcnp.inp. template "
pert_filename = " sample_perturbations .list"

generate_mcnp_perturbation_decks ( file_prefix ,cwd , template_filename , pert_filename )
# generate_mcnp_rotation_decks ( file_prefix ,cwd , template_filename , rot_filename )
# exit (0)

run_list = list ()
# Cycle through all directories
for root , dirs , files in os.walk(cwd):

# Cycle through all files
for filename in files :

# Find only files that match the file_prefix and end with ". inp"
if filename . startswith ( file_prefix ) and filename . endswith (".inp"):

file_path = root
input_filename = filename
output_filename = filename [: -4]+".out"
restart_filename = filename [: -4]+". runtp "
run_list . append (tuple (( file_path , input_filename , output_filename ,\

restart_filename )))
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for combo in run_list :
print combo

spawn_mcnp_children ( total_num_processes , processes_per_file , run_list )

def generate_mcnp_perturbation_decks ( file_prefix ,cwd , template_filename , pert_filename ):
with open( pert_filename ) as f:

while True:
line = f. readline ()
if not line: break
if line [0] == ’#’:

if line.find(’sdist ’) != -1:
sdist_list = f. readline (). split ()

if line.find(’sorient ’) != -1:
sorient_list = f. readline (). split ()

if line.find(’smat ’) != -1:
smat_list = f. readline (). split ()

if line.find(’sden ’) != -1:
sden_list = f. readline (). split ()

if line.find(’scoord ’) != -1:
scoord_list = f. readline (). split ()

if line.find(’pden ’) != -1:
pden_list = f. readline (). split ()

if line.find(’fgden ’) != -1:
fgden_list = f. readline (). split ()

if line.find(’fe ’) != -1:
fe_list = f. readline (). split ()

if line.find(’fden ’) != -1:
fden_list = f. readline (). split ()

template = open( template_filename ,’r’).read ()

count = 1

# Default Indices
isorient_default = 1 # 0 degrees
ismat_default = 0 # 304L SS
isden_default = ismat_default # 8.0 g/cc
iscoord_default = 2 # 0 cm off - center
ipden_default = 0 # 0.95 g/cc
ifgden_default = 0 # 0.0020628254 g/cc
ife_default = 0 # Concrete material 14
ifden_default = ife_default # 2.35 g/cc

for isdist , sdist in enumerate ( sdist_list ):
isorient = isorient_default
ismat = ismat_default
isden = isden_default
iscoord = iscoord_default
ipden = ipden_default
ifgden = ifgden_default
ife = ife_default
ifden = ifden_default

sorient = sorient_list [ isorient_default ]
smat = smat_list [ ismat_default ]
sden = sden_list [ isden_default ]
scoord = scoord_list [ iscoord_default ]
pden = pden_list [ ipden_default ]
fgden = fgden_list [ ifgden_default ]
fe = fe_list [ ife_default ]
fden = fden_list [ ifden_default ]

for isorient , sorient in enumerate ( sorient_list ):
count = create_template (count ,cwd , file_prefix ,isdist ,isorient ,ismat ,isden ,iscoord ,\

ipden ,ifgden ,ife ,ifden ,template ,sdist ,sorient ,smat ,sden ,scoord ,pden ,\
fgden ,fe ,fden)

isorient = isorient_default
sorient = sorient_list [ isorient_default ]

for ismat ,smat in enumerate ( smat_list ):
count = create_template (count ,cwd , file_prefix ,isdist ,isorient ,ismat ,isden ,iscoord ,\

ipden ,ifgden ,ife ,ifden ,template ,sdist ,sorient ,smat ,sden ,scoord ,pden ,\
fgden ,fe ,fden)

ismat = ismat_default
isden = isden_default
smat = smat_list [ ismat_default ]
sden = sden_list [ isden_default ]

for iscoord , scoord in enumerate ( scoord_list ):
count = create_template (count ,cwd , file_prefix ,isdist ,isorient ,ismat ,isden ,iscoord ,\

ipden ,ifgden ,ife ,ifden ,template ,sdist ,sorient ,smat ,sden ,scoord ,pden ,\
fgden ,fe ,fden)

iscoord = iscoord_default
scoord = scoord_list [ iscoord_default ]

for ipden ,pden in enumerate ( pden_list ):
count = create_template (count ,cwd , file_prefix ,isdist ,isorient ,ismat ,isden ,iscoord ,\

ipden ,ifgden ,ife ,ifden ,template ,sdist ,sorient ,smat ,sden ,scoord ,pden ,\
fgden ,fe ,fden)

ipden = ipden_default
pden = pden_list [ ipden_default ]

for ifgden , fgden in enumerate ( fgden_list ):
count = create_template (count ,cwd , file_prefix ,isdist ,isorient ,ismat ,isden ,iscoord ,\

ipden ,ifgden ,ife ,ifden ,template ,sdist ,sorient ,smat ,sden ,scoord ,pden ,\
fgden ,fe ,fden)

ifgden = ifgden_default
fgden = fgden_list [ ifgden_default ]

for ife ,fe in enumerate ( fe_list ):
count = create_template (count ,cwd , file_prefix ,isdist ,isorient ,ismat ,isden ,iscoord ,\

ipden ,ifgden ,ife ,ifden ,template ,sdist ,sorient ,smat ,sden ,scoord ,pden ,\
fgden ,fe ,fden)

ife = ife_default
ifden = ifden_default
fe = fe_list [ ife_default ]
fden = fden_list [ ifden_default ]

def create_template (count ,cwd , file_prefix ,isdist ,isorient ,ismat ,isden ,iscoord ,\
ipden ,ifgden ,ife ,ifden ,template ,sdist ,sorient ,smat ,sden ,scoord ,pden ,\
fgden ,fe ,fden):
dir_name = str( isdist ) + "_" + str( isorient ) + "_" + str( ismat ) +\

"_" + str( iscoord ) + "_" + str( ipden ) + "_" + str( ifgden ) +\
"_" + str(ife)

working_template = generate_input_deck (template ,sdist ,sorient ,\
smat ,sden ,scoord ,pden ,fgden ,fe ,fden)

dir_path = cwd + "/" + dir_name
if not os.path. exists ( dir_path ):

os. makedirs ( dir_path )
os. chdir ( dir_path )
open( file_prefix + " upright_spatial_setup_FTC -CF -004_" + dir_name + ".inp","w"). write ( working_template )
print str( count ) + " Wrote out " + file_prefix + " upright_spatial_setup_FTC -CF -004_" + dir_name + ".inp in directory : " + dir_path
os. chdir (cwd)
count = count + 1

return count

def generate_input_deck (template ,sdist ,sorient ,smat ,sden ,scoord ,\
pden ,fgden ,fe ,fden):
t = template
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t = t. replace ("<smat >",smat)
if float (sden) != 0:

t = t. replace ("<sden >",sden)
else:

t = t. replace ("<sden >","")
t = t. replace ("<pden >",pden)
t = t. replace ("<fgden >",fgden )
t = t. replace ("<fe >",fe)
if float (fe) != 0:

t = t. replace ("<fden >",fden)
else:

t = t. replace ("<fden >","")

# Nominal Source Coordinates
sxnom = 0.0
synom = float( sdist )
sznom = 29.21

# Perturbed Source Coordinates
sxpert = sxnom + float ( scoord )
sypert = synom + float ( scoord )
szpert = sznom + float ( scoord )

t = t. replace ("<sxdist >",str( sxpert ))
t = t. replace ("<sydist >",str( sypert ))
t = t. replace ("<szdist >",str( szpert ))

transform_list = x_rotation_transform (float ( sorient ))
t = t. replace ("<sorient >",’\n’.join(map(str , transform_list )))

return t

def generate_mcnp_rotation_decks ( file_prefix ,cwd , template_filename , rot_filename ):
rotation_list = np. loadtxt ( rot_filename )
template = open( template_filename ,’r’).read ()
for rot in rotation_list :

transform_list = x_rotation_transform (rot)
working_template = template
working_template = working_template . replace (" <<<rotation >>>",’\n’.join(map(str , transform_list )))
dir_name = str(abs(int(rot)))
if rot < 0:

dir_name = "neg_" + dir_name
elif rot > 0:

dir_name = "pos_" + dir_name
dir_path = cwd + "/" + dir_name
if not os.path. exists ( dir_path ):

os. makedirs ( dir_path )
os. chdir ( dir_path )
open( file_prefix + " upright_spatial_setup_FTC -CF -004_" + dir_name + ".inp","w"). write ( working_template )
print " Wrote out " + file_prefix + " upright_spatial_setup_FTC -CF -004_" + dir_name + ".inp in directory : " + dir_path
os. chdir (cwd)

def x_rotation_transform (deg):
return [1,0,0,0, math.cos(deg *( math.pi /180) ) ,\
-math.sin(deg *( math.pi /180) ) ,0,math.sin(deg *( math.pi /180) ) ,\
math.cos(deg *( math.pi /180) )]

if __name__ == " __main__ ":
run_mcnp_jobs ()

fig/mcnp/run all.py

#!/ usr/bin/env python

# W. Cyrus Proctor

import sys
import subprocess
import os

def spawn_mcnp_children ( total_num_processes , processes_per_file , run_list ):

# Find initial working directory
iwd = os. getcwd ()

child_list = list ()
restart_list = list ()
is_running_list = list ()
process_pool = 0

while True:
if total_num_processes - process_pool >= processes_per_file :

# Add another child
child ,file_path , restart_filename = add_child (run_list , processes_per_file )
if child :

child_list . append ( child )
restart_list . append ( file_path + "/" + restart_filename )

is_running_list . append (1)
process_pool += processes_per_file

# Cycle through all children
for i, a_child in enumerate ( child_list ):

# See if this child has already completed
if is_running_list [i] == 1:

# Poll child for completion
if a_child .poll () != None:

print "\n\ nChild ",a_child .pid ,"is complete !"
print " ********** Output ********** "
print a_child . communicate () [0] ,
print " ******** End Output ******** "
is_running_list [i] = 0
process_pool -= processes_per_file

else:
# Remove runtp files for size

try:
os. remove ( restart_list [i])

except OSError :
pass

# Last One
try:

os. remove ( restart_list [i])
except OSError :

pass

if process_pool == 0 and not run_list :
print "All Runs Complete !"
break

# Change back to initial working directory
os. chdir (iwd)
print "Done!"

def add_child (run_list , processes_per_file ):
if run_list :
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file_path , input_filename , output_filename , restart_filename = run_list .pop (0)
else:

return None ,None ,None
print "\n\ nMoving to:",file_path
os. chdir ( file_path )
child = spawn_mcnp_child ( input_filename , output_filename , restart_filename ,\

processes_per_file )
print " Started Child Process :",child .pid
print " In Directory :",file_path
print " Input File:",input_filename
print " Output File:",output_filename
print " Binary Restart File:",restart_filename
print " Number of Tasks :",processes_per_file
return child ,file_path , restart_filename

def spawn_mcnp_child ( input_filename , output_filename , restart_filename ,\
num_shared_processes ):

child = subprocess . Popen (’mcnp5 ’ + ’ i=’ + input_filename +\
’ o=’ + output_filename + ’ r=’ + restart_filename + ’ TASKS ’ +\
str( num_shared_processes ) + ’ 2 >&1 ’ ,\
shell =True , stdout = subprocess .PIPE)

return child

"""
# Test Routine
def spawn_mcnp_child ( input_filename , output_filename , num_shared_processes ):

child = subprocess . Popen (’ sleep 10 && ls -1’+\
’ 2>&1’, shell =True , stdout = subprocess .PIPE)

return child
"""

fig/mcnp/spawn mcnp child.py

#!/ usr/bin/env python
# W. Cyrus Proctor

import os
import numpy as np

# Change for Windows or Unix
slash = "\\"

# Define all perturbations
sdist_dict = {0: -16.1275}
sorient_dict = {0: -90 , 1:0}
smat_dict = {0:400}
sden_dict = {0: -8.00}
scoord_dict = {0: -5 , 2:0 , 4:5}
pden_dict = {0: -0.95 , 2: -1.045}
fgden_dict = {0: -0.0020628254 , 2: -0.00226910794}
fe_dict = {0:14}
fden_dict = {0: -2.35}

def read_in_data (prefix , dir_filename , energy_filename ,):

energy = np. loadtxt ( energy_filename )

cwd = os. getcwd ()
dir_list = open( dir_filename ).read (). split (’\n’)
dir_list = dir_list [: -1]

default_rr_dict = dict ()
default_rr_error_dict = dict ()
default_rr_sum_dict = dict ()
rr_dict = dict ()
rr_error_dict = dict ()
rr_diff_dict = dict ()
rr_diff_sum_dict = dict ()

for isdist in sdist_dict :
default_dir = str( isdist ) + " _1_0_2_0_0_0 "
out_filename = prefix + default_dir + ".out"
os. chdir (cwd + slash + default_dir )
print cwd + slash + default_dir
rr_array , rr_error_array = read_tally ( out_filename )
default_rr_dict [ isdist ] = rr_array
default_rr_error_dict [ isdist ] = rr_error_array
default_rr_sum_dict [ isdist ] = np.sum( rr_array )
os. chdir (cwd)

for isdist in sdist_dict :
for isorient in sorient_dict :

for ismat in smat_dict :
for iscoord in scoord_dict :

for ipden in pden_dict :
for ifgden in fgden_dict :

for ife in fe_dict :
dir = str( isdist ) + "_" + \

str( isorient ) + "_" + \
str( ismat ) + "_" + \
str( iscoord ) + "_" + \
str( ipden ) + "_" + \
str( ifgden ) + "_" + \
str(ife)

out_filename = prefix + dir + ".out"
if os.path. exists (cwd + slash + dir):

os. chdir (cwd + slash + dir)
print cwd + slash + dir
rr_array , rr_error_array = read_tally ( out_filename )
rr_dict [dir] = rr_array
rr_error_dict [dir] = rr_error_array
rr_diff_dict [dir] = 100.0 * np. divide (rr_array - default_rr_dict [ isdist ], default_rr_dict [ isdist ])
rr_diff_sum_dict [dir] = 100.0 * np. divide (np.sum( rr_array )-default_rr_sum_dict [ isdist ], default_rr_sum_dict [ isdist ])
os. chdir (cwd)

return energy ,rr_dict , rr_error_dict , rr_diff_dict , rr_diff_sum_dict

def translate (key):

key_list = key. split (’_’)
isdist = int( key_list [0])
isorient = int( key_list [1])
ismat = int( key_list [2])
isden = int( key_list [2]) # should match ismat
iscoord = int( key_list [3])
ipden = int( key_list [4])
ifgden = int( key_list [5])
ife = int( key_list [6])
ifden = int( key_list [6]) # should match ife

trans = str( sdist_dict [ isdist ]) + " " + \
str( sorient_dict [ isorient ]) + " " + \
str( smat_dict [ ismat ]) + " " + \
str( sden_dict [ isden ]) + " " + \
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str( scoord_dict [ iscoord ]) + " " + \
str( pden_dict [ ipden ]) + " " + \
str( fgden_dict [ ifgden ]) + " " + \
str( fe_dict [ife ]) + " " + \
str( fden_dict [ ifden ])

return trans

def read_tally ( output_filename ):
with open( output_filename ,"r") as f:

while True:
line = f. readline ()
if not line: break
if line.find("cell: total ") != -1:

rr_array = np. array ([])
rr_error_array = np. array ([])
f. readline ()
while True:

line = f. readline ()
if line.find(" total ") != -1:

break
line = line. split ()
rr_array = np. append (rr_array ,float (line [1]))
rr_error_array = np. append ( rr_error_array ,float (line [2]))

return rr_array , rr_error_array

def write_data (filename ,energy ,rr_dict , rr_error_dict , rr_diff_dict , rr_diff_sum_dict ):
length = 20
precision = length - 7

rr_data = energy . reshape (len( energy ) ,1)
rr_error_data = energy . reshape (len( energy ) ,1)
rr_diff_data = energy . reshape (len( energy ) ,1)
rr_diff_sum_data = np. array ([[0.0]])
master_label = "Energy ,". rjust (length -2)
for key in rr_dict .keys ():

master_label += key + ",". rjust ( length +1)
rr_data = np. hstack (( rr_data , rr_dict [key ]. reshape (len( energy ) ,1)))
rr_error_data = np. hstack (( rr_error_data , rr_error_dict [key ]. reshape (len( energy ) ,1)))
rr_diff_data = np. hstack (( rr_diff_data , rr_diff_dict [key ]. reshape (len( energy ) ,1)))
rr_diff_sum_data = np. hstack (( rr_diff_sum_data , rr_diff_sum_dict [key ]. reshape (1 ,1)))

np. savetxt ( filename + "_rr" + ".csv",rr_data , header = master_label , fmt = ’%’ + str( length ) + ’.’ + str( precision ) + ’e’,delimiter =",")
np. savetxt ( filename + " _rr_error " + ".csv",rr_error_data , header = master_label , fmt = ’%’ + str( length ) + ’.’ + str( precision ) + ’e’,delimiter =",")
np. savetxt ( filename + " _rr_diff " + ".csv",rr_diff_data , header = master_label , fmt = ’%’ + str( length ) + ’.’ + str( precision ) + ’e’,delimiter =",")
np. savetxt ( filename + " _rr_diff_sum " + ".csv",rr_diff_sum_data , header = master_label , fmt = ’%’ + str( length ) + ’.’ + str( precision ) + ’e’,delimiter ="

,")

def main ():
energy ,rr_dict , rr_error_dict , rr_diff_dict , rr_diff_sum_dict = \

read_in_data ("01 upright_spatial_setup_FTC -CF -004_"," sample_dir .list"," energy .list")
write_data ("2014 -06 -13 _data_master ",energy ,rr_dict , rr_error_dict , rr_diff_dict , rr_diff_sum_dict )

if __name__ == " __main__ ":
main ()

fig/mcnp/sample post process.py

1.00000E -11
2.00000E -11
3.00000E -11
4.00000E -11
5.00000E -11
6.00000E -11
7.00000E -11
8.00000E -11
9.00000E -11
1.00000E -10
2.00000E -10
3.00000E -10
4.00000E -10
5.00000E -10
6.00000E -10
7.00000E -10
8.00000E -10
9.00000E -10
1.00000E -09
2.00000E -09
3.00000E -09
4.00000E -09
5.00000E -09
6.00000E -09
7.00000E -09
8.00000E -09
9.00000E -09
1.00000E -08
2.00000E -08
3.00000E -08
4.00000E -08
5.00000E -08
6.00000E -08
7.00000E -08
8.00000E -08
9.00000E -08
1.00000E -07
2.00000E -07
3.00000E -07
4.00000E -07
5.00000E -07
6.00000E -07
7.00000E -07
8.00000E -07
9.00000E -07
1.00000E -06
2.00000E -06
3.00000E -06
4.00000E -06
5.00000E -06
6.00000E -06
7.00000E -06
8.00000E -06
9.00000E -06
1.00000E -05
2.00000E -05
3.00000E -05
4.00000E -05
5.00000E -05
6.00000E -05
7.00000E -05
8.00000E -05
9.00000E -05
1.00000E -04
2.00000E -04
3.00000E -04
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4.00000E -04
5.00000E -04
6.00000E -04
7.00000E -04
8.00000E -04
9.00000E -04
1.00000E -03
2.00000E -03
3.00000E -03
4.00000E -03
5.00000E -03
6.00000E -03
7.00000E -03
8.00000E -03
9.00000E -03
1.00000E -02
2.00000E -02
3.00000E -02
4.00000E -02
5.00000E -02
6.00000E -02
7.00000E -02
8.00000E -02
9.00000E -02
1.00000E -01
2.00000E -01
3.00000E -01
4.00000E -01
5.00000E -01
6.00000E -01
7.00000E -01
8.00000E -01
9.00000E -01
1.00000 E+00
2.00000 E+00
3.00000 E+00
4.00000 E+00
5.00000 E+00
6.00000 E+00
7.00000 E+00
8.00000 E+00
9.00000 E+00
1.00000 E+01
1.10000 E+01
1.20000 E+01
1.30000 E+01
1.40000 E+01
1.50000 E+01
1.60000 E+01
1.70000 E+01
1.80000 E+01
1.90000 E+01
2.00000 E+01

fig/mcnp/energy.list

# sdist
-16.1275
# sorient
-90 0
# smat
400
# sden
-8.00
# scoord
-5 0 5
# pden
-0.95 -1.045
# fgden
-0.0020628254 -0.00226910794
# fe
14
# fden
-2.35

fig/mcnp/sample perturbations.list

0 _0_0_2_0_0_0
0 _1_0_0_0_0_0
0 _1_0_1_0_0_0
0 _1_0_2_0_0_0
0 _1_0_2_0_1_0
0 _1_0_2_1_0_0

fig/mcnp/sample dir.list

ORNL He -3 Slab Neutron Detector Template -- Upright
C
C Created by: W. Cyrus Proctor
C Created on Wednesday April 16, 2014 15:18:18
C Modified on June 11, 2014 09:50:14
C
C ------------------------------------------------------------------------------
C Cell Cards -------------------------------------------------------------------
C ------------------------------------------------------------------------------
C ++++++++++++++++++++
C Californium Source +
C ++++++++++++++++++++
1 100 -15.10000 -1 imp:n=1 $ Cf -252 Sphere
2 200 -0.001205 (-8 -3 6 (11 :-7 :8 )1 ):(8 -3 11 ) imp:n=1 $ Capsule Inner Chamber
3 <smat > <sden > -10 -4 5 (3:8: -6) (11: -3:10) ( -8:10:3) imp:n=1 $ Capsule Wall -- with 304L SS density
4 <smat > <sden > -9 -11 7 imp:n=1 $ Capsule Cork -- with 304L SS density
C ++++++++++++++++++
C Aluminium Sheath +
C ++++++++++++++++++
1001 1 -2.698900 +1001 -1002 +1004 -1007 +1008 -1011 imp:n=1 $ Aluminium Sheath Bottom
1002 1 -2.698900 +1002 -1003 +1004 -1005 +1008 -1011 imp:n=1 $ Aluminium Sheath Negative X
1003 1 -2.698900 +1002 -1003 +1006 -1007 +1008 -1011 imp:n=1 $ Aluminium Sheath Positive X
1004 1 -2.698900 +1002 -1003 +1005 -1006 +1008 -1009 imp:n=1 $ Aluminium Sheath Negative Y
1005 1 -2.698900 +1002 -1003 +1005 -1006 +1010 -1011 imp:n=1 $ Aluminium Sheath Positive Y
C ++++++++++++++++
C Cadmium Sheath +
C ++++++++++++++++
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2001 2 -8.650000 +2001 -2002 +2004 -2007 +2008 -2010 imp:n=1 $ Cadmium Sheath Bottom
2002 2 -8.650000 +2002 -2003 +2004 -2005 +2008 -2010 imp:n=1 $ Cadmium Sheath Negative X
2003 2 -8.650000 +2002 -2003 +2006 -2007 +2008 -2010 imp:n=1 $ Cadmium Sheath Positive X
2004 2 -8.650000 +2002 -2003 +2005 -2006 +2009 -2010 imp:n=1 $ Cadmium Sheath Positive Y
C +++++++++++++
C HDPE Sheath +
C +++++++++++++
3001 3 <pden > +3001 -3002 +3003 -3004 +3005 -3006

+3007 +3008 +3009 +3010 +3011 imp:n=1 $ HDPE Sheath
C ++++++++++++++
C He -3 Tube #1 +
C ++++++++++++++
4101 4 <fgden > +4102 -4103 -4107 imp:n=1 $ He -3 Tube #1 He -3 Lower Insensitive Region
4102 4 <fgden > +4103 -4104 -4107 imp:n=1 $ He -3 Tube #1 He -3 Active Region
4103 4 <fgden > +4104 -4105 -4107 imp:n=1 $ He -3 Tube #1 He -3 Upper Insensitive Region
4104 5 -2.698900 (+4101 -4102 -4108):

(+4101 -4105 +4107 -4108):
(+4105 -4106 -4108) imp:n=1 $ He -3 Tube #1 Tube wall

C ++++++++++++++
C He -3 Tube #2 +
C ++++++++++++++
4201 4 <fgden > +4202 -4203 -4207 imp:n=1 $ He -3 Tube #2 He -3 Lower Insensitive Region
4202 4 <fgden > +4203 -4204 -4207 imp:n=1 $ He -3 Tube #2 He -3 Active Region
4203 4 <fgden > +4204 -4205 -4207 imp:n=1 $ He -3 Tube #2 He -3 Upper Insensitive Region
4204 5 -2.698900 (+4201 -4202 -4208):

(+4201 -4205 +4207 -4208):
(+4205 -4206 -4208) imp:n=1 $ He -3 Tube #2 Tube wall

C ++++++++++++++
C He -3 Tube #3 +
C ++++++++++++++
4301 4 <fgden > +4302 -4303 -4307 imp:n=1 $ He -3 Tube #3 He -3 Lower Insensitive Region
4302 4 <fgden > +4303 -4304 -4307 imp:n=1 $ He -3 Tube #3 He -3 Active Region
4303 4 <fgden > +4304 -4305 -4307 imp:n=1 $ He -3 Tube #3 He -3 Upper Insensitive Region
4304 5 -2.698900 (+4301 -4302 -4308):

(+4301 -4305 +4307 -4308):
(+4305 -4306 -4308) imp:n=1 $ He -3 Tube #3 Tube wall

C ++++++++++++++
C He -3 Tube #4 +
C ++++++++++++++
4401 4 <fgden > +4402 -4403 -4407 imp:n=1 $ He -3 Tube #4 He -3 Lower Insensitive Region
4402 4 <fgden > +4403 -4404 -4407 imp:n=1 $ He -3 Tube #4 He -3 Active Region
4403 4 <fgden > +4404 -4405 -4407 imp:n=1 $ He -3 Tube #4 He -3 Upper Insensitive Region
4404 5 -2.698900 (+4401 -4402 -4408):

(+4401 -4405 +4407 -4408):
(+4405 -4406 -4408) imp:n=1 $ He -3 Tube #4 Tube wall

C ++++++++++++++
C He -3 Tube #5 +
C ++++++++++++++
4501 4 <fgden > +4502 -4503 -4507 imp:n=1 $ He -3 Tube #5 He -3 Lower Insensitive Region
4502 4 <fgden > +4503 -4504 -4507 imp:n=1 $ He -3 Tube #5 He -3 Active Region
4503 4 <fgden > +4504 -4505 -4507 imp:n=1 $ He -3 Tube #5 He -3 Upper Insensitive Region
4504 5 -2.698900 (+4501 -4502 -4508):

(+4501 -4505 +4507 -4508):
(+4505 -4506 -4508) imp:n=1 $ He -3 Tube #5 Tube wall

C ++++++++++++++
C Junction Box +
C ++++++++++++++
5001 6 -2.698900 +5001 -5002 +5006 -5011 +5012 -5017

+5018 +5019 +5020 +5021 +5022 imp:n=1 $ Junction Box Bottom
5002 6 -2.698900 (+5002 -5003 +5006 -5011 +5012 -5017)

#(+5002 -5003 +5008 -5009 +5014 -5015) imp:n=1 $ Junction Box Lower Section
5003 6 -2.698900 (+5003 -5004 +5006 -5011 +5012 -5017)

#(+5003 -5004 +5007 -5010 +5013 -5016) imp:n=1 $ Junction Box Upper Section
5004 6 -2.698900 +5004 -5005 +5006 -5011 +5012 -5017 imp:n=1 $ Junction Box Top
C ++++++++++++++
C Inner Cradle +
C ++++++++++++++
6001 7 -2.698900 +6001 -6002 +6009 -6012 -6016 +6017 imp:n=1 $ Inner Cradle Bottom Flap
6002 7 -2.698900 (+6002 -6007 +6009 -6012 -6013 +6017)

#(+6003 -6006 +6010 -6011 -6014 +6017)
#(+6004 -6005 +6011 -6012 -6015 +6017) imp:n=1 $ Inner Cradle

6003 7 -2.698900 +6007 -6008 +6009 -6012 -6016 +6017 imp:n=1 $ Inner Cradle Top Flap
C +++++++++++++++++++
C Inner Cradle HDPE +
C +++++++++++++++++++
7001 8 <pden > +7001 -7006 +7007 -7010 +7011 -7015

#( -7016 +7011 -7012)
#( -7017 +7011 -7012)
#( -7018 +7011 -7012)
#( -7019 +7011 -7012)
#( -7020 +7011 -7012)
#( -7021 +7011 -7012)
#( -7022 +7011 -7012)
#( -7023 +7011 -7012)
#(+7002 -7005 +7008 -7009 +7011 -7014)
#(+7003 -7004 +7009 -7010 +7011 -7013) imp:n=1 $ Inner Cradle HDPE

C ++++++++++++++
C Outer Cradle +
C ++++++++++++++
8001 9 -2.698900 +8001 -8003 +8011 -8016 -8020 +8021 imp:n=1 $ Outer Cradle Bottom Flap
8002 9 -2.698900 (+8003 -8009 +8011 -8016 -8017 +8021)

#(+8004 -8008 +8012 -8015 -8018 +8021)
#(+8006 -8007 +8015 -8016 -8019 +8021) imp:n=1 $ Outer Cradle

8003 9 -2.698900 +8009 -8010 +8011 -8016 -8020 +8021 imp:n=1 $ Outer Cradle Top Flap
8004 9 -2.698900 (+8002 -8004 +8013 -8014 -8021 +8023) :

(+8004 -8005 +8013 -8014 -8022 +8023) imp:n=1 $ Outer Cradle Bottom Lip
C +++++++++++++++++++
C Outer Cradle HDPE +
C +++++++++++++++++++
9001 10 <pden > +9001 -9002 +9003 -9004 -9005 +9006 imp:n=1 $ Outer Cradle HDPE Back
9002 10 <pden > +9101 -9102 +9103 -9104 -9105 +9107

#( -9108 -9106 +9107)
#( -9109 -9106 +9107)
#( -9110 -9106 +9107)
#( -9111 -9106 +9107) imp:n=1 $ Outer Cradle HDPE Top

9003 10 <pden > +9201 -9202 +9203 -9204 -9205 +9207
#( -9208 -9206 +9207)
#( -9209 -9206 +9207)
#( -9210 -9206 +9207)
#( -9211 -9206 +9207) imp:n=1 $ Outer Cradle HDPE Bottom

9004 10 <pden > (+9301 -9304 +9305 -9306 -9307 +9308) :
(+9302 -9303 +9305 -9306 -9308 +9309) imp:n=1 $ Outer Cradle HDPE Left

9005 10 <pden > ((+9401 -9406 +9407 -9408 -9409 +9411) :
(+9402 -9405 +9407 -9408 -9411 +9412) )
#(+9403 -9404 +9407 -9408 -9410 +9412) imp:n=1 $ Outer Cradle HDPE Right

C +++++++++++++++
C Outer Housing +
C +++++++++++++++
10001 11 -2.698900 (+10001 -10012 +10013 -10018 -10020 +10024

#(+10002 -10011 +10014 -10017 -10021 +10023)
#(+10003 -10010 +10015 -10016 -10023 +10024)
#(+10006 -10009 +10016 -10018 -10022 +10024)
#( -10025 -10023 +10024)
#( -10026 -10023 +10024)
#( -10027 -10023 +10024)
#( -10028 -10023 +10024)
#( -10029 -10023 +10024)
#( -10030 -10023 +10024)
#( -10031 -10023 +10024)
#( -10032 -10023 +10024) ):
(+10004 -10005 +10013 -10018 -10019 +10020) :
(+10007 -10008 +10013 -10018 -10019 +10020) imp:n=1 $ Outer Housing

C ++++++++++++
C Hand Truck +
C ++++++++++++
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11001 12 -2.698900 (+11001 -11002 +11006 -11017 +11018 -11024
#( -11026 +11001 -11002)
#( -11027 +11001 -11002)):
(+11002 -11003 +11006 -11017 +11019 -11020):
(+11001 -11005 +11007 -11008 +11022 -11024):
(+11004 -11005 +11007 -11008 +11024 -11025):
(+11001 -11005 +11015 -11016 +11022 -11024):
(+11004 -11005 +11015 -11016 +11024 -11025):
( -11028 +11006 -11017):
(+11001 -11005 +11009 -11010 +11022 -11023):
(+11001 -11005 +11010 -11011 +11021 -11024):
(+11001 -11005 +11012 -11013 +11021 -11024):
(+11001 -11005 +11013 -11014 +11022 -11023) imp:n=1 $ Hand Truck Scoop

11002 12 -2.698900 +11101 -11102 +11103 -11104 imp:n=1 $ Hand Truck Left Wheel
11003 12 -2.698900 +11201 -11202 +11203 -11204 imp:n=1 $ Hand Truck Right Wheel
11004 12 -2.698900 (+11301 -11302 +11303 -11304 +11306 -11309):

(+11301 -11302 +11304 -11305 +11306 -11307):
(+11301 -11302 +11304 -11305 +11308 -11309) imp:n=1 $ Hand Truck Left Vertical Support

11005 12 -2.698900 (+11401 -11402 +11404 -11405 +11406 -11409):
(+11401 -11402 +11403 -11404 +11406 -11407):
(+11401 -11402 +11403 -11404 +11408 -11409) imp:n=1 $ Hand Truck Right Vertical Support

11006 12 -2.698900 (+11501 -11504 +11505 -11506 +11508 -11509):
(+11501 -11502 +11505 -11506 +11507 -11508):
(+11503 -11504 +11505 -11506 +11507 -11508) imp:n=1 $ Hand Truck Lower Horizontal Support

11007 12 -2.698900 (+11601 -11604 +11605 -11606 +11608 -11609):
(+11601 -11602 +11605 -11606 +11607 -11608):
(+11603 -11604 +11605 -11606 +11607 -11608) imp:n=1 $ Hand Truck Middle Horizontal Support

11008 12 -2.698900 (+11701 -11704 +11705 -11706 +11708 -11709):
(+11701 -11702 +11705 -11706 +11707 -11708):
(+11703 -11704 +11705 -11706 +11707 -11708) imp:n=1 $ Hand Truck Upper Horizontal Support

11009 12 -2.698900 (+11801 +11803 -11804 +11805 -11806):
(+11802 +11803 -11804 +11807 -11808) imp:n=1 $ Hand Truck Handle

C +++++++
C Floor +
C +++++++
12001 <fe > <fden > +12001 -12002 +12003 -12004 +12005 -12006 imp:n=1 $ Floor
C +++++++++++++++++++++++
C Detector Bounding Box +
C +++++++++++++++++++++++
13001 13 -0.001205 #1001 #1002 #1003 #1004 #1005

#2001 #2002 #2003 #2004
#3001
#4101 #4102 #4103 #4104
#4201 #4202 #4203 #4204
#4301 #4302 #4303 #4304
#4401 #4402 #4403 #4404
#4501 #4502 #4503 #4504
#5001 #5002 #5003 #5004
#6001 #6002 #6003
#7001
#8001 #8002 #8003 #8004
#9001 #9002 #9003 #9004 #9005
#10001

(+13001 -13002 +13003 -13004 +13005 -13006) imp:n=1 $ Air
C +++++
C Air +
C +++++
25001 13 -0.001205 #1 #2 #3 #4

#11001 #11002 #11003 #11004 #11005 #11006
#11007 #11008 #11009
#12001
#(+13001 -13002 +13003 -13004 +13005 -13006)
-50000 imp:n=1 $ Air

25002 0 +50000 imp:n=0 $ Outside

C
C ------------------------------------------------------------------------------
C Surface Cards ----------------------------------------------------------------
C ------------------------------------------------------------------------------
C
50000 so 500
C ++++++++++++++++++++
C Californium Source +
C ++++++++++++++++++++
1 1 so 1.681774274e -005 $ Source
3 1 cz 0.19558 $ Cylinder -- Capsule Inner Radius
4 1 cz 0.27686 $ Cylinder -- Capsule Outer Radius
5 1 pz -0.8009 $ Capsule Outside Radius Bottom
6 1 pz -0.6104 $ Capsule Inside Radius Bottom
7 1 pz 0.6104 $ Capsule Bottom of Cork
8 1 pz 0.7866 $ Capsule Inside Radius Top
9 1 pz 1.0041 $ Capsule Top of Cork
10 1 pz 1.1803 $ Capsule Outside Radius Top
11 1 kz -1.089220919 0.01085267467 0 $ Cone -- Cork
C ++++++++++++++++++
C Aluminium Sheath +
C ++++++++++++++++++
1001 10 pz 0.000000
1002 10 pz 0.158750
1003 10 pz 60.96000
1004 10 px -15.55750
1005 10 px -15.39875
1006 10 px 15.39875
1007 10 px 15.55750
1008 10 py -4.762500
1009 10 py -4.603750
1010 10 py 4.603750
1011 10 py 4.762500
C ++++++++++++++++
C Cadmium Sheath +
C ++++++++++++++++
2001 20 pz 0.000000
2002 20 pz 0.158750
2003 20 pz 60.80125
2004 20 px -15.39875
2005 20 px -15.24000
2006 20 px 15.24000
2007 20 px 15.39875
2008 20 py -4.603750
2009 20 py 4.445000
2010 20 py 4.603750
C +++++++++++++
C HDPE Sheath +
C +++++++++++++
3001 30 pz 0.0000001 $ Shifted
3002 30 pz 60.642499
3003 30 px -15.239999
3004 30 px 15.239999
3005 30 py -3.8099999
3006 30 py 5.0799999
3007 30 c/z -12.06500 0.000000 1.270000
3008 30 c/z -6.032500 0.000000 1.270000
3009 30 c/z 0.000000 0.000000 1.270000
3010 30 c/z 6.032500 0.000000 1.270000
3011 30 c/z 12.06500 0.000000 1.270000
C ++++++++++++++
C He -3 Tube #1 +
C ++++++++++++++
4101 40 pz 0.000000
4102 40 pz 0.158750
4103 40 pz 3.810000
4104 40 pz 54.61000
4105 40 pz 58.89625
4106 40 pz 59.05500
4107 40 c/z -12.06500 0.000000 1.190625
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4108 40 c/z -12.06500 0.000000 1.27000
C ++++++++++++++
C He -3 Tube #2 +
C ++++++++++++++
4201 40 pz 0.000000
4202 40 pz 0.158750
4203 40 pz 3.810000
4204 40 pz 54.61000
4205 40 pz 58.89625
4206 40 pz 59.05500
4207 40 c/z -6.032500 0.000000 1.190625
4208 40 c/z -6.032500 0.000000 1.27000
C ++++++++++++++
C He -3 Tube #3 +
C ++++++++++++++
4301 40 pz 0.000000
4302 40 pz 0.158750
4303 40 pz 3.810000
4304 40 pz 54.61000
4305 40 pz 58.89625
4306 40 pz 59.05500
4307 40 c/z 0.000000 0.000000 1.190625
4308 40 c/z 0.000000 0.000000 1.27000
C ++++++++++++++
C He -3 Tube #4 +
C ++++++++++++++
4401 40 pz 0.000000
4402 40 pz 0.158750
4403 40 pz 3.810000
4404 40 pz 54.61000
4405 40 pz 58.89625
4406 40 pz 59.05500
4407 40 c/z 6.032500 0.000000 1.190625
4408 40 c/z 6.032500 0.000000 1.27000
C ++++++++++++++
C He -3 Tube #5 +
C ++++++++++++++
4501 40 pz 0.000000
4502 40 pz 0.158750
4503 40 pz 3.810000
4504 40 pz 54.61000
4505 40 pz 58.89625
4506 40 pz 59.05500
4507 40 c/z 12.06500 0.000000 1.190625
4508 40 c/z 12.06500 0.000000 1.27000
C ++++++++++++++
C Junction Box +
C ++++++++++++++
5001 50 pz 0.000000
5002 50 pz 0.812800
5003 50 pz 4.114800
5004 50 pz 9.380220
5005 50 pz 10.16000
5006 50 px -15.55750
5007 50 px -14.77772
5008 50 px -14.19098
5009 50 px 14.19098
5010 50 px 14.77772
5011 50 px 15.55750
5012 50 py -4.127500
5013 50 py -3.347720
5014 50 py -2.760980
5015 50 py 4.030980
5016 50 py 4.617720
5017 50 py 5.397500
5018 50 c/z -12.65000 0.000000 1.27000
5019 50 c/z -6.032500 0.000000 1.27000
5020 50 c/z 0.000000 0.000000 1.27000
5021 50 c/z 6.032500 0.000000 1.27000
5022 50 c/z 12.65000 0.000000 1.27000
C ++++++++++++++
C Inner Cradle +
C ++++++++++++++
6001 60 pz 0.000000
6002 60 pz 5.080000
6003 60 pz 5.397500
6004 60 pz 66.67500
6005 60 pz 74.61250
6006 60 pz 76.83500
6007 60 pz 77.15250
6008 60 pz 82.23250
6009 60 px -15.95438
6010 60 px -15.63688
6011 60 px 15.63688
6012 60 px 15.95438
6013 60 py 0.000000
6014 60 py -0.317500
6015 60 py -2.540000
6016 60 py -8.572500
6017 60 py -8.890000
C +++++++++++++++++++
C Inner Cradle HDPE +
C +++++++++++++++++++
7001 70 pz 0.000000
7002 70 pz 5.080000
7003 70 pz 67.94500
7004 70 pz 76.20000
7005 70 pz 77.47000
7006 70 pz 82.55000
7007 70 px -21.27250
7008 70 px -16.19250
7009 70 px 16.19250
7010 70 px 21.27250
7011 70 py 0.000000
7012 70 py 6.985000
7013 70 py 7.937500
7014 70 py 9.525000
7015 70 py 14.60500
7016 70 c/y -13.33500 2.540000 0.952500
7017 70 c/y -3.175000 2.540000 0.952500
7018 70 c/y 3.175000 2.540000 0.952500
7019 70 c/y 13.33500 2.540000 0.952500
7020 70 c/y -13.33500 80.01000 0.952500
7021 70 c/y -3.175000 80.01000 0.952500
7022 70 c/y 3.175000 80.01000 0.952500
7023 70 c/y 13.33500 80.01000 0.952500
C ++++++++++++++
C Outer Cradle +
C ++++++++++++++
8001 80 pz 0.000000
8002 80 pz 5.080000
8003 80 pz 5.397500
8004 80 pz 5.715000
8005 80 pz 9.207500
8006 80 pz 73.97750
8007 80 pz 82.55000
8008 80 pz 89.53500
8009 80 pz 89.85250
8010 80 pz 95.25000
8011 80 px -21.59000
8012 80 px -21.27250
8013 80 px -6.350000
8014 80 px 6.350000
8015 80 px 21.27250
8016 80 px 21.59000
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8017 80 py 0.000000
8018 80 py -0.317500
8019 80 py -6.350000
8020 80 py -14.28750
8021 80 py -14.60500
8022 80 py -15.24000
8023 80 py -15.55750
C +++++++++++++++++++
C Outer Cradle HDPE +
C +++++++++++++++++++
C Back Piece
9001 90 pz 0.000000
9002 90 pz 84.45500
9003 90 px -21.59000
9004 90 px 21.59000
9005 90 py 0.000000
9006 90 py -5.080000
C Top Piece
9101 90 pz 84.45500
9102 90 pz 89.53500
9103 90 px -21.59000
9104 90 px 21.59000
9105 90 py 0.000000
9106 90 py -13.33500
9107 90 py -19.68500
9108 90 c/y -19.20875 87.63000 1.031875
9109 90 c/y -9.207500 87.63000 1.031875
9110 90 c/y 9.207500 87.63000 1.031875
9111 90 c/y 19.20875 87.63000 1.031875
C Bottom Piece
9201 90 pz -5.080000
9202 90 pz 0.000000
9203 90 px -21.59000
9204 90 px 21.59000
9205 90 py 0.000000
9206 90 py -13.33500
9207 90 py -19.68500
9208 90 c/y -19.20875 -3.175000 1.031875
9209 90 c/y -9.207500 -3.175000 1.031875
9210 90 c/y 9.207500 -3.175000 1.031875
9211 90 c/y 19.20875 -3.175000 1.031875
C Left Piece
9301 90 pz -5.080000
9302 90 pz 0.000000
9303 90 pz 84.45500
9304 90 pz 89.53500
9305 90 px -26.67000
9306 90 px -21.59000
9307 90 py 0.000000
9308 90 py -19.36750
9309 90 py -19.68500
C Right Piece
9401 90 pz -5.080000
9402 90 pz 0.000000
9403 90 pz 68.89750
9404 90 pz 77.15250
9405 90 pz 84.45500
9406 90 pz 89.53500
9407 90 px 21.59000
9408 90 px 26.67000
9409 90 py 0.000000
9410 90 py -11.43000
9411 90 py -19.36750
9412 90 py -19.68500
C +++++++++++++++
C Outer Housing +
C +++++++++++++++
10001 100 pz 0.000000
10002 100 pz 0.317500
10003 100 pz 5.397500
10004 100 pz 16.19250
10005 100 pz 20.00250
10006 100 pz 73.34250
10007 100 pz 75.24750
10008 100 pz 79.05750
10009 100 pz 82.23250
10010 100 pz 89.85250
10011 100 pz 94.93250
10012 100 pz 95.25000
10013 100 px -27.38438
10014 100 px -27.06688
10015 100 px -21.98688
10016 100 px 21.98688
10017 100 px 27.06688
10018 100 px 27.38438
10019 100 py 1.270000
10020 100 py 0.000000
10021 100 py -0.317500
10022 100 py -12.06500
10023 100 py -20.32000
10024 100 py -20.63750
10025 100 c/y -19.12938 2.670100 0.952500
10026 100 c/y -8.969380 2.670100 0.952500
10027 100 c/y 8.969380 2.670100 0.952500
10028 100 c/y 19.12938 2.670100 0.952500
10029 100 c/y -19.12938 92.57990 0.952500
10030 100 c/y -8.969380 92.57990 0.952500
10031 100 c/y 8.969380 92.57990 0.952500
10032 100 c/y 19.12938 92.57990 0.952500
C ++++++++++++
C Hand Truck +
C ++++++++++++
C Scoop
11001 110 pz 0.000000
11002 110 pz 0.635000
11003 110 pz 1.270000
11004 110 pz 8.255000
11005 110 pz 13.33500
11006 110 px -22.86000
11007 110 px -16.19250
11008 110 px -15.24000
11009 110 px -14.76375
11010 110 px -12.70000
11011 110 px -11.43000
11012 110 px 11.43000
11013 110 px 12.70000
11014 110 px 14.76375
11015 110 px 15.24000
11016 110 px 16.19250
11017 110 px 22.86000
11018 110 py 0.000000
11019 110 py 6.553320
11020 110 py 7.188320
11021 110 py 19.68500
11022 110 py 20.02121
11023 110 py 22.87871
11024 110 py 23.49500
11025 110 py 36.19500
11026 110 c/z -11.43000 12.53300 6.350000
11027 110 c/z 11.43000 12.53300 6.350000
11028 110 c/x 31.43250 10.79500 0.635000
C Left Wheel
11101 110 c/x 31.43250 10.79500 0.635000
11102 110 c/x 31.43250 10.79500 10.16000
11103 110 px -21.00000
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11104 110 px -16.55500
C Right Wheel
11201 110 c/x 31.43250 10.79500 0.635000
11202 110 c/x 31.43250 10.79500 10.16000
11203 110 px 16.55500
11204 110 px 21.00000
C Left Vertical Support
11301 110 pz 0.635000
11302 110 pz 99.12350
11303 110 px -15.24000
11304 110 px -14.76375
11305 110 px -12.70000
11306 110 py 19.54496
11307 110 py 20.02121
11308 110 py 22.87871
11309 110 py 23.35496
C Right Vertical Support
11401 110 pz 0.635000
11402 110 pz 99.12350
11403 110 px 12.70000
11404 110 px 14.76375
11405 110 px 15.24000
11406 110 py 19.54496
11407 110 py 20.02121
11408 110 py 22.87871
11409 110 py 23.35496
C Lower Horizontal Support
11501 110 pz 36.67125
11502 110 pz 37.14750
11503 110 pz 39.05250
11504 110 pz 39.52875
11505 110 px -14.76375
11506 110 px 14.76375
11507 110 py 20.02121
11508 110 py 22.40246
11509 110 py 22.87871
C Middle Horizontal Support
11601 110 pz 64.61125
11602 110 pz 65.08750
11603 110 pz 66.99250
11604 110 pz 67.46875
11605 110 px -14.76375
11606 110 px 14.76375
11607 110 py 20.02121
11608 110 py 22.40246
11609 110 py 22.87871
C Upper Horizontal Support
11701 110 pz 92.55125
11702 110 pz 93.02745
11703 110 pz 94.93250
11704 110 pz 95.40875
11705 110 px -14.76375
11706 110 px 14.76375
11707 110 py 20.02121
11708 110 py 22.40246
11709 110 py 22.87871
C Handle
11801 110 pz 95.40875
11802 110 pz 99.12350
11803 110 py 20.02121
11804 110 py 23.49500
11805 110 c/y 0.000000 95.40875 11.19120
11806 110 c/y 0.000000 95.40875 11.66880
11807 110 c/y 0.000000 99.12350 12.70000
11808 110 c/y 0.000000 99.12350 15.24000
C +++++++
C Floor +
C +++++++
12001 120 pz 0.000000
12002 120 pz 20.32000
12003 120 px -150.00000
12004 120 px 150.00000
12005 120 py -150.00000
12006 120 py 150.00000
C +++++++++++++++++++++++
C Detector Bounding Box +
C +++++++++++++++++++++++
13001 130 pz -0.0000001 $ Shifted Bounding Box 1e -7 outwards to be unique surfaces for tallys
13002 130 pz 95.250001
13003 130 px -27.384381
13004 130 px 27.384381
13005 130 py -0.0000001
13006 130 py 23.812501

C CCCCCCCCCCCCCCCCC
C Transformations C
C CCCCCCCCCCCCCCCCC
# tr1
<sxdist >
<sydist >
<szdist >
<sorient >
tr10 0.0 0.63500 -0.476250
tr20 0.0 0.63500 -0.317500
tr30 0.0 0.00000 -0.158750
tr40 0.0 0.00000 1.428750
tr50 0.0 0.00000 60.48375
tr60 0.0 5.71500 -5.873750
tr70 0.0 -2.85750 -5.873750
tr80 0.0 12.0650 -11.58875
tr90 0.0 17.7800 -6.191250
tr100 0.0 18.4150 -11.58875
tr110 0.0 0.140042 -12.858751
tr120 0.0 0.00000 -33.178751
tr130 0.0 -4.12750 -11.58875
C CCCCCCCCCCCCCCCC
C Material Input C
C CCCCCCCCCCCCCCCC
m1 13027 1.0 $ Aluminium Sheath
m2 48000 1.0 $ Cadmium Sheath
m3 1001 0.666662

6000 0.333338
mt3 poly .60t $ HDPE Sheath
m4 1001 -0.008125016100

2003 -0.243122473900
6000 -0.024204598210

18000 -0.724547911700 $ He -3 4 atm with P -10 quench 1 atm
m5 13027 1.0 $ He -3 Aluminum Tube
m6 13027 1.0 $ Junction Box Aluminum
m7 13027 1.0 $ Inner Cradle Aluminum
m8 1001 0.666662

6000 0.333338
mt8 poly .60t $ Inner Cradle HDPE
m9 13027 1.0 $ Outer Cradle Aluminum
m10 1001 0.666662

6000 0.333338
mt10 poly .60t $ Outer Cradle HDPE
m11 13027 1.0 $ Outer Housing Aluminum
m12 13027 1.0 $ Hand Truck Aluminum
m13 6000 -0.000124

7014 -0.755268
8016 -0.231781

18000 -0.012827 $ Air (Dry , Near Sea Level )
m14 1001 -0.008485

6000 -0.050064
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8016 -0.473483
12000 -0.024183
13027 -0.036063
14000 -0.1451
16000 -0.00297
19000 -0.001697
20000 -0.246924
26000 -0.011031 $ Ordinary Concrete NBS 03

m100 98252 1.0 $ Californium -252
m200 6000 -0.000124 $ Air (Dry , Near Sea Level ) -- from PNNL

7014 -0.755268
8016 -0.231781

18000 -0.012827
m400 6000 -0.0003 $SS -304 ,SS -304L (with ENDF -VI) -- from Vised

14028 -0.004594
14029 -0.000241
14030 -0.000165
15031 -0.000225
16032 -0.000142
16033 -1e -006
16034 -7e -006
24050 -0.00793
24052 -0.159031
24053 -0.018378
24054 -0.004661
25055 -0.01
26054 -0.039996
26056 -0.644764
26057 -0.015026
26058 -0.002039
28058 -0.06234
28060 -0.024654
28061 -0.001085
28062 -0.003504
28064 -0.000917

m500 8016 -0.001197 $Zircaloy -2
24000 -0.000997
26000 -0.000997
28000 -0.000499
40000 -0.982348
50000 -0.013962

C CCCCCCCCCCCCCCCCCCC
C Source Definition C
C CCCCCCCCCCCCCCCCCCC
sdef pos=<sxdist > <sydist > <szdist > SUR =0 ERG=D1 CEL =1 RAD=D2
SP1 -3 1.18 1.03419 $ Watt Fission Spectrum with Coeffs a & b for Cf -252 ( MCNP6 )
SI2 0 1.681774274e -005 $ Sampling Radius from R1 to R2
SP2 -21 2 $ Power law p(x) = xˆA <-- Specify A
# E0

1.00E -11
2.00E -11
3.00E -11
4.00E -11
5.00E -11
6.00E -11
7.00E -11
8.00E -11
9.00E -11
1.00E -10
2.00E -10
3.00E -10
4.00E -10
5.00E -10
6.00E -10
7.00E -10
8.00E -10
9.00E -10
1.00E -09
2.00E -09
3.00E -09
4.00E -09
5.00E -09
6.00E -09
7.00E -09
8.00E -09
9.00E -09
1.00E -08
2.00E -08
3.00E -08
4.00E -08
5.00E -08
6.00E -08
7.00E -08
8.00E -08
9.00E -08
1.00E -07
2.00E -07
3.00E -07
4.00E -07
5.00E -07
6.00E -07
7.00E -07
8.00E -07
9.00E -07
1.00E -06
2.00E -06
3.00E -06
4.00E -06
5.00E -06
6.00E -06
7.00E -06
8.00E -06
9.00E -06
1.00E -05
2.00E -05
3.00E -05
4.00E -05
5.00E -05
6.00E -05
7.00E -05
8.00E -05
9.00E -05
1.00E -04
2.00E -04
3.00E -04
4.00E -04
5.00E -04
6.00E -04
7.00E -04
8.00E -04
9.00E -04
1.00E -03
2.00E -03
3.00E -03
4.00E -03
5.00E -03
6.00E -03
7.00E -03
8.00E -03
9.00E -03
1.00E -02
2.00E -02
3.00E -02
4.00E -02
5.00E -02
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6.00E -02
7.00E -02
8.00E -02
9.00E -02
1.00E -01
2.00E -01
3.00E -01
4.00E -01
5.00E -01
6.00E -01
7.00E -01
8.00E -01
9.00E -01
1.00E+00
2.00E+00
3.00E+00
4.00E+00
5.00E+00
6.00E+00
7.00E+00
8.00E+00
9.00E+00
1.00E+01
1.10E+01
1.20E+01
1.30E+01
1.40E+01
1.50E+01
1.60E+01
1.70E+01
1.80E+01
1.90E+01
2.00E+01

C CCCCCCCCC
C Tallies C
C CCCCCCCCC
C Detector Front Surface
f11:n 13005
fc11 front
C ft11 scx 1
c11 0 1
fq11 e c
C Detector Back Surface
f21:n 13006
fc21 back
C ft21 scx 1
c21 0 1
fq21 e c
C Detector Left Surface
f31:n 13003
fc31 left
C ft31 scx 1
c31 0 1
fq31 e c
C Detector Right Surface
f41:n 13004
fc41 right
C ft41 scx 1
c41 0 1
fq41 e c
C Detector Bottom Surface
f51:n 13001
fc51 bottom
C ft51 scx 1
c51 0 1
fq51 e c
C Detector Top Surface
f61:n 13002
fc61 top
C ft61 scx 1
c61 0 1
fq61 e c
C Inner Detector Front Surface
f71:n 3005
fc71 front
C ft71 scx 1
c71 0 1
fq71 e c
C Inner Detector Back Surface
f81:n 3006
fc81 back
C ft81 scx 1
c81 0 1
fq81 e c
C Inner Detector Left Surface
f91:n 3003
fc91 left
C ft91 scx 1
c91 0 1
fq91 e c
C Inner Detector Right Surface
f101:n 3004
fc101 right
C ft101 scx 1
c101 0 1
fq101 e c
C Inner Detector Bottom Surface
f111:n 3001
fc111 bottom
C ft111 scx 1
c111 0 1
fq111 e c
C Inner Detector Top Surface
f121:n 3002
fc121 top
C ft121 scx 1
c121 0 1
fq121 e c
C He -3 Tubes ( Active Regions ) Reaction Rates
f4:n 4102 4202 4302 4402 4502 t
fc4 (n,p) Reaction Rate
fm4 -1 4 (103)
C ft4 scx 1
fq4 e f
C CCCCCCCCCCCC
C Data Cards C
C CCCCCCCCCCCC
mode n
nps 1e2
C nps 1e9
rand gen =2
C print

fig/mcnp/upright spatial setup FTC–CF–004.mcnp.inp.template

> # W. Cyrus Proctor
> # 01/15/2014
> # Updated 06/13/2014
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> # Updated 11/30/2014

> # Generates the fission spectrum in SCALE 200 - Group format for Denovo . Using
> Mannhart fit.

> # Now includes a fit from modified Maxwellian from Mannhart ’s experiments
> # Nucl. Sci. Eng., 91, 114 (1985) as well as a comparison from MCNP6 and 5.

> # Calculates area under watt spectrum of Cf -252. Bins are used in
> # MCNP simulations as well as the a and b parameters . With no alteration
> # ( point source in vacuum ) a source distribution should match this one.

restart
with( plots )
Digits := 30
> # MCNP 5 Cf -252 Spontaneous Fission Watt Spectrum Parameters
a := 1.025
b := 2.926
> # MCNP 6 Cf -252 Spontaneous Fission Watt Spectrum Parameters
a6 := 1.18
b6 := 1.03419
> # Mannhart Experimental
> # Nuclear Temperate for Cf -252 (MeV)
T := 1.42
> # Mannhart Maxwellian correction factor for Cf -252
R := proc (E) options operator , arrow ; piecewise (E <= 5,
.955+0.707e -1*E+( -1) *0.444e -1*E ˆ2+0.1998e -1*Eˆ3+( -1) *0.457e -2*E ˆ4+0.368e -3*Eˆ5,
5 < E, 1.16+( -1) *0.432e -1*E +0.185e -2*Eˆ2+( -1) *0.316e -4*Eˆ3) end proc

> # MCNP 5 PDF
f := proc (E) options operator , arrow ; exp(-E/a)*sinh(sqrt(b*E)) end proc
> # MCNP 6 PDF
f6 := proc (E) options operator , arrow ; exp(-E/a6)*sinh(sqrt(b6*E)) end proc
> # Prompt neutron energy spectrum with Mannhart correction for Cf -252
N := proc (E) options operator , arrow ;
2*R(E)*sqrt(E)*exp(-E/T)/( sqrt(Pi)*T ˆ(3/2) ) end proc

> # MCNP 5 Normalization Constant
C := evalf (1/( int(f(E), E = 0 .. 20)))
> # MCNP 6 Normalization Constant
C6 := evalf (1/( int(f6(E), E = 0 .. 20)))
> # Mannhart Normalization Constant
Cm := evalf (1/( int(N(E), E = 0 .. 20)))

> # Expected Values
> # MCNP 5
EC := evalf (( int(E*f(E), E = 0 .. 20))/( int(f(E), E = 0 .. 20)))
> # MCNP 6
EC6 := evalf (( int(E*f6(E), E = 0 .. 20))/( int(f6(E), E = 0 .. 20)))
> # Mannhart
ECm := evalf (( int(E*N(E), E = 0 .. 20))/( int(N(E), E = 0 .. 20)))

> # Variance
> # MCNP 5
VC := evalf (( int ((E-EC)ˆ2*f(E), E = 0 .. 20))/( int(f(E), E = 0 .. 20)))
> # MCNP 6
VC6 := evalf (( int ((E-EC6)ˆ2* f6(E), E = 0 .. 20))/( int(f6(E), E = 0 .. 20)))
> # Mannhart
VCm := evalf (( int ((E-ECm)ˆ2*N(E), E = 0 .. 20))/( int(N(E), E = 0 .. 20)))
> # Energy Grid [1E -5 ,20 MeV] Copied from Excel with 200 bins
EE := Vector (201 , {(1) = 0.10000e -10 , (2) = 0.50000e-9, (3) = 0.20000e-8, (4) =
0.50000e-8, (5) = 0.10000e-7, (6) = 0.14500e-7, (7) = 0.21000e-7, (8) =
0.30000e-7, (9) = 0.40000e-7, (10) = 0.50000e-7, (11) = 0.70000e-7, (12) =
0.10000e-6, (13) = 0.12500e-6, (14) = 0.15000e-6, (15) = 0.18400e-6, (16) =
0.22500e-6, (17) = 0.27500e-6, (18) = 0.32500e-6, (19) = 0.36680e-6, (20) =
0.41399e-6, (21) = 0.50000e-6, (22) = 0.53158e-6, (23) = 0.62506e-6, (24) =
0.68256e-6, (25) = 0.80000e-6, (26) = 0.87643e-6, (27) = 0.10000e-5, (28) =
0.10400e-5, (29) = 0.10800e-5, (30) = 0.11253e-5, (31) = 0.13000e-5, (32) =
0.14450e-5, (33) = 0.18554e-5, (34) = 0.23824e-5, (35) = 0.30590e-5, (36) =
0.39279e-5, (37) = 0.50435e-5, (38) = 0.64760e-5, (39) = 0.83153e-5, (40) =
0.10677e-4, (41) = 0.13710e-4, (42) = 0.17604e-4, (43) = 0.22603e-4, (44) =
0.29023e-4, (45) = 0.37266e-4, (46) = 0.47851e-4, (47) = 0.61442e-4, (48) =
0.78893e-4, (49) = 0.10130e-3, (50) = 0.13007e-3, (51) = 0.16702e-3, (52) =
0.21445e-3, (53) = 0.27536e-3, (54) = 0.35357e-3, (55) = 0.45400e-3, (56) =
0.58295e-3, (57) = 0.74852e-3, (58) = 0.96112e-3, (59) = 0.12341e-2, (60) =
0.15846e-2, (61) = 0.20347e-2, (62) = 0.22487e-2, (63) = 0.24852e-2, (64) =
0.26126e-2, (65) = 0.27465e-2, (66) = 0.30354e-2, (67) = 0.33546e-2, (68) =
0.37074e-2, (69) = 0.43074e-2, (70) = 0.55308e-2, (71) = 0.71017e-2, (72) =
0.91188e-2, (73) = 0.10595e-1, (74) = 0.11709e-1, (75) = 0.15034e-1, (76) =
0.19305e-1, (77) = 0.21875e-1, (78) = 0.23579e-1, (79) = 0.24176e-1, (80) =
0.24788e-1, (81) = 0.26058e-1, (82) = 0.27000e-1, (83) = 0.28501e-1, (84) =
0.31828e-1, (85) = 0.34307e-1, (86) = 0.40868e-1, (87) = 0.46309e-1, (88) =
0.52475e-1, (89) = 0.56562e-1, (90) = 0.67379e-1, (91) = 0.71998e-1, (92) =
0.79499e-1, (93) = 0.82503e-1, (94) = 0.86517e-1, (95) = 0.98037e-1, (96) =
.11109 , (97) = .11679 , (98) = .12277 , (99) = .12907 , (100) = .13569 , (101) =
.14264 , (102) = .14996 , (103) = .15764 , (104) = .16573 , (105) = .17422 , (106) =
.18316 , (107) = .19255 , (108) = .20242 , (109) = .21280 , (110) = .22371 , (111) =
.23518 , (112) = .24724 , (113) = .27324 , (114) = .28725 , (115) = .29452 , (116) =
.29721 , (117) = .29849 , (118) = .30197 , (119) = .33373 , (120) = .36883 , (121) =
.38774 , (122) = .40762 , (123) = .45049 , (124) = .49787 , (125) = .52340 , (126) =
.55023 , (127) = .57844 , (128) = .60810 , (129) = .63928 , (130) = .67206 , (131) =
.70651 , (132) = .74274 , (133) = .78082 , (134) = .82085 , (135) = .86294 , (136) =
.90718 , (137) = .96164 , (138) = 1.0026 , (139) = 1.1080 , (140) = 1.1648 , (141) =
1.2246 , (142) = 1.2874 , (143) = 1.3534 , (144) = 1.4227 , (145) = 1.4957 , (146) =
1.5724 , (147) = 1.6530 , (148) = 1.7377 , (149) = 1.8268 , (150) = 1.9205 , (151) =
2.0190 , (152) = 2.1225 , (153) = 2.2313 , (154) = 2.3069 , (155) = 2.3457 , (156) =
2.3653 , (157) = 2.3852 , (158) = 2.4660 , (159) = 2.5924 , (160) = 2.7253 , (161) =
2.8651 , (162) = 3.0119 , (163) = 3.1664 , (164) = 3.3287 , (165) = 3.6788 , (166) =
4.0657 , (167) = 4.4933 , (168) = 4.7237 , (169) = 4.9659 , (170) = 5.2205 , (171) =
5.4881 , (172) = 5.7695 , (173) = 6.0653 , (174) = 6.3763 , (175) = 6.5924 , (176) =
6.7032 , (177) = 7.0469 , (178) = 7.4082 , (179) = 7.7880 , (180) = 8.1873 , (181) =
8.6071 , (182) = 9.0484 , (183) = 9.5123 , (184) = 10.000 , (185) = 10.513 , (186) =
11.052 , (187) = 11.618 , (188) = 12.214 , (189) = 12.523 , (190) = 12.840 , (191) =
13.499 , (192) = 13.840 , (193) = 14.191 , (194) = 14.550 , (195) = 14.918 , (196) =
15.683 , (197) = 16.487 , (198) = 16.905 , (199) = 17.332 , (200) = 19.640 , (201) =
20.000})
interface ( displayprecision = 30)
> # Uncomment to produce Integrals of PDFs
> # MCNP 5 Integral of PDF
for i to 200 do printf ("%40.30 f ", evalf (int(C*f(E), E = EE[i] .. EE[i+1]))) end
do
> # MCNP 6 Integral of PDF
for i to 200 do printf ("%40.30 f ", evalf (int(C6*f6(E), E = EE[i] .. EE[i+1])))
end do
> # Mannhart Integral of PDF
for i to 200 do printf ("%40.30 f ", evalf (int(Cm*N(E), E = EE[i] .. EE[i+1])))
end do

fig/mcnp/fission spectrum.txt
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C SCALE and Denovo Inputs

Denovo runs were started firstly by creating a SCALE input for MAVRIC.

Materials were input using information from Table 6 and Table 7. Each de-

tector component was given a unique material number, even if the actual

material was the same composition as material in other components. By

having unique material numbers for each component, this allows Denovo to

track separate sensitivities that are not only a function of composition but

also position and/or geometry within the problem. KENO VI geometry spec-

ifications were used when manually converting the MCNP input to SCALE.

Mesh generation occured within the SCALE input deck.

MAVRIC was run in input mode to generate a shielded ampx cross section

library for use in Denovo. The input was run twice with two separate versions

of SCALE. Once, with SCALE6.1, to generate the ampx file and ice file.

Agian, with a snapshot of a development version of SCALE dated 2012-05-22.

This version contains a set of material mixer routines for volume averaging

that tends to work well for Denovo and is preferred over the SCALE6.1

version. The development version would generate the matertial mixing file

and binary xkba input file read in by Denovo. A covariance library for

cross section uncertainty information was also obtained from the SCALE6.1

version.

With the necessary SCALE files generated, pykba input decks were set

up to complete the forward, adjoint and sensitivity computations. Cross
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sections and mesh information were read in from the SCALE files while run

specific information, boundary conditions, Pn order, quadrature, tolerance,

etc., were input in the pykba input files. Each file was then run in sequence

to generate the corresponding sensitivities.

= mavric parm =( nodose , forinput )
Upright w/ FTC -CF -004
V7 -200 N47G
read comp
Al 1 6.023709E -02 END
Cd 2 4.633948E -02 END
C 3 4.078643E -02 END
H 3 8.157286E -02 END
He -3 4 1.001373E -04 END
C 4 2.503433E -06 END
H 4 1.001373E -05 END
Ar 4 2.253089E -05 END
He -3 5 1.001373E -04 END
C 5 2.503433E -06 END
H 5 1.001373E -05 END
Ar 5 2.253089E -05 END
Al 6 6.023709E -02 END
Al 7 6.023709E -02 END
Al 8 6.023709E -02 END
C 9 4.078643E -02 END
H 9 8.157286E -02 END
Al 10 6.023709E -02 END
C 11 4.078643E -02 END
H 11 8.157286E -02 END
Al 12 6.023709E -02 END
C 13 7.491768E -09 END
N 13 3.912866E -05 END
O 13 1.051248E -05 END
Ar 13 2.330027E -07 END
H -1 14 1.191457E -02 END
C 14 5.898872E -03 END
O -16 14 4.189230E -02 END
Mg 14 1.408077E -03 END
Al -27 14 1.891502E -03 END
Si 14 7.311340E -03 END
S 14 1.310802E -04 END
K 14 6.142366E -05 END
Ca 14 8.719047E -03 END
Fe 14 2.795390E -04 END
C 15 1.203336E -04 END
Si -28 15 7.910881E -04 END
Si -29 15 4.006868E -05 END
Si -30 15 2.652018E -05 END
P -31 15 3.499632E -05 END
S -32 15 2.139693E -05 END
S -33 15 1.461153E -07 END
S -34 15 9.928043E -07 END
Cr -50 15 7.649022E -04 END
Cr -52 15 1.475059E -02 END
Cr -53 15 1.672410E -03 END
Cr -54 15 4.163044E -04 END
Mn -55 15 8.769213E -04 END
Fe -54 15 3.572256E -03 END
Fe -56 15 5.553304E -02 END
Fe -57 15 1.271437E -03 END
Fe -58 15 1.695598E -04 END
Ni -58 15 5.183905E -03 END
Ni -60 15 1.981852E -03 END
Ni -61 15 8.578767E -05 END
Ni -62 15 2.725891E -04 END
Ni -64 15 6.910545E -05 END
Cf -252 16 3.607278E -02 END
end comp
read geometry
’unit 1
’com ="He -3 Tube"
’cylinder 10 1.190625 58.89625 54.61000
’cylinder 20 1.190625 54.61000 3.810000
’cylinder 30 1.190625 3.810000 0.158750
’cylinder 40 1.270000 59.05500 0.000000
’cylinder 70 1.270000 60.64250 0.000000
’cylinder 70 1.270000 59.05500 0.000000
’media 5 1 10
’media 4 1 20
’media 5 1 30
’media 6 1 40 -10 -20 -30
’media 0 1 70 -40
’boundary 70
unit 1
com ="He -3 Tube"
cylinder 10 1.270000 60.64250 0.000000
cylinder 20 1.190625 60.48375 56.19750
cylinder 30 1.190625 56.19750 5.397500
cylinder 40 1.190625 5.397500 1.746250
cylinder 50 1.270000 1.587500 0.000000
media 6 1 10 -20 -30 -40 -50
media 5 1 20
media 4 1 30
media 5 1 40
media 13 1 50
boundary 10
unit 2
com =" HDPE Sheath "
cuboid 10 15.24000 -15.24000 5.080000 -3.810000 60.64250 0.000000
cylinder 20 1.270000 60.64250 0.000000 origin x = -12.06500 y=0.0 z=0.0
cylinder 30 1.270000 60.64250 0.000000 origin x = -6.032500 y=0.0 z=0.0
cylinder 40 1.270000 60.64250 0.000000 origin x=0.0 y=0.0 z=0.0
cylinder 50 1.270000 60.64250 0.000000 origin x =6.032500 y=0.0 z=0.0
cylinder 60 1.270000 60.64250 0.000000 origin x =12.06500 y=0.0 z=0.0
hole 1 origin x = -12.06500 y=0.0 z=0
hole 1 origin x = -6.032500 y=0.0 z=0
hole 1 origin x=0.0 y=0.0 z=0
hole 1 origin x =6.032500 y=0.0 z=0
hole 1 origin x =12.06500 y=0.0 z=0
media 3 1 10 -20 -30 -40 -50 -60
media 0 1 20 30 40 50 60
boundary 10
unit 3
com =" Cadmium Sheath "
cuboid 10 15.39875 -15.39875 4.603750 -4.603750 60.80125 0.000000 origin x=0.0 y =0.63500 z = -0.317500
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cuboid 20 15.24000 -15.24000 -4.445000 -4.603750 60.80125 0.158750 origin x=0.0 y =0.63500 z = -0.317500
hole 2 origin x=0.0 y=0.0 z=0.0
’media 2 1 10
media 2 1 10 -20
media 13 1 20
boundary 10
unit 4
com =" Aluminum Sheath "
cuboid 10 15.55750 -15.55750 4.762500 -4.762500 60.96000 0.000000 origin x=0.0 y =0.63500 z = -0.476250
hole 3 origin x=0.0 y=0.0 z=0.0
media 1 1 10
boundary 10
unit 5
com =" Junction Box"
cuboid 10 15.55750 -15.55750 5.397500 -4.127500 10.16000 0.000000 origin x=0.0 y=0.0 z =60.48375
cuboid 20 14.19098 -14.19098 4.030980 -2.760980 4.114800 0.812800 origin x=0.0 y=0.0 z =60.48375
cuboid 30 14.77772 -14.77772 4.617720 -3.347720 9.380220 4.114800 origin x=0.0 y=0.0 z =60.48375
cylinder 40 1.27000 0.812800 0.000000 origin x = -12.06500 y=0.0 z =60.48375
cylinder 50 1.27000 0.812800 0.000000 origin x = -6.032500 y=0.0 z =60.48375
cylinder 60 1.27000 0.812800 0.000000 origin x=0.0 y=0.0 z =60.48375
cylinder 70 1.27000 0.812800 0.000000 origin x =6.032500 y=0.0 z =60.48375
cylinder 80 1.27000 0.812800 0.000000 origin x =12.06500 y=0.0 z =60.48375
media 7 1 10 -20 -30 -40 -50 -60 -70 -80
media 13 1 20
media 13 1 30
media 13 1 40
media 13 1 50
media 13 1 60
media 13 1 70
media 13 1 80
boundary 10
’unit 6
’com =" Inner Cradle "
’cuboid 10 15.95438 -15.95438 0.000000 -10.89000 82.23250 0.000000 origin x=0.0 y =5.71500 z = -5.873750
’cuboid 20 15.95438 -15.95438 0.000000 -8.890000 77.15250 5.080000 origin x=0.0 y =5.71500 z = -5.873750
’cuboid 30 15.63688 -15.63688 -0.317500 -8.890000 76.83500 5.397500 origin x=0.0 y =5.71500 z = -5.873750
’cuboid 40 15.95438 -15.95438 -8.572500 -8.890000 82.23250 77.15250 origin x=0.0 y =5.71500 z = -5.873750
’cuboid 50 15.95438 -15.95438 -8.572500 -8.890000 5.080000 0.000000 origin x=0.0 y =5.71500 z = -5.873750
’cuboid 60 15.95438 15.63688 -2.540000 -8.890000 74.61250 66.67500 origin x=0.0 y =5.71500 z = -5.873750
’media 13 1 10 -20 -40 -50
’media 8 1 20 -30 -60
’media 13 1 30
’media 8 1 40
’media 8 1 50
’media 13 1 60
’hole 4 origin x=0.0 y=0.0 z=0.0
’hole 5 origin x=0.0 y=0.0 z=0.0
’boundary 10
unit 6
com =" Inner Cradle "
cuboid 10 15.95438 -15.95438 0.000000 -10.89000 77.15250 5.080000 origin x=0.0 y =5.71500 z = -5.873750
cuboid 20 15.95438 -15.95438 0.000000 -8.890000 77.15250 5.080000 origin x=0.0 y =5.71500 z = -5.873750
cuboid 30 15.63688 -15.63688 -0.317500 -8.890000 76.83500 5.397500 origin x=0.0 y =5.71500 z = -5.873750
’cuboid 40 15.95438 -15.95438 -8.572500 -8.890000 82.23250 77.15250 origin x=0.0 y =5.71500 z = -5.873750
’cuboid 50 15.95438 -15.95438 -8.572500 -8.890000 5.080000 0.000000 origin x=0.0 y =5.71500 z = -5.873750
cuboid 60 15.95438 15.63688 -2.540000 -8.890000 74.61250 66.67500 origin x=0.0 y =5.71500 z = -5.873750
media 13 1 10 -20
media 8 1 20 -30 -60
media 13 1 30
’media 8 1 40
’media 8 1 50
media 13 1 60
hole 4 origin x=0.0 y=0.0 z=0.0
hole 5 origin x=0.0 y=0.0 z=0.0
boundary 10
unit 7
com =" Inner Cradle HDPE"
cuboid 5 21.27250 -21.27250 14.60500 -2.000000 82.55000 0.000000 origin x=0.0 y= -2.85750 z = -5.873750
cuboid 10 21.27250 -21.27250 14.60500 0.000000 82.55000 0.000000 origin x=0.0 y= -2.85750 z = -5.873750
cuboid 20 16.19250 -16.19250 9.525000 0.000000 77.47000 5.080000 origin x=0.0 y = -2.85750 z = -5.873750
cuboid 30 21.27250 16.19250 7.937500 0.000000 76.20000 67.94500 origin x=0.0 y = -2.85750 z = -5.873750
cuboid 140 15.95438 -15.95438 0.000000 -0.317500 82.23250 77.15250 origin x=0.0 y= -2.85750 z = -5.873750
cuboid 150 15.95438 -15.95438 0.000000 -0.317500 5.080000 0.000000 origin x=0.0 y= -2.85750 z = -5.873750
ycylinder 40 0.952500 6.985000 0.000000 origin x = -13.33500 y= -2.85750 z = -3.33375
ycylinder 50 0.952500 6.985000 0.000000 origin x = -3.175000 y= -2.85750 z = -3.33375
ycylinder 60 0.952500 6.985000 0.000000 origin x =3.175000 y= -2.85750 z = -3.33375
ycylinder 70 0.952500 6.985000 0.000000 origin x =13.33500 y = -2.85750 z = -3.33375
ycylinder 80 0.952500 6.985000 0.000000 origin x = -13.33500 y= -2.85750 z =74.13625
ycylinder 90 0.952500 6.985000 0.000000 origin x = -3.175000 y = -2.85750 z =74.13625
ycylinder 100 0.952500 6.985000 0.000000 origin x =3.175000 y= -2.85750 z =74.13625
ycylinder 110 0.952500 6.985000 0.000000 origin x =13.33500 y= -2.85750 z =74.13625
media 13 1 5 -10 -140 -150
media 9 1 10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110
media 13 1 20
media 13 1 30
media 13 1 40
media 13 1 50
media 13 1 60
media 13 1 70
media 13 1 80
media 13 1 90
media 13 1 100
media 13 1 110
media 8 1 140
media 8 1 150
hole 6 origin x=0.0 y=0.0 z=0.0
boundary 5 origin x=0.0 y=0.0 z=0.0
unit 8
com =" Outer Cradle "
cuboid 10 21.59000 -21.59000 0.000000 -17.55750 95.25000 0.000000 origin x=0.0 y =12.0650 z = -11.58875
cuboid 20 21.59000 -21.59000 0.000000 -14.60500 89.85250 5.397500 origin x=0.0 y =12.0650 z = -11.58875
cuboid 30 21.27250 -21.27250 -0.317500 -14.60500 89.53500 5.715000 origin x=0.0 y =12.0650 z = -11.58875
cuboid 40 21.59000 -21.59000 -14.28750 -14.60500 95.25000 89.85250 origin x=0.0 y =12.0650 z = -11.58875
cuboid 50 21.59000 -21.59000 -14.28750 -14.60500 5.397500 0.000000 origin x=0.0 y =12.0650 z = -11.58875
cuboid 60 21.59000 21.27250 -6.350000 -14.60500 82.55000 73.97750 origin x=0.0 y =12.0650 z = -11.58875
cuboid 70 6.350000 -6.350000 -15.24000 -15.55750 9.207500 5.080000 origin x=0.0 y =12.0650 z = -11.58875
cuboid 80 6.350000 -6.350000 -14.60500 -15.24000 5.715000 5.080000 origin x=0.0 y =12.0650 z = -11.58875
cuboid 90 21.59000 -21.59000 0.000000 -14.28750 5.397500 0.317500 origin x=0.0 y =12.0650 z = -11.58875
cuboid 100 21.59000 -21.59000 0.000000 -14.28750 94.93250 89.85250 origin x=0.0 y =12.0650 z = -11.58875
cuboid 110 21.59000 -21.59000 0.000000 -14.28750 0.317500 0.000000 origin x=0.0 y =12.0650 z = -11.58875
cuboid 120 21.59000 -21.59000 0.000000 -14.28750 95.25000 94.93250 origin x=0.0 y =12.0650 z = -11.58875
media 13 1 10 -20 -40 -50 -70 -80 -90 -100 -110 -120
media 10 1 20 -30 -60
media 13 1 30
media 10 1 40
media 10 1 50
media 13 1 60
media 10 1 70
media 10 1 80
media 11 1 90
media 11 1 100
media 12 1 110
media 12 1 120
hole 7 origin x=0.0 y=0.0 z=0.0
boundary 10
unit 9
com =" Outer Housing HDPE Back"
cuboid 10 21.59000 -21.59000 0.000000 -5.080000 84.45500 0.000000 origin x=0.0 y =17.7800 z = -6.191250
media 11 1 10
boundary 10
unit 10
com =" Outer Housing HDPE Top"
cuboid 10 21.59000 -21.59000 0.000000 -5.715000 89.53500 84.45500 origin x=0.0 y =17.7800 z = -6.191250
media 11 1 10
boundary 10
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unit 11
com =" Outer Housing HDPE Bottom "
cuboid 10 21.59000 -21.59000 0.000000 -5.715000 0.000000 -5.080000 origin x=0.0 y =17.7800 z = -6.191250
media 11 1 10
boundary 10
unit 12
com =" Outer Housing HDPE Left"
cuboid 10 -21.59000 -26.67000 0.000000 -19.68500 89.53500 -5.080000 origin x=0.0 y =17.7800 z = -6.191250
cuboid 20 -21.59000 -26.67000 0.000000 -19.36750 89.53500 -5.080000 origin x=0.0 y =17.7800 z = -6.191250
cuboid 30 -21.59000 -26.67000 -19.36750 -19.68500 84.45500 0.000000 origin x=0.0 y =17.7800 z = -6.191250
media 13 1 10 -20 -30
media 11 1 20
media 11 1 30
boundary 10
unit 13
com =" Outer Housing HDPE Right "
cuboid 10 26.67000 21.59000 0.000000 -19.68500 89.53500 -5.080000 origin x=0.0 y =17.7800 z = -6.191250
cuboid 20 26.67000 21.59000 0.000000 -19.36750 89.53500 -5.080000 origin x=0.0 y =17.7800 z = -6.191250
cuboid 30 26.67000 21.59000 -19.36750 -19.68500 84.45500 0.000000 origin x=0.0 y =17.7800 z = -6.191250
cuboid 40 26.67000 21.59000 -11.43000 -19.68500 77.15250 68.89750 origin x=0.0 y =17.7800 z = -6.191250
media 13 1 10 -20 -30
media 11 1 20 -40
media 11 1 30 -40
media 13 1 40
boundary 10
unit 14
com =" Outer Housing "
cuboid 10 27.38438 -27.38438 1.270000 -22.63750 95.25000 0.000000 origin x=0.0 y =18.4150 z = -11.58875
cuboid 20 27.38438 -27.38438 0.000000 -20.63750 95.25000 0.000000 origin x=0.0 y =18.4150 z = -11.58875
cuboid 30 27.06688 -27.06688 -0.317500 -20.32000 94.93250 0.317500 origin x=0.0 y =18.4150 z = -11.58875
cuboid 40 21.98688 -21.98688 -20.32000 -20.63750 89.85250 5.397500 origin x=0.0 y =18.4150 z = -11.58875
cuboid 50 27.38438 27.06688 -20.32000 -12.06500 82.23250 73.34250 origin x=0.0 y =18.4150 z = -11.58875
cuboid 60 27.38438 21.98688 -20.32000 -20.63750 82.23250 73.34250 origin x=0.0 y =18.4150 z = -11.58875
cuboid 70 27.38438 -27.38438 1.270000 0.000000 79.05750 75.24750 origin x=0.0 y =18.4150 z = -11.58875
cuboid 80 27.38438 -27.38438 1.270000 0.000000 20.00250 16.19250 origin x=0.0 y =18.4150 z = -11.58875
ycylinder 90 0.952500 -20.32000 -20.63750 origin x = -19.12938 y =18.4150 z = -8.91865
ycylinder 100 0.952500 -20.32000 -20.63750 origin x = -8.969380 y =18.4150 z = -8.91865
ycylinder 110 0.952500 -20.32000 -20.63750 origin x =8.969380 y =18.4150 z = -8.91865
ycylinder 120 0.952500 -20.32000 -20.63750 origin x =19.12938 y =18.4150 z = -8.91865
ycylinder 130 0.952500 -20.32000 -20.63750 origin x = -19.12938 y =18.4150 z =80.99115
ycylinder 140 0.952500 -20.32000 -20.63750 origin x = -8.969380 y =18.4150 z =80.99115
ycylinder 150 0.952500 -20.32000 -20.63750 origin x =8.969380 y =18.4150 z =80.99115
ycylinder 160 0.952500 -20.32000 -20.63750 origin x =19.12938 y =18.4150 z =80.99115
media 13 1 10 -20 -70 -80
media 12 1 20 -30 -40 -50 -60 -90 -100 -110 -120 -130 -140 -150 -160
media 13 1 30
media 13 1 40
media 13 1 50
media 13 1 60
media 12 1 70
media 12 1 80
media 13 1 90
media 13 1 100
media 13 1 110
media 13 1 120
media 13 1 130
media 13 1 140
media 13 1 150
media 13 1 160
hole 8 origin x=0.0 y=0.0 z=0.0
hole 9 origin x=0.0 y=0.0 z=0.0
hole 10 origin x=0.0 y=0.0 z=0.0
hole 11 origin x=0.0 y=0.0 z=0.0
hole 12 origin x=0.0 y=0.0 z=0.0
hole 13 origin x=0.0 y=0.0 z=0.0
boundary 10
unit 15
com =" Floor "
cuboid 10 150.0000 -150.0000 150.0000 -150.00000 20.32000 0.000000 origin x=0.0 y =0.00000 z = -33.178751
media 14 1 10
boundary 10
unit 16
com =" Model 10 Californium Source "
cuboid 10 0.27686 -0.27686 0.27686 -0.27686 1.1803 -0.8009
zcylinder 20 0.27686 1.1803 -0.8009
zcylinder 30 0.19558 1.1803 -0.6104
zcylinder 40 0.19558 1.0041 0.6104
cuboid 50 0.05 -0.05 0.05 -0.05 0.05 -0.05
’sphere 50 1.681774274e -005
media 13 1 10 -20
media 15 1 20 -30
media 13 1 30 -40 -50
media 15 1 40
media 16 1 50
boundary 10
unit 17
cuboid 10 -200 200 -200 200 200.0 -200.0
cuboid 20 -150 150 -150 150 150.0 -150.0
media 0 1 10 -20
media 13 1 20
hole 14 origin x=0.0 y=0.0 z=0.0
hole 15 origin x=0.0 y=0.0 z=0.0
’ Y- Position from -16 to -61
’ a2 =0 Vertical ; a2 =90 Horizontal facing away; a2 = -90 Horizontal facing towards
hole 16 origin x=0.0 y = -16.1275 z =29.21 rotate a1 =0.0 a2 =0.0 a3 =0.0
boundary 10
global unit 999
cuboid 10 200 -200 200 -200 200 -200
media 0 1 10
hole 17 origin x=0 y=0 z=0 rotate a1 = -90 a2 = -90 a3 =90
boundary 10
end geometry
read definitions
gridGeometry 1
zplanes
27.384380
27.066880
26.670000
25.670000
24.670000
23.670000
22.670000
21.986880
21.590000
21.272500
20.522500
19.772500
19.022500
18.272500
17.522500
16.772500
16.192500
15.954380
15.636880
15.557500
15.398750
15.319375
15.240000
14.777720
14.190980
13.589000
13.081000
12.573000
12.065000
11.557000
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11.049000
10.604500
10.096500
9.588500
9.080500
8.572500
8.064500
7.556500
7.048500
6.540500
6.350000
6.032500
5.524500
5.016500
4.572000
4.064000
3.556000
3.048000
2.540000
2.032000
1.524000
1.016000
0.508000
0.276860
0.138430
0.050000
0.000000 end
yplanes
19.685000
18.415000
18.097500
17.780000
17.280000
16.780000
16.280000
15.780000
15.280000
14.780000
14.280000
13.780000
13.280000
12.700000
12.065000
11.747500
11.167500
10.667500
10.167500
9.667500
9.167500
8.667500
8.167500
7.667500
7.167500
6.667500
6.350000
5.715000
5.397500
5.238750
5.159375
5.080000
4.617720
4.030980
3.175000
3.000000
2.750000
2.500000
2.250000
2.000000
1.750000
1.500000
1.250000
1.000000
0.750000
0.500000
0.250000
0.000000
-0.250000
-0.500000
-0.750000
-1.000000
-1.587500
-1.905000
-2.222500
-2.540000
-2.760980
-2.857500
-3.175000
-3.347720
-3.492500
-3.810000
-3.889375
-3.968750
-4.127500
-4.222500
-4.857500
-5.175000
-5.492500
-5.992500
-6.492500
-6.992500
-7.492500
-7.992500
-8.492500
-8.992500
-9.492500
-9.992500
-10.492500
-10.992500
-11.492500
-11.992500
-12.492500
-12.992500
-13.492500
-13.992500
-14.492500
-14.992500
-15.492500
-15.850640
-15.989070
-16.077500
-16.127500
-16.177500
-16.265930
-16.404360 end
xplanes
83.661250
83.343750
82.843750
82.343750
81.843750
81.343750
80.843750
80.343750
79.843750
79.343750

114



78.843750
78.263750
77.946250
76.676250
76.358750
75.858750
75.358750
74.858750
74.358750
73.858750
73.358750
72.858750
72.358750
71.596250
71.278750
70.961250
70.643750
69.863970
67.468750
64.598550
63.658750
62.706250
62.388750
62.071250
61.753750
61.296550
60.483750
59.483750
58.483750
57.483750
56.483750
55.483750
54.483750
53.483750
52.483750
51.483750
50.483750
49.483750
48.483750
47.483750
46.483750
45.483750
44.483750
43.483750
42.483750
41.483750
40.483750
39.483750
38.483750
37.483750
36.483750
35.483750
34.483750
33.483750
32.483750
31.483750
30.390300
29.825150
29.260000
29.210000
29.160000
28.784550
28.409100
27.409100
26.409100
25.409100
24.409100
23.409100
22.409100
21.409100
20.409100
19.409100
18.409100
17.409100
16.409100
15.409100
14.409100
13.409100
12.409100
11.409100
10.409100
9.409100
8.413750
7.413750
6.413750
5.413750
4.603750
3.603750
2.603750
1.603750
0.603750
0.000000
-0.158750
-0.317500
-0.476250
-0.793750
-2.381250
-3.381250
-4.381250
-5.873750
-6.191250
-6.508750
-7.508750
-8.508750
-9.508750
-10.508750
-11.271250
-11.588750
-12.858751
-14.358751
-15.858751
-17.358751
-22.358751
-27.358751
-33.178751 end
end gridGeometry
end definitions
read sources

src 1
strength =100
neutrons
sphere 0.0 origin x =20.0 y=0.0 z=1.0

end src
end sources
read importanceMap

gridGeometryid =1
mmsubcells =1
mmtolerance =0.0001

end importanceMap
end data
end
= shell
echo $TMPDIR
cp ${ TMPDIR }/ i_ice ${ RTNDIR }/ ice
cp ${ TMPDIR }/ ft42f001 ${ RTNDIR }/ xs42.ampx
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cp ${ TMPDIR }/ xkba_b .inp ${ RTNDIR }/ xkba_b .inp
end
’zlinear 10 0.0 -150.0

fig/denovo/neup scale.inp

#!/ usr/bin/env python

# File automagically generated on Sun , 30 Nov 2014 13:18:56
# Copywrite (C) 2013 W. Cyrus Proctor & R. Todd Evans

import sys
import sc as denovo
import numpy as np

# Begin by initializing the MPI environment
denovo . initialize (sys.argv)

reader = denovo . Mavric_Binary_Input (" xkba_b .inp")
db = denovo .DB(" pykba ")
reader . read_db (db)

# Specify the number of x-, y- and z- blocks plus number of energy sets for the solves
# based on the number of processes ( nodes ). Choices seen here are default and are free to change .
if denovo . nodes () == 1:

db. insert (" num_blocks_i ", 1)
db. insert (" num_blocks_j ", 1)
db. insert (" num_sets ", 1)

elif denovo . nodes () == 2:
db. insert (" num_blocks_i ", 2)
db. insert (" num_blocks_j ", 1)
db. insert (" num_sets ", 1)

elif denovo . nodes () == 4:
db. insert (" num_blocks_i ", 2)
db. insert (" num_blocks_j ", 2)
db. insert (" num_sets ", 1)

elif denovo . nodes () == 8:
db. insert (" num_blocks_i ", 2)
db. insert (" num_blocks_j ", 2)
db. insert (" num_sets " ,2)

elif denovo . nodes () == 64:
db. insert (" num_blocks_i ", 8)
db. insert (" num_blocks_j ", 8)
db. insert (" num_sets " ,1)

else:
print " ERROR : Set number of CPUs does not match default blocks * sets"
exit ( -1)

db. insert (" problem_name ","neup")
db. insert (" eigen_solver "," arnoldi ")
db. insert (" eq_set ","1")

# Multi - group structure options
db. insert (" num_groups " ,200)
db. insert (" Pn_order " ,1)
db. insert (" downscatter " ,0,1)
db. insert (" partition_upscatter " ,1,1)
db. insert (" transport_correction ","none")

# Within - group solver options
db. insert (" tolerance " ,1.0E -9)
db. insert (" max_itr ", 500)
db. insert (" aztec_diag ", 0)
db. insert (" aztec_output ", 0)

# Quadrature options
if denovo .node () != 0:

db. add_db (" quadrature_db ", " quad_options ")
db. insert (" quadrature_db "," quad_type "," glproduct ")
db. insert (" quadrature_db ", " polars_octant " ,12)
db. insert (" quadrature_db ", " azimuthals_octant " ,14)
db. insert (" quadrature_db "," adjoint " ,0,1)
db. insert (" quadrature_db "," Pn_order " ,1)

# boundary conditions
db. insert (" boundary ", " reflect ")
db. add_db (" boundary_db "," reflect ")
db. insert (" boundary_db "," reflect " ,[0, 0, 0, 0, 1, 0] ,1)

# output options
db. add_db (" silo_db "," silo_options ")
db. insert (" silo_db "," silo_out_unknowns " ,1,1)
db. insert (" silo_db "," silo_out_moments " ,1,1)
#db. insert (" silo_db "," silo_out_keff " ,1 ,1)
db. insert (" silo_db "," silo_output "," forward ")

#db. insert (" problem_type "," EIGENVALUE ")
db. insert (" problem_type "," FIXED_SOURCE ")
db. insert (" mg_solver "," krylov ")
db. add_db (" upscatter_db ", " upscatter ");
db. insert (" upscatter_db ", " max_itr ", 1000)
db. insert (" upscatter_db ", " tolerance ", 1.0E -9)
db. insert (" upscatter_db ", " aztec_output ", 1)
db. insert (" upscatter_db ", " aztec_kspace ", 5)
db. insert (" upscatter_db ", " max_itr ", 500)
db. insert ("keff" ,1.0)
db. insert (" add_fission_left " ,1,1)
# Add GPT database
db. add_db (" gpt_db "," gpt_options ")
db. insert (" gpt_db "," source_data "," source ")

# Make manager , material , and angles
manager = denovo . Manager ()
mat = denovo .Mat ()
source = denovo . Zero_Source ()
angles = denovo . Angles ()

# partition the problem
manager . partition (db , mat , angles )

# get mapping and mesh objects
mapp = manager . get_map ()
indexer = manager . get_indexer ()
mesh = manager . get_mesh ()

# global and local cell numbers
Gx = indexer . num_global ( denovo .X)
Gy = indexer . num_global ( denovo .Y)
Gz = mesh. num_cells_dim ( denovo .Z)
Nx = mesh. num_cells_dim ( denovo .X)
Ny = mesh. num_cells_dim ( denovo .Y)
Nz = mesh. num_cells_dim ( denovo .Z)

if denovo .node () == 0:
print " >>> Partitioned global mesh with %i x %i x %i cells " % (Gx , Gy , Gz)

# Read in material IDs
matids = denovo . Vec_Int (mapp. num_global () ,0)
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for k in xrange (Gz):
ids = denovo . Vec_Int (Gx*Gy ,0)
reader . read_ids (ids ,k)
for cell in xrange (Gx*Gy):

matids [cell+k*Gx*Gy ]= ids[cell]
reader . close ()
denovo . barrier ()
denovo . gsum_Vec_Int ( matids )

# Read in the ampx microscopic cross section file and number density file
ampx = denovo . AMPX_Micro ()
# ampx. read_AMPX (xs file , density file)
ampx. read_AMPX ("xs42.ampx","ice")
# get the ampx ids
ampxids = ampx. ampx_ids ()
mat. build (db ,mapp)
mat. set_num (17)
# assign the vacuum
mat. assign_zero (0)
# here we convert ampx ids into material ids.
# then we read from the ampx class into the material class .
# the XS_DB class is under the material class Mat
C = int (1 e6)
for aid in ampxids :

mid = aid/C
nid = aid - mid*C
# mat. assign_ampx ( material id , nuclide id ,ampx id ,ampx class , density file)
mat. assign_ampx (mid ,nid ,aid ,ampx ,"ice")

# we can dump this to a SILO file for later use if desired
if denovo .node () ==0: mat. write_SILO (" XS_200 ")

# Build macroscopic xs ’s from micro for each materials
for mid in xrange (mat. num_mat ()):

mat. build_macro_mat (mid)

# ####### Cross sections are completely defined at this point
if denovo .node () ==0:

print " finished reading from input file"
# here we build the mixing table ( materials are spatially homogenized )
table = denovo . Mixing_Table ()
table .read(" scale .mmt")
mixer = denovo . Macro_Mixer (mat)
mixer . read_table ( table )
mixer . mix_with_global_ids (matids ,mat)

# Output the geometry SILO file
silo = denovo .SILO ()
silo.open(" geometry ")
silo. close ()

# Assign source data
source_data = denovo . Source_Data (mat. num_groups ());

# Mannhart 27- group PDF
if mat. num_groups () == 27:

spectrum = np. array ([ 4.246206E -13 , 1.781829E -12 , 2.541090E -12 , 8.680554E -12 , \
3.189175E -11 , 3.335569E -11 , 3.443406E -11 , 1.907337E -10 , \
1.207906E -10 , 8.226006E -11 , 1.225102E -10 , 4.437715E -10 , \
1.198695E -09 , 1.254263E -08 , 5.157869E -08 , 3.665315E -07 , \
5.542462E -06 , 6.495629E -05 , 7.073864E -04 , 1.429646E -02 , \
7.959341E -02 , 1.657301E -01 , 1.629723E -01 , 1.105391E -01 , \
2.306726E -01 , 2.082133E -01 , 2.720441E -02 ])

# Unexpected group structure
else:

print " ERROR : forward .py: Expecting 27 energy group structure !"
exit ( -1)

source_mid = 16
source_nid = str (98252)
for g in xrange (mat. num_groups ()):

source_data .set( source_mid , source_nid ,’S.F.’,g, spectrum [g])
print source_data .get( source_mid )

# Assign response data
response_data = denovo . Source_Data (mat. num_groups ());
MT = str (103) # ’(n,p)’
MID = 4
NID = str (2003) #’Heˆ3’
for g in xrange (mat. num_groups ()):

response_data .set(MID ,NID ,MT ,g,
mat.rho(MID ,int(NID))*mat. total (MID ,int(NID),int(MT),g))

# here we partition , setup and solve
manager . partition_energy (mat , angles )

# Display the contents of the database on screen
db. output ()

manager . setup ( source_data )
manager . verify ()
manager . solve ( angles )
#eig = denovo . Eigenproblem ()
#keff = eig. eigenvalue ()

manager . output ()
manager . compute_response (" forward ",response_data )
manager . clear ()
if denovo .node () == 0:

print " Homogeneous Run Complete "
manager . close ()
denovo . finalize ()

fig/denovo/forward.py

#!/ usr/bin/env python

# File automagically generated on Sun , 30 Nov 2014 13:18:56
# Copywrite (C) 2013 W. Cyrus Proctor & R. Todd Evans

import sys
import sc as denovo
import numpy as np

# Begin by initializing the MPI environment
denovo . initialize (sys.argv)

reader = denovo . Mavric_Binary_Input (" xkba_b .inp")
db = denovo .DB(" pykba ")
reader . read_db (db)
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# Specify the number of x-, y- and z- blocks plus number of energy sets for the solves
# based on the number of processes ( nodes ). Choices seen here are default and are free to change .
if denovo . nodes () == 1:

db. insert (" num_blocks_i ", 1)
db. insert (" num_blocks_j ", 1)
db. insert (" num_sets ", 1)

elif denovo . nodes () == 2:
db. insert (" num_blocks_i ", 2)
db. insert (" num_blocks_j ", 1)
db. insert (" num_sets ", 1)

elif denovo . nodes () == 4:
db. insert (" num_blocks_i ", 2)
db. insert (" num_blocks_j ", 2)
db. insert (" num_sets ", 1)

elif denovo . nodes () == 8:
db. insert (" num_blocks_i ", 2)
db. insert (" num_blocks_j ", 2)
db. insert (" num_sets " ,2)

elif denovo . nodes () == 64:
db. insert (" num_blocks_i ", 8)
db. insert (" num_blocks_j ", 8)
db. insert (" num_sets " ,1)

else:
print " ERROR : Set number of CPUs does not match default blocks * sets"
exit ( -1)

db. insert (" problem_name ","neup")
db. insert (" eigen_solver "," arnoldi ")
db. insert (" eq_set ","1")

# Multi - group structure options
db. insert (" num_groups " ,200)
db. insert (" Pn_order " ,1)
db. insert (" downscatter " ,0,1)
db. insert (" partition_upscatter " ,1,1)
db. insert (" transport_correction ","none")

# Within - group solver options
db. insert (" tolerance " ,1.0E -9)
db. insert (" max_itr ", 500)
db. insert (" aztec_diag ", 0)
db. insert (" aztec_output ", 0)

# Quadrature options
if denovo .node () != 0:

db. add_db (" quadrature_db ", " quad_options ")
db. insert (" quadrature_db "," quad_type "," glproduct ")
db. insert (" quadrature_db ", " polars_octant " ,12)
db. insert (" quadrature_db ", " azimuthals_octant " ,14)
db. insert (" quadrature_db "," adjoint " ,1,1)
db. insert (" quadrature_db "," Pn_order " ,1)

# boundary conditions
db. insert (" boundary ", " reflect ")
db. add_db (" boundary_db "," reflect ")
db. insert (" boundary_db "," reflect " ,[0, 0, 0, 0, 1, 0] ,1)

# output options
db. add_db (" silo_db "," silo_options ")
db. insert (" silo_db "," silo_out_unknowns " ,1,1)
db. insert (" silo_db "," silo_out_moments " ,1,1)
#db. insert (" silo_db "," silo_out_keff " ,1 ,1)
db. insert (" silo_db "," silo_output "," adjoint ")

#db. insert (" problem_type "," EIGENVALUE ")
db. insert (" problem_type "," FIXED_SOURCE ")
db. insert (" mg_solver "," krylov ")
db. add_db (" upscatter_db ", " upscatter ");
db. insert (" upscatter_db ", " max_itr ", 1000)
db. insert (" upscatter_db ", " tolerance ", 1.0E -9)
db. insert (" upscatter_db ", " aztec_output ", 1)
db. insert (" upscatter_db ", " aztec_kspace ", 5)
db. insert (" upscatter_db ", " max_itr ", 500)
db. insert ("keff" ,1.0)
db. insert (" add_fission_left " ,1,1)
# Add GPT database
db. add_db (" gpt_db "," gpt_options ")
db. insert (" gpt_db "," source_data "," source ")

# Make manager , material , and angles
manager = denovo . Manager ()
mat = denovo .Mat ()
source = denovo . Zero_Source ()
angles = denovo . Angles ()

# partition the problem
manager . partition (db , mat , angles )

# get mapping and mesh objects
mapp = manager . get_map ()
indexer = manager . get_indexer ()
mesh = manager . get_mesh ()

# global and local cell numbers
Gx = indexer . num_global ( denovo .X)
Gy = indexer . num_global ( denovo .Y)
Gz = mesh. num_cells_dim ( denovo .Z)
Nx = mesh. num_cells_dim ( denovo .X)
Ny = mesh. num_cells_dim ( denovo .Y)
Nz = mesh. num_cells_dim ( denovo .Z)

if denovo .node () == 0:
print " >>> Partitioned global mesh with %i x %i x %i cells " % (Gx , Gy , Gz)

# Read in material IDs
matids = denovo . Vec_Int (mapp. num_global () ,0)
for k in xrange (Gz):

ids = denovo . Vec_Int (Gx*Gy ,0)
reader . read_ids (ids ,k)
for cell in xrange (Gx*Gy):

matids [cell+k*Gx*Gy ]= ids[cell]
reader . close ()
denovo . barrier ()
denovo . gsum_Vec_Int ( matids )

# Read in the ampx microscopic cross section file and number density file
ampx = denovo . AMPX_Micro ()
# ampx. read_AMPX (xs file , density file)
ampx. read_AMPX ("xs42.ampx","ice")
# get the ampx ids
ampxids = ampx. ampx_ids ()
mat. build (db ,mapp)
mat. set_num (17)
# assign the vacuum
mat. assign_zero (0)
# here we convert ampx ids into material ids.
# then we read from the ampx class into the material class .
# the XS_DB class is under the material class Mat
C = int (1 e6)
for aid in ampxids :

mid = aid/C
nid = aid - mid*C
# mat. assign_ampx ( material id , nuclide id ,ampx id ,ampx class , density file)
mat. assign_ampx (mid ,nid ,aid ,ampx ,"ice")
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# we can dump this to a SILO file for later use if desired
if denovo .node () ==0: mat. write_SILO (" XS_27 ")

# Build macroscopic xs ’s from micro for each materials
for mid in xrange (mat. num_mat ()):

mat. build_macro_mat (mid)

# ####### Cross sections are completely defined at this point
if denovo .node () ==0:

print " finished reading from input file"
# here we build the mixing table ( materials are spatially homogenized )
table = denovo . Mixing_Table ()
table .read(" scale .mmt")
mixer = denovo . Macro_Mixer (mat)
mixer . read_table ( table )
mixer . mix_with_global_ids (matids ,mat)

# Output the geometry SILO file
silo = denovo .SILO ()
silo.open(" geometry ")
silo. close ()

# Assign source data
source_data = denovo . Source_Data (mat. num_groups ());

# Mannhart 27- group PDF
if mat. num_groups () == 27:

spectrum = np. array ([ 4.246206E -13 , 1.781829E -12 , 2.541090E -12 , 8.680554E -12 , \
3.189175E -11 , 3.335569E -11 , 3.443406E -11 , 1.907337E -10 , \
1.207906E -10 , 8.226006E -11 , 1.225102E -10 , 4.437715E -10 , \
1.198695E -09 , 1.254263E -08 , 5.157869E -08 , 3.665315E -07 , \
5.542462E -06 , 6.495629E -05 , 7.073864E -04 , 1.429646E -02 , \
7.959341E -02 , 1.657301E -01 , 1.629723E -01 , 1.105391E -01 , \
2.306726E -01 , 2.082133E -01 , 2.720441E -02 ])

# Unexpected group structure
else:

print " ERROR : forward .py: Expecting 27 energy group structure !"
exit ( -1)

source_mid = 16
source_nid = str (98252)
for g in xrange (mat. num_groups ()):

source_data .set( source_mid , source_nid ,’S.F.’,g, spectrum [g])
print source_data .get( source_mid )

# Assign response data
response_data = denovo . Source_Data (mat. num_groups ());
MT = str (103) # ’(n,p)’
MID = 4
NID = str (2003) #’Heˆ3’
for g in xrange (mat. num_groups ()):

response_data .set(MID ,NID ,MT ,g,
mat.rho(MID ,int(NID))*mat. total (MID ,int(NID),int(MT),g))

# here we partition , setup and solve
manager . partition_energy (mat , angles )

# Display the contents of the database on screen
db. output ()

manager . setup ( response_data )
manager . verify ()
manager . solve ( angles )

manager . output ()
manager . compute_response (" adjoint ",source_data )
manager . clear ()
if denovo .node () == 0:

print " Homogeneous Run Complete "
manager . close ()
denovo . finalize ()

fig/denovo/adjoint.py

#!/ usr/bin/env python

# File automagically generated on Sun , 30 Nov 2014 19:41:49
# Copywrite (C) 2013 W. Cyrus Proctor & R. Todd Evans

import sys
import sc as denovo
import numpy as np

# Begin by initializing the MPI environment
denovo . initialize (sys.argv)

reader = denovo . Mavric_Binary_Input (" xkba_b .inp")
db = denovo .DB(" pykba ")
reader . read_db (db)

# Specify the number of x-, y- and z- blocks plus number of energy sets for the solves
# based on the number of processes ( nodes ). Choices seen here are default and are free to change .
if denovo . nodes () == 1:

db. insert (" num_blocks_i ", 1)
db. insert (" num_blocks_j ", 1)
db. insert (" num_sets ", 1)

elif denovo . nodes () == 2:
db. insert (" num_blocks_i ", 2)
db. insert (" num_blocks_j ", 1)
db. insert (" num_sets ", 1)

elif denovo . nodes () == 4:
db. insert (" num_blocks_i ", 2)
db. insert (" num_blocks_j ", 2)
db. insert (" num_sets ", 1)

elif denovo . nodes () == 8:
db. insert (" num_blocks_i ", 2)
db. insert (" num_blocks_j ", 2)
db. insert (" num_sets " ,2)

elif denovo . nodes () == 64:
db. insert (" num_blocks_i ", 8)
db. insert (" num_blocks_j ", 8)
db. insert (" num_sets " ,1)

else:
print " ERROR : Set number of CPUs does not match default blocks * sets"
exit ( -1)

db. insert (" problem_name ","neup")
db. insert (" eigen_solver "," arnoldi ")
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db. insert (" eq_set ","1")

# Multi - group structure options
db. insert (" num_groups " ,200)
db. insert (" Pn_order " ,1)
db. insert (" downscatter " ,0,1)
db. insert (" partition_upscatter " ,1,1)
db. insert (" transport_correction ","none")

# Multi - group Eigenvalue solver options
db. add_db (" eigenvalue_db "," eigenvalue_options ")
db. insert (" eigenvalue_db "," diagnostic_level ", 2)
db. insert (" eigenvalue_db "," k_tolerance " ,1.0E -9)
db. insert (" eigenvalue_db "," L2_tolerance " ,1.0E -9)
db. insert (" eigenvalue_db "," energy_dep_ev " ,1,1)

# Within - group solver options
db. insert (" tolerance " ,1.0E -9)
db. insert (" max_itr ", 500)
db. insert (" aztec_diag ", 0)
db. insert (" aztec_output ", 0)

# Quadrature options
if denovo .node () != 0:

db. add_db (" quadrature_db ", " quad_options ")
db. insert (" quadrature_db "," quad_type "," glproduct ")
db. insert (" quadrature_db ", " polars_octant " ,12)
db. insert (" quadrature_db ", " azimuthals_octant " ,14)
db. insert (" quadrature_db "," adjoint " ,1,1)
db. insert (" quadrature_db "," Pn_order " ,1)

# boundary conditions
db. insert (" boundary ", " reflect ")
db. add_db (" boundary_db "," reflect ")
db. insert (" boundary_db "," reflect " ,[0, 0, 0, 0, 1, 0] ,1)

# output options
db. add_db (" silo_db "," silo_options ")
db. insert (" silo_db "," silo_out_unknowns " ,1,1)
db. insert (" silo_db "," silo_out_moments " ,1,1)
db. insert (" silo_db "," silo_out_keff " ,1,1)
db. insert (" silo_db "," silo_output "," adjoint ")

db. insert (" problem_type "," SENSITIVITY ")
db. add_db (" gpt_db "," gpt_options ")
db. insert (" gpt_db "," forward_input "," forward ")
db. insert (" forward_input "," forward ")
db. insert (" gpt_db "," adjoint_input "," adjoint ")
db. insert (" gpt_db "," text_suq_file "," sensitivity ")
db. insert (" gpt_db "," silo_suq_file "," sensitivity ")

# Make manager , material , and angles
manager = denovo . Manager ()
mat = denovo .Mat ()
source = denovo . General_Source ()
angles = denovo . Angles ()

# partition the problem
manager . partition (db , mat , angles )

# get mapping and mesh objects
mapp = manager . get_map ()
indexer = manager . get_indexer ()
mesh = manager . get_mesh ()

# global and local cell numbers
Gx = indexer . num_global ( denovo .X)
Gy = indexer . num_global ( denovo .Y)
Gz = mesh. num_cells_dim ( denovo .Z)
Nx = mesh. num_cells_dim ( denovo .X)
Ny = mesh. num_cells_dim ( denovo .Y)
Nz = mesh. num_cells_dim ( denovo .Z)

if denovo .node () == 0:
print " >>> Partitioned global mesh with %i x %i x %i cells " % (Gx , Gy , Gz)

# Read in material IDs
matids = denovo . Vec_Int (mapp. num_global () ,0)
for k in xrange (Gz):

ids = denovo . Vec_Int (Gx*Gy ,0)
reader . read_ids (ids ,k)
for cell in xrange (Gx*Gy):

matids [cell+k*Gx*Gy ]= ids[cell]
reader . close ()
denovo . barrier ()
denovo . gsum_Vec_Int ( matids )

# Read in the ampx microscopic cross section file and number density file
ampx = denovo . AMPX_Micro ()
# ampx. read_AMPX (xs file , density file)
ampx. read_AMPX ("xs42.ampx","ice")
# get the ampx ids
ampxids = ampx. ampx_ids ()
mat. build (db ,mapp)
mat. set_num (17)
# assign the vacuum
mat. assign_zero (0)
# here we convert ampx ids into material ids.
# then we read from the ampx class into the material class .
# the XS_DB class is under the material class Mat
C = int (1 e6)
for aid in ampxids :

mid = aid/C
nid = aid - mid*C
# mat. assign_ampx ( material id , nuclide id ,ampx id ,ampx class , density file)
mat. assign_ampx (mid ,nid ,aid ,ampx ,"ice")

# we can dump this to a SILO file for later use if desired
if denovo .node () ==0: mat. write_SILO (" XS_27 ")

# Build macroscopic xs ’s from micro for each materials
for mid in xrange (mat. num_mat ()):

mat. build_macro_mat (mid)

# ####### Cross sections are completely defined at this point
if denovo .node () ==0:

print " finished reading from input file"
# here we build the mixing table ( materials are spatially homogenized )
table = denovo . Mixing_Table ()
table .read(" scale .mmt")
mixer = denovo . Macro_Mixer (mat)
mixer . read_table ( table )
mixer . mix_with_global_ids (matids ,mat)

# Assign source data
source_data = denovo . Source_Data (mat. num_groups ());

# Mannhart 27- group PDF
if mat. num_groups () == 27:

spectrum = np. array ([ 4.246206E -13 , 1.781829E -12 , 2.541090E -12 , 8.680554E -12 , \
3.189175E -11 , 3.335569E -11 , 3.443406E -11 , 1.907337E -10 , \
1.207906E -10 , 8.226006E -11 , 1.225102E -10 , 4.437715E -10 , \
1.198695E -09 , 1.254263E -08 , 5.157869E -08 , 3.665315E -07 , \
5.542462E -06 , 6.495629E -05 , 7.073864E -04 , 1.429646E -02 , \
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7.959341E -02 , 1.657301E -01 , 1.629723E -01 , 1.105391E -01 , \
2.306726E -01 , 2.082133E -01 , 2.720441E -02 ])

# Unexpected group structure
else:

print " ERROR : forward .py: Expecting 27 energy group structure !"
exit ( -1)

source_mid = 16
source_nid = str (98252)
for g in xrange (mat. num_groups ()):

source_data .set( source_mid , source_nid ,’S.F.’,g, spectrum [g])
print source_data .get( source_mid )

# Assign response data
response_data = denovo . Source_Data (mat. num_groups ());
MT = str (103) # ’(n,p)’
MID = 4
NID = str (2003) #’Heˆ3’
for g in xrange (mat. num_groups ()):

response_data .set(MID ,NID ,MT ,g,
mat.rho(MID ,int(NID))*mat. total (MID ,int(NID),int(MT),g))

# here we partition , setup and solve
manager . partition_energy (mat , angles )

# Display the contents of the database on screen
db. output ()

# ##### Compute the sensitivities
if denovo .node () ==0: print " Start sensitivity coefficients "
manager . sc_coeff (mat , response_data , source_data )
manager . close ()
denovo . finalize ()

fig/denovo/sensitivity.py
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4.5.  Task E: Implement data integration and inverse methods 

These methods build on recent advances in probabilistic inverse problems and data assimilation 
methods. Using sensitivities from the radiation transport simulator, the deterministic moments-
based data assimilation method is computationally efficient, where the largest work is expended 
into the inversion of a small-to-medium covariance matrix. A Newton-type non-linear 
optimization method was employed here. Furthermore, we had anticipated the need to be a 
bound-constrained optimization method, so that unphysical solutions are precluded. The 
requirement for constrained optimization eliminates many optimization libraries as candidates 
for deployment in this module, but some libraries do provide this functionality. Monte Carlo 
methods for sampling the solution PDF were also examined, especially if the holdup problem 
solution PDF is found to have multiple local maxima. The University of South Carolina was 
responsible for completing this task. 

The accomplishment of this task was reported in: Dan G. Cacuci and Madalina C. Badea, MULTI-
PRED: A Software Module for Reducing Uncertainties in Predicted Results through Data 
Assimilation, Model Calibration and Validation – MULTI-PRED User’s Manual Version 1, University 
of South Carolina, November 2016. This document is replicated on the following pages. 
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1 Fundamentals of Predictive Modeling  
 

The MULTI-PRED module embodies the time-dependent predictive modeling methodology 

of Cacuci and Ionescu-Bujor [Ca2010a], which considers a time-dependent generic physical 

system comprises N
  model parameters and rN  distinct responses, respectively, at every 

time node   1 2  t, ,... ,N  . Hence, at every time node  , the (column) vector α  of J  system 

parameters, and the (column) vector r of rJ  measured responses can be represented in 

component form as 

 

   1n |n , N ,  
 α   1  1  i r tr |i , ,N , ,... ,N     r    (1.1) 

 

At any time node  , the system parameters are considered to be variates with mean values 

 0 
α . Furthermore, the correlations between two parameters i

  and j
 , at two time nodes 

  and  , have the general form 

 

     0 0
,ij i i j jc    

               
    (1.2) 

 

The above covariances constitute the elements of symmetric covariance matrices of the 

form 

 

         0 0
† † †    

   
        

C α α α α C C C    (1.3) 

 

Similarly, the measured responses are characterized by mean values  m


r  at a time node 

 , and by symmetric covariance matrices between two time nodes   and   defined as 

 

         
† † †

m m m m m m
          
 

C r r r r C C C    (1.4) 
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In the most general case, the measured responses may be correlated to the parameters 

through symmetric response-parameter uncertainty matrices of the form 

 

         0
† † †

r m r r r

   
   

        
C r r α α C C C    (1.5) 

 

Note that the matrices r

C  are not bona-fide variance-covariance matrices, in that they are 

not necessarily square positive matrices (often, they are rectangular), and the elements on 

their respective main diagonals (if they happen to be square) are also covariances (or 

correlations) rather that variances. 

At any given time node  , a response ir
  can be a function of not only the system 

parameters at time node  , but also of the system parameters at all previous time nodes  , 

1    ; this means that    r R p , where the vector  1 , , , ,    p α α α  has been 

introduced for notational convenience. In general, the response computed using the model 

depends nonlinearly and implicitly (in an analytically intractable form) on the model 

parameters. Furthermore, the uncertainties in parameters and modeling induce uncertainties in 

the computed responses, and can be computed either by means of statistical methods (for 

relatively simple models with few parameters) or deterministically, by using the propagation 

of moments (errors) method, as described by [Ca2003]. In this method, the computed 

response is linearized via a functional Taylor-series expansion around the nominal values, 

     10 0 0
0 , , , ,

     
 

 p α α α , of the parameters p , as follows: 

 

         0
0 0

1
 1 t, ,...,N

       






        r R p R p S p α α  , (1.6) 

 

where  0
 R p  denotes the vector of computed responses at a time node  , at the nominal 

parameter values 0
p , while  0

S p , 1    , represents the  rJ J 
 -dimensional matrix 

containing the first Gateaux-derivatives of the computed responses with respect to the 

parameters, defined as 
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   

   

   

1 10 0

1
11 1

0

1
0 0

1

N
N

i
in

n
INI

I I

N

R R

s s
R

s

s s
R R

   

 
 


  


 

   

 

 



 

  
 
     

   
    

          
   




   





p p

S p

p p

,1      (1.7) 

 

Since the response  0
 R p  at time node   can depend only on parameters  0 

α which 

appear up to the current time node  , it follows that  S 0  when   , and hence non-zero 

terms in the expansion shown in (1.6) can only occur in the range 1    . It is important to 

note that discretization parameters are also included among the components of α , and the 

sensitivities of responses to such discretization parameters can be computed as described in 

[Ca2003]. 

By introducing the block matrix 

 

  
11

1t t tN N N

,

 
 

  
 
 


  



S 0

S

S S

     (1.8) 

 

and the (block) column vectors 

 

   1 tN, , , ,  α α α α ,     (1.9) 

 

   1 tN, , , ,  r r r r ,      (1.10) 

 

     0 1 tN, , , ,  R α R R R ,    (1.11) 

 

the system shown in (1.6) can be written in the form 

 

     0 0 higher order terms   r R α S α α    (1.12) 
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Applying the propagation of errors method to (1.12), which involves the formal integration 

of the over the unknown joint distributions of the parameters α , yields the following 

expressions for the expectation value, r , of the response r , and the corresponding 

covariance matrix,  0
rcC α , of the computed responses, i.e., 

 

   0r R α ,     (1.13) 

 

and 

 

           0 0 0 0 0† †
† †

rc                    C α r r S α α α S α S α C S α . (1.14) 

 

The covariance matrix of the computed responses, rcC , has the symmetric structure 

 

                 
111

1

t

t t t

N
rc rc

rc

N N N
rc rc

 
 

  
 
 


  



C C

C

C C

,  

 

with components defined as 

 

     
1 1

 1
† †

rc rc t; , ,...,N


    


 
 

 

  C S C S C .   (1.15) 

 

As indicated by (1.13), the expectation value of the computed responses for linearized 

models in which the numerical errors are neglected is given by the value of the response 

computed at the nominal parameter-values. 

According to the maximum entropy algorithm described in [Ca2010a], to the 

computational and experimental information described in (1.1) through (1.15) indicates that 

the most objective probability distribution for this information is a multivariate Gaussian of 

the form 

 



 7

     
 

 
    1

1 2

1
2

2
†

j

exp Q
p | d d , Q , z

det 


        
z

z C z z z z C z
C

  (1.16) 

 

where: 

 

  
0

m

 
   

α α
z

r r
,      10 0 0 0 tN

, , , ,
 

 
 

α α α α   ,    (1.17) 

 

  r

r m

 




 
 

C C
C

C C
,       (1.18) 

 

with 

 

   

11 12

21 22

t tN N

... ...

... ...

... ... ... ...

... ... ...

 

 








 



 

C C

C C
C

C

,

11 12

21 22

t t

r r

r r
r

N N
r

... ...

... ...

... ... ... ...

... ... ...

 

 








 



 

C C

C C
C

C

 and 

   

11 12

21 22

t t

m m

m m
m

N N
m

... ...

... ...

... ... ... ...

... ... ...





 



 

C C

C C
C

C

. 

 

The posterior information, which is contained in (1.16) and (1.12), can now be condensed 

into a recommended best-estimate value  be 
z  at a time node   for the parameters α  and 

responses r , together with corresponding best-estimate recommended uncertainties for these 

quantities. If a loss function is given, decision theory indicates how these best-estimate 

quantities are to be computed. If no specific loss function is provided, the recommended best-

estimate updated posterior mean vector  be 
z  and its respective best-estimate posterior 

covariance matrix are usually evaluated by assuming “quadratic loss”. In such a case, the bulk 

of the contribution to the distribution  p |z C  in (1.16) is extracted by computing it at the 

point in phase space where the respective exponent attains its minimum, subject to (1.12). 

Subsequent computations are facilitated by recasting (1.12) in the form 



 8

 

   0  Z α z d 0 ,   0
m d R α r ,    (1.19) 

 

where  1 tN
m m m m, , , ,  r r r r  is the vector comprising all of the experimentally measured 

responses,  0
m d R α r  is a vector of “deviations” reflecting the discrepancies between the 

nominal computations and the nominally measured responses, while Z  denotes the 

partitioned matrix 

 

   

11

t tN N

;

 
 

   
  


  



I 0

Z S U U

0 I

,   (1.20) 

where 1 t, , ,N ,  I   denotes the identity matrix of corresponding dimensions.  

Computing the stationary point of  Q z  subject to (1.19) poses a constrained minimization 

problem which can be solved by introducing Lagrange multipliers, λ , to construct the 

augmented Lagrangian functional  P ,z λ  defined as 

 

       
0

02
be

† be
be

m

P , Q min, at
            

α α
z λ z λ Z α z d z z

r r
.  (1.21) 

 

where  1 tN,..., ,...,λ λ λ λ  denotes the corresponding vector of Lagrange multipliers. In the 

above expression, the superscript “be” denotes “best-estimated values”, and the factor “2” 

was introduced for convenience in front of λ  in order to simplify the subsequent algebraic 

derivations. The point bez  where the functional  P ,z λ  attains its extremum (minimum) is 

defined implicitly through the conditions 

 

      beP , , P , , at    z λz λ 0 z λ 0 z z .    (1.22) 

 

The solution to the above constrained minimization problem leads to the following final 

results for the predictive best-estimate parameters, responses, and their corresponding reduced 

uncertainties (covariance matrices) are as follows: 

1. The best-estimate predicted nominal values for the calibrated (adjusted) parameters: 
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      10 0 0†
be

r d 
           

α α C C S α C α d .   (1.23) 

 

In component form, the above expression for the calibrated best-estimate parameter values 

becomes 

 

       0

1 1 1
1

t tN N
be †

r td , , ,N
     

 
  


  

            
        

  α α C C S K d  , (1.24) 

where d
K  denotes the corresponding  ,  -element of the block-matrix 1

d
C , with the 

block-matrix   0
dC α  defined as follows: 

 

  
      

     

0 0 0

0 0 0

†
† † †

d

†

rc r r m . 

           

         

C α dd r S α α r α S α

C α C S α S α C C

  (1.25) 

 

In component form, the matrix dC  is expressed as 

 

     

   

1 1 111 11 11

1 1 1

11 111 11 11 11 1

1

111 1

1

t t t

t t t t t t t t t

t
t

t

t
t

t t t t

N N N
d rc m rc md

d

N N N N N N N N N
rc m rc md d

N NN† †
r r r r

N NN N N N† †
r r r r


   



   
   







    
   

    
        

 



 





 
     





  



C C C C C C

C

C C C CC C

C S S C S C C S

C S S C C S S C
1

t

t

N
N

.



 
 
 
 
 
 

  
    



 (1.26) 

 

2. The best-estimate predicted nominal values for the calibrated (adjusted) responses: 

 

        10 0†
be

m m r d
           

r α r C C S α C α d .   (1.27) 

 

At a specific time node  , each component  be 
r of  ber α  has the explicit form 
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       
1 1 1

1
t tN N

be †
m m r td , , ,N

    


  


  

            
        

  r r C C S K d  . (1.28) 

 

3. The expressions for the best-estimate predicted covariances be
C  and be

rC , corresponding 

to the best-estimate parameters beα  and responses  ber α , together with the predicted best-

estimate parameter-response covariance matrix be
rC : 

 

  
  

     10 0 0

†be be be

†
d d d ,



  



  

            

C α α α α

C C α C α C α

    (1.29) 

 

  
     

     10 0 0

†
be be be
r

†
m r d d r d ,



  

            

C r r α r r α

C C α C α C α

    (1.30) 

 

  
    

     10 0 0

†
be be be be
r r

†
r r d d d ,

 

 



   

            

C C α α r r α

C C α C α C α

    (1.31) 

 

where 

 

       0 0 †
†

rd m m r ,
        

C α r r d C C S α     (1.32) 

and 

        0 0 0 †
†

d r .  
        

C α α α d C C S α    (1.33) 

 

For completeness, the block-matrix components, which correlate two (distinct or not) time-

nodes, of the above calibrated best-estimate covariance matrices are given below: 
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     
1 1 1 1

t tN N
be †

r rd

        
     

      

   
      

      
  C C C C S K C S C , (1.34) 

     
1 1 1 1

t tN N
be †
r m m r m rd

        
 

      

   
      

      
  C C C C S K C S C , (1.35) 

     
1 1 1 1

t tN N
be †
r r m r rd

        
    

      

   
      

      
  C C C C S K C S C . (1.36) 

 

Note in Eq. (1.29) that a symmetric positive matrix is subtracted from the initial parameter 

covariance matrix C ; hence, in this sense, the best-estimate predicted parameter uncertainty 

matrix be
C  has been reduced by the calibration (adjustment) procedure, through the 

introduction of new information from experiments. Similarly, a symmetric positive matrix is 

subtracted in (1.30) from the initial covariance matrix mC of the experimental-responses; 

hence, the best-estimate predicted response covariance matrix be
rC  has been improved 

(reduced) through the introduction of new experimental information. Furthermore, (1.31) 

indicates that the calibration (adjustment) procedure will introduce correlations between the 

calibrated (adjusted) parameters and responses even if the parameters and response were 

initially uncorrelated, since 0be
r C  even if 0r C  , i.e., 

 

     10 0be
r m rc m 


       C C C α C S α C , when 0r C .   (1.37) 

 

As the above expression indicates, the adjustment (calibration) modifies the correlations 

among the parameters through couplings introduced by the sensitivities of the participating 

responses. In the calibration procedure, the sensitivities play the role of weighting functions 

for propagating the initial parameter-covariances and experimental-response covariances to 

the adjusted best-estimate predicted quantities. Thus, as indicated by Eqs. (1.29) through 

(1.31), the incorporation of additional (experimental) information in the adjustment 

(calibration) process reduces the variances of the adjusted parameters and responses while 

also modifying their correlations. 

Note that Eq. (1.30) expresses the best-estimate response covariance matrix be
rC  in terms of 

the initial covariance matrix mC  of the experimental-responses. Alternatively, it is of interest 

to derive the expression of the computed best-estimate response covariance matrix, be
rcC , 
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directly from the model (the subscript “rc”, denotes “computed response”, to distinguish it 

from the covariance be
rC , which is obtained directly from the calibration/adjustment process). 

The starting point for computing be
rcC  is the linearization of the model, similar to that shown in 

Eq. (1.12), but around beα  instead of 0α , i.e. 

 

      be be be higher order terms   r R α S α α α .    (1.38) 

It follows from Eq. (1.38) that 

 

 

            

   
          10 0 0

† ††be be be be be be be
rc

†
be be be

† †
be be

r d r



    


          

       
                          

C r R α r R α S α α α α α S α

S α C S α

S α C C C S α C α C S α C S α



 (1.39) 

 

Comparing Eq. (1.39) to Eq. (1.30) reveals that, in general, be be
rc rC C  since    0be S α S α . 

Nevertheless, when the model is “perfect” (i.e., free of higher-order numerical errors) and 

exactly linear, then the sensitivity matrix S  is independent of the parameter values α , i.e.,  

 

     0be  S α S α S ,  for “perfect” and linear models,   (1.40) 

 

Using (1.40) in (1.39) reduces the later expression to 

 

  

   
   

1

1

be † †
rc r d r

† †
rc rc r rc e r r rc r

be
r , " perfect"

    

   





     

        



C S C C C S C C SC S

C C SC C C C S SC C C S

C for linear models.

  (1.41) 

 

It is important to note that the computation of the best estimate parameter and response 

values, together with their corresponding best-estimate uncertainties --see Eqs. (1.23), (1.27), 

(1.29), (1.30) and (1.31) -- require the inversion of a single matrix, namely the matrix  0
dC α  

defined in Eq. (1.26). This is usually advantageous in practice, since the order of the matrix 
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 0
dC α  is given by the number of measured (or computed responses), which is most often 

considerably smaller that the number of model parameters under consideration. 

On the other hand, when the number of parameter exceeds the number of responses, it is 

possible to derive alternative expressions for the best-estimate calibrated parameters and their 

corresponding best-estimate covariances, by performing all derivations in the “parameter 

space” rather than in “response space”. This entails using Eq. (1.12) to eliminate the response 

(variables) r  at the outset, and carrying out the minimization procedure solely for the 

parameters (variables) α . Equivalently, as shown by [Ca2010a], the Sherman-Morrison-

Woodbury extension can be employed to obtain the alternative expression 

 

  

 
 

11

11 1 1 1 1

†
d rc r r m

† †

†
m r r

;

.

 



 



    

   

  

  

C C C S SC C

A A S C S A S S A

A C C S SC

   (1.42) 

 

The above expression provides the bridge between the “response-space” and “parameter-

space” formulations. This expression also highlights the fact that the response-space 

formulation requires a single inversion of a square symmetric matrix (namely, the matrix dC ) 

of the same dimensions as the number of responses. In contradistinction, the “parameter 

space” formulation requires the inversion of three symmetric matrices, two of which have 

dimensions equal to the number of parameters and one of dimensions equal to the number of 

responses. Hence, from a computational standpoint, the “response-space” formulations should 

be used whenever possible. 

In view of Eq. (1.26), it is essential to note that the inverse matrix, 1
d
C , incorporates 

simultaneously all of the available information about the system parameters and responses, at 

all time nodes [i.e., 1 2 t, ,...,N  ]. Specifically, at any time node  , 1
d
C  incorporates 

information not only from time nodes prior in time to   (i.e., information regarding the "past" 

and "present" states of the system) but also from time nodes posterior in time to   (i.e., 

information about the “future” states of the system). Through the matrix 1
d
C , at any specified 

time node  , the calibrated best-estimates parameters  be 
α  and responses  be ber α r , 

together with the corresponding calibrated best-estimate covariance matrices  be 
C ,  be

r


C , 
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and  be
r


C  will also incorporate automatically all of the available information about the 

system parameters and responses at all time nodes [i.e., 1 2 t, ,...,N  ]. 

In this respect, the methodology presented in this section is conceptually related to the 

"foresight" aspects encountered in decision analysis. It is also important to note that, in 

practice, the application of the methodology developed in this section involves two distinct 

computational stages. A complete sensitivity data base (i.e., sensitivities nis  at all times nodes 

1 t, , ,N    ) needs to be generated “off-line” prior to performing the “data assimilation” and 

“model calibration” (or data adjustment) stages. All sensitivities are subsequently combined 

with appropriate covariance matrices to compute calibrated best-estimate responses, 

parameters, and best-estimate covariance matrices. 

Because of the “foresight” and “off-line” characteristics, the methodology presented in this 

Section can be called the “off-line with foresight” data assimilation and adjustment (model 

calibration) methodology, underscoring that all sensitivities are generated separately, prior to 

performing the uncertainty analysis, and that foresight characteristics are included in the 

calibration procedure. Since the incorporation of foresight effects involves the inversion of 

the matrix dC , this methodology is best suited for problems involving relatively few time 

nodes. For large-scale highly nonlinear problems involving many time nodes, the matrix dC  

becomes very large, requiring large amounts of computer storage; the inversion of dC  may 

become prohibitively expensive in such cases. These difficulties can be reduced at the 

expense of using less than the complete information available at any specific time node. For 

example, even in time-dependent problems in which the entire time history is known (e.g., 

transient behavior of reactor systems), one may nevertheless choose to use only information 

up to the current time index, and disregard the information about “future” system states. 

On the other hand, in dynamical problems such as climate or weather prediction, in which 

the time variable advances continuously and states beyond the current time are not known, 

information about future states cannot be reliably accounted for anyway. Thus, the most 

common way of reducing the dimensionality of the data assimilation and model calibration 

problem is to disregard information about future states and limit the amount of information 

assimilated about “past states”. Data assimilation and model calibration procedure using such 

a limited amount of information can be performed either off-line or on-line, assimilating the 

new data as the time index advances. 



 15

The simplest case of dynamic data assimilation and model calibration is when these 

operations are performed by using information on-line from only two successive time-steps. 

In this particular case, the expressions given by Eqs. (1.24), (1.28), (1.34), (1.35) and (1.36) 

for the best-estimate predicted calibrated quantities reduce to the following explicit formulas: 

The components  kbeα , representing the calibrated best-estimates for the system 

parameters at time node k , can be written in a particular form of Eq. (1.24), as follows: 

 

  
   

 

0

1 1 1
1 2

k kbe

k k
k k †

r td
k k k

, k , ,...,N .
    

 
       



           
        

  

α α

C C S K d
  (1.43) 

 

The vector  kber , representing the best-estimates predicted values for the system 

parameters at a time node k , take on the following particular form of Eq. (1.28): 

 

  
   

 
1 1 1

1 2

k kbe
m

k k
k k †
m r td

k k k

, k , ,...,N .
    


       



           
        

  

r r

C C S K d
  (1.44) 

 

The components  be 
C ,  1, k , k    , of the calibrated best-estimate covariance matrix, 

be
C , for the calibrated best-estimates system parameters is obtained by particularizing Eq. 

(1.34) to two consecutive time nodes  1k , k , 1 2 tk , ,...,N , leading to 

 

    
1 1 1 1

1 1 1 2

k k
be †

r rd
k k k k

tfor k , k; and k , k; k , ,...,N .

        
     

   

 
       

   
      

      
    

   C C C C S K C S C , (1.45) 

 

4. The components  be
r


C ,  1, k , k    , of the calibrated best-estimate covariance matrix 

be
rC , for the best-estimate responses takes on the following particular form of Eq. (1.35): 
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    
1 1 1 1

1 1 1 2

k k
be †
r m m r m rd

k k k k

tfor k , k; and k , k; k , ,...,N .

        
 

   

 
       

   
      

      
    

   C C C C S K C S C , (1.46) 

 

5. The components  be
r


C ,  1, k , k    , of the best-estimate response-parameter 

covariance matrix be
rC  take on the following form: 

 

    
1 1 1 1

1 1 1 2

k k
be †
r r m r rd

k k k k

tfor k , k; and k , k; k , ,...,N .

        
    

   

 
       

   
      

      
    

   C C C C S K C S C  (1.47) 

 

For each time node, 1 2 tk , ,...,N , the quantities d
K  which appear in Eq. (1.43) through 

(1.47) have the following expressions: 

 

  
 

     

111 1 1 1 1 1

1 1 11 1 1 1 1 1 1 1

k ,k k ,k k ,k k ,k k ,k
d d d d d

k ,k k ,k k ,k k ,k k ,k k ,k
d d d d d d

     

         

    

 

K C C C C

C C C K C C

  (1.48) 

  
   
 

11 11 1 1 1 1 1 1 1

11 1 1

k ,k k ,k k ,k k ,k k ,k k ,k k ,k
d d d d d d d

k ,k k ,k k ,k
d d d

        

  

     

 

K C C C C C C

C C K

  (1.49) 

  
 

     

111 1 1 1

1 1 11 1 1 1

k ,k k ,k k ,k k ,k k ,k
d d d d d

k ,k k ,k k ,k k ,k k ,k k ,k
d d d d d d

   

     

    

 

K C C C C

C C C K C C

   (1.50) 

  
   
 

11 11 1 1 1 1 1

1 1 1 1

k ,k k ,k k ,k k ,k k ,k k ,k k ,k
d d d d d d d

k ,k k ,k k ,k
d d d

      

   

     

 

K C C C C C C

C C K

  (1.51) 

 

For time-independent problems, the (time-dependent) results derived in Eqs. (1.43) 

through (1.47) reduce to expressions that are formally identical to Eqs. (1.23), (1.27), (1.29), 

(1.30) and (1.31). Hence, the later expressions can be used directly to obtain the best-estimate 

predicted values for parameters, responses, and their respective covariances. Recall that 

modeling errors can be treated in a manner similar to parameter uncertainties, by including the 
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discretization intervals among the components of the vector α  of model parameters, as 

detailed in [Ca2003]. 

Finally, it is important to emphasize that the explicit formulas presented in this Section are 

based on the linearized relationship between responses and parameters that customarily 

underlies the “propagation of moments” method, i.e., Eq. (1.12), without considering 

nonlinearities explicitly. Nevertheless, this limitation is not as severe as it may appear at first 

glance, since nonlinear relations between computed responses and model parameters can be 

treated by considering Eq. (1.12) iteratively, starting with the known nominal values of the 

quantities involved. The first iteration (in such an iterative procedure) would yield all of the 

major explicit results derived in Eqs. (1.23), (1.27), (1.29), (1.30) and (1.31).The subsequent 

iteration would the results of Eqs. (1.23), (1.27), (1.29), (1.30) and (1.31) as the “prior 

information” in a second application of these formulas, and compute the new (“second-

iteration”) best-estimate quantities by using once again these formulas. This iterative 

procedure would be continued until the best-estimated values would converge within a small, 

user-specified, convergence criterion. The actual application of the model calibration 

(adjustment) algorithms –see Eqs. (1.23), (1.27), (1.29), (1.30) and (1.31), to a physical 

system is straightforward, in principle, although it can become computationally very 

demanding in terms of data handling and computational speed requirements. 

The minimum value,  be
minQ Q z , of  Q z takes on the following expression: 

 

      10be †
min dQ Q


    z d C α d ,  0

m d R α r .   (1.52) 

 

As the above expression indicates,  be
minQ Q z  represents the square of the length of the 

vector d , measuring (in the corresponding metric) the deviations between the experimental 

and nominally computed responses, and can be evaluated directly from the given data (i.e., 

given parameters and responses, together with their original uncertainties) after having 

inverted the deviation-vector uncertainty matrix  0
dC α . It is also very important to note that 

 be
minQ Q z  is independent of calibrating (or adjusting) the original data. As the dimension of 

d  indicates, the number of degrees of freedom characteristic of the calibration under 

consideration is equal to the number of experimental responses. In the extreme case of 
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absence of experimental responses, no actual calibration takes place since  0d R α , so that 

the best-estimate parameter values are just the original nominal values, i.e.,    0k kbe α α ; an 

actual adjustment occurs only when at least one experimental response is included. 

Replacing Eq. (1.52) in Eq. (1.16) shows that the bulk of the contribution to the joint 

posterior probability distribution, which comes from the point bez z , takes on the form of the 

following multivariate Gaussian distribution: 

 

  
   

     10 0 0

1
2
1
2

be be

†

m d m

p | exp Q

exp .


    
                

z C z

r R α C α r R α

  (1.53) 

 

The above relation indicates that experimental responses can be considered as random 

variables approximately described by a multivariate Gaussian distribution with means located 

at the nominal values of the computed responses, and with a covariance matrix  0
dC α . In 

turn, the random variable  be
minQ Q z  obeys a 2 -distribution with n  degrees of freedom, 

where n  denotes the total number of experimental responses considered in the calibration 

(adjustment) procedure. Since  be
minQ Q z  is the “ 2  of the calibration (adjustment) at 

hand“, it can be used as an indicator of the agreement between the computed and 

experimental responses, measuring essentially the consistency of the experimental responses 

with the model parameters. For model calibration (adjustment), it is important to assess if: (i) 

the response and data measurements are free of gross errors (blunders such as wrong settings, 

mistaken readings, etc), and (ii) the measurements are consistent with the assumptions 

regarding the respective means, variances, and covariances. As has been noted there, when the 

distance between any two nominal response values, 0 0
i jR R , is smaller or at least not much 

larger than the sum of the corresponding uncertainties, say i j  , the data is considered to be 

consistent or to agree “within error bars”. However, if the distances 0 0
i jR R  are larger than 

 j k  , the data are considered to be inconsistent or discrepant. Inconsistencies can be 

caused by unrecognized or ill-corrected experimental effects (e.g., background, dead time of 

the counting electronics, instrumental resolution, sample impurities, calibration errors, etc,). 
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Note that the probability that two equally precise measurements yield a separation greater 

than 2i j     is very small, namely  1 0 157erfc .  for Gaussian sampling distributions with 

standard deviation  . Thus, although there is a nonzero probability that genuinely discrepant 

data do occur, it is much more likely that apparently discrepant experiments actually indicate 

the presence of unrecognized errors, an issue addressed in the work of [Ca2010b]. 
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2  Illustrative  Examples 
 

Two models have been considered as examples for the time-independent (Paragraph 2.1) and 

time-dependent (Paragraph 2.2) use of the MULTI-PRED module. 

 

2.1 A Simple Time-Independent Neutron Diffusion Model   
 

More details of this model (a steady-state neutron diffusion problem) may be accessed in the 

reference [Ca2014]. 

Consider the diffusion of monoenergetic neutrons due to distributed sources of strength S  

3neutrons cm s  within a slab of material of extrapolated thickness 2a . The linear neutron 

diffusion equation that models mathematically this problem is 
 

    
2

2 0a

d
D S , x a,a ,

dx

           (2.1) 

 

where  x  is the neutron flux, D  is the diffusion coefficient, a  is the macroscopic 

absorption cross section, and S  is the distributed source term. Note that, in view of the 

problem’s symmetry, the origin 0x   has been conveniently chosen at the middle (center) of 

the slab. The boundary conditions for Eq. (3.1) are that the neutron flux must vanish at the 

extrapolated distance, i.e., 
 

     0a .         (2.2) 

 

A typical response R  for the neutron diffusion problem modeled by Eqs. (2.1) and (2.2) 

would be the reading of a detector placed within the slab, for example, at a distance b  from 

the slab’s midline at 0x  . Such a response is given by the reaction rate 

 

      dR b , e      (2.3) 
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where d  represents the detector’s equivalent reaction cross section. The system parameters 

for this problem are thus the positive constants a , D , S , and d , which will be considered 

to be the components of the vector α  of system parameters, defined as 

 

    a d, D, S , . α      (2.4) 

 

Consider that the components of  a d, D, S , α are imprecisely (e.g., experimentally) 

determined quantities, with mean nominal values  0 0 0 0 0
a d, D , S , α  and standard 

deviations  a d, D, S ,      h  , respectively. The vector  xe  appearing in the 

functional dependence of R  in Eq. (2.3) denotes the concatenation of  x  with α , defined 

as 

 

    , .e α       (2.5) 

 

The nominal value  0 x  of the flux is determined by solving Eqs. (2.1) and (2.2) for the 

nominal parameter values  0 0 0 0 0
a d, D , S , α , to obtain 

 

    
0

0 0 0
0 1 a
a

S cosh xk
x , k D ,

cosh ak
 




  
 

   (2.6) 

 

where 0 0
ak D  is the nominal value of the reciprocal diffusion length for our illustrative 

example. Inserting Eq. (2.6) together with the nominal value 0
d  into Eq. (2.3) gives the 

nominal response 

 

      
0 0

0 0 0 0
0 1d

a

S coshbk
R , , .

cosh ak

 



  

 
e e α    (2.7) 
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Note that even though Eq. (2.1) is linear in  , the solution  x  depends nonlinearly on 

α , as evidenced by Eq. (2.6). The same is true of the response  R e . Even though  R e  is 

linear separately in   and in α , as shown in Eq. (2.3), R  is not simultaneously linear in   

and α , which leads to a nonlinear dependence of  R e  on α . This fact is confirmed by the 

explicit expression of  R e  given in Eq. (2.7). 

The sensitivities of the system response to the system parameters have been computed 

efficiently using the Adjoint Sensitivity Analysis Procedure (ASAP), for details see [Ca2014]. 

The expressions of the partial sensitivities of  R e  to the various parameters have been 

obtained as: 

 
0

0 1d

a

R coshbk
,

S cosh ak





    

     (2.8) 

 
0

0 1
d a

R S coshbk
,

coshak 


    
     (2.9) 

 

   

0 0 0 0

2 200 00

11
2

d d

a aaa

R S coshbk S a sinh ak coshbk b sinhbk coshak
,

coshak coshakD

 
 

 
     

  (2.10) 

 

 

0 0 0

20 0 0

1
2

a d

a

R S a sinh ak coshbk b sinhbk coshak
.

D D D cosh ak

 


 
 


 (2.11) 

To illustrate with numerical values the application of these formulas, consider that the slab 

of extrapolated thickness a  consists of water with material properties having the following 

nominal values: 0 10 0197a . cm ,  0 0 16D . cm , containing distributed neutron sources 

emitting nominally 0 7 3 110S neutrons cm s .     For the sake of argument, consider that all of 

these parameters are uncorrelated and have the following relative standard deviations: 
0 0 5a a/ % ,   0 0 5D / D % ,  0 0 15S / S %.    

Furthermore, consider that measurements are performed with an infinitely thin detector 

immersed at different locations, x b , in the water slab, having an indium-like nominal 
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detector cross section 0 17 438d . cm  , uncorrelated to the other parameters, with a standard 

deviation 0 0 10d d/ %.   Collecting this information (and omitting, for simplicity, the 

respective units), it follows that the covariance matrix for the model parameters is 

 

 

 
 

 
 

24

23

26

21

9 85 10 0 0 0

0 8 0 10 0 0

0 0 1 5 10 0

0 0 0 7 44 10

.

.

.

.









  
  

  
 

 
  

C .  (2.12) 

To illustrate the effects of several consistent measurements, and also to test that symmetric 

measurements (with respect to the vertical plane through the origin) do preserve the solution’s 

symmetry, we consider four consistent ( 2 1 21.  ) measurements, taken at the symmetric 

locations 10 10cm, cm,  40 40cm, cm , and having the following values and relative 

standard deviations (abbreviated as “rsd”): 

   9 3 1
1 110 3 40 10 5m mr r meas.at cm . n cm sec ; rsd r %;        (2.13) 

   9 3 1
2 210 3 59 10 6m mr r meas.at cm . n cm sec ; rsd r %;         (2.14) 

   9 3 1
3 340 3 77 10 5m mr r meas.at cm . n cm sec ; rsd r %;         (2.15) 

   9 3 1
4 440 3 74 10 5m mr r meas.at cm . n cm sec ; rsd r %;        (2.16) 

 

Thus, the covariance matrix of the measured responses is 

 

 

 
 

 
 

28

28

28

28

1 7 10 0 0 0

0 2 15 10 0 0

0 0 1 89 10 0

0 0 0 1 87 10

m

.

.

.

.

  
  

  
 

 
  

C   (2.17) 

 

The nominal values of the computed responses at the above locations are as follows: 
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    9 3 1
1 10 3 77 10r comp. at cm . n cm sec ;        (2.18) 

 

    9 3 1
2 10 3 77 10r comp. at cm . n cm sec ;         (2.19) 

 

    9 3 1
3 40 3 66 10r comp. at cm . n cm sec ;         (2.20) 

 

    9 3 1
4 40 3 66 10r comp. at cm . n cm sec ;        (2.21) 

 

As expected, the above computed responses confirm the problem’s symmetry. The 

matrices S  and relS , with  j jstd . dev.  ,  containing the nominal values of the 

absolute and relative sensitivities, respectively, are: 

 
11 9 2 8

11 5 2 8

11 5 2 8

11 9 2 8

1 92 10 1 33 10 3 78 10 5 08 10
1 92 10 1 33 10 3 78 10 5 08 10
1 76 10 1 24 10 3 66 10 4 92 10
1 76 10 1 24 10 3 66 10 4 92 10

i

j

. . . .

. . . .R

. . . .

. . . .



      
                              

S ,  (2.22) 

 
6

6

1 2

1 2

0 99999 5 41 10 1 00 1 00
0 99999 5 64 10 1 00 1 00

9 46 10 5 64 10 1 00 1 00
9 46 10 5 41 10 1 00 1 00

ji
rel

j i

. . . .

. . . .R
.

R . . . .

. . . .








 

 

   
                       

S    (2.23) 

 

Using the above sensitivities together with the covariance matrix shown in Eq. (2.12) 

yields the following value for the covariance matrix of the computed responses: 

 
17 17 17 17

17 17 17 17

17 17 17 17

17 17 17 17

4 99 10 4 99 10 4 82 10 4 82 10
4 99 10 4 99 10 4 82 10 4 82 10
4 82 10 4 82 10 4 66 10 4 66 10
4 82 10 4 82 10 4 66 10 4 66 10

†
rc

. . . .

. . . .

. . . .

. . . .



    
 

          
      

C SC S   (2.24) 
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Note that the particular values (essentially either unity or zero) of the components of the 

sensitivity matrix lead to a fully correlated covariance matrix for the four computed 

responses. 

Applying the data assimilation and adjustment procedure to the above information leads to the 

following best estimate parameter values, relative standard deviations (abbreviated as “rsd”), 

and covariances:  

 

   10 0198 4 79be be
a a. cm , rsd . %;       (2.25) 

 

   0 1591 5 00be beD . cm, rsd D . %;      (2.26)  

 

   6 3 19 85 10 9 21be beS . n cm s , rsd S . %;         (2.27) 

 

   17 388 8 53be be
d d. cm , rsd . %;       (2.28) 
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




 


 
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
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  (2.29) 

Here are the best estimate response values, relative standard deviations (abbreviated as “rsd”), 

and covariances:  

 

    9 3 1
1 110 3 66 10 2 59be beat cm : r . n cm sec ; rsd r . %;        (2.30) 
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    9 3 1
2 210 3 66 10 2 59be beat cm : r . n cm sec ; rsd r . %;         (2.31) 

 

    9 3 1
3 340 3 56 10 2 58be beat cm : r . n cm sec ; rsd r . %;         (2.32) 

 

    9 3 1
4 440 3 56 10 2 58be beat cm : r . n cm sec ; rsd r . %;        (2.33) 

 

15 15 15 15

15 15 15 15

15 15 15 15

15 15 15 15
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9.04 10 9.04 10 8 64 10 8 64 10
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 

         
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C    (2.34) 

Predicted response-parameter correlation matrix: 

 

3 4 13 6

3 4 13 6

3 4 13 6

3 4 13 6

-7.81 10 3.89 10 1.38 10 4.57 10
-7.81 10 3.89 10 1.38 10 4.57 10
1 50 10 4 13 10 1 64 10 5 41 10
1 50 10 4 13 10 1 64 10 5 41 10

be
r .

. . . .

. . . .


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 

          
       

C    (2.35) 

 

Figure 2.1.1: Four precise consistent precise measurements ( 2 1 21.  ) 

 

Figure 2.1.1 shows the spatial variation of the original nominal computed values and standard 

deviations (depicted using solid lines) together with the best estimate response values and 

corresponding standard deviations (depicted using broken lines).  The value of 2 1 21.   

indicates a very good consistency among the four measurements. 
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2.2 Time-Dependent A Spent Fuel Dissolver Model 
 

The “dissolver” is a mechanical and chemical module that produces feed stock for the 

chemical separation processes employed in the “head end” segment of an aqueous nuclear 

fuel reprocessing facility. The specific dissolver model considered in this work was originally 

developed by Lewis and Weber [Le1980], and has been selected due to its applicability to 

material separations and its potential role in diversion activities associated with proliferation 

and international safeguards. The equations that model the time dependent start-up conditions 

for the dissolver are presented in this section . The dissolver model comprises sixteen time-

dependent state functions and 635 model parameters related to the model’s equation of state 

and inflow conditions. In particular, the most important response for the dissolver model is 

the time-dependent nitric acid in the compartment furthest away from the inlet, because this is 

the location where Lewis and Weber [Le1980] reported measurements (unique in the open 

literature) at 307 time instances, , 1,..., 307it i I  , over a period of 10.5 hours.  

The predictive modeling formalism presented in Section 1 is subsequently used to combine 

the computational results with the experimental information measured in the compartment 

furthest from the inlet, and then predict optimal values and uncertainties throughout the 

dissolver. The numerical results presented in this section show that, even though the 

experimental data pertains solely to the compartment furthest from the inlet (where the data 

was measured), the predictive modeling procedure actually improves the predictions and 

reduces the predicted uncertainties not only in the compartment in which the data was actually 

measured, but throughout the entire dissolver including the compartment furthest from the 

measurements. This is because the predictive modeling methodology combines and transmits 

information simultaneously over the entire phase-space, comprising all time steps and spatial 

locations. Further details are provided in References [Ca2015, Pe2015a, Pe2015b, Pe2015c, 

Ca2016] . 

 
The spent nuclear fuel dissolver model considered in this work is schematically depicted in 

Figure 2.2.1. The dissolver start-up conditions involve a non-ideal mixture of nitric acid and 

water at ambient conditions.  
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Figure 2.2.1: Liquid flow diagram for the compartmented rotary dissolver (after Lewis and 

Weber [Le 1980]) 

The liquid flows through the dissolver’s eight compartments, labeled using the superscript k, 

1,...,8k  , from compartment #8 towards compartment #1. Compartment 9 is used for 

rinsing, and is not relevant to this work. The equation modeling the time and spatial variation 

of the physical and chemical processes occurring within the dissolver’s start-up were 

originally developed by Weber and Lewis [Le1980] and subsequently modified by Peltz and 

Cacuci [Pe2015b], to obtain the following system of first-order nonlinear ordinary differential 

equations: 

               1( 1) 0, 1,...,7, 0                   
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where 

  
 

     0
0 0, 1,...,8,

0

pk
k

k
V V

h if V t V k
C V G

otherwise

          

 


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The quantities appearing in the above equations are defined as follows: (i)    kV t denotes the 

volume of the liquid phase, in units of liters   ; (ii)    k
a t  denotes the volumetric mass 

concentration of nitric acid of the liquid phase, in units of  g  ; (iii)    in
a t  denotes the 

inlet nitric mass concentration; (iv)    inf t  denotes the inflow volumetric flow rate; (iv) the 

scalar quantities G , 0V and p  are experimentally determined parameters, with nominal 

(mean) values and estimated relative standard deviations presented in Table 2.2.1.  

The initial conditions for above equations are as follows:  

        ( )
00 0.0 0 , 1,...,8.k k k

a V V k           

The compatibility condition for a fully developed initial flow implies that 

   0 0, 1,...,8kd
V k

dt
  ; in turn, this condition implies that  

   
1( )

0 00 1,...,8.
p

inkV G f V k           

The equation of state for the dissolver model is  

     ( )63 , 1,...,8.k k
at a t b k          

where    k t  denotes the volumetric mass density of the liquid phase, in units of gram/liter 

 g  , and where a and b  are experimentally determined scalar parameters with nominal 

(mean) values and estimated relative standard deviations presented in Table 2.2.1. 

The time-dependent nominal value of the inflow volumetric flow rate,    inf t , is obtained 

from the following expression:  

    

where  denotes the liquid solution mass rate inflow in units of gram/hour  g h . In 

particular, the initial nominal value of    inf t  is     30 36.79 10 /1001.2inf    at 0t  . The 
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time-dependent variations of the inlet mass flow rate of solution, , and inlet nitric 

mass concentration,    in
a t , are presented in Figures 2.2.2 and 2.2.3, respectively. The 

estimated relative standard deviations of    in
a t  and  are presented in Table 2.2.1.  

Table 2.2.1: Nominal (mean) values and corresponding standard deviations for model 
parameters. 

 

Parameter 

 
   in
a t  

 

 

 

a  

 

b  

 

0V  

 
p  

 

G  

Nominal 

value 
See 

Fig. 2
 

See  

Fig. 3
 

0.48916  

 g



   
4.8
  

2.7  
 

0.201941
  

Standard 

deviation 

 

20% 

 

10% 

 

10% 

 

10% 

 

10% 

 

10% 

 

10% 

 

 

  

Figure 2.2.2: Time variation of the inlet mass flow rate of solution,  kg/ h . 
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Figure2.2.3: Time variation of the inlet nitric acid mass concentration,     / 63in
a t [moles]. 

 

The dissolver model comprises sixteen state variables                1 8 1 8,..., , ,...,  
 a at t V t V t  

as well as 635 model parameters 
                               1 8 1 8

1 307 1 307 0,..., , ,..., , 0 0 0 ,..., 0 , , , , ,       in in in in
a a a at t m t m t V V a b V p G .  

At any time instance,  , the system parameters are considered to be uncorrelated variates, 

denoted as  1n |n , N ,  
 α  with mean values, denoted as  0 

α , and standard 

deviations as given in Table 2.2.1. Solving the equations presented in the foregoing at the 

nominal values for the model’s parameters yields the time-dependent evolutions of the 

computed nominal values of the nitric acid concentrations in all of the compartments. In 

particular, the computed nominal values for  (1)
,a nom t , (4)

, a nom , and (7)
, a nom , of the time-

dependent acid concentrations in compartments #1 (furthest from the dissolver’s inlet), #4 (in 

the dissolver’s middle section), and #7 (closest to the dissolver’s inlet), respectively, are 

depicted in Figure 2.2.4. The time evolutions of these concentrations are similar to each other, 

albeit time-delayed, as expected, and also resemble the time variation, depicted in          

Figure 2.2.3, of the inlet nitric acid mass concentration,     in
a t .  
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Figure 2.2.4: Time-evolution of the nominal values of the computed nitric acid concentrations 
(1)
, a nom , (4)

, a nom , (7)
, a nom , in compartments  #1, #4, and #7, respectively.  

 

The nitric acid concentration in compartment 1,  (1)
a t , was measured by Lewis and Weber 

[Le1980] at 307 time instances, , 1,..., 307it i I  , over a period of 10.5 hours. The nominal 

values of these measurements are denoted as  (1)
, a meas it , and are depicted using blue circles 

in Figure 2.2.5. Notably, these experimental results are unique in the open literature for a 

rotary dissolver. The relative standard deviation of each of these measurements has been 

estimated to be 5%. Figures 2.2.5 also depicts the time-evolution of the normalized nominal 

values of the computed nitric acid concentration in compartment #1, (1)
, a nom , which is 

obtained by solving the dissolver equations using the nominal values for the model’s 

parameters. The agreement between the nominal values of the computed and experimentally 

measured nitric concentration in compartment #1 is remarkable. 
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Figure 2.2.5: Red graph: time-evolution of the nominal values of the computed response of 
the nitric acid concentration,  (1)

, a nom t . Blue circles: experimentally measured nominal 

values,  (1)
, a meas it , of the nitric acid concentration, at time instances , 1,..., 307it i I   

(Lewis and Weber [Le1980]). 

 

 Numerical Results 

 

The optimally predicted ”best-estimate” nominal values for the model parameters result from 

applying Eq. (1.24), and the reduced predicted covariances (“uncertainties”) accompanying 

these predicted nominal values are computed using Eq. (1.34). Table 2.2.2 and Figures 2.2.6 

through 2.2.9 present the results of applying these equations for the scalar model parameters 

involved in the equation of state.  

Table 2.2.2: Initial and Predicted Nominal Values and Standard Deviations for the Scalar 
Model Parameters  

Scalar 
Parameters 

Nominal 
Values  

Predicted 
Values 

Nominal 
Relative 
Standard 
Deviation 

Predicted  
Relative 
Standard 
Deviation 

#1: a  0.48916  0.50621 10% 7.67834% 

#2: b   g  948.7   g  10% 4.54535% 



 34

#3: V0  4.8   5.123   10% 4.97098% 

#4: G 0.20194   0.20591   10% 9.82085% 

#5: p 2.7 2.61256 10% 9.44417% 

 

As Table 2.2.2 indicates, the uncertainties for these parameters are reduced from initially 10% 

to values as low as 4.5%. The uncertainty reduction is proportional to the sensitivity of the 

responses (i.e., acid concentrations) to the respective parameters. The predicted optimal 

values were also calibrated accordingly, as shown in Table 2.2.2, differing from their original 

nominal values.  

Figure 2.2.6 displays the initial correlation matrix for the scalar parameters listed in          

Table 2.2.2, which are uncorrelated, having a relative standard deviation of 10%. The 

numbers on the vertical axis are in units of (%)2, so the numbers shown are to be multiplied 

by 10-4, while the numbers on the two horizontal axes correspond to the parameter numbering 

in Table 2.2.2. The results after having applied Eq. (1.34) are displayed in Figure 2.2.7, which 

shows the predicted correlation matrix for the scalar parameters listed in Table 2.2.2. It is seen 

that the application of the predictive modeling methodology induces non-zero correlations 

among several of the parameters notably between parameters #4 and #5 (G and p) and, to a 

lesser extent, between parameters #2 and #3 (b and V0). The diagonal values in Figure 2.2.7 

are the predicted variances, i.e., the squares of the values shown in the last column of       

Table 2.2.1 
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Figure 2.2.6: Initial correlation matrix for the scalar parameters listed in Table 2.2.2. 

 

Figure 2.2.7: Predicted correlation matrix,  
beC , for the scalar parameters listed in       

Table 2.2.2. 

The results of applying Eqs. (1.24) and (1.34) for the time dependent inlet acid concentration, 
    in
a t , are depicted in Figures 2.2.8 and 2.2.9, respectively. The time-dependent calibration 

of the nominal value     in
a t  is relatively small, and so is the reduction in the corresponding 

time-dependent standard deviation, from the initial value of     20%    
in

a t .  

 

Figure 2.2.8: Time-dependent behavior of the difference between the nominal value,     in
a t , 

and the optimally predicted “best estimate” value,     best
a t , for the inlet acid concentration.  
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Figure 2.2.9: Time-dependent behavior of the original relative standard deviation 
    20%    
in

a t  (in red) and the optimally predicted “best estimate” relative standard 

deviation      
 

best
a t  (in black), for the inlet acid concentration. 

 

The results of applying Eqs. (1.24) and (1.34) to the time dependent mass flow rate, , 

are depicted in Figure 2.2.10 and 2.2.11, respectively. The time-dependent calibration of the 

nominal value  is also relatively small, and so is the reduction in the corresponding 

time-dependent standard deviation, from the initial value of     10%     inm t . 

 
Figure 2.2.10: Time-dependent behavior of the difference between the nominal value, 

, and the optimally predicted “best estimate” value, , for the inlet mass flow 

rate. 
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Figure 2.2.11: Time-dependent behavior of original relative standard deviation, 
    10%     inm t , and the optimally predicted “best estimate”      

  bestm t , for the inlet 

mass flow rate. 

The predicted best estimate nominal values for the nitric acid concentration responses are 

obtained using Eq. (1.28). Figure 2.2.12 presents the computed, experimental, and best 

estimate predicted nominal values for the nitric acid concentration in compartment #1. All of 

these values are in close agreement with one another.  

 

Figure 2.2.12: Computed, experimental, and best estimate predicted nominal values for the 
nitric acid concentration in compartment #1. 

 

The full covariance matrix of the computed acid concentration in compartment #1, which 

arises due to uncertainties in the model parameters and is obtained using Eq. (1.15), is 

depicted in Figure 2.2.13. As can be noted from this figure, the computed responses in the 

early stages of the transient, between time instances 5 - 75, are strongly (up to -0.86 
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[moles/l]2) anti-correlated in time with the responses computed towards the end of the 

transient, between time instances 266-307. At other time instances, the responses are weakly 

correlated, except for the responses between time instances 5-60, which are strongly (up to 

0.86 [moles/l]2) correlated to each other, and again at the end of the transient, between time 

instances 260-307, when they again become strongly correlated. Variances of 0.86 [moles/l]2 , 

as noticed at the end of the transient, correspond to relative standard deviations of about 20%.  

 

Figure 2.2.13: Time-dependent computed correlation matrix (arising from parameter 
uncertainties), 

rcC , for the nitric acid concentration in compartment #1. 

 

The predicted best estimate response correlations are obtained by using Eq. (1.35) and are 

depicted in Figure 2.2.14. As indicated in this figure, all best-estimate correlations, including 

the predicted standard deviations, are significantly reduced and rendered uniform. The 

corresponding (+/-) one-standard deviations are plotted in Figure 2.2.15, which depicts the 

behavior in time of the measured response standard deviation (5%), the computed response 

standard deviation [i.e., the diagonal elements of Eq. (1.15) stemming from uncertainties in 

the model parameters], and the best-estimate predicted response standard deviation obtained 

using Eq. (1.35). It is evident from Figure 2.2.15 that the “predicted best-estimate” response 

standard deviation is smaller than either the “measured” standard deviation or the “computed” 

one, for the entire time-interval under consideration.  
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Figure 2.2.14: Time-dependent best-estimate predicted correlation matrix,   be
rC , for the 

nitric acid concentration in compartment #1. 

 

Figure 2.2.15: Computed, experimental, and best estimate predicted (+/-) absolute standard 
deviations for the nitric acid concentration in compartment #1. 

 

Even though no measurements were performed in the dissolver compartments 2 through 8, the 

nominal values of the “best-estimate” responses,  be 
r , in these compartments can be 

computed by using the calibrated best estimate parameter values  beα . In this vein, the best-
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estimate predicted parameter values for all 635 model parameters (as presented in Table 2.2.2 

and depicted Figures 2.2.8 and 2.2.10) together with their reduced predicted uncertainties (as 

presented in Table 2.2.2 and depicted Figures 2.2.9 and 2.2.11) were used to re-compute the 

nominal values of the best-estimate responses,  be 
r . It turned out that these best-estimate 

responses were very close to the originally computed nominal values. In addition, the best-

estimate predicted uncertainties in the best-estimate computed responses can be obtained by 

using the “propagation of errors” formula given Eq. (1.15), but using the best estimated 

parameter values and their corresponding best-estimate standard deviations, i.e., 

 

   
1 1

 1
   


 

 
 

           
be

†be bebe
r t; , ,...,NC S C S . (A)  

 

As will be shown below, the computation of the best-estimate uncertainties using Eq. (A) for 

the compartments in which no measurement were performed indeed underwent reductions, in 

all compartments, by comparison to the originally computed uncertainties. Typical results will 

be presented in the figures below, for compartment #4 (in the middle of the dissolver) and for 

compartment #7; the uncertainty reductions in the other compartments are not reproduced 

here because they can be obtained by interpolating linearly between the results presented for 

compartments #1, #4, and #7.  

 

The original covariance matrix of the computed acid concentration in compartment #4, 

obtained using Eq. (1.15), is depicted in Figure 2.2.16. As can be noted from this figure, the 

computed responses in the early stages of the transient, between time instances 5 - 30, are 

anti-correlated in time with the responses computed towards the end of the transient, between 

time instances 266-307. The anti-correlations for the acid concentration in compartment #4 

are similar to the time-dependent response anti-correlations in compartment #1. The acid 

concentration responses in compartment #4 are less strongly correlated at other time instances, 

except for the responses between the initial stages of the transient (time instances 1-50) and 

again at the end of the transient (time instances 260-307), when they are positively correlated, 
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with variances reaching as high as 0.6 [moles/l]2. This value corresponds to an absolute 

standard deviation of 0.77 [moles/l], which in turn corresponds to a relative standard 

deviation of over 50% --which is rather large compute uncertainty in this response (i.e., the 

acid concentration in compartment #4). Overall, the time-correlations for the acid 

concentration in compartment #4 are similar to the time-dependent response correlations in 

compartment #1, but stronger, in relative terms. 

 

Figure 2.2.16: Time-dependent computed correlation matrix (arising from parameter 
uncertainties), 

rcC , for the nitric acid concentration in compartment #4. 

 

The predicted best estimate response correlations obtained by using Eq. (A) are depicted in 

Figure 2.2.17. As indicated in this figure, all best-estimate correlations, including the 

predicted standard deviations, are drastically reduced and rendered much more uniform. The 

corresponding (+/-) one-standard deviations are plotted in Figure 2.2.18, which depicts the 

behavior in time of the computed response standard deviation [i.e., the diagonal elements of 

Eq. (1.15) stemming from uncertainties in the model parameters] and the best-estimate 

predicted response standard deviation obtained using Eq. (1.35). It is evident from Figure 

2.2.16 that the “predicted best-estimate” response standard deviation is considerably smaller 

than the “computed” one, for the entire time-interval under consideration.  
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Figure 2.2.17: Time-dependent best-estimate predicted correlation matrix,  be
rC , for the 

nitric acid concentration in compartment #4. 

 

Figure 2.2.18: Computed and best estimate predicted absolute standard deviations (+/-) for the 
nitric acid concentration in compartment #4. 

The original covariance matrix of the computed acid concentration in compartment #7, 

obtained using Eq. (1.15), is depicted in Figure 2.2.19, which displays an “island of anti-

correlated responses between time instances 1-10 and responses at instances 220-260, as well 

as an “island” of positively correlated acid concentrations among the time instances 220-260. 

Although the absolute values of the overall uncertainties are smaller in this compartment, by 

comparison to the other compartments, their relative values are actually larger than in the 

other compartments. For example, the largest variance of the acid concentration in 
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compartment being 0.2 [moles/l]2, which occurs during the time instances 220-240; this 

variance corresponds to a relative standard deviation of 90%, as can be deduced from Figure 

2.2.21. The predicted best estimate response correlations obtained by using Eq. (A) are 

depicted in Figure 2.2.20. As indicated in this figure, all best-estimate correlations, including 

the predicted standard deviations, are drastically reduced and rendered much more uniform. 

The corresponding  (+/-) one-standard deviations are plotted in Figure 2.2.21, which depicts 

the behavior in time of the computed response standard deviation [i.e., the diagonal elements 

of Eq. (1.15) stemming from uncertainties in the model parameters] and the best-estimate 

predicted response standard deviation obtained using Eq. (A). It is evident from Figure 2.2.21 

that the “predicted best-estimate” response standard deviation for the acid concentration in 

compartment #7 is considerably smaller than the “computed” one, over the entire time-

interval under consideration.  

 

Figure 2.2.19: Time-dependent computed correlation matrix (arising from parameter 
uncertainties), 

rcC , for the nitric acid concentration in compartment #7. 
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Figure 2.2.20: Time-dependent best-estimate predicted correlation matrix,   be

rC , for the 
nitric acid concentration in compartment #7. 

 

Figure 2.2.21: Computed (blue graph) and best estimate predicted (black graph) absolute 
standard deviations (+/-) for the nitric acid concentration in compartment #7. 

 

The results presented in the forgoing highlight the very beneficial effects of the 

comprehensive framework of the predictive modeling methodology of Cacuci and Ionescu-

Bujor [Ca2010a,b], which considers the entire phase-space of parameters and responses 

simultaneously over the entire time interval of interest. In particular, this unique feature made 

it possible to “spread out” the positive effects of having performed measurements in one 

region of the dissolver (in this case, in compartment #1) to reduce significantly the predicted 
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uncertainties in the acid concentration not only in the compartment where measurements were 

performed but also in all of the other compartments, where measurements were lacking. 

Further results are presented in [Ca2015], [Ca2016], [Pe2015a], [Pe2015b] and [Pe2015c]. 
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3 MULTI-PRED Module 
 

The module MULTI-PRED is a computational implementation of the time-dependent 

mathematical formalism of Cacuci and Ionescu-Bujor [Ca2010a]. 

All routines are written as C++ scripts running under the CERN Platform ROOT 

(https://root.cern.ch/) compatible with both Linux/Unix and Windows operating systems. 

 

The developed software has the following tree-structure of the directories: 

 

1) MULTI-PRED/example/KERNEL   directory containing the kernel of 

the MULTI-PRED module; the kernel is invariant on its time-independent or time-dependent 

use; this is an intrinsic property of the mathematical formalism of Cacuci and Ionescu-Bujor 

[Ca2010a]. 

 

2) MULTI-PRED/example/INPfiles   directory containing the (ASCII format) 

initial/raw input files 

 

3) MULTI-PRED/example /vorKERNEL  directory containing the script 

vorMULTI-PRED.C which transforms the initial/raw input files into compatible format for 

the MULTI-PRED kernel. 

 

4) MULTI-PRED/example /nachKERNEL  directory containing the scripts for 

extracting and displaying the results of the MULTI-PRED module. 

 

“example” means “diffusion” or “dissolver”. 
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3.1 Kernel 
 

The following relations from the work [Ca2010a] have been selected for implementation in 

the kernel of the MULTI-PRED module. 

 

Covariances of the computed responses: 

     
   

0 0 0

0 0

†
† †

rc

†



           

   
   

C α r r S α α α S α

S α C S α

   (3.1) 

 

Discrepancy between the nominal computations and the nominally measured responses: 

 0
m d R rα       (3.2) 

 

The calibrated best-estimate parameter values: 

    10 0 0†
be

r d 
           

α α C C S α C α d     (3.3) 

with: 

      

     

0 0 0

0 0 0

†
† † †

d

†

rc r r m . 

           

         

C α dd r S α α r α S α

C α C S α S α C C

  (3.4) 

 

The best-estimate predicted nominal values for the calibrated (adjusted) responses: 

      10 0†
be

m m r d
           

r α r C C S α C α d .   (3.5) 

 

Best-estimate predicted covariances corresponding to the best-estimate parameters: 

  

     10 0 0

†be be be

†
d d d ,



  



  

            

C α α α α

C C α C α C α

   (3.6) 

 

Best-estimate predicted covariances corresponding to the best-estimate responses: 
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     
     10 0 0

†
be be be
r

†
m r d d r d ,



  

            

C r r α r r α

C C α C α C α

   (3.7) 

 

Predicted best-estimate parameter-response covariances: 

     10 0 0be †
r r r d d d ,  


            C C C α C α C α    (3.8) 

 

where 

     0 0 †
†

rd m m r ,
        

C α r r d C C S α    (3.9) 

and 

     0 0 0        

†
†

d r .  C α α α d C C S α    (3.10) 

 

The formulas above (Eqs. 3.1-10) correspond to Eqs. 30, 35, 39, 41, 43, 45-49 from 

[Ca2010a], respectively. 

For computational reasons, Eqs. 3.1-10 have been organized as follows: 

Notations: 

  T
M rA C C S      (3.11) 

  T T
rB  C C S      (3.12) 

and then: 

d = r - m       (3.13) 

 T
r C SC S       (3.14) 

dC A + SB      (3.15) 

 BE -1
dα α BC d      (3.16) 

 BE
 

-1 T
dC C BC B      (3.17) 

-1BE
dr m + AC d      (3.18) 

1 BE T
r m dC C AC A      (3.19) 

1 BE T
r r d C C AC B      (3.20) 

Additionally, the consistency indicator: 

2 1


T

d
 d C d      (3.21) 
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Here are the block-matrix structures of the basic input elements ( α , r , m , C , mC , rC , S ) in 

the equations 3.11-21: 

i) Nominal system parameters, computed responses, and measured responses: 
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1 1 1
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 (3.22) 

Observation: BEα has the same structure as α ; BEr has the same structure as r . 

 

ii) Nominal correlations between system parameters: 
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   (3.23) 

The matrices ( 11 22, ,...,C C C t tN N
   ) on the diagonal of the block-matrix structure C contain 

the correlations between system parameters at the same time node (1, 2,..., tN ). The off-

diagonal matrices contain correlations between system parameters at different time nodes. 

This is the structure of a matrix of the type C
 : 
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where N  is the number of system parameters (static and transient). 

The elements in the matrix above are (finally!) numbers. For example: 

, ,      α α α α CC i j jij i ji



    
     (3.25) 

is the correlation between response i at time node   and the response j at time node  . 

Therefore: 

  , ,  C C
T

tN 
         (3.26) 

Observation: BE
C has the same structure as C . 

 

iii) correlations of the measured responses: 
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   (3.27) 

The matrices on the diagonal ( 11 22, ,...,C C C t tN N
m m m ) contain the correlations between measured 

responses at the same time node (1, 2,..., tN ). The off-diagonal matrices contain correlations 

between measured responses at different time nodes.  

This is the structure of a matrix of the type Cm
 in the block matrix Cm : 
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where Nr is the number of (TRANSIENT) responses. 

The elements in the matrix above are numbers. For example: 

, ,      m m m m CC i j jm ij i m ji
          (3.29) 

is the correlation between response i at time node   and the response j at time node  . 

Therefore:   , ,  C C
T

m m tN         (3.30) 

Observation: rC  and BE
rC have the same structure as mC . 

 

iv) correlations of the measured responses with system parameters 
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       (3.31) 

The matrices on the diagonal ( 11 22, ,...,C C C t tN N
r r r   ) contain the correlations between measured 

responses and system parameters at the same time node ( 1, 2,..., tN ). The off-diagonal 

matrices contain correlations between measured responses and system parameters at different 

time nodes. 

This is the structure of a matrix of the type Cr

 : 
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Where N  is the number of system parameters (static and transient) and rN  is the number 

of system responses. 

The elements in the matrix above are numbers. For example: 

, ,      m mC α α Ci j jr ij i r ji
    



     (3.33) 

is the correlation between the measured response i at time node   and the parameter j at 

time node  . 

Observation: BE
rC has the same structure as rC . 

 

v) sensitivities of the system responses to the system parameters 
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This is a block-matrix structure. The structure of a matrix of the type S : 
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where Nr is the number of responses and N  the number of system parameters. 

An element in the matrix above, with the general form: 





r
S

α
i

ij
j




        (3.36) 

is the sensitivity of response i at time node   to the parameter j at time node  . 

 

The MULTI-PRED kernel computation can be launched with the ROOT command: 

root -l bestpred.C 

in the directory: 

MULTI-PRED/example/KERNEL  

under Linux/Unix operating systems. 

In Windows, the script bestpred.C is launched by a simple double click (the first launch may 

need an explicit “Open With” ROOT preinstalled software). 

Table 3.1: Input and output files (matrices) for the MULTI-PRED kernel 

Input matrix Input file Output matrix Output file 

  a.abs BE  aBE.out

C  ca.abs BEC  caBE.out

r  r.abs BEr  rBE.out

m  m.abs  

mC  cm.abs BE
mC  cmBE.out

rC   car.abs BE
rC   carBE.out

S  s.abs
rC  CR.out

 2  chi2.out
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The prerequisite input files (a.abs, ca.abs, …, s.abs) for the MULTI-PRED kernel are listed 

on the left (yellow) side of the Table 3.1. Let us recall their contents: 

 a.abs    nominal parameters 

 ca.abs    nominal parameter correlations 

 m.abs    measured response(s) 

 r.abs    nominal computed response(s) 

 cm.abs   correlations for measured response(s) 

 s.abs    sensitivities of the response(s) to all parameters (static 

and transient) 

 car.abs   initial correlations between parameters and response(s) 

 

They must exist in the directory MULTI-PRED/example/vorKERNEL (see also the 

Paragraph 3.2) before launching the MULTI-PRED kernel. The prerequisite input files (a.abs, 

ca.abs, …, s.abs) contain the corresponding block-matrices from the first column of Table 3.1 

(with block-matrix structures given by the Eqs. 3.22-3.35), written in sparse format: 

1) first row: 

nr nc nz 

where: 

nr (integer) – number of rows 

nc (integer) – number of columns 

nz (integer) – number of non-zero elements / number of following lines in the file 

2) nz rows of the type: 

ir ic w 

where: 

ir (integer) – global row coordinate in the corresponding block-matrix 

ic (integer) – global column coordinate in the corresponding block-matrix 

w (float) – numerical value of the element with the global coordinates (ir,ic) in the block-

matrix 

Remark: The prerequisite input files (a.abs, ca.abs, …, s.abs) are created semi-

automatically (see next Paragraph!). 
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3.2   Input data and their preparation 
 
The raw input data have to be delivered by the user, respecting some simple formatting. 

The following steps (1-3) have to be strictly followed by the user: 

 

STEP 1) Edit and fill the TXT file: 

MULTI-PRED/example/vorKERNEL/dimensions.txt 

which is a header file (to contain the steering data of the chosen model) for the C++ script: 

MULTI-PRED/example/vorKERNEL/vorbestpred.C (to be NEVER changed!) 

 

Examples: 

A) dimension.txt-file in the case of the “Diffusion Model” (Paragraph 2.1): 

********************************************************************* 
//number of responses 
4 
//number of time nodes 
1 
//number of static parameters 
4 
//number of transient parameters 
0 
//Only standard deviations for nominal sistem parameters? 0-NO; 1-
YES absolut; 2-YES relativ 
2 
//Only standard deviations for measured responses? 0-NO; 1-YES 
absolut; 2-YES relativ 
2 
//Initial correlations between parameters and responses? 0-NO; 1-YES 
0 
********************************************************************* 

 

B) dimension.txt-file in the case of the “Dissolver Model” (Paragraph 2.2): 

********************************************************************* 
//number of responses 
1 
//number of time nodes 
307 
//number of static parameters 
5 
//number of transient parameters 
2 
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//Only standard deviations for nominal sistem parameters? 0-NO; 1-
YES absolut; 2-YES relativ 
2 
//Only standard deviations for measured responses? 0-NO; 1-YES 
absolut; 2-YES relativ 
1 
//Initial correlations between parameters and responses? 0-NO; 1-YES 
0 

 

IMPORTANT!!:  

The file vorbestest.C will create the sparse matrices: 

 a.abs    nominal parameters 

 m.abs    measured response 

 r.abs    nominal computed response 

 s.abs    sensitivities of the response to all parameters (static and 

transient) 

directly (according to the steering data), making use of the raw input data (already) existing in 

the directory MULTI-PRED/example/INPfiles. 

 

Any of the next 3 files (sparse matrices with structures according to Eqs. 3.23, 3.27 and 3.31) 

have to be provided by the user (and automatically no more touched by vorbestpred.C) in the 

case that the steering file dimensions.txt is asking for (“green” options in the 2 examples 

before): 

 ca.abs    nominal parameter correlations 

 cm.abs   correlations for measured response 

 car.abs   initial correlations between parameters and responses 

 

As an example, let us consider the following logical ramifications in the (final part of) 

steering file dimensions.txt: 

************************************************************************** 
//Only standard deviations for nominal sistem parameters? 0-NO; 1-YES absolut; 2-YES relativ 

0 

//Only standard deviations for measured responses? 0-NO; 1-YES absolut; 2-YES relativ 

0 

//Initial correlations between parameters and responses? 0-NO; 1-YES 

0 

************************************************************************** 
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This logical configuration will lead to: 

the sparse matrix car.abs (initial correlations between responses and parameters) will be still 

automatically provided by the script vorbestpred.C; it will contain in fact only one line of 3 

integers: 

nr nc 0, i.e.: 

nr – number of rows 

nc – number of columns 

0 non-zero elements (in sparse format). 

ca.abs and cm.abs have to be provided by the user. 

 

STEP 2) The user has to create the following ASCII format input files (containing the raw 

input data) in the directory MULTI-PRED/example/INPfiles: 

 experimental.txt  the experimental response(s) 

 NOM.txt   the nominal response(s) 

 paramSTAT.txt  the nominal values of the static system parameters 

 paramTRANSI.txt  the nominal values of the transient system parameters 

 sensiSTAT.txt  sensitivities to the static parameters 

 sensiTRANSI.txt  sensitivities to the transient parameters 

 respSIGMA.txt  standard deviations for experimental response(s) 

 paramSIGMA.txt  nominal standard deviations for parameters 

 

Here are the structures of these files (A refers to “Diffusion Model” and B means “Dissolver 

Model”): 

 

experimental.txt 

It contains two columns: 

1st column - time nodes (but it may contain only a time node counter); 

2nd column – the experimental values of the response(s) 

The iteration tree looks like: 

LOOP for the number of responses (A=4 or B=1) 

 LOOP for time nodes (A=1 or B=307) 

Model A: 4 x 1 lines. 

Model B: 307 x 1 lines. 
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NOM.txt 

It has the same structure as experimental.txt! 

 

paramSTAT.txt 

It contains only one column with the nominal values of the static parameters. 

The iteration tree looks like: 

LOOP for the number of static parameters (A=4 or B=5) 

Model A: 4 lines. 

Model B: 5 lines. 

 

paramTRANSI.txt 

This is a file needed only for Model B. 

It contains two columns: 

1st column - time nodes (but it may contain only a time node counter); 

2nd column – the nominal values of the transient parameters 

The iteration tree looks like: 

LOOP for the number of transient parameters (B=2) 

 LOOP for time nodes (B=307) 

Model B: 2 x 307 lines. 

 

sensiSTAT.txt 

It contains two columns: 

1st column: time nodes (but it may contain only a time node counter); 

2nd column: sensitivity values 

The iteration tree looks like: 

LOOP for the number of responses (A=4 or B=1) 

 LOOP for the number of static parameters (A=4 or B=5) 

  LOOP for time nodes (A=1 or B=307) 

Model A: 4 x 4 x 1 lines. 

Model B: 1 x 5 x 307 lines. 
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sensiTRANSI.txt 

This is a file needed only for Model B. 

It contains two columns: 

1st column: time nodes (but it may contain only a time node counter); 

2nd column: sensitivity values 

The iteration tree looks like: 

LOOP for the number of responses (B=1) 

 LOOP for the number of transient boundary conditions (B=2) 

  LOOP for perturbation nodes (B=307) 

   LOOP for time nodes (B=307) 

Model B: 1 x 2 x 307 x 307 lines!  

The zeros before perturbation nodes (because of causality reasons) are formally kept in the 

file structure for safety reasons. Anyhow, these zeros will be not transferred towards the 

sparse matrices as they will contain only the non-zero elements and their matrix coordinates 

(row number and column number). 

 

respSIGMA.txt 

It contains one column with standard deviations (absolute or relative, according to the 

logical option in the steering file dimensions.txt) of the response(s). 

The iteration tree looks like: 

LOOP for the number of responses (A=4 or B=1) 

LOOP for time nodes (A=1 or B=307) 

Model A: 4 lines. 

Model B: 307 lines. 

 

paramSIGMA.txt  

It contains one column with standard deviations (absolute or relative, according to the 

logical option in the steering file dimensions.txt) of the system parameters 

The iteration tree looks like: 

LOOP for the number of all parameters (static and transient) (A=4 or B=7) 

Model A: 4 lines. 

Model B: 7 lines. 
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STEP 3) The user has to run the C++ script 

MULTI-PRED/example/vorKERNEL/vorbestpred.C C++ script for reading the input files 

from MULTI-PRED/example/INPfiles and generating the sparse matrices a.abs, ca.abs, 

m.abs, r.abs, cm.abs, s.abs, car.abs (ASCII files containing in sparse matrix format the 

required data structure for the BEST-EST module) 

Remark: As user, never modify the file vorbestpred.C! 

 

3.3 Output data 
 

The output data obtained by running the BEST-EST procedure are contained in the directory: 

MULTI-PRED/example/KERNEL 

All files to be found in this directory are explained in the Table 3.2: 

 

Table 3.2: Output files (matrices) for the MULTI-PRED kernel 

Matrix File Output matrix Output file 

  a.inp BE  aBE.out

C  ca.inp BEC  caBE.out

r  r.inp BEr  rBE.out

m  m.inp  

mC  cm.inp BE
mC  cmBE.out

rC   car.inp BE
rC   carBE.out

S  s.inp
rC  CR.out

 2  chi2.out

 

The prerequisite input files (a.abs, ca.abs, …, s.abs) for the MULTI-PRED kernel are listed 

on the left (yellow) side of the Table 3.1, in Paragraph 3.2. The same information with the 

same format is formally written/practically cloned (as safety measure) by the kernel in the 

files (a.inp, ca.inp, …, s.inp), see the left (yellow) side of the Table 3.2. Let us recall their 

contents: 

 a.inp    nominal parameters (same as a.abs) 
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 ca.inp    nominal parameter correlations (same as ca.abs) 

 m.inp    measured response(s) (same as m.abs) 

 r.inp    nominal computed response(s) (same as r.abs) 

 cm.inp    correlations for measured response(s) (same as cm.abs) 

 s.inp    sensitivities of the response(s) to all parameters (static  

                                                           and transient) (same as s.abs) 

 car.inp   initial correlations between parameters and response(s) 

                                                          (same as car.abs) 

The (real) output of the kernel is written in the files on the right (blue) side of the Table 3.2. 

Here are their contents: 

 aBE.out   best-estimate parameters (same structure as a.abs) 

 caBE.out   best-estimate parameter correlations (same structure as  

                                                           ca.abs) 

 rBE.out   best-estimate response(s) (same structure as r.abs) 

 cmBE.out   best estimate correlations for response(s) (same structure  

                                                           as cm.abs) 

 carBE.out   best-estimate correlations between parameters and 

                                                           response(s) (same structure as car.abs) 

 CR.out   initial correlations between computed response(s) (same  

                                                           structure as cm.abs) 

 chi2.out   value of the consistency indicator 2  

 

The data contained in these files from Table 3.2 (*.inp and *.out) plus the steering data from 

the file (already existing, used for the data preparation) 

MULTI-PRED/example/vorKERNEL/dimensions.txt 

are sufficient for displaying the results of the MULTI-PRED procedure. 
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3.4 Display results 
 

The results of the MULTI-PRED procedure, as well as their comparison with the a-priori data, 

are displayed by semi-automatic C++ scripts. Here are the scripts with their descriptions: 

Script and Figure Function 

paramMOnom.C 

(see Fig. 3.1) 

- plot nominal correlations of the static parameters 

- create the file paramMOnomBest.out (it contains a one-to-

one comparison of the nominal an best-estimate static 

parameters with their relative standard deviations) 

paramMObest.C 

(see Fig. 3.2) 

- plot best-estimate correlations of the static parameters 

- create the file paramMOnomBest.out (the same content as 

above) 

corRESPnom.C 

(see Fig. 3.3) 

plot initial correlations between computed responses 

corRESPbest.C 

(see Fig. 3.4) 

plot best-estimate correlations between responses 

RESPsimexpbest.C 

(see Fig. 3.5) 

plot computed, experimental and best-estimate responses 

sigonlyRESPsimexpbest.C 

(see Fig. 3.6) 

plot () one standard deviation bands for computed, experimental 

and best-estimate responses 

paramBCexpbest.C 

(see Fig. 3.7) 

plot experimental and best-estimate transient boundary conditions

sigrelparamBCexpbest.C 

(see Fig. 3.8) 

plot experimental and best-estimate relative standard deviations (in 

percent) of the transient boundary conditions 

 

These scripts are semi-automatic in the sense they ask the user (after launching) for some 

preferred options.  
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The interactions possible with these scripts are exposed in the next panels. 

Script: paramMOnom.C 

Action: plot nominal correlations of the static parameters  

Launching command: root -l paramMOnom.C 

Produced figure: Fig. 3.1 

Dissolver Model Diffusion Model 
root -l paramMOnom.C 
root [0]  
Processing paramMOnom.C... 
Number of responses: 1 
Number of time nodes: 307 
Number of model parameters: 5 
Number of transient parameters: 2 
What kind of best-estimate 
relative standard deviations? 
1 = relative to nominal values 
2 = relative to best-estimate 
values 
1 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

root -l paramMOnom.C 
root [0]  
Processing paramMOnom.C... 
Number of responses: 4 
Number of time nodes: 1 
Number of model parameters: 4 
Number of transient parameters: 0 
What kind of best-estimate 
relative standard deviations? 
1 = relative to nominal values 
2 = relative to best-estimate 
values 
2 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

    
Figure 3.1: Nominal static parameters correlations. Left: Dissolver Model. Right: Diffusion 
Model. 
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Some observations: 

1) All scripts are applicable to both type of results (time-independent or time-dependent); 

some user feed-back may be required during running. 

2) The user (required) feed-back is displayed in red in all panels. 

3) Sometimes it appears the question:  
What kind of best-estimate relative standard deviations? 
1 = relative to nominal values 
2 = relative to best-estimate values 
Because the best-estimate nominal values can be sometimes smaller than the a-priori values, 

the a-priori values may be chosen as normalizations for the best-estimate relative standard 

deviations (option 1); in such a case the best-estimate relative standard deviations will be 

always smaller than the a-priori relative standard deviations. 

4) By selecting on the tool-bar of any plot the option File->Save the following picture format 

may be selected: ps, eps, pdf, gif, jpg, png. The corresponding file will keep the name of the 

script producing it, with the extension ps, eps and so on. 

5) The scripts of the type paramMOnom.C and paramMObest.C are delivering also a text 

file paramMOnomBest.out which contains a one-to-one comparison of the nominal and 

best-estimate static parameters with their relative standard deviations. 

Here is the content of this file in the case of the diffusion model: 
paramMO No.    NOM       sigNOM %       BEST           sigBEST %    
 
1            0.0197     +-5             0.019841811    +-4.7893643 
2            0.16       +-5.0000005     0.15911883     +-5.0203853 
3          10000000    +-15.000001      9847789        +-9.2185526 
4         7.4380002     +-10            7.3876824      +-8.5332766 
 

6) Under Windows operating system the launching command for all scripts is Double Click. 
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Script: paramMObest.C 

Action: plot best-estimate correlations of the static parameters 

Launching command: root -l paramMObest.C 

Produced figure: Fig. 3.2 

Dissolver Model Diffusion Model 
root -l paramMObest.C 
root [0]  
Processing paramMObest.C... 
Number of responses: 1 
Number of time nodes: 307 
Number of model parameters: 5 
Number of transient parameters: 2 
What kind of best-estimate 
relative standard deviations? 
1 = relative to nominal values 
2 = relative to best-estimate 
values 
2 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

root -l paramMObest.C 
root [0]  
Processing paramMObest.C... 
Number of responses: 4 
Number of time nodes: 1 
Number of model parameters: 4 
Number of transient parameters: 0 
What kind of best-estimate 
relative standard deviations? 
1 = relative to nominal values 
2 = relative to best-estimate 
values 
2 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

 
Figure 3.2: Best-estimate static parameters correlations. Left: Dissolver Model. Right: Diffusion 
Model. 
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Script: corRESPnom.C 

Action: plot initial correlations between computed responses 

Launching command: root -l corRESPnom.C 

Produced figure: Fig. 3.3 

Dissolver Model Diffusion Model 
root -l corRESPnom.C 
root [0]  
Processing corRESPnom.C... 
Number of responses: 1 
Number of time nodes: 307 
Number of model parameters: 5 
Number of transient parameters: 2 
What kind of response? 
1 = static 
2 = transient 
2 
Which response to be plotted? 
 Enter an integer between 1 and 
1. 
1 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
1 
Provide the minimum! 
0.0 
Provide the maximum! 
0.35 
root [1] 

root -l corRESPnom.C 
root [0]  
Processing corRESPnom.C... 
Number of responses: 4 
Number of time nodes: 1 
Number of model parameters: 4 
Number of transient parameters: 0 
What kind of response? 
1 = static 
2 = transient 
1 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 
 

      

  Figure 3.3: Initial correlations between computed responses. Left: Dissolver Model. Right: 

Diffusion Model. 
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Script: corRESPbest.C 

Action: plot best-estimate correlations between computed responses 

Launching command: root -l corRESPbest.C 

Produced figure: Fig. 3.4 

Dissolver Model Diffusion Model  
root -l corRESPbest.C 
root [0]  
Processing corRESPbest.C... 
Number of responses: 1 
Number of time nodes: 307 
Number of model parameters: 5 
Number of transient parameters: 2 
What kind of response? 
1 = static 
2 = transient 
2 
Which response to be plotted? 
 Enter an integer between 1 and 
1. 
1 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

root -l corRESPbest.C 
root [0]  
Processing paramMObest.C... 
Number of responses: 4 
Number of time nodes: 1 
Number of model parameters: 4 
Number of transient parameters: 0 
What kind of best-estimate 
relative standard deviations? 
1 = relative to nominal values 
2 = relative to best-estimate 
values 
2 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

 
Figure 3.4: Best-estimate correlations of the responses. Left: Dissolver Model. Right: Diffusion 
Model. 
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Script: RESPsimexpbest.C 

Action: plot computed, experimental and best-estimate responses 

Launching command: root -l RESPsimexpbest.C 

Produced figure: Fig. 3.5 

Dissolver Model Diffusion Model 
root -l RESPsimexpbest.C 
root [0]  
Processing RESPsimexpbest.C... 
Number of responses: 1 
Number of time nodes: 307 
Number of model parameters: 5 
Number of transient parameters: 2 
transient response 
Which response to be plotted? 
 Enter an integer between 1 and 
1. 
1 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

root -l RESPsimexpbest.C 
root [0]  
Processing RESPsimexpbest.C... 
Number of responses: 4 
Number of time nodes: 1 
Number of model parameters: 4 
Number of transient parameters: 0 
static response 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

   
Figure 3.5: Computed (blue), experimental (red) and best-estimate response (black). Left: Dissolver 
Model. Right: Diffusion Model  
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Script: sigonlyRESPsimexpbest.C 

Action: plot () one standard deviation bands for computed, experimental and best-estimate 

responses 

Launching command: root -l sigonlyRESPsimexpbest.C 

Produced figure: Fig. 3.6 

Dissolver Model  Diffusion Model 
root -l sigonlyRESPsimexpbest.C 
root [0]  
Processing 
sigonlyRESPsimexpbest.C... 
Number of responses: 1 
Number of time nodes: 307 
Number of model parameters: 5 
Number of transient parameters: 2 
transient response 
Which response to be plotted? 
 Enter an integer between 1 and 
1. 
1 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

root -l sigonlyRESPsimexpbest.C 
root [0]  
Processing 
sigonlyRESPsimexpbest.C... 
Number of responses: 4 
Number of time nodes: 1 
Number of model parameters: 4 
Number of transient parameters: 0 
static response 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
1 
Provide the minimum! 
2500000000 
Provide the maximum! 
5000000000 
root [1] 

 
Figure 3.6: Upper- and lower bands indicate () one standard deviation about the respective mean 
response values depicted in Figure 4.5. Left: Dissolver Model.  Right: Diffusion Model. 
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Script: paramBCexpbest.C 

Action: plot experimental and best-estimate transient boundary conditions 

Launching command: root -l paramBCexpbest.C 

Produced figure: Fig. 3.7 

Dissolver Model Diffusion Model 
root -l paramBCexpbest.C 
root [0]  
Processing paramBCexpbest.C... 
Number of responses: 1 
Number of time nodes: 307 
Number of model parameters: 5 
Number of transient parameters: 2 
Which boundary conditions have to 
be plotted? 
Integer allowed between 1 and 2. 
1 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
2 
root [1] 

NOT applicable! 

           
 

Figure 3.7: Dissolver Model: Experimental (red) and best-estimate (black) transient boundary 
conditions. Left: inlet nitric acid mass concentration. Right: inlet mass flow rate. 
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Script: sigrelparamBCexpbest.C 

Action: plot experimental and best-estimate relative standard deviations (in percent) of the 

transient boundary conditions 

Launching command: root -l sigrelparamBCexpbest.C 

Produced figure: Fig. 3.8 

Dissolver Model Diffusion Model 
root -l sigrelparamBCexpbest.C 
root [0]  
Processing 
sigrelparamBCexpbest.C... 
Number of responses: 1 
Number of time nodes: 307 
Number of model parameters: 5 
Number of transient parameters: 2 
What kind of best-estimate 
relative standard deviations? 
1 = relative to nominal values 
2 = relative to best-estimate 
values 
1 
Which boundary conditions have to 
be plotted? 
Integer allowed between 1 and 5. 
1 
Set a minimum and a maximum for 
the histogram? 
1 = Yes! 
2 = No! 
1 
Provide the minimum 9.98 
Provide the maximum 10.01 
root [1] 

NOT applicable! 

                      

Figure 3.8: Dissolver Model: Experimental (red) and best-estimate (black) relative standard 
deviations (in percent) of the transient boundary conditions. Left: inlet mass flow rate. Right: inlet 
nitric acid mass concentration. 
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4.6.  Task F: Perform high-quality holdup measurements 

To test the DIMP method, some holdup detector measurements are necessary. It is crucial that 
the pipe, box, or duct geometry be known precisely, as well as any other significant surroundings. 
Also, the uncertainties in the detector response should be well documented. In order to ensure 
the quality of the measurements and uncertainties, and to enable replication in case of identifying 
discrepancies between the measured and computed results we conducted our own set of holdup 
experiments. This was done in collaboration with ORNL where our partner operates a state-of-
the-art holdup lab whose staff supervised a graduate student conducting these experiments and 
helped trouble-shoot observed discrepancies when they arose. NC State University and ORNL 
were responsible for completing this task. 

The accomplishment of this task was reported in: Noel Benjamin Nelson, Validation and 
Uncertainty Quantification of the Data Integration with Modeled Predictions (DIMP) Inverse 
Radiation Transport Model for Holdup Measurements, Doctoral Proposal, NC State University, 
2016. This document is replicated on the following pages. 
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CHAPTER

1

INTRODUCTION

1.1 Research Motivation and Goals

The goal of this work is to validate the Data Integration with Modeled Predictions (DIMP) inverse

particle transport method for solving the special nuclear material (SNM) holdup problem. Holdup

problems arise when radioactive material becomes trapped in processing equipment at nuclear fuel

processing facilities. Examples of processing equipment can include but are not limited to pipes,

ducts and filters, glove boxes, and valves. [1] SNM holdup is of interest to the nuclear fuel industry

for many reasons. These reasons include: criticality safety, maintaining accurate SNM inventory

and nuclear safeguards regime, and radiation worker safety.

Criticality safety is important for fairly obvious reasons. If enough nuclear material buildup

occurs over time in a section of equipment, it can present a criticality risk. Even if the holdup

deposit geometry is not at risk of becoming critical, accumulation of radioactive materials can pose

a radiation hazard to facility employees who may become exposed to the resulting radiation field

while working in the vicinity of the heldup material. Finally, SNM is important to track for economic

purposes and to ensure transparency. All fissile nuclear material must be accounted for within

reasonable margins to verify that it is exclusively used for the peaceful purposes of the facility’s

operations under applicable international safeguard protocols and treaties.

1
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Therefore, holdup sources are important to quantify in total material mass, isotopic composition,

as well as distribution and location. There are several models to choose from in order to solve the

holdup problem. The most common model used in industry is called the Generalized Geometry

Holdup (GGH) model. [1] The GGH model is based on a set of core assumptions. All sources in the

model must be approximated as a point, line, or area source. The source type is chosen based on

the measurements and judgements of a holdup survey crew. They use handheld field detectors

(often simple Geiger counters) to measure the approximate distribution of the source in a piece

of equipment. After determining the relative size, shape, and location of a source, measurement

points are determined and another survey crew will take spectral measurements of the source with

gamma-ray detectors (generally NaI or CDTe). The GGH model is then employed based on one of

the three GGH source distributions using background correction models and a self-attenuation

factor to calculate the approximate amount of radiation source material present in grams. [1] This

model can have a high degree of uncertainty and requires a large amount of measured data and

application of user judgement.

The DIMP method, in contrast, seeks a more automated system by posing the holdup config-

uration as an inverse problem. Initial survey crews would not be required, and few assumptions

are necessary to predict source distribution, size, strength, and location within equipment. DIMP

uses an adjoint particle transport model to calculate an importance map for a grid of detectors

in the target geometric configuration utilizing as-built information of dimensions and material

composition of the facility’s structure. Deterministic transport codes are capable of modeling such

configurations with a varying degree of fidelity of the models to achieve a desirable computational

precision. Together, the computed flux and detector response function can be used to predict detec-

tor responses from a given source distribution. Alternatively, and more efficiently in the present

case, folding the importance function with a given source distribution yields an estimate of the

detector response where the importance function is the adjoint flux computed with an adjoint

source set to that detector’s response function. DIMP calculates the optimal source distribution(s),

location(s), and strength(s) that best match calculated responses to experimental responses with no

presumptions of the source shape and minimal obvious restrictions on its physical location, e.g. a

source cannot be hanging in the air in the middle of a room.

Currently, the DIMP model has been validated for a Cs-137 point source and a Co-60 line source.

[2] It performed well with low error that was mostly attributed to the weakness of the available

sources (older button sources). [2] This work intends to expand upon the model and previous

research with realistic holdup experiments using strong Uranium sources measured with a field

holdup NaI detector, and compare the results to the Holdup Measurement System (HMS-4), a

GGH model. [3] Four experimental holdup measurement campaigns were performed in this work

2
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including a Cs-137 point source, a highly enriched Uranium (HEU) disk source, an HEU line source

in a pipe, and a set of HEU area sources in a duct.

1.2 Preliminary Work & Results

The initial work performed thus far, includes two numerical convergence studies performed with

synthetic detector responses computed with simulated Cs-137 and Co-60 point sources and the

first holdup source validation exercise conducted with experimental responses measured from a

Cs-137 calibration source. The synthetic convergence studies demonstrated the ability of DIMP to

converge as additional detection points were added. DIMP performed well above 5 detection points

and reached a reasonaby accurate spatial distribution for the Cs-137 point source alone. A definite

convergence was not quite achieved for the Cs-137 point source and Co-60 line of point sources

simulated together. While most of the Co-60 sources were resolved (especially the stronger ones),

all five were never mapped. DIMP eventually appeared to diverge after 21 detector points, and it

was surmised that this was due to the build up in total response error overcoming the information

supplied by the new detection information. Additionaly, another convergence study was performed

to access the functionality of DIMP with purely uncollimated detector responses. The study produced

promising results for the Cs-137 point source case with synthetic responses if the true source

distribution was used as the initial guess. Otherwise, DIMP became stuck in local minima, so a new

set initial guess values for the source parameter vector, αwill have to be used for future work with

purely uncollimated responses.

The validation exercise used experimental measurements taken by the 1"x2" NaI ORNL field

holdup detector of a Cs-137 point source held by a ring stand to validate against responses gener-

ated by DIMP’s predicted sources. These measurements required a collimator correction factor to

calibrate DIMP according to the complex collimator geometry of the field holdup detector. DIMP

performed well with only two minor issues, and produced the correct source distribution in space

with 80% of the true source activity. The two issues that will require further attention include two

possible outlier measurement points that did not match the value projected by the MCNP calcu-

lated colimator correction factor, and that the run under the standard initial guess caused DIMP

to become stuck in a local minima. Future work with the new detector configuration will require

recalibration of the initial guess.

3
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1.3 Planned Work for PhD

This proposal seeks to outline a set of tasks planned for completion as part of this project. The

planned work covers three areas. The first is completion of DIMP’s validation against the experi-

mental measurements using well quantified holdup-like SNM sources taken at Oak Ridge National

Laboratories (ORNL) and comparing the results against HMS-4. These measurements include detec-

tor responses of an HEU disk source, an HEU line source in a large round duct, and area sources in

an L-duct in addition to various sources in a large round duct. The second task involves improving

the point DRF to account for the special collimation geometry of the ORNL field holdup detec-

tor. The final task will cover the investigation of a new peak DRF to improve DIMP’s performance

over the current point DRF. Additionally refinement of the preliminary work completed so far and

summarized above will continue as needed.

1.4 Proposal Outline

The second chapter of this Proposal will discuss relevant background information, such as inverse

methodology and details of the DIMP system in the context of the available literature. The third

chapter covers the preliminary numerical convergence results of DIMP. The fourth chapter will

describe the experimental setup of the SNM holdup measurements. The fifth chapter discusses the

preliminary experimental results of the first experimental validation conducted with a Cs-137 point

source. The final chapter will outline future work intended to bring the project to the desirable state

of completion.
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CHAPTER

2

REVIEW OF THE LITERATURE

2.1 Inverse Problems

Inverse problems are often more complex than their counterparts, the forward problem. In the

forward problem, an effect is predicted from an imposed cause. For example, in the typical forward

radiation transport problem, a source with an initial state and parameters (e.g. radiation source

distribution in space and angle, and its energy spectrum, etc.) are known and the state of the system

at other points in space and time (e.g. radiation flux, temperature, dose, etc.) are unknown. A forward

model is used to calculate the solution at those points from the known source and properties of the

problem domain (e.g. dimensions, material composition, nuclear data, etc.).

An inverse problem, in contrast, poses the reverse question. The cause(s) are sought from a

set of measured effects, or a model is identified to connect a set of input causes to output effects

. Information at various points in space and time called "measurements" are considered known,

but the source state or the domain configuration that produces them is treated as unknown. An

inverse model is used to calculate a possible solution state of the system from the measurements.

This is where the difficulty of inverse problems arises. The existence and uniqueness of an inverse

solution is typically not certain, and solutions can be very unstable depending on the quality of the

measurements.

5
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One way to approach the difficulty of inverse problems is to find solutions with probabilistic

methods. While the solution that best fits the measurement data is not always the true solution, the

chance that it is the true solution should increase with increasing amount of measured data. This

idea is formalized via Bayes’ theorem [4]:

p (h y p o t he s i s |d a t a , I )∝ p (d a t a |h y p o t he s i s , I )p (h y p o t he s i s |I ), (2.1)

where d a t a is the experimentally measured data (e.g. detector responses), the h y p o t he s i s is

the unknowns of the system (source parameters in this work), and I is all the additional knowl-

edge of the system (system geometry, detector efficiency, detector response functions, etc.). The

three probability density functions (PDFs) appearing in Eq. 2.1, namely p (h y p o t he s i s |d a t a , I ),

p (d a t a |h y p o t he s i s , I ), and p (h y p o t he s i s |I ) are the posterior, likelihood, and prior respec-

tively. The prior is the conditional probability that the hypothesis occurs based only on information

I . The likelihood represents the probability of measurement data occurring based on a given con-

figuration of the unknown data (hypothesis) and the information in I . This is proportional to the

posterior, or the probability of the given h y p o t he s i s (source configuration) being true based on

the information I and the measurement d a t a .

In order to solve an inverse problem, the likelihood function is maximized thereby minimizing

the error between the experimentally measured data and the results predicted by the model from

an input configuration of the source parameters. The most probable source parameter values are

determined by nonlinear least squares estimation. Ideally, the source configuration that produces

the minimum error between the measured data and the predicted data is close to the true solution

(if the measurement and model errors are sufficiently small).

2.2 NDA and GGH

Nuclear fuel holdup is an application of the unknown radiation source inverse problem. The typical

holdup configuration comprises material containing sources of radiation that have accumulated

potentially for decades as radioactive deposits in nuclear fuel processing equipment at facilities.

These deposits need to be located and their mass quantified for criticality safety, radiation safety,

inventory, and nonproliferation purposes. One method of achieving this goal is destructive analysis

(DA). DA involves taking the piece of equipment apart or dislodging the radioactive deposit chemi-

cally by dissolution to physically examine the source. Naturally, DA is often costly and disruptive to

ordinary fuel processing operations. Therefore, it is often more appealing to perform nondestructive

analysis or NDA.

6
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NDA methods seek to gather information about the fuel deposit (or radiation source) without

physically or chemically altering it or the structure containing it. This is normally accomplished

through the interpretation of information obtained from radiation detector response spectra. Several

models have been developed for interpreting radiation measurements and solving general inverse

radiation problems including: the Monte Carlo Library Least-squares method for determining

elemental composition of a target material by active source interrogation [5], a Levenberg-Marquardt

nonlinear optimization of the radiation transport model for determining nuclear metal thicknesses

[6], and the GGH model [1] commonly used in the nuclear fuel processing industry to quantify

holdup sources.

The base model used for performance comparison of the DIMP methodology developed in this

work is the GGH model, a standardized industry approach. GGH is often used in industry because

of its ease of implementation and acceptable accuracy for relatively simple calculations. However, it

requires a fair amount of active user interface and time, as the method requires an initial source

search survey. Then after planning a case by case measurement scheme depending on the type of

source discovered, the attention of a measurement crew is required to execute the measurements

with portable field radiation detectors.

GGH requires a specific set of assumptions and conditions in order to accurately predict holdup

source characteristics. The system based on the GGH model used in this work for direct comparison

is called the Holdup Measurement System (HMS-4) [3]. HMS-4 relies on a survey crew to scan for

sources inside equipment, and when found, determine their approximate spatial distribution. After

the survey, measurement points are chosen based on the approximate source distribution, local area

geometry, and model assumptions. Then these measurements are used to calculate the approximate

mass of radioactive material contained within the holdup source.

The four core assumptions of GGH are as follows: first, the radiation detector used for measure-

ments is shielded on the back and sides. Second, a cylindrical collimator is attached to the front of

the crystal to restrict the field of view of the detector to a known solid angle. Third, the detector is

properly placed such that each holdup source can be generalized to a point source, uniform line

source, or uniform area source. Fourth, the distance between the detector and holdup source is

known. Several correction factors are used along with these assumptions to calculate the total mass

of the holdup deposit. [1]

In order to comply well with the third assumption, many measurements locations are determined

by the detector’s field of view. For example, in order to measure a point source the source distribution

must hold 5% or less of the detector’s field of view (based on the solid angle between source and

detector). A line source must cross the entire view of the detector but remain thin. An area source

must occupy 95% or more of the detector’s field of view. [1] Some of the measurement locations

7
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chosen in this work followed these constraints in order to serve as HMS-4 measurement points and

potentially serving the purposes of response measurements for our new approach, DIMP, as well.

2.3 DIMP methodology

DIMP is a more general inverse problem solution method that requires no correction factors and

that does not limit the spatial distribution of the source to a preconceived set of options. Instead, it

maximizes agreement between the measurement vector ~rm (responses) and the modeled responses,

~rp , predicted by a configuration of the model parameters, ~α

~rm =R ~α (2.2)

where R is the mapping operator from the model parameter input space to the response space.

The solution of this problem is linear for radiation transport and has a closed form solution for the

posterior means and covariances. Cacuci’s Best Estimate method based on Bayesian inference is

used to find the posterior solution mean and uncertainty. [7]

2.3.1 Radiation Transport

First, the model used in the inverse framework will be described in detail followed by specification

of the source parameters contained in ~α, and a few notes on the measurements ~rm . The model

for the radiation transport problem is based on the time independent linear Boltzmann Transport

equation for neutral particles in non-multiplying media. [8]

Ω̂ · ~∇ψ(~x , E , Ω̂)+σ(~x , E )ψ(~x , E , Ω̂) =

∫

d E ′
∫

d Ω̂′σs (~x ; E ′, Ω̂′→ E , Ω̂)ψ(~x , E ′, Ω̂′)+q (~x , E , Ω̂) , (2.3)

whereψ(~x , E , Ω̂) is the angular flux of particles [p a r t i c l e s/c m 2-s ] defined over the spatial domain

x ∈V , Ω̂ ∈ 4π , E ∈ (0,∞) ,

and with explicit boundary conditions

ψ(~x , E , Ω̂) =ψ0(~x , E , Ω̂) for ~x ∈ ∂ V and Ω̂ · n̂ < 0 .

Ω̂ is the unit directional vector along which particles are traveling, n̂ is the unit vector normal

to the boundary surface ∂ V at the point ~x , andσ(~x , E ) the total particle interaction macroscopic

8
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cross-section [c m−1]. Also,σs (~x ; E ′, Ω̂′→ E , Ω̂) is the macroscopic scattering cross-section of parti-

cles from one direction (Ω̂′) and energy (E ′) to the direction and energy range d Ω̂′, d E ′ about the

direction and energy of interest (Ω̂, E ), and q (~x , E , Ω̂) is the external source of radiation particles

in the configuration of interest [in p a r t i c l e s/c m 3-s ]. In DIMP the geometric configuration and

material composition of all objects in the problem domain are considered known, hence the cross

sections are retrieved and calculated for nuclide mixtures by MAVRIC [12]. Next, it is useful to define

the scalar fluxφ(~x , E ) as

φ(~x , E ) =

∫

4π

d Ω̂ψ(~x , E , Ω̂) . (2.4)

Reaction rates are key components to many radiation problems, such as dose and fission rates. In

this case, the reaction rate definition can be used to define a detector response, r , as

r (E ′) =

∫ ∞

0

d E

∫

V

d ~xσd (~x , E ′, E )φ(~x , E ) , (2.5)

where σd (~x , E ′, E ) is the detector response function (DRF). There are several ways to model and

define DRFs, and this will be explored further in the full dissertation. In Eq. 2.5,σd (~x , E ′, E ) is the

probability per unit path length that a particle at ~x incident with energy E registers a response

in the detector’s channel dedicated to energy E ′. With this definition in mind, one could use the

inverse of the forward transport equation, Eq. 2.3 as the mapping function for the inverse problem.

However, direct inverses are often numerically unstable and computationally expensive. Equation

2.5 requires a solution of the transport equation for every potential source distribution in order

to determine the corresponding φ(~x , E ) then compute r and compare it to the measured values.

Alternatively, the problem can be reformulated using the adjoint of the transport equation [2]. The

adjoint identity can be stated as

〈Ap , h〉= 〈p , A†h〉, (2.6)

where 〈, 〉 denotes an inner product, A is an operator, p and h are any pair of functions in the domain

of A, and A† is the adjoint operator. Furthermore, in this application we define the inner product as

follows

〈p , h〉=
∫

4π

d Ω̂

∫ ∞

0

d E

∫

V

d V p (~x , E , Ω̂)h (~x , E , Ω̂) . (2.7)

Now, consider the fixed source linear transport equation in operator form

Lψ= q , (2.8)

9
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where L is the transport operator (for all angular fluxes,ψ), and q is the external source. Next, take

the inner product of Eq. 2.8 with the adjoint angular fluxψ†

〈Lψ,ψ†〉= 〈q ,ψ†〉 . (2.9)

Applying the adjoint identity (Eq. 2.6) to the above equation yields [9]

〈Lψ,ζ〉= 〈ψ, L †ζ〉+P [ψ,ζ] , (2.10)

where ζ is an arbitrary function (ζ=ψ† in our case) and P [ψ,ζ] is the bilinear concomitant, evalu-

ated on the external surface of volume V ,

P [ψ,ζ] =

∫

4π

d Ω̂

∫ ∞

0

d E

∫

∂ V

d S Ω̂ · n̂ψ(~x , E , Ω̂)ζ(~x , E , Ω̂) . (2.11)

Substituting Eq. 2.10 into Eq. 2.9 yields

〈ψ, L †ψ†〉= 〈q ,ψ†〉−P [ψ,ψ†] . (2.12)

Next we set the adjoint source to the detector response function, DRF, namely q † =σd , implying

L †ψ† =σd . (2.13)

Substituting this relationship into Eq. 2.12 yields

〈ψ,σd 〉= 〈q ,ψ†〉−P [ψ,ψ†]. (2.14)

Now, applying the following vacuum boundary conditions

ψ(~x , E , Ω̂) = 0 ; f o r ~x ∈ ∂ V a nd Ω̂ · n̂ < 0, (2.15)

ψ†(~x , E , Ω̂) = 0 f o r ~x ∈ ∂ V a nd Ω̂ · n̂ > 0, (2.16)

will cause the bilinear concomitant term to vanish thus producing

〈ψ,σd 〉= 〈q ,ψ†〉. (2.17)

10



2.3. DIMP METHODOLOGY CHAPTER 2. REV. OF THE LIT.

Finally, recalling the reaction rate Eq. 2.5 and substituting it in Eq. 2.17 leads to

~rp (E ) =

∫ ∞

0

d E

∫

V

d V φ†(~x , E )q (~x , E ) (2.18)

where φ†(~x , E ) is the adjoint scalar flux, or importance, and ~rp (E ) is the predicted response. The

advantage of the formulation in Eq. 2.18 over the one in Eq. 2.5 is the computationally inexpensive

evaluation of the former once φ† is known for a set of detectors. During the search for optimal

source distribution Eq. 2.18 comprises an inner product of the precomputed adjoint fluxes and a

guess of the source distribution. In contrast, Eq. 2.5 requires a full forward transport solution for

every attempted source distribution. The set of discretized importance values are calculated by

the discrete ordinates package DENOVO [12], and folded with the predicted source distribution

(q (~x , E )) during the search for the best match between the resulting responses and the measurement

responses ~rm . The optimal source distribution is found through an optimization process that if

successfully converged, yields ~rp (E )∼= ~rm (E ), and in this case we call the corresponding q (~x , E ) a

solution to the inverse problem.

Currently, only the peak responses are compared for both predicted and measured responses. A

full response comparison was attempted in previous work [2] including the continuum and peak

responses, but the continuum response was very difficult to calculate. Accurate representation of

the continuum response requires a fairly sophisticated DRF. Some research has been invested in the

area of DRFs for unshielded detectors [10], but more development of the DRF is required to apply it

to collimated detector responses as shown in Ref. [11].

2.3.2 Nonlinear Optimization

In order to optimize the predicted source distribution, the posterior probability is maximized by

minimizing the residual (Q (~z )) of the difference vector (~z ) which contains the absolute differences

in the model parameters from the initial guess and those between the measured and predicted

responses. The optimization method implemented in this work is the gradient based Quasi-Newton

method with the best estimate covariance as described in Ref. [7]. The method works by minimizing

Q (~z ) according to nonlinear least squares using the following Newton update step for the k t h

iteration

~αk+1 = ~αk −λk

�

∇2
αQ (~zk )
�−1
~∇αQ (~zk ). (2.19)

where λk ∈ [0,1] is the line search parameter which controls the search step size. αk is the source

spatial distribution written in vector form (model parameters) for all peak energies at iteration k ,

11
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and α0 is the priori or initial guess. The gradient of Q is

~∇αQ (~z ) =C −1
α ~zα+S T C −1

m ~zr (2.20)

where Cα, Cm , and S are the source distribution and measurement covariance matrices, and the

collective matrix of adjoint sensitivies (φ†(E )), respectively as defined in Ref. [9]. Under the Gauss-

Newton approximation, the Hessian is defined as

∇2
αQ (~z )≈C −1

α +S T C −1
m S (2.21)

where the inverses of the covariance matrices are replaced by the appropriate linear systems of

equations (consult Ref. [9]) and solved for efficiently using standard linear methods (e.g. Gaussian

Partial Pivoting). Finally, the functional of the difference vector, Q (~z ) is then defined as

Q (~z ) = ~z T C −1 ~z , (2.22)

and the inverse of the covariance, C −1, is

C −1 =

�

C −1
α 0

0 C −1
m

�

. (2.23)

The difference vector, ~z is

~z ≡

�

~α− ~α0

~rp − ~rm

�

=

�

~zα
~zr

�

(2.24)

where ~rp is the response calculated with the attempted source distribution and ~rm is the measured

response.

2.4 DIMP Structure and Outline

DIMP is a system of modules assembled from various existing, production-level computer codes

where the system-level control is implemented in a Python command structure. The input to

DIMP comprises all prior information such as system object dimensions, material composition

and corresponding radiation interaction cross-sections, source energy information, etc., that the

DIMP system overlays in a 3-D adjoint photon transport model to calculate response information

for comparison with measured responses. Finally, the optimization algorithm calculates the best

estimate of the source distribution from the minimization of the response error.

A general outline of DIMP’s procedure is shown in Figure 2.1

12
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Python: Prepare

inputs (geometry,

materials, posi-

tion, distribution)

MAVRIC: Initialize

3-D mesh and

cross-sections

DENOVO: Calculate

adjoint fluxes

for all detector

locations, φ†

Python: Quasi-

Newton Optimizer

(map source)

Experimental or

synthetic data

Update source

parameters

Convergence?
Max number of

iterations?

Terminate

successfully

Terminate un-

successfully

no

no

yesyes

Figure 2.1 DIMP Algorithm Flowchart

First, numerous model parameters such as detector specifications, object dimensions, material

compositions, and locations, and expected source energy peak ranges are initialized as inputs

by Python for use by MAVRIC. MAVRIC calculates cross-sections for all materials appearing in

the problem configuration after retrieving the basic elemental cross-sections from the Evaluated

Nuclear Data Files (ENDF) tables. Next, MAVRIC initializes the 3-D mesh for the adjoint transport

problem and passes this information along with the cross-sections to DENOVO. DENOVO calculates

13
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the importances or adjoint fluxes, φ†(E ) in each computational cell across the entire mesh. The

importances from DENOVO are then folded with an iterate of the source parameters vector, α,

yielding the set of detector responses that correspond to that particular source distribution. These

are passed to the Python based gradient optimizer program.

The Quasi-Newton optimizer compares the predicted responses from DENOVO’s adjoint flux to the

measured responses. Measured responses are normally taken by field detector measurements, but

in this proof-of-principle stage and in support of debugging activities we exercised the option of

calculating synthetic responses by MCNP tallies, except in Chapter 5 where we utilize measured

detector responses. With each iterative step, the optimizer attempts to reduce the difference between

the predicted and measured responses by nonlinear least squares operations, until a local minimum

in the error is found. The source distribution that has the least error is called the best estimate source

distribution and is considered the solution of the inverse problem in a PDF sense. The distribution

that minimizes the sum of the errors squared has the inverse property of maximizing the likelihood

distribution from the original Bayes equation, Eq. 2.1. The source distribution that maximizes the

likelihood distribution has the highest probability of matching the true source distribution. Note,

there is no guarantee that this distribution is the global minimum; however, a good initial guess will

often yield a result that is sufficiently close to the global minimum.

14



CHAPTER

3

NUMERICAL CONVERGENCE STUDY

In order to prepare for quantifying the uncertainty introduced by changing many variables in

the realistic holdup experiments conducted for the purpose of validating the DIMP methodology,

numerical convergence studies were performed. In this study, a previous source configuration

benchmarked in Ref. [2] (a Cs-137 point source and five Co-60 point sources arranged along a straight

line) was simulated using synthetic MCNP detector responses and the results used to verify DIMP’s

convergence to the known source distributions while varying selected features or parameters. The

choice to employ synthetic responses as opposed to experimentally measured responses is dictated

by the large number of cases needed to test the desired dependencies. Also, the ability to repeat

certain "experiments" either exactly or with tweaks to the setup, to facilitate debugging a certain

feature of the code or limitations of the model demand such simulated measurement environments.

Convergence of DIMP was measured by the accuracy of the predicted source’s position, strength,

and spatial distribution compared with the true source used in generating the synthetic responses.

An additional measure of DIMP convergence is provided by the level of agreement of the predicted

and synthetic responses as quantified by the reduced chi-squared. To test the convergence behavior,

DIMP source maps over the spatial extent of the room were computed as a sequence of increasing

number of detectors starting with one detector all the way up to 24 detector points. DIMP showed

stable convergence towards the true point source configuration with a minimum of 5 detectors to
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3.0. CONV. OF CS-137 POINT CHAPTER 3. NUM. CONV. STUDY

resolve a reasonable approximation of the true source configuration.

The original study that employed this setup [2] involved synthetic and experimental measurements

of calibration radioisotope sources placed in room 2144 in Burlington Engineering Laboratories at

North Carolina State University. A stack of Cs-137 sources was placed in the corner on the floor and

a string of five Co-60 sources were placed in a straight line on a counter in the middle of the room.

The first source was meant to represent a point source and the second approximates a line source.

See Ref. [9] for a detailed description and photos of the room, placement of the radiation sources,

and the experimental setup.

In the original work, source maps predicted by the optimization of detector responses would often

yield configurations with multiple source cells even for a single point source in the true source setup.

This is because DIMP makes no prior assumptions about the spatial distribution of a source (unlike

other methods such as GGH), and bases its source predictions solely on prior information (room

geometry, energy of source peaks, etc.) and measured responses. So, it is quite likely in a given DIMP

source map mesh that many cells will have non-zero values due, among other reasons to noise in

the measrued (or synthetic) responses and numerical errors in the computational model. Therefore,

a cut-off criterion is normally chosen to exclude from the solution to the inverse problem sources

that are too small in magnitude.

3.1 Convergence of DIMP for a Mono-energetic Point Source

The first test involves only a simulated Cs-137 point source considered in the original setup [2].

Synthetic responses of a varying number of detectors were computed with MCNP using the true

source strength and location, then these responses were fed into DIMP to predict the optimal source

distribution. The resulting DIMP-predicted source distribution is then compared to the the true

source distribution used in MCNP as the number of detection points was increased from three to

nine. DENOVO solves the inverse problem using a deterministic discrete ordinates particle transport

method, whereas MCNP uses a stochastic particle transport model, so in the sense described in

Ref. [9] this presents an "inverse misdemeanor" not an "inverse crime". The two codes produce

non-identical numerical errors that prevent the exact true source distribution from being predicted

by DIMP. Each detector point’s set of simulated responses comprised one unshielded measurement

and six directional measurements along positive and negative coordinate axes in three dimensions.

The results of this convergence study are displayed in Table 3.1. The true location of the Cs-137

point source is (440, 5, 1) cm, and its true strength is 107.685 kBq.
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Table 3.1 Spatial distribution of the Cs-137 point source computed with DIMP from synthetic responses
as a function of increasing number of detectors. Only cells with source strength larger than 1% of the true
source strength are listed.

3 Det. x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q
qt r ue

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

391.16 50.04 3.31 66.47 4.02E4 37.33 3.919E5

-5 6 0

410.46 58.17 3.31 60.86 2.05E4 19.06

-3 7 0

72.64 171.96 -6.22 403.58 1.30E3 1.21

-38 21 -2

4 Det.

410.46 25.65 3.31 36.11 5.91E4 54.90 3.391E5

-3 3 0

444.37 41.91 3.31 37.24 2.34E4 21.71

1 5 0

439.42 253.24 173.40 302.23 2.43E3 2.26

0 31 22

5 Det.

439.42 2.67 3.31 3.33 8.77E4 81.48 72.34

0 0 0

439.42 17.53 3.31 12.75 1.98E4 18.42

0 2 0

6 Det.

444.37 2.67 3.31 5.47 9.80E4 91.01 69.17

1 0 0

444.37 17.53 3.31 13.47 1.33E4 12.32

1 2 0
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Table 3.1 Convergence data cont.

7 Det. x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q
qt r ue

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

439.42 9.40 3.31 5.00 5.51E4 51.12 20.74

0 1 0

439.42 2.67 3.31 3.33 5.21E4 48.35

0 0 0

8 Det.

439.42 9.40 3.31 5.00 5.51E4 51.13 18.73

0 1 0

439.42 2.67 3.31 3.33 5.21E4 48.35

0 0 0

9 Det.

439.42 9.40 3.31 5.00 5.59E4 51.88 17.78

0 1 0

439.42 2.67 3.31 3.33 5.11E4 47.49

0 0 0

The table shows the coordinates and strength of each individual cell where the predicted source

strength exceeded 1% of the true source’s strength, along with the distance from its true location

(∆d ) to the mesh cell center and its strength relative to that of the true strength used in generating

the synthetic responses. The x ,y ,z coordinates listed for each cell correspond to the coordinates of

that cell’s center point, and the∆x ,∆y ,∆z indicates the difference of the cell’s x ,y ,z mesh index

from the corresponding mesh index of the cell that contains the true point source, respectively.

Also shown in Table 3.1 is the reduced chi-squared value per detector of the detector responses

computed from the predicted source configuration computed via

χ2
R =

1

ν

n
∑

i=1

(rm ,i − rp ,i )2

σ2
i

(3.1)

where ν= n −p is the degree of freedom or the difference between the number of measurements, n ,

and the number of parameters, p .σ2
i is the variance (Poisson or MCNP variance) in the measure-

ments, rm ,i , and rp ,i are the modeled responses. The reduced chi-squared is normalized per detector

in order to screen out the expected modeling error between DENOVO adjoint-based responses and
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MCNP responses that accumulate with each additional detector. As evidenced by the large error in

the predicted source locations, weak strengths, and the resulting very large chi-squared-per-detector

values, DIMP does not perform adequately with fewer than 5 detectors for this source configuration.

With so few detectors, the code places the source near to one of the detectors. From 5 detection

points upwards to 9 detectors, DIMP converges on a 50/50 split between two very probable source

cells in the corner near to where the true source is in fact located. While it does not converge to a

single cell that contains the true source, it remains stable and converges to the true source cell and

its neighbor as a consequence of inconsistent numerical errors in the MCNP and DENOVO models

of the radiation transport process.

3.2 Convergence of DIMP for Poly-energetic Multiple Point Sources

The second DIMP convergence test involves the full original source setup with the Cs-137 point

source in the corner and the five Co-60 point sources along the center of the southern wall. Again,

purely synthetic measurements generated with MCNP were used as detector responses where the

number of detection points was increased from 3 to 24 points total, each comprising one bare

detector and six directional responses as described earlier. The results of the second convergence

study are shown in Table 3.2. The true location and strength of the Cs-137 point source remains the

same as stated in Sec. 3.1, while the true location of the Co-60 line source is centered at approximately

(120, 9.525, 90.17) cm. The individual x coordinates of the five point sources that compose the line

source are x=96.52, 107.95, 119.38, 130.175, and 143.764 cm, and their strengths are 0.525, 2.218,

5.767, 31.793, and 3.845 kBq respectively. Note, DIMP treats the two coincident photons from Co-60

as independent sources with no correlation in their spatial location. Therefore, each Co source cell

mapped by DIMP from one of these two energies may or may not coincide with source cells from

the other energy.
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Table 3.2 Spatial distribution of the Cs-137 point source and the Co-60 line source computed with DIMP
from synthetic responses as a function of increasing number of detectors.∆d is measured from the
strongest point source on the Co-60 line at x=130.175 cm.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

3 Detectors

1.332 82.30 17.53 207.62 127.08 3.00E4 135.96 2.634E4

-5 1 15

1.173 72.64 17.53 190.51 115.94 2.81E4 127.42

-6 1 13

0.662 381.51 66.29 3.31 84.76 2.70E4 25.12

-6 8 0

0.662 391.16 66.29 3.31 78.41 2.34E4 21.72

-5 8 0

0.662 72.64 171.96 -6.22 403.58 1.80E3 1.67

-38 21 -2

4 Detectors

1.332 82.30 17.53 92.90 48.62 2.00E4 90.40 774.1

-5 1 1

1.173 91.95 17.53 113.53 45.51 2.10E4 95.34

-4 1 4

0.662 400.81 58.17 3.31 66.09 4.39E4 40.78

-4 -2 0

0.662 381.51 50.04 3.31 73.86 1.44E4 13.40

-6 6 0

0.662 458.72 261.37 139.19 291.84 4.04E3 3.76

3 32 18
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Table 3.2 Convergence data cont.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

5 Detectors

1.332 120.90 17.53 92.90 12.55 1.37E4 62.06 29.84

-1 1 1

1.332 149.86 17.53 92.90 21.42 6.95E3 31.48

2 1 1

1.173 130.56 17.53 92.90 8.46 2.09E4 94.72

0 1 1

0.662 439.42 2.67 3.31 3.33 5.59E4 51.94

0 0 0

0.662 439.42 9.40 3.31 5.00 4.73E4 43.90

0 1 0

0.662 439.42 2.67 10.13 9.44 4.14E3 3.85

0 0 1

6 Detectors

1.332 120.90 9.40 92.90 9.67 1.88E4 85.14 69.73

-1 0 1

1.332 169.16 9.40 92.90 39.08 2.73E3 12.36

4 0 1

1.173 120.90 17.53 92.90 12.55 1.71E4 77.42

-1 1 1

1.173 169.16 2.67 92.90 39.68 3.78E3 17.14

4 -1 1

0.662 444.37 2.67 3.31 5.47 9.32E4 86.58

1 0 0

0.662 439.42 17.53 3.31 12.75 1.64E4 15.21

0 2 0
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Table 3.2 Convergence data cont.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

7 Detectors

1.332 130.56 9.40 92.90 2.76 1.10E4 49.74 47.39

0 0 1

1.332 130.56 17.53 97.18 10.64 1.06E4 48.00

1 1 2

1.173 130.56 9.40 92.90 2.76 1.31E4 59.42

0 0 1

1.173 130.56 17.53 92.90 8.46 8.39E3 38.02

0 1 1

0.662 439.42 2.67 3.31 3.33 1.05E5 97.22

0 0 0

0.662 439.42 33.78 10.13 30.20 4.99E3 4.64

0 4 1

8 Detectors

1.332 130.56 17.53 92.90 8.46 9.17E3 41.54 93.56

0 1 1

1.332 140.21 17.53 92.90 13.12 7.33E3 33.22

1 1 1

1.173 140.21 9.40 97.18 12.24 1.34E4 60.78

1 0 2

1.173 120.90 17.53 92.90 12.55 6.63E3 30.04

-1 1 1

0.662 439.42 9.40 3.31 5.00 5.63E4 52.31

0 1 0

0.662 439.42 2.67 3.31 3.33 5.03E4 46.70

0 0 0
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Table 3.2 Convergence data cont.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

9 Detectors

1.332 130.56 9.40 97.18 7.02 1.84E4 83.40 75.84

0 0 2

1.332 140.21 9.40 92.90 10.40 2.40E3 10.86

1 0 1

1.332 159.51 -1.40 97.18 32.08 1.39E3 6.32

3 -2 2

1.173 140.21 -1.40 97.18 16.40 3.04E4 137.72

1 -2 2

1.173 169.16 -6.86 97.18 42.87 8.81E2 4.00

4 -3 2

0.662 449.20 17.53 3.31 15.71 7.52E4 69.83

2 2 0

0.662 439.42 2.67 3.31 3.33 6.57E4 60.97

0 0 0
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Table 3.2 Convergence data cont.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

12 Detectors

1.332 140.21 9.40 92.90 10.40 1.08E4 48.90 43.91

1 0 1

1.332 111.25 17.53 97.18 21.71 8.60E3 38.94

-2 1 2

1.332 130.56 17.53 104.98 16.83 8.64E2 3.92

0 1 3

1.332 130.56 17.53 87.87 8.33 8.42E2 3.82

0 1 0

1.332 169.16 -1.40 97.18 41.09 7.72E2 3.50

4 -2 2

1.173 130.56 9.40 92.90 2.76 1.80E4 81.70

0 0 1

1.173 120.90 9.40 92.90 9.67 3.02E3 13.68

-1 0 1

1.173 111.25 17.53 104.98 25.32 1.13E3 5.14

-2 1 3

1.173 159.51 17.53 92.90 30.53 4.76E2 2.16

3 1 1

0.662 439.42 2.67 3.31 3.33 9.32E4 86.55

0 0 0

0.662 439.42 25.65 3.31 20.79 1.07E4 9.89

0 3 0

0.662 439.42 9.40 10.13 10.15 3.98E3 3.69

0 1 1
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Table 3.2 Convergence data cont.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

15 Detectors

1.332 140.21 9.40 92.90 10.40 9.96E3 22.56 64.60

1 0 1

1.332 111.25 17.53 92.90 20.73 8.46E3 38.32

-2 1 1

1.332 130.56 17.53 92.90 8.46 1.74E3 7.90

0 1 1

1.332 140.21 17.53 104.98 19.59 7.37E2 3.34

1 1 3

1.173 130.56 17.53 92.90 8.46 7.99E3 36.20

0 1 1

1.173 140.21 2.67 92.90 12.46 7.84E3 35.52

1 -1 1

1.173 101.60 17.53 97.18 30.49 4.85E3 22.00

-3 1 2

1.173 140.21 17.53 104.98 19.59 6.28E2 2.84

1 1 3

0.662 439.42 9.40 3.31 5.00 7.96E4 73.88

0 1 0

0.662 444.37 2.67 3.31 5.47 2.65E4 24.64

1 0 0
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Table 3.2 Convergence data cont.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

18 Detectors

1.332 140.21 9.40 92.90 10.40 1.15E4 52.16 37.00

1 0 1

1.332 120.90 17.53 92.90 12.55 6.75E3 30.56

-1 1 1

1.332 91.95 17.53 104.98 41.77 2.09E3 9.48

-4 1 3

1.332 120.90 17.53 79.31 16.36 1.11E3 5.02

-1 1 -1

1.173 130.56 9.40 92.90 2.76 2.14E4 97.12

0 0 1

1.173 91.95 17.53 104.98 41.77 1.33E3 6.02

-4 1 3

0.662 439.42 9.40 3.31 5.00 5.76E4 53.50

0 1 0

0.662 439.42 2.67 3.31 3.33 4.91E4 45.56

0 0 0
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Table 3.2 Convergence data cont.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

21 Detectors

1.332 140.21 9.40 92.90 10.40 1.13E4 51.24 37.97

1 0 1

1.332 120.90 9.40 92.90 9.67 9.81E3 44.46

-1 0 1

1.332 91.95 17.53 70.76 43.61 1.10E3 4.98

-4 1 -2

1.173 140.21 9.40 92.90 10.40 7.60E3 34.44

1 0 1

1.173 130.56 9.40 92.90 2.76 7.01E3 31.76

0 0 1

1.173 120.90 9.40 92.90 9.67 6.95E3 31.48

-1 0 1

1.173 91.95 17.53 70.76 43.61 7.81E2 3.54

-4 1 1

0.662 439.42 2.67 3.31 3.33 9.34E4 86.70

0 0 0

0.662 439.42 25.65 3.31 20.79 1.38E4 12.86

0 3 0
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Table 3.2 Convergence data cont.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

24 Detectors

1.332 111.25 17.53 87.87 20.67 6.14E3 27.84 299.1

-2 1 0

1.332 120.90 9.40 92.90 9.67 5.08E3 23.02

-1 0 1

1.332 149.86 17.53 87.87 21.37 3.10E3 14.04

2 1 0

1.332 149.86 17.53 92.90 21.42 2.33E3 10.54

2 1 1

1.332 111.25 17.53 79.31 23.24 1.32E3 6.00

-2 1 -1

1.332 120.90 17.53 104.98 19.21 1.16E3 5.26

-1 1 3

1.173 140.21 17.53 92.90 13.12 7.71E3 34.92

1 1 1

1.173 111.25 17.53 87.87 20.67 4.94E3 22.36

0 1 0

1.173 82.30 17.53 79.31 49.74 2.10E3 9.50

-5 1 -1

1.173 149.86 17.53 87.87 21.37 2.07E3 9.36

2 1 0

1.173 120.90 17.53 104.98 19.21 8.21E2 3.72

-1 1 3

0.662 439.42 2.67 3.31 3.33 8.67E4 80.51

0 0 0

0.662 439.42 17.53 3.31 12.75 1.66E4 15.45

0 2 0

0.662 439.42 25.65 10.13 22.59 3.64E3 3.38

0 3 1
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The tables show similar types of information as the previous convergence study, but reveal a more

interesting feature. Again, DIMP does not converge with fewer than 5 detectors for this source

configuration comprising a six-point distribution with three distinct energies. From 5-7 detectors

the point source is well resolved, merely wavering between two configurations: a 50/50 split of

the source with the correct cell and a neighboring cell and most of the source strength (>70%)

concentrated in one of these two cells. The Co-60 line source however, is only resolved as one- or

two-cell sources. The predicted Co-60 point sources match approximately in total strength and

location with the stronger sources on the true line source.

From 8-21 detectors, more points on the predicted Co-60 line source are resolved. How-

ever, DIMP never maps all five source points of the true Co-60 line source, and typically smears the

locations of the stronger points on the line between the correct cell and a neighbor. Unfortunately,

at 24 detectors, DIMP begins to diverge by predicting source points beyond the boundaries of the

true Co-60 line source. The new detector information creates more source configurations than it

eliminates as the total error between the transport model and the synthetic responses increases

with the addition of each new detector. This failure will be investigated further in the near future.

3.2.1 Convergence of DIMP Using Uncollimated Responses Only

Verifying the necessity and contribution of directional responses to the performance of DIMP’s

source prediction is of high interest for future work. Collimated detectors require more complex

DRFs in order to calculate full response spectra [11], so it would be easier and more efficient to

run DIMP with only unshielded detection points. In order to determine DIMP’s dependence on

directional responses, a convergence study was conducted with only unshielded responses. This

numerical simulation involved only the Cs-137 point source, as reported in Section 3.1. Purely

synthetic measurements generated with MCNP were used as unshielded detector responses where

the number of detection points was increased from 3 to 42 points total, in order to provide an

equivalent number of data points to the base six detection points case with seven responses per

detection point. The results of this convergence study are shown in Table 3.2.1.
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Table 3.3 Spatial distribution of the Cs-137 point source computed with DIMP from synthetic responses
as a function of a selected number of detectors using only unshielded responses. Only cells with source
strength larger than 1% of the true source strength are listed.

3 Det. x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q
qt r ue

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

391.16 220.73 97.18 241.19 6.11E3 5.67 2.777E-2

-5 27 13

7 Det.

400.81 245.11 92.90 260.07 1.92E4 17.87 2.87E-2

-4 30 12

198.12 -6.86 92.90 259.02 8.47E3 7.87

-25 -2 12

410.46 50.04 14.41 55.50 6.51E3 6.04

-3 6 2

400.81 236.98 97.18 254.17 1.81E3 1.68

-4 29 13

15 Det.

400.81 74.42 3.31 79.75 1.88E4 17.50 31.11

-4 9 0

246.38 17.53 147.74 243.27 6.53E3 6.06

-20 2 19

217.42 131.32 14.41 256.27 3.68E3 3.41

-23 16 2

391.16 228.85 87.87 245.03 2.91E3 2.71

-5 28 11

400.81 220.73 122.08 250.47 2.01E3 1.86

-4 27 16

420.12 58.17 27.99 62.85 1.53E3 1.42

-2 7 4
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Table 3.3 Convergence data cont.

30 Det. x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q
qt r ue

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

410.46 25.65 3.31 36.11 1.57E4 14.54 2.82

-3 3 0

420.12 115.06 181.96 212.73 1.29E4 11.98

-2 14 23

400.81 17.53 3.31 41.21 1.22E4 11.37

-4 2 0

420.46 131.32 3.31 129.75 6.54E3 6.07

-2 16 0

284.99 9.40 181.96 238.31 4.24E3 3.94

-16 1 23

159.51 66.29 14.41 287.42 1.86E3 1.72

-29 8 2

246.38 171.96 14.41 256.01 1.82E3 1.69

-20 21 2
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Table 3.3 Convergence data cont.

42 Det. x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q
qt r ue

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

429.77 33.78 45.10 53.65 1.85E4 17.18 6.37

-1 4 6

400.81 17.53 3.31 41.21 1.08E4 10.0

-4 2 0

371.86 2.67 3.31 68.22 8.78E3 8.16

-7 0 0

333.25 9.40 190.51 217.55 6.76E3 6.28

-11 1 24

439.42 66.29 10.13 61.97 4.90E3 4.55

0 8 1

381.51 147.57 3.31 154.12 4.59E3 4.26

-6 18 0

429.77 33.78 3.31 30.63 3.26E3 3.02

-1 4 0

140.21 -1.40 3.31 299.87 3.21E3 2.99

-31 -1 0

227.08 163.83 -0.97 265.65 2.63E3 2.44

-22 20 -1

420.46 115.06 156.30 191.38 2.09E3 1.94

-2 14 20

Unfortunately, DIMP did not perform well leading to the conjecture that directional responses are

indeed necessary and integral to the accuracy of DIMP’s source prediction. In all of the simulations,

the Cs-137 point source was predicted broadly distributed throughout the mesh with the closest

cells (not always the highest activity cells) being at least 5 cells away from the true source cell. None

of the sources were above 18% of the true source strength, and the reduced chi-squared values were

lower or comparable to DIMP’s predictions with directional responses (Table 3.1). Usually, when

DIMP predicts an incorrect source distribution, it places weak sources near prominent detector

points. The possibility of DIMP being stuck in a local minimum was also investigated by using the

true source distribution as an initial guess. DIMP predicted the solution in the true source cell with
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95% or above of the true source strength for each case with a reduced chi-squared value closer to

one, so many of the cases reported in Table may have only shown a local minimum. The reduced

chi-squared was also greatly improved for searches with greater than 14 detection points. Therefore,

it seems the initial guess and alpha vector parameters for the unshielded responses source search

must be fairly different from those of the combined directional and unshielded response source

search. Once the correct alpha vector range for unshielded responses is found, further investigation

with the full Cs-137 and Co-60 source search will continue in order to better test DIMP’s performance

with unshielded responses for more complex source configurations.

3.2.2 Limitations of the DIMP algorithm and Assumptions for synthetic responses

While in the process of testing the convergence properties of DIMP for the original test case, two

limitations of the model and model assumptions were discovered. These limitations include the

alignment of sources and detection points in plane with one another and close proximity of a source

to a detector. The issue arises from an assumption (involving the lead brick collimator model) made

in the computation of MCNP directional responses as synthetic measurements which causes signif-

icant disagreement with the predicted responses from DENOVO under the prescribed conditions.

DENOVO calculates the adjoint flux, and consequently we compute the detector response from the

adjoint flux and the source configuration at the center of the detector coordinates, whereas MCNP

calculates responses at the face of the brick about five centimeters off of the detector face along

the axis in the intended measurement direction. This difference between the MCNP and DENOVO

models that was originally designed to simplify computation of the synthetic directional responses

caused the two abovementioned limitations that produced discrepancies between the responses

computed with the two models as elaborated below.

3.2.2.1 In-plane Sources and Detectors

The first limitation was discovered after poor convergence was observed for an earlier 12 detector

simulation where 6 detection points were kept the same as the previous work [2], and 6 new, distinct

points were chosen within the room enclosure in cells whose material assignment is air but without

preference of specific locations or alignment with other mesh or room features. The resulting poorly

converged results are shown in Table 3.4.
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Table 3.4 Spatial distribution of the Cs-137 point source and the Co-60 line source computed with DIMP
from synthetic responses of 12 detectors that include three coplanar detectors with sources.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

1.332 140.21 17.53 97.18 14.62 3.87E3 8.76 1551

1 1 2

1.173 140.21 17.53 97.18 14.62 1.488E3 3.34

0 1 0

1.173 130.56 17.53 97.18 10.64 1.33E3 3.02

3 1 3

0.662 391.16 41.91 -0.97 61.25 7.56E3 7.02

-5 5 -1

0.662 439.42 98.81 19.44 95.60 3.05E3 2.84

0 12 0

Clearly, DIMP did not converge well for this early 12 detector case as evidenced by the poor agreement

of strength and location with the true source and also by the large reduced chi-squared value

especially in comparison with the 12 detector case shown in Table 3.2 where none of the detection

points suffered the poor placement conditions under investigation in this section. This discrepancy

was very puzzling considering the good agreement reported previously [2]with six detectors that are a

subset of the 12 detectors employed to generate the results reported in Table 3.4. Convergent behavior

of DIMP would have improved the agreement between the true and predicted source distribution

with increasing number of detection points. All of the predicted source cells are excessively weak

in strength and placed away from the walls at least a few cells closer to the detectors. While the

Co-60 prediction was only a few cells off in location from the center of the true line source, it spans

cells in the z direction instead of the x direction. The Cs-137 predicted point source is more than

a few cells off from the corner of the room where the true source was located. Furthermore, the

large value of the reduced chi-square per detector indicated a significant disagreement between

predicted responses and the measured responses especially in view of the much smaller value of

69.73 achieved with the first six detectors [2]. Figure 3.1 compares the synthetic responses computed

by MCNP with those predicted by the inner product of the true source configuration with DENOVO’s

adjoint fluxes. The logarithmic scale shows the overall differences in responses, while the linear

scale emphasizes those in the higher intensity Co-60 responses.
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Figure 3.1 DENOVO Responses computed with the true source configuration (~rt ) and the MCNP syn-
thetic responses (~rm ) for a detector that is in-plane with a source, and located at x=101.6 cm, y=88.9 cm,
z=114.3 cm on logarithmic (above) and linear (below) scales. The horizontal axis indicates the type of
response (collimated or uncollimated), the response’s energy, and the axis of alignment if it is a collimated
response.

Upon comparison of the two sets of responses, significant differences were observed in all of the

responses except for the unshielded or "full" responses. Again, the true Co-60 line source is located

at approximately x=96.5-143.8 cm, y=9.5 cm, and z=90.2 cm.

Since the full responses agreed rather well, this pointed to the lead block collimator as the

reason for the discrepancy. In DENOVO, the detector response is computed at a single cell, namely

the cell containing the coordinates of the centerpoint of the detector’s face, and a point DRF
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function determines the level of attenuation for the flux at that point by the collimator. Some of

the differences can be attributed to when the DRF in the DENOVO adjoint transport calculations

causes an uncollided flux to be zero, while a nonzero heavily attenuated flux is computed by MCNP.

In MCNP, the lead block’s center point is chosen to be the original center point of the detector face

and the tally is moved approximately five centimeters along the detector’s measurement axis to the

corresponding face of the lead block for each directional response tally (refer to sketch in Fig. 3.2.

Figure 3.2 Representation of the synthetic response calculation for DENOVO (above) and MCNP (below)
for an arbitrary detection point.
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As seen above, the origin is shifted from the original coordinates in DENOVO by five centimeters

for each directional response. In MCNP, the whole setup is replaced with a single 10 cm3 lead cube,

and the tally is shifted by five centimeters from the original origin to the face of the lead cube for

the directional response of interest. This changes the angle of incidence as well as the distance

between source and detector slightly from the original geometry at the detector’s face coordinates.

When detector and source are co-planar, this can affect the synthetic response greatly, causing

false positive or negative responses for point sources and noticeable variation in intensity for line

sources. To resolve this discrepancy in the MCNP model, future synthetic collimated responses will

be generated separately on a direction by direction basis (further separation may be required to

prevent the tally interference effects mentioned above).

3.2.2.2 Proximity Between Sources and Detectors

A similar discrepancy in the responses was observed when all of the in-plane detectors were moved

a necessary distance out of alignment with source cells, and yet, the source map was only slightly

improved. The DIMP predicted source distribution provided measures of agreement with the true

source for this 12 detector arrangement that had no coplanar sources and detectors that are displayed

in Table 3.5.
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Table 3.5 Spatial distribution of the Cs-137 point source and the Co-60 line source computed with DIMP
from synthetic responses of 12 detectors with some detectors and sources in close proximity.

Energy (MeV) x (cm) y (cm) z (cm) ∆d (cm) q (Bq) q (E )
qt r ue (E )

(%) χ2
R/d e t .

∆x (cells) ∆y (cells) ∆z (cells)

1.332 140.21 17.53 87.87 13.04 6.34E3 28.72 109.3

1 1 0

1.332 149.86 9.40 87.87 19.82 5.98E3 27.10

2 0 0

1.332 149.86 17.53 79.31 23.86 5.16E2 2.34

2 1 -1

1.173 140.21 17.53 87.87 13.04 6.49E3 29.42

1 1 0

1.173 149.86 9.40 87.87 19.82 6.29E3 28.48

2 0 0

0.662 439.42 2.67 3.31 3.33 9.63E4 89.46

0 0 0

0.662 439.42 17.53 3.31 12.75 1.29E4 12.02

0 2 0

In this case, DIMP’s prediction is much improved, but the results were still worse than the 6 detector

case reported earlier [2]. The reduced chi-squared per detector is nearly double the six detector

value, and the predicted Co-60 source only reached half of its true strength. Again, comparison

of the synthetic and predicted responses reveal a few discrepancies as seen for one such detector

that was placed too close to the source (within 35 cm or about nine cells) in Figure 3.3 for all seven

directions. The detector is closest in proximity to the true location of the Cs-137 point source (x=440

cm, y=5 cm, z=1cm).
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Figure 3.3 Responses for a detector in close proximity to the Cs-137 source, and located at x=424.9 cm,
y=30.0 cm, z=16.0 cm on logarithmic (top) and linear (bottom) scales.

Oddly, even the unshielded responses show a slight discrepancy between the synthetic and true

response values this time. The linear scale of Fig. 3.3 highlights this and illustrates the differences

in the large magnitude Cs-137 responses. There is still a problem with the MCNP +x , −y , and −z

directional responses, since a directional response should never significantly exceed the unshielded

response in magnitude as is the case for the −y -cs value. Here too, the cause for the discrepancy

is the MCNP lead block face tally assumption. While the angular collimation based attenuation
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may remain small, the geometric attenuation differences incurred by moving the detection point 5

cm closer to the source can be significant on a relative scale when the detector-source separation

distance is of comparable length.
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CHAPTER

4

HOLDUP EXPERIMENTAL SETUP

Four measurement experimental campaigns were conducted at the International Safeguards

laboratory at ORNL using a calibration button point source, an HEU disk calibration source, a set

of HEU line sources tied together within a small round duct structure, and a case with multiple

HEU sources and fixtures. Each measurement campagin was designed to test and validate source

prediction results calculated by the DIMP code system in a specific configuration relevant to the

validation of the fundamental methodology or the holdup application. Each campaign’s measured

results except for the first one were also compared to the current holdup model used in practice at

ORNL, HMS-4 (Holdup Measurement System). This chapter will discuss the experimental setup

including source location, structure, dimensions and composition, and detector location choice

rationale.

The activities and active source dimensions of the calibration source are included with all of the

sources used in the measurement campaign in a consolidated table (Table 4.1). Note that only the

active volume of these sources was simulated in DIMP and not their containers, since attenuation

was deemed to be negligible with one exception, the HEU disk, which was encased in a 0.159cm

thick stainless steel casing instead of the typical plastic and cardboard casings.
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Table 4.1 Dimensions and activities of all sources used for experimental measurements conducted in the
International Safeguards laboratory at ORNL.

Point/Disk Sources

Source Active Thickness Activity Manufa- Measured Activity

Radius (cm) (cm) (µC i ) ctured Measured (µC i )

Cs-137∗ 0.25 0.318 5.01 9/28/2005 5/14/2015 4.04 ± 0.61

HEU Disk 2.381 0.0701 23.5 12/5/2004 5/19/2015 23.5± 0.24

Line Sources

Source Active Diameter Activity Manufa- Measured Activity

Line (cm) (cm) (µC i ) ctured Measured (µC i )

HEU Rod 1 28.5 0.5 3.335 5/2004 5/27/2015 3.335±0.003

HEU Rod 2 28.5 0.5 3.357 5/2004 5/27/2015 3.357±0.003

HEU Rod 3 28.5 0.5 3.285 5/2004 5/27/2015 3.285±0.003

HEU Rod 4 28.5 0.5 3.257 5/2004 5/27/2015 3.257±0.003

HEU Rod 5 28.5 0.5 3.372 5/2004 5/27/2015 3.372±0.003

HEU Rod 6 28.5 0.5 3.214 5/2004 5/27/2015 3.214±0.003

Area Sources

Source Active Thickness Activity Manufa- Measured Activity

Area (cm) (cm) (µC i ) ctured Measured (µC i )

HEU Card 1 1058 0.1 23.99 5/2004 6/29/2015 23.99±0.022

HEU Card 2 1058 0.1 24.01 5/2004 6/29/2015 23.99±0.022

HEU Card 3 1058 0.1 28.01 5/2004 6/29/2015 23.99±0.022

HEU Card 4 1058 0.1 24.13 5/2004 6/29/2015 23.99±0.022
∗Note: The calibration sources used in this work were created by Eckert and Ziegler, and the active source dimensions (active

radius, A.R., and thickness) used in the MCNP model were taken from the Type D disc model in the catalog. Furthermore,

according to the supplier "Sources are manufactured with contained activity (Act.) values of ±15% of the requested activity

value unless otherwise noted in the catalog.” [13]

The HEU source record maintained at ORNL reports each source’s mass. The uncertainties in the

activity were calculated from the mass measurement uncertainty to be about 0.1 %. The emission

energies and relative intensities of the gamma-rays of interest for each source used are listed in

Table 4.2.
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Table 4.2 Gamma ray energies and relative intensities with their uncertainties listed in parentheses, of all
sources measured were taken from Brookhaven National Laboratory’s Nudat2.6 database. [14]Unlisted
uncertainties in Ref. [14]were assumed to be one in the last digit.

Source Peak No. Energy (keV) Relative Intensity (%)

Am-241 1 59.5409(1) 35.9(4)

U-235 1 105.0(1) 2.00(3)*

U-235 2 109.0(1) 2.16(13)*

U-235 3 143.76(2) 10.96(14)

U-235 4 163.356(3) 5.08(6)

U-235 5 185.715(5) 57.0(6)

U-235 6 202.12(1) 1.080(23)

U-235 7 205.316(10) 5.02(6)

Ba-133 1 80.9979(11) 35.6(3)*

Ba-133 2 356.0129(7) 62.05(1)

Cs-137 1 661.657(3) 85.10(20)

Co-60 1 1173.228(3) 99.85(3)

Co-60 2 1332.492(4) 99.9825(6)

*Note: gamma-rays from the same source that were within 1 keV of each

other were assigned their average energy and their intensities summed

together.
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4.1 Unshielded Cs-137 Button

The first measurement involved only one Cs-137 point source (calibration button source) held

above the origin in the selected coordinate system for the computational models by a clamp on a

ring stand. This simple experiment was performed to confirm previous results presented by Hykes

[2]. It was surmised that some of the inconsistency in the previous results could be attributed to

weakness of the employed sources. Although the Cs-137 button source is only slightly stronger than

the source used by Hykes, it will make a good initial source configuration for the calibration of

DIMP to the ORNL field detector.

In order to minimize the influence of gamma ray scattering by various objects in the lab a

5m x 5m floor space was marked with tape and cleared of all objects deemed non-essential for the

experimental measurement. For the vast majority of the measurement time, this remained true.

Occasionally, a chair or stool was moved within the measurement boundaries to hold the MCA, or a

staff member might have walked through the marked zone inadvertently. However, the effect of

these infractions on the precision of the measured response is considered negligible as no foreign

object (including the chair carrying the MCA) remained in the field of view of the detector for any

significant length of the measurement time.

The equipment deployed in conducting the experiment included two ring stands, a 2"x1" NaI

detector, and a Cs-137 calibration source. The stands each had a pole approximately 1.5m tall and

a diameter of 2cm and a rectangular base (0.27m x 0.16m). The list of coordinate locations of the

center-point of the face of the detector for each detector measurement and the source location are

shown in Table 4.3.
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Table 4.3 Coordinate locations of the center point of the detector face for each measurement of the Cs-137
point source. The origin is located on the floor at the very center of the cleared square. The uncertainty in
each measurement coordinate is 1 mm.

Measurement Location (cm) Total Distance Detector
# Orientation

Source (0,0,87) 0
1 (51,140,87) 149.0 −y
2 (120,32,77) 124.6 −x
3 (100,-20,96) 102.4 −x
4 (10,-74,81) 74.9 +y
5 (-5,-60,93) 60.5 +y
6 (-50,0,97) 51.0 +x
7 (-40,16,84) 43.2 +x
8 (-7,20,89) 21.3 −y
9 (3,10,87) 10.4 −y

10 (2,0.3,87) 2.02 −x

4.2 HEU Disc

The next validation experiment involved measuring a larger HEU source that could either be treated

as an area source (multiple cells in a block) or a single cell source depending on mesh resolution.

This source again was held above the origin of the measurement area by a clamp on a ring stand.

This allowed for measuring a more relevant radiation source to holdup and calibrating DIMP to

HEU sources without significantly increasing the complexity of the source geometry. The detector

measurement coordinates and the coordinates of the center of the HEU disk source are shown in

Table 4.4. A photograph of the experimental setup is presented in Fig. 4.1.
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Figure 4.1 Photograph of the HEU Disk source measurement experimental setup.

Table 4.4 Coordinate locations of the detector face for each measurement of the HEU Disk source. The
uncertainty in each measurement coordinate is 1 mm.

Measurement Location (cm) Total Distance to Detector

# Orientation

Source (0,0,91) 0

1 (100,-20,100) 102.4 −x

2 (16,-40,88) 43.2 +y

3 (5,-50,95) 50.4 +y

4 (-60,-5,97) 60.5 +x

5 (-74,10,85) 74.9 +x

6 (-7,20,93) 21.3 −y

7 (3,10,91) 10.4 −y

8 (2,0.3,91) 2.02 −x

9 (40,0,91) 40.0 −x

10 (6,-1,91) 6.08 −x

46



4.3. HEU LINE SOURCE IN THE SMALL ROUND DUCT CHAPTER 4. HOLDUP EXP. SETUP

4.3 HEU Line Source in the Small Round Duct

The next set of experiments involved the arrangement of various HEU sources chosen from Table 4.1

within three steel fixtures to simulate realistic holdup in a facility environment. The three fixtures

were: a small round duct, an L-duct, and a pipe array. The coordinate locations and the dimensions

of the fixtures and their respective carts are displayed in Table 4.5. Each cart is a metal dolley with

wheels and steel strut supports to hold the fixture in place. Detailed drawings of the small round

duct and the L-duct are included in Figs. 4.2 and 4.3. The pipe array is not included because it was

never filled with a source.

Table 4.5 Coordinate locations and dimensions of the holdup equipment structures.

Fixture Dim. 1 (cm) Dim. 2 (cm) Dim. 3 (cm) Dim. 4 Obj. Center Loc. (cm)
SRD Cart x=57 y=122 z=2.54 Th.≈0.25 (0,0,8)

L-duct Cart x=122 y=57 z=2.54 Th.≈0.25 (140,140.5,8.27)∗

Pipe Ar. Cart x=122 7=57 z=2.54 Th.≈0.25 (-131,-152.5,8.27)
SRD L=189 Ro u t=7.5 Th.≈0.45 (0,-1,123.5)

L-duct x=175 y=38 z=91/76/61 Th.≈0.5 (118,141,106.5/99/91.5)
Pipe Array L=130 Ro u t=2 Th.≈0.55 (-129,-152.5,95)

*Note: The height dimensions are variable along three sections of the L-duct.
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Figure 4.2 Drawing of the small round duct fixture with the appropriate dimensions.

484848



 61 

 75 

 90.50 

 59 

 14 

 44 

 58  0.01 

 15.69 

E
Area Sources 2,3

Area Sources 3,4
 39 

 39 

 46 

 77.42 

 0.50 

 0.50 

DETAIL E
SCALE 1 : 5

A A

B B

2

2

1

1

L-Duct

DO NOT SCALE DRAWING

LDUCT
SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:25 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN CM
TOLERANCES:
FRACTIONAL 5mm
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

Figure 4.3 Drawing of the L-duct fixture with the appropriate dimensions.
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For the first case, the small round duct was loaded with a set of six line sources taped end to end

across the majority of the length of the pipe (the source did not span the last six centimeters of the

southern end of the pipe). The pipe was enclosed on both ends with steel end caps. The coordinate

locations for each detector measurement and the center of the line source are displayed in Table 4.6.

A photograph of the general experimental setup is included for perspective in Fig. 4.4

Table 4.6 Coordinate locations of the detector face for each measurement of the line sources in the small
round duct. The uncertainty in each measurement coordinate is 1 mm.

Measurement Location (cm) Total Distance to Detector
# Midpoint of the Source Orientation

Source (0,1.5,116.5) 0
1 (36,-74.2,115) 36 −x
2 (36,-43,115) 36 −x
3 (36,-12.8,115) 36 −x
4 (36,17.8,115) 36 −x
5 (36,48.5,115) 36 −x
6 (36,79.2,115) 36 −x
7 (-10,-50,120) 10.6 +x
8 (-20-,-25,112) 20.5 +x
9 (-50,10,107) 50.9 +x

10 (-60,40,123) 60.4 +x
11 (0,114,117) 20.5 −y
12 (0,-104,119) 13.7 +y
13 (0,1.5, 81) 35.5 +z
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Figure 4.4 Photograph of the general holdup-like source measurement experimental setup.

4.4 HEU Line Source in the Small Round Duct & HEU Area Sources in

the L-Duct

For the final case, the small round duct was left loaded with the same source as in the previous case,

and then the L-duct was loaded with four rectangular area sources (also known as "card" sources).

The first two were taped together vertically across the diameter of the duct at the eastern section.

The other two card sources were taped diagonally across a filter in L section at the western end. This

geometry was chosen as a difficult geometry for traditional holdup measurements. The coordinate

locations of the center of each card source and those of the detector measurements are shown in

Table 4.7.
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Table 4.7 Coordinate locations of the detector face for each measurement of the line sources in the small
round duct and the area sources in the L-duct. The uncertainty in each measurement coordinate is 1 mm.

Measurement Location (cm) Total Distance Detector

# to Source Center Orientation

Source 1 (0,1.5,116.5) 0

Source 2 (46.5,141.5,83.28) 0

Source 3 (78.28,141,123.5) 0

Source 4 (120.5,133.5,86.4) 0

Source 5 (121,148.5,86.4) 0

1 (36,-74.2,115) 36 −x

2 (36,-43,115) 36 −x

3 (36,-12.8,115) 36 −x

4 (36,17.8,115) 36 −x

5 (36,48.5,115) 36 −x

6 (36,79.2,115) 36 −x

7 (-10,-50,120) 10.6 +x

8 (-20-,-25,112) 20.5 +x

9 (-50,10,107) 50.9 +x

10 (-60,40,123) 60.4 +x

11 (0,114,117) 20.5 −y

12 (0,-104,119) 13.7 +y

13 (36,27.8,116.5) 113 +y

14 (36, 79.2,116.5) 62 +y

15 (22.5,141,83.3) 24 +x

16 (30.5,141,123.5) 47.8 +x

17 (116.8,184.1,84.4) 35.9 −y

18 (108,230,92.4) 82.6 −y

19 (122.8,97.9,90.4) 38.8 +y

20 (135.8,32,80.4) 102.7 +y

21 (78.3,180,123.5) 39 −y

22 (126,210,86.4) 61.7 −y

23 (62.3,62,83) 80.6 +y

24 (80,22,94.9) 122.4 +y

25 (215.5,141,86.4) 94.8 −x
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4.5 Simulation Experimental Geometry

The base simulation geometry for all experiments includes a main void cell on top of a floor cell

composed of a standard tile and concrete mixture across a 5m x 5m square area. The cells are

contained between −2.5 m on the west boundary to +2.5 m on the east boundary. The same is

true for −2.5 m from the south boundary and ending at +2.5m at the north boundary. The origin

is in the center, just above the upper floor surface boundary. The z axis is defined from −10 cm

(the underside of the floor) to 3 m above the floor. For DENOVO, each cell (e.g. floor, steel fixtures,

ring stand, etc.) is simulated with parallelepipeds to approximate all of the necessary surfaces in

Cartesian geometry since DENOVO does not permit curved surfaces. However, curved surfaces

were employed in the synthetic response simulations to model the detector and the geometric

arrangement executed by MCNP.

Though the physical geometry of the detector is simulated in MCNP, it is not simulated in DENOVO.

Instead, the response values are taken at the center face of the detector after multiplying the adjoint

source by a point DRF factor to approximate the effects of the shielding and collimator. The current

point DRF formulation used by DIMP is described in Ref. [9]. Further details of the DRF and material

geometry will be formalized in the dissertation (the full laboratory room specs. are being obtained

from ORNL and the DRF is being updated for the new detector).

4.6 Experimental Measurement Equipment

The field equipment used to take measurements for all experimental campaigns included a detector

with a preamplifier and a multichannel analyzer with full pulse processing integration. Both pieces

of equipment were essential for HMS-4 and DIMP holdup measurements.

The detector was a 1 inch diameter by 2 inches height right cylinder EFC Model 1X2P collimated NaI

scintillation detector. This is a standard field detector for HMS-4 measurements. [3] The detector

is well shielded with lead except on the front face where the collimator aperture allows radiation

into the detector from a limited extent of directions, i.e. fixed solid angle. Hence, the detector has

approximately a 23 degree in-axial-plane angle of vision from the axis normal to its circular front face.

The MCA is a GBS Elektronik GmbH MCA-166 Rossendorf model [15] that has a self-contained set

of pulse processing equipment. The MCA receives a preamplified signal directly from the detector

through a coaxial cable, which it amplifies and counts across a spectrum of energies. The number
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of counts is divided into channels (proportional to energy) and sent directly to the computer for

recording and post-processing.

*Note: Detector fell once. No significant changes in the spectra were seen. Channel (energy) calibra-

tion drift was observed before and after the event (no apparent correlation).
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DIMP performed fairly well for the first ORNL experiment involving the Cs-137 point source after

some adjustments. Under the standard initial guess (α= 10−4, the baseline static low source cell

probability), DIMP failed to predict any source cells with magnitude larger than 1% of the true

source strength, however using the true source configuration as the initial guess yielded a very good

result alluding to DIMP becoming trapped in a local minimum during the first source search. The

usual initial guess is chosen with a flat low source probability in every mesh cell allowing feedback

with the measured responses to increase the source probability in the appropriate cells. Also, a

correction factor had to be applied to the measured responses to account for the effects observed as

a result of the special collimator geometry for ORNL’s 1" x 2" NaI field holdup detector that were not

featured in the previous detector design used in Ref [2] and utilized in the synthetic data presented

in previous chapters of this work. Furthermore, two measurement points had higher than expected

flux values, so further investigation will be made to determine if they are statistical outliers or further

adjustments to the detector model should be made.
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5.1 Development of the Collimation Correction Factor

The detector used in [2]was a 2" x 2" NaI detector, collimated by the placement of lead bricks (as in

Fig. 3.2) above and to the sides of the detector to produce a forward facing hemisphere FOV. The

1" x 2" NaI field holdup detector provided by ORNL to conduct the measurement campaigns has

a much more sophisticated collimator that narrows the FOV to roughly 23 degrees and partially

obscures the crystal face as shown in Fig. 5.1 below.

56



1

12
11

5.078 

4.782 

3.100 

2.540 

2.254 

 0.948 

 4.288  1.430 

 6.571 

 5.080 

 1.044 

 2.771 

 0.320 
EE

F

SECTION E-E

4 7 6 8

105

2

3

9

 0.048 

DETAIL F
SCALE 2 : 1

ITEM 
NO. PART Material

1 Case Aluminum
2 Plug Aluminum
3 Electronic Housing Void
4 Rear Shield Lead
5 Polymer plate Plastic
6 Steel Enclosure Stainless Steel
7 PMT Void
8 Crystal NaI
9 Tin Shield Tin
10 Collimator Lead
11 Collimator Front Lead
12 Front Cap Aluminum

ORNL 1x2" NaI Detector

DO NOT SCALE DRAWING

NAIDET
SHEET 1 OF 1

8/22/14NBN

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2.5WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN CENTIMETERS
TOLERANCES: 0.001
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

5 4 3 2 1

Figure 5.1 Schematic of the 1" x 2" NaI field holdup detector.

575757



5.1. DEVELOPMENT OF THE COLLIMATION CORRECTION FACTORCHAPTER 5. HOLDUP EXP. SETUP

The front of the lead collimator touches the crystal face and covers about 12% the face reducing the

detector’s solid angle FOV. Since the previous configuration [2] did not suffer such a reduction in

solid angle, DIMP requires a collimation correction factor to adjust the detector efficiency for the

effect of this collimation on the directional responses. The reduction in solid angle is illustrated by

Fig. 5.2

 

Figure 5.2 Sketch of the detector collimator shadowing effect on the detector crystal (reducing the effective
solid angle).

A fairly simple way to compute such a factor, is to simulate the detector with and without the

collimator geometry (just the detector crystal) in MCNP and compare the results to the analytical

solid angle calculations. Using the ratio of the two fluxes (with and without the collimator) as the

collimation correction factor, the measured responses can be corrected by this factor to better match

the responses predicted by the true source distribution folded with DENOVO adjoint fluxes. Thus,

the collimation correction factor (Sc o l (~r , E )) can be calculated as follows

Sc o l (~r , E ) =
φ

s y n
c o l (~r , E )

φ
s y n
un c (~r , E )

(5.1)

whereφ
s y n
c o l (~r , E ) andφ

s y n
un c (~r , E ) are the collimated and uncollimated synthetic responses calculated
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from the true source configuration in MCNP. Dividing the measured responses by Sc o l (~r , E ) will

produce an approximate value of the response that would have been measured with a 2 pi FOV

detector that is assumed in the current version of DIMP. A more appropriate way to account for the

collimator’s effect is to determine a directionally dependent DRF.

The correction factor was used to adjust each of the measured responses from the Cs-137 point

source campagin before initializing DIMP’s source search algorithm. The experiment involved

ten detection points measured within the experimental area in a spiral pattern around the 4 µ Ci

point source held by a clamp on the ring stand (similar to the HEU setup in Fig. 4.1). The distance

between the source and detection points ranged from 0.02-1.25 m as discussed in the previous

chapter, and the coordinates of the true Cs-137 point source are (0,0,87) cm.

Consider the DIMP predicted source map shown in Figure 5.3.
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As seen above, DIMP performed well predicting the source in the correct cell (0,0,90) with 80% of the

true source activity with fairly low uncertainty. Only 80% of the true source strength was obtained

because the corrected measured responses still had a margin of error when compared with those

calculated by DENOVO. This is a promising result for the first of four experimental measurements,

but there are two issues with this result. The first, is that as in [2] the source search had to be narrowed

to a lower number of mesh cells in order to find a good source configuration. Otherwise, the gradient

source search algorithm often becomes stuck in local minima and predicts weak distributed sources.

The second is that two detection point fluxes did not match up with MCNP synthetic fluxes, so

for the time being they were adjusted to the synthetic values artificially. Further investigation will

determine a physical justification for those values if possible. They may be removed as outliers,

since both points were measured fairly close to the source.
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The full extent of the work intended for the PhD dissertation includes validation of the data from the

3 other experimental campaigns, developing a DRF factor to account for the collimation geometry

of the detector, and exploring the use of peak detector response functions from the original Master’s

work to improve response accuracy. Each area of work is valuable to the development of the DIMP

methodology and its application to the holdup problem and more generally future inverse radiation

transport research.

Each experimental campaign provides more information about the capabilities and limitations

of DIMP. The first campaign (the Cs-137 point source) provided a working base data set similar to

previous results. Only the geometry was significantly changed to allow for easy calibration of the

model. The second campaign (the HEU disk source) maintained the same geometry as the first, but

used a source that was more typical for holdup to finalize the calibration of DIMP for SNM. The

third campaign (HEU in the large round duct) provides the first realistic simulation of a field holdup

deposit in steel piece of equipment, by placing a set of line sources across the bottom of a pipe.

The final campaign tests the most difficult situation by providing a case with multiple sources with

difficult geometry in two pieces of equipment. The final test was designed to challenge both the

HMS-4 and DIMP systems and reveal their capabilities and relative strengths and weaknesses.
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After considering the DIMP system without directional detectors, there appears to be some promise

for using detection without collimation. DIMP performed well for the Cs-137 point source from

the Burlington simulation case under an ideal initial guess and a sufficient number of detectors

to narrow the solution set. However, this work was only carried out for the simplest case. DIMP’s

uncollimated responses only configuration will have to be verified for a more complex source

distribution to be certain of its potential for future application. This requires the development of

better guesses for the initial source distribution or more robust search procedures that improve the

probability of DIMP’s optimizer locating the global minimum rather than getting stuck in local

minima, such as an adaptive program that identifies equipment structures and limits the source

search to mesh cells contained within those structures. Another alternative is to replace the gradient

based optimization subroutine with one that is less prone to becoming stuck in local minima.

While conducting the work that yielded the preliminary results, it quickly became clear that a

new DRF would have to be developed for the 1"x2" NaI field holdup detector. Overestimation

of the measured responses by the responses predicted with the true source configuration lead

to the conjecture that the former detector DRF based on a full hemisphere field of view was no

longer sufficient to account for the new detector collimator geometry. The previously used detector

experimental setup consisted of an unshielded 2"x2" detector that was covered with improvised

lead shielding (a set of lead bricks) [2]. The setup restricted the detectors FOV to the forward 2π

hemisphere. The former detector had only a hemispherical collimator, whereas the field holdup

detector has a more complex and restrictive collimator. The field detector has a collimator which

restricts the FOV to a narrower cone (23 degrees from center of face to the normal axis) of the

forward unit sphere. This not only restricts the solid angle of the detector, but reduces the area of

the front surface of the detector crystal which can be intersected by uncollided rays of radiation. A

preliminary collimation factor has been calculated with MCNP to verify the extent of this effect

on the uncollided photon flux, but further refinement may be necessary. Again, the new detector

configuration will also require a suitable initial source guess range in DIMP that can function for all

of the experimental campaign measurements.

Furthermore, DRF improvement is also being sought by using Gardner’s model [10] to improve the

calculation of peak responses. Our previous investigation [11] sought to modify the DRF model

in order to improve DIMP’s collided flux algorithms for full response simulation. Utilizing the full

response in DIMP would have improved the counting efficiency thereby reducing counting times

to achieve the same statistical confidence level in the measured responses. Unfortunately, there

were too many limitations in the Compton continuum responses predicted by the DRF for shielded
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and collimated detectors to warrant implementation of the full DRF in the DIMP formalism. The

peak responses predicted by Gardner’s DRF model still compared well with those measured with

the field detector, so a filtered peak DRF could be implemented in the uncollided flux algorithms of

DIMP. Further investigation will be conducted to determine if the peak DRF from Gardner’s model

significantly improves the performance of DIMP.
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4.7. Task G: Validate DIMP method against measured and manufactured 
data 

This project was designed to culminate in a test of the DIMP methodology on holdup problems. A 
few representative configurations were to be tested, e.g. pipe, duct, and box sources. To 
demonstrate the viability of the DIMP method, the mass of the nuclides of interest and its 
uncertainty were to be estimated for the selected configurations, using gamma responses. In early 
stages of this task, the problems were solved using manufactured responses (i.e. computed by a 
tool such as MCNP). In the latter stages of the project, the data driving DIMP were to come from 
actual measurements at the holdup laboratory cited in Task F. While we started on this task, 
progress has been limited so far, but work on it will continue even after this project concluded. 
NC State University was responsible for completing this task, in consultation and with support 
from ORNL. 

The accomplishment of this task was reported in: Noel Nelson, Yousry Azmy, “Numerical 
Convergence and Validation of the DIMP Inverse Particle Transport Model,” accepted for 
publication in the proceedings of M&C 2017 - International Conference on Mathematics & 
Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea, April 16-20, 
2017, on USB (2017). This document is replicated on the following pages. 
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INTRODUCTION

The goal of this work is to validate the Data Integration
with Modeled Predictions (DIMP) inverse particle transport
method for solving the special nuclear material (SNM) holdup
problem. Holdup problems arise when radioactive material
(with a known emission spectrum) becomes trapped in process-
ing equipment at nuclear fuel processing facilities. Examples
of processing equipment can include but are not limited to
pipes, ducts and filters, glove boxes, and valves. [1] SNM
holdup is of interest to the nuclear fuel industry for many rea-
sons. These reasons include: criticality safety, maintaining
accurate SNM inventory and nuclear safeguards regime, and
radiation worker safety.

Therefore, holdup sources are important to quantify in
total material mass as well as distribution and location. The
DIMP method offers a well automated system that poses the
holdup configuration as an inverse problem. Initial survey
crews would not be required, and few assumptions are nec-
essary to predict source distribution, strength, and location
within equipment. DIMP uses an adjoint particle transport
model to calculate an importance map for a grid of detectors
in the target geometric configuration utilizing as-built informa-
tion of dimensions and material composition of the facility’s
structure. Deterministic transport codes are capable of mod-
eling such configurations with a varying degree of fidelity
of the models to achieve the desired computational accuracy.
Together, the computed flux and detector response functions
can be used to predict detector responses from a given source
distribution. Alternatively, and more efficiently in the present
case, folding the importance function with a given source dis-
tribution yields an estimate of the detector response where
the importance function is the adjoint flux computed with an
adjoint source set to that detector’s response function. DIMP
calculates the optimal source distribution(s), location(s), and
strength(s) that best matches calculated responses to experi-
mental responses with no presumptions of the source shape
and minimal obvious restrictions on its physical location, e.g.
a source cannot be hanging in the air in the middle of a room.

Currently, the DIMP model has been validated for a Cs-
137 point source and a Co-60 line source. It performed well
with low error that was mostly attributed to the weakness of
the available sources (older button sources). [2] This work
intends to expand upon the model and previous research with
realistic holdup experiments using strong Uranium sources
measured with a field holdup NaI detector, and compare the
results to the Holdup Measurement System (HMS-4), a Gen-
eralized Geometry Holdup (GGH) model. Four experimental
holdup measurement campaigns were performed in this work
including a Cs-137 point source, a highly enriched Uranium
(HEU) disk source, an HEU line source in a pipe, and a set of
HEU area sources in a duct.

THEORY: DIMP FORMALISM

Inverse problems are often very complex and ill-
conditioned. For such problems, information at various points
in space and time denoted "measurements" are considered
known, but the source state or its spatial configuration is
treated as unknown. An inverse model is used to calculate a
possible solution state of the system from the measurements.
This is where the difficulty of inverse problems arises. The
existence and uniqueness of an inverse solution is typically
not certain, and solutions can be very unstable depending on
the quality of the measurements.

One way to address the difficulty of inverse problems
is to find solutions with probabilistic methods. While the
solution that best fits the measurement data is not always the
true solution, the chance that it is the true solution should
increase with increasing amount of measured data. This idea
is formalized via Bayes’ theorem [3]:

p(hypothesis|data, I) ∝ p(data|hypothesis, I)p(hypothesis|I),
(1)

where data is the experimentally measured data (e.g. detec-
tor responses), the hypothesis is the unknowns of the sys-
tem (source parameters in this work), and I is all the addi-
tional knowledge of the system (system geometry, detector
efficiency, detector response functions, etc.). The three prob-
ability density functions (PDFs) above p(hypothesis|data, I),
p(data|hypothesis, I), and p(hypothesis|I) are the posterior,
likelihood, and prior respectively. The prior is the condi-
tional probability that the hypothesis occurs based only on
information I. The likelihood represents the probability of
measurement data occurring based on a given configuration
of the unknown data (hypothesis) and the information in I.
This is proportional to the posterior, or the probability of the
given hypothesis (source configuration) being true based on
the information I and the measurement data.

In order to solve an inverse problem, the likelihood func-
tion is maximized thereby minimizing the error between the
experimentally measured data and the synthetic responses (re-
sults predicted by the model from an input configuration of the
source parameters). DIMP maximizes agreement between the
measurement vector rm (responses) and the modeled responses,
rp, predicted by a configuration of the model parameters, α

rm = Rα (2)

where R is the mapping operator from the model parameter
input space to the response space. The solution of this problem
is linear for radiation transport and has a closed form solution
for the posterior means and covariances. Cacuci’s Best Esti-
mate method based on Bayesian inference is used to find the
posterior solution mean and uncertainty. [4]



Radiation Transport

First, the model used in the inverse framework will be
described in detail followed by specification of the source pa-
rameters contained in α, and a few notes on the measurements
rm. The model for the radiation transport problem is based on
the time independent linear Boltzmann Transport equation for
neutral particles in non-multiplying media. [5]

Ω̂ · ∇ψ(x, E, Ω̂) + σ(x, E)ψ(x, E, Ω̂) =∫
dE′

∫
dΩ̂′σs(x; E′, Ω̂′ → E, Ω̂)ψ(x, E′, Ω̂′) + q(x, E, Ω̂) ,

(3)

where ψ(x, E, Ω̂) is the angular flux of particles
[particles/cm2-s] defined over the spatial domain

x ∈ V , Ω̂ ∈ 4π , E ∈ (0,∞) ,

and with explicit boundary conditions

ψ(x, E, Ω̂) = ψ0(x, E, Ω̂) for x ∈ ∂V and Ω̂ · n̂ < 0 .

Ω̂ is the unit directional vector along which particles
are traveling, n̂ is the unit vector normal to the boundary
surface ∂V at the point x, and σ(x, E) the total parti-
cle interaction macroscopic cross-section [cm−1]. Also,
σs(x; E′, Ω̂′ → E, Ω̂) is the macroscopic scattering cross-
section of particles from one direction (Ω̂′) and energy (E′) in
the direction and energy range of dΩ̂′, dE′ about the direction
and energy of interest (Ω̂, E), and q(x, E, Ω̂) is the external
source of radiation particles in the configuration of interest [in
particles/cm3-s]. In DIMP the geometric configuration and
material composition of all objects in the problem domain are
considered known, hence the cross sections are retrieved and
calculated for nuclide mixtures by MAVRIC [6]. Next, it is
useful to define the scalar flux φ(x, E) as

φ(x, E) =

∫
4π

dΩ̂ψ(x, E, Ω̂) . (4)

Reaction rates are key components to many radiation problems,
such as dose and fission rates. In this case, the reaction rate
definition can be used to define a detector response, r, as

r(E′) =

∫ ∞

0
dE

∫
V

dxσd(x, E′, E)φ(x, E) , (5)

where σd(x, E′, E) is the detector response function (DRF).
There are several ways to model and define DRFs, and this is
currently under active consideration. In Eq. 5, σd(x, E′, E) is
the probability per unit path length that a particle at x incident
with energy E registers a response in the detector’s channel
dedicated to energy E′. With this definition in mind, one could
use the inverse of the forward transport equation, Eq. 3 as the
mapping function for the inverse problem. However, direct
inverses are often numerically unstable and computationally
expensive. Equation 5 requires a solution of the transport
equation for every potential source distribution in order to

determine the corresponding φ(x, E) then compute r and com-
pare it to the measured values. Alternatively, the problem can
be reformulated using the adjoint of the transport equation [2].
The adjoint identity can be stated as

〈Ap, h〉 = 〈p, A†h〉, (6)

where 〈, 〉 denotes an inner product, A is an operator, p and
h are any pair of functions in the domain of A, and A† is the
adjoint operator. Furthermore, in this application we define
the inner product as follows

〈p, h〉 =

∫
4π

dΩ̂

∫ ∞

0
dE

∫
V

dV p(x, E, Ω̂)h(x, E, Ω̂) . (7)

Now, consider the fixed source linear transport equation in
operator form

Lψ = q, (8)

where L is the transport operator (for all angular fluxes, ψ),
and q is the external source. Next, take the inner product of
Eq. 8 with the adjoint angular flux ψ†

〈Lψ, ψ†〉 = 〈q, ψ†〉 . (9)

Applying the adjoint identity (Eq. 6) to the above equation
yields [7]

〈Lψ, ζ〉 = 〈ψ, L†ζ〉 + P[ψ, ζ] , (10)

where ζ is an arbitrary function (ζ = ψ† in our case) and
P[ψ, ζ] is the bilinear concomitant, evaluated on the external
surface of volume V ,

P[ψ, ζ] =

∫
4π

dΩ̂

∫ ∞

0
dE

∫
∂V

dS Ω̂ · n̂ψ(x, E, Ω̂)ζ(x, E, Ω̂) .

(11)
Substituting Eq. 10 into Eq. 9 yields

〈ψ, L†ψ†〉 = 〈q, ψ†〉 − P[ψ, ψ†] . (12)

Next we set the adjoint source to the detector response func-
tion, DRF, namely q† = σd, implying

L†ψ† = σd . (13)

Substituting this relationship into Eq. 12 yields

〈ψ, σd〉 = 〈q, ψ†〉 − P[ψ, ψ†]. (14)

Now, applying the following vacuum boundary conditions

ψ(x, E, Ω̂) = 0 ; f or x ∈ ∂V and Ω̂ · n̂ < 0, (15)

ψ†(x, E, Ω̂) = 0 f or x ∈ ∂V and Ω̂ · n̂ > 0, (16)

will cause the bilinear concomitant term to vanish thus pro-
ducing

〈ψ, σd〉 = 〈q, ψ†〉. (17)

Finally, recalling the reaction rate Eq. 5 and substituting it in
Eq. 17 leads to

rp(E) =

∫ ∞

0
dE

∫
V

dVφ†(x, E)q(x, E) (18)



where φ†(x, E) is the adjoint scalar flux, or importance, and
rp(E) is the predicted response. The advantage of the formu-
lation in Eq. 18 over the one in Eq. 5 is the computationally
inexpensive evaluation of the former once φ† is known for a set
of detectors. During the search for optimal source distribution
Eq. 18 comprises an inner product of the precomputed adjoint
fluxes and a guess of the source distribution. In contrast, Eq. 5
requires a full forward transport solution for every attempted
source distribution. The set of discretized importance values
are calculated by the discrete ordinates package DENOVO [6]
using S n=8 and 23 groups, and they are folded with the pre-
dicted source distribution (q(x, E)) during the search for the
best match between the resulting responses and the measure-
ment responses rm. The cross-sections for DENOVO are gen-
erated by MAVRIC (part of ORNL’s SCALE package) from
the Evaluated Nuclear Data Files (200n-47g ENDF/B-VII.0)
libraries. The optimal source distribution is found through
an optimization process that if successfully converged, yields
rp(E) � rm(E), and in this case we call the corresponding
q(x, E) a solution to the inverse problem.

Currently, only the peak responses are compared for both
predicted and measured responses. A full response comparison
was attempted in previous work [2] including the continuum
and peak responses, but the continuum response was very
difficult to calculate. Accurate representation of the continuum
response requires a fairly sophisticated DRF. Some research
has been invested in the area of DRFs for unshielded detectors
[8], but more development of the DRF is required to apply it
to collimated detector responses as shown in Ref. [9].

Nonlinear Optimization

In order to optimize the predicted source distribution, the
posterior probability is maximized by minimizing the residual
(Q(z)) of the difference vector (z) which contains the absolute
differences in the model parameters from the initial guess and
those between the measured and predicted responses. The
optimization method implemented in this work is the gradient
based Quasi-Newton method with the best estimate covariance
as described in Ref. [4]. The method works by minimizing
Q(z) according to nonlinear least squares using the following
Newton update step for the kth iteration

αk+1 = αk − λk

(
∇2
αQ(zk)

)−1
∇αQ(zk). (19)

where λk ∈ [0, 1] is the line search parameter which controls
the search step size. αk is the source spatial distribution written
in vector form (model parameters) for all peak energies at
iteration k, and α0 is the priori or initial guess. The gradient
of Q is

∇αQ(z) = C−1
α zα + S T C−1

m zr (20)

where Cα, Cm, and S are the source distribution and measure-
ment covariance matrices, and the collective matrix of adjoint
sensitivies (φ†(E)), respectively as defined in Ref. [7]. Under
the Gauss-Newton approximation, the Hessian is defined as

∇2
αQ(z) ≈ C−1

α + S T C−1
m S (21)

where the inverses of the covariance matrices are replaced
by the appropriate linear systems of equations (consult Ref.
[7]) and solved for efficiently using standard linear methods
(e.g. Gaussian Partial Pivoting). Finally, the functional of the
difference vector, Q(z) is then defined as

Q(z) = zT C−1 z, (22)

and the inverse of the covariance, C−1, is

C−1 =

[
C−1
α 0
0 C−1

m

]
. (23)

The difference vector, z is

z ≡
[
α − α0

rp − rm

]
=

[
zα
zr

]
(24)

where rp is the response calculated with the attempted source
distribution and rm is the measured response.

RESULTS AND ANALYSIS

Several simulations of radiation sources in various ge-
ometries have been performed with DIMP. To confirm the
stability of the DIMP method, several simulations of a source
configuration was performed using synthetic responses while
increasing the number of detection points per simulation to
verify if DIMP converges to the true solution.

Preliminary Convergence Studies

A preliminary convergence study was performed involv-
ing only the Cs-137 point source using 3 to 9 detection points.
DIMP converged and performed well for that case resolving
the source to the cell with the true coordinate location and a
neighboring cell and determining the source strength within
0.7% of its true value. These small errors in the DIMP solution
are to be expected due to the different computational models
applied to the computation of detector responses (Monte Carlo)
and the adjoint responses (Discrete Ordinates) but are repre-
sentative of measurement errors. Another numerical study was
performed with synthetic responses for the Cs-137 and Co-60
sources using only unshielded detector responses and another
using only directional responses. DIMP performed adequately
with directional responses, but failed to resolve the unknown
source using only unshielded responses due to the optimizer
becoming trapped in local minima. If an initial guess close to
the true source configuration was supplied, the global mini-
mum was found by DIMP producing the correct answer with
a greatly reduced chi-squared value. This suggests that the
DIMP gradient based optimizer only supplied a local minima
under the original initial guess supplied. Adaptive meshing
and alternative optimization methods are being explored for
DIMP to avoid this issue.

DIMP Convergence with Multiple Sources

The convergence test involves the original source setup
used in Ref. [2] depicting a Cs-137 point source and five Co-
60 point sources located at two separate locations in a room at



NC State University. The basic source layout is shown in Fig.
1.

 

(~90-140 cm, 9.5 cm, 90 cm) (440 cm, 5cm, 1 cm) 

Co-60 Point Sources Cs-137 Point Source 

Fig. 1. Rough layout schematic of the simulation geometry of
Burlington 2144 at NC State University.

Initial results indicated that DIMP seemed to diverge be-
yond 21 detection points for this case. This anomaly has been
further investigated, and the reason for the divergence was
poor detector response agreement between one of DENOVO’s
predicted responses and the MCNP synthetic response. This
response was overlooked because it was a detection point,
coplanar (in xy) with one of the Co-60 point sources originally
chosen in the Hykes experiment Ref. [2]. The DIMP DRF pro-
duced a false positive and negative result in the z-directional
predicted responses from DENOVO for that point. Upon re-
placement of the detection point with a low error detection
point, DIMP converged with fairly stable results.

For the purposes of this convergence study only synthetic
measurements generated with MCNP were used as detector
responses where the number of detection points was increased
from 3 to 24 points total. Each detection point consists of
7 measurements: an unshielded detector response and six
collimated directional detector responses along the coordinate
axes (e.g. +x, -x, etc.). [2] The results of the convergence study
are shown in Figures 2-6. The true location and strength of the
Cs-137 point source is (440, 5, 1) cm, and the corresponding
strength is 107.685 kBq. The true location of the Co-60 line
source is centered at approximately (120, 9.525, 90.17) cm.
The individual x coordinates of the five point sources that
compose the line source are x=96.52, 107.95, 119.38, 130.175,
and 143.764 cm, and their strengths are 0.525, 2.218, 5.767,
31.793, and 3.845 kBq respectively. Note, DIMP treats the
two coincident photons from Co-60 as independent sources
with no correlation in space. Therefore, each Co source cell
mapped by DIMP from one energy can be in the same cell or
a different cell from the ones of the other energy.

Fig. 2. Comparison of the reduced chi-squared per detector as
a function of an increasing number of detection points for the
original 24 detectors and a low-error detector responses set.
The reduced chi-squared is normalized per detector in order
to screen out the expected modeling error between DENOVO
adjoint based responses and MCNP responses that accumulate
with the addition of each detector. As evidenced by the large
error in the predicted source locations, weak strengths, and the
resulting very large chi-squared-per-detector values, DIMP
does not perform adequately with fewer than 5 detectors for
this source configuration. With so few detectors, the code
places the source near to one of the detectors. DIMP does not
converge with fewer than 5 detectors for this source configu-
ration comprising a six-point distribution with three distinct
energies. Beyond seven detectors, the low-error detection
points curve decreases gradually and flattens off suggesting
convergence, instead of the unstable divergence of the old set.
Each source configuration consisted of activities (in Bq) cal-
culated across a 52x53x54 mesh employed in the DENOVO
model of the room’s configuration where the predicted source
strength exceeded 1% of the source’s known true strength
along with its strength relative to that of the true strength used
in generating the synthetic responses (Figs. 3 and 4) and the
distance from its true location (∆d) to the mesh cell center (as
shown in Figs 5 and 6). The x,y,z coordinates listed for each
cell correspond to the coordinates of that cell’s center point,
and the ∆x,∆y,∆z indicates the difference of the cell’s x,y,z
mesh index from the mesh index of the cell that contains the
true point source.

Fig. 3. Total predicted source strength across all cells above
1% relative to the total true source strength as a function of
increasing detection points using the original 24 detection
points.



Fig. 4. Total predicted source strength across all cells above
1% relative to the total true source strength as a function
of increasing detection points using the low-error detection
points.

Fig. 5. Distance between the predicted source cell and the true
source cell (∆d) as a function of increasing detection points
using the original 24 detection points. Note: the location of
the closest cell of the predicted set is compared to the strongest
Co-60 point source location.

Fig. 6. Distance between the predicted source cell and the true
source cell (∆d) as a function of increasing detection points
using the low-error detection points. Note: the location of the
closest cell of the predicted set is compared to the strongest
Co-60 point source location.

Similar gradually decreasing and fairly flat curves can be
observed for the low-error sets of the relative source strength
and distance graphs. From 5-7 detectors the Cs-137 point
source is well resolved, merely wavering between two con-
figurations: a 50/50 split of the source with the correct cell
and a neighboring cell and most of the source strength (>70%)
concentrated in one of these two cells. The Co-60 line source
however, is only resolved as one- or two-cell sources. The

predicted Co-60 point sources match approximately in total
strength and location with the stronger sources on the true
line source. From 8-24 detectors, 2-3 of the point sources
in the predicted Co-60 line source are resolved. However,
DIMP never maps all five source points of the true Co-60
line source, and typically smears the locations of the stronger
points on the line between the correct cell and a neighbor. This
is reasonable because two of the sources are less than 10% of
the strongest Co-60 point source. Overall, DIMP performed
well once the discrepant detection point was removed from
the synthetic-measurement set. Such model discrepancies be-
tween DENOVO predicted responses and MCNP synthetic
responses are correlated to current limitations in DIMP. The
DIMP DRF does not perform well if the detector cell is in-
plane with the source cell (including the neighboring cells).
In this type of situation, DIMP has a tendency to create false
positive or false negative responses for the appropriate direc-
tional responses. Adjustments to the current directional DRF
are being investigated to relax this limitation.

Experimental Results

Four measurement experimental campaigns were con-
ducted at the International Safeguards laboratory at Oak Ridge
National Laboratories (ORNL) using a calibration button point
source, an HEU disk calibration source, a set of HEU line
sources tied together within a small round duct structure, and
a case with multiple HEU sources and fixtures. Each measure-
ment campagin was designed to test and validate source predic-
tion results calculated by the DIMP code system in a specific
configuration relevant to the validation of the fundamental
methodology for the holdup application. Each campaign’s
measured results except for the first one will be compared to
the current holdup model used in practice at ORNL, HMS-
4 (Holdup Measurement System). This section will discuss
the experimental setup including source location, structure,
dimensions and composition, and detector location choice
rationale.

Experimental Setup

The activities and active source dimensions of the calibra-
tion source are available upon request from the International
Safeguards group at Oak Ridge National Laboratories. Note
that only the active volume of these sources was simulated in
DIMP and not their containers, since attenuation was deemed
to be negligible with one exception, the HEU disk, which was
encased in thin layer of stainless steel casing instead of the
typical plastic and cardboard casings.

The HEU source record maintained at ORNL reports
each source’s mass. The uncertainties in the activity were
calculated from the mass measurement uncertainty to be about
0.1 %. The emission energies and relative intensities of the
gamma-rays of interest for each source used are listed in Table
I.



TABLE I. Gamma ray energies and relative intensities with
their uncertainties listed in parentheses, of all sources mea-
sured were taken from Brookhaven National Laboratory’s
Nudat2.6 database. [10] Unlisted uncertainties in Ref. [10]
were assumed to be one in the last digit. *Note: gamma-
rays from the same source that were within 1 keV of each
other were assigned their average energy and their intensities
summed together.

Source Peak Energy Relative
Number (keV) Intensity ($)

Am-241 1 59.5409(1) 35.9(4)
U-235 1 105.0(1) 2.00(3)*

U-235 2 109.0(1) 2.16(13)*

U-235 3 143.76(2) 10.96(14)
U-235 4 163.356(3) 5.08(6)
U-235 5 185.715(5) 57.0(6)
U-235 6 202.12(1) 1.080(23)
U-235 7 205.316(10) 5.02(6)
Ba-133 1 80.9979(11) 35.6(3)*

Ba-133 2 356.0129(7) 62.05(1)
Cs-137 1 661.657(3) 85.10(20)
Co-60 1 1173.228(3) 99.85(3)
Co-60 2 1332.492(4) 99.9825(6)

Unshielded Cs-137 Button

The first measurement involved only one Cs-137 point
source (calibration button source) held above the origin in the
selected coordinate system for the computational models by a
clamp on a ring stand. This simple experiment was performed
to confirm previous results presented by Hykes [2]. It was
surmised that some of the inconsistency in the previous results
could be attributed to weakness of the employed sources.
Although the Cs-137 button source is only slightly stronger
than the source used by Hykes, it will make a good initial
source configuration for the calibration of DIMP to the ORNL
field detector.

In order to minimize the influence of gamma ray scat-
tering by various objects in the lab a 5m x 5m floor space
was marked with tape and cleared of all objects deemed
non-essential for the experimental measurement. For the
vast majority of the measurement time, this remained
true. Occasionally, a chair or stool was moved within the
measurement boundaries to hold the MCA, or a staff member
might have walked through the marked zone inadvertently.
However, the effect of these infractions on the precision of
the measured response is considered negligible as no foreign
object (including the chair carrying the MCA) remained in the
field of view of the detector for any significant length of the
measurement time.

The equipment deployed in conducting the experiment
included two ring stands, a 2"x1" NaI detector, and a Cs-137
calibration source. The stands each had a pole approximately
1.5m tall and a diameter of 2cm and a rectangular base (0.27m
x 0.16m). The list of coordinate locations of the center-point

of the face of the detector for each detector measurement and
the source location are shown in Table II.

TABLE II. Coordinate locations of the center point of the de-
tector face for each measurement of the Cs-137 point source.
The origin is located on the floor at the very center of the
cleared square. The uncertainty in each measurement coordi-
nate is 1 mm.

Measurement Location (cm) Total Detector
# Distance Orientation

Source (0,0,87) 0
1 (51,140,87) 149.0 −y
2 (120,32,77) 124.6 −x
3 (100,-20,96) 102.4 −x
4 (10,-74,81) 74.9 +y
5 (-5,-60,93) 60.5 +y
6 (-50,0,97) 51.0 +x
7 (-40,16,84) 43.2 +x
8 (-7,20,89) 21.3 −y
9 (3,10,87) 10.4 −y

10 (2,0.3,87) 2.02 −x

The next validation experiment involved measuring a
larger HEU source that could either be treated as an area
source (multiple cells in a block) or a single cell source de-
pending on mesh resolution. This source again was held above
the origin of the measurement area by a clamp on a ring stand.
This allowed for measuring a more relevant radiation source
to holdup and calibrating DIMP to HEU sources without sig-
nificantly increasing the complexity of the source geometry.
The detector measurement coordinates and the coordinates of
the center of the HEU disk source are shown in Table III. A
photograph of the experimental setup is presented in Fig. 7.

Fig. 7. Photograph of the HEU Disk source measurement
experimental setup.



TABLE III. Coordinate locations of the detector face for each
measurement of the HEU Disk source. The uncertainty in
each measurement coordinate is 1 mm.

Measurement Location (cm) Total Detector
# Distance Orientation

Source (0,0,91) 0
1 (100,-20,100) 102.4 −x
2 (16,-40,88) 43.2 +y
3 (5,-50,95) 50.4 +y
4 (-60,-5,97) 60.5 +x
5 (-74,10,85) 74.9 +x
6 (-7,20,93) 21.3 −y
7 (3,10,91) 10.4 −y
8 (2,0.3,91) 2.02 −x
9 (40,0,91) 40.0 −x
10 (6,-1,91) 6.08 −x

The next set of experiments involved the arrangement of
various HEU sources within three steel fixtures to simulate
realistic holdup in a facility environment. The three fixtures
were: a small round duct, an L-duct, and a pipe array. Each cart
is a metal dolley with wheels and steel strut supports to hold
the fixture in place. The pipe array is not included because it
was never filled with a source. The HEU measurements will
be included in future publications once the validation analysis
is completed.

A photograph of the general experimental setup is in-
cluded for perspective in Fig. 8

Fig. 8. Photograph of the general holdup-like source measure-
ment experimental setup.

Simulation Experimental Geometry

The base simulation geometry for all experiments
includes a main void region on top of a floor region composed
of a standard tile and concrete mixture across a 5m x 5m
square area. The cells are contained between −2.5 m on the
west boundary to +2.5 m on the east boundary. The same
is true for −2.5 m from the south boundary and ending at
+2.5m at the north boundary. The origin is in the center, just
above the upper floor surface boundary. The z axis is defined

from −10 cm (the underside of the floor) to 3 m above the
floor. For DENOVO, each cell (e.g. floor, steel fixtures, ring
stand, etc.) is simulated with parallelepipeds to approximate
all of the necessary surfaces in Cartesian geometry since
DENOVO does not permit curved surfaces. However, curved
surfaces were employed in the synthetic response simulations
to model the detector and the geometric arrangement executed
by MCNP.

Though the physical geometry of the detector is simu-
lated in MCNP, it is not simulated in DENOVO. Instead, the
response values are taken at the center face of the detector
after multiplying the adjoint source by a point DRF factor to
approximate the effects of the shielding and collimator. The
current point DRF formulation used by DIMP is described in
Ref. [7].

Experimental Measurement Equipment

The field equipment used to take measurements for
all experimental campaigns included a detector with a
preamplifier and a multichannel analyzer with full pulse
processing integration. Both pieces of equipment were
essential for HMS-4 and DIMP holdup measurements.

The detector was a 1 inch diameter by 2 inches height
right cylinder EFC Model 1X2P collimated NaI scintillation
detector. This is a standard field detector for HMS-4
measurements. [11] The detector is well shielded with lead
except on the front face where the collimator aperture allows
radiation into the detector from a limited extent of directions,
i.e. fixed solid angle. Hence, the detector has approximately a
23 degree in-axial-plane angle of vision from the axis normal
to its circular front face.

The MCA is a GBS Elektronik GmbH MCA-166
Rossendorf model [12] that has a self-contained set of pulse
processing equipment. The MCA receives a preamplified sig-
nal directly from the detector through a coaxial cable, which
it amplifies and counts across a spectrum of energies. The
number of counts is divided into channels (proportional to
energy) and sent directly to the computer for recording and
post-processing.

Cs-137 Point Source

DIMP performed fairly well for the first validation exer-
cise using ORNL experimental measurements involving the
Cs-137 point source after some adjustments. Under the stan-
dard initial guess (α = 10−4, the baseline static low source
cell probability), DIMP failed to predict any source cells with
magnitude larger than 1% of the true source strength, however
using the true source configuration as the initial guess yielded
a very good result alluding to DIMP becoming trapped in a
local minimum during the first source search. The usual initial
guess is chosen with a flat low source probability in every
mesh cell allowing feedback with the measured responses to
increase the source probability in the appropriate cells. Also, a
correction factor had to be applied to the measured responses
to account for the effects observed as a result of the special



collimator geometry for ORNL’s 1" x 2" NaI field holdup de-
tector that were not featured in the previous detector design
used in Ref [2] and utilized in the synthetic data presented in
previous sections of this paper. Furthermore, two measure-
ment points had higher than expected flux values, so further
investigation is currently underway to determine if they are
statistical outliers or further adjustments to the detector model
need be made.

Development of the Collimation Correction Factor

The detector used in [2] was a 2" x 2" NaI detector, colli-
mated by the placement of lead bricks above and to the sides
of the detector to produce a forward facing hemisphere field
of view (FOV). The 1" x 2" NaI field holdup detector provided
by ORNL to conduct the measurement campaigns has a much
more sophisticated collimator that narrows the FOV to roughly
23 degrees and partially obscures the crystal face. The front of
the lead collimator touches the crystal face and covers about
12% the face reducing the detector’s solid angle FOV. Since
the previous configuration [2] did not suffer such a reduction in
solid angle, DIMP requires a collimation correction factor to
adjust the detector efficiency for the effect of this collimation
on the directional responses. The source-location dependent
reduction in solid angle is illustrated by Fig. 9

 

Fig. 9. Sketch of the detector collimator shadowing effect on
the detector crystal (reducing the effective solid angle).

A fairly simple way to compute such a factor, is to sim-
ulate the detector with and without the collimator geometry
(just the detector crystal) in MCNP and compare the results to
the analytical solid angle calculations. Using the ratio of the
two fluxes (with and without the collimator) as the collimation
correction factor, the measured responses can be corrected by
this factor to better match the responses predicted by the true
source distribution folded with DENOVO adjoint fluxes. Thus,
the collimation correction factor (S col(r, E)) can be calculated
as follows

S col(r, E) =
φ

syn
col (r, E)

φ
syn
unc(r, E)

(25)

where φsyn
col (r, E) and φsyn

unc(r, E) are the collimated and uncol-
limated synthetic responses calculated from the true source
configuration in MCNP. Dividing the measured responses by
S col(r, E) will produce an approximate value of the response
that would have been measured with a 2 π FOV detector that
is assumed in the current version of DIMP. A more rigorous
way to account for the collimator’s effect is to determine a
directionally dependent DRF.

The correction factor was used to adjust each of the
measured responses from the Cs-137 point source campagin
before initializing DIMP’s source search algorithm. The
experiment involved ten detection points measured within
the experimental area in a spiral pattern around the 4 µ Ci
point source held by a clamp on the ring stand (similar to the
HEU setup in Fig. 7). The distance between the source and
detection points ranged from 0.02-1.25 m as discussed in the
previous section, and the coordinates of the true Cs-137 point
source are (0,0,87) cm.

Consider the DIMP predicted source map shown in Figure
10 of the Appendix. As in this source-strength map, DIMP per-
formed well predicting the source in the correct cell (0,0,90)
with 80% of the true source activity with fairly low uncertainty.
Only 80% of the true source strength was obtained because the
FOV-corrected measured responses still had a margin of error
when compared with those calculated by DENOVO. This is
a promising result for the first of four experimental measure-
ments, but there are two issues with this result. The first, is
that as in [2] the source search had to be narrowed to a lower
number of mesh cells in order to find a good source config-
uration. Specifically, instead of allowing the point source to
occupy any number of cells within the full volume of air in
the problem configuration (100 x 100 x 61 cells) we limit the
region where the source can be located to 40 x 40 x 30. Oth-
erwise, the gradient source search algorithm often becomes
stuck in local minima and predicts weak distributed sources
with larger values of the reduced chi-squared. The second is
that two detection point fluxes did not match up with MCNP
synthetic fluxes, so for the time being they were adjusted to
the synthetic values artificially. Further investigation will de-
termine a physical explanation for those discrepant values if
possible. They may be removed as outliers, since both points
were measured fairly close to the source.

CONCLUSIONS

DIMP is a reliable inverse radiation transport solver that
has proven stable for point and line radiation sources config-
urations. Although, DIMP does not resolve the entire line
source with full accuracy, it still approximates the strong point
sources in the line well. DIMP maps the source within a few
cells of its true location and generally predicts the correct
source strength when using more than 5 detection points.

DIMP performed fairly well for the first validation ex-
ercise concerning the Cs-137 point source suspended by a
clamp stand once a detector collimation factor was applied to
the measured responses and the spatial domain for the source
search was reduced by 90% (a full order of magnitude). With-
out the domain reduction, DIMP’s optimizer often failed to
predict the correct source because it became stuck in local min-
ima that were less optimal than the true source specification
as quantified by the corresponding reduced chi-squared values.
With the success of the reduced search, it can be concluded
that future DIMP optimization searches should be attempted
with either an alternate optimizer that does not easily become
trapped in local minima or an adaptive mesh algorithm applied
to reduce the search spatial domain to only logically accept-



able source cells (in equipment, not floors, walls, random air
cells, etc.).

DIMP is expected to perform well for the remaining val-
idation exercises. DIMP will also be verified against SNM
masses predicted by ORNL’s HMS-4 system. The validation
will consist of three additional measurements conducted over
experimental campaigns involving two single source cases
and one multi-source case in various geometries. Two of the
campaigns were meant to simulate holdup-like sources in a
realistic facility geometry (e.g. sources in pipes and ducts),
while the others were used for calibration of the DIMP system.
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Fig. 10. DIMP predicted source map (above) for a 5m x 5m square space (reduced to a 2m x 2m search area) with a Cs-137 point
source suspended by clamps on a ring stand, and the corresponding uncertainty (below).
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