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1. Abstract

In facilities that process special nuclear material (SNM) it is important to account accurately for
the fissile material that enters and leaves the plant. Although there are many stages and processes
through which materials must be traced and measured, the focus of this project is material that
is “held-up” in equipment, pipes, and ducts during normal operation and that can accumulate
over time into significant quantities. Accurately estimating the holdup is essential for proper SNM
accounting (vis-a-vis nuclear non-proliferation), criticality and radiation safety, waste
management, and efficient plant operation.

Usually it is not possible to directly measure the holdup quantity and location, so these must be
inferred from measured radiation fields, primarily gamma and less frequently neutrons. Current
methods to quantify holdup, i.e. Generalized Geometry Holdup (GGH), primarily rely on simple
source configurations and crude radiation transport models aided by ad hoc correction factors.
This project seeks an alternate method of performing measurement-based holdup calculations
using a predictive model that employs state-of-the-art radiation transport codes capable of
accurately simulating such situations. Inverse and data assimilation methods use the forward
transport model to search for a source configuration that best matches the measured data and
simultaneously provide an estimate of the level of confidence in the correctness of such
configuration.

In this work the holdup problem is re-interpreted as an inverse problem that is under-determined,
hence may permit multiple solutions. A probabilistic approach is applied to solving the resulting
inverse problem. This approach rates possible solutions according to their plausibility given the
measurements and initial information. This is accomplished through the use of Bayes’ Theorem
that resolves the issue of multiple solutions by giving an estimate of the probability of observing
each possible solution. To use Bayes’ Theorem, one must have a model y(x) that maps the state
variables x (the solution in this case) to the measurements y. In this case, the unknown state
variables are the configuration and composition of the heldup SNM. The measurements are the
detector readings. Thus, the natural model is neutral-particle radiation transport where a wealth
of computational tools exists for performing these simulations accurately and efficiently. The
combination of predictive model and Bayesian inference forms the Data Integration with Modeled
Predictions (DIMP) method that serves as foundation for this project. The cost functional
describing the model-to-data misfit is computed via a norm created by the inverse of the
covariance matrix of the model parameters and responses. Since the model y(x) for the holdup
problem is nonlinear, a nonlinear optimization on Q is conducted via Newton-type iterative
methods to find the optimal values of the model parameters x.

This project comprised a collaboration between NC State University (NCSU), the University of
South Carolina (USC), and Oak Ridge National Laboratory (ORNL). The project was originally
proposed in seven main tasks with an eighth contingency task to be performed if time and funding
permitted; in fact time did not permit commencement of the contingency task and it was not
performed. The remaining tasks involved holdup analysis with gamma detection strategies and
separately with neutrons based on coincidence counting. Early in the project, and upon
consultation with experts in coincidence counting it became evident that this approach is not
viable for holdup applications and this task was replaced with an alternative, but valuable
investigation that was carried out by the USC partner. Nevertheless, the experimental



measurements at ORNL of both gamma and neutron sources for the purpose of constructing
Detector Response Functions (DRFs) with the associated uncertainties were indeed completed.

This report captures the final status of this project by detailing the work performed on each of the
proposed tasks and highlighting its accomplishments. A brief summary of these tasks follows:

Task A: Verify radiation transport packages & data for computing fluxes at a detector

This task was successfully completed in the second quarter of the third budget period. The
graduate student assigned to this task composed a manual for the DIMP code system, and the
Postdoctoral Fellow who assisted with this task composed an installation guide for Denovo since
it underlies DIMP.

Task B: Equip transport packages with capability to compute neutron multiplicities & sensitivities

Expert colleagues at ORNL advised that the original objective of this task is not viable for holdup
applications because of the low multiplicity signal. Hence this task, as assigned to USC, was
redefined at no additional cost to establish a broader theoretical foundation of DIMP using a
paradigm problem configuration. The modified task entitled “Analyze DIMP in the Context of a
Paradigm Inverse Source Determination Problem” was completed via transmission of a final
report composed by the USC Pl in the first quarter of the third budget period.

Task C: Validate gamma detector response functions and their uncertainties

This task was successfully completed in the fourth quarter of the second budget period. The
graduate student who worked on this task defended and published his MS thesis on the
measurements, construction of the gamma DRF and computation of its uncertainties.

Task D: Develop & validate neutron detector response functions and their uncertainties

This task was successfully completed in the third quarter of the second budget period. The
postdoctoral fellow who worked on this task composed a report on the measurements,
construction of the neutron DRF and computation of its uncertainties.

Task E: Implement data integration and inverse methods

This task was successfully completed by the USC collaborators in the fourth quarter of the one-
year No-Cost-Extension Period. They published the report “MULTI-PRED: A Software Module for
Reducing Uncertainties in Predicted Results through Data Assimilation, Model Calibration and
Validation MULTI-PRED User’s Manual Version 1” authored by Dan G. Cacuci and Madalina C.
Badea.

Task F: Perform high-quality holdup measurements

This task was successfully completed in the fourth quarter of the third budget period. The
graduate student who worked on this task in collaboration with the ORNL PI reported these
results in the student’s doctoral proposal that he successfully defended in December 2016. That
document includes more than just the report on this task.



Task G: Validate DIMP method against measured and manufactured data

Progress was made on this Task that continued into a No-Cost-Extension Period until December
31, 2016, to permit the main graduate student assigned to this project to defend his proposal, a
goal that has been achieved. However, several unforeseen difficulties in the progress of his
research delayed full accomplishment of this task. Due to his investment of time and effort in this
work, the graduate student, supported by the NCSU PI, are committed to completion of this task
under separate funding. The current status of this task comprises a paper that has been accepted
for publication and will be presented at the American Nuclear Society’s Mathematics and
Computation Topical Meeting, April 16-20, 2017, in Jeju, South Korea.

2. Introduction

In a nuclear materials processing facility, it is important to account accurately for the fissile
material that enters and leaves the plant. Incorrect accounting could lead to issues with
radiological safety, criticality safety, and nuclear security and safeguards. Although there are
many stages and processes through which materials must be traced and measured, the focus of
this project is the material that is left behind in equipment, pipes, and ducts. During normal
operation, small amounts of material stick to pipe walls or get trapped in processing equipment.
Over time, these small material “holdups” accumulate into significant quantities, sometimes
several kilograms.! Thus, accurately estimating the holdup is an important component of material
accounting. Although preventing the diversion of special nuclear material (SNM) is a key
motivation for performing holdup calculations, it is not the only reason. Reilly lists a number of
reasons that plant operators need to know the location and quantity of holdup:? criticality safety,
radiation safety, waste management, and efficient plant operation.

Without accurate knowledge of the heldup material, it is possible that the processing plant will
eventually evolve into an unsafe and/or insecure operating regime. While a criticality accident
could be deadly, additional exposure to workers through unknown holdup deposits must also be
avoided. Additionally, inaccurate accounting for SNM, and accumulated amounts of such
materials pose serious proliferation risks. Therefore, facilities that process nuclear materials in
general depend on accurate and precise estimates of the holdup to assure the public and the
international community at large that their operations are safe and secure. Directly measuring
the quantity of holdup is usually not possible, as it would require thoroughly cleaning out every
piece of equipment. Thus, the quantities and locations of holdup must be measured indirectly.
Since the nuclides of interest are radioactive, it is possible to infer their presence through the
detection of their natural decay radiation. Gamma ray spectra are typically measured and this is
facilitated, at least in part, by the availability and portability of detectors that can be held at pre-
specified locations likely for holdup accumulation. Neutron measurements are also used, but less
frequently.

The energies of photopeaks in the gamma spectrum indicate the identity of nuclides present,
while the magnitude of the count rate provides clues to the amount of accumulated radioactive
material. Current methods to compute the quantity of holdup material, i.e., Generalized

I'T. D. Reilly, "Nondestructive assay of holdup," in Passive Nondestructive Assay of Nuclear
Material: 2007 Addendum, LA-UR-07-5149, 2007.



Geometry Holdup (GGH), primarily rely on a calculation of the geometric attenuation across the
distance between the source and detector, assuming that the geometric shape of the source can
be represented as a point, line, or plane.! With this basic estimate, the analysts apply corrections
to compensate for various effects, such as attenuation in equipment or deviations from the simple
source shapes. This project seeks an alternate method of performing these holdup calculations
that are based on measured radiation fields using a predictive model that would naturally account
for effects currently treated with simplified, hence potentially inaccurate, correction factors.
Radiation transport codes can accurately simulate such situations. Inverse and data assimilation
methods can then use a forward transport model to search for a source configuration that best
matches the measured data and simultaneously provide an estimate of the level of confidence in
the correctness of such configuration. This Data Integration with Modeled Predictions (DIMP)
method comprises the backbone of this project.

3. Approach and Objectives

To be specific, the holdup problem is defined in terms of information that is known and
information that is unknown. First, the configuration of the modeled space and equipment around
the holdup measurement is considered known. There are two aspects comprising this
information: the geometric configuration, i.e. shapes and dimensions, and the elemental/isotopic
composition of each item occupying the volume. Engineering drawings or a CAD model should
provide a complete description of the geometric configuration. Each distinct material, except the
holdup material, in the room should have a known density and elemental composition, either
natural abundance or isotopically enriched. These details could be estimated for most standard
materials (such as concrete block walls). Small components in complex equipment should be
included in the computational model of the configuration space if they could significantly affect
the radiation fields around the detector or SNM.

Of course, in the specification of the room’s geometry and material composition, the detailed
distribution of the SNM, and potentially its nuclear composition, is fully or partly unspecified. In
the problems considered here, the SNM geometric configuration is unknown. However, the SNM
should be contained in only a few small (relative to the space volume) geometric bodies. Although
theoretically possible, allowing the SNM to be anywhere in the room would make the problem
significantly more difficult and would require many more detector measurements to achieve a
sufficient level of confidence in the determined solution. Confining the nuclear materials to small
volumes such as pipes or boxes makes the problem more tractable. Although the exact
configuration of the held-up radiation sources is unknown, there may be certain patterns which
it typically follows. For instance, the holdup in a pipe must be connected to the pipe wall, and
material in a box may tend to accumulate in corners. These physically deductible patterns may be
helpful in constraining the possible solutions.

The nuclides present in the SNM may or may not be known from the start. If the plant consistently
processes one type of material, then it should be possible to estimate the nuclide composition in
each component. However, in most plants, the type of input material varies widely, making it
difficult to estimate a composition without first detecting gamma radiation and identifying the
source nuclides from the measured peaks. In this project, the isotopic composition of the
radioactive SNM is considered unknown.



The density of the held-up SNM is likely unknown also, although this value could be estimated
with some certainty. A related unknown is the mass in the held-up SNM of each nuclide of
interest. However, this is solely dependent on the geometric configuration of the holdup, the
density of the holdup, and the isotopic composition of the holdup.

The amount of holdup is measured indirectly using radiation detectors. As stated above, both
gamma and neutron detectors are used for this purpose, but gamma detectors are more common.
Sodium iodide detectors are favored for their portability, but their energy resolution is poor.?
Semiconductor detectors are increasingly available; they feature better peak resolution than Nal
scintillation detectors. The resolution of the detector will certainly influence the ability to discern
peaks in the spectrum that, in turn, identify the source nuclides in the SNM. The gamma detectors
deployed in holdup measurements are typically collimated in order to cut down on the
background radiation and radiation coming from other components at the expense of attaining
lower count rates with larger statistical errors.

The use of neutron detectors is more difficult because they are larger, heavier, and due to the
necessary moderating material, but they can provide useful and complementary data. They are
also more difficult to collimate due to neutrons’ typically lower interaction probabilities. While
collimated neutron detectors are possible, they are large and must be transported on carts.?
Neutron detectors are useful to peer into larger and heavier equipment, for which gamma rays
are strongly attenuated and have limited penetration.

The quality of the counting statistics of the detector measurements is limited by the available time
that the technicians are able to spend measuring each component. Most SNM processing plants
contain many components, so any one part can only consume a brief length of time to measure.
In the case of Y-12 HEU plant, several hundred spectra are acquired and saved in an hour.?
Likewise, the time available for the processing of the detector data and computing the holdup
amount and spatial distribution is limited as well. Although completing the calculation in a few
minutes would be ideal, the longest acceptable run time is overnight, where the analyst would
start the calculation during the workday and it would be complete by the next morning. For these
calculations, it is assumed that the analyst has available a desktop workstation computer, and
that generally there is no access to a high-performance computing cluster.

Our new approach that was attempted in this project is distinct from current approaches for
estimating the holdup in that it casts it as an inverse problem. Although the precise definition of
an “inverse problem” is difficult to pin down, the closely related ill-posed label is clearly defined.
A well-posed problem has a unique solution that is stable and continuous.* An ill-posed problem
lacks one or more characteristics of the well-posed problem. In a typical holdup situation, there
are significantly more unknowns (mostly in the spatial location of the nuclides) than there are
measurements. This means that the problem is under-determined, which implies that there will

2 G. Knoll, Radiation Detection and Measurement, Wiley, 2010.

3 P. Russo, H. Smith, J. J.K. Sprinkle, C. Bjork, G. Sheppard and S. Smith, "Evaluation of an
integrated holdup measurement system using the GGH formalism with the M3CA," in
Transactions of the ANS, Jackson Hole, WY, 1996.

4 ). |dier, Bayesian approach to inverse problems, Wiley, 2008.



be many permissible solutions. Thus, the problem is ill-posed and can be thought of as an inverse
problem.

Based on this viewpoint of the holdup problem we adapt the Data Integration with Modeled
Predictions (DIMP) method for this application.

Solving the holdup problem using the DIMP approach has several benefits. One of the strongest
advantages of DIMP is the consistent integration of all available measurements and prior
information. This is especially relevant for holdup problems where both gamma and neutron
measurements are conducted. In addition, there would likely be prior information about the
holdup distribution based on past experience, which can be included in the method through the
prior PDF.

The Bayesian inference component of DIMP is designed to estimate the confidence level in a
particular solution, or solutions. The method can account for various uncertainties, whether from
detector measurements, nuclear data, or geometric uncertainties. The method will provide a
best-estimate of the mass and location of materials remaining, as well as the variance (or
confidence level) of these quantities. Additionally, the width of the confidence interval of the
solution could be used as a figure-of-merit to optimally select and locate subsequent confirmatory
measurements.

One more advantage of the DIMP approach is the modularity of its requirements. Each of the
functions can be performed by a dedicated module. In most cases, much time and effort has
already been poured into implementing and verifying each module in its own right and for a broad
variety of applications. Most of the computational tools necessary for this work, or at least parts
thereof, are readily and publicly available and have been utilized in this project at no cost to the
sponsor.

The combination of these tools makes a solution to the holdup problem tractable. However, the
robustness and accuracy of the solution depends on the information content of the
measurements. In the case of information-poor measurements, a high variance in the final
estimate will indicate that the computed estimate of the held-up mass and spatial distribution is
unreliable.

4. Detailed Report on Project Tasks

In this section we provide a detailed description of the accomplishment of each task using the
same numbering sequence as in the awarded proposal. The responsible party for delivery of each
task is stated together with a brief description of the task as envisioned in the original proposal.
This is followed for each task by the corresponding final report on that task as composed by the
responsible party.



4.1. Task A: Verify radiation transport packages & data for computing
fluxes at a detector

These are the primary predictive models needed for the holdup problem. The model is the time-
independent neutral-particle linear Boltzmann transport equation, valid for both gamma rays and
neutrons with the appropriate cross section data. These simulators are part of the kernel of the
inverse calculation. They will be called many times during the course of one holdup calculation.
Thus, they must be both accurate and efficient. Deterministic methods for solving these problems
are favored due to their computational efficiency. Here code packages like SCALE are useful,
providing the benefit of decades of research and years of software engineering effort invested in
the simulation tools. Specifically, we use Denovo, that is distributed as part of the SCALE package.
The fine multigroup shielding cross section library from SCALE will suffice for the multigroup
calculations, while ENDF/B-VII pointwise cross sections is employed for continuous or uncollided
calculations. For accurate uncollided flux calculations we use the semi-analytical ray tracing
technique, while for computing the fully-collided flux we employ the discrete ordinates
approximation. In addition, all utilized transport codes must be equipped to compute the adjoint
flux, as this is necessary to efficiently compute the sensitivity of the response to various model
parameters. NC State University was responsible for completing this task.

The accomplishment of this task was reported in: Noel Nelson and Yousry Y. Azmy, Data
Integration with Modeled Predictions (DIMP) Code User Manual, Department of Nuclear
Engineering, NC State University, July 20, 2015. Additionally, a manual for the installation of the
Denovo code that underlies the radiation transport functionality of DIMP was composed: Cyrus
Proctor, Denovo Installation Guide Mined from MediaWiki Installation Guide, NC State University,
2015. These two documents are replicated on the following pages.



Data Integration with Modeled Predictions
(DIMP) Code User Manual

Noel Nelson*and Yousry Y. Azmy!
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1 DIMP Model and Theory

The Data Integration with Modeled Predictions (DIMP) model employs several
steps to predict a photon radiation source model and solve the inverse transport
problem. Unlike a forward transport problem (using source information to pre-
dict responses at some set of points) the inverse problem uses a priori information
(known parameters) and adjoint sensitivities to predict the most probable value
of the unknown parameters (posterior information). In the first section we will
discuss the known model parameters (geometry, cross-sections, etc.) and the un-
known parameters in this model. Next, we explain how responses are processed
(whether these responses are generated synthetically or experimentally) and used
in the DIMP model. Then, adjoint calculations performed with the discrete ordi-
nates code, DENOVO [1], and their use in optimization of the source distribution
will be discussed. Finally, an outline of the nonlinear Newton algorithm employed
in the optimization procedure will be given to allow for a basic understanding of
its function.

1.1 Parameters
1.1.1 Known Parameters

The known parameters of the DIMP model are extensive and often case dependent.
Such parameter sets include but are not limited to: objects and structures (local
geometry and nuclide composition), detector responses, source emission particle
types and energies (from response spectra). These sets may be broken down further
into useful parameter subsets.

The local geometry of a facility (pipe structures, ducts, and equipment) are
generally well characterized in space and material composition. This information
is usually known from factory specifications and measurements, but can be sub-
stituted for a 3-D image taken by a precision imaging system such as LIDAR.
The spatial information and material cross-sections are processed by MAVRIC
[1] (Monaco with Automated Variance Reduction using Importance Calculations)
and Python to generate meshes for the adjoint transport and source mapping
algorithms.

Detector response information comes directly from processed measured spec-
tra. Specifically, response peak information is extracted by a combination of peak
fitting and combined with detector efficiency to produce required uncollided flux
information. In the absence of a measurement (e.g. for the purpose of verification
and testing of the methods and code), this information may also be artificially
synthesized with MCNP [2] (Monte Carlo N-Particle Transport code) flux tallies.



The final set of information (source energy and ID) will generally be known
in certain applications (such as holdup). In cases where it is not, spectral peak
identification may be used from detection measurements to identify the source
material of interest and peak energies to be used by DIMP.

1.1.2 Unknown Parameters

The unknown parameters are the unknown quantities of interest. Such parameters
include the source strength and distribution in energy and space (also called the
source map, ¢(7, E')). Together with the known parameters, the inverse problem
can be posed as follows

r=25q (1)

where S is the adjoint flux solution of the uncollided transport equation and 7
is the vector containing the corresponding detector responses. Frequently, the
number of unknown parameters exceeds the number of response measurements,
and the solution is not unique. Instead of using an inversion operator a more
stable Bayesian probabilistic method is used to find the most probable source map
[3] (described further in Section 1.4).

1.2 Response Processing

Detector response information is spectral information collected by a detector at a
known location. However, in its raw form a detector response is not very useful.
For the Bayesian solution, response spectra must be processed into scalar fluxes
at the detector locations. In general, a typical Nal detector response appears as
follows (Figure 1)



Figure 1: Example of a typical detector response and response peak. [4]

A typical response spectrum can be quite complex, and radiation interaction
physics allows for many features in the continuum region of the spectrum. Because
those continuum features can be difficult to predict and model, DIMP uses only
the full energy peak of a detector response spectrum. A full energy peak represents
photons that have deposited their full energy within the detector, and therefore
can be used to estimate the uncollided photon flux.

DIMP code handles raw detector spectra according to the following procedure.
First, all of the responses for a given case (listed by number of channels, location
of detector, and potentially collimation angle) are compiled into a database. Then
the user would manually identify peak channel ranges for source and background
peaks from previous knowledge and observation. Next, an energy calibration is
performed for the given detector by the user via the method of least-squares. Peak
centroids are fit quadratically to known peak energies. [3] The background and
measured spectra are rebinned according to energy, and background is subtracted
from measured spectra. The net spectra are then fit via least squares according
to the standard Gaussian model. Finally, the area under each gaussian peak (A4,)
is determined and used to calculate the scalar flux (¢(F)) effective locally within
the detector’s volume according to the following equations. [3]

y=t 2
o) = WLE) ®)



where ¢, is the intrinsic peak detector efficiency, (I) the average chord length
of the detector crystal, J_(E) the uncollided partial current on the detector face,
and V the detector volume. The detector efficiencies and the average chord length
can be calculated by MCNP [2] simulation of the detector of interest. The chord
length comes from tracing particle trajectories through the detector crystal using
PTRAC. For the intrinsic peak efficiency, the given detector is simulated with 1E9
particle histories and tallies are taken of the number of particles that cross the
detector crystal face and the number that terminate in the crystal without leaving
its volume. These numbers are divided to estimate the detector peak efficiency.

[5]

1.3 DENOVO and Sensitivities

Sensitivity is often only thought of for the calculation of uncertainty for measure-
ment and model parameters. However, in inverse problems model uncertainties are
highly useful for in determining the most probable solution of the unknown param-
eters. In the case of inhomogeneous transport, the sensitivities are the scalar flux
solutions to the adjoint transport equations. The details of the inhomogeneous
transport equations and adjoint formulation can be found in Ref. [5]. Consider
the detector response

R= <¢’ Jd>’ (4)
where () is the inner product, and ¢ is the scalar flux. Where ¢ is the solution to
the forward transport problem

Lo =q. (5)
L is the transport operator, and ¢ is the source. Vacuum boundary conditions are
assumed. The adjoint transport problem can be defined as

L'¢" =", (6)

and choose ¢' = o4 where ¢! is the adjoint source and o, the detector response
function. This makes L' is the adjoint transport operator and ¢! the adjoint scalar
flux or the importance. Next, take the inner product of Equation 5 with ¢ (7)

(Lo, ¢') = (g, "), (7)
and use the adjoint property

(¢, L'¢") = (g, ). (8)
Substitute the adjoint source condition (Equation 6)

(¢,0a) = (g.0"), (9)
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and finally, substitute the definition for detector response (Equation 4)

R={q,¢" (10)

where R is the continuous representation of the detector response vector () defined
earlier. Hence, Equation (1) has been derived from an adjoint transport formula-
tion under vacuum boundary conditions. This also means that the forward flux
when folded with the detector response function should produce the same response
as the adjoint flux folded with a given source. However, in practice this is not quite
true as transport codes introduce discretization error and truncation errors into
solutions. Therefore, DENOVO was chosen (over TORT) for calculation of the
adjoint flux, as it minimized the relative error between forward calculated and
adjoint calculated responses.

1.4 Optimization

The general inverse problem has been posed (Equation 1) and the known pa-
rameters (geometry, cross-sections, and detector responses) and adjoint sensitivi-
ties considered. In order to determine the most probable values of the unknown
(source) parameters, a nonlinear Newton optimization method [?] has been im-
plemented in the DIMP code. The Newton optimization method maximizes the
posterior. Assuming “quadratic loss,” the posterior is

pEIC) = Jl?lTCI o[-0, (1)
where I p .
7= [ P ] = [ Zj]’ Q) =7"C"'z
a® are the means of the prior on @, 7, are the measured responses, and C is the

combined covariance matrix defined by

Ca COLT
C= [ ot oo ] (12)

where C, is the covariance matrix for a, C,, is the 7 covariance matrix, and C,,
is the a-to-r covariance matrix.

Newton’s method uses the first- and second-derivative information of the func-
tional, more specifically the gradient ﬁaQ(Zk) and Hessian V2Q(Z;) in the update
step .

A1 = Ax — M(VaQ(Z) ™' VaQ(Zh)- (13)
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The line search parameter \; € [0, 1] adjusts the Newton step length for improved
stability. At each iteration (@) the parameter sensitivities are recomputed. This
update procedure continues until the convergence criterion is met, and ideally, the
most probable source distribution has been converged. This approach is described
in more detail in Ref. [3]

2 System and Program Requirements

System: 64-bit linux operating system with Ubuntu 12.04 LTS or 14.04 LTS. List
of all required dependent codes and scripting languages required for running DIMP.
List of Codes

1. Python 2.7

2. Many Python Modules including:

(e) matplotlib
3. DENOVO

(a) DENOVO Constituent Programs (described in Cyrus’s installation man-
ual) [8]

4. SCALE
5. MCNP

3 User Manual

3.1 Installation
3.1.1 Python Modules

Many of the control scripts for DIMP are written in Python language. First make
sure the intended version of Python and the editor are installed. All work has
been done with Python 2.7 which should be installed by default as part of the
core code underlying the Ubuntu O.S. If using an alternate version of Python (like



Anaconda), then make sure all of the Python modules are installed there and the
bash paths point to it.

Next, install the Python modules listed in Section 2. This can be done directly
by downloading the .egg and setup.py files from PYPI (Python Package Index) at
https://pypi.python.org/pypi, and then configuring them. The easier method of
installation is to use an auto-installer such as pip. pip can be installed using the
Ubuntu software databases using either the Ubuntu Software center or Synaptic.

3.1.2 DENOVO

DENOVO is a powerful discrete ordinates transport solver developed by and main-
tained by ORNL. [1] Tt is usually included in the SCALE package, however, DIMP
was made using an older developer’s version. The original DENOVO tarball is
included with the DIMP software package.

The developer’s version of the code can be tricky to install and is a lengthy
process. Please refer Proctor’s installation guide for further details. [8]

3.1.3 SCALE and MCNP

SCALE (Standardized Computer Analyses for Licensing Evaluation) [1] is a mass
collection of government radiation physics codes distributed and controlled by the
Radiation Safety Information Computational Center (RSICC). To gain permission
to use SCALE, one may register and file requests for codes at https://rsicc.ornl.gov.
Upon obtaining the SCALE package discs from RSICC, simply follow the instal-
lation directions included on the discs.

MCNP [2] is used for generating synthetic detector responses. This is useful to
generate data for use as test synthetic cases. MCNP can be obtained from RSICC
in the same manner as with SCALE.

3.2 Input/Output

This section is designed to guide the user in the creation of new case geometries.
For the problem of interest, each input script that requires modification will be
named and described. Finally, the resulting output results and format will be
discussed.

3.2.1 Designing a New Case

First, the user should create a copy of the base case in the templates folder, and
rename it according to the new case. Remove the master Python control scripts

10



"pmaster.py” and "inputs.py” from the new case folder and move them to the
desired working directory ($Path to work directory$/Case_name”). Open both
files in the new case folder of the working directory to make the following changes.

pmaster

Update the first group of lines (12-21) to reflect the correct directory paths (i.e.
change “$working directory$/Case_name” and “$Path to DIM P$” to their true
values). No other lines need to be changed in the master Python script. Other
changes should only be made for debugging purposes if the user is sufficiently ex-
perienced with programming.

mputs
This file controls many options available to the user. Some are system dependent
and will require system knowledge, while others are merely dependent on case data.

There are seven options. The first is merely a switch that allows the incorpo-
ration of experimental response data. If any experimental spectra are to be used
then make sure the flag is set to False. Otherwise, set it to True to use purely
synthetic responses from MCNP. The next two switches govern the number of
computing processors DENOVO will run in parallel. The number of processors
chosen depends on system resources available (e.g. 4,8,16,32.. CPU).

The next three options control which energy groups DENOVO will use. The
first switch is the net total number of energy groups DENOVO will use. The
second switch depicts the number available from the MAVRIC gip (cross-section
file). The third switch informs DENOVO which energy group to start from in the
MAVRIC gip file. Adjust to include the range of emission energies produced by the
expected source material. Note: the MAVRIC file (local.mavrici) energy groups
will have to be adjusted to match these groups. The final option controls whether
or not to include the compton continua of the detector response spectra used in
the source search. The default is False (peak response only). The algorithm for
the inclusion of continua creates inconsistent results and is not recommended in
the present version of DIMP.

In future versions, a consistent switch for eliminating cells containing only empty

space is in development. This will decrease convergence times required by the
Newton optimizerand enhance source location accuracy.
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3.2.2 Local Geometry

Several files control the geometry simulated by DIMP. The three branches of code
that require consistent source-detector geometric description include: MAVRIC,
MCNP, and the DIMP source mapper. Each branch has a set of Python pars-
ing/tool files that also need subsequent adjustment.

MAVRIC

Return to the new case directory of the templates folder in DIMP and navigate
to the following file: “inputs/mavric/local.mavric”. Edit the file to update the
source geometry. Materials, object shapes and positions, and mesh dimensions
for DENOVO adjoint transport calculations should be specified by the user. More
detailed guidelines on correct MAVRIC programming may be found in the SCALE
software manual. [1]

MCNP

Navigate to the mcnp folder in the inputs folder of the base case template and
update the following files: inputs/menp/bare/2144.inp
inputs/menp/bare/parse_bare.py

inputs/menp/shielded/2144.inp

inputs/menp/shielded/parse_shielded.py

2144.inp is the MCNP5 input file for the detector configuration. The file in the
shielded directory is designed for a collimated detector, and the one in the bare
directory for a bare (unshielded) detector. Currently, both are set to generate
synthetic responses, but a future update will allow the use of pure directional (col-
limated detectors). However, use of only an uncollimated detector is not recom-
mended. Without directional detector responses, DIMP’s capabilities are severely
limited.

Input the new geometry and material cards along with the detector and (rela-
tive) source positions according to MCNP format [2]. In the case of an unknown
source, just use a rough estimate of source position and strength. Also, be sure
to match the detector flux tally bin edges with those of the actual detector after
energy calibration.

Currently, the appropriate line corresponding to the peak (uncollided) fluxes in the
flux tallies need to be selected in the parsing files (parse_bare.pyorparse_shielded.py).
It is intended that an automatic way to choose these values from the MCNP mctal
files be created to remove this step in the future.
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DIMP Scripts

Navigate to the following file to update the mapping algorithm’s internal geometry
(outputs/(eors)mapper /directional /bu2144_geometry.py). Choose emapper for
the experimental case or smapper for the synthetic. Note: this geometry can be
left empty and only changed to match the mesh outer dimensions to purely plot
the source characteristics. Inputing the local geometry in this script only puts it
on the source map for reference, not calculation.

3.2.3 Detector Model and Responses

A one time calibration of the detector model must be performed based off of the
detector specifications for the holdup measurement field detector. The base model
that comes with DIMP is a 2x2” bare detector where collimation was added using
a lead brick enclosure around the sides of the detector (creating a 27 detection win-
dow). Also, experimental detector response processing scripts must be adjusted
based on the desired source of interest. The base setting is for U-235.

Detector Model

This section details the process to calculate the detector efficiency database (det-
eff.npz). This database is needed for all experimental cases. In the detspecs folder
there is a script called volume-averaged-eff.py. Simply edit the detector volume by
adjusting the radius and height entries (lines 55 and 56). Also, input the number
of peak energies of interest (line 99).

Next, navigate to the shielded and bare folders separately. Open each det_peak_n.inp

file for the number of energy peaks desired and edit. Update the three tally energy

bins to fit the user’s detector and choose the peak energy of interest by updating

the source card. Then run detbatch.sh. This will usually take quite some time as

several groups of tallies must be run for each peak of interest. After detbatch.sh

finishes, the file det-eff.npz will be produced containing all of the necessary detector

peak effciencies. Move this file to $path to DIM P$/templates/Case_name/inputs/exp_resp/.
Note: this section of the code is still under construction and will be updated in

future versions of DIMP.

FExperimental Response Processing

Experimental processing has yet to be standardized, so as of now, the following
scripts will need significant modification to fit the user’s case.
inputs/exp_resp/measured_responses.py (choose which measurements to use from
processed hdf5 database)

inputs/exp_resp/processdata/create_raw_table.py (organize measurements)
inputs/exp,esp/processdata/process,.awspectra.py (choose peaks to fit)
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A more generalized processing procedure is in developement for this purpose.

3.2.4 Execution and Outputs

After setup of a new case has been concluded (make sure all changes were made
to files in the desired case folder in the templates directory), navigate back to the
case folder in the working directory. To execute DIMP run pmaster.py with the
command ”python pmaster.py.” Be patient. The code usually take several hours
to several days to run depending on the complexity of the case geometry and the
capabilities of the computing platform. Several run messages will show in the
terminal starting with MAVRIC details and ending with execution of the DIMP
mapping and plotting subroutines.

The resulting output will be produced in the following path of the case directory:
$Path to working directory$/Case_name/outputs/mapper /directional | figures/
frames/. In this file, colormap cross-sections of the source and room geometry
will be displayed as well as a colormap of the resulting uncertainty for each peak
energy group selected. Cross-sections will lie along the z-axis mesh gridlines. An
example of such a source map cross-section is shown in Figure 2.
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Figure 2: Example of a source map. Source is a Co-60 line source along the front
wall. This is a reproduction of a case run in Ref. [5].



The white space in the center of the graphs is just a feature of excluding empty
air space cells for this case where a radiation source is neither possible or permit-
ted. The technique has been mentioned in Section 3.2.1 to be included in future
versions of DIMP as an optional switch. As of now, it requires manual modification
of cell choices in the mapping algorithm, which isn’t recommended for beginning
users.

The line source is mapped close to its true location, but only as a point. The
source was fairly weak in this case and only the ends of the line source appeared in
the source map. More consistent results are expected with stronger sources (over
3 1C17). The color scales are logarithmic (uncertainty is not relative). For more
details consult Ref. [5].
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1 Installation Guide

Denovo requires several third-party dependencies in order to be properly compiled. This
guide is one of many possible ways that configuration and installation may take place.
This guide assumes the user is on a 64-bit Linux-based machine with a gcc-based compiler
version >4.6. For this particular guide, the focus will be on installation for Ubuntu 12.04.
Each of the dependencies should be installed in the order given below as some depend on
each other. The user will need to know a couple of things before getting started. The line
/path/to/install or < /path/to/install> will need to be replaced by the installation location
for Denovo and friends. Generally, this would be system-wide at, say, /opt/simplex. Or it
could be locally for a single user, such as /home/user/simplex. The other thing to know is
the name of the host computer. This will be useful for designation of configuration files in
the case of multiple computer installs. The user may find out the hostname by typing echo
$HOSTNAME on the command line.

1.1 Third-Party Dependencies

MPI!

CMake?

zlib?

HDF*

Silo®

LAPACKS
ATLAS”

Python Modules®
Trilinos?
SCALE!Y

http://10.72.10.4/wiki/index.php/MPI
http://10.72.10.4/wiki/index.php/CMake
http://10.72.10.4/wiki/index.php/Z1ib
http://10.72.10.4/wiki/index.php/HDF
http://10.72.10.4/wiki/index.php/Silo
http://10.72.10.4/wiki/index . php/LAPACK
http://10.72.10.4/wiki/index.php/ATLAS
http://10.72.10.4/wiki/index.php/Python_Modules
http://10.72.10.4/wiki/index.php/Trilinos

0 http://10.72.10.4/wiki/index.php/SCALE
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http://10.72.10.4/wiki/index.php/MPI
http://10.72.10.4/wiki/index.php/CMake
http://10.72.10.4/wiki/index.php/Zlib
http://10.72.10.4/wiki/index.php/HDF
http://10.72.10.4/wiki/index.php/Silo
http://10.72.10.4/wiki/index.php/LAPACK
http://10.72.10.4/wiki/index.php/ATLAS
http://10.72.10.4/wiki/index.php/Python_Modules
http://10.72.10.4/wiki/index.php/Trilinos
http://10.72.10.4/wiki/index.php/SCALE
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1.2 Denovo Installation

A fixed source version of Denovo is available via the release version of SCALE. A devel-
opment version circa summer 2012 has been passed down which has the capability for
eigenvalue solves as well as inhomogeneous adjoint sensitivity analysis. The difference in
installation is only one flag which will be pointed out below. When running on Ubuntu-
based systems there is also an extra flag to add. This writeup will assume a development
version of Denovo is being installed be default.

Obtain a Denovo tarball (or potentially a git repository)

cd /path/to/install

mkdir denovo

cd denovo

mu /path/to/tarball/denovo_tarball.tar.gz /path/to/install/denovo

tar xufz denovo _tarball.tar.gz

cd denovo

./denovo_ config

Assuming nemesis is contained within the directory
/path/to/install/denovo/denovo/nemesis ~ and ~ the  user is  located  at
/path/to/install/denovo/denovo we need to add four symbolic links

In -s nemesis/config .

In -s nemesis/tools .

cd sre

In -s ../nemesis/src/harness .

In -s ../nemesis/src/comm .

cd /path/to/install/denovo

mkdir build

cd build

vim <hostname>__ configure add /update with the following/save/quit

#!/bin/bash

LDFLAGS=-L/usr/1ib64
LIBS=-lgfortran
F90=gfortran

CFLAGS=
CXXFLAGS=
FOOFLAGS=

/path/to/install/denovo/denovo/configure \
--prefix=/path/to/install/denovo/install \
--enable-shared \

--enable-python \

--enable-pykba \

--enable-mpi-compilers \

--without-superlu \

--without-brlcad \

--without-metis \
--with-trilinos-dir=/path/to/install/trilinos/install \
--with-silo-dir=/path/to/install/silo/install \
--with-hdf5-dir=/path/to/install/hdf5/install \
--with-lapack=atlas \
--with-lapack-dir=/path/to/install/atlas/install \



Denovo Installation

--with-opt=3 \
--with-dbc=0 -C

This installs a release version of the code with optimization turned on and design by
contract turned off. To install a debug version, change the --with-opt flag to 0 and the
--with-dbc to 7.

If development version, add flag --enable-sug

If on Ubuntu-based systems, add flag --with-ldflags="-Xlinker --no-as-needed"

chmod +x <hostname> _ configure

./<hostname>__ configure

Thoroughly check configuration logs for errors or problems

make

Edit <hostname> configure and remove the flag --enable-shared. Save.
./<hostname> _configure

make

This sequence allows for the shared and static versions of the Denovo library to built.
Open ~/.bashrc and add

PATH=/path/to/install/denovo/install/bin: $PATH
export PATH

LD_LIBRARY_PATH=/path/to/install/denovo/install/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Note: You may need to install aclocal and automake via apt-get install autotools-dev and
apt-get install automake, swig via apt-get install swig, graphviz via apt-get install graphviz
and install doxygen via apt-get install doxygen.






2 MPI

MPICH Download?

Download the mpich-3.0.4 stable release as a tar.gz file.

cd /path/to/install

mkdir mpich

cd mpich

muv /path/to/download/mpich-3.0.4.tar.gz /path/to/install/mpich

tar zvfz mpich-3.0.4.tar.gz

mkdir build

cd busild

vim <hostname> _gcc_ configure add/update with the following/save/quit

#!/bin/bash

CFLAGS=-fPIC

CXXFLAGS=-fPIC

FC=gfortran

F77=gfortran
/path/to/install/mpich/mpich-3.0.4/configure \
--prefix=/path/to/install/mpich/install/gcc \
--enable-fc \

--enable-cxx \

--enable-shared \

--enable-sharedlibs=gcc \

2>&1 | tee config_gcc_hostname.log

chmod +x <hostname> gcc_ configure

./<hostname_ gcc_ configure

Thoroughly check configuration logs for errors or problems
make

make install

e Open ~/.bashrc and add

PATH=/path/to/install/mpich/install/gcc/bin: $PATH
export PATH

LD_LIBRARY_PATH=/path/to/install/mpich/install/gcc/1lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

1 http://www.mpich.org/downloads


http://www.mpich.org/downloads




3 CMake

CMake Download! Check to see if CMake is already available on your system with which
cmake If your system does not automatically come with CMake, check with your distribution
repository. For Debian/Unbuntu-based systems use: sudo apt-get install cmake The version
should be greater than 2.8. The above link will provide a download for a manual source
install which hopefully is unnecessary but provided nonetheless.

1 http://www.cmake.org/cmake/resources/software.html


http://www.cmake.org/cmake/resources/software.html




4 Zlib

zlib Download?!

Download version 1.2.8 or greater as a tar.gz file

cd /path/to/install

mkdir zlib

cd zlib

muv /path/to/download/zlib-1.2.8.tar.gz /path/to/install/zlib

tar zvfz zlib-1.2.8.tar. gz

mkdir build

cd busild

vim <hostname>_ configure add /update with the following/save/quit

#!/bin/bash

cmake \
-D CMAKE_INSTALL_PREFIX:PATH=/path/to/install/zlib/install \
-D BUILD_SHARED_LIBS:BOOL=0N \

$x

e chmod +z <hostname> configure

o ./<hostname> _configure ../zlib-1.2.8

e Thoroughly check configuration logs for errors or problems
e make

e make install

o make test

1 http://wuw.zlib.net
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5 HDF

HDF Download!

e Download HDF5 version 1.8.9 as a tar.gz file

Code Rot Notice: Most likely must stay below 1.8.10 to maintain compatibility.

cd /path/to/install

mkdir hdf5

cd hdf5

muv /path/to/download/hdf5-1.8.9.tar.gz /path/to/install/hdf5

tar zvfz hdf5-1.8.9.tar.gz

mkdir build

cd busild

vim <hostname>_ configure add/update with the following/save/quit

#!1/bin/bash

CFLAGS=$CFLAGS -fPIC
CC=mpicc

CXX=mpicxx

FC=mpif90

/path/to/install/hdf5/hdf5-1.8.9/configure \
--prefix=/path/to/install/hdf5/install \

--W
ith-zlib=/path/to/install/zlib/install/include,/path/to/install/zlib/install/1lib
\

--enable-parallel \

--enable-shared \

--enable-fortran

chmod +x <hostname>__configure

./<hostname>_ configure

Thoroughly check configuration logs for errors or problems
make

make install

cd /path/to/install/hdf5 /install/include

In -s /path/to/install/mpich/install/gce/include/mpi.h

In -s /path/to/install/mpich/install/gcc/include/mpio.h

—_

http://www.hdfgroup.org
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6 Silo

SILO Download?

Download version 4.9.1 or greater as a tar.gz file

cd /path/to/install

mkdir silo

cd silo

muv /path/to/download/silo-4.9.1.tar.gz /path/to/install/silo

tar zvufz silo-4.9.1.tar.gz

mkdir build

cd busild

vim <hostname>_ configure add /update with the following/save/quit

#!/bin/bash

F77=mpif77

FC=mpif90

CC=mpicc

CXX=mpicxx
CFLAGS=-fPIC
CXXFLAGS=-fPIC
LDFLAGS=-L/usr/1ib64
LIBS=-1stdc++

/path/to/install/silo/silo-4.9.1/configure \
--prefix=/path/to/install/silo/install \

--w

ith-hdf5=/path/to/install/hdf5/install/include, /path/to/install/hdf5/install/1lib
\

--w
ith-zlib=/path/to/install/zlib/install/include,/path/to/install/zlib/install/1lib
\

--disable-silex \

--without-qt \

--with-readline \

--enable-pythonmodule \

--with-gnu-1d

e chmod +x <hostname>__configure

e . /<hostname> _configure

e Thoroughly check configuration logs for errors or problems
e make

e make install

e Open ~/.bashrc and add

PATH=/path/to/install/silo/install/bin:$PATH

1 https://wci.1llnl.gov/codes/silo
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Silo

export PATH

LD_LIBRARY_PATH=/path/to/install/silo/install/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Note: You may need to install the development version of Python with sudo apt-get install
python-dev
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7 LAPACK

LAPACK Download!

Download version 3.5.0 or greater as a .tgz file

cd /path/to/install

mkdir lapack

cd lapack

muv /path/to/download/lapack-3.5.0 /path/to/install/lapack

tar zvfz lapack-3.5.0.tgz

mkdir build

cd busild

vim <hostname>_ configure add /update with the following/save/quit

#!/bin/bash

cmake \

-D CMAKE_INSTALL_PREFIX:PATH=/path/to/install/lapack/install \
-D CMAKE_Fortran_COMPILER:PATH=/usr/bin/gfortran \

$x

chmod +x <hostname>__ configure
./<hostname>_ configure ../lapack-3.5.0
Thoroughly check configuration logs for errors or problems

make
make install

1 http://www.netlib.org/lapack
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8 ATLAS

ATLAS Download?

Download version 3.10.1 or greater as a tar.bz2 file

cd /path/to/install

mkdir atlas

cd atlas

muv /path/to/download/atlas3.10.1.tar.bz2 /path/to/install/atlas

tar zvfj atlas3.10.1.tar.bz2

mv ATLAS atlas-3.10.1

mbkdir build

cd build

vim <hostname>__ configure add/update with the following/save/quit

Note: CPU Throttling must be disabled. For GUI Ubuntu and sudo permissions, see
here?. For command-line, with sudo rights, use sudo indicator-cpufreq and set to perfor-
mance. This may also be set in the BIOS. And it may also be set by: sudo apt-get install
cpufrequtils; sudo /usr/bin/cpufreg-set -g performance

#!/bin/bash

/path/to/install/atlas/atlas-3.10.1/configure \
--prefix=/path/to/install/atlas/install \

--shared \

-Fa alg -fPIC \
--with-netlib-lapack-tarfile=/path/to/install/lapack/lapack-3.5.0.tgz \

-D ¢ \

-DPentiumCPS=CPU-Frequency in Mhz \

-b 64

e Note: You may find CPU-Frequency in Ubuntu with the command Ilscpu | grep "MHz"
e chmod +x <hostname>_configure

e ./<hostname> _configure

e Thoroughly check configuration logs for errors or problems
o make build

e make check

e make ptcheck

e make time

e make install

e Open ~/.bashrc and add

LD_LIBRARY_PATH=/path/to/install/atlas/install/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

1
2

http://math-atlas.sourceforge.net
http://askubuntu.com/questions/142688/cpu-frequency-scaling-for-12-04
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9 Python Modules

NumPy and SciPy Downloads' There are numerous ways to install NumPy and SciPy
including cloud repositories and with the help of pip. With that mentioned, the seemingly
most universal and reliable way has been via source build. Plus, one can specify the proper
locally tuned BLAS library to use for the most efficient computations.

9.1 Numpy

Download version 1.7.2 or greater as a tar.gz file

cd /path/to/install

mkdir python

cd python

muv /path/to/download/numpy-1.7.2.tar.gz /path/to/install/python

tar zvfz numpy-1.7.2.tar.gz

mbkdir build

cd build

vim <hostname> _numpy_ configure add /update with the following/save/quit

#!/bin/bash

export BLAS=/path/to/install/atlas/install/lib/libtatlas.so
export LAPACK=/path/to/install/atlas/install/lib/libtatlas.so
export ATLAS=/path/to/install/atlas/install/lib/libtatlas.so

python /path/to/install/python/numpy-1.7.2/setup.py build
python /path/to/install/python/numpy-1.7.2/setup.py install

e chmod +x <hostname> numpy_ configure
e . /<hostname> _numpy_ configure
e Thoroughly check configuration logs for errors or problems

9.2 SciPy

Download version 0.13.3 or greater as a tar.gz file

cd /path/to/install/python

mu /path/to/download/scipy-0.13.5.tar.gz /path/to/install/python
tar xufz scipy-0.13.3.tar.gz

cd build

vim <hostname>_scipy_ configure add /update with the following/save/quit

—_

http://www.scipy.org/scipylib/download.html
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Python Modules

#!/bin/bash

#
# Run in source directory!
#

export BLAS=/path/to/install/atlas/install/lib/libtatlas.so
export LAPACK=/path/to/install/atlas/install/lib/libtatlas.so
export ATLAS=/path/to/install/atlas/install/lib/libtatlas.so

python /path/to/install/python/scipy-0.13.3/setup.py build
python /path/to/install/python/scipy-0.13.3/setup.py install

chmod +x <hostname>__scipy configure

cd /path/to/install/python/scipy-0.13.3
../build/<hostname> _scipy _configure

Thoroughly check configuration logs for errors or problems
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10 Trilinos

Trilinos Download?

10.1 Code Rot Notice

The version of Denovo that is being used for compilation is a version circa June 2012. This
was the last point in which access to the git repository server angmar (Tom Evan's box in
his office) was available. As a result, this version of Denovo requires a version of Trilinos
that is also of this time period since both are working codes. Be sure to download version
no later than 10.10.1. At some point soon after this release, there was a restructuring
and splitting of libraries that Denovo expects under one static library. The options are to
manually repackage the split libraries together using gcc (not tested) or to use an older
version of Trilinos. Next, as a result of choosing an older version of Trilinos, compilation
errors can arise using a gcc compiler version > 4.6.3. A preprocessor directive in a particular
file will be accepted using a version of gcc < 4.6.3 and an error thrown for versions > 4.6.3
(I've only tried 4.6.3 and 4.8.2 so it's an assumption). To check your version of gee, go to
the command line and type gcc -v. Adapt the instructions below based on your version
number.

10.2 Installation

Download version 10.10.1 or LESS as a tar.gz file

cd /path/to/install

mkdir trilinos

cd trilinos

mu /path/to/download/trilinos-10.10.1.tar.gx /path/to/install/trilinos
tar zvfz trilinos-10.10.1-Source.tar.gz

mkdir build

cd busild

vim <hostname>_ configure add /update with the following/save/quit

#!/bin/bash
EXTRA_ARGS=$0@

cmake \

-D CMAKE_INSTALL_PREFIX:PATH=/path/to/install/trilinos/install \
-D CMAKE_BUILD_TYPE:STRING=RELEASE \

-D Trilinos_ENABLE_TESTS:BOOL=0FF \

1 http://trilinos.sandia.gov
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Trilinos

-D Trilinos_ENABLE_Amesos:BOOL=0N \

-D Trilinos_ENABLE_Anasazi:BOOL=0N \

-D Trilinos_ENABLE_Aztec00:BOOL=0N \

-D Trilinos_ENABLE_EpetraExt:BOOL=0N \

-D Trilinos_ENABLE_Ifpack:BOOL=0N \

-D Trilinos_ENABLE_ML:BOOL=0N \

-D Trilinos_ENABLE_NOX:BOOL=0N \

-D BUILD_SHARED_LIBS:BOOL=0N \

-D CMAKE_C_FLAGS:STRING=-fPIC \

-D CMAKE_CXX_FLAGS:STRING=-fPIC \

-D CMAKE_Fortran_FLAGS:STRING=-fPIC \

-D TPL_ENABLE_MPI:BOOL=0N \

-D MPI_INCLUDE_DIRS:PATH=/path/to/install/mpich/install/gcc/include \
-D MPI_LIBRARY_DIRS:PATH=/path/to/install/mpich/install/gcc/1lib \
-D TPL_ENABLE_BLAS:BOOL=0N \

-D BLAS_LIBRARY_NAMES:STRING=tatlas \

-D BLAS_INCLUDE_DIRS:PATH=/path/to/install/atlas/install/include \
-D BLAS_LIBRARY_DIRS:PATH=/path/to/install/atlas/install/1lib \

-D Trilinos_EXTRA_LINK_FLAGS:STRING=-lgfortran \

-D TPL_ENABLE_LAPACK:BOOL=0N \

-D LAPACK_LIBRARY_NAMES:STRING=tatlas \

-D LAPACK_LIBRARY_DIRS:PATH=/path/to/install/atlas/install/1lib \
$EXTRA_ARGS \

/path/to/install/trilinos/trilinos-10.10.1-Source/

chmod +x <hostname>__configure

./<hostname>_configure ../trilinos-10.10.1-Source

Thoroughly check configuration logs for errors or problems

If gcc version > 4.6.3

e vim < /path/to/install> /trilinos/trilinos-10.10.1-Source /packages/zoltan/src/zz/murmurs.c
e edit line 15 from

#define FORCE_INLINE __attribute__((always_inline))

to

#define FORCE_INLINE inline __attribute__((always_inline))

e make
o make install
e Open ~/.bashrc and add

LD_LIBRARY_PATH=/path/to/install/trilinos/install/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH
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11 SCALE

SCALE Registration! SCALE is released by ORNL's RSICC. Each user must register and
request a DVD pack to be mailed to them. Different versions of SCALE will produce
varying formats of Denovo xkba input generated via MAVRIC. The release version allows
for ascii versions of xkba input while the development version (circa summer 2012) allows
for binary xkba input. Follow the installation instructions that come with the DVD's. For
reference, install to /path/to/install/scale6.1. SCALE will be used to process cross section
information for use with Denovo.

1 http://scale.ornl.gov/index.shtml
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4.2. Task B: Analyze DIMP in the Context of a Paradigm Inverse Source
Determination Problem

This task was modified from its original intent based on advice from holdup experts at ORNL. The
University of South Carolina was responsible for completing this task.

The accomplishment of this task was reported in: Dan G. Cacuci, Comparative Analysis of Methods

for Inverse Problems with Applications to Radiation Transport, University of South Carolina,
December 30, 2014. This document is replicated on the following pages.
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COMPARATIVE ANALYSIS OF METHODS FOR
INVERSE PROBLEMS WITH APPLICATIONS TO
RADIATION TRANSPORT

Dan G. Cacuci
December 30, 2014

ABSTRACT

The assessment of material “held-up” in equipment, pipes, and ducts in a plant that
processes nuclear materials must be inferred from measured radiation fields, primarily
gamma and less frequently neutrons. Thus, the “holdup problem” falls under the category
of “source identification problem”. Such “inverse problems” are computationally unstable,
so a naive solution will be overcome by round-off errors or noise in the data, which can
amplify to a degree that renders the computed solution useless.

This work presents the most popular methods for addressing inverse problems, starting with
the Levenberg (1944)-Marquardt (1963) method, which is possibly the easiest to apply but
also the least sophisticated. Tichonov’s (1963) method, discussed next, subsumes elements
of the LM-method, but has an additional term that controls the solution’s smoothness.
When implemented correctly, Tichonov’s method provides convexity and compactness in
the problem. However, even when done correctly, Tichonov’s method actually changes the

original problem into new ones (depending on the value of the parameter A°), and solutions
to the new problems may not be close to those of original problem. Moreover, because of

the discretionary user-parameter A°, it is not possible to compute quantitatively the error
between the true, but actually unknown solution and the “regularized” solution.

The more modern method use Bayes’ theorem to combine all of the available information
to construct a posterior distribution for solving the inverse problem in a probabilistic sense,
providing a range of possible “outcomes.” The method presented Tarantola’s book (2005)
is also reviewed briefly, and shown to not only comprise Tichonov’s, but to eliminate the

appearance of Tichonov’s discretionary user-parameter A° my replacing it with a
functional that contains the actual covariance matrices for modeling the respective
uncertainties. The most recent and comprehensive method, which unifies both the forward
and the inverse problems in the presence of computational and experimental uncertainties,
is Cacuci’s method (2014) for “predictive modeling of coupled multi-physics systems”,
which is also compared to the older methods.

Cacuci’s (2014) method treats efficiently and explicitly coupled multi-physics systems in
the presence of computational and experimental uncertainties. When reduced to a single
multi-physics system, Cacuci’s method is shown to comprise the Levenberg-Marquardt,
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Tichonov, and Tarantola methods as particular cases, even. Cacuci’s methodology (2014)
uses the maximum entropy principle to construct an optimal approximation of the unknown
a priori distribution for the a priori known mean values and covariances characterizing the
parameters and responses for both multi-physics models. This approximate a priori
distribution is combined using Bayes’ theorem with the “likelihood” provided by the two
multi-physics simulation models. Subsequently, the posterior distribution is evaluated using
the saddle-point method to obtain analytical expressions for the optimally predicted values
for the parameters and responses of both multi-physics models, along with corresponding
reduced uncertainties for both the model parameters and responses. This methodology
enables predictive modeling for coupled multi-physics systems, taking fully into account
the coupling terms between the systems but using only the computational resources that
would be needed to perform predictive modeling on each system separately.

The comparative analysis presented in this work highlights the following important
conclusions:

(1) Cacuci’s method (2014) calibrates simultaneously all of the model parameters as
well as the model responses. In contradistinction, the other methods calibrate
only the model responses. Therefore, even for a single model, Cacuci’s method
yields additional results by comparison to all of the other methods currently
available.

(i1) Cacuci’s method (2014) takes into account correlations between model
parameters and model responses. No other method has this capability.
Importantly, the predicted responses and parameters will become correlated,
even if they were uncorrelated initially.

Noteworthy, Cacuci’s (2014) methodology for coupled systems is constructed such that the
systems can be considered sequentially rather than simultaneously, while preserving
exactly the same results as if the systems were treated simultaneously. Consequently, very
large coupled multi-physics systems, which could perhaps exceed the available
computational resources if treated simultaneously, can be treated with Cacuci’s (2014)
methodology sequentially and without any loss of generality or information, requiring just
the resources that would be needed if the systems were treated sequentially. This feature
enables the treatment of very large systems which would currently exceed the
computational resources available if treated with conventional data assimilation procedures.
In particular, Cacuci’s (2014) methodology would be ideally suited for performing large-
scale coupled neutron-gamma inverse transport problems, in which the neutron and,
respectively, the gamma transport computations would be performed using distinct
computational tools.



1. INTRODUCTION

As is well known, the particle and/or radiation transport equation strives to describe all
possible interactions of particles within the host medium while taking into account the
medium’s detailed material properties and geometry. One can distinguish between two
fundamental types of problems in the mathematical description of the transport of particles
through the host medium. The most common type are the direct problems, in which one is
given the composition and geometry of the medium, as well as the location and magnitude
of all sources of particles, and asked to determine the distribution of particles in the
medium. Thus, the ““direct problem” solves the “parameter-to-output” mapping that
describes the “cause-to-effect™ relationship in the particle transport process. The second,
and far more difficult type of problems are the inverse problems, in which one is given
(usually just partially) the particle distribution and is asked to determine the characteristics
of the host medium or characteristics of the sources that have generated the respective
particles. In general, two problems are called inverses of one another if the formulation of
each involves all or part of the solution of the other. In particular, “measurement problems”
are “inverse” to the direct problem in that they seek to determine (from measurements) the
properties of the host medium (e.g., composition, geometry, including internal interfaces),
or the properties of the source (e.g., strength, location, direction), and/or the size of the
medium on its boundaries. Some authors further group such inverse problems into
“invasive”, when the interior particle distribution is accessible for measurements, as
opposed to “non-invasive” ones, in which only particle distributions on the boundaries of
(or exterior to) the medium can be measured. Such inverse problems are encountered in
fields as diverse as astrophysics (in which one measures the intensity and spectral
distribution of light in order to infer properties of starts), nuclear medicine (where
radioisotopes are injected into patients and the radiation emitted is used in diagnostics to
reconstruct body properties, e.g. tumors), non-destructive fault detection in materials,
underground (oil, water) logging, and detection of sensitive materials. The “holdup
problem” also falls under the category of “source identification problem”. Recall that this
problem arises because special nuclear (fissile) material (SNM) is “held-up” over time in
plant equipment (e.g., pipes, ducts). Since it is not possible to measure directly the holdup
quantity and location, these must be inferred from measured radiation fields, primarily
gamma and less frequently neutrons.

The existence of a solution for an inverse problem is in most cases secured by defining the
data space to be the set of solutions to the direct problem. This approach may fail if the data
is incomplete, perturbed or noisy. Furthermore, problems involving differential operators
are notoriously ill-posed, because the differentiation operator is not continuous with respect
to any physically meaningful observation topology. If the uniqueness of a solution cannot
de secured from the given data, additional data and/or a priori knowledge about the solution
need to be used to further restrict the set of admissible solutions. In particular, stability of
the solution is the most difficult to ensure and verify. If an inverse problem fails to be
stable, then small round-off errors or noise in the data will amplify to a degree that renders
a computed solution useless.



The historically older methods used for solving approximately an ill-posed problem were
called regularization procedures. These procedures attempted to manipulate explicitly the
direct (forward) equation in conjunction with measurements in order to estimate explicitly
the unknown source and/or other unknown characteristics of the medium. On the other
hand, the more modern “implicit” methods combine measurements with repeated solutions
of the direct problem obtained with different values of the unknowns, iterating until an a
priori selected functional, usually representing a user-defined “goodness of fit” between
measurements and direct computations, is reduced to a value deemed to be “acceptable” by
the user. The fundamental characteristics of inverse problems (namely that they are ill-
posed and/or ill-conditioned, unstable to errors in the transport model parameters and the
experimental measurements) have increasingly inclined the balance towards the
development of implicit methods, which allow, to various degrees, the inclusion of the
effects of such errors in the “inverse problem” algorithms.

This work is organized as follows: Section 2 presents a new methodology for predictive
modeling of coupled multi-physics systems, which was recently conceived by Cacuci
(2014), extending the predictive modeling methodology of Cacuci and Ionescu-Bujor
(2010) from a single multi-physics system to two or more coupled multi-physics systems.
Noteworthy, Cacuci’s methodology enables coupled systems to be treated sequentially
rather than simultaneously, while preserving exactly the same results as if the systems had
been treated simultaneously, thus requiring just the resources that would be needed if the
systems were treated simultaneously. Cacuci’s methodology (2014) uses the maximum
entropy principle to construct an optimal approximation of the unknown a priori
distribution for the a priori known mean values and uncertainties characterizing the
parameters and responses for both multi-physics models. This approximate a priori
distribution is subsequently combined using Bayes’ theorem with the “likelihood” provided
by the multi-physics computational models. Finally, the posterior distribution is evaluated
using the saddle-point method to obtain analytical expressions for the optimally predicted
values for the parameters and responses of both multi-physics models, along with
corresponding reduced uncertainties.

Section 3 reviews the previous methods for solving inverse problems with uncertain data, in
chronological order of their appearance. Section 3.1 reviews the Levenberg (1944) -
Marquard (1963) method. This method was used by Bledsoe et al (2011) to solve several
inverse transport problems by minimizing an “a priori” chosen chi-square-type functional
to estimate the “differences between measured and computed quantities of interest”.
Section 3.2 reviews Tichonov’s method (1963), which takes into account not only the
“misfits” between measurements and computations, but also takes into account the
solution’s smoothness, albeit at the expense of introducing an arbitrary parameter
(“tunable” by the user). Section 3.3 reviews the so-called “Bayesian least squares
methods”, noting that all of the more recent methods use Bayes theorem in some form to
deduce the posterior distribution of interest, and then further noting that, if the distributions
are Gaussian, the evaluation of the posterior amounts to solving a least-squares problem.
The most sophisticated of these is Tarantola’s (2005) “functional inverse least-squares”

(FILS-T) method, which replaces Tichonov’s arbitrary parameter 4> by an expressions that
contains uncertainties in the form of a priori parameter covariances. In addition, the FILS-T



method provides a “goodness of fit” metric, yZ,s ;, which no other method, except for

Cacuci’s method, provides. The capabilities, advantages and disadvantages of these
methods are discussed in Section 4. Appendix A provides the mathematical details of
Cacuci’s method, while Appendix B summarizes the salient equations underlying the
transport of neutrons and gamma radiation underlying the modeling of hold-up problems.

2. CACUCI' S (2014) METHODOLOGY FOR PREDICTIVE
MODELING OF DIRECT AND INVERSE PROBLEMS IN
THE PRESENCE OF EXPERIMENTAL AND
COMPUTATIONAL ERRORS

This Section presents the “predictive modeling” methodology developed by Cacuci (2014),
which encompasses the concepts of “data assimilation”, “model calibration”, and “inverse
problems” into a unifying conceptual and mathematical framework; this methodology
yields best estimate predictions, with reduced predicted uncertainties. Cacuci (2014)
considers two coupled computational models, called henceforth “Model A” and “Model B,”
where each model represents a large-scale multi-physics system; furthermore,
experimentally measured responses are available for both models, so that the ultimate goal
is to perform predictive modeling for the coupled models. Cacuci’s methodology is
particularly useful when the number of computed and measured responses, as well as the
number of parameters, are very large, since it takes fully into account the coupling terms
between the systems but uses only the computational resources that would be needed to

perform predictive modeling on each system separately.

2.1 A Priori Information for the Two Multi-Physics Models:
Mathematical Description

Consider a multi-physics model, henceforth called “Model A” comprising N, system
(model) parameters «,; Model A is used to compute results, henceforth called responses,
which can also be measured experimentally. Consider now a second physical system,
henceforth called “Model B,” comprising N, system (model) parameters 3, , and which is
also used to compute responses that can be measured experimentally. Model A and Model B
are considered to be coupled. In reactor analysis and design, for example, Model A may

comprise the neutron transport and depletion equations which are coupled to Model B
computing the thermal-hydraulics conservation (mass, momentum, energy) equations. For



hold-up problems, Model A may be a code that simulates the transport of neutrons to
neutron detectors, while Model B could simulate the transport of gamma-radiation to
gamma detectors.

Consider next that there are N, experimentally measured responses I, associated mostly,
but not necessarily exclusively, with Model A. Furthermore, consider also that there are N,
experimentally measured responses q; associated mostly, but not necessarily exclusively,
with Model B. For example, measurement of reaction rates and power (or flux) distributions
could be considered to be responses of type I, while measurements of flow rates and
temperature distributions could be considered responses of type q;. In the same spirit, cross
sections can be considered to be model parameters of type «,, while heat transfer
correlations can be considered model parameters of type [, . Parameters modeling the

geometry of the system, for example, could be considered to belong to either type of model
parameters (i.e., either o, or S, ), since they affect both the neutron transport equation and

the thermal-hydraulics conservation equations.

In practice, the values of the parameterse, and 8, are determined experimentally.

Therefore, these parameters cannot be known exactly, but can be considered to behave
stochastically, obeying some probability distribution function which-for large-scale
systems, as customarily encountered in practice-is unknown. Such stochastic quantities will
be called variates in this work; thus, the parameters ¢, and £, as well as the measured

responses I and q; are variates. To simplify the mathematical derivations to follow in this
section, the model parameters ¢, will be considered to constitute the components of the
(column) vector a of, defined as

a={a,|n=1..,N,}, (2.1)

while the model parameters S, will be considered to constitute the components of the
(column) vector B defined as

B={B, Im=1...N,}. (2.2)

By convention, all of the vectors considered in this work (e.g., @ and B) are column

T

vectors; (e.g., @' and B') are row vectors; a dagger (1) will be used to denote

“transposition.” Similarly, the N, experimentally measured responses I, will be considered

to be components of the column vector

r={rli=1...,N,}, (2.3)



while the N, experimentally measured responses @; will be considered to be components

of the column vector
q={a;[j=1....,N,}. (2.4)

Most generally, the parameters «, and S, as well as the responses I, and ; can be

considered to obey some a priori probability distribution function P(a,p,r,q). For large-
scale systems, as customarily encountered in practice, the probability distribution
P(a,B,r,q)cannot possibly be known. The information usually available in practice

comprises the mean values of the model parameters and responses together with the
corresponding uncertainties (standard deviations and, occasionally, correlations) computed
about the respective mean values. For notational simplicity, we will use angular brackets,

<f>, to denote the integral of the quantity f(a,ﬂ,r,q) over the joint probability
distribution P (a,B,r,q), i.e.,

<f>sjf (a.B.r.q)P(a.B.r,q)dadpdrdq. (2.5)

Using the above convention, we will denote the mean values of the model parameters «, as

a) = <an> , and will consider them to constitute the components of the vector a” defined as
0 0
a’ ={ayn=1...N,}. (2.6)

Similarly, the mean values of the parameters /., are considered to be known, and will be
denoted as ﬂr? E<ﬂn>. These mean values are considered to be the components of the

vector B’ defined as

B'={AIn=1....N,}. 2.7)

We also consider that the parameters’ second-order central moments, namely the standard
deviations and correlations, are known. For the parameters «r,, the second-order central

(NgxNg)
aa

moments are the components of covariance matrices C defined as

CLNOZ“XN“)z[cov(ai,aj)}N N E<(ai—ai°)(aj—a?)>N L hi=LLN,, (2.8)

while the second-order central moments (i.e., the standard deviations and correlations) for

. . NzxN
the parameters . form covariance matrices Cfgﬁf; ) defined as



C;T}ﬂxwﬂ)E[cov(ﬂi,ﬁj)}NﬁxNﬁ <(ﬁi_ﬂi°)(ﬁj_ﬁ}))>NﬂXNﬁ; i, j=1...,N,. (2.9)

In general, the components of the vectors @ and B may be correlated. The correlations

(NaxNﬁ)

of defined as

among the parameters & and B are quantified by correlation matrices C

el = ((o-a) (B8 ) =[] (2.10)

These experimentally measured responses are also considered to be characterized by known

mean measured values and measured variances and covariances. Thus, for the N,

experimentally measured responses r,, the mean measured values will be denoted as r",

and will be considered to constitute the components of the vector r™ defined as
r"={" =1L Nt =(n) =1L N, 2.11)

)

. . . . N, xN .
while the corresponding measured covariance matrix, denoted as C(rr ") is defined as

C(,rN'XN')z<(ri -5 )(r, —rj’“)>N Lo =L N (2.12)

Similarly, the N, experimentally measured responses Q; are characterized by mean

q
measured values, denoted as q}“ , and constituting the components of the vector q" defined

as
q"={a]| i=L...N,}, a7 =(q;). j=1....N,, (2.13)
and by the measured covariance matrix ngqXN“) defined as
quNq _ m m -
ng ):<(qi_qi )(qj_qi )>quNq’ I’le""’NQ' (214)

Furthermore, the responses r and q may also be correlated; such correlations would be
quantified by correlation matrices defined as

e =((r-r) (a-a") )=l ] @.15)

In the most general case, correlations my also exist among all parameters and responses.
Such correlations would be quantified through matrices defined as follows:



fla-a)r- =[] e10
el ={(a-a)(a-a") )l ] 2.17)
V= {(B-)(r-rn) )= 2.18)
<(l* B')(a- )*>=[Cﬁ”ﬂ““’”f (2.19)

2.2 Construction of the A Priori Distribution Function p(a.p,r.q) as

the Maximum Entropy Principle Approximation of the True
but Unknown A Priori Distribution Function P(a.p.r.q)

The quantities defined in Egs. (2.1) through (2.19) constitute the prior information
regarding the uncertain parameters and measured responses in the two-model multi-physics
system considered in the previous Section. As discussed, this prior information prescribes
the means (i.e., the first-order moments) and covariances (i.e., the second-order moments)

of an otherwise unknown distribution function p(a,[i,r,q). Mathematically, these means

and covariances are functionals of p (a, B,r,q) , having the generic form
(F)=[p(x)F (x)dx, x=(0,B.r,q), dx=dedpdrdq, k=1,2,....K,  (220)

with F (x) representing, in turn, the quantities: (an —ao) ( —ﬂno), (rrl —rnm), (qn —q?)
(o —a)(er,=a) (8= A7)(B, = A7) (6 =0) (v, =17 (0 —a7) (e =a])
(o - IO;EﬂJ B)s (a=al)(r=1). (@ —a)

(q, q) ( ,Bio)(rj—rjm),
(8-5")(a;-a7]). and (r-£")(a; ~q7).

Q

The total number of first- and second-order moments is

— 2 2 2 2
K=N, +N,+N +N,+N;+N;+N "+ N;

+(NaXNﬁ)+(Naer)+(NaXNq)+(NﬁXNr)+(Nﬁqu)+(erNq). (221)



An optimal way to approximate the true but unknown probability distribution function
P(X) using the information given in Eq. (2.20) is to apply the maximum entropy formalism
(Jaynes, 1983). The maximum entropy formalism enables the determination of an
approximate probability distribution function, denoted here as p(x), which approximates

the unknown distribution P(X) by maximizing over p(x) the Shannon information
entropy (Shannon, 1948), defined as

s=—[dxp(x)in P(x) (2.22)

m(x)”

where M (X) is a prior density that ensures form invariance under change of variable, while
satisfying the constraints given in Eq. (2.20). This maximum entropy principle insures that
the approximate distribution function p(x) maximizes the optimal compatibility with the

available information, namely the constraints given in Eq. (2.20), while simultaneously
ensuring minimal spurious information content.

Maximizing the information entropy S over p(X) subject to the constraints expressed by

Eq. (2.20) constitutes a variational problem that can be solved by using the method of
Lagrange multipliers to obtain a member of the exponential family, namely

p(x)z%m(x)exp{—;ﬂkﬁ( (x)}, (2.23)

where the quantities 4, are the Lagrange multipliers. The normalization constant Z in Eq.
(2.23) is defined as

z=| dxm(x)exp{—Z@Fk (x)] (2.24)

k

The Lagrange multipliers 4, must be found directly from the constraints [i.e., using Eqgs.
(2.20) and (2.23)] or from the equivalent equations

<|:k>=_%1nz : k=12,....K, (2.25)

which are more convenient if Z can be expressed as an analytic function of the Lagrange
parameters.

In the case of discrete distributions, if only the alternatives can be enumerated but the
macroscopic data <Fk> are not known, then m (X) =1, and the maximum entropy algorithm

10



described in the foregoing yields the uniform distribution, as would be required by the
principle of insufficient reason. Therefore, the maximum entropy principle can be
considered as a far-reaching generalization of the principle of insufficient reason, ranging
from discrete alternatives with no other information given, to cases with given global or
macroscopic information, and also encompassing continuous distributions. Physicists will
recognize the maximum entropy algorithm described above as the essence of the Gibbs-
formalism for statistical mechanics, where Z is the partition function (or sum over states),
carrying all information about the possible states of the system, from which the expected
macroscopic parameters can be obtained by differentiation with respect to the Lagrange
multipliers. If only the possible energies of a system and the average energy (i.e., the
temperature) are given, one finds Gibbs’ canonical ensemble, with probabilities

proportional to the Boltzmann factors exp(—ﬂE j), the Lagrange multiplier A being

essentially the inverse temperature. If, in addition, the average particle number is given, one
finds the grand-canonical ensemble, with a second Lagrange multiplier equal to the
chemical potential, etc.

Performing the respective (lengthy but straightforward) computations indicated in Eq.
(2.25), solving the resulting system of equation for the Lagrange multipliers 4,, and

replacing the resulting expressions in Eq. (2.23) leads to the following expression for p (X)

exp —l(x—<x>)T C’l(x—<x>) dx,
p(x](x),C)dx= [ 2 NS } L —w<x <o,  (226)

where the dagger (1) denotes transposition (Hermitean conjugation of real vectors and
matrices), and the matrix C is defined as

0

Caa Caﬁ ar Caq a a
c, C, C, C B B

c=| * w or Pl with x = = ) 2.27
c., ¢, C, C, =l b &= 227
Cw Cy Cp Gy q q"

Thus, the foregoing considerations show that, when only mean values and covariances are
known, the maximum entropy algorithm yields the Gaussian probability distribution shown
in Eq. (2.27) as the most objective probability distribution consistent with the available
information. Although all of the above results are valid for —o0 <X; < o0, these results can

also be used for 0 <x;<oo after introduction of a logarithmic scale (which leads to

lognormal distributions on the original scale).
Gaussian distributions are often considered appropriate only if many independent random

deviations act together so that the central limit theorem is applicable. At other times,
Gaussian distributions are invoked for mere convenience, with accompanying warnings
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about consequences if the true distribution is not Gaussian. The maximum entropy principle
cannot eliminate these consequences, but it reassures the data user who is given only mean
values and their (co)variances that the corresponding Gaussian is the best choice for all
further inferences, whatever the unknown true distribution may happen to be. In contrast to
the central limit theorem, the maximum entropy principle is also valid for correlated data.

2.3 Construction of the A Posteriori Predicted Mean Values and
Covariances for the Given Models (Likelihood Function) and
Maximum Entropy Prior Distribution

Consider next that the coupled Models A and B are used to compute the (Nr+ Nq)

experimentally measured responses. These computed responses will be denoted as
rc(a,B):{er:l,...,Nr} andqc(a,B):{qf|i:1,...,Nq}, respectively, where the

PS4

superscript “c” indicates “computed.” In principle, the computed responses may depend on
some or all of the components of o and p. Consequently, r° (a,B) and q° (u,B) are also

variates, characterized by probability distribution functions, which cannot, in general, be
obtained in explicitly closed forms.

The next step is to combine the experimental and computational information in order to
obtain the posterior distribution of X E(u,B,r,q). This combination is rigorously

performed by using Bayes’ theorem, in which the (maximum entropy) prior is the Gaussian
distribution computed in Eq. (2.26), while the likelihood is provided by the computational

models r° (a,B) and qc(a,B). When the numerical and/or modeling errors are not

explicitly taken into account, but are considered to be amenable to treatment via uncertain
model parameters that are included among the components of @, the computational models
are considered to be “hard constraints” of the form

r=r’(a,p), q=q°(a.p) . (2.28)

It is clear the posterior distribution, which consists of the prior given in Eq. (2.26) together
with the likelihood expressed by Eq. (2.28), cannot be computed exactly. Nevertheless, the
main contribution to the posterior distribution, and, in particular, the main contributions to
the posterior distribution’s means and covariances, can be obtained by applying the saddle-
point method to evaluate the Gaussian prior in Eq. (2.26) subject to the constraints
expressed by Eq. (2.28). As is well known, the saddle-point is the point where the gradient
of exponent of the Gaussian prior in Eq. (2.26) vanishes subject to the constraints in
Eq. (2.28). The method of Lagrange multipliers can be used to determine this saddle-point,
by setting to zero the (partial) gradients with respect to a,B,r,q of the following

functional:
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P(a.p.r.q)= —%(x—(x»T (ol (x—<x>)+ﬂ [r—rc (u,[i)] +f [q—qC (u,[i)] , (2.29)

where A, and A, are vectors of (yet undetermined) Lagrange multipliers of sizes N, and

N respectively. attained at

q b
pred

Thus, the saddle point of P((l,[i,r,q) is

xPe = (apmd N L L e ) where the following conditions are simultaneously fulfilled:

V,P=r-r’(a,p)=0; V,P=q-q°(0.p)=0; (2.30)

vV, P=0; VﬂP=0; V,.P=0; VqP=0. (2.31)

The conditions expressed in Eq. (2.30) simply ensure that the saddle-point will satisfy the
constraints imposed by the numerical simulation Models A and B. On the other hand, the

conditions imposed in Eq. (2.31) can be written in block-matrix form as

C

C

—S! A, —S! A

a aa aff ar Caq ra’r qa"q
re 1
B ~B" |_| € Cp Cu Cp -S} %, —Si, 2.32)
P " Cz;r Cvﬁ'r Crr er '
q pred q" Cszq CTﬂq Ciq Cy

where the matrices S, ((10,]30), S.s (aO,BO), Seu (aO,BO), and S, (aO,BO) comprise first-

order response-derivatives with respect to the model parameters, computed at the nominal

parameter values (uo,ﬂo ), and are defined as follows:

(oo oo
oa, Oay, p, Py,
SNoNe =| A A Co (2.33)
aory, ary, ary, ar,
e day, | 95, By, |
_% aq, | % _aql
oa, oay. 9B, aﬂN/J
Sy M= P oSy =l : (2.34)
aay, aay, aay, oay,
| 0g, day, | K by, |
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Note that no approximations have been introduced thus far, i.e., Eq. (2.32) is exact for the a
priori information considered to be known (i.e., known means and covariance matrices for
the parameters and measured responses).

The results obtained by evaluating Eq. (2.32) to first-order in response sensitivities are
presented in Appendix A, and are also summarized below.

1.

The predicted optimal values for the model parameters:

a” =0’ -[X,D, +Y,D}, |r*(a’.p°)-[X,D, +Y,D,,]q" («’.B°); (C.1)

B =B’ - X,D,, +Y,D}, [r* (a’.p°)-[X,D,, +Y,D,, |q* («’.B°); (C2)
The predicted optimal values for the model responses:

r" =" —[X,D, +Y,D}, |r* (a’,8°)-[X,D,, +Y,D,,]q" (¢".B°);  (C.3)
(3,0, ¥ e o) [X 0, v, Ja (o) (o

The predicted optimal covariance matrix C?* for the parameters . of Model A:

Cg;ed E<((’¥_apred)(a_apred )T>

(C.5)
=C,. — |:Xa (DnXZ +D,Y, ) +Y, (DZIXZ: +D,,Y; )}
The predicted covariance matrix C™ for the responses r of Model A:
C:Jrred = (I’ _rpred )(l' _rpred )T>
(C.6)

€[, (0, + D3] )+¥, (0, ] +D,¥, )]

The predicted correlation matrix C”* for the parameters @ and r responses of
Model A:

CE:Ed E<(a_apred)(r_rpred )T>

(C.7)
Cor — [Xa (Dan +D,Y/ ) +Y, (DZIXI DYy )}

The predicted covariance matrix nged for the parameters  of Model B:
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ci* =) (- )

(C.8)
=C,, —[Xﬂ (D, X, +D,Y})+Y,(D,X}+D,,Y} )]
7. The predicted covariance matrix Cg;ed for the responses q of Model B:
Cpred E< q_qpred q_qpred T>
i = {faa)a-0") .

= Coo - [ X, (D, X} +D,Y] )+ Y, (D, X} +D,,¥!) |

pred

8. The predicted correlation matrix C,

Model B:

i =5+ o
=C,, - [Xﬁ. (D, X +D,Y])+Y,(D,X,+D,Y] )}

for the parameters B and the responses q of

(C.10)

9. The predicted correlation matrix ngd for the parameters o of Model A and the
parameters  of Model B:

cg = {(a-a)(p-p")')
=C,p~[X, (DX, +D,Y})+Y, (D, X} +D,.Y} ) ];

(C.11)

10. The predicted correlation matrix nged for the parameters o of Model A and the
responses q of Model B:

Che = <(a ~0")(q—q" )+>

(C.12)
-C,, - [Xa (D, X! +D,Y/)+Y,(D,X]+D,Y, )}

11. The predicted correlation matrix Czr,ed for the parameters B of Model B and the

responses r of Model A:

((B-B")(r—r")’)

=C,, —[X 5(D,X!+D,Y/)+Y,(D,X! +D,,Y] )]

Cpl;ed
/ (C.13)
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pred

12. The predicted correlation matrix C,,

for the responses r of Model A and the
responses q of Model B:

qured = <(r_rpred )(q_qpred )T>

(C.14)
=C, —[Xr (D, X! +D,Y])+Y,(D,X] +D22Y;')]

Note also that, to first-order in response sensitivities, the covariance matrices of the
computed responses arising from the uncertainties in the model parameters can be
computed from Eqgs. (2.39) and (2.40), respectively, to obtain:

ceom E<[r—r°(aO,BO)}[r—rC(ao,BO)T> (C.15)

=S,,C..Sl, +28,,C,,S!, +S,,C 8!

ra “aa™~ra ra " apf rp°

Co™ = <[q -q° (uo, i )} [q -q° (uo B’ )]> (C.16)
=84:CoaSte +284,CsS0s +S45C iS5

;
comp _ - 0 po _C 0 po
e = ([r=r* (o) La-a* (o)) .
_ t t tQt i

=8,,C0S0: +S1.CosSte TS 5C05S 00 +S:5C S q5-
13. The y”-distribution is a measure of the deviation of a “true distribution” (in this
case — the distribution of experimental responses) from the hypothetic one (in this
case — a Gaussian). Recall that the mean and variance of X are <X>:n and

Var(X) =2n. The value of y° is computed using Eq. (2.86) to obtain

Ve =22 :(rc _rm)T Dn(rc _rm)+2(rc _rm)T D, (qc _qm)"'(qc _qm)T D, (qc _qm)-
(C.18)

The value of V. computed using Eq. (C.18) provides a very valuable quantitative indicator

for investigating the agreement between the computed and experimental responses,
measuring essentially the consistency of the experimental responses with the model
parameters. For example, if V. is much larger than the number of “degrees of freedom” in
the inverse problem, then some violation of the “first-order, Gaussian” hypotheses
underlying the derivation of Egs. (C.1)-(C.17) may have occurred. On the other hand, an
improbably small value of V. would indicated that some uncertainties (in the parameters or

measured responses) may have been overestimated. The value of V. can thus be used as a
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validation metric for measuring the consistency between the computed and experimentally

measured responses.

The following definitions were used in the above expressions:

+

Xa = CaaSra

I
+Caﬂsrﬂ ~C.s
=" f
X,=ClS! +C,SI -C,,
X =C'S! +C' 8! —-C

ar¥ra prrp rro

X,=C! 8! +Cls!,~C!

aq™ra parp rq°

+

D, = D;rl + D;r]quDzzDIqD;rl )
D;rz = _DzzniqD_l

[

F t
Y,=C,S!, +C,8!,~C

a aa™ qa

_ t i
Y, =Cp,Sq, +CppSes —Ch

—C'S§ +Ct S _Ct
Y,=C. ! +C}S!,~Cl,

Y, =C! S|, +CiS!,~C

aq™ga B9 ap T g

aq?

D,= _D;rlquDzz 5
- -
D,, = (qu - quDrrlDFGI) ’

- i T QT i T Qt T Qt
Drr = Sra (C S +Caﬁsrﬂ _Car)+sr/3 (Caﬂsra +C,6'/3Sr,6' _Cﬂr)_carsra _Cﬁrsrﬁ +Crr9

aa ra

quESm<C st +caﬂsgﬂ—caq)+srﬂ(cgﬂsga+cﬂﬂs;ﬂ—cﬂq)—cgrsga—c;rs;ﬁcrq,

aa™ qa

D, =S, (C,S, +C,S!,—C, )+S,(

aa " ra

aa™~ qo

T

t tQt t S )
+CS1, —C, )-ClL.S!, —CL,SI, +C] =D

aq ra rq?

aq~ qa

_ i f gt i t gt ot st
qu:sqa(c S +Caﬁsqﬂ_caq)+sqﬁ(caﬂsqa+Cﬂﬁsqﬂ_cﬂq)_c Sae = CpeSpq T Cag>

rd (aO,BO)ErC (ao’ﬂo)_rm;

qd (aO,BO)

qc (U«O,BO)—qm-

3. PREVIOUS METHODS FOR SOLVING INVERSE

PROLEMS

Section 3.1 through 3.4 will review the salient features of the most important methods that
have been used in various application fields, including radiation transport, for

“regularizing” inverse problems.

3.1 The Levenberg-Marquardt (LM) Method

The Levenberg-Marquardt method [] approximately solves inverse problems by minimizing

the following functional:
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Zzzlel:Md,o_Md(u):l , (LM)

d=1 O-d,o

where M, , denotes a measured quantity for measurement d (d =1,...,D), o,, denotes

the associated statistical standard deviation associated with measurement d, and M, (u)
denotes the value of the computed quantity, using nominal (“postulated”) values for the
vector u = (ul,..., Uy ) of model parameters (sources, material densities, etc.). The minimum
of Eq. (3.LM) is obtained by computing the “updated” parameter values u*’ = (ul“p,...,u,ﬂp)
such that they satisfy the condition

0
(V;(Z)uu,, =0 —>£ aﬁk J(uup . =0,k=1,.,N.

Bledsoe et al [] used the LM-method to identify shield materials, material density, and
source compositions in one- and two-dimensional inverse radiation transport problems.

3.2 Tichonov’'s Method

The “Tichonov solution” to a problem of the form
Ax=Db

with “noisy” (uncertain or unknown) parameters b is defined as the solution to the
minimization problem of the following sum of “squared 2-norms”:

min | Ax b + 4°[x]; . (T)

where

(1) The term ||Ax —b||§ measures the “goodness of fit*“, i.e., how well the solution x

predicts the given noisy data b. If this term is too large, then x cannot be
considered to be a ,,good*“ solution because it does not “solve the problem”.
Intuitively, on the other hand, if this term is smaller than the average size of the
errors in the data b, then x would be ,,fitting* the “noise” in the data.

(11) The term ||x||§ measures the regularity of the solution. The incorporation of this

term is based on the intuitive knowledge that the “naive” solution is dominated
by high-frequency components with large amplitudes, and the hope is that most
(if not all) of these components could be suppressed by controlling the 2-norm
of x.
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(ii1))  The balance between the above terms is controlled in Eq. (T) by the parameter

A?, with 1> 0. The larger the positive parameter 1, the more weight is given
to the solution’s smoothness. On the other hand, as A — 0, the more weight is
given to fitting the noisy data, so the solution tends to the less regular (noisy)
“naive” solution.

3.3 Bayesian and Functional Inverse Least-Squares Methods

As has been discussed in the Introduction, inverse problems are mathematically ill-posed,
so their solutions are afflicted by existence, uniqueness, and stability difficulties. Therefore,
naively inverting an operator to solve an inverse problem is usually a poor strategy. Instead,
inverse problems are casts into a probabilistic framework, as has been described in Section
2 while reviewing Cacuci’s method (2014). Using Bayes’ theorem

p(hypothesis|data, I ) ~ p(data|hypothesis, I ) p (hypothesis| 1), (B)

probabilistic methods represent the input as a range of possible values and an
accompanying probability of observing each of those values, and returning a range of
possible values for the unknowns. In the above (un-normalized) relation, the “hypothesis”
represents the unknowns of the system, the “data” represents measurements taken to
resolve the values of the unknowns, and all additional prior knowledge is represented by
the “information” I. As is well known, the three probability distributions in Eq. (B) are as
follows:

(1) p(hypothesis| I) represents the prior information about the hypothesis based

only on other information I, before considering the data;
(i)  p(data|hypothesis,|) denotes the likelihood, which quantifies how well the

data agrees with a given hypothesis;
(111) p (hypothesis |data, I ) denotes the posterior distribution, representing the

updated probability for the hypothesis after having assimilated the information
in the data.

Jarman et al (2011) applied directly Bayes’ theorem to localize radiation sources, using a
parametrization of the radiation source distribution as the “hypothesis”, and radiation and
particle detector measurements as the “data”.

The exact posterior distribution is not available except perhaps in trivially simple problems.
Therefore, the posterior distribution is evaluated to obtain posterior (“predicted”’) means
and covariances. If the distributions are Gaussian, the evaluation of the posterior amounts
to solving a least-squares problem in which the predicted parameters are obtained as the
solution that minimizes a “misfit” functional (also called the “cost” functional, “objective”
functional, “least-squares” functional, “chi-squared” functional). For example, Tarantola
(2005) minimizes the following least-squares functional
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: 2
min (g (m) ~d |, +[m - m, [ |
i ; (FILS-T)
= Hl[&n{[g(m)_dobs] C; [g(m)—dobsj + I:m—mprior:l CK/II I:m_mprior:l ,
where
(1) The a priori information that the (unknown) model m is a sample of a known

Gaussian probability density whose mean is m and whose covariance matrix

prior

is C,, . The probability density is assumed to be a priori in the sense that it is

independent of the measurements on the observable parameters d (considered
below).

(i1)) A relation of the form g(m) =d that solves the ,,forward problem* (i.e., that

predicts the values of the observable parameters d which should correspond to
the model m ). This theoretical prediction is assumed to be “perfect” (i.e., free
of any errors).

(ii1))  Measurements of the observable parameters d that can be represented by a
Gaussian probability density whose mean is d_, and whose covariance matrix

is Cp.
The solution to the above minimization problem yields [Tarantola, 2005]:

1. The “best-estimate” parameter values, m, in the form

+ . -1
m=m,, +C,G'(GC,G'+C,) (dy—Gm,, ), (FILS-T.1)

prior

2. The corresponding “best-estimate” predicted covariance matrix
¢, =C, -C,G'(GC,G'+C, )’1 GC,,, (FILS-T.2)

where G represents the matrix of first-order derivatives with elements {8gi /om, } .
3. The “goodness of fit” 2, ;, which measures the degree of consistency between
the model and the observations, of the form

-1

ZéILS—T = (Gm prior _dobs )T (GCM G'+ CD) (Gm prior _dobs ) (FILS-T.3)

It is important to note that the method above has many similarities with the state-of-the-art
methods for data assimilation in the earth and atmospheric sciences [see, e.g., Refs. ]. The
FILS-T method, as well as the considerably more sophisticated method of Cacuci and
Ionescu-Bujor (2012), were used by Hykes and Azmy (2014) for several radiation source
mapping problems.
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4. COMPARATIVE DISCUSSION AND CONCLUSIONS

It is clear from the presentation in Sections 2 and 3 that the Levenberg-Marquardt method
is not only the oldest (chronologically) but also the least sophisticated and possibly the
easiest to apply. Tichonov’s method represents the next level of complexity and
sophistication. Comparing Eq. (LM) with Eq. (T), it becomes apparent that the first term in
Eq. (T) subsumes elements of the LM-method, bur has an additional term that controls the
solution’s smoothness. When implemented correctly, Tichonov’s method provides
convexity and compactness in the problem. However, even when done correctly,
Tichonov’s method actually changes the original problem into new ones (depending on the

value of the parameter A°), and solutions to the new problems may not be close to those of
original problem. Moreover, because of the discretionary user-parameter A°, it is not

possible to compute quantitatively the error between the true, but actually unknown
solution and the “regularized” solution.

Comparing Eq. (FILS-T) to Eq. (T), indicates that both expressions have similar terms, but
the FILS-T functional contains the actual covariance matrices for modeling the respective

uncertainties, while Tichonov’s method contains the arbitrary parameter A° in their stead.
In addition, the FILS-T method provides a “goodness of fit” metric, y7, ., which no other
method, except for Cacuci’s method, provides.

Cacuci’s method can be compared to the FILS-T method by comparing Eq. (2.29) to Eq.
(FILS-T). Clearly, Cacuci’s method is considerably more comprehensive than the others,
treating efficiently and explicitly coupled multi-physics systems. In fact, even when
reduced to a single multi-physics system, Cacuci’s method is more general than all of the
other methods, comprising them as particular cases (see Appendix A), which are
reproduced below, for convenience:

o™ = (Caasla C )[Sracaasla _Sracar _Cjzrsla+c ] (rc_rm)’ (C.1a)
pPred _ (Clrs’:a_c )I:smcaaSia SraCar—CarSIa +C :I (rc_rm), (C.3a)

cr-c,-(c,sl,-C,)8,.C.Sl, -S,C, —CLSl, +C, ] (C..S! —car)", (C.5a)

aa " ra ra aa" ra ra ar ar~ra aa " ra

ar~ra ra aa " ra ra ar ar~ra ar~ra

ci =c,-(c.si,-¢,)[s..C.Sl, -8,.C, -CLSl, +C, (cT S —Cr)*, (C.6a)

Cop!:ed :C (CaaSJrra_ )I:Sracaas;'a_ raCar CLrSJrra-i_C ] (Cjzrsia_crr )T‘ (C.7a)
Vo=yi= (r -r )TDrr(rC—rm). (C.18a)
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The following features become apparent by comparing the above results with the results in
Egs. (FILS-T.1) -(FILS-T.3):

(ii1)  Cacuci’s method calibrates simultaneously all of the model parameters as well
as the model responses. In contradistinction, the FILS-T method (as well as all
of the other methods used thus far) calibrates only the model responses.
Therefore, even for a single model, Cacuci’s method yields additional results
[e.g., Egs. (C.3a) and (C.6a), above] by comparison to all of the other methods
currently available.

(iv)  Cacuci’s method takes into account correlations between model parameters and
model responses. No other method has this capability. Therefore, Cacuci’s
method yields predicted covariance matrices between parameters and responses,
cf. Eq. (C.7a), above, for a single model. Note that after having applied Cacuci’s
method to assimilate the experimentally available information, the responses
and parameters will become correlated, even if they were uncorrelated initially;

in other words, C™* #0 evenif C,_, =0.
(V) Setting C_, =0 (i.e.,, assuming no prior correlations among the model’s

parameters and responses) in Cacuci’s results for a single model reduce to those
of the FILS-T method. Specifically, when C_, =0, we note that: Eq. (C.1a) =

Eq. (FILS-T.1); Eq. (C.6a) = Eq. (FILS-T.2), Eq. (C.18a) = Eq. (FILS-T.3).

The discussion above highlights the fact that Cacuci’s methodology (2012) for “predictive
modeling of coupled multi-physics systems” provides the most comprehensive methodology
to date for analyzing inverse problems in the presence of computational and experimental
uncertainties. This methodology enables predictive modeling for coupled multi-physics
systems, taking fully into account the coupling terms between the systems but using only
the computational resources that would be needed to perform predictive modeling on each
system separately. The methodology uses the maximum entropy principle to construct an
optimal approximation of the unknown a priori distribution for the a priori known mean
values and covariances characterizing the parameters and responses for both multi-physics
models. This approximate a priori distribution is combined using Bayes’ theorem with the
“likelihood” provided by the two multi-physics simulation models. Subsequently, the
posterior distribution is evaluated using the saddle-point method to obtain analytical
expressions for the optimally predicted values for the parameters and responses of both
multi-physics models, along with corresponding reduced uncertainties for both the model
parameters and responses.

Noteworthy, Cacuci’s methodology for coupled systems is constructed such that the
systems can be considered sequentially rather than simultaneously, while preserving
exactly the same results as if the systems were treated simultaneously. Consequently, very
large coupled multi-physics systems, which could perhaps exceed the available
computational resources if treated simultaneously, can be treated with Cacuci’s
methodology sequentially and without any loss of generality or information, requiring just
the resources that would be needed if the systems were treated sequentially. This feature
enables the treatment of very large systems which would currently exceed the
computational resources available if treated with conventional data assimilation procedures.
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In particular, Cacuci’s methodology would be ideally suited for performing large-scale
coupled neutron-gamma inverse transport problems, in which the neutron and, respectively,
the gamma transport computations would be performed using distinct computational tools.
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APPENDIX A: EXPLICIT RESULTS FOR CACUCI'S
INVERSE PREDICTIVE MODELING METHODOLOGY

Note: The numbering of equations in this Appendix connects without interruption to the
numbering of equations in Section 2, since the equations in this Appendix are the logical
continuation of Cacuci’s inverse modeling methodology presented in Section 2.

To first-order in the parameter variations the model responses r (for Model A) and q (for
Model B) would be linear functions of the parameter variations of the form

r=r‘(a’,p°)+8S,, (a-a’)+S,, (B—B")~+higher order terms, (2.39)

q=q°(a’.p’)+S,, (a—a’)+S,, (B—B°)+higher order terms. (2.40)
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In particular, for the predicted parameter values a”® and "™, the responses predicted by
the linearized models would be given the following expressions:

rP =r°(a’,p°)+S,, (a” —a’)+S,, (B —B°)+ higher order terms, (2.41)
q" =q°(a’,p’)+S,, (a” —a’)+S,, (B”™ —B°)+higher order terms. (2.42)

The following intermediate steps are now performed in order to eliminate the Lagrange
multipliers: (i) replace r” and q”* from Egs. (2.41) and (2.42) into Egs. (2.35) through

(2.38) to obtain a system of four equations for the four unknowns (ap’ed e iy ); (i1)
from this system, eliminate the quantities (apred —ao) and (Bpmd —BO) ; and (iii) re-arrange

the resulting equations to obtain the following coupled equations for the Lagrange

multipliers:
Rl R
qu qu )\,q qd (ao’ BO) > .

where the block-matrix of known quantities on the left-side, and the block-vector of known
quantities on the right-side of the above equations are defined as follows:

D, =S,(C,S!, +C,Si,-C,)+S,,(ClS], +C,Sl,-C,)-CLS], -C,S, +C

aara arPra pr=rp >

(2.44)

qu = Sra (Caasga + Caﬂsgﬂ _CaQ)+ Srﬁ (Clﬂsga + Cﬂﬁszﬂ _Cﬂq ) _Cz’rsza _C;rsgﬁ +er ’
(2.45)

qu = Sqa (Caasia +Caﬂsiﬁ _Car ) + SQﬁ (Cz‘ﬂsi“ + Cﬂﬂsiﬂ _Cﬁr) (2 46)

-C.S!, -C},Si,+C], =D]

aqQ~ ra pa~rp rq’

Dy, =Sy, (Cfms;a + Caﬁsgﬂ —Coq ) +84s (CZﬂSZa * Cﬂﬂsgﬂ —Cy ) _Czqsza _C;qS;q *Cops

(2.47)
rd (aO,BO)ErC(GO,BO)—rm; qd(ao,BO)ch(ﬂo,Bo)—qm. (2.48)

Note that the vectors r’(a’,p°) and q°(a’,p’) measure the differences (“deviations”)
between the computed and measured responses. Note also that the matrices defined in Egs.
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(2.44) through (2.47) have the following dimensions: dim D, :(Nr x N, );
dim D,, =(N, xN,); dim D, =D}, =(N,xN,); and dim D, =(N,xN_).

(1) The matrix D,, is actually the covariance matrix of the vector of response “deviations”
for Model A, i.e.,

D, = <rd (aO,ﬁ°)[rd (aO,BO)T>; (2.49)

(ii) The matrix D, is actually the covariance matrix of the vector of response “deviations”
for Model B, i.e.,

D, =<q" («*8°)] o’ (a°,B°)T>; (2.50)

(iii) The matrix D, = DIq is actually the correlation matrix between the vector of response
“deviations” for Model A and Model B, i.e.,

D, = <qd (ao,ﬁo)[rd (aO,BO )T>; D, = <rd (aO,BO)[qd (aO,BO )T> (2.51)

The Lagrange multipliers A, and A, are obtained by solving Eq. (2.41), which requires the
inverse of the matrix

D {D” D“’} (2.52)
= n .
D"q qu
The above matrix can be inverted by partitioning it to obtain
D, D
D' { v ‘2}, (2.53)
D12 D22
where
D,=D;+D,D,D,D, D, (2.54)
D,=-D/D D, (2.55)
D, =-D,D/ D, (2.56)
B -1
D, =(D,-D/D,D,) . (2.57)
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After obtaining the expressions of A, and A, by solving Eq. (2.43), they are replaced in

Egs. (2.35)-(2.38) to obtain the following expressions for the optimally predicted values of
model parameters and responses:

upred — (10 _[XaDll _{_YaDL:Ird ((10’l30)—[)(0!])12 +YaD22]qd ((IO,B0> . (258)
B =B’ [ X,D,, +Y,D], |r" (a",8°)-[ X,D, +Y,D,, [q’ («’.8°), (2.59)
rP =r" [ X,D, +Y,D, |r’(0",8’)-[X,D, +Y,D,,]q" («’.B°),  (2.60)

4" =[x, + YD e (0 9)-[X,D, YD Ja (). 2o

where
X,=C,S|, +C,S!,-C,, (2.62)
Y,=C,S! +C,Sl,-C,.. (2.63)
X,=ClS, +C,S ,-C,, (2.64)
Y, =C,S! +C S -C,, (2.65)
X, =C.LS| +C; Sl -C_, (2.66)

— T <t QT i
Y, =C! S|, +C},S!, ~Cl, (2.67)

X,=C.s!, +C, S -C, (2.68)
—ct &t N
Y, =C| S|, +C} Sl -C,. (2.69)

The computations of the optimal predicted covariance matrices for the responses and
parameters involve tedious. We present below just the final results:

14. The predicted optimal covariance matrix C** for the parameters o of Model A:

Cs:d E<(a_upred)(a_upred )T>

(2.70)
=Cou — |:Xa (DIIXL +D,Y, ) +Y, (DZIXL +D,,Y] )]a
15. The predicted covariance matrix C™® for the responses r of Model A:
Crprred = <(I’ —r pred )(l' —r pred )T>
(2.71)

=C, _|:Xr (DHXJrr +D|2Yj)+Yr (DZIXI "'DzerJr ):|:
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16.

17.

18.

19.

20.

21.

The predicted correlation matrix C”* for the parameters @ and r responses of
Model A:

Cg:ed E<(a_apred)(r_rpred )T>

(2.72)
=C, _|:X¢x (Dan + D12Y:)+Ya (DZIXI +D,,Y/ )}
The predicted covariance matrix Cz;ed for the parameters p of Model B:
Cpred E< B_Bpred B_Bpred %>
BB
( )( ) (2.73)
=Cpy—[ X, (D, X}, +D,,Y} )+ Y, (D, X}, +D,,Y} ) |;
The predicted covariance matrix Cg;ed for the responses q of Model B:
Cpred :< q_ pred q_qpred >
= {fa-a a0 -

The predicted correlation matrix C%"d for the parameters B and the responses q of
Model B:

opt
Cﬂq

((B-6")(a-a")')

2.75)
= Cpo—| X, (D, X[+ D, Y] )+ Y, (D, X} +D,Y] ) |;

The predicted correlation matrix C[;" for the parameters a of Model A and the
parameters B of Model B:

S T
=C,p—| X, (D, X} +D,Y} )+ Y, (D, X, +D,.Y}) |;

(2.76)

pred

wq for the parameters @ of Model A and the

The predicted correlation matrix C

responses q of Model B:

cre ={fa-a)a-a™))

2.77)
-C,, —[Xa (D, X} +D,Y])+Y, (D,X}+D,Y] )}

28



22. The predicted correlation matrix Czrfd for the parameters B of Model B and the

responses r of Model A:

e ={(bb) (=)

(2.78)
= Cﬂr _[Xﬂ (DIIXJ; + DlerT ) + Yﬁ' (DZIXI + D22Y: )]’

23. The predicted correlation matrix qured for the responses r of Model A and the
responses q of Model B:

Crpqred = <(r_rpred )(q_qpred )T>

=Co _[Xr (D”X; +D12Y;-)+Yr (DmXZ +D22YJ):|.

(2.79)

Note also that, to first-order in response sensitivities, the covariance matrices of the
computed responses arising from the uncertainties in the model parameters can be
computed from Egs. (2.39) and (2.40), respectively, to obtain:

o = <|:r _rt (aO,BO ):I [r —r° (GO,BO ):|T> (2.80)

- t t t
=8,,C,.Sl, +28,,C,,S, +8,,C Sl

ra " aa™~ ra ra " af

com c ¢ '
ez =([a-a- (o) [a-a* (") ) -
= Sqacaasga + 2Sqacaﬂszﬂ + Sqﬁcﬁﬁsgﬁ ’

cm z<[r—rc (a°,l3°)][q—q°(“°’BO)T> (2.82)

- t t t gt t
=S,,C,.S!, +8,,CS. +S,,C. S +S,,C,S! .

ra oo™ qo ra " ap

Construction of the A Posteriori Predicted Consistency Metrics
for Model Validation

At the saddle-point (a pred _gored pered qPre ) , the functional P(a,p,r,q)defined in Eq.(2.29),

and the first-order computational model equations become
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pred _ 0 t pred _ 0

a a a a
win ﬁpred _BO . Bpred _BO
P o rpred _rm C rpred _rm (283)
qpred _qm qpred _qm

e (), (000 5, (8B (0, ) 2

= ) (0 ), (B ) < (a9

The values (apmd N L L Lk ) can be eliminated from the expression of by using Egs.
(2.84) and (2.85) together with Eq. (2.32) to obtain

d 0 po
P =V :[(rd ) .(a° )"}[D“ D”} rd(u ) . (2.86)

T
D12 D22

Note that the quadratic form on the rightmost-side of Eq. (2.86) is distributed according to a
y° distribution with (Nr +N q) degrees of freedom. Note that V can be evaluated directly
from the originally given data (i.e., from given parameters and responses, together with
their original uncertainties), once the response sensitivities have been computed by either
forward or adjoint methods (see, e.g., Cacuci 1981a, 1981b, 2003). Recall that the y’

(chi-square) distribution with n degrees of freedom of the continuous variable
X, 0< X< oo, is defined as

P(x<;(2 < x+dx)dx: X" edx, x>0, (n=1,2,...). (2.87)

1
2"°T'(n/2)

The j’-distribution is a measure of the deviation of a “true distribution” (in this case — the
distribution of experimental responses) from the hypothetic one (in this case — a Gaussian).
Recall that the mean and variance of X are <X> =N and Var(X) =2n. The value of y* is
computed using Eq. (2.86) to obtain

+

V=y° =(r°—rm)T D”(rC —rm)+2(rC —rm) Dlz(qc—qm)+(q°—qm)T D,, (q° —qm).

(2.88)

The value of > computed using Eq. (2.88) provides a very valuable quantitative indicator

for investigating the agreement between the computed and experimental responses,
measuring essentially the consistency of the experimental responses with the model
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parameters. The value of V can be used as a validation metric for measuring the
consistency between the computed and experimentally measured responses.

DISCUSSION AND PARTICULAR CASES

The derivations in the previous section were carried out in the response-space because in
large-scale practical problems, the number of measured responses is smaller than the
number of model parameters. The only matrix inversion required in the response space is

the computation of D™ in Eq. (2.53), which is of size (Nr +N, )2. If this matrix is too large

to be inverted directly, as has been assumed in this work, its inversion can be performed by
partitioning it as shown in Eqgs. (2.54) — (2.57). The inversion of D by partitioning requires
only the inversion of the matrix D, of size N,, and the inversion of the matrix

(qu —DIqD;rlqu), which is of size N,,.

Cacuct’s predictive modeling methodology presented in Section 2 can also be used if one
starts with the data assimilation and model calibration for one of the Models (either Model
A or Model B), and subsequently couples the second model to the first one. Without the
PMCMPS methodology, when the second Model (e.g., Model B) is coupled to the first one
(e.g., Model A), both models would have to be calibrated anew, simultaneously, and the
work performed initially for calibrating Model A alone would become useless. Using this
methodology, however, the work initially performed for calibrating Model A would not
become useless, but would simply be augmented by the specific additional terms arising
from Model B, thus performing predictive modeling of coupled multi-physics systems in a
sequential and more efficient way.

It is also important to note that the explicit separation, in Eqs. (2.85) through (2.88), of
contributions from Model A and Model B to the overall validation metric V enables the
explicit evaluation of adding or subtracting measured responses. As is well known, large
contributions to V indicate that the respective responses may be inconsistent or discrepant,
and such discrepancies warrant further investigations.

It often happens in practice that, after one has already performed a model calibration, e.g.,
using Model A (involving N_ model parameters ¢, and N, experimentally measured

responses I,), additional measurements may become available and/or additional

parameters (which were not considered in the initial data assimilation/model
calibration/predictive modeling procedure) may need to be taken into account (e.g., model
parameters for which quantified uncertainties became available only after the initial data
assimilation/model calibration/predictive modeling procedure was already performed), all
for the same Model A. The predictive modeling methodology presented in Section 2 can
also be used as a most efficient procedure for systematically adding or subtracting
responses and/or parameters for performing a subsequent data assimilation/model
calibration/predictive modeling procedure on the same model. In this interpretation/usage
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of the predictive modeling methodology presented in Section 2, Model B is considered to
be identical to Model A (i.e., Model B and Model A represent the same physical phenomena,
described by identical mathematical equations). In this context, ““efficient”” means ““without
wasting the information already obtained in previous predictive modeling computations
involving a different (higher or lower) number of responses and/or model parameters.” As
will be shown in the next Sub-section, the mathematical methodology for performing data
assimilation/model calibration/predictive modeling by adding and/or subtracting
measurements (responses) and/or model parameters to the same model-without needing to
discard previous predictive modeling computations-actually amounts to considering
particular cases of Cacuci’s general predictive modeling methodology presented in Section
2.

Particular Cases

a) “One-Model” Case: Predictive modeling solely for Model A, involving N
model parameters «, and N, experimentally measured responses T,

In this case, Eq. (2.44) through (2.47) become

— — — — i QT
D,=0,D,=0, D, =0, D =S.C,S/ -S,, -C.S +C. (Al
X,=C,S -C,., Y, =0, X,=C! Sl -C,., Y =0. (A.2)

Furthermore, the predictive modeling equations (2.58) through (2.79) reduce to the final
results presented originally by Cacuci and Ionescu-Bujor (2010), namely:

o™ =a"~(C,S!,-C,)[D,]"'r' (), (A3)
" =r"-(ClS!,-C,)[D,] ' (a), (A.4)
cx =C,,—(C,8!,-C, )P, ]"(C.Sl-C,.) . (A.5)
c =c,-(c,s!, -c,)p,]"(c,s, -C,) . (A.6)
c =c, -(c,s,-C,)[D,]" (.S, -C.) " (A7)

Note that if the model is perfect (i.e., C,, =0 and C,, =0), then Egs. (A.3) through (A.7)

pred

would yield " =a’ and r® :r°(aO,B°), predicted “perfectly,” without any
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accompanying uncertainties (i.e., C'* =0, C” =0, C” =0). In other words, for a
perfect model, Cacuci’s methodology predicts values for the responses and the parameters
that coincide with the model’s values (assumed to be perfect), and the experimental
measurements would have no effect on the predictions (as would be expected, since
imperfect measurements could not possibly improve the “perfect” model’s predictions).

On the other hand, if the measurements were perfect, (i.e., C,, =0 and C_, =0), but the
model were imperfect, then Eqs. (A.3) through (A.7) would vyield

o™ =o"-C,8!,[8,.C.8.,] (), cr=c,-C,S.[S.C.S.] S.C..

ao ra oo ra
" =r", C"™ =0, C” =0. In other words, in the case of perfect measurements, the

predicted values for the responses would coincide with the measured values (assumed to be
perfect), but the model’s uncertain parameters would be calibrated by taking the
measurements into account to yield improved nominal values and reduced parameters
uncertainties.

b) Predictive modeling for Model A with B additional parameters, but no

additional responses

In this case, Eq. (2.44) through (2.47) become

D_=0,D_=0,D

rq qr

=0, (A.8)

qq

D, =S,(C,S!,+C,Si,-C,)+S,,(CLS!, +C,Si,-C,)

aa®ra apSra (A.9)
-C} S, -CLS! +C,.
X,=C,S|, +C,S!,-C,, (A.10)
X,=Cl S| +C,S,-C,, (A.11)
X, =C.S| +C; Sl -C_, (A.12)
X,;=0,Y,=0,Y=0 Y,=0, Y, =0, (A.13)
D, =D, D,=0, D, =0, D/, =0, D, =0, (A.14)
a”™ =a’-X,D,r’ (a’,B°), (A.15)
B =p° - X,D,r’ (a’,B°), (A.16)
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r" =r"-X,D,r'(a’,p’), (A.17)

c=c,-XD X, (A.18)
cr=cC, -X,D, X/, (A.19)
cr=c,-XD, X, (A.20)
Cy =C,—X,D X, (A.21)
cr'=C,,-X,D, X], (A.22)
Ci =C, -X,D,XI. (A.23)

As the above expressions clearly demonstrate, the predictive modeling formulation in the
“response space” (as has been developed in Section 2) allows the consideration of
additional parameters for a model without increasing the size of the matrix D, to be

inverted.

¢) Predictive modeling for Model A with g additional responses, but no additional

parameters

In this case, Eq. (2.44) through (2.47) become

D, =S,C,S! -S,.C,-C.S! +C, =Cy, Dim(D,)=(N,xN,), (A24)

ra “aa~ra ra —ar ar~ra

D,=S,C,S!, -S,C,-Cl Sl +C, Dim(D, )=(N,xN,), (A.25)
D, =S,C,S!, -C.S! -8, C,+C, Dim(D,)=(N,xN,), (A.26)
D, =8S,,C,.S!, ~8,,Co—CLSl, +Cy., DIM(D ) =(N;xN,). (A.27)
Xa = Caasia - Car ’ (A28)
— T
Y, =C,S; —C. (A.29)
X;=0, Y, =0, (A.30)
Xr Ecjzrsja _Crr’ (A31)
—C' st t
Y, =C|S! -Cl, (A.32)
— T Qf T
X,=C. S -Cl, (A.33)
=t QT
Y, =ClS!, -C,. (A.34)
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" =a’ [ X, D, +Y,D}, |r(a’.p")-[X,D, +Y,D,]q" (a’.B"),  (A35)
r" =" -[X,D, +Y,D}, |r (o’.8°)-[X,D,, + Y,D,,]q’ («".B°).  (A36)

q"™ =q" —[Xun +Yquer (aO,BO)—[Xun JquDzz]qOl (GO,BO), (A.37)

cr =C,, -| X, (D, X] +D,Y])+Y, (D, X} +D,Y])], (A.38)
Cr™ =C, —[ X, (D, X[ + D,/ )+ Y, (D, X] +D,,Y/ )], (A.39)
Cr =C, -[ X, (D, X/ +D,Y/)+Y, (D, X! +D,Y/)], (A.40)
Cl =Cyy = X, (D, X} +D, Y] )+ Y, (D, X] + DY, )], (A.41)
Cl =Cpo | X, (D, X; +D,Y])+Y, (D, X +D,.Y]) ], (A42)
Cl =Cry [ X, (D, X[ +D,,Y])+Y, (D, X] +D,,Y] )], (A.43)
Cli =0, Cy =0, Ch* =0, C =0. (A.44)

Note also that (to first-order in response sensitivities) the covariance matrices of the
computed responses arising from the uncertainties in the model parameters become:

o _ <r o (atB) |- v (0,8°)] > S, C, Sl (A45)
com = <_q ~q°(a".B’) ][a-a"(o".B°) ] > S (A.46)
Ccomp _ <_l‘ e ((10, B’ )} [q _q (ao’ B’ )] > Smcmsga (A.47)

APPENDIX B: DIRECT AND INVERSE RADIATION
TRANSPORT PROBLEMS

35



The processes which neutrons and/or photons undergo while propagating through a
medium are modeled by the linear integro-differential equation bearing Boltzmann’s name.
The processes described by the Boltzmann equation include the scattering of neutrons
and/or photons off nuclei, the capture of neutrons, the creation of neutrons through fission
events, and the streaming of neutrons from one collision site to the next. The traditional
mathematical formulation of the neutron transport equation is:

l%+9v¢(r,99 E,t)+zt (l" E)gp(r,Q’ E’t) —
\

[dQ[dE'S, (r,E'> E,Q - Q)p(r,Q E't) (B.1)
4r 0

+¢jdn']dE'v(E')zf (r.E)p(r, 2, E't)+Q(r, 2, E.1)

4 4z 0

where (p(r,Q, E,t) denotes the neutron flux at time t, position r, direction  , and kinetic
energy E. The notation and quantities in Eq. (B.1) have their usual meaning: on the left
side of Eq. Eq. (B.1), first term represents the time rate of change of the flux, the second
term represents the net leakage rate out of an incremental volume dV , while the third term
represents the collision rate in dV . On the right side of Eq. (B.1), the first term represents
the “in-scattering” rate, the second term represents the rate of production of prompt
neutrons through fissions, while the third term represents the rate at which neutrons are
produced by flux-independent sources. For investigating processes in which the delayed
neutrons are important, Eq. (B.1) is augmented by a term (on the right side) to account for
their production, and additional equations to describe their decay. Delayed neutrons will not
be involved in the transport processes considered here. Also, we do not consider here the
“criticality problem”, for which Eq. (B.1) becomes an eigenvalue problem with a non-zero
solution for the angular flux, in the absence of external sources. The integro-differential Eq.
(B.1) becomes a well-posed problem by specifying an initial condition for the angular flux,
ie.,

o(r,QE0)=¢'(r,QE), reV, Qe4r, 0<E<w, (B.2)

along with boundary conditions appropriate to the problem under consideration. The most
frequently used boundary conditions for Eq. (B.1) are as follows:

1) Specification of a boundary source ¢” (rS,Q, E,t) , representing particle fluxes

that enter the physical system V through its outer boundary 6V . In this work,
the volume V will be assumed to be convex, so that particles that leak out of V

cannot reenter through o6V . Thus, the boundary flux (pb (rs,Q,E,t) 1S an

external source, independent of the flux within the system, which must be
specified for: all points on the system’s outer boundary r, € 6V ; all (incoming)

directions of flight pointing into the system Q-n <0, where n is the unit outer
normal vector at r, € 0V ); all energies and all times after the initial time. On the
boundary, the angular flux is required to satisfy
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o(r,QEt)=¢°(r,,QEt), r,edV, Q:n<0, 0<E<ow, 0<t. (B.3)

In particular, a “vacuum boundary condition” is specified by setting ¢° =0.

i) The albedo boundary condition is used to relate the incoming flux with the
known outgoing flux. This boundary condition is written as
o(r,, Q,Et)=Po(r,,Q Et), r,edV, Q-n<0, 0<E<w, 0<t, (B.4)
where Q' represents the direction of the outgoing particle. The scalar £ takes
the values 0< <1, with =0 representing vacuum and f =1 representing
total reflection. Specular reflection corresponds to the case when
Qn=-Q"nand (Q-Q')-n=0.
i) The white boundary condition is a reflective condition where all particles

striking the boundary turn back into V with an isotropic angular distribution.
This boundary condition is written as

(p(rs,Q,E,t):ﬁ I (Q'n)p(r,,Q,E't)dQ, Q-n<0, 0<E<x, 0<t. (B.5)

iv)

v)

4 Q'n>0

The periodic boundary condition describes a system in which the flux on one
boundary is equal to the flux on another parallel boundary in a periodic lattice
grid. In this case

o(r,, QEt)=p(r,+Ar,QE,t), 0<E<wx,0<t, (B.6)

where Ar is the lattice pitch.
Boundary conditions describing system symmetries (planar, spherical,

cylindrical) dependent on the flux and which can be generally denoted in the
form

r=r[(p(r,Q,E,t),a(x)]. (B.8)

where (l(x) 1S a vector representing parameters (cross sections, number densities, etc.) that

appear in the model and in defining the detector. Thus, the *““direct problem” solves the
“parameter-to-output” mapping that describes the ‘““cause-to-effect” relationship in the
particle transport process.

37



The transport equation for photons (gamma rays) has the same form as the neutron
transport equation. Its stationary (time-independent) form is presented below, for future
reference:

Q-VI(r,Q,1)+u(r,2)1 (r,Q,1)=

9] B.9
IdQ’Jdﬂ'%,qu,ﬁ'—)i,Q'—)Q)l(r,Q',/l’)+/IS(r,Q,E,t), (B9
4r 0

where | (r,Q,l) denotes the radiation intensity (also called the doubly differential energy
flux density) at position r, direction Q , and wave length 1. The quantity ,u(r,/l) denotes

the total interaction coefficient (or attenuation coefficient, or macroscopic cross section),
while the secondary production coefficient z(r,A'— 1,Q' — Q) usually comprises only

the three dominant photon-medium interactions, namely Compton scattering, pair
production and photoelectric absorption, and is generally represented in the form

u(r,A' > 2,9 - Q)=N(r)o (1, 1,Q — Q)+2Mo—pp (r,A")6(u-1)
Az (B.10)

N (r) , ,
+ 2 O (r, AN, (r, 4, 4).

In the above expression, N (r) denotes the atomic density of the medium at position r, and

the spatial dependence of o, (the pair production cross section), o, (the photoelectric

absorption cross section), and N, (r,ﬁ',l) (the number of photons in unit wave length

emitted per photon at wave length absorbed in a photoelectric interaction at r) is due only
o atomic composition variations. The transport equation (B.l1) comprises several
approximations which are customarily made when one is interested in the “dose” arising
from the deposition of photon energy in the medium. The most important approximations
concern the treatment of fluorescence radiation, bremsstrahlung and pair production. Thus,
since fluorescence radiation is generally small both in energy and intensity, it is generally
assumed that the entire energy of the photoelectric event is carried away by the
photoelectron. Also, the neglect of bremsstrahlung implies that all kinetic energy of the
secondary electrons is transferred directly to the medium. Such approximations ultimately
imply that the energy is ultimately deposited in a different spatial location than would be
predicted by a more rigorous computation. This observation is important in that it identifies
a source of spatial error that would be present even if the transport equation were solved
with perfect numerical accuracy.

Many measurement problems are “inverse” to the direct problem in that they seek to
determine (from measurements) the properties of the medium (i.e., various cross sections),

or the properties of the source Q(r,Q,E,t), and/or the size of the medium on its
boundaries. Some authors further group such inverse problems into “invasive”, when the
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interior flux go(r,ﬂ, E,t) is accessible for measurements, as opposed to “non-invasive”
ones, in which only fluxes on the boundary of (or exterior to) the medium can be measured.

In general, two problems are called inverses of one another if the formulation of each
involves all or part of the solution of the other. Several “inverse problems” that correspond
to the setting of Egs. (B.1)-(B.5) can be formulated, as follows:

(a) The classical “inverse problem”: given the source Q (r, Q, E,t), determine the
fluxes ¢(r,Q,E t);

(b) “Source identification problem”: given the responses r :r[u(x),u(x)] and the
model parameters (cross sections, geometry, materials, etc.), denoted here as u(x),
determine the sources Q (r,Q, E,t);

(c) “Parameter identification problem”: given the responses r = r[u(x),u(x)] and the
sources Q (r, Q, E,t) , determine (some or all of) the model parameters;

(d) “Parameter and source identification problem™ given the responses
r=r [a (x),u (x)] , determine the sources and the model parameters;

(¢) When the domain (), contains inhomogeneous materials, and the responses
r:r[a(x),u(x)] are given, identify internal boundaries between the

inhomogeneous materials, identify the description of the system’s structure
(“structural identification™), etc.
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4.3. Task C: Validate gamma detector response functions and their
uncertainties

In the past decade, significant research has been done on the calculation of DRFs. Many Nal DRFs
were published in the literature. This data is essential for converting between the gamma
flux/spectrum and the resulting multichannel detector response. Fully accounting for the
uncertainties in the DRF was the main hurdle in this task. Without well-quantified DRF
uncertainties, the predictive model was expected to be severely lacking, even if the radiation
transport model is flawless. NC State University was responsible for completing this task.

The accomplishment of this task was reported in: Noel Benjamin Nelson, Validation and
Uncertainty Quantification of a 1x2" Nal Collimated Detector Using Detector Response Functions
Created by g03, Masters of Science Thesis, NC State University, 2014. This document is replicated
on the following pages.
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ABSTRACT

NELSON, NOEL BENJAMIN. Validation and Uncertainty Quantification of a 1x2" Nal Collimated
Detector Using Detector Response Functions Created by g03. (Under the direction of Yousry Azmy.)

Detector response functions (DRFs) are relatively new theoretical constructs most useful for
inverse analysis of radiation sources and elemental composition. A DRF is formally defined as a
function that transforms the incident flux of radiation on a detector into a differential pulse height
spectrum or detector response (as measured by a physical detector). Such functions have not yet
been derived from first principles of physics, so semi-empirical and Monte Carlo based methods are
generally used. One such method, based on semi-empirical modeling and Monte Carlo simulation
of photon interactions with a sodium iodide (Nal) detector, is implemented by a code named
g03 developed in the Center for Engineering Applications of Radioisotopes (CEAR). g03 has been
validated for simple geometries (e.g. centered on-axis sources) with bare (i.e. uncollimated) detectors
with 3x3" and 6x6" crystal dimensions. This work uses measurements from three radioactive sources
with a 1x2" collimated Nal detector for complex geometries (e.g. off-axis and attenuated sources) to
validate the DRF constructed with g03. Three measurement campaigns were performed: on-axis
detection of calibration sources, off-axis measurements of a highly enriched uranium disc (HEU) at
41 cm, and on-axis measurements of the HEU disc at 11 cm with steel plates in between to provide
attenuation. Simulated responses were created using MCNP computed fluxes folded with a DRF
determined via g03. Furthermore, this work quantifies the uncertainty of the Monte Carlo (MC)
simulations used in and with g03, as well as the uncertainties associated with each semi-empirical
model employed in the full DRF representation. Most of the uncertainties associated with Monte
Carlo simulations were controlled by the number of histories run. The uncertainties in the empirical
model were determined by either Frequentist or Bayesian methods. In the case of many data points
(degree of freedom, DOE four or higher), direct Frequentist calculation of uncertainty by least
squares and parameter derivatives proved more expedient than the Bayesian method (factor of 100
less computation time). However, in cases where fewer measurements were available (DOF less
than four), a delayed rejection adaptive Metropolis (DRAM) algorithm was used instead. Overall,
the response computed by the DRF for the prediction of the full energy peak region of responses
was very good (well within two standard deviations of the experimental response), but tended to
overestimate the Compton continuum by about 45-65 % due to physics associated with electron
transport in the case of the calibration sources. For the HEU disc measurements, DRF responses
tended to significantly underestimate (more than 20%) secondary full energy peaks due to scattering
with the detector collimator and aluminum can which is not accounted for in the g03 model of
the DRE Though immediate outside detector scattering is thought to be the main reason for the

underestimation, some contribution may also come from unsimulated geometry and uranium



daughter product decay radiation. All of the Monte Carlo uncertainties were constrained to the
lowest experimental counting bin (peak channel) relative standard deviation by running a sufficient
number of histories. The uncertainties associated with least squares fits to the experimental data
tended to have parameter relative standard deviations lower than the peak channel relative standard
deviation in most cases and good reduced chi-square values (close to one). However, two fits out of
the sixty considered did not meet these criteria: the energy calibration and the Ba-133 Gaussian peak
fits for the power law. Fortunately, the energy calibration still proved to be fairly accurate (within
1% of the true incident gamma ray energies) and had a negligible effect on the validation exercise.
The other misfit had to be resolved by weighting the power law by the standard deviation of the

Gaussian peak standard deviations.
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CHAPTER

INTRODUCTION

1.1 Research Motivation and Goals

Detector response functions (DRF) have become an area of increasing scientific interest for the last
thirty years in several industrial detection applications. These applications include coal spectrometry
for composition and location in the interest of mining, oil-well logging, radio-tracing in medicine,
computerized tomography (CT) scans, and holdup source characterization. DRF uses could be
extended to nuclear safeguards and security applications as well such as border monitoring for
illegal transport of radioactive materials, cargo and package monitoring, and unknown source
identification at source recovery sites. However, a rigorous mathematical formulation of the DRF
has yet to be developed. Therefore, a few working empirical and stochastic approaches have been
developed instead to create DRFs.

The concept of a DRF is defined in Section 2.3. For basic purposes a DRF can be considered
a function that converts the energy-dependent flux of incoming source particles incident on a
detector into a detector response spectrum similar to what is observed in experimental detector
measurements. The DRF can also be used in the reverse sense in an inverse problem setting, as a
step in the process of predicting the physical characteristics of an unknown source (e.g. holdup

problem).
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Much of the most recent work on DRFs has been performed by Dr. Robin Gardner and his
research group at North Carolina State University. Gardner has developed a fairly accurate DRF
model through empirical curve fitting and Monte Carlo analysis. The DRF has been validated against
experimental measurements taken by Heath and was found to agree within two standard deviations
of the experimental results from Heath. The measurements were taken with 3x3" and 6x6" Nal
detectors and Cs-137 sources centered on the detector’s front axis at a distance of 10 cm. There was
agreement with the Heath benchmark detector measurements of the same sizes up to two standard
deviations of the measured Poisson error. [16][4]

Some validation work has been carried out on the source positioned off-axis relative to the
detector and with intervening material placed between the source and detector pair. This was done
in the interest of developing spectrum analysis software specific to the Compton continuum in
order to identify attenuators and account for off-axis geometries. The software that accomplishes
this purpose is still under development, but once it reaches fruition it should be considered for
incorporation into future works that employ DRFs.

The goal of this work was to use the Nal DRF model developed by Gardner to characterize a
Nal 1x2" detector for on-axis geometries, off-axis geometries and attenuated configurations and
to validate it against experimental measurements. Also, uncertainty in the model was calculated
by Frequentist and Bayesian methods, and compared to measurement and Monte Carlo transport
uncertainties. The overarching goal is to incorporate an accurate DRF model into an holdup problem
approach to the holdup application to characterize special nuclear material (SNM) deposits at

nuclear production and processing facilities.

1.2 Summary of Results and Conclusion

There were three major sets of measurements: on-axis detection of calibration sources, off-axis
measurements with a highly enriched uranium (HEU) disc, and the HEU disc with steel plate
attenuation between the source and detector. In terms of the calibration source spectra with one or
two peaks and a Compton continuum, the computed spectrum predicted the peak well within two
standard deviations of the experimental count rate, but overestimated the continuum and valley
between the peak and Compton edge. This problem likely came from miscalibration of the electron
range multiplier (Equation 2.4) used originally for an uncollimated 3x3" detector, as the same effect
was observed in Gardner’s original validation work when the multiplier was set too low.

However, this effect did not appear in the two major experimental campaigns involving the HEU
disc, as the highest energy peak observed was of too low an energy to create a Compton continuum.
The model reproduced the main peak (186 keV) and its shoulder peak (205 keV) well, again within
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two standard deviations of the measured count rate, but underestimated the convolved peak at
(150 keV) and did not reproduce the lead backscatter peak near 100 keV. This was due to scattering
with the lead collimator that was unaccounted for by the DRF model, as the model currently only
reproduces the effects of scattering within the detector crystal.

Finally, uncertainty quantification of the model took place on every calculated quantity from the
flux calculation in MCNP to the Gaussian peak fits for shifting the program. Where the uncertainty
was controllable by the number of particle histories chosen in Monte Carlo simulations, it was
reduced below the lowest measured uncertainty. Where it was constrained to the accuracy of the
model for least squares fitting, the reduced chi-square test was performed to check for goodness of
fit.

Two mediocre least squares fits were encountered out of many: the energy calibration and the
Ba-133 Gaussian peak fits used for the power law fit. The effects of the energy calibration were found
to be inconsequential to the validation results. While the Ba-133 peaks effects on the power law
were minimized through a special sum of the least squares weighted by the uncertainties in the

Gaussian peak uncertainties (g°7).



CHAPTER

2

REVIEW OF THE LITERATURE

The purpose of this literature review is to lay the foundation for the development of the sodium
iodide (Nal) detector response function and the corresponding uncertainty quantification based
on the results and discoveries of previous scientists in the field of gamma radiation transport and
detection. First, the history and development of the Nal detector and its supplementary equipment
will be summarized. Then the major developments in Monte Carlo based transport theory relevant
to the construction of DRFs will be discussed. The third section will detail the creation of detector
response models. Finally, the last section will concern relevant Bayesian uncertainty quantification
methods.

2.1 Nal Detection and Detector Response

Before detector response functions were even considered, detector responses and operation prin-
ciples had to be developed. The detector of interest in our work is a sodium iodide scintillation
detector. Scintillation is simply the emission of a visible photon from a material by dexcitation of an
electron following its interaction with incident gamma. The favorable scintillation properties of Nal
doped with trace amounts of Thallium (Nal(TIl))were first discovered by Robert Hofstadter in 1948
[20].
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Hofstadter concluded that Nal(T1) would be an efficent detector of ionizing radiation. He deter-
mined this based off of the duration of light emission, distribution of light pulses, particle energy
discrimination (therefore radioactive source discrimination), and the proportionality of counting
events to voltage and amplifier gain. He compared some of these characteristics with another detec-
tion material, anthracene, while merely verifying other materials to conclude that Nal(TI) is a viable
detector.

A Nal(T)) crystal alone does not make a detector. Light emitted from the crystal after an interac-
tion is captured via a photoelectric effect interaction with the photocathode of the detector. The
freed electrons are multiplied and amplified into a detectable electronic signal pulse by the photo-
multiplier tube (PMT). The first photmultiplier tube was developed by Harley lams and Bernard
Salzberg much earlier than Hofstadter, in 1935. [6]

They observed the amplification of the primary photocurrent (a stream of electrons) through the
effects of secondary emission and the photoelectric effect. Secondary emission is when an electron
current strikes a charged plate and releases more electrons than were absorbed by the plate. lams
and Salzberg found that their photomultiplier tube was superior to gas phototubes as they had
no interference at high audio frequencies from small fluctuations in its current supply, while still
comparable to the vacuum phototubes (other detector PMT candidates). This model is the basis for
modern PMT’s.

The small electronic output signal from the PMT is then amplified and reshaped from a sharp
edged pulse into a wider pulse (based on the difference between a rising and falling exponential) for
easy processing. This wider pulse is passed to the multichannel analyzer (MCA), which outputs a
differential pulse height spectrum (DPHS) also known as a detector response. A DPHS is created
simply by setting a small pulse amplitude window to count pulses of varying heights within the
window within a counting period between two energies called a channel. An MCA does this for
hundreds of channels at once across the entire detector’s energy range. The detector’s energy range
is determined partially by size and pulse amplitude gain settings. Low energy photons are resolved
better by higher gain and the inverse is true for high energy photons. Also, large detectors have
better interaction cross sections with higher energy gammas.

The first MCA was invented by George Kelly at Oak Ridge National Laboratories (ORNL) in 1953.
Kelly prized his method as being much faster than older methods using single channel analyzers and
more reliable with channel width and position errors meeting statistical standards set at the time.
[7] Since then MCAs and pulse processing equipment have become more efficient and compact,
such that they are often combined together into one machine that is controlled by local desktop
software.

Figure 2.1 summarizes and illustrates the whole basic Nal detection process. For further details
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of the detection process and pulse processing equipment, please refer to KNOLLs book on Radiation
Detection and Measurement.

Figure 2.1 A basic Nal detector schematic. [14]

In most cases, the current pulse is sent to the pulse processing equipment and MCA to convert
the small collection of electrons from the PMT into a response spectrum. Detector response spectra
can be used to locate and identify sources of gamma radiation since the response peak channel
is proportional to the incident energy of the incident radiation. It is proportional because the
relationship between the energy deposited by radiation in the Nal crystal to the scintillation light
yield is fairly linear for energies above 100 keV. A quadratic energy calibration using at least three
known sources can account for the slight nonproportionality of detector channel to energy, and
thereby be used to identify the energy of the incident radiation from other unknown sources.

In this case, detector response measurements of known sources will be validated against syn-
thetic responses for attenuated and off-axis geometries. A typical detector response spectrum for a

small detector is shown in Figure 2.2.
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Figure 2.2 Predicted detector response spectrum of a medium sized detector with labeled regions of inter-
est [15]

Every section of the response spectrum is the result of a combination of one or more photon
interactions with the detector crystal or its casing material. The three major types of photon in-
teractions with matter include: photoelectric effect, Compton scatter, and pair production. The
photoelectric effect occurs when a photon is absorbed by an atom, and a bound electron is then
expelled from that atom. Compton scatter occurs when a photon is merely deflected by an atom,
and thereby loses a fraction of its energy and changes direction. The third interaction occurs when
a high energy photon (greater than 1.022 MeV) interacts with the nuclear electromagnetic field and
creates an electron-positron pair that are propelled in opposing directions. Further details of basic
particle interactions can be found in Hubbell’s report on Photon Cross Sections. [5]

Knoll’s book mentions several spectral components that appear in a typical response spectrum
as a result of the three basic particle interactions. These include the full energy peak, Compton
continuum, and the several other types of peaks that appear in Figure 2.2.

The full energy peak of the spectrum is produced by a combination of all three basic gamma
particle interactions with the detector crystal resulting in full energy deposition. Ideally, the full-
energy peak would be a straight vertical line, but due to the finite energy resolution of a detector, the
spectrum is blurred or spread to a Gaussian profile centered around the true peak channel, or energy.
The sources of the spread can be usually attributed to statistical fluctuations in the total number of
information carriers (scintillation photons for scintillators) created during a given detection event.
Other reasons include electronic noise (radio signals, other electronic equipment, etc.), variations in
the active detector volume (ie. defects, nonuniformity), and changes in operating parameters during
measurements. In an investigation to validate a Monte Carlo calculated Nal detector response,
a good representation for Nal energy resolution was measured to vary inversely (improve) with
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increasing incident particle energy. For most measurements it varies from 8-15%. [17]

The continuum is created by the probable set of energy depositions from Compton scatter
at various angles of deflection with incomplete energy deposition in the detector crystal. The
continuum can also be affected by Compton scattering outside of the detector where the deflected
photon is detected instead of the electron that is freed when the scatter occurs in the detector crystal.
One example is a backscatter peak where the photon scatters at a 180° angle from the rear detector
wall into the detector crystal. [9] The shape of the continuum and backscatter peaks can also be
significantly affected if an attenuator is in placed front of the source, or if the source is off-axis
affecting the number of photons that scatter off of the detector casing into the crystal at a given
energy. It is useful in many applications to be able to match different continuum shapes to their
most probable cause.

Escape peaks arise when pair production occurs in the detector crystal, but one (single) or both
(double) the photons that are created from the annihilation of the resulting positron escape. These
events typically occur in small detectors near the edge of the crystal where it is easy for electrons
to escape the crystal. When the positron-electron pair is created, the original photon loses the
amount of energy required to create the mass of an electron and a positron. The rest mass of both an
electron and a positron are approximately 511 keV. The electron created will not contribute much
to the response, but the positron does once it annihilates with another electron. The annihilation
event creates two photons equivalent to the lost rest mass of each particle, 511 keV, which travel in
opposite directions. If both photons escape frequently without depositing energy in the detector
crystal, then a double escape will appear in the spectrum at the energy of the incident gamma minus
two times the electron rest mass (E, —1.022M e V). If only one of the photons deposit their energy in
the crystal frequently, then a single escape peak will appear in the spectrum at the original incident
gamma energy minus one electron rest mass (E, —0.511Me V).

An annihilation peak is observed when pair production occurs in the detector shielding, or
alternatively in the source shielding, and one of the 0.511 MeV photons created in the following
positron annihilation event is detected. Finally, characteristic X-rays (usually Ex_,,, <100ke V) are
created from the de-excitation of atoms that were involved in a photoelectric event with an incident
photon. Typically, the emitted X-rays is reabsorbed by the detector medium and contributes to
the full energy peak. However, if the detector is fairly small and these X-rays escape, then an X-ray
escape peak is observed in the response slightly below the full-energy peak (E, — Ex_;4)-

Any detector can produce a response, but Nal(TI) scintillators are some of the most commonly
used in practice. This is because they are cheap and fairly easy to manufacture in varying sizes,
have fairly high light emission among scintillators, have high scintillation efficiency (heavy material

7=>53) and fairly linear radiative energy deposited to light yield. The two major weaknesses of
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Nal(Tl) detectors are their large decay times between pulses and fairly low energy resolution (wide
full-energy peaks).

Decay time simply refers to the amount of time it takes for the ionized electrons from a detection
event to decay from an excited state at the Thallium activator sites back to the ground state and
produce scintillation photons for the detector pulse. Subsequent incident gamma rays cannot be
detected during this decay time. For Nal(Tl), the decay time is 230 ns, which is much slower than an
organic scintillator which have typial decay times around 2 ns. Therefore, organic scintillators are
preferred for fast counting experiments where spectral information is less important than timing.

Knoll defines Energy resolution as R = % where FWHM is the full width at half the
maximum of the full energy peak and H, is the height of the peak at its center. Therefore, a lower
resolution means the peak is narrower compared to its height and requires fewer channels to define
the peak (better for distinguishing peaks that are close together in energy). Because FWHM is energy
dependent and dependent on the statistical fluctuation in a given measurement, for a given detector
type the Poisson limit of the resolution is defined as R|pissoniimic = 2.35/v' N, where N is the total
number of information carriers. For Nal detectors, the theoretical limit would be about 1.2%, since
it produces around N=38,000 information carriers (scintillation photons), whereas a semiconductor
detector with N = 10° —10° has a much lower limit of about 2.25%. Nal does not approach this limit
closely though, as their is further loss of those scintillation photons from emission to absorption in
the photocathode.

However, Nal(T]) is the best scintillation detector for spectroscopy applications (not fast pulse
timing experiments) because it has one of the highest photon absorption to light yield of 38,000
photons/MeV. Only CsI(T]) and Cs(Na) are higher with 65,000 and 39,000 photons/MeV respectively.
Cs(Na) has pretty equivalent properties to Nal, but has a much slower decay time between pulses.
Additionally, CsI(T]) has a bad emission wavelength (540 nm) that doesn’t couple well with standard
PMTs absorption spectrum (400-450 nm). Due to these weaknesses, generally Nal(Tl) is preferred
among scintillators. [9]

For fine measurement applications in the lab, however, a semiconductor detector made of high
purity Germanium (HPGe) is usually preferred. It has better resolution overall ranging from 0.13-1%.
[21] So, the full-energy peaks of the HPGe would be at least ten times thinner than a Nal peak at
the same energy. However, the major weaknesses of HPGe are that it requires cryogenic cooling,
it is difficult to manufacture in large sizes, and it is generally expensive. Therefore, for field work
(e.g. uranium holdup measurements), Nal(Tl) detectors are generally used due to their greater
affordability and portability. Field application is the goal of this work, plus continuum effects are
more important than peak resolution for determining source strength and location. Hence, a 1x2"
Nal(TI) scintillation detector was chosen to conduct the validation exercise reported here.
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2.2 Monte Carlo Based Radiation Transport

Detector responses can be predicted mathematically by taking the product of the detector’s response
function (DRF) with the flux (particle speed per volume) of the radiation incident on the detector
[9]. The particle flux can be predicted from the solution of the Boltzmann transport equation at
the location of the detector crystal due to a given source. The equation was first derived by Ludwig
Boltzmann in 1872. [8] Since then, many approximate methods have been developed for solving the
Boltzmann equation under certain assumptions suitable for a variety of applications.

One of the more popular transport methods is the Monte Carlo method. The Monte Carlo
method does not solve the transport equation itself, instead it simulates the particles and their
trajectories through the modeled materials using sequences of pseudo-random numbers. Then it
determines the average state of the physical system from the average behavior of the particles. [13]
The software chosen for these calculations is the Monte Carlo Neutron-Particle (MCNP) transport
code. It was created formally in 1977, though its roots extend back to the late 1940s, at the dawn of
the nuclear age. This section outlines the basics of MC transport for calculating incident flux on the
detector for the purpose of validating the DRE

First, particles are simulated and transported according to Boltzmann physics within the volume
of interest. Instead of solving the transport explicitly for the entire volume to obtain the flux, the
fluence is calculated inside the detector volume only. The fluence, 9, is defined as

2. Si

®= lim [&=—]. 2.1
AV—0 AV

If a large number of particles were simulated, this quantity could be calculated directly. [10]
Simply by tracking particles through a cell of interest and summing up all of the particle tracks
within the very small discrete spheres, the flux is approximated. For large volumes like nuclear power
reactors this method becomes inefficient and less accurate. For small detector volumes, however, it
works quite well. [2]

That is how Monte Carlo simulation works by simulating moving particles directly and tracking
them through simulated media. Particle tracks from birth in a source to death (absorption or escape)
from the system including all intervening scatters are called histories. The number of particle
histories (N) executed in an MCNP run is chosen in order to obtain the desired level of uncertainty
in the calculated quantities.

A typical particle history proceeds as follows. First, particles are initialized with random location,
energy, and direction of motion according to a defined source distribution. Particles then interact
or pass through the specified media according to well defined, material dependent, probability

10
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distributions called cross sections. A photon microscopic cross section, 0 cq¢iontype i defined
as the probability of a photon-nuclear reaction with a nucleus. [1] It can also be thought of as the
effective cross sectional area presented by the nucleus to the beam of incident photons, and cross
sections have units of ¢ m?. Cross sections depend on energy, material, and interaction type.

Often microscopic cross sections are multiplied by the atom density of the medium to make a
macroscopic cross section. Photon macroscopic cross sections, Ui, seracrion, (also called attenuation
coefficients) are simply the probability of a certain interaction with the medium occurring per unit
path length traveled. [1] Summing the macroscopic cross sections of every interaction type yields
the total attenuation cross section, u. There are several minor interaction cross sections (Raleigh
scattering, Thompson scattering, etc.), but the largest contributions for photons come from the
three aforementioned interactions: photoelectric effect, Compton scatter, and pair production.

If these interactions produce secondary particles, they too are stored and tracked as new histories
after the original particles terminate. Finally, after each particle history has been recorded, the
particle track (s;) through the detector volume is added to the running tally calculating the flux
according to the average of Equation (1) piece by piece until all the histories are tallied.

The Monte Carlo transport method is very effective and simple, but can be inefficient and have
high variances if variance reduction techniques are not applied. Variance in Monte Carlo is based
on the number of histories run, so the simplest way to reduce variance in such a calculation is to run
more particle histories. Sometimes this is not feasible (rare events), therefore variance reduction
techniques are used instead. In Exploring Monte Carlo Methods by Dunn and Shultis the most
common variance techniques are described, which include particle weighting, truncation, splitting,
and Russian roulette.

The first method is called weighting. A biased multiplier (called a weight) may be applied to
particles undergoing desired physical events in order to force rare interactions to occur more often
without running as large numbers of histories. The biased particles’ contribution to the tally (the
score) is then renormalized by mulitplying by 1/weight. This ensures that desired events are well
sampled, but the tally still represents an unbiased system.

Further subtypes of this technique include importance sampling, and implicit absorption. In
importance sampling a particle’s contribution to the tally may be taken as the product of the
particle’s weight and the probability of the occurrence of the event of interest. The probability
density function (PDF) that describes this event may be adjusted to an alternate simpler PDE as
long as a multiplicative correction factor is applied to the weight equivalent to the original PDF
divided by the alternate PDE When optimum adjoint transport solutions are applied, the variance
can theoretically be reduced to zero. Similarly, alternate PDFs may also be used to force interactions
or affect the distance between collisions.

11
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For implicit absorption, particles are never allowed to be killed by absorption. Instead, every
time an absorption event would occur, the particle’s weight is reduced by multiplying its weight by
the probability of survival (1 — ‘L—“). Then a particle interaction is chosen for the particle from the
remaining non-absorption interaction probabilities. Therefore, in this scenario, a particle may only
be killed by leaking out of the system. To prevent buildup of low weight particles in the system, this
technique is usually paired with the Russian roulette technique.

Truncation methods set cutoff limits for when a particle should be terminated. For example,
if a particle reaches a position outside of the system of interest (leakage), then tracking would be
terminated. Other examples, include unfavorable directions, low energies, and low weights unlikely
to contribute much to the tally of interest. Truncation helps to kill particles early that are only
wasting computational resources.

Finally, splitting and Russian roulette schemes are almost always applied together. Splitting
occurs when a particle enters a region designated of higher importance and interest (e.g. the cell
where a tally is calculated, and it is split into m particles. Each particle weight is then given by a 1/m
fraction of the weight of the original particle. Russian roulette is exactly the opposite of splitting.
Particles that travel into regions of low interest may be killed by random selection. Some 1/m fraction
of particles are killed, and the remainder increased in weight by a factor of m. [2]

All of the variance reduction techniques reduce variance without biasing the tallies, if used
correctly. Often these techniques increase computational efficiency and decrease computation
times. Many production Monte Carlo transport codes apply some of these techniques automatically,
while allowing the others to be chosen as options.

In this work, the Los Alamos National Laboratories (LANL) code Monte Carlo Neutron Transport
code (MCNP) was used to compute flux tallies incident on the 1x2" Nal detector model. The code
was originally implemented for neutron transport, but can also be used for other particle transport,
such as photon transport. Monte Carlo based calculation was also used in part to calculate the DRE

2.3 Detector Response Functions

The DRF (R(E, h)) is defined as the probability that a photon incident on the detector with energy
E will give rise to a pulse with height /. [18] DRFs are useful for converting flux to counting spectra,
calculating detector efficiencies, and also for the reverse, transforming responses back into flux.
The latter purpose will be explored more in future research, but in this work focus will remain on
the former purpose.

At the present, no fully physical model exists to describe DRFs, but there are several stochastic

(MC) and empirical models. Gardner’s Nal DRF model is one that combines empirical relations with

12



2.3. DETECTOR RESPONSE FUNCTIONS CHAPTER 2. REV. OF THE LIT.

Monte Carlo simulation. Gardner’s original work with his colleague Avneet Sood validated 3x3 Nal
synthetic detector responses to the Heath benchmark Cs-137 spectrum. Gardner’s model was found
to be more efficient (required far less particle histories for accurate calculation) and was shown
to match better with the Heath experiments than MCNP’s F8 response tally. [16] It was chosen for
our work for these reasons and also because MCNP simulates responses according to direct energy
deposition in the detector crystal. It generates no DRE and a DRF will be needed for future holdup
work.

The Heath experiments were performed on a 3x3" Nal detector in 1964 as a benchmark for
anumber of gamma sources. All measurements were very high fidelity. The measurements were
performed in a lead shielded box to reduce background radiation and all spectra were counted
well over 10,000 counts in the peak channel for less than 1% counting uncertainty. For further
information, see Heath’s Gamma Ray Spectrum Catalogue. [4]

Gardner’s model generates a DRF for a desired detector size, source distance, and source energy

(single peak), through the following set of steps. First, Gardner’s model takes into account the non-

scintillationlight yield
energydeposited

linear dependence of Nal scintillation efficiency ( ) on the energy deposited
in the detector by the incident photon. As mentioned before (section 2.1), the nonlinearity in scin-
tillation efficiency is an inherent property of Nal(T]) crystals, and it is particularly pronounced at
energies below 100 keV. However, this nonlinearity is still significant for all incident energies below
3 MeV. Gardner used the following nonlinear empirical relationship (from fits to experimental data)

to calculate scintillation efficiency for his DRF

S(Ee)=1+kiexp[—(In E, —k,)*/ks],
E,>10keV,

S(E,)=1+kjexp[—(In E, —k»)*/ ky), 2.2)
E,<10keV,

where E, is electron energy in keV. k; is 0.245, and k; is [n 10 =2.30258. k3 is 7.1635, and k; is
5.1946. The electrons are the very same electrons that are involved in interactions with photons
incident on the detector crystal. The second step involves Monte Carlo particle transport simulation
in which each scattered electron that deposits energy in the detector is multiplied by the scintillation
efficiency (Equation 2.2) at the energy deposited. [16]

The Monte Carlo calculation is conducted with Peplow’s code called DRFNCS. It simulates several
hundred detector response spectra through Monte Carlo transport where photon interactions are

forced in the detector, but leakage of secondary particles is allowed producing the continuum of
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the spectra. Only about 100,000 particle histories are necessary to produce results with uncertainty
under 1%, whereas MCNP F8 Gaussian energy broadened (GEB) spectra require on the order of
billions of particles to produce the same precision. The difference typically saves about a day in
computation time.

Next, the peaks were stripped from the response spectra so that each contiuum could be pro-
cessed alone. Principle component analysis (PCA) was performed on the correlated response vari-
ables and the covariance matrix to produce a small set of uncorrelated variables (principal com-
ponents). The principal components and the mean vector were stored as data and can reproduce
accurate continuum easily when multiplied with the desired channels vector.Essentially, the contin-
uum can be recalled quickly without the need to be regenerated by Monte Carlo simulation for each
DREF generated.

So, when a new DRF needs to be generated, the algorithm need only to generate the full-energy
peak of interest by Monte Carlo transport simulation and adds this contribution to the continuum
to produce the desired DRE [22] The modified version of Peplow’s code (adjusted by the nonlinear
scintillation efficiency) is called g03. The code is in the process of being updated and is proprietary
to the Center for Engineering Applications of Radioisotopes (CEAR).

Finally, the Monte Carlo simulation of g03 is modified by several empirical equations to correct
pieces of the spectra that are not simulated fully by the Monte Carlo calculation. The g03 DRF peak
section is spread according to the following power law (Equation (2.3))

or(E)=aE}, 2.3)

where a and b are empirical fit parameters, and E; is the energy of the incident gamma ray. This
law is simply an empirical relation that comes from a Least Squares fit of the standard deviations of
experimentally measured full-energy peak responses produced by the detector of interest. [16]
The flat Compton continuum of the DRF is produced by various empirical fits of entire experi-
mental responses (not only the peaks). This is necessary because there is as of yet, some undiscovered
phenomena causing a higher magnitude of the continuum than predicted by current physics models
and data. Simple Compton scatter and pair production physics and partial energy deposition due
to electron or photon leakage through the detector walls can predict the shape of the Compton
continuum but underestimates its magnitude. A normalization factor was developed to account for
this effect called the electron range multiplier, since the effect causing the underestimation of the
continuum was believed to be connected to the electron range. The empirical relation is given by

Equation 2.4
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Re:].+Alexp(—A2E])+A36xp(—A4EI) (24)
A, =39.662, Ay =3.4052, A = 1.5434, A, =0.1576,

where Ej is the energy of the incident photon, and A; — A4 are parameters fit from experimental
responses. This factor is a pseudo-electron range equation designed to correct the magnitude of the
synthetic Compton continuum produced by the Gardner’s DRE It was fit through trial and error for
3x3" Nal detectors and may not apply to the detector of interest in this work (1x2" Nal detector). [23]

Responses, thus, may be measured or calculated. Validation of Gardner’s model has already
been completed on some levels, but almost no uncertainty quantification of the model has been
performed. The primary goal of this work is to conduct a validation exercise of the DRF for a specific
Nal detector of interest and account for its uncertainties.

2.4 Uncertainty Quantification

In the process of comparing measured to computational model results there are three types of
uncertainty in practice. There is measurement uncertainty, model uncertainty, and numerical
(simulation) uncertainty. Quantifying uncertainty is important in determining the precision of the
model and the computed results. The more precise a result is, the more likely it can be reproduced,
and the higher the level of confidence in the applicability of the computational model.

Measurement uncertainty for detection and counting was found to follow a Poisson distribution
for a single measurement. This is because the decay of a nucleus is a binary process. It either
decays or it does not. The chance of decay per unit time is constant and rather small for a large
number of nuclei and a short measurement time (compared to the nuclide’s half-life). A binomial
distribution under these conditions (constant and small probability of success) will reduce to a
Poisson distribution. [9]

In a Poisson distribution the variance is equal to the mean (the number of counts). Therefore,
the variance of the measurement is equal to the mean number of counts. In a single measurement
this would be the number of counts measured in a detector channel. The standard deviation is
then simply the square root of this count, and the fractional standard deviation (relative to the total
count) is one divided by the root of the count.

To then extend this measurement uncertainty to count rates and net counts (gross count - back-
ground count), one simply uses propagation of uncertainty. Anytime a basic operation (addition,
subtraction, multiplication, or division) is performed on the measured count, likewise a transforma-

tion must be made to the variance of the counts. If the variables involved (e.g. counts and time) are
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independent of one another, then a general formula exists for calculating total uncertainty of the
final quantity (Equation 2.5)

u u u

2 2 2 2 2 2 2
O'u:(a) 0'x+(5) O},-ﬁ-(a) O'Z+/ld0[8, (2.5)
where u© = u(x, y, z,...) is the quantity derived from basic quantities (x, y, z,...) with known
?}ariable

quantities (e.g. count rates and net counts) for various purposes, such as those used in the reduced

variances (o ). The formula is useful for determining the associated uncertainties of many
chi-square test described near the end of this section. [9]

It turns out that simulation uncertainty for Monte Carlo transport calculation is very similar
to that of measurement uncertainty. This is due to the fact that the particles themselves are being
simulated and tracked as a psuedo-random process. Measurement standard deviation is equivalent
to the square root of the number of counts (the mean) in a channel. So it makes sense that the Monte
Carlo standard deviation is simply the square root of the number of particle histories in a tally bin.
The fractional standard deviation is simply equivalent to the reciprical of the standard deviation. [2]

Determination of the model parameter uncertainty is a more difficult task. For this purpose,
there are two major statistical methods to choose from: Bayesian and Frequentist Theory. Since
the core of Frequentist Theory requires a large number of data points, a Bayesian method was
naturally chosen for the power law Gaussian fits, power law, and the energy calibration fits. Whereas
Freqgentist methods were chosen for the normal Gaussian fits for shifting spectra and the Gaussian
fits of the peaks of experimental spectra for the energy calibration due to the abundance of channels
in the peaks of those spectra and for efficient calculation.

Smith’s book, Uncertainty Quantification, describes Frequentist and Bayesian statistics quite well.
In both methods, parameter means of each relationship were found via the method of nonlinear least
squares. This method solves for the mean parameter values that produced the lowest value of the
L, norm (sum of the squares) of the error. Frequentist methods treat these values as the parameter
means and subsequently calculates a Chi squared and covariance matrix to determine the parameter
uncertainties. Bayesian methods only use the means for an initial guess (priori information). Further
details of least squares methods can typically be found in advanced linear algebra texts. With
parameter derivatives and error variance, the Chi squared and covariance matrices can be calculated.

First, however, the error variance must be calculated from the residuals. The error variance is

defined as follows )
2

where R is the residual vector of the differences between the model evaluated at the means predicted

o

RTR (2.6)
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by least squares and the experimental data (R = Y, xperimental — fmode1(q))- Also, n is the number of

parameters, and p is the number of model parameters. Next the y matrix can be calculated as simply
2/ila)y

oqx ’*
Using the square of the y matrix and the error variance the covariance matrix can simply be defined

the derivative of the model with respect to each parameter, k at each data pointi (y;(q) =

as
V=c’ly " (@)x (@1 2.7)

The covariance matrix contains each parameter variance along its diagonal. Simply take the square
root of the diagonal values to find the parameter standard deviations. The Frequentist method is
very accurate and quick to calculate for cases where there are many more experimental data points
than the number of parameters. However, when confidence in a fit is lower due to fewer data points,
Bayesian codes fair better. [11]

Bayes theorem expressed in words simply states that parameters are random variables with
associated probabilistic densities that make use of known information or new information obtained
from conducted measurements. This method picks the best posterior density that reflects the distri-
bution of parameter values based on sampled observations. In other words it finds the probability
density functions (pdfs) of model parameters that maximizes the likelihood function. Further details
of the likelihood function and Bayesian theory are given in Smith’s Book or his reference D. Calvetti
and E. Somersalo, Introduction to Bayesian Scientific Computing.

DRAM was used to calculate Bayesian model parameter uncertainties. From Haario’s article
"DRAM: Efficient adaptive MCMC" one learns that DRAM stands for Delayed Rejection Adaptive
Metropolis algorithm. In this work it is used to estimate the most likely means of the model of
interests parameters to verify those determined by least squares fits by employing Monte Carlo
random sampling of the parameter values, called chains. DRAM also determines the uncertainty in
the parameters from the direct statistical variations in the parameter chains.

The basis of DRAM comes from the Random Walk Metropolis algorithm (RWM). RWM comes
from Monte Carlo principles and is fairly easy to implement. First, the variance is obtained in the
same way that the error variance is typically calculated: from the sum of the square of the residuals
divided by the number of degrees of freedom (Equation 2.6). Second, the covariance is estimated
from the inverse of the y squared distribution which come from partial parameter derivatives of
the model (as defined by Equation 2.7). A Choleski factorization of the covariance matrix is formed.
Lastly, with the factored matrix, the parameters are varied in a semi-random way with psuedo-
random numbers chosen from a set of different distributions. Based on likelihoods of randomly
chosen parameter values the algorithm either chooses to accept (if the likelihood is increased) or

possibly reject and the rejection probability increases every time the likelihood function decreases.
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Using regular statistical methods, again the parameter standard deviations can be estimated from
the chains of random parameter values.

DRAM works along the same principles, except that the rejection condition is augmented with a
more advanced algorithm that increases the probability of acceptance (promoting mixing or broader
exploration of the chains). Also, DRAM adapts by suggesting a Gaussian proposal distribution
centered at each chain position and retrieves more information about the posterior using it to
update the covariance matrix. Together these advancements make a much more efficient algorithm
than basic RWM. [19]

Additionally, both Frequentist and Bayesian methods give estimates of the model parameters
that best reproduce a curve along the measured data points. Sometimes, least squares fits and
maximum likelihood estimates can produce poor curve fits. So, from Bevington and Robinson’s
Data Reduction and Error Analysis, one can obtain two useful tools for model examination: the
reduced chi-square test and linear correlation coefficients.

The reduced chi-square test helps to provide a quantified measurement of the goodness of fit.

The definition of the reduced chi-square is shown by Equation 2.8.

5 [h(x)) =y (x))P
2 _ J J
x ‘]Z o (hP
x2=x%/v, (2.8)

where n is the total number of data points. h(x;) is the measurement, and y(x;) is the model
solution at data point j. Also, o j(h)? is the variance in the measurement at data point j, and v is
the number of degrees of freedom (v = n — p) where p is the number of parameters. In our work,
the variance will likely be the poisson variance for a simple count spectrum, or the propagated
uncertainty for net counts and count rates. A reduced chi-square test will produce a value equal to
one for an ideal case, however, it is generally considered to be still a good fit for values less than ten.
Values less than one simply mean that the spectrum was overfit, and may have required a simpler
model or fewer data points to produce a similar result.

Furthermore, in the event of a poor fit, the model can be examined more closely by examining
the linear correlation coefficients. The linear correlation coefficient matrix can be calculated as

follows (Equation 2.9):

2
jk

00k

(o

pik= 2.9)

where 0 is the covariance at row i and column j as calculated by Equation 2.7, and o ; and o7
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are the diagonal standard deviations of the parameters from the covariance matrix (o ;; and o).
The linear correlation coefficients of a model can reveal a weak parameter in the model that might
not be contributing much to the model fit. Parameters with many correlation coefficients under 0.2
should be considered for removal or substitution. [3]
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CHAPTER

3

EXPERIMENTAL SETUP AND
COMPUTATIONAL MODEL

This section will detail the experimental setup and the Monte Carlo computational transport models
used to simulate the experiment’s geometric configuration and calculate the flux incident on the
detector. A detector description will also be provided, as well as how the detector intrinsic efficiency
was calculated. The Monte Carlo calculated quantities are necessary for calculating response spectra
for comparison against those obtained via experimental measurements with the actual detector.

3.1 Experimental Setup

The entire experimental campaign was designed and performed at the Safeguards Laboratory at
Oak Ridge National Laboratory. The initial campaign was completed over the course of a couple
of weeks in June of 2013. Further measurements (such as those for the power law fit) were taken
on various days over the course of the spring of 2014, courtesy of ORNL personnel. All sources and
detection equipment were provided by ORNL. Each measurement was taken with the same detector,
detection equipment, and settings.

The detector of interest for validation of Gardner’s DRF model is a 1 inch diameter by 2 inches
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height right cylinder EFC Model 1X2P collimated Nal detector. This small detector is one used in
uranium holdup experiments at ORNL and is an example of a detector used for field measurements
of holdup within the holdup measurement system, HMS. A schematic of the detector is shown in

Figure 3.1.
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Figure 3.1 A schematic detailing the 1x2" Nal detector used at ORNL.
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As can be seen, the detector is well shielded with lead except on the front face where the col-
limator aperture allows radiation into the detector from a limited extent of directions covering
the corresponding fraction of the unit sphere. Hence, the detector has approximately a 45 degree
in-axial-plane angle of vision from the center of its circular front. Contributions to the detector
response from any source of radiation far enough off of the axis of the cylindrical detector will be
significantly attenuated and radiation incident on the side or rear of the detector will not likely
contribute to the measured response spectrum (except for very high energy photons that are not suf-
ficiently attenuated by the detector’s lead collimator). The rest of the detector components are fairly
standard. It has a PMT, an aluminum sheath (container), etc., as shown in the detector schematic,
Fig. 3.1.

Overall, measurements were taken far away from the walls on a table with at most a aluminum
tee in the setup. Scattering off of the plastic table, walls, and floor were very unlikely since there is a
high probability for interaction of gamma-ray photons with high Z materials. The tee included a
small scattering possibility, but it was considered negligible. Therefore, the room geometry and the
aluminum tee were not simulated. Only the source, detector, and the air in between were simulated.

In the first set of experiments, a source was placed at a set distance from the detector center
(on-axis). The source was held in place on a ring stand, or taped to the front of the detector (for quick
counts). The source was typically a button calibration source with known activity and dimensions.
These measurements were performed for base validation, energy calibration of the detector, and
power law fitting for the DRE

The parameters of all of the calibration sources used for validation are listed in Table 3.1. Details
of the sources used for the energy calibration and the power law fit are not reported here, as these

measurements were only intended for determining detector properties.

Table 3.1 Dimensions and activities of calibration sources used for experimental measurements

Source | A.R. (cm) | Thick. (cm) | Act. (uCi) | Created | Measured | Act. Meas. (uCi)
Cs-137 0.25 0.318 5.01 9/28/2005 | 2/20/2014 4.13+0.62
Co-60 0.25 0.318 0.8516 3/1/2002 | 6/21/2013 0.1927 +0.029

Note: All calibration sources used in this work were created by Eckert and Ziegler, and the active source dimensions
(active radius, A.R., and thickness) used in the MCNP model were taken from the Type D disc model in the catalog.
Furthermore, according to the supplier "Sources are manufactured with contained activity (Act.) values of £15%

of the requested activity value unless otherwise noted in the catalog.” [27]

Note that only the active volume of these sources was simulated in MCNP and not the plastic
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case surrounding them, since attenuation was assumed to be negligible. The emission energies and

relative intensities of the gamma-rays of interest for each source used are tabulated in Table 3.2.

Table 3.2 Gamma ray energies and relative intensities of all sources measured were taken from
Brookhaven National Laboratory’s Nudat2.6 database. [28] Unlisted uncertainties were assumed to be

one in the last digit.

Source | Peak No. | Energy (keV) | Relative Intensity (%)
Am-241 1 59.5409(1) 35.9(4)
U-235 1 105.0(1) 2.00(3)°
U-235 2 109.0(1) 2.16(13)°
U-235 3 143.76(2) 10.96(14)
U-235 4 163.356(3) 5.08(6)
U-235 5 185.715(5) 57.0(6)
U-235 6 202.12(1) 1.080(23)
U-235 7 205.316(10) 5.02(6)
Ba-133 1 80.9979(11) 35.6(3)°
Ba-133 2 356.0129(7) 62.05(1)
Cs-137 1 661.657(3) 85.10(20)
Mn-54 1 834.848(3) 99.9760(10)
Na-22 1 1274.537(7) 99.941(14)
Co-60 1 1173.228(3) 99.85(3)
Co-60 2 1332.492(4) 99.9825(6)

=
Note: gamma-rays from the same source that were within 1 keV of each
other were averaged and their intensities summed together.

The next set of experiments focused on the source of interest (uranium-235 or U-235) and were
specifically conducted for the DRF validation exercise. Since it is very unlikely that a detector will be
directly pointed at a holdup material deposit when the deposit has an unknown location, strength,
and shape, off-axis detector spectra are of great interest in the holdup field. This is also necessary
for holdup configurations where the source is distributed and thus contributes to the response of a
stationary detector from broad angles of incidence. So, a source was affixed to an aluminum tee and
prepared specifically for accurate off-axis measurements.

The detector was placed on the center steel bar while the source was put on the crossbar held by
avice and a steel ring holder at a distance of 38 cm from the detector face (41 cm from the front face
of the detector crystal). The source was then moved laterally left and right of center, or the axially

aligned position, in 5 cm intervals up to 20 cm. Measurements ceased at 20 cm because the source
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started to become indistinguishable from background beyond that distance. For visual reference, a

photograph of the lateral off-axis experimental setup is shown in Figure 3.2.

Figure 3.2 Photograph of the HEU disc off-axis experiment 41 cm from the detector and 15 cm to the right
(x=+15cm).

The source was a highly enriched uranium (HEU) disc source of known activity, dimensions,

and enrichment. The dimensions of the U-235 source are given in Figure 3.3.
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Figure 3.3 Dimensions of the HEU disc as prescribed from ORNL. The disc is made of stainless steel (shell),
epoxy (adhesive), and HEU (4.76x0.07cm active source area).
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The source in the disc is composed of U; Og, uranium’s naturally occurring chemical form. The
uranium compound is set on polyethylene epoxy and encased in stainless steel. The activity of the
disc was 736 uy Ci on December 1, 2004. However, since uranium-235 has a very long half life (703.8
million years for U-235), the activity of the source at the time of the measurement was similar to

its initial activity. The individual uranium nuclides that comprise the disc source employed in our

experimental campaign are listed in Table 3.3.

Table 3.3 Enrichment of the uranium disc source

Nuclide | Weight %
U-234 1.016
U-235 93.162
U-236 0.400
U-238 5.421

C (natural) | 1.009E-3

The discis of a high enrichment of U-235. U-235 is a common target material for holdup problems
in the nuclear fuel production industry because holdup material deposits present a proliferation
risk and can become a criticality safety concern. The typical holdup measurement in this case will
seek to detect the naturally emitted low energy gamma radiation. Hence, the focus of the validation
experiments has been on the low energies of the detector spectrum where the highest intensity
(most probable) gamma rays of U-235 are emitted (140-190 keV). This also explains the choice of
the smaller Nal detector size, as high energy detection that would necessitate larger detectors to
improve detection efficiency is of lower interest in the holdup field.

The last set of experiments were also performed on the highly enriched uranium disc but with
a few modifications. First, one or two steel plates taped to the front of the Nal detector to provide
attenuation. Second, the lateral distance between detector and source was reduced from 38 cm to 8
cm (11 cm from the crystal), and finally only on-axis measurements were taken. These measurements
simulated the attenuation that would be provided by steel pipe and equipment walls that normally
stand between the detector and a holdup material deposit. The dimensions of the first steel plate
were 105.22mm x 157.75mm (+0.02m m) with a thickness of 0.86 & 0.04m m. The second plate was
101.62mm x 152.66mm (+0.02m m) and 0.90 & 0.02m m. For visual reference, a photograph of the
HEU attenuation experiment at 11 cm is shown in Figure 3.4.
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Figure 3.4 Photograph of the HEU disc attenuation experiment with two stainless steel plates attached to
the detector (11 cm from the source).

For simplicity, in the MCNP simulation the isotopic compositions of the stainless steel plates
were kept the same as the steel used to encase the detector and to encase the HEU source. The

weight percent of each elemental isotope used in the steel alloy is listed in Table 3.4.
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Table 3.4 Stainless steel alloy composition used in the MCNP simulations.

Nuclide | Weight %
Cr-50 0.800
Cr-52 16.2
Cr-53 0.200
Cr-54 0.400

Mn-55 2.00

Fe-54 4.20
Fe-56 64.8
Fe-57 1.50
Fe48 0.200
Ni-58 6.60
Ni-60 2.50

Ni-61 0.100
Ni-62 0.300
Ni-64 0.100

This composition of steel was taken directly from the MCNP model created by ORNL. The
original model is available upon request from the Safeguards & Security Technology Group at ORNL.

3.2 Monte Carlo Transport Models

Version five of the Monte Carlo (MC) code MCNP (Monte Carlo N-Partical Transport Code) was used
to calculate the incident gamma-ray photon flux on the 1x2 Nal detector crystal. MCNP is a radiation
transport code developed by Los Alamos National Laboratory (LANL) that simulates a large number
of random particle histories (particle tracks through a medium as well as collisions with its nuclei) in
a user specified geometric configuration according to specified material cross sections (taken from
the Evaluated Nuclear Data Files, ENDF). On the order of a few billion particle histories were run for
each flux calculation to keep the MC statistical errors smaller than the measurement uncertainties.

The computational geometry specified for MCNP was simplified from the actual experimental
geometric setups described in Sec. 3.1. Instead of including all details (i.e. objects) within the
room, only the detector and all of its components and the source were simulated within a sphere

of air. Only immediately adjacent objects like the table, the aluminum tee, and source holding

29



3.2. MONTE CARLO TRANSPORT MODELS CHAPTER 3. EXP SETUP AND COMP. MODEL

apparatuses would be likely to contribute in a small way to the collided fluence tally. There would
be no contribution to the uncollided fluence tally as at least one Compton scatter with one of these
objects would be required before the particle struck the detector. The detector collimator reduces
the likelihood of these events further by reducing the detector solid angle by which particles can
strike the detector crystal. So, the secondary geometry (table, tee, etc.) would only make a small
contribution to the Compton continuum portion of detector spectra and hence was excluded from
the MC models.

With the simplified geometry, an F4 (average fluence) tally was taken in the detector crystal cell
by MCNP. MCNP calculates the fluence in a manner very similar to the fluence definition given by
Equation 2.1, by summing the particle track lengths over the given cell volume for each discrete
energy bin as specified by the user. In our case, 512 equal and discrete energy bins were chosen to
match the energy range given by the DRE and to match the 512 channels observed in the measured

spectra. The average fluence tally over cell volume V was approximated discretely as follows,

N n;
3 1 |
Oy (E)~ wls! , 3.1
v(E) NVAE;; Vsl ] (3.1)

where n; is the number of times the ith particle enters V at energy E;. within energy bin k, sl.j is
that particle’s jth track length in V, and Wij is the particle’s weight when entering V for the jth time.
Also, N is the total number of histories simulated by MCNP, and AE is the width of the tally’s energy
bin centered at energy E. This relation is only an approximation of the average fluence, but if a large
number of particle histories pass through the cell volume, then it is a fairly accurate tally. [2]

However, as the MCNP fluence is based on the total number of particle histories, it can be
converted to a flux as follows

photons

P(E)=dy(E)- Ay [ ——— ] (3.2)

where A is the activity of the source in Becquerels (Bq) or decays/sec, and 7 is the yield in
particles/decay. So simply multiplying the F4 tally (fluence) by the source activity and yield converts
the tally to the approximate scalar flux effective over the volume of the detector crystal.

Again, the detector response can be predicted by multiplying the DRF by the incident flux.
However, Gardner’s DRF does not fully include a direct property of specific Nal detectors, absolute
efficiency, so it must be considered in the formal definition (Equation 3.3). [24] A differential pulse

height spectrum (detector response), dN/dH is defined as
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dN G _
J0- f R(H,E)S(E)dE ~ ;RG(H, E)P(E;)€aps(Ep). 3.3)

The formal definition from Knoll is listed first and is approximated by the more directly applicable
second definition. R(H,E) is the differential probability that a quanta of energy within dE about
E leads to a pulse with amplitude within dH about H (DRF). S(E)dE is the differential number of
incident radiation quanta with energy within dE about E. [9] R (H, E;) is Gardner’s DRE which is the
differential probability that a flux of energy E; leads to a pulse with amplitude within dH about H
(DRF), and €,,;,4(E;) is the absolute efficiency. ¢ (E;) is the flux. To fully determine a detector response
using Gardner’s model, a new quantity must be defined and calculated: absolute efficiency.

Detector efficiency in general determines the percentage of radiation particles detected to the
number emitted. There are two main classes of detector efficiency, absolute efficiency and intrinsic
efficiency. Knoll defines absolute efficiency as simply the ratio of the number of detector pulses
recorded to the number of particles with energy E emitted from the source. Absolute efficiency is
dependent mainly on detector properties (cross-sections) and the counting geometry (source to
detector position). Whereas the intrinsic efficiency is the ratio of the number of detector pulses
recorded to the number of radiation quanta incident on the detector. The intrinsic efficiency is
accounted for by the DRE however, the absolute efficiency is not. Therefore it must be approxi-
mated as the energy deposited along the average path length through the detector crystal in MCNP
simulation. [9]

In other words, the total absolute efficiency is the probability of particles incident on the detector
interacting with the detector crystal over all energies (thereby creating a pulse at energy E). This

probability is defined as

eibs(E)zpintemction = l_e_umt(E).sj(E) (3.4)

where u;,,(E — E’,Q2— ) is the Nal photon macroscopic cross section and probability that an
incident particle of energy E interacts per unit path length. s;(E) is the track length and an MCNP
program called ptrac was used to record a large number of possible particle track lengths. This
distribution was then averaged over all track lengths to produce an average absolute efficiency

€.ps(E) as shown in Equation 3.5.

N,
1 <O
Eans(B)= 7D €0, (E) (3.5)
t 3

N; is the total number of track lengths recorded by ptrac. Again, the absolute efficiency is
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multiplied by the DRF and the incident flux to produce a response spectrum (Equation 3.3). However,
since Gardner’s model typically underestimates the flat continuum under the response due to
electron physics concerning channeling or possibly Nal impurities the resulting computed response
must be normalized to the experimental response. [16] In our work, the normalization factors (the
ratio of the areas under each curve) necessary to pull up the computed response to the experimental
were found to be between two and eighteen. This is in good agreement with Gardner and Sood’s
results as they had experimental measurements that were up to around an order of magnitude

greater than the responses predicted by g03.
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Overall, the simulated detector responses predicted by Gardner’s model predicted the highest
intensity peak region of the experimental spectra fairly well, but had some difficulty in the continuum
and secondary peak regions. In the highest intensity peak region of the response, most of the
computed spectrum lay within two standard deviations of the experimental spectrum’s centroid.
The continuum discrepancies between the predicted and measured responses in the calibration
sources appear to stem from miscalibration of the electron range multiplier (Equation 2.4) for
the collimated 1x2" Nal detector. Gardner’s current model was validated only for larger bare Nal
detectors and not for collimated detectors and therefore some differences were expected. Whereas,
significant underestimation of the secondary peaks occurred in the highly enriched uranium (HEU)
disc spectra most likely due to outside crystal scattering with the detector collimator and other

components.

4.1 Cs-137 Measurement

The first measurement was of a Cs-137 source. The Cs-137 source measurement was taken at a
distance of 10 cm from the center of the detector face with the calibration source described by Table

3.1. The high source activity (4.13 uCi) allowed for for a precise measurement with less than one
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percent uncertainty in the peak region in terms of counts (according to Poisson counting statistics),
and it was counted for 4000 seconds. This source was used for validation and as one of the data
points for the power law fit but not for the final energy calibration. The resulting spectra computed
and measured are given in Figure 4.1a and compared with the computed response without the lead

collimator and aluminum sheath simulated in the MCNP flux calculation (Figure 4.1b).
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Figure 4.1 Measured and normalized computed responses for the Cs-137 calibration source at 10 cm
(normalized across bounds) with aluminum can (a) and without aluminum can and collimator (b).

It is apparent that the backscatter peak is overestimated and the peak underestimated. However,
the greatest difference lies in the area between Compton edge and the peak, which will henceforth
be referred to the valley of the response. At first this effect was thought to be just a product of
the model being unable to account for the collimator geometry. In Sood’s PhD thesis, a similar
problem was occurring in the valley region of the response for their Nal 3x3" detector. However, the
effect was reversed. For a bare Nal crystal simulation in MCNP for the flux calculation, the resulting
response underestimated the valley. Simulating the detector aluminum sheath or can corrected this
underestimation. [12]

In that manner, the same effect is observed here. Taking away the collimator and aluminum
sheath from the MCNP geometry resulted in a response with a lower valley. This means that the

collimator and can geometry were not the source of the shallow valley discrepancy.
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Another difference between this validation exercise and Gardner and Sood’s validation exercises,
was how the computed spectrum was normalized to the measured response. Gardner and Sood
chose to normalize to the peak channel only, whereas in this work, normalization to the area under
the section of interest bounded by the normalization bounds was chosen instead. The normal-
ization factor used to normalize the computed to the measured response spectrum is described
mathematically by Equation 4.1

Ac=> R,

np1
oy
An=> R,
Np1
Am
Nf=—, 4.1
1=, (4.1)

where R/ is the computed count rate, and R/" is the measured count rate at channel i. n;,; and
ny, are the normalization bounds. Normalization bounds were chosen on a case by case basis. In
this case the bounds were chosen to avoid bins artificially augmented by the rebinning process and
unnecessary noise after the full energy peaks. Rebinning was accomplished by assuming the count
rates within the old bins were uniformly distributed, and then collecting them into the new bins
according to the fractions of the old bins determined by the uniform pdf. All contribution from the
negative energy bins created from the energy calibration were lumped into the first two bins by the
rebinning algorithm. Therefore those two bins were not included in the normalization.

The main reason for the normalization according to sections was chosen to minimize the effects
of response error in parts of the spectrum. The other reason was to avoid choosing between multiple
peaks in a spectrum. However, in this case normalizing to the peak channel revealed the true source
of the valley problem as shown by the renormalized spectrum in Figure 4.2a and Gardner’s responses

resulting from various electron range multipliers: Figure 4.2b.
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Figure 4.2 (a) Measured and normalized computed responses for the Cs-137 calibration source at 10 cm
(normalized to the peak). (b) 3x3" Nal detector computed responses over a varying electron range multi-
plier compared with the measured response from the Heath benchmark.

Now, as can be seen, the whole response spectrum is overestimated to the left of the peak for
the figure on the left. A similar effect is observed by a spectrum with an electron range factor that
is too low in Gardner’s figure (right). [16] A range multiplier that is too high underestimates the
continuum and a valley, while the reverse is true for one that is too low. Since the size of the detector
and number of channels of the 1x2" ORNL detector is very different from Gardner’s detector it is not
surprising that the value of the electron range multiplier may no longer be optimal. Furthermore,
the psuedo-electron range multiplier (Equation 2.4) was fit for Gardner’s detector by trial and error.
For this reason, and the fact that the HEU spectrum of interest contains far less contribution from

Compton scatter, the correction of the factor is reserved for future work.

4.2 Co0-60 Measurement

The next measurement concerned the Co-60 source described in Table 3.1 taped directly to the
detector face. The low source activity (0.1927 uC1i) required 1600 seconds for a reasonable number of
counts (400 counts, 5% Poisson uncertainty) even on the detector face, so no further measurements

were taken with this source. However, this source was only used for the detector energy calibration
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and a simple baseline validation (shown in Figure 4.3a). The energy calibration and its parameter
uncertainties are discussed further in Section 5.2.

10 Co-60 Source on Detector Face

Cs-137 Source at 10 cm

T T
normalization bounds

T T
normalization bounds
measured response measured response
normalized computed response | normalized computed response
two sigma confidence interval two sigma confidence interval

10° }f

0%} 4 10°}
10 b 10t b

10° b

Count Rate (cps)
Count Rate (cps)

107 b

107 } b 107 }

L L L L L L | -3 s s s s s s -
0.2 0.4 0.6 0.8 1.0 1.2 1.4 10 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Energy (MeV) Energy (MeV)

(@ (b)

10°

Figure 4.3 (a) Measured and normalized computed responses for the Co-60 calibration source on the
detector face using normalization across a range of channels (a) and normalized to the highest intensity
peak (b).

As expected, the measured spectrum shows some significant fluctuation in the confidence
interval along the response due to the low number of counts (higher uncertainty). The normalized
computed response stays mostly well within the confidence interval of the measured response
except at the backscatter peak around 2 MeV and the peaks are slightly underestimated. The two
Compton edges and most of the continuum are predicted fairly well, however the backscatter peak
region around 0.2 MeV is overestimated and the full energy peaks are slightly underestimated.

The overestimation may appear to be less significant in this case due to wider confidence bounds
(from the lower fidelity of the measurement), but it is still apparent on closer inspection. The cause
is most likely the same as the Cs-137 case, miscalibration of the electron range fit in the g03 source
code. Normalization bounds were chosen for the same reasons as the Cs case.
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4.3 Axial HEU Disc Measurement Set

The first set of HEU disc measurements were performed in order to test the performance of the
DRF model for off-axis geometry. All measurements were carried out at a distance of 41 cm on-
axis (y direction) from the crystal (38 cm from the face) and in set increments of 5 cm in the x
direction. The central and first two positions used a 400 s background count, whereas the last two
positions (x=15,20 cm) used background count times equivalent to the measurement count times.
All background count times were chosen based on propagation of the net count uncertainty.

The HEU disc source at the central position (x=0 cm) was counted for four hundred seconds. The
normalized computed and measured responses are given by Figure 4.4. The HEU disc specifications
and composition can be found along with further details of the source geometry for the entire

measurement set in Section 3.1.
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Figure 4.4 Measured and normalized computed responses for the HEU disc at the central position.

The normalized computed spectrum approximated the measured spectrum fairly well (within
two standard deviations of the experimental response) for the main full energy peak at 186 keV and
its shoulder peak at 205 keV with only a slight overestimation, however the secondary peaks at 163
and 144 keV are underestimated to compensate through normalization. The HEU gamma radiation
energies are too low in this case to produce much of a Compton continuum, and any continuum

that was produced is obscured by secondary peaks. So, it follows that absorption from the collimator
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created a significant decrease in flux unaccounted for by the DRE The cross sections from Table 4.1
verify this line of thought by demonstrating an absorption cross section that is about 10 times larger

than the scattering cross section at 200 keV.

Table 4.1 Various photon cross sections (¢ m?/g) from 60 keV to 2 MeV. [25]

Energy (MeV) | Coh. Scattering | Inc. Scattering | Absorp. Total
6.000E-02 4.900E-01 9.734E-02 4.432E+00 | 5.020E+00
8.000E-02 3.078E-01 9.923E-02 2.012E4+00 | 2.419E+00
8.800E-02 2.632E-01 9.928E-02 1.547E+00 | 1.910E+00
8.800E-02 2.632E-01 9.928E-02 7.321E+00 | 7.684E+00
1.000E-01 2.128E-01 9.894E-02 5.237E+00 | 5.549E+00
1.500E-01 1.049E-01 9.484E-02 1.815E+00 | 2.015E+00
2.000E-01 6.260E-02 8.966E-02 8.464E-01 | 9.986E-01
3.000E-01 2.988E-02 8.036E-02 2.930E-01 | 4.032E-01
4.000E-01 1.746E-02 7.310E-02 1.417E-01 | 2.323E-01
5.000E-01 1.143E-02 6.734E-02 8.257E-02 | 1.613E-01
6.000E-01 8.060E-03 6.263E-02 5.406E-02 | 1.248E-01
8.000E-01 4.621E-03 5.537E-02 2.871E-02 | 8.870E-02
1.000E+00 2.991E-03 4.993E-02 1.810E-02 | 7.102E-02
1.022E+00 2.865E-03 4.944E-02 1.732E-02 | 6.962E-02
1.250E+00 1.930E-03 4.476E-02 1.168E-02 | 5.875E-02
1.500E+00 1.347E-03 4.075E-02 8.321E-03 | 5.222E-02
2.000E+00 7.626E-04 3.482E-02 5.034E-03 | 4.607E-02

In terms of mean free paths (mfp), the 3 cm of lead provided by the collimator is approximately
29 mfp in terms of absorption and only three mfp in terms of incoherent scattering. The collimator
is now optically thick in terms absorption but still thin in terms of scatter. While scattering will still
only reduce the flux of the highest full energy peak of the spectrum, it would add to the flux of the
lower energy peaks. This explains the overestimation of the high energy peak balanced with the
underestimation of the lower peak. The scattering also distorted the shape of the two convolved
peaks at 163 and 144 keV really only producing a peak at about 150 keV. Since simulation of the
low fidelity results with the peaks combined and averaged in position and intensity yielded better
results than the two simulated separately, they were kept together for all subsequent simulations.
The comparison of the low fidelity runs with the peaks separated and combined can be found in the
Appendix A.1.

The lowest energy peaks below the normalization bounds were originally thought to be a set of
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four very low intensity peaks. However, upon further investigation it was found that the backscatter
peaks from the three main full energy peaks were of the same energy. Using the Compton scattering
equation in terms of energy, it was calculated that the backscatter peaks from the lead shielding
would be centered at 114, 108, and 95 keV for the full energy peaks at 205, 186, and 150 keV, respec-
tively. Backscattering that occurs inside the detector crystal is accounted for by the DRE but that
which occurs in the lead shielding is not. Therefore, the backscatter peaks are acknowledged, but
excluded from the normalization region in order to avoid skewing the other validation regions.

It is worthy to note that two other factors could have also contributed to the underestimation
of the two secondary peaks besides scattering in the collimator. Scattering within the table and
aluminum tee that were not simulated in the MCNP fluence model, and gamma rays emitted by the
decay products of U-234, U235, and U-238 could also have made some contribution. It was assumed
that scattered photons from the table and tee would be negligible due to shielding provided by
the collimator. Gamma radiation from uranium daughter products, however, were not simulated
simply because there were too many low energy gamma rays with low relative yields (probability of
emission per decay).

The HEU disc at the first position: 5 cm off-axis, was counted for a total of five hundred seconds.
Measurements were taken in both the positive and negative x directions. The normalized computed

and measured responses of both measurements are shown by Figure 4.5.
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Figure 4.5 Measured and normalized computed responses for the HEU disc source at y=41 cm and (a) five
centimeters left of center x=-5 cm and (b) five centimeters right of center x=5 cm.

As expected, the entire count rate for both spectra have decreased slightly (about 25%) from

the central position due to attenuation with the collimator and increased distance from the source.

The lead backscatter peaks have also consolidated into a slightly different shape to accommodate a

new more favorable set of scattering angles. The computed response again overestimates the main

full energy peak and underestimates the secondary peaks due to the increased scatter from the

collimator. Finally, normalization bounds remained the same as the central case.

The second position was 10 cm off-axis, and the HEU disc source was counted for 750 seconds.
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The source at the third position (15 cm off-axis) was counted for 1600 seconds. The normalized

computed and measured repsonses for the positive and negative axis positions at x=10 cm and

x=15 cm are contained in Figure 4.6
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Figure 4.6 Measured and normalized computed responses for the HEU disc source at y=41 cm and (a) ten
centimeters left of center x=-10 cm, (b) ten centimeters right of center x=10 cm, (c) fifteen centimeters left
of center x=-15 cm, and (d) fifteen centimeters right of center x=15 cm.

The decreasing response trend continues for both positions (10,15 cm) with increased atten-

uation from the collimator and increased distance. At 15 cm, the secondary peak and the lead
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backscatter peaks become nearly indistinguishable from background radiation. The reason for this
high background is that the experiment was designed to ensure only the visibility of the main 186
keV peak. Even the least squares fit for the linear shifting process could not fit a Gaussian peak to the
150 keV peak for the x=-15 cm position in Figure 4.8c. So, only a one peak based shift was performed
on this spectrum. Normalization bounds remained the same as previous cases for simplicity.

The final position (20 cm off-axis) was most influenced by background and required a long count
time in order to overcome it. The HEU disc at 20 cm was counted for 4800 seconds. The normalized

computed and measured responses are shown by Figure 4.7.
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Figure 4.7 Measured and normalized computed responses for the HEU disc source at y=41 cm and (a)
twenty centimeters left of center x=-20 cm and (b) twenty centimeters right of center x=20 cm.

The count rate for this position was the lowest and most attenuated. Again, in order to focus on

the main peak and maintain reasonable count times, only the main peak at 186 keV was resolved

from background. Furthermore, the normalization was narrowed to only contain the main peak

range. The normalized simulated response approximates peak behavior quite easily in spite of
collimation and geometry when isolated from the rest of the spectrum.
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4.4 HEU Disc Attenuation Measurement Set

The second set of HEU disc measurements were done in the interest of testing the DRF model’s
simulation of purely attenuated responses. Each measurement was performed centered on-axis at a
distance of 11 cm from the crystal (only 8 cm from the face). The first measurement was counted
without any attenuators. The second and third cases involved taping one and two stainless steel
plates, respectively, to the face of the detector. The count time was kept constant at 300 s for all
three measurements. The normalized computed and measured responses for all three cases are

contained in Figure 4.8
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Figure 4.8 Measured and normalized computed responses for the HEU disc source with (a) no, (b) one,
and (c) two stainless steel sheets taped to the detector face.

The same effects as observed before for the central position at 41 cm is observed for the unat-
tenuated response: imbalance between the two full energy peaks and no prediction of the lead
backscatter peak. However, the count rate is higher due to the closer proximity of the source. Nat-
urally, the normalization bounds were kept the same as the inner axial HEU measurements. As
stainless steel sheets are added to the face of the detector, a decrease in count rate across the entire
spectrum is observed. The effect is very similar to that of the off-axis cases, except the background

shape does not change since the angle of incident radiation is constant.
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CHAPTER

5

UNCERTAINTY QUANTIFICATION

The other major goal is to quantify the uncertainties associated with the simulated responses that
were used to validate the 1x2" Nal ORNL field detector. Validation reveals the accuracy of the model
whereas uncertainty yields the expected precision of the simulated responses providing a level
of confidence in the results. Each step in calculating the detector responses for each case has an
associated uncertainty that has been calculated and compared to the experimental uncertainty
where applicable.

Uncertainties that were easily reducible (e.g. MCNP uncertainties are based on the number of
histories run), were always reduced below the peak channel uncertainty for each measurement case.
Fitting uncertainties were based on the number of data points and the data uncertainty and therefore
constrained to the quality of measurements performed. Even so, most of the fixed uncertainties
tended to be under the respective measurement’s experimental uncertainty.

5.1 Monte Carlo Based Uncertainties

The first quantity required to calculate a simulated response is the MCNP fluence calculated by
particle track length tallies in MCNP. The fluence tally was divided into small energy bins according

to the energy structure of the DRF calculated by g03. MCNP calculates the relative uncertainty of
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each bin based on the number of particle track lengths that fall into that bin. Therefore, the number
of total tallies were chosen in order to make the energy bin with the highest standard deviation
have the same uncertainty as the lowest experimental uncertainty for each measurement excluding
the Am-241 seed peak region. The number of histories required was then easily predicted, since
again Monte Carlo standard deviation is equal to the inverse square root of the number of particle
histories. In all cases, excluding Co-60, the number of histories required was on the order of billions.
Similarly, in the Cs-137, Co-60, and HEU attenuation cases the highest computational uncertainties
above 80 keV were ensured to be below the lowest uncertainty of the experimental results.

In certain cases of the HEU disc measurements at forty one centimeters, meeting the lowest
experimental uncertainty for every tally energy bin was difficult to do in a reasonable amount of
computational time. Certain MCNP modeling measures were taken to compensate and reduce
computation times. First, the lowest energy bins below 80 keV were excluded for two reasons. These
bins had the highest computational uncertainty, and they were overshadowed by leftover noise
from the background subtraction of the Am-241 seed peak in the measured spectrum anyway.

The other change involved simply reducing the source definition from an isotropic source to
only producing particle histories within the solid angle calculated to actually strike the detector
whole, not just the face. All particles were then weighted using a form of importance sampling called
forcing to prevent biasing the fluence tally, where the alternate pdf was uniform over the reduced
angle and the original pdf was uniform in all directions. The modified pdf (f(x)) and the weighting

factor (w) can be derived from Equations 5.1 and 5.2 respectively.

f(x)

f(x):mfor Xmin < X1 <X < Xp < Xpmaxs (5.1)
[ fx)dx

w=wy—5——, (5.2)
S fodx

where w is the forced weight of the particle and wj is the original weight of the particle. f(x)
is the original pdf, and x; and x, are the new bounds to be imposed on the pdf in order to only
sample the important region contained by them. [26] In our work, the initial source distribution
direction was modified from being isotropic in all directions to being contained within the angle
cosine relative to a directional vector (#) aligned with the center of the detector face but still isotropic
in the other directions. A diagram of the detector to source geometry is shown for reference in Figure
5.1.
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Figure 5.1 Diagram of the detector to source geometry and the solid angle chosen for the initial source
distribution forcing pdf.

If u is the cosine of angle € (chosen to include the whole detector surface area), and the original
pdfis f(x)= du/2. The solid angle bounds are set to x; = u. and x, = 1 for a narrower forward

direction. The modified pdf becomes

du
. - d
f= 120,“:1_‘;, (5.3)
f 2 ¢

c

which is sampled from instead of the full isotropic pdf. The corresponding weight can be derived

ld‘u
— ICT_ I_AU‘C
w=uy ld‘u_wo 2 ’
a7

as

(5.4)

which is multiplied by the original weight of each particle emitted from the source. This change
reduced the variance significantly allowing a more reasonable amount of particles to be run for the
x =%15 cm and x ==+20 cm cases.

Since the table and room geometry are not simulated in the MCNP model anyway, it is a small
approximation assuming that off direction photons would likely escape the system of interest.

Rather than show all of the bin uncertainties for each case, the case with the highest uncertainty
(HEU disc at x=41 cm, y=-20 cm) excluding the Co-60 measurement will be given as an example.

The fluence F4 tally is plotted with its uncertainty bounds in Figure 5.2.
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Figure 5.2 MCNP computed fluence and two sigma confidence interval

The bounds are fairly narrow beyond 80 keV. Each spike in the fluence corresponds to an incident
gamma ray energy from the HEU disc starting from 105 keV and ending at 205 keV. The highest
relative standard deviation greater than 80 keV was 2.44% at 195 keV. This was well below the lowest
relative standard deviation of the HEU disc measurements at 41 cm which was 2.72%. As can be
seen, the confidence bound between the 186 keV peak and the maximum energy peak at 205 keV is
wider than anywhere else above 80 keV. Even the bins in under 80 keV did not exceed 5% relative
standard deviations.

The DREF itself contains a Monte Carlo calculation that fully calculates the probabilities of a
count in each channel based on contributions from all other channels using the fit parameters. Once
again, the number of particle histories controls the relative uncertainty of the DRE and the same
threshold of the lowest experimental uncertainty for each case was selected for the highest DRF
channel uncertainty. The order of particles required was much less than that of the flux calculations
and only on the order of hundreds of thousands for all DRF Monte Carlo calculations.

Again, it is not feasible to show every uncertainty for each measurement, so only the highest
uncertainty case (excluding Co-60) will be shown. As expected, this case would be the HEU disc at
forty one centimeters for the off-axis experiments. Furthermore, six DRFs (one for each incident
photon energy) are summed together to produce the total DRE so the peak DRF with the highest
uncertainty was chosen (105 keV peak). Because g03 did not have a second axis distance variable,
only one total DRF was used for the off-axis HEU disc experiments. Now, since the full DRF depends
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on two variables and would produce a three dimensional surface plot it will be easier to display the

uncertainty bounded along the peak channel densities, as displayed in Figure 5.3.
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Figure 5.3 HEU disc at 41 cm with DRF densities for the 105 keV peak at channel 33 and the two sigma
confidence interval

The highest probability density channel contributions for channel 33 are the immediate channels
above that channel as expected from the spread of Gaussian uncertainty. However, the peak of the
densities is actually about five to six channels over channel 33 which might explain the need to shift
the computed spectra about the same number of channels. Channels above the spread have no
contribution (density=zero), and the channels below are fairly constant. When the entire DRF is
multiplied by the flux, the entire row of densities for each channel is multiplied by the flux vector and
summed, so naturally the uncertainty is constant for each channel. The relative standard deviation
for this channel was 0.420% and well under the 2.72% experimental uncertainty. Each channel row
in the DRF possesses a similar density curve, so the highest flux channel will produce the highest
response automatically. The highest relative standard deviation of all the DRF channels was for the
last channel (512) and was only 1.80%.

The total absolute efficiency calculation was carried out through calculation with an XCOM
Nal cross section and particle track lengths through the crystal volume in MCNP as described by
Equation 3.5. The number of histories were increased accordingly until the proper number of path
lengths were acquired to reduce the highest relative standard deviation to approximately that of
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the lowest experimental uncertainties. The highest uncertainty case is shown for the HEU disc at
forty one centimeters. The resulting density curve with a two sigma confidence interval is shown in
Figure 5.4.

Intrinsic Efficiency for HEU disc at x=-20 cm, y=41 cm
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Figure 5.4 Absolute efficiency of the HEU disc at 41 and two standard deviation confidence interval

This curve is essentially the probability of an interaction of energy E, occurring within the crystal.
So, low energies are almost certain to be absorbed and higher energies are more likely to escape.
The relative uncertainty is fairly small at low energies, but grows as energy increases. The relative
standard deviation was 2.78% at the highest energy which was close to the lowest experimental
relative uncertainty of 2.72%. At 0.2 MeV or less where the majority of the HEU spectrum lies the
relative uncertainty is much lower and well below 1%. The higher uncertainty at higher energies is
purely a factor of lack of information or no particle tracks at those energies.

5.2 Parameter Uncertainties

The first set of parameters are associated with both the measured and computed results: the energy
calibration. The energy calibration is simply a polynomial that converts channel data to energy
data based off of the nonlinear scintillation behavior of Nal detectors. This is a necessary piece for
verifying physical measurements and a required conversion for the empirical power law of the DRE
The energy polynomial is given by Equation 5.5
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E(keV)=a,x*+a,x+ay, (5.5)

where x is the channel, E is energy in keV, and «, a;, and @, are the polynomial parameters.
The energy calibration parameters were found by a least squares fit of measurements of known
sources with known energies at the gain settings discussed in Section 3.1. Three sources were used
to determine the energy calibration polynomial: the Am-241 seed source, and the Cs-137 and Co-60
sources detailed in Table 3.1. Each channel mean for the energy calibration was found by taking
the peak section of the measured responses for each source and fitting them according to a simple
Gaussian plus linear background empirical model. The linear Gaussian model is given by Equation
5.6

G. = B -i5H
y v27'CO'T

e 2
where x is the detector channel and G, is the resulting point in the Gaussian curve. B is the

"L ay(x—3)+ ap. (5.6)

normalization constant, and o is the standard deviation of the Gaussian. Finally,  is the mean of
the Gaussian, and a, and a; form the linear background term. The Gaussian channel means and
parameter standard deviations are shown in Table 5.1.

Table 5.1 Channel means and associated standard deviations (STD) of the Gaussian fits for the energy
calibration.

Source | Pk.No. | Mean Chan., ¥ | STD,c* | Rel. STD, 0%, (%) | Red. Chi-Square, y2
Am-241 1 20.92 2.767E-3 1.323E-2 0.8973
Cs-137 1 195.79 1.804E-2 9.212E-3 2.569

Co-60 1 341.64 0.2214 6.479E-2 1.059

Co-60 2 386.38 0.1761 4.557E-2 0.7260

Each least squares fit was performed by a nonlinear least squares algorithm in MATLAB called
Isgqnonlin. The standard deviation was found through the simple Frequentist methods described
in Section 2.5 from the parameter covariance matrix. Classical Frequentist methods were used in
lieu of Bayesian for all Gaussian peak fitting except for the power law measurements because there
were usually a larger number of points in each peak. Also, Frequentist calculations require less
calculation time than DRAM (about 100 times less). The algorithm had no trouble fitting these
peaks, as each relative standard deviation of the mean channel is well under 1%. Co-60, as expected,

had the highest uncertainty because it had the lowest source strength and a low count time (low
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fidelity measurement). However, all peaks were well approximated by the model producing reduced
chi-squares well under ten.
A similar least squares fit was performed by Isqnonlin using the energy polynomial (Equation

5.5). The resulting parameter means and standard deviations are tabulated in Table 5.2.

Table 5.2 Energy calibration parameter means and standard deviations.

Parameter Mean STD.,o | Rel.STD, 0,; (%) )(3
a, 2.104E-4 | 4.352E-5 20.68 530.4
a 3.395 1.762E-2 0.5188
ay -11.07 1.382 12.48

Since there were a low number of data points for the energy calibration fit, the Bayesian code
DRAM was used to calculate the standard deviations and optimize the parameter means from the
least squares starting values. Nal is fairly linear in terms of scintillation to energy deposited ratio
for low energies, so it is no surprise that the second order term is very small. Unfortunately, this
also means that it has a larger relative standard deviation. The y-intercept term (a) has a little more
effect but also has more uncertainty than the first order term (which holds the lowest uncertainty at
about half of a percent).

In order to check DRAM for a possible error in the fit and uncertainty calculations, a standard
linear regression fit with Frequentist calculations was calculated for comparison. A slightly better
reduced chi-squared value of 430.5 was found, and the parameter values were modulated within
1% of the Bayesian values. The uncertainties were also halved. So, in this case, it may actually have
been slightly better to use the standard linear regression, however, the improvement in the results
would have been marginal.

Overall, the calibration still performed well in spite of the poor reduced chi-squared value, as
each channel mean converted to energy was found to be within two keV (1% relative error) from its
true value for all peaks that were not convolved with another peak (e.g. the 150 keV convolved HEU
peak). This is acceptable because the same energy calibration is used for both computed spectra
and measured spectra. So, any additional error would offset both spectra by the same amount.

The next set of parameters involves the power law of the DRF model itself. g03 not only uses
Monte Carlo simulation to calculate DRFs, but requires an empirically fit power law based on
Gaussian spread data from the detector of interest. The power law is the very same described in the

DRF model section of the Literature review by Equation 2.3.
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Again, linear Gaussian (Equation 5.6) least squares fits of several sources were required to obtain
mean Gaussian standard deviations for the power law. Five sources were used: Am-241 (seed source),
Ba-133, Cs-137 (same as in Table 3.1), Mn-54, and Na-22. Since Ba-133 has two full energy peaks, a
total of six full energy peaks were fit.

Source geometry and activity were not required for the power law fit. However, each peak was
counted until 10,000 counts were registered in the peak channel to keep the experimental uncer-
tainty close to one percent in the peak region. Some weak sources needed multiple measurements
added together to meet 10,000 counts due to the MCA timer limit. Furthermore, there should be
no added uncertainty in the measurements because the spectra were checked for gain drift and
perfomred immediately after one another. The mean Gaussian standard deviations (o r(E;)) and

their uncertainties are compiled in Table 5.3.

Table 5.3 Channel means and associated standard deviations of the Gaussian fits for the power law.

Source | Pk.No. | Energy (MeV) | Gauss. STD, o7 | STD, 0“7 | Rel. STD, UfeT ; (%) 22
Am-241 1 5.954E-2 4.454E-3 2.128E-5 0.4778 0.9191
Ba-133 1 8.100E-2 4.879E-3 4.478E-4 9.177 56.51
Ba-133 2 3.560E-1 1.499E-2 2.106E-4 1.405 13.09
Cs-137 1 6.617E-1 2.137E-2 7.599E-5 0.3556 2.295
Mn-54 1 8.348E-1 2.468E-2 8.469E-5 0.3432 1.011

Na-22 1 1.275 3.207E-2 8.001E-5 0.2495 1.611

Some of the peaks involved in the Gaussian fits for the power law spread data were sparse in data
points, so DRAM was used to optimize the Gaussian spread parameter means (o 1) and determine
their respective standard deviations (o?7). The first Ba-133 peak suffered quite a bit of background
interference from convolution with the Am-241 peak, and had fewer points to fit the linear Gaussian
curve to resulting in the highest uncertainty and a reduced chi-square well over ten ( )(f g <101is
considered a good fit). The first peak’s data was almost thrown out for its poor Gaussian fit. The
second Ba-133 peak was also over 1% in relative uncertainty and had a reduced chi-square over ten
(to a much lesser extent than the first). This was probably due to some interference with a third
lower intensity peak at 300 keV obscuring the left tail of the Gaussian.

As a follow up, examining the linear correlation coefficients of a model can reveal weak model
parameters. If the correlation coefficients of a parameter are all under about 0.2, then that parameter
shares no linear relationship to any of the other parameters. Sometimes, removing such parameters
from the model can improve the fit. An example of this model will be provided using the worst fit
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case to check for model weaknesses. The linear correlation coefficient matrix for the first Ba-133
peak (81 keV) is listed as Table 5.4.

Table 5.4 Linear correlation coefficients for the 81 keV Ba-133 linear Gaussian model fit.

Parameter or X B ay a
or 1 -0.9594 | 0.9901 | -0.9838 | 0.9737
X -0.9594 1 -0.9727 | 0.9664 | -0.9801
B 0.9901 | -0.9727 1 -0.9978 | 0.9922
ag -0.9838 | 0.9664 | -0.9978 1 -0.9936
a 0.9737 | -0.9801 | 0.9922 | -0.9936 1

All of the coefficients are very highly correlated (>0.9), so there are no weak parameters. This
does not mean that the model cannot be improved, just no terms should be removed. Maybe a few
terms could be added to account for the nonlinear tail of the 60 keV Am-241 seed peak, however, a
more practical alternative was found by weighting the power law fit by the x-data uncertainties at
each point.

This alternative was developed in response to the higher uncertainty in the Ba-133 peaks and
the distrust in the Am-241 seed peak due to lack of exact knowledge of the seed’s position relative
to the center of the crystal. Originally, only three sources were used to calibrate the DRF power
law, but results showed some error in the peak widths of some of the validation measurements.
To counter this issue, the power law fit was thought to be improved with extra measurements at
energies between the three original points. However, rather than throw out less than ideal data
points for the power law, the least squares fit was simply adjusted to weight each data point by its
uncertainty. Instead of purely minimizing the sum of squares (classical least squares), the weighted

sum of squares (Equation 5.7) was minimized.

"N — f(x;, p;
WSS, :E(#)Z (5.7)
Above, n is the total number of data points. T; is the measured result at data point i, and f(x;, p;)
is the value of the function being fit to the data at i. p; are the parameters, and o (x;) is the standard
deviation of Y; used as a weight. In this case the function fit was the power law, Equation 2.3, and T
was simply o 1 (E).
The rest of the least squares and uncertainty calculations remained the same. The resulting

parameter means and standard deviations of the weighted power law fit are in Table 5.5.
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Table 5.5 Power law parameter means and standard deviations.

Parameter Mean Standard Deviation, o | Relative STD, o ,,; (%) )(5
a 0.027608 1.684E-4 0.6100 8.500E-6
b 0.644237 5.719E-3 0.8877

There were several data points for the power law, and it was uncertain if the weighted sum of
squares would behave well with the Bayesian code. So, the classical Frequentist values were used
in the DRF calculations for expedience. The Bayesian code was tested later and gave comparable
results which are given in Appendix A.2. The parameter values are on the order of Peplow and Heath’s
power law coefficients, and the relative standard deviations are under 1%. The power law is a bit
overfit, but that is somewhat expected as several extra measurements were taken when the three
point fit proved insufficient.

The final process requiring uncertainty quantification is the linear energy shift required to
allign the computed and measured spectra. g03 contains a small bug that tends to offset the entire
spectrum by several channels to the right. A program called gshift (courtesy of Gardner’s group)
corrects this issue by linearly interpolating between the channels and shifting the pulse height

spectrum to the desired channels according to Equation 5.8

xchan:A'Ep"‘B; (5.8)
Ep = E .f(E):

where x.j,, is the channel number, and A is a normalization constant. B is the number of
background channels, and E,, is the energy of the original pulse-height spectrum. Finally, E is the
true energy of the gamma-ray (or desired energy to shift the peak to), and f(E) is the functional
relationship of the ratio: Ep/E. A and B are adjusted accordingly to shift the peak(s) to the desired
location, while f(E) is chosen by the user. Either f(E) is based off of the natural Nal nonlinearity (for
two or more peaks), or directly proportional (for one peak).

In order to determine the linear shift required, the mean peak channels of both the measured
and computed spectra had to be found. The means were found in the same manner as those for the
energy calibration fit, by fitting the spectral peaks to the linear Gaussian model (Equation 5.6). The
Gaussian peak channel means and the associated uncertainties for the computed spectra are given
by Table 5.6 and those of the measured spectra by Table 5.7.
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Table 5.6 Computed spectrum channel means and associated standard deviations of the Gaussian fits for

the energy energy shift.
Source | Pk.No. | Mean Chan., X | Stand. Dev., 0* | Rel. STD, 0¥, (%) x
Cs-137 1 204.67 9.799E-3 4.788E-3 1.528E-4
Co-60 1 354.68 1.310E-2 3.692E-3 3.867E-6
Co-60 2 397.71 7.363E-3 1.851E-3 1.985E-6
HEU Rad.
Center 1 52.22 1.610E-2 3.084E-2 3.257E-3
Center 2 64.51 1.093E-2 1.695E-2 0.2371
L1 1 52.22 1.596E-2 3.056E-2 1.586E-3
L1 2 64.51 1.072E-2 1.661E-2 0.1116
L2 1 52.23 1.527E-2 2.924E-2 4.388E-4
L2 2 64.51 1.069E-2 1.656E-2 3.294E-2
L3 1 52.24 1.442E-2 2.760E-2 1.318E-4
L3 2 64.51 1.090E-2 1.689E-2 1.127E-2
L4 1 52.26 1.272E-2 2.433E-2 3.262E-5
L4 2 64.52 1.174E-2 1.819E-2 4.119E-3
R1 1 52.22 1.592E-2 3.049E-2 1.576E-3
R1 2 64.51 1.073E-2 1.663E-2 0.1122
R2 1 52.23 1.523E-2 2.916E-2 4.344E-4
R2 2 64.52 1.073E-2 1.663E-2 3.309E-2
R3 1 52.24 1.450E-2 2.775E-2 1.318E-4
R3 2 64.52 1.095E-2 1.698E-2 1.141E-2
R4 1 52.25 1.282E-2 2.453E-2 3.303E-5
R4 2 64.52 1.156E-2 1.791E-2 3.971E-3
HEU atten.
0 sheets 1 52.15 2.380E-2 4.564E-2 2.151E-2
0 sheets 2 64.46 3.873E-3 6.008E-3 7.474E-2
1 sheet 1 52.13 2.600E-2 4.987E-2 2.249E-2
1 sheet 2 64.45 3.312E-3 5.139E-3 4.582E-2
2 sheets 1 52.12 2.818E-2 5.407E-2 2.286E-2
2 sheets 2 64.44 2.891E-3 4.487E-3 2.658E-2
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Table 5.7 Experimental net spectrum channel means and associated standard deviations of the Gaussian

fits for the energy shift.
Source | Pk.No. | Mean Chan., X | Stand. Dev., 0* | Rel. STD, 0¥, (%) x
Cs-137 1 195.79 1.804E-2 9.212E-3 2.569
Co-60 1 341.64 0.2214 6.479E-2 1.059
Co-60 2 386.38 0.1761 4.557E-2 0.7260
HEU Rad.
Center 1 46.90 0.8512 1.815 0.5671
Center 2 58.30 3.464E-2 5.942E-2 8.139E-2
L1 1 45.84 0.1005 0.2192 6.329E-2
L1 2 58.54 0.1584 0.2706 0.9686
L2 1 46.2 0.4500 0.9740 1.626
L2 2 58.55 0.2289 0.3910 1.060
L3 1 X X X X
L3 2 58.51 0.1789 0.3057 0.8369
L4 1 X X X X
L4 2 58.23 0.1407 0.2416 1.837
R1 1 45.94 0.1990 0.4332 0.8888
R1 2 58.34 0.1473 0.2525 1.168
R2 1 46.02 0.3772 0.8197 0.8361
R2 2 58.35 0.1200 0.2057 0.5307
R3 1 46.25 0.4760 1.029 0.9318
R3 2 58.20 0.2007 0.3449 2.701
R4 1 X X X X
R4 2 58.54 0.2326 0.3973 1.716
HEU atten.
0 sheets 1 46.02 0.2425 0.5269 3.488
0 sheets 2 58.37 6.708E-2 0.1149 1.298
1 sheet 1 46.12 0.3239 0.7023 4.015
1 sheet 2 58.32 7.000E-2 0.1200 1.248
2 sheets 1 45.99 0.3881 0.8438 5.661
2 sheets 2 58.33 5.568E-2 9.545E-2 1.104

All of the computational channel relative standard deviations were well under 1% (lowest Poisson

uncertainty estimated from highest peak channels), but not all of the net (background subtracted)

experimental ones were. However, the experimental channel uncertainties that were over 1% oc-

curred only in the lower intensity 150 keV peak of forty one centimeter HEU disc measurements.

Furthermore, those uncertainties were expected to be higher as the lowest peak channel poisson

uncertainty of the forty one centimeter HEU measurements was 2.72%. Some of the reduced chi-
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square values showed some overfitting (perhaps the linear background was unnecessary for the
computed results), but none of the values were over ten.

All of the computational peak fits naturally had much lower uncertainties then the experimental
peak fits. Some of the 150 keV experimental peaks of the far off-axis HEU disc measurements were
not well developed, and could not be fit. In these cases, the shifting program employed the single
peak shift algorithm (Equation reference if available here) instead using only the main 186 keV peak

channel means to shift the computed spectrum in alignment with the measured.
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6

CONCLUSION AND FUTURE WORK

The goal of this work was to validate and quantify the uncertainty of Gardner’s DRF model for several
source types and geometric configurations of a 1x2" Nal detector. How these goals were met has
already been detailed in the body of this thesis, but the implications of the results of this work and
extensions to future work will be discussed in this section.

6.1 Conclusion

Validation of calibration sources The model aligned within two standard deviations of the measured
spectrum of the full energy peaks of the Co-60 and Cs-137 button source spectra, but significantly
overestimated the Compton continuum by about 45-60%. At first this discrepancy was thought to
be simply an effect of the collimator being unaccounted for by the DRF model, but this hypothesis
proved to be incorrect. More light was shed on the discrepancy when a peak normalization of the
spectrum instead of the sectional normalization was performed in order to compare spectra with a
previous one from Gardner’s validation work.

Under peak normalization, the computed spectrum nearly matched with the peak of the mea-
sured response, but overestimated the rest of the spectrum. This effect was very similar to one of

Gardner’s spectra in which the electron range multiplier (Equation 2.4) was set too low. The electron
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range multiplier is a semi-empirical model of the electron range that was fit by trial and error. Further
details of the fit were not given.

Validation of HEU disc The HEU validation campaigns consisted of two sets of experiments:
one concerning x-axis off-sets of the source from the origin at a y-axis distance of 41 cm, and another
one involving attenuation using steel plates for the disc centered on the x-axis at a distance of 11
cm. Both campaigns showed predictable physics effects in terms of backscatter peak distortion
and attenuation for each type of geometrical configuration change, but a markedly different effect
occurred instead of the continuum overestimation witnessed in the calibration source validation.

Since the full energy peak of U-235 is too low for any sizable Compton scatter losses from the
detector crystal, there is no visible Compton continuum in the HEU spectra. Without a continuum,
there are only four main peaks observed in the measured spectrum: the main full energy peak
(186 keV), the shoulder peak (205 keV), the convolved peak (150 keV), and a few backscatter peaks
(around 100 keV). The model reproduced the main peak and its shoulder peak well, again within
two standard deviations of the measured count rate, but underestimated the convolved peak and
did not reproduce the backscatter peak. The backscatter peak is an artifact of the lead collimator
around the detector. This collimator is not accounted for by the DRF model because the model
currently only reproduces the effects of scattering within the detector crystal. It is also possible that
not accounting for the local geometry of the table and aluminum tee and the daughter product
decay photons of the uranium may also have contributed to the secondary peak underestimation.

Uncertainty quantification Finally, uncertainty quantification of the model was conducted
on every calculated quantity from the flux calculation by MCNP to the Gaussian peak fits for the
spectral shifting program. Where the uncertainty was controllable by the number of particle histories
chosen in Monte Carlo simulations, it was reduced below the lowest measured uncertainty. Where
it was constrained to the accuracy of the model for least squares fitting, it was compared to the
experimental uncertainty and the reduced chi-square test was performed to check for goodness of
fit.

Only two poor fits were observed, out of a total of sixty examined in this work, (in terms of
parameter variance and chi-square): the energy calibration and the Ba-133 Gaussian peak fits used
for the power law fit. The first was compared with other data points to verify a working accuracy, since
the measurement of further known sources was impractical. The largest error between the calculated
energy of a peak and its known value was approximately one percent for any non-convolved full
energy peak. Because the energy calibration is applied to both the measured and computed spectrum
(not affecting any differences between the spectra), it was deemed acceptable.

The poor Ba-133 peak fits were largely caused by the peak convolutions with other peaks. The
fit was necessary to obtain the peak standard deviation for the power law fit. Rather than discard
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the Ba-133 points, the problem was resolved by weighting the power law fit by the uncertainty in
the Gaussian peak width data points using a weighted least squares technique (Equation 5.7). All
other parameter uncertainties fell well under the lowest experimental uncertainty and passed the
chi-square test, hence they are considered reliable for use in future work.

6.2 Future Work

There are many parameters that could affect the shape of the normalized computed responses
produced by the DRE In order to narrow down the parameters that contribute most to the secondary
peaks and the Compton continuum of the spectrum, a parameterization study could be performed.
Parameters such as the electron range multiplier, collimator thickness and density, source position
and peak intensity, and input cross-sections would be incrementally changed to test the resulting
sensitivity of the normalized computed response. The most sensitive parameters could then be
prioritized for further study.

The electron range multiplier This factor was originally said to have been fit by trial and error.
Details of experimental data used and how it was fit have not yet been found. Further investigation
could be helpful for tuning the factor for new detector configurations. However, it is possible that the
parameters were not fit but guessed until a favorable result was found. If so, then it is clear that future
experiments should be performed not only to determine the electron range of the 1x2" detector in
order to better fit this equation in the g03 source code, but to verify the original parameter choices
for Gardner’s detectors. A better fit could potentially correct the continuum overestimation problem
observed in the calibration validation work reported in this thesis.

Outside detector crystal scattering g03 could eventually be modified to account for outside
detector crystal scattering. Doing so would be highly valuable for a variety of reasons. For one
thing, it might allow distinguishing of detector geometry from attenuation by the distortion versus
decreased amplitude of the backscatter peak. Being able to do this would be very helpful in inverse
problems focusing on unknown radiation source characterization. Some members of Gardner’s
research group are already addressing this problem.

Verify Assumptions Several assumptions were made throughout this work, such as modeling
the detector PMT and the electronic housing as void, only modeling the photons emitted directly by
U-235, and not using the table and aluminum tee in the MCNP model. Further work could be done
to check the validity of these assumptions. For example, the detector PMT could be modeled as a
homogeneous mixture of its constituent components to better model scattering within it. Simulation
of the decay products of all of the uranium isotopes and the local geometry (table and tee) could

improve the HEU computed response spectrum in the secondary peak regions.
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APPENDIX

A

ALTERNATIVE METHODS AND MODELS

This appendix contains a couple of alternative methods for parts of the validation and uncertainty
quantification work, as well as an alternative model for the simulation of detector responses. The
alternatives are compared with the chosen primary methods, and then the reasoning behind the

method chosen is discussed briefly.

A.1 HEU Disc Response: Separate Versus Combined Peaks

At first, the number of full energy peaks chosen to be entered into g03 for simulation were only
those that were over 1% in relative intensity. Seven peaks met this criteria, and so the seven peaks
were matched with their relative channel locations and entered into g03. The resulting spectrum
did not approximate the large lower intensity peak next to the main peak at 186 keV very well in
early simulations. This peak was the result of the interaction between three full energy peaks: one at
144, 163, and the 186 keV peak.

It was thought that combining the two lower energy and intensity peaks may improve the result.
So, their energies were averaged to 150 keV and their intensities summed before entering them into
g03, leaving only six peaks. A comparison of the two responses for the HEU disc case centered at

forty one centimeters from the detector is shown in Figure A.1.

69



A.2. FREQENTIST AND BAYESIAN POWER LAW UNCERTAINTY APPENDIXA. ALT. M&M

10t HEU Disc Position: x=0 cm (centered), y=41 cm
normalization bounds
| | measured response
| | seven peak comp. response
{ | six peak comp. response
two sigma confidence interval
10° | V4 i 4 : i
o
=2
)
]
o
a
=
>
S
10t | =
1072
0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

Energy (MeV)

Figure A.1 Full simulation of seven peaks vs. six peaks with two combined at 150 keV.

Both responses underestimate the lower energy peaks while slightly overestimating the main
full energy peak at 186 keV. Note: this was a low number of histories run, so the added uncertainty
in the calculation made the 100 keV peaks appear closer to the lead backscatter peaks. In the high
fidelity runs, the underestimation of the backscatter peaks is more apparent.

It is clear though that the combined peak aligns much better with the center of the peak around
150 keV and more closely approximates its amplitude. As a consequence of this result, the six peak
scheme was chosen for the final results.

A.2 Freqentist and Bayesian Power Law Uncertainty

In the main body of this work, it was mentioned that Frequentist uncertainty analysis was performed
on the power law model due to the lack of confidence in the Bayesian code’s ability to analyze
the weighted least squares scheme. Later, the Bayesian code was tested and compared with the

Frequentist calculation. The results of both analyses for the power law parameters are contained in
Table A.1.
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Table A.1 Power law parameter means and standard deviations for Frequentist and Bayesian methods.

Frequentist
Parameter Mean Standard Deviation, o | Relative STD, o ,,; (%) )(3
a 0.027608 1.684E-4 0.6100 8.500E-6
b 0.644237 5.719E-3 0.8877
Bayes
a 0.027608 1.606E-4 5.818E-3 8.501E-6
b 0.64436 5.75E-3 8.923E-3

The values of the parameters and their respective uncertainties are very similar for both methods.
The Bayesian parameters gain a slightly less overfit reduced chi-squared value, and exchange slightly
lower uncertainty in a for greater uncertainty in b. Again, the Frequentist method was chosen for
expedience and direct application of the weighted least squares, however, the methods prove to be

essentially equivalent in this case.

A.3 Alternative Response Calculation: MCNP F8 Tally

Gardner’s DRF model proved to be able to simulate the full energy peaks of responses fairly well, but
needs recalibration for some detectors to reproduce good Compton continua. Additionally it suffers
under the strain of advanced geometries being unable to reproduce the effects of outside detector
scattering events on the detector response. One alternative model was considered and compared to
g03 responses: MCNP’s F8 tally with Gaussian energy broadening (GEB).

MCNP can approximate a detector response to a fair degree with the correct geometry. The same
detector and source model as was used for the the F4 flux tally was used for the F8 tally. Additionally
the power law equation for MCNP (Equation A.1) was fit to the same sources used for Gardner’s

model

fwhm=a+bv E+cE2 (A.1)

where E is the energy of the incident gamma ray, a,b and c the parameters, and fwhm is the full
width at half maximum of the peak. This information was used in a special GEB input of the F8
tally in order to spread the peak to the appropriate width in the resulting response from MCNP. The
response from MCNP is compared with the response created by g03 and the experimental response

in Figure A.2
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Figure A.2 Peak normalized computed responses from MCNP with and without the collimator simulated
and g03 versus the measured response.

Both methods approximate the full-energy peak well, however, where g03 overestimates the
continuum MCNP underestimates. MCNP predicts the electron physics of the valley region better
than g03 (without recalibration of the range law), but underestimates the rest of the Compton
continuum by a good margin. The response from MCNP without the collimator is shown to illustrate
a possible cause of they underestimation. There is a great shift in the continuum without the lead,
so it seems likely that some physics with the lead collimator and aluminum can of the detector are
not well approximated by MCNP’s F8 tally.

g03 was chosen as the main model mainly for two reasons. First, g03 calculates a DRF with far
fewer histories (four orders of magnitude) with similar accuracy and thereby taking much less time
for computation. Second, g03 produces a full DRF for the user which will be useful in further research
with inverse problems, whereas MCNP produces a response directly without a DRE However, it
may still be useful to give the MCNP calculation a closer examination for its approximations of the
physics in the valley region in order to improve future models.
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4.4. Task D: Develop & validate neutron detector response functions and
their uncertainties

In addition to the gamma DRFs, neutron DRFs are necessary to include neutron measurements in
the DIMP procedure. Unlike gamma detectors, neutron detectors typically only measure an
energy-integrated count rate. Gas-filled neutron detectors, commonly used for passive neutron
assay, are relatively insensitive to the incident neutron energy. This is especially true when the
detectors are encased with low-A moderator to increase the probability of neutron interaction.
Thus, the neutron DRF is simpler than for the gamma detector. The main task here was estimating
the detector efficiency as a function of incident neutron energy, as well as quantifying the
associated errors in this estimate. While the efficiencies can be estimated with Monte Carlo
simulations, comparisons with experimental data was expected to demonstrate the level of error
in the simulation. The University of South Carolina was originally assigned to complete this task
but in fact NC State University ended up completing it.

The accomplishment of this task was reported in: Cyrus Proctor, Accurate Holdup Calculations

with Predictive Modeling and Data Integration: Neutron Experimental and Computational Study,
NC State University, January 20, 2015. This document is replicated on the following pages.
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I Introdution

This work was completed under NEUP 2012 narrative 3494, “Accurate Cal-
culations with Predictive Modeling and Data Integration”. The overall ob-
jective was to develop and validate neutron detector response functions and
their associated uncertainties for later use in data integration and inverse
methodologies. These methodologies are being explored to more accurately
locate, identify and quantify nuclear holdup using non-destructive passive
assay techniques.

Neutron holdup was the focus for this work. Experiments were conducted
at Oak Ridge National Lab with californium-252 sources and a moderated
five helium-3 tube neutron detector manufactured by Canberra. Simulations
of the experimental setups were created in both MCNP and SCALE/Denovo
as a valdiation exercise. Overall detector response values and their associated
uncertainties from stochastic, cross section data, source emission rate, and
experimental measurement are quantified and addressed.

Section [[I] covers the details of the experimental setup, calibration and
results obtained from the experimental campagin. Section |[[II| addresses the
setup and details related to MCNP and Denovo simulations that are created
as a validation exercise. Lastly, Section [[V] compares the simulated and

experimental results along with their associated uncertainties.



II Experiment

This section details work completed at the ORNL Safeguards Laboratory
June 10th through June 21st, 2013. This write-up is meant to be a compre-
hensive guide to understand and reproduce the experiments conducted during
this time period. The specific experiments documented were conducted by
W. Cyrus Proctor and supervised by Louise Worrall, Steven Cleveland, and

Tyler Guzzardo, with input from Stephen Croft

II.A Detector Components and Spatial Setups

All experimental work was conducted in Room D104 of Building 5800 located
on the ORNL campus. Results were recorded on a Lenovo T60 laptop running
Windows XP connected to a JSR-15 shift register provided by Canberra
with the detector. The software to collect and store the data included two
versions of International Neutron Coincidence Counting; INCC 5.0.4 and
5.1.2 [1I]. The detector setup used throughout the measurement campaign is
illustrated in Figure [If and includes all relevant connections to the detector,
shift register and laptop computer.

The detector itself, manufactured in January of 2013 by Canberra In-
dustries Inc., includes five Reuter-Stokes helium-3 tubes, model RS-P4-0820-
103, which are 1 inch in diameter and have a 20 inch active length. The
five tubes are configured in a row to maximize efficiency and connected via

JAB-01 board within the high voltage junction box. The entire length of the
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Figure 1: Detector setup used throughout the measurement campaign.



Figure 2: Bare detector assembly including five helium-3 tubes, junction box,
high density polyethylene, cadmium and aluminum sheaths.

helium-3 tubes are encased in a removable sheath of high density polyethy-
lene (HDPE) and surrounded first by a cadmium sheath on four sides (front
and top excluded) which is then surrounded by an aluminum sheath on five
sides (top excluded). The holes for the detector tubes in the HDPE sheath
are drilled all the way through. Figure [2] illustrates what will be referred to
as the bare detector assembly throughout the remainder of this document.
While the helium-3 tubes are not technically bare within the assembly, this
particular configuration does lack the other inner and outer housing and
cadmium front face described in subsequent assemblies.

The bare detector assembly can then be housed within the inner housing
assembly. This includes an aluminum inner cradle and inner HDPE housing

illustrated in Figure |3 The inner housing assembly is held together by a set



Figure 3: Inner housing assembly including bare detector assembly, alu-
minum inner cradle, and inner HDPE housing.
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of four threaded bolts that penetrate from the outside of the HDPE housing
and inner cradle to secure to matching threads of the bare detector assembly.
Lastly, the inner housing assembly is contained within the outer housing
assembly which includes the hand truck, the outer housing, the outer HDPE
housing and the outer cradle. Four of the outer HDPE housing components
are loosely held in the outer housing while the two side components are
directly screwed. The outer cradle is then screwed directly to the outer
housing which is then bolted to the hand truck to hold all outer components
in place. The inner housing assembly is held in place by a metal tab at the
lower end while a metal latch is used towards the top. Figure 4 shows the
exploded components of the outer housing assembly while Figure 5[ shows all
components exploded in one view. Each component is shown in full detail in
Appendix [A]

Overall, twenty major components (including the front cadmium shield
not shown) constitute relevant structures for use in neutron transport mod-
eling. The entire detector assembly weighs approximately 282 pounds and is
transported via a Magliner model 112-UA-1060 hand truck with 500 pound
carrying capacity. The detector serial number is 13000001 and/or 7077236.
The default settings for this particular detector were set as a high voltage of
1680 V, a gate width of 64 pus and a pre-delay of 4.5 ps.

Three distinct spatial setups were used during the experimental measure-
ment campaign. One setup in particular, the upright spatial setup, shown in

Figure [6] has been used in computation validation exercises. The detector,
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Figure 4: Quter housing assembly including inner housing assembly, alu-
minum outer cradle, outer HDPE housing, aluminum outer housing, and
aluminum hand truck.

Figure 5: All detector components exploded in one view including the outer
housing assembly, inner housing assembly, and bare detector assembly.

12



fully assembled, is stood upright on the floor, while a neutron source sus-
pended from a laboratory ring stand is placed in front of the detector’s face
and is subsequently moved along the axis perpendicular.

The horizontal spatial setup, shown in Figure [7], tilts the detector’s front
face parallel to the floor facing upwards. Lastly, the table-top spatial setup,
shown in Figure [§ utilizes only the bare detector assembly placed on an
aluminum cart also with the detector face parallel with the floor facing up-
wards. In both of these setups, the ring stand’s height is adjusted for varying

distance measurements with a neutron source.
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(a) Computer aided design (CAD) model.

(b) Picture of experimental upright spatial setup.

Figure 6: This upright spatial setup includes the fully assembled detector
stood perpendicular to the floor and a neutron source suspended from a ring
stand which may be moved to different measurement locations.
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(a) Computer aided design (CAD) model.

(b) Picture of experimental horizontal spatial setup.

Figure 7: This horizontal spatial setup includes the fully assembled detector
resting parallel to the floor and a neutron source suspended from a ring stand
which may be moved to different measurement heights.
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Figure 8: This table-top spatial setup includes only the bare detector assembly
resting on an aluminum table parallel to the floor with a neutron source
suspended from a ring stand which may be moved to different measurement
heights. Laboratory picture not taken.
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II.B Neutron Source Descriptions

Two neutron sources, manufactured by Frontier Technologies Inc., were used
during the experimental campaign. The sources, identified by their serial
numbers FTC-CF-053 and FTC-CF-004 are reported as models 10s and 10
respectively via Oak Ridge National Lab’s (ORNL) radiation source inven-
tory (RASIN). Each source consists of a 304L stainless steel capsule, see
Figure [9] and Figure [10] which contains a small palladium wire in which cal-
ifornium has been deposited on [2]. The wire is packed inside of the capsule
which is then tungsten-inert-gas (TIG) welded shut.

According to Frontier’s records, FTC-CF-053 was calibrated on December
11, 1988 while FTC-CF-004 was calibrated on April 21, 1986. Through non-
trivial comparison with ORNL’s records and via computational simulation, it
became necessary to perform a recalibration of the absolute source strength
via a cross-calibration with another Frontier source, FTC-CF-1830, using
passive neutron correlation counting outlined in [3]. This process was carried
out for FTC-CF-004 using ORNL’s californium shuffler to obtain an absolute
source strength of 157755 &+ 2.4% neutrons per second corrected to June 30,
2013 — just after the end of the experimental campaign. Experimental and

computational results are compared for FTC-CF-004 in this work.
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II.C Detector Calibration

To begin, a 15 minute background count was taken while the detector was
in the upright spatial setup; as seen in Figure [f] INCC is able to repeat and
record a “cycle” a certain number of times for a specific duration. For the
preliminary background count, 15 cycles, each for a duration of 60 seconds,
was performed. The measured background rate is reported as 2.058 + 0.047
counts per second.

Following the background count, a preliminary count at the default detec-
tor settings mentioned above was conducted for each of the two californium
sources that were available. Both sources were manufactured by Frontier
Technology with the serial numbers FTC-CF-053 and FTC-CF-004 for the
model 10s and model 10 sources respectively. To complete this set of counts,
one source at a time was taped to the center of the detector’s front face. Five
and fifteen minute counts were conducted with 60 second cycle lengths. The
overall count rate, absolute uncertainty and relative percent uncertainty are
reported in both Table [1|and Table [2| for each of the californium sources.

It is clear that FTC-CF-004 is producing roughly an order of magnitude
more counts directly on the detector face than its counterpart, FTC-CF-
053. This close to the detector, both sources exhibit excellent singles rate
counting statistics of well below 1% relative uncertainty for both the 5 minute
and fifteen minute counts.

With confirmation that counting times could proceed in reasonable (and

relatively short) lengths of time without having to be particularly mindful
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Table 1: FTC-CF-053 preliminary count.

FTC-CF-053 ‘
Count Rate || Count Rate
- Count Rate Uncertanity || Uncertainty
(¢/s) (c/s) (Rel.%)
5 Minute Count
Singles 873.126 0.534 0.06
Doubles 46.937 0.550 1.17
Triples 1.281 0.150 11.71
15 Minute Count
Singles 872.494 1.129 0.13
Doubles 46.454 0.530 1.14
Triples 1.126 0.105 9.33

Table 2: FTC-CF-004 preliminary count.

FTC-CF-004 ‘
Count Rate || Count Rate
- Count Rate Uncertanity || Uncertainty
(c/s) (c/s) (Rel.%)
5 Minute Count
Singles 9610.822 5.836 0.06
Doubles 521.057 6.573 1.26
Triples 6.913 5.720 82.74
15 Minute Count
Singles 9606.098 4.008 0.04
Doubles 509.716 2.852 0.56
Triples 3.208 1.803 56.20

2
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about the magnitude of counting uncertainties, a series of high voltage (HV)
plateau curves were acquired. Two separate setups were used in the collection
of the HV plateau data.

Each plateau curve was completed using INCC version 5.1.2 because it
had an automated function that allowed one to set necessary input parame-
ters and be able leave overnight to come back to a completed data set over
a particular voltage range. In all, four separate plateaus were gathered, each
voltage point taken in one 1000 second cycle.

First, two plateaus were taken with only background present, i.e. no
sources. One plateau was taken in the horizontal spatial setup (Figure @
and the other was taken in the table-top spatial setup (Figure . These
two are plotted together in Figure [11} They show that background count
rates never exceed 4 counts per second in any typical voltage range to be
considered in this work.

Next, while the detector was in the horizontal spatial setup, the FTC-CF-
004 source was added. Later, a cesium source was added to the californium
source to see the effects of having an appreciable gamma source present.
Both of these plateau curves are plotted below in Figure [12]

With the 1000 second count times, a clean, well-rounded knee is visible for
the high voltage plateau curves. It was decided based on the characteristics
of the curves that the operating voltage of 1725 V was to be adopted over
the default voltage of 1680 V due to the farther proximity to the knee of the

curve.
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Figure 11: Two high voltage plateaus were established with no source present;
one while in the horizontal spatial setup and the other while in the table-top
spatial setup. Counts were taken for one 1000 second cycle at each voltage.
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Figure 12: Two high voltage plateaus were established while in the horizontal
spatial setup; one with only FTC-CF-004 present and the other with FTC-
CF-004 and a gamma-emitting cesium source. Counts were taken for one
1000 second cycle at each voltage.
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II.D Experimental Results

Next, at nominal operation settings and a high voltage setting of 1725V, the
detector was placed in the upright spatial setup with neutron source FTC-
CF-004 attached to a ring stand and positioned collinear to the center of the
detector’s front face. The ring stand was moved along the axis orthogonal to
the detector front face in increments of 5 ¢m starting at distance of 16.1275 cm
and ranging to 61.1275 cm between the centerpoint of the neutron source and
the centerpoint of the central helium-3 tube within the detector.

Singles and doubles count rates and their uncertainties were measured
via INCC and are displayed in Figure [I3] and Table 3] The experimental
uncertainties for both singles and doubles are also displayed in Figure|13|and
in Table [l Counts were taken in 10 cycles of 60 seconds each for a total

count time of 600 seconds per data point.
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Z-Distance from Central He-3 Tube; Canberra 7077236;
FTC-CF-004; 6/13/13; 600 Second Counts; Singles & Doubles
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Figure 13: Source FTC-CF-004 is moved in 5 cm increments perpendicular
to the detector face while it is in the horizontal spatial setup. Singles and

doubles count rates from 600 second counts (60 second cycles; 10 cycles) are
reported along their respective uncertainties.
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Table 3: Detector response experimental measure-
ments including singles and doubles count rates.
Source distances are measured from the center
of the central helium-3 tube to the center of
the californium-252 source (FTC-CF-004) which is
placed collinear with the centerpoint of the detec-
tor front face.

lesrf;)arrrllce Singles Doubles
Count Rate | Count Rate
Detector
s (c/s) (c/s)
16.1275 4565.001 121.780
21.1275 3402.641 67.828
26.1275 2610.021 42.117
31.1275 2058.254 24.832
36.1275 1676.399 19.292
41.1275 1378.492 12.302
46.1275 1161.146 8.423
51.1275 1000.609 6.038
56.1275 861.684 4.667
61.1275 758.584 3.800
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Table 4: Detector response experimental measure-
ment uncertainties including singles and doubles
count rate uncertainties.

lesrii)ar?lce Singles Doubles
Uncertainty || Uncertainty
Detector
o (c/s) (c/5)
16.1275 3.973 2.217
21.1275 2.025 2.295
26.1275 1.846 1.249
31.1275 2.419 1.250
36.1275 1.936 0.808
41.1275 1.151 0.517
46.1275 1.997 0.624
51.1275 1.780 0.451
56.1275 1.521 0.321
61.1275 1.372 0.362
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III Simulation

This section details work completed from summer of 2013 until winter of
2014. Included in this write-up is all the information necessary to reproduce
the simulated results from MCNP and Denovo. The specific computational
work was conducted by W. Cyrus Proctor| and supervised by Yousry Azmy

and Dan Cacuci, with input from John Mattingly.

III.A Simulation Setup

The californium sources were spatially modeled based on the design given via
the Frontier Technologies website described in Section [II.B| For the modeling

of the sources’ energy spectrums, a Watt energy spectrum of the form
F(E) = e "sinh (VOE) , (1)

was assumed for the spontaneous fission neutron energy probability dis-
tribution where the parameters a and b are fit for a particular isotope.
The discrepancies between spectrum parameters a and b in MCNP 5 and
MCNP 6.1 manuals for californium-252 are of note [4, [5]. MCNP 5 gives
a = 1.025MeV and b = 2.296 MeV ! while MCNP 6 gives a = 1.18 MeV
and b = 1.03419 M eV ~!. Further investigation led to the experimental work
of Mannhart located and summarized within Valentine’s MCNP-DSP manual

6, 17].

29


mailto:cyrusproctor@gmail.com
mailto:yyazmy@ncsu.edu
mailto:cacuci@cec.sc.edu
mailto:john_mattingly@ncsu.edu

Mannhart used a corrected Maxwellian distribution of the form

F(B) = R(B) e ¥, )

to fit his experimental results where the nuclear temperature, 7', is typically

SHlm

1.42 M eV for californium-252. The Maxwellian does not agree precisely with
the measured spectrum for californium-252; therefore, Mannhart developed
an energy dependent correction factor, R(F), which when multiplied by the
Maxwellian spectrum would reproduce the measured spectrum. A least-
squares polynomial regression model was used to obtain a functional form for
Mannhart’s correction factor. For energies less than 5 MeV', the correction

factor is represented by

R(E) = 0.955+ 0.0707E — 0.0444E° 4 0.01998E®

—0.00457E* + 0.000368E°. (3)

For energies greater than 5 MeV', the correction factor is represented as

R(E) = 1.16 — 0.0432F + 0.00185E2 — 0.0000316 E®. (4)

The energy ranges were chosen such that the functional representation
adequately reproduces Mannhart’s discrete points. Other fits could be ap-
plied to Mannhart’s correction factor that when multiplied by the Maxwellian

should adequately reproduce the measured spectra. The average neutron en-
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ergy obtained from the corrected spectrum is 2.13 MeV', which agrees well
with the measured value. The integral of the corrected spectrum as a func-
tion of energy was normalized to unity. The two Watt fission spectrum dis-
tributions recommended by MCNP and the modified Maxwellian spectrum
distribution by Mannhart are normalized, subdivided into one thousand en-
ergy bins and compared in Figure [I4 In Figure[I5 the three corresponding
cumulative distribution functions are plotted. In addition, the Mannhart
spectrum was re-binned within the SCALE6.1 ENDF/B-VIL.O 200 and 27
group energy boundaries for comparison.

It is evident that the MCNP 6 parameters match more closely to the
experimental distribution staying within roughly 5% up to about 13 MeV.
To determine the range of effect that the differences within the californium-
252 spontaneous fission spectrum would have on the count rate response of
the MCNP simulations as a function of distance, cases in which the source
FTC-CF-004 was located at the closest and farthest experimentally measured
distances (16 and 61 cm respectively) were configured using the upright spa-
tial setup. A total of four preliminary runs were completed, two with MCNP
5 and two with MCNP 6, then compared in Table [f]] Roughly, a change in
response of 2.5% resulted from the shift in Watt spectrum parameters. From
this point forward in this work, the MCNP 6 spectrum parameters will be

used.
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Semilog Integral of Cf-252 Spontaneous Fission Spectrum
Probability Density Function Comparison
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Figure 14: Californium-252 fission spectrum probability density function
comparison per MeV . Mannhart’s fitted experimental distribution is used as

reference in comparison against MCNP 5 and MCNP 6 reported Watt fission
spectrums.

Table 5: Preliminary californium-252 spontaneous fission spectrum com-
parison between MCNP 5 and MCNP 6 recommended Watt fission spec-
trum parameters using neutron source FTC-CF-004 within the upright
spatial setup configuration. 107 histories were used for each run. Re-
sponse count rates reported.

Spectrum (c/s) at 16 cm (c/s) at 61 cm
MCNP 5 Watt 4554.86 749.84
MCNP 6 Watt 4684.74 768.37

% Difference -2.77% -2.41%
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Semilog Cf-252 Spontaneous Fission Spectrum CDF Comparison
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Figure 15: Californium-252 fission spectrum cumulative probability density
function comparison per MeV. Mannhart’s fitted experimental distribution
is used as reference in comparison against MCNP 5 and MCNP 6 reported
Watt fission spectrums. Also, Mannhart’s fitted distribution is sampled
within the SCALE6.1 ENDF/B-VII.0 200 and 27 group energy boundaries

for reference.
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III.B Material Specifications

Most Material compositions were based upon Pacific Northwest National
Laboratory’s “Compendium of Material Composition Data for Radiation
Transport Modeling” [§] with one notable exception, the detector’s fill gas
described in the paragraphs below. The input specifications for MCNP and

SCALE are summarized in Table[6] The constants used include the ideal gas

constant R = 0.08205746 é%’;‘l, a temperature T' = 293.15 K and Avogadro’s
Number N, = 6.0220434469282F23 4oz,

Detector Tubes are set at 4 atm partial pressure of helium-3 and 1 atm
partial pressure of P-10 gas. The density of helium-3 may be found using the

ideal gas law

PresV = nges RT, (5)

where Ppg,.3 is the partial pressure of the helium-3, V' is the volume, nges is
the number of moles of helium-3, R is the ideal gas constant, and 7T is the
temperature of the gas. This may be rearranged by multiplying through by

the molecular mass of helium-3

T = PHe3 = Ta (6)

where pges is the density of the helium-3 gas, m is the mass, and Mpg.3 is
the molecular mass of helium-3. By substitution, the helium-3 gas density

is ppes = 5.0151924e — 4 9/em®. P-10 gas consists of 10% by volume methane

34



Table 6: Material specifications used in MCNP and Denovo simulations.

Molecular | Weight Atomic Atomic

Constituent Weight Fraction || Fraction Densit

o () () —

Air (Dry, Near Sea Level); 0.001205 £
C 12.01070000 [ 0.00012400 [[ 0.00015019 || 7.49176761E-09
N 14.00674000 || 0.75526800 || 0.78443022 || 3.91286576E-05
O 15.99940000 || 0.23178100 || 0.21074847 || 1.05124772E-05
Ar 39.94800000 || 0.01282700 || 0.00467111 || 2.33002717E-07
Aluminum; 2.6989 —Z-
Al | 26.98153800 || 1.00000000 || 1.00000000 || 6.02370890E-02
Cadmium; 8.65 %
Cd | 112.4110000 || 1.00000000 || 1.00000000 || 4.63394826E-02
Californium-252; 15.1 -
Cf-252 ]| 252.0816196 || 1.00000000 || 1.00000000 || 3.60727832E-02
Concrete (NBS 03); 2.35 &
H-1 1.00782500 || 0.00848500 || 0.14985422 || 1.19145726E-02
C 12.01070000 || 0.05006400 || 0.07419241 || 5.89887201E-03
O-16 15.99491460 || 0.47348300 || 0.52689579 || 4.18923007E-02
Mg 24.30500000 || 0.02418300 || 0.01770993 || 1.40807665E-03
Al-27 26.98153860 || 0.03606300 || 0.02379016 || 1.89150236E-03
Si 28.08550000 || 0.14510000 || 0.09195758 || 7.31134032E-03
S 32.06500000 || 0.00297000 || 0.00164865 || 1.31080157E-04
K 39.09830000 || 0.00169700 || 0.00077255 || 6.14236633E-05
Ca 40.07800000 || 0.24692400 || 0.10966285 || 8.71904681E-03
Fe 55.84500000 || 0.01103100 || 0.00351587 || 2.79538954E-04
Fill Gas (He-3 + P-10 Quench); 0.0020628254 -,
He-3 3.01602931 || 0.24312247 [ 0.74074074 || 1.00137306E-04
C 12.01070000 || 0.02420460 || 0.01851852 || 2.50343266E-06
H 1.00794000 | 0.00812502 || 0.07407407 || 1.00137306E-05
Ar 39.94800000 || 0.72454791 || 0.16666667 || 2.25308939E-05
High Density Polyethylene; 0.95 -%

C 12.01070000 || 0.85628143 [[ 0.33333333 || 4.07864303E-02
H 1.00794000 || 0.14371857 || 0.66666667 || 8.15728606E-02
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Table 7: Material specifications used in MCNP and Denovo simulations

(continued).
Molecular Weight Atomic Atomic
Constituent Weight Fraction Fraction Densit
g atoms
(%) (-) (-) (bamcrj
Stainless Steel 304 L; 8.0 -4~
C 12.01070000 || 0.00030000 || 0.00137279 || 1.20333572E-04

Si-28 27.97692650 || 0.00459400 || 0.00902490 || 7.91088116E-04

Si-29 28.97649470 || 0.00024100 || 0.00045711 || 4.00686829E-05

Si-30 29.97377020 || 0.00016500 || 0.00030255 || 2.65201785E-05

P-31 30.97376150 || 0.00022500 || 0.00039925 || 3.49963249E-05

S-32 31.97207070 || 0.00014200 [} 0.00024410 || 2.13969293E-05

S-33 32.97145850 {| 0.00000100 || 0.00000167 || 1.46115306E-07

S-34 33.96786680 || 0.00000700 || 0.00001133 || 9.92804273E-07

Cr-50 49.94604960 {| 0.00793000 || 0.00872616 || 7.64902208E-04

Cr-52 51.94051190 || 0.15903100 || 0.16827778 || 1.47505915E-02

Cr-53 52.94065380 || 0.01837800 || 0.01907920 || 1.67241024E-03

Cr-54 53.93888490 || 0.00466100 || 0.00474929 || 4.16304409E-04

Mn-55 54.93804960 || 0.01000000 || 0.01000410 || 8.76921331E-04

Fe-54 53.93961480 || 0.03999600 || 0.04075303 || 3.57225613E-03

Fe-56 55.93494210 || 0.64476400 || 0.63353234 || 5.55330414E-02

Fe-57 56.93539870 || 0.01502600 || 0.01450482 || 1.27143713E-03

Fe-58 57.93328050 || 0.00203900 || 0.00193437 || 1.69559831E-04

Ni-58 57.93534790 || 0.06234000 || 0.05913905 || 5.18390519E-03

Ni-60 59.93079060 || 0.02465400 || 0.02260938 || 1.98185217E-03

Ni-61 60.93106040 || 0.00108500 || 0.00097868 || 8.57876702E-05

Ni-62 61.92834880 {| 0.00350400 || 0.00310975 || 2.72589089E-04

Ni-64 63.92796960 || 0.00091700 || 0.00078837 || 6.91054495E-05

Zircaloy-2; 6.56 —

0O-16 15.99491460 || 0.00119700 || 0.00679928 || 2.95637791E-04
Cr 51.99610000 || 0.00099700 || 0.00174211 || 7.57481642E-05
Fe 55.84500000 || 0.00099700 || 0.00162204 || 7.05275158E-05
Ni 58.69340000 || 0.00049900 || 0.00077243 || 3.35860555E-05
Zr 91.22400000 || 0.98234800 || 0.97837825 || 4.25406359E-02
Sn 118.7100000 || 0.01396200 || 0.01068589 || 4.64630861E-04
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Table 8: Calculated weight fractions for a 4 atm
helium-3, 1 atm P-10 tube.

Species Weight Fraction
_pc 0.02420459821
ZEIZ 0.00812501610
_Par_ 0.72454791170
ZJ}Z{{{ 0.24312247390

and 90% by volume Argon. The density of the P-10 gas may be calculated

in a manner similar to helium-3

% = pprio = T- (7)

For an ideal gas, the volume fractions of the gas mixtures equals the molar

fractions. Therefore, the molecular mass of the P-10 gas is given by
Mpig = 0.10Mcy, + 0.90M 4, = 37.5574460 9/mot, (8)

which gives a P-10 density of 1.561306196 9/mol. To determine the individual
species’ densities, divide both sides of Equation [7| by Mpio and interchange
the mass fraction of P-10 with the molar fractions of carbon, hydrogen and
argon. Adding all densities together yields a total gas density of pio =

0.0020628254 9/cm?® with partial gas weight fractions summarized in Table
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II1.C MCNP Simulations

An MCNP model of the neutron detector was created to compute the de-
tector response function (DRF) o4(E). To compute the DRF, an isotropic
point source with uniform intensity from 1E — 11 to 20 MeV | was placed at
the same locations as in the experimental setup detailed in Section [I.D] A
bounding box was placed just around the volume of the detector to tally the
surface current as a function of energy that was entering from the uniform
source. The current entering the front surface of the detector is labeled as
Tys.(E). Figure[L16|is a summary of incoming F1 surface current tallies of the
front face of the detector as a function of energy and distance away from the
helium-3 proportional counter tubes embedded within the detector. Slight
deviations from a uniform current are attributed to neutron interactions with
materials outside the bounding box of the detector (i.e. floor, hand truck,
and surrounding air)

Another tally was created to calculate the average number of (n,p) re-
actions occurring within the active region of the helium-3 tubes — which
contains 4 atm partial pressure He-3 and 1 atm P-10 gas — labeled T,,,(E).
To calculate T,,,(E), the average flux was multiplied by the energy dependent
microscopic cross section, o?f;), and the number density, /N, within the cell
via an FM card, i.e. N a?f;)quCti”e Reg- This gives units of interactions/cm3.
The volume of the active regions of the helium-3 tubes was calculated based
on a radius of 1.190625cm and an active length of 50.8cm to give V =

1131.185 ¢m. Multiplying the volume gives the average number of (n,p)
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Surface Current Entering the Front Face of the Detector from
Uniform Point Source Varying Distance from He-3 Tubes
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Figure 16: Surface current per source neutron entering the front face of the
bounding box of the detector from a uniform isotropic point source as a
function of energy and source distance away from the central helium-3 tube.
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He3 (n, p) Reactions per MeV as a Function of Source Distance
from Detector
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Figure 17: Average number of (n,p) reactions within the active regions of
the helium-3 tubes per source neutron as a function of energy and source
distance from helium-3 tubes.

reactions per source neutron as function of energy. Figure gives these
reactions, T,,(E), and their statistical uncertainties as a function of source
distance away from the helium-3 tubes.

To determine the detector response function, o4(FE), the average number
of (n,p) reactions, T,,(E), was divided by the incoming surface current on

the front face of the detector, Tysc(g),

Tnp<E) B NO.?He &ActiveReg‘V

n,p)

B Tfsc(E) a Tfsc(E) ‘ (9>

O‘d<E)
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Detector Response Function per MeV as a Function of Source
Distance from Detector
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Figure 18: Detector efficiency as a function of energy and source distance
away from the central He-3 tube.

The result for o4(F) is provided via Figure 18] along with its statistical un-
certainty for all experimentally measured source distances. The detector
response function is also summarized in Table [J] through Table

Next, given the available information about the FTC-CF-004 used in the
lab, a MCNP input deck was constructed to serve as an accurate model of the
source spectrum and geometry. This input deck contained the same detector
bounding box as the previous input decks minus the detector itself; the goal
being to accurately tally the incoming surface current impending on the front

face of the detector bounding box as a function of energy — labeled Ts(F). By
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Table 9: Detector efficiency as a function of energy and
source distance away from the central He-3 tube (Part 1).

Average

Energy 16 cm 21 cm 26 cm 31 cm 36 cm
(MeV)

5.0E-12 1.2998E-02 1.1890E-02 1.1195E-02 1.0564E-02 1.0149E-02
1.5E-11 1.3247E-02 1.2098E-02 1.1250E-02 1.0599E-02 1.0265E-02
2.5E-11 1.3723E-02 1.2387E-02 1.1529E-02 1.0865E-02 1.0394E-02
3.5E-11 1.4124E-02 1.2765E-02 1.1765E-02 1.0990E-02 1.0516E-02
4.5E-11 1.4311E-02 1.2903E-02 1.1947E-02 1.1108E-02 1.0647E-02
5.5E-11 1.4648E-02 1.3198E-02 1.2117E-02 1.1284E-02 1.0826E-02
6.5E-11 1.4712E-02 1.3269E-02 1.2252E-02 1.1445E-02 1.0910E-02
7.5E-11 1.4940E-02 1.3462E-02 1.2356E-02 1.1489E-02 1.0928E-02
8.5E-11 1.5113E-02 1.3637E-02 1.2489E-02 1.1694E-02 1.1041E-02
9.5E-11 1.5112E-02 1.3666E-02 1.2610E-02 1.1651E-02 1.1065E-02
1.5E-10 1.5727E-02 1.4130E-02 1.2969E-02 1.2147E-02 1.1409E-02
2.5E-10 1.6244E-02 1.4611E-02 1.3399E-02 1.2422E-02 1.1917E-02
3.5E-10 1.6686E-02 1.5015E-02 1.3718E-02 1.2875E-02 1.2163E-02
4.5E-10 1.6993E-02 1.5243E-02 1.3935E-02 1.2943E-02 1.2320E-02
5.5E-10 1.7284E-02 1.5493E-02 1.4142E-02 1.3197E-02 1.2476E-02
6.5E-10 1.7492E-02 1.5715E-02 1.4446E-02 1.3454E-02 1.2588E-02
7.5E-10 1.7633E-02 1.5876E-02 1.4463E-02 1.3481E-02 1.2755E-02
8.5E-10 1.7827E-02 1.5993E-02 1.4685E-02 1.3615E-02 1.2837E-02
9.5E-10 1.8001E-02 1.6145E-02 1.4667E-02 1.3721E-02 1.2968E-02
1.5E-09 1.8573E-02 1.6776E-02 1.5373E-02 1.4300E-02 1.3422E-02
2.5E-09 1.9539E-02 1.7614E-02 1.6130E-02 1.4939E-02 1.3987E-02
3.5E-09 2.0453E-02 1.8490E-02 1.6785E-02 1.5616E-02 1.4657E-02
4.5E-09 2.1284E-02 1.9072E-02 1.7577E-02 1.6234E-02 1.5378E-02
5.5E-09 2.2118E-02 1.9840E-02 1.8143E-02 1.6819E-02 1.5774E-02
6.5E-09 2.2675E-02 2.0403E-02 1.8703E-02 1.7327E-02 1.6271E-02
7.5E-09 2.3343E-02 2.1120E-02 1.9232E-02 1.7817E-02 1.6691E-02
8.5E-09 2.4145E-02 2.1640E-02 1.9813E-02 1.8352E-02 1.7227E-02
9.5E-09 2.4599E-02 2.2163E-02 2.0340E-02 1.8754E-02 1.7480E-02
1.5E-08 2.7293E-02 2.4630E-02 2.2443E-02 2.0801E-02 1.9455E-02
2.5E-08 3.0824E-02 2.7807E-02 2.5284E-02 2.3372E-02 2.1782E-02
3.5E-08 3.3581E-02 3.0223E-02 2.7519E-02 2.5555E-02 2.4002E-02
4.5E-08 3.6177E-02 3.2798E-02 2.9854E-02 2.7626E-02 2.5928E-02
5.5E-08 3.8768E-02 3.4937E-02 3.1892E-02 2.9505E-02 2.7521E-02
6.5E-08 4.1325E-02 3.7181E-02 3.3947E-02 3.1263E-02 2.9407E-02
7.5E-08 4.4063E-02 3.9776E-02 3.6182E-02 3.3596E-02 3.1352E-02
8.5E-08 4.6471E-02 4.2101E-02 3.8315E-02 3.5359E-02 3.3064E-02
9.5E-08 4.8970E-02 4.4007E-02 4.0292E-02 3.7246E-02 3.4734E-02
1.5E-07 5.8375E-02 5.3002E-02 4.8456E-02 4.4648E-02 4.1642E-02
2.5E-07 6.6508E-02 6.0069E-02 5.4912E-02 5.0860E-02 4.7262E-02
3.5E-07 7.2876E-02 6.5733E-02 6.0345E-02 5.5626E-02 5.2354E-02
4.5E-07 7.6478E-02 6.9460E-02 6.3286E-02 5.8509E-02 5.4762E-02
5.5E-07 7.9524E-02 7.2102E-02 6.5852E-02 6.1183E-02 5.6877E-02
6.5E-07 8.1727E-02 7.3844E-02 6.7682E-02 6.2392E-02 5.8476E-02
7.5E-07 8.3336E-02 7.5584E-02 6.9238E-02 6.3992E-02 5.9830E-02
8.5E-07 8.5184E-02 7.7153E-02 7.0286E-02 6.5071E-02 6.0987E-02
9.5E-07 8.6269E-02 7.8148E-02 7.1569E-02 6.6049E-02 6.1547E-02
1.5E-06 9.1067E-02 8.2567E-02 7.4997E-02 6.9281E-02 6.5170E-02
2.5E-06 9.6045E-02 8.6817E-02 7.9234E-02 7.3477TE-02 6.8449E-02
3.5E-06 9.8798E-02 8.9253E-02 8.1607E-02 7.5231E-02 7.0373E-02
4.5E-06 1.0132E-01 9.1456 E-02 8.3649E-02 7.7606E-02 7.2548E-02
5.5E-06 1.0281E-01 9.2932E-02 8.4911E-02 7.8642E-02 7.3380E-02
6.5E-06 1.0365E-01 9.3561E-02 8.5477E-02 7.9014E-02 7.3974E-02
7.5E-06 1.0457E-01 9.4561E-02 8.6156E-02 7.9867E-02 7.4887E-02
8.5E-06 1.0505E-01 9.4948E-02 8.7116E-02 8.0463E-02 7.5050E-02
9.5E-06 1.0571E-01 9.5574E-02 8.7399E-02 8.0765E-02 7.5575E-02
1.5E-05 1.0691E-01 9.6744E-02 8.8331E-02 8.1561E-02 7.6308E-02
2.5E-05 1.0849E-01 9.8142E-02 8.9341E-02 8.2988E-02 7.7772E-02
3.5E-05 1.0966E-01 9.8929E-02 9.0300E-02 8.3574E-02 7.7978E-02
4.5E-05 1.0988E-01 9.8955E-02 9.0372E-02 8.3754E-02 7.8272E-02
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Table 10: Detector efficiency as a function of energy and
source distance away from the central He-3 tube (Part 2).

Average

Energy 16 cm 21 cm 26 cm 31 cm 36 cm
(MeV)

5.5E-05 1.0981E-01 9.8884E-02 9.0381E-02 8.3477TE-02 7.8253E-02
6.5E-05 1.1012E-01 9.9049E-02 9.0725E-02 8.3766E-02 7.8121E-02
7.5E-05 1.0997E-01 9.9302E-02 9.0323E-02 8.3686E-02 7.8367E-02
8.5E-05 1.1047E-01 9.9411E-02 9.0664E-02 8.3600E-02 7.8388E-02
9.5E-05 1.1034E-01 9.9359E-02 9.0868E-02 8.3829E-02 7.8552E-02
1.5E-04 1.1034E-01 9.9345E-02 9.0287E-02 8.3373E-02 7.7968E-02
2.5E-04 1.1043E-01 9.9200E-02 9.0527E-02 8.3744E-02 7.7956 E-02
3.5E-04 1.1078E-01 9.9060E-02 9.0483E-02 8.3688E-02 7.8060E-02
4.5E-04 1.0991E-01 9.8941E-02 8.9902E-02 8.3414E-02 7.8080E-02
5.5E-04 1.0987E-01 9.8407E-02 9.0194E-02 8.2757E-02 7.7828E-02
6.5E-04 1.0955E-01 9.8633E-02 8.9756 E-02 8.2982E-02 7.7684E-02
7.5E-04 1.0937E-01 9.8196E-02 8.9551E-02 8.2976E-02 7.7237E-02
8.5E-04 1.0921E-01 9.8465E-02 8.9792E-02 8.2776E-02 7.7450E-02
9.5E-04 1.0908E-01 9.8061E-02 8.9177E-02 8.2609E-02 7.7240E-02
1.5E-03 1.0852E-01 9.7588E-02 8.9164E-02 8.2386E-02 7.6872E-02
2.5E-03 1.0771E-01 9.6765E-02 8.8271E-02 8.1550E-02 7.6521E-02
3.5E-03 1.0694E-01 9.6687E-02 8.7928E-02 8.1119E-02 7.6227E-02
4.5E-03 1.0682E-01 9.6212E-02 8.7634E-02 8.0825E-02 7.6097E-02
5.5E-03 1.0473E-01 9.4250E-02 8.6170E-02 7.9385E-02 7.4189E-02
6.5E-03 1.0606E-01 9.5280E-02 8.6841E-02 8.0427E-02 7.5096 E-02
7.5E-03 1.0632E-01 9.5617E-02 8.6934E-02 8.0636E-02 7.5301E-02
8.5E-03 1.0628E-01 9.5043E-02 8.7232E-02 8.0208E-02 7.5332E-02
9.5E-03 1.0616E-01 9.5413E-02 8.6612E-02 8.0206E-02 7.5616E-02
1.5E-02 1.0562E-01 9.4834E-02 8.6514E-02 7.9839E-02 7.4712E-02
2.5E-02 1.0546E-01 9.4605E-02 8.6657E-02 8.0047E-02 7.5051E-02
3.5E-02 9.6813E-02 8.6732E-02 7.9465E-02 7.3409E-02 6.9201E-02
4.5E-02 1.0365E-01 9.2841E-02 8.4607E-02 7.8226E-02 7.3287E-02
5.5E-02 1.0476E-01 9.4255E-02 8.5672E-02 7.8951E-02 7.4199E-02
6.5E-02 1.0519E-01 9.4480E-02 8.5765E-02 7.9306E-02 7.4565E-02
7.5E-02 1.0445E-01 9.3984E-02 8.5229E-02 7.8401E-02 7.3618E-02
8.5E-02 9.7385E-02 8.7510E-02 7.9570E-02 7.3469E-02 6.9146E-02
9.5E-02 1.0083E-01 8.9805E-02 8.2064E-02 7.6041E-02 7.1433E-02
1.5E-01 1.0395E-01 9.2526E-02 8.4440E-02 7.7724E-02 7.2457E-02
2.5E-01 1.0521E-01 9.2797E-02 8.4129E-02 7.7158E-02 7.3331E-02
3.5E-01 1.0509E-01 9.2452E-02 8.3258E-02 7.6759E-02 7.2100E-02
4.5E-01 1.0296E-01 9.1060E-02 8.1777E-02 7.4954E-02 7.0730E-02
5.5E-01 1.0162E-01 8.9762E-02 8.1084E-02 7.4375E-02 6.9562E-02
6.5E-01 1.0041E-01 8.8689E-02 7.9217E-02 7.3247E-02 6.8075E-02
7.5E-01 9.8216E-02 8.5787E-02 7.7748E-02 7.1087E-02 6.7064E-02
8.5E-01 9.6372E-02 8.4911E-02 7.6018E-02 6.9724E-02 6.5214E-02
9.5E-01 9.4549E-02 8.3389E-02 7.4274E-02 6.8663E-02 6.4317E-02
1.5E+00 8.4752E-02 7.4169E-02 6.6171E-02 6.1107E-02 5.6659E-02
2.5E+400 7.0967E-02 6.1177E-02 5.4948E-02 5.1079E-02 4.8394E-02
3.5E+00 6.0120E-02 5.3003E-02 4.7064E-02 4.3517E-02 4.1100E-02
4.5E4-00 5.3772E-02 4.6605E-02 4.1400E-02 3.8111E-02 3.5915E-02
5.5E+4+00 4.7166E-02 4.1565E-02 3.7302E-02 3.4012E-02 3.2135E-02
6.5E400 4.2757E-02 3.6812E-02 3.2997E-02 3.0568E-02 2.8494E-02
7.5E+400 3.8889E-02 3.3913E-02 2.9969E-02 2.7740E-02 2.6579E-02
8.5E+400 3.4561E-02 2.9990E-02 2.6569E-02 2.5425E-02 2.3630E-02
9.5E+00 3.0665E-02 2.6711E-02 2.3708E-02 2.2188E-02 2.1110E-02
1.1E401 2.9440E-02 2.5624E-02 2.2699E-02 2.1397E-02 1.9805E-02
1.2E+401 2.7301E-02 2.3978E-02 2.1460E-02 1.9698E-02 1.8585E-02
1.3E401 2.6007E-02 2.3133E-02 2.0991E-02 1.9135E-02 1.8021E-02
1.4E+401 2.4690E-02 2.2031E-02 2.0141E-02 1.8755E-02 1.7237E-02
1.5E401 2.4419E-02 2.0981E-02 1.8951E-02 1.7363E-02 1.6393E-02
1.6E4+01 2.3551E-02 2.0627E-02 1.8246E-02 1.6889E-02 1.6047E-02
1.7E401 2.2311E-02 1.9178E-02 1.7535E-02 1.6432E-02 1.5594E-02
1.8E+4+01 2.1352E-02 1.8836E-02 1.6790E-02 1.5524E-02 1.5119E-02
1.9E401 2.0836E-02 1.8382E-02 1.6587E-02 1.5285E-02 1.4721E-02
2.0E401 2.0234E-02 1.7645E-02 1.5891E-02 1.4826E-02 1.4512E-02
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Table 11: Detector efficiency as a function of energy and
source distance away from the central He-3 tube (Part 3).

Average

Energy 41 cm 46 cm 51 cm 56 cm 61 cm
(MeV)

5.0E-12 9.9196E-03 9.7276E-03 9.7362E-03 9.5643E-03 9.6218E-03
1.5E-11 9.8670E-03 9.7492E-03 9.8005E-03 9.6869E-03 9.7522E-03
2.5E-11 1.0019E-02 9.8800E-03 9.7906 E-03 9.6746E-03 9.7104E-03
3.5E-11 1.0209E-02 9.9009E-03 9.8405E-03 9.7187E-03 9.7217E-03
4.5E-11 1.0252E-02 1.0012E-02 9.8916E-03 9.8482E-03 9.8174E-03
5.5E-11 1.0410E-02 1.0169E-02 1.0026E-02 9.8592E-03 9.9726E-03
6.5E-11 1.0514E-02 1.0304E-02 9.9949E-03 9.9664E-03 9.9864E-03
7.5E-11 1.0520E-02 1.0274E-02 1.0056E-02 9.9736E-03 9.9783E-03
8.5E-11 1.0736E-02 1.0459E-02 1.0270E-02 1.0199E-02 1.0154E-02
9.5E-11 1.0661E-02 1.0344E-02 1.0218E-02 1.0100E-02 1.0129E-02
1.5E-10 1.0924E-02 1.0732E-02 1.0483E-02 1.0325E-02 1.0349E-02
2.5E-10 1.1392E-02 1.1085E-02 1.0828E-02 1.0753E-02 1.0547E-02
3.5E-10 1.1639E-02 1.1207E-02 1.1110E-02 1.0875E-02 1.0784E-02
4.5E-10 1.1735E-02 1.1420E-02 1.1289E-02 1.1119E-02 1.0969E-02
5.5E-10 1.1909E-02 1.1570E-02 1.1266E-02 1.1139E-02 1.0964E-02
6.5E-10 1.2109E-02 1.1815E-02 1.1429E-02 1.1233E-02 1.1109E-02
7.5E-10 1.2245E-02 1.1821E-02 1.1479E-02 1.1253E-02 1.1139E-02
8.5E-10 1.2304E-02 1.1922E-02 1.1655E-02 1.1451E-02 1.1236E-02
9.5E-10 1.2354E-02 1.1984E-02 1.1740E-02 1.1632E-02 1.1643E-02
1.5E-09 1.2792E-02 1.2387E-02 1.2037E-02 1.1886E-02 1.1743E-02
2.5E-09 1.3312E-02 1.2834E-02 1.2558E-02 1.2313E-02 1.2101E-02
3.5E-09 1.4026E-02 1.3596E-02 1.3195E-02 1.2954E-02 1.2845E-02
4.5E-09 1.4668E-02 1.4136E-02 1.3769E-02 1.3436E-02 1.3222E-02
5.5E-09 1.5004E-02 1.4434E-02 1.3978E-02 1.3708E-02 1.3523E-02
6.5E-09 1.5475E-02 1.4880E-02 1.4456E-02 1.4069E-02 1.3778E-02
7.5E-09 1.5844E-02 1.5239E-02 1.4805E-02 1.4507E-02 1.4213E-02
8.5E-09 1.6362E-02 1.5772E-02 1.5309E-02 1.4962E-02 1.4532E-02
9.5E-09 1.6722E-02 1.6103E-02 1.5521E-02 1.5147E-02 1.4790E-02
1.5E-08 1.8318E-02 1.7621E-02 1.7245E-02 1.6696E-02 1.6312E-02
2.5E-08 2.0741E-02 1.9922E-02 1.9199E-02 1.8762E-02 1.8147E-02
3.5E-08 2.2642E-02 2.1465E-02 2.0657E-02 1.9952E-02 1.9564E-02
4.5E-08 2.4561E-02 2.3465E-02 2.2727E-02 2.1985E-02 2.1196E-02
5.5E-08 2.6072E-02 2.4781E-02 2.3914E-02 2.3153E-02 2.2703E-02
6.5E-08 2.7637E-02 2.6417E-02 2.5432E-02 2.4650E-02 2.4049E-02
7.5E-08 2.9578E-02 2.7896E-02 2.6814E-02 2.6000E-02 2.5306E-02
8.5E-08 3.1283E-02 2.9669E-02 2.8539E-02 2.7770E-02 2.7194E-02
9.5E-08 3.2807E-02 3.1224E-02 3.0015E-02 2.9078E-02 2.8311E-02
1.5E-07 3.9503E-02 3.7572E-02 3.6011E-02 3.4891E-02 3.3935E-02
2.5E-07 4.4636E-02 4.2630E-02 4.0910E-02 3.9616E-02 3.8161E-02
3.5E-07 4.9275E-02 4.6784E-02 4.5085E-02 4.3727E-02 4.2262E-02
4.5E-07 5.1372E-02 4.9113E-02 4.7475E-02 4.5771E-02 4.4280E-02
5.5E-07 5.3543E-02 5.1010E-02 4.9339E-02 4.7740E-02 4.6064E-02
6.5E-07 5.5289E-02 5.2579E-02 5.0625E-02 4.9022E-02 4.7492E-02
7.5E-07 5.6545E-02 5.3649E-02 5.1758E-02 4.9929E-02 4.8387E-02
8.5E-07 5.7505E-02 5.4773E-02 5.2611E-02 5.0902E-02 4.9418E-02
9.5E-07 5.8281E-02 5.5611E-02 5.3281E-02 5.1186E-02 5.0141E-02
1.5E-06 6.1866E-02 5.8746E-02 5.6590E-02 5.4710E-02 5.3128E-02
2.5E-06 6.4750E-02 6.1907E-02 5.9443E-02 5.7487E-02 5.5843E-02
3.5E-06 6.6380E-02 6.3553E-02 6.0954E-02 5.9491E-02 5.7741E-02
4.5E-06 6.8681E-02 6.5209E-02 6.2687E-02 6.0852E-02 5.9036E-02
5.5E-06 6.9437E-02 6.6269E-02 6.3683E-02 6.1689E-02 6.0054E-02
6.5E-06 7.0197E-02 6.7141E-02 6.4563E-02 6.2446E-02 6.0451E-02
7.5E-06 7.0649E-02 6.7279E-02 6.4688E-02 6.3037E-02 6.1153E-02
8.5E-06 7.1198E-02 6.7908E-02 6.5133E-02 6.2975E-02 6.0795E-02
9.5E-06 7.1720E-02 6.7992E-02 6.5152E-02 6.3303E-02 6.1565E-02
1.5E-05 7.2374E-02 6.9216E-02 6.6501E-02 6.4445E-02 6.2738E-02
2.5E-05 7.3269E-02 6.9835E-02 6.7307E-02 6.5126E-02 6.3742E-02
3.5E-05 7.4052E-02 7.0875E-02 6.7652E-02 6.5767E-02 6.3693E-02
4.5E-05 7.4564E-02 7.0961E-02 6.8554E-02 6.5720E-02 6.4117E-02
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Table 12: Detector efficiency as a function of energy and
source distance away from the central He-3 tube (Part 4).

Average

Energy 41 cm 46 cm 51 cm 56 cm 61 cm
(MeV)

5.5E-05 7.3733E-02 7.0605E-02 6.7900E-02 6.5970E-02 6.3899E-02
6.5E-05 7.3782E-02 7.0411E-02 6.8077E-02 6.5976E-02 6.4223E-02
7.5E-05 7.4191E-02 7.0819E-02 6.8121E-02 6.6143E-02 6.4361E-02
8.5E-05 7.4415E-02 7.0979E-02 6.7991E-02 6.5765E-02 6.4234E-02
9.5E-05 7.4261E-02 7.1272E-02 6.8061E-02 6.5878E-02 6.3852E-02
1.5E-04 7.3873E-02 7.0416E-02 6.8398E-02 6.5914E-02 6.4263E-02
2.5E-04 7.4265E-02 7.1137E-02 6.8011E-02 6.5864E-02 6.4124E-02
3.5E-04 7.4148E-02 7.0746E-02 6.8017E-02 6.6041E-02 6.4236E-02
4.5E-04 7.3837E-02 7.0594E-02 6.7911E-02 6.5998E-02 6.4290E-02
5.5E-04 7.3736E-02 7.0631E-02 6.7947E-02 6.6229E-02 6.4405E-02
6.5E-04 7.3450E-02 7.0333E-02 6.7693E-02 6.5718E-02 6.4210E-02
7.5E-04 7.3399E-02 7.0333E-02 6.7307E-02 6.5643E-02 6.4532E-02
8.5E-04 7.3245E-02 7.0500E-02 6.7799E-02 6.5824E-02 6.3526E-02
9.5E-04 7.3415E-02 7.0168E-02 6.7512E-02 6.5621E-02 6.4382E-02
1.5E-03 7.2457E-02 6.9567E-02 6.7025E-02 6.5015E-02 6.3523E-02
2.5E-03 7.2626E-02 6.9149E-02 6.6895E-02 6.4737E-02 6.3237E-02
3.5E-03 7.2472E-02 6.9137E-02 6.6884E-02 6.4715E-02 6.3358E-02
4.5E-03 7.2264E-02 6.9063E-02 6.5811E-02 6.4142E-02 6.2678E-02
5.5E-03 7.0613E-02 6.7231E-02 6.4645E-02 6.2862E-02 6.1656E-02
6.5E-03 7.1347E-02 6.8107E-02 6.5383E-02 6.3855E-02 6.2207E-02
7.5E-03 7.1604E-02 6.8323E-02 6.5660E-02 6.3443E-02 6.2445E-02
8.5E-03 7.1517E-02 6.8330E-02 6.6069E-02 6.4221E-02 6.2427E-02
9.5E-03 7.1463E-02 6.7970E-02 6.5426E-02 6.3713E-02 6.1888E-02
1.5E-02 7.0321E-02 6.7377E-02 6.4886E-02 6.3612E-02 6.2090E-02
2.5E-02 7.0728E-02 6.8142E-02 6.5433E-02 6.3720E-02 6.2139E-02
3.5E-02 6.5749E-02 6.2508E-02 6.0928E-02 5.9555E-02 5.7634E-02
4.5E-02 6.9465E-02 6.6790E-02 6.4257E-02 6.2757E-02 6.0858E-02
5.5E-02 7.0707E-02 6.7610E-02 6.5483E-02 6.3269E-02 6.1836E-02
6.5E-02 7.0121E-02 6.6850E-02 6.4421E-02 6.2714E-02 6.1188E-02
7.5E-02 7.0066E-02 6.6852E-02 6.4521E-02 6.2613E-02 6.1109E-02
8.5E-02 6.5322E-02 6.2676E-02 6.0739E-02 5.8730E-02 5.7486E-02
9.5E-02 6.7831E-02 6.4902E-02 6.2326E-02 6.0824E-02 5.9640E-02
1.5E-01 6.8713E-02 6.5938E-02 6.4020E-02 6.1710E-02 6.0649E-02
2.5E-01 6.8525E-02 6.6281E-02 6.3005E-02 6.2183E-02 5.9304E-02
3.5E-01 6.8147E-02 6.5295E-02 6.2909E-02 6.0922E-02 5.9467E-02
4.5E-01 6.6951E-02 6.3814E-02 6.1423E-02 6.0308E-02 5.8648E-02
5.5E-01 6.5987E-02 6.3072E-02 6.1293E-02 5.9898E-02 5.8176E-02
6.5E-01 6.4825E-02 6.1933E-02 5.9850E-02 5.8413E-02 5.7147E-02
7.5E-01 6.3363E-02 6.0952E-02 5.8912E-02 5.7616E-02 5.6560E-02
8.5E-01 6.2609E-02 5.9648E-02 5.7256E-02 5.5818E-02 5.5385E-02
9.5E-01 6.1631E-02 5.9349E-02 5.7359E-02 5.5378E-02 5.5181E-02
1.5E+00 5.3677E-02 5.2105E-02 5.1019E-02 5.0251E-02 4.8966E-02
2.5E+400 4.5699E-02 4.3514E-02 4.2101E-02 4.0419E-02 4.0830E-02
3.5E+00 3.9968E-02 3.8050E-02 3.6739E-02 3.6587E-02 3.5357E-02
4.5E4-00 3.4537E-02 3.3313E-02 3.1819E-02 3.1631E-02 3.1799E-02
5.5E+4+00 3.0552E-02 2.9090E-02 2.8661E-02 2.8996E-02 2.7598E-02
6.5E+00 2.7656E-02 2.6543E-02 2.6673E-02 2.5951E-02 2.5454E-02
7.5E+400 2.5405E-02 2.4999E-02 2.4369E-02 2.3650E-02 2.2747E-02
8.5E+00 2.2629E-02 2.2437E-02 2.2141E-02 2.1528E-02 2.0949E-02
9.5E+00 2.0037E-02 1.9591E-02 1.9310E-02 1.8998E-02 1.9316E-02
1.1E401 1.9436E-02 1.8772E-02 1.8570E-02 1.8184E-02 1.7699E-02
1.2E+401 1.8255E-02 1.7730E-02 1.7282E-02 1.7570E-02 1.7631E-02
1.3E401 1.7709E-02 1.7880E-02 1.7361E-02 1.7068E-02 1.6943E-02
1.4E+401 1.6219E-02 1.6036E-02 1.5901E-02 1.6387E-02 1.6234E-02
1.5E401 1.6313E-02 1.6226E-02 1.5926E-02 1.5880E-02 1.5543E-02
1.6E4+01 1.5726E-02 1.5097E-02 1.5380E-02 1.5295E-02 1.5131E-02
1.7E401 1.4959E-02 1.4716E-02 1.4754E-02 1.4650E-02 1.3960E-02
1.8E+4+01 1.4331E-02 1.3861E-02 1.3923E-02 1.3696E-02 1.3642E-02
1.9E401 1.4077E-02 1.3768E-02 1.3587E-02 1.3489E-02 1.3384E-02
2.0E401 1.3932E-02 1.3776E-02 1.3264E-02 1.3206E-02 1.3487E-02
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Front Surface Incoming Current Spectrum for FTC-CF-004 Source

Encapsulated in 304L Stainless Steel per Source Neutron at 36 cm
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Figure 19: Representative detector bounding box front surface incoming neu-
tron spectrum from FTC-CF-004.

removing the detector, this allows for far quicker simulation wall clock times.
Figure |19 shows a representative incoming spectrum. The spectrum is very
similar to the Watt spectrum that is used to characterize the californium-252
spontaneous fission neutron source. The particular energy binning structure,
which is graduated in decades, creates the ‘step’ seen in Figure

To calculate the detector response, and ultimately the expected counts
per second from the MCNP simulations to compare with experiment, the
sum product between the detector response function, o4(E), and the source

spectrum tally, T5(FE), was computed. This quantity was then multiplied by
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the source activity, S,
RPFF = g / 0 EYTWE)E ~ 8" 04 BT, (E;). (10)

The associated uncertainty for the MCNP DRF response, ARPEF is due to a
combination of stochastic uncertainties from MCNP Tallies, from the source
emission strength uncertainty, and from estimated response uncertainty due

to input cross section uncertainty calculated via Denovo. ARPEF is given by

ARPRF = J (V@) e )

where C,.. is defined in Equation 41| and & is given as

AS\?
e=in| (%) + (12)

where AS' is the source emission uncertainty, S is the source emission rate

in counts per second, and ( is given by

e loata 0 () + (355
Sioa(E) Ty (E;) ’

¢ (13)

where AT (E;) is the absolute stochastic uncertainty for tally T at each
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energy F; and Aoy (E;) is given by

where AT, (E;) and ATy, (E;) are the absolue stochastic uncertainties for
tallies T}, and T}, at each energy E; respectively.

In addition to using the detector response function approximation to com-
pare against experiment, MCNP input decks were created that contained
both a detailed source and detector. These input decks were run to directly
calculate the detector response via an F4 tally, T,.. (F), that computed the
full

helium-3 (n,p) reaction rate with an FM card. The full response, R is

given as
ull 3He 1 ActiveReg.
RIM = SV T (Ei) = SVN 3 o) (B) 670 (B) - (15)

where V' is the total active helium-3 tube volume.The associated uncertainty
for the MCNP full response, AR™! is due to a combination of stochastic
uncertainties from MCNP Tallies, from the source emission strength uncer-
tainty, and from estimated response uncertainty due to input cross section

Full

uncertainty calculated via Denovo. AR™ is given by

AR = J (VC_) o (16)

R
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where C,.. is defined in Equation 41| and @ is given as

o= i[5t )| (5 ) ror a7)
where w is defined as \/
Z ATT‘T 7 )
= , 18
Z Trr( z) ( )

where AT, (E;) is the absolute stochastic uncertainty for tally 7). at each
energy FEj;.

Results for both RPFF and R/*!  along with their associated uncertain-
ties, ARPEF and AR/ are compared against experiment in Section [[V]

A sensitivity study was conducted to help bound the effects of uncertain
quantities to the resulting count rates. The study was carried out for source
FTC-CF-004 at 16, 36 and 61 cm away from the central helium-3 tube. For
each of the 84 MCNP runs, there were a total of 1 billion neutron histories
run. Results are summarized in Table [13]

For this particular source and setup combination, the source position and
presence of the floor have the greatest effect on the response count rate. As
the source moves farther away from the detector, the floor becomes increas-
ingly important for reflecting neutrons that otherwise would not have reached
the helium-3 tubes. Inversely, as the source moves closer to the detector, the
detector occupies a larger solid angle with respect to the source. This prox-
imity means a small change in source position has a larger effect on response

count rates.
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Table 13: Sensitivities of neutron source FTC-CF-004 at three collinear
distances away from the center of the detector face computed via perturbed
MCNP wupright spatial setup models. Nominal conditions are given inside
(parentheses).

Model 10 Source (FTC-CF-004) MCNP Simulations
Percent Changes from Prescribed Nominals

Distance
From 16 cm 36 cm 61 cm
Detector

Source Orientation (Upright 0°)
-90°(| -1.13% + 0.0215%|| -2.11% =+ 0.0357%|| -2.23% + 0.0522%

90°| -1.68% + 0.0214%]|| -3.72% =+ 0.0354%|| -5.40% =+ 0.0523%

Source Capsule Material (304L Stainless Steel)
Zircaloy| 0.02% + 0.0216%|| 0.08% =+ 0.0360%| 0.05% =+ 0.0527%

No Capsule|| -0.68% =4 0.0215%]|| -0.80% 4= 0.0359% || -0.65% =+ 0.0526%

Source Position ¥ + 1’ (r; = 0 cm)

=-51-28.94% =+ 0.0204%-18.91% =+ 0.0343%||-11.56% + 0.0512%
=-1]| -6.16% =+ 0.0214%| -3.99% =+ 0.0354%|| -2.41% =+ 0.0521%
=1|| 6.16% =+ 0.0219%|| 4.00% =+ 0.0364%|| 2.38% =+ 0.0526%
=5|| 29.50% + 0.0235%|| 19.56% =+ 0.0376%|| 11.66% =+ 0.0544%

Detector High Density Polyethylene Density (0.95 g/cc)
Den. +1%|| 0.53% =+ 0.0216%|| 0.51% + 0.0361%| 0.44% =+ 0.0528%

Den. +10%|| 4.42% 4+ 0.0218%| 4.31% =+ 0.0361%|| 3.72% =+ 0.0530%

Detector Fill Gas Density (2.0628E-3 g/cc; 4 atm He-3 and 1 atm P-10)
Den. +1%| 0.26% 4 0.0216%| 0.26% =+ 0.0361%| 0.26% =+ 0.0528%

Den. +10%|| 2.48% =+ 0.0218%| 2.48% + 0.0364%| 2.48% =+ 0.0537%

Floor Presence (Concrete NBS 03)
No Floor|| -2.52% =+ 0.0213%|| -7.00% + 0.0351%|-14.23% =+ 0.0511%

Stochastic uncertainties represent a lo

confidence interval in absolute percent. (1E9 Histories)
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III.D Denovo Simulations
III.D.1  Theory

An input model was created for Denovo to obtain response sensitivity and
uncertainty information with regard to microscopic cross section uncertain-
ties via capabilities implemented by R. T. Evans [9]. Denovo is a code de-
velopment from ORNL that solves the three dimensional time-independent

Boltzmann transport equation given as

Q- V(7 Q, E) + 5(F, E)Y(F,Q, E) =

/ Q) /Oo dE' S,(F,Q — QB — EY(F,Q, E) + Q(F,Q, E). (19)
v 0

With the adjoint, first-order sensitivities are obtained for responses such as

nuclide density and reaction rates of the form

e = (0, 0), (20)

where o represents (usually but not necessarily) cross sections (microscopic or
macroscopic), ¢ the scalar flux and (-, ), may denote a user-defined inner-
product space. For convenience, the inner-product can be taken over the

state space. To solve the fixed source problem, recast Equation into an
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equation of the form

Q- V(7 Q, E) + S, Y7, 2, B) = o7, 2, B)+
[dey [T aE s e - @B > B @, B+
4m 0

Y .
’C(i’) | Ay [ B vy B (7 B QL B, (21)
™ 4m 0

where the angular flux ¢ is implicitly a function of the cross sections ¥,
>s and Xy, the fission spectrum x and neutron multiplicity vy which are all
considered input parameters a and, in general, functions of space 7, energy
E and neutron angle €2. In this work, the external source, ¢, corresponds to
the spontaneous fission occurring within the californium-252 sources.

For convenience, Equation [21| may be written in operator form as
My = q, (22)
where
M=L-S-F,

and

L=Q-V§(,Q,E) + (7, By (7, Q, B),

S E/ 19 /Oo dE' .7, — QO E — EY(F, Y, E'),
47 0

X (7, E)

47

F= / 9% / T AE vy(7, NS (F, BV, E).
47 0
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This forward system may be solved to obtain 1. From this, the response ry
may then be computed.

Given the forward, nominal fixed source system in Equation
M (o) 40 = o, (23)

with superscript “0” denoting the nominal state and with a slightly more

general (but no less enlightening) response than in Equation
R(e”) = R(¢° a’) = R" = (o°,4°) | (24)

the sensitivity of the response with respect to a variation in parameters o
is represented as R (€°; h); where €’ = (u°, a®) denotes the nominal values
of the state vector w and parameter vector o while b = (h,,, hy) represent
arbitrary increment vectors in state (h,,) and parameter (hy) spaces. In this
particular case, the state vector contains the angular flux while the parameter
vector contains the cross sections mentioned in the previous section.

As will be shown shortly, because R (€%; h) is linear in the state variable,

the variation in R can consequently be written as
OR (€% h) = R,, (€°) hy + R, (") ha (25)

where R, (€") and R., (€°) denote, respectively, the partial Gateaux deriva-
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tives at € of R (e) with respect to u and a. Taking the Gateaux derivative

j{<30+653) — <(00~|—650) , (¢O+Eh¢)>w}

€

(26)

e=0

Expanding and noting that only the terms that are first-order in € will survive,

the variation is

OR (€% h) = (o°, hw>w + (4o, w0>w . (27)

The first term only contains variations (hy) in the angular flux while the
second term only contains variations (do) contained within the parameter
vector. It is the variations in the state which, at this point, are unknown.
To obtain hy, either the forward sensitivity analysis procedure (FSAP) or the
adjoint sensitivity analysis procedure (ASAP) from [I0] may be performed.
In lieu of the fact that the typical number of input parameters far exceed the
typical number of output parameters in a transport model calculation, the
ASAP will prove computationally more efficient.

To utilize the ASAP and, thus, remove the dependence on hy in the

sensitivity of the response, first, the Gateaux derivative of the system (Equa-

tion is taken:

jﬁ (MO + o) = (4 + ehy))

e=0
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Again, expanding, only terms first-order in € will survive, yielding
V'S M + M°h,, = dq. (29)

Equation is termed the forward sensitivity analysis equation. The un-
known is the variation in the flux, h,. Given a variation(s) in an input
parameter cross section(s), subsequent variations in M and ¢ are readily
available and the system may be solved for h,. To continue towards elimi-
nation of the h, dependency in both Equation 27| and Equation 29 multiply
Equation [29) with an (as of yet) arbitrary function ' and integrate over the

same space utilized in the response
(0!, oMy + (v, Mhy) = (41,dq) (30)

The term multiplying h, may be transferred to 1! by taking the adjoint of

the operator (denoted here as a “dagger” 1)
(0l oMy + (M1 hy) = (vl,5q) . (31)
YT may be chosen specifically such that
My = gt = o° (32)
This apropos choice is exercised by multiplying Equation [32| by h, and inte-
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grating over the appropriate space
(M1 hy) = (0 hy) (33)

recalling Equation 27] and Equation [32] this leads to the following expression

for the response variation
OR (% h) = (v°, 50>w —(yf, ¢05M>w + (v, 5q>w (34)

To obtain the first order sensitivities for response R, a Taylor series expansion

around a nominal point e is carried out

R(e,h):R(eO,h)—i— > ok ooy + ...,
i=1,Na daijleo
R(e,h) — R (60, h) =3 25 05041',
SR (e.h) =Y gf oo (35)

Varying the i*" parameter while leaving the rest zero gives

R LOR o _ /) o 0o\ [ . (OM i 0q
o _8%_& _<¢’8ai>w <¢,w o >w+<¢’8ai K (36)

where S? is referred to as the absolute sensitivity of response R with respect

to input parameter «;.

87 =5t (37)
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is referred to as the relative sensitivity of response R with respect to input
parameter «;.

Thus, the sensitivity of response R (e°) with respect to the input pa-
rameters a can be computed via Equation which only depends on the
forward angular flux (1°), the adjoint angular flux (W), and variations in
the operators due to variations in the parameters. Given other responses,
r = (r;k=1,...,N,), of the same form as Equation , only N, ad-
joint runs need be completed to acquire sensitivities to every parameter in
a = (a;i=1,...,N,). This is opposed to IN, homogeneous forward runs

if one were to utilize just the forward sensitivity analysis equation.

I1I1.D.2 Application

A SCALE input deck, shown in Appendix[C], was created based on the upright
spatial setup used in the MCNP validation exercise [II]. Simulations were
completed with FTC-CF-004 at 16 and 61 cm away from the central helium-3
tube. A simulation at 16 cm with the cadmium front cover was also performed
for comparison.

A three-dimensional, orthogonal mesh was generated with 124 x 95 x 56
cells for the 16 cm simulations while a 92 x 121 x 56 mesh was used for
the 61 cm simulation. In all three runs, the detector was split down the
center and a reflective boundary condition was used. While the detector is
not perfectly symmetric due to the access port for high voltage and data

acquisition cabling, a verification run on a coarser mesh showed a change
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in response of 0.001327% due to reflection. Each simulation was completed
using SCALE’s 200 energy group shielding library “V7-200N47G”. A Gauss-
Legendre quadrature was used with 12 polar and 14 azimuthal angles per
octant, a total of 1344 angles, while a P; expansion was utilized for the
scattering kernel. A step characteristics discretization approximation was
used throughout with an inner and outer iteration absolute solution tolerance
of 1.0E-9.

These discretization choices were necessitated by the restriction of com-
putational resources. The simulations were run in parallel via MPI on a dual
machine cluster with a total of 64 cores and 256 GB of RAM. A finer spatial
mesh would be necessary to obtain response values on the order of accuracy
of the MCNP simulations. Nonetheless, the results presented here serve as a
sound basis for estimates on the sensitivity of the response value with respect
to changes in the cross section input parameters.

A discretization study, utilizing a coarser spatial mesh of 73x 71 x 125 cells
and 27 group energy structure is presented in Table The final run, using
a P5 expansion, Gauss-Legendre quadrature of 12 x 14 angles per octant,
step-characteristics and tolerance of 1.0F —9 serves as a reference point from
which all other percent differences are based.

Figure illustrates the spatial mesh for the 16 cm simulations. The
detector and californium-252 source are split and reflected on their vertical
axis. The source is located collinear with the center of the detector’s front

face 16.1275 ¢cm away from the central point of the central helium-3 detector.
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Table 14: Various combinations of spatial discretizations (weighted di-
amond differencing, step characteristics), angular discretizations (level
symmetric, Gauss-Legendre product), Pn expansion orders (0 — 5), and
solver tolerances (1E-3, 1E-6, 1E-9) were simulated with a fixed spatial
and energy mesh to estimate the amount of discretization error incurred.
Percent differences based on the simulation with the highest number of
degrees of freedom.

Spa. || Ang. | ¢ | po) | Azi || Pn| Tol % Diff.

Des. Des.

WDD LS 4 ; : 0 || 1.00E-03 || -97.1134

WDD LS 8 ] ; 3 || 1.00E-06 | -33.7336

WDD LS 16 ; ; 5 || 1.00E-09 | -3.5827

WDD | GL ; 6 8 3 || 1.00E-06 | -63.4713
SC GL ; 6 8 3 || 1.00E-06 | -49.5191
e CL ; 8 10 || 3 || 1.00E-09 | -0.0887
SC GL ] 10 12 || 3 || 1.00E-09 | -0.0247
SC GL ; 12 14 || 3 || 1.00E-09 || -0.0006
SC GL ; 12 14 || 0 || 1.00E-09 | -16.4770
e GL ; 12 14 || 1 | 1.00E-09 || 0.2445
SC GL ; 12 14 || 2 | 1.00E-00 || 0.0223
SC GL ; 12 14 || 3 || 1.00E-09 || -0.0006
e CL ; 12 14 || 4 || 1.00E-09 | 0.0003
SC GL ; 12 14 || 5 || 1.00E-09 || 0.0000
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Figure 20: Spatial mesh generated via SCALE’s Maverick input sequence.
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Next, Figure Figure and Figure 23| show the top five largest mag-

nitude relative sensitivities of response

R=(Nogls (7 E), 6 (7, E)) = (Soie (7, E) ¢ (", E)),  (38)

where
(o) = [ & [ aEg, (39)

and
o(rF) = aQu (r, QL E) , (40)

ar

with V,.i0e as the volume associated with the active region of the five helium-
3 detectors. Each helium-3 tube has an active length of 50.8 cm and an inner
radius of 1.190625 cm, the total active volume is 1131.185 cm?.

Associated with each sensitivity figure are the corresponding microscopic
cross sections plotted on a secondary axis for reference. The most notable
change from 16 to 61 ¢m is the increase in the absolute magnitude of the sensi-
tivity of the response with respect to cadmium-113 (n, v) reaction type within
the cadmium sheath around the bare detector assembly. For the particular
(predominantly fast) source spectrums of FTC-CF-004 and FTC-CF-053,
the cadmium front cover yields very little change in response and response
sensitivity.

Shown in Table and Table [16] are the top 60 combined relative sen-

sitivities from all three simulations. Each is ranked by its absolute value
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Largest Sensitivities and Respective Cross Sections as a Function of Neutron
1e—2 Energy for Response <E(f§),¢>> at a Source Distance of 16cm
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Figure 21: Largest by integrated magnitude relative microscopic cross section
sensitivities with neutron source FTC-CF-004 a distance of 16.125 cm away
from the central helium-3 tube as a function of neutron energy. These are
paired with their respective cross sections for reference.
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Largest Sensitivities and Respective Cross Sections as a Function of Neutron
le=2 Energy for Response < (n m,¢>> ata Source Dlstance of 61cm
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Figure 22: Largest by integrated magnitude relative microscopic cross section
sensitivities with neutron source FTC-CF-004 a distance of 61.125 cm away
from the central helium-3 tube as a function of neutron energy. These are
paired with their respective cross sections for reference.
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Largest Sensitivities and Respective Cross Sections as a Function of Neutron
1e—2 Energy for Response <E(f§),¢> at a Source Distance of 16cm
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Figure 23: Largest by integrated magnitude relative microscopic cross section
sensitivities with neutron source FTC-CF-004 at a distance of 16.125 ¢m away
from the central helium-3 tube with 0.15875 ¢m thick cadmium front cover
as a function of neutron energy. These are paired with their respective cross
sections for reference.
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and each is designated by the source distance and whether or not the cad-
mium cover was present. Relative sensitivities range from just over 1.0 for the
californium-252 spontaneous fission rate to just under 6E-5 for the cadmium-
113 elastic scatter cross section for the 16 cm no cover simulation.

Lastly, the generated sensitivity information was combined with cross
section covariance data to propagate the uncertainty contribution from the

cross section information to the response value. This process is achieved via
C,.=8C,S", (41)

where C.. is the output response covariance matrix, S = (S{ e S}"VQ)T is
a IN, x 1 dimension vector of relative sensitivities, and C, is an N, X
N, dimension matrix of relative cross section covariances. The covariances
are obtained from SCALE’s 44 group covariance library (revision 5) and
transformed onto the 200 group energy mesh. In this particular work, the
one response, R, yields a 1 x 1 dimension C,., i.e. one scalar response

variance. The overall percent standard deviation, i.e.

x 100

V Crc
R

was found to be 0.3664% of the response value.
To understand the contributions of each individual material, isotope and

reaction type to the overall response uncertainty, the sensitivity vector, S,
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Table 15: Largest magnitude microscopic cross section sensitivities inte-

grated over energy group for response <E

(n,p)’

with and without the cadmium front cover.

*He gf)> for distances 16 and 61 cm,

D(;Zt%ls\?e:_ Material Nuclide || Rxn. Value (-)
61 cm No Cov Source Ct-252 S.F. 1.000075E+00
16 em No Cov Source Ct-252 S.F. 1.000013E+00
16 cm Cover Source Ct-252 S.F. 1.000008E+00
61 cm No Cov Act. Fill Gas He-3 (n,p) || 6.975793E-01
16 em Cover Act. Fill Gas He-3 (n,p) || 6.798563E-01
16 em No Cov Act. Fill Gas He-3 (n,p) || 6.798367E-01
16 cm Cover HDPE Sheath H-1 ElL 5.981877E-01
16 cm No Cov HDPE Sheath H-1 ElL 5.959725E-01
61 cm No Cov HDPE Sheath H-1 El 5.570021E-01
16 cm No Cov || HDPE Sheath H-1 (n,v) || -2.257094E-01
16 cm Cover HDPE Sheath H-1 (n,v) || -2.256494E-01
61 cm No Cov || HDPE Sheath H-1 (n,v) || -2.176688E-01
61 cm No Cov || HDPE In. Crdle H-1 El -2.486313E-02
61 cm No Cov Cd Sheath Cd-113 (n,7y) || -2.404090E-02
61 cm No Cov Concrete H-1 El 1.466112E-02
16 em No Cov Cd Sheath Cd-113 || (n,7) || -1.287175E-02
61 cm No Cov || Inact. Fill Gas He-3 (n,p) | -8.230846E-03
16 cm Cover Cd Sheath Cd-113 (n,7y) || -6.598353E-03
61 cm No Cov HDPE Sheath C El. -5.636768E-03
61 cm No Cov || HDPE In. Crdle H-1 (n,7y) || -5.279760E-03
16 cm No Cov HDPE Sheath C EL -4.428016E-03
16 em Cover HDPE Sheath C El. -4.401700E-03
16 em No Cov || HDPE In. Crdle H-1 El 3.264912E-03
16 em Cover || HDPE In. Crdle H-1 El. 3.262812E-03
16 cm No Cov || Inact. Fill Gas He-3 (n,p) || -2.250142E-03
16 em Cover Inact. Fill Gas He-3 (n,p) || -2.246392E-03
61 cm No Cov Concrete 0O-16 El 1.910412E-03
16 cm Cover || HDPE In. Crdle H-1 (n,7y) || -1.822845E-03
16 em No Cov || HDPE In. Crdle H-1 (n,7) || -1.820148E-03
16 em No Cov Concrete H-1 El 1.284364E-03
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Table 16: Largest magnitude microscopic cross section sensitivities integrated
over energy group for response <ZZ’Z§), q§> for distances 16 and 61 cm, with
and without the cadmium front cover (continued).

Ig?%l;je:_ Material Nuclide | Rxn. Value (-)
16 em Cover Concrete H-1 ElL 1.066591E-03
16 em Cover HDPE In. Crdle C El. 1.019100E-03
16 em No Cov || HDPE In. Crdle C ElL 1.016441E-03
61 cm No Cov Concrete C El 9.064406E-04
61 cm No Cov || HDPE Out Crdle H-1 (n,v) || -8.442705E-04
61 cm No Cov || HDPE Out Crdle H-1 ElL -7.992698E-04
16 em No Cov || HDPE Out Crdle H-1 El. 5.409009E-04
16 em Cover || HDPE Out Crdle H-1 ElL 5.357247E-04
61 cm No Cov || HDPE In. Crdle C El 5.113292E-04
61 cm No Cov Air N-14 ElL -4.762717E-04
61 cm No Cov Concrete H-1 (n,v) || -4.281808E-04
16 em Cover Al Sheath Al-27 El. -3.663768E-04
16 cm No Cov He-3 Al Tube Al-27 (n,v) || -3.380107E-04
16 cm Cover He-3 Al Tube Al-27 (n,7y) || -3.379881E-04
61 cm No Cov He-3 Al Tube Al-27 (n,vy) || -3.217216E-04
61 cm No Cov Al Sheath Al-27 ElL -2.851055E-04
16 em No Cov Al Sheath Al-27 El -2.579803E-04
61 cm No Cov Concrete Si-28 ElL 2.167939E-04
16 cm No Cov || HDPE Out Crdle H-1 (n,7y) || -2.160516E-04
16 cm Cover || HDPE Out Crdle H-1 (n,v) || -2.139809E-04
16 cm No Cov HDPE Sheath C (n,v) || -2.025254E-04
16 cm Cover HDPE Sheath C (n,7y) || -2.024716E-04
16 em Cover Cd Sheath Cd-114 ElL -1.992028E-04
16 em Cover Cd Sheath Cd-112 ElL -1.578123E-04
16 ecm No Cov Concrete O-16 El 1.521616E-04
16 em Cover Concrete 0O-16 ElL 1.445626E-04
16 em Cover Cd Sheath Cd-111 El -8.830421E-05
16 em No Cov Al In. Crdle Al-27 ElL 8.078568E-05
16 em No Cov Concrete C ElL 7.220300E-05
16 em No Cov Cd Sheath Cd-113 El. 5.960251E-05
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can be distributed along the diagonal of an identity matrix

ST 0 0
diag(S)=| o . o |, (42)
and then used as
diag (S) Cadiag (S) . (43)

This block-wise multiplication produces a IN, X N, matrix where each ele-
ment contains the uncertainty contribution from its corresponding material,
isotope and reaction type. Figure [24] plots the top contributing uncertainties
in an illustrative way so as to highlight the overall magnitude of the individ-
ual uncertainty contributions as well as the magnitude of the corresponding
relative sensitivities involved.

The helium-3 (n, p) reaction cross section is responsible for over 90% of the
overall response uncertainty due to cross section uncertainty. Hydrogen-1’s
(n,v) and elastic cross sections follow suit at roughly 8.8 and 2.4%. Table
lists the top 25 contributing constituents to response uncertainty. Note that

off-diagonal terms will come in symmetric pairs.
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Figure 24: Largest contributors to uncertainty in the response due to uncer-
tainties in microscopic cross sections. Each point defines two constituents
whose relative sensitivities and parameter covariance submatrix are multi-
plied. Total response uncertainty contribution (percent standard deviation
of response value) from cross section uncertainties is 0.3664%. The uncer-
tainty contribution shown above is a percentage of this standard deviation.
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Table 17: Largest contributors to uncertainty in the response due to uncer-
tainties in microscopic cross sections. Each row defines the two constituents
whose relative sensitivities and parameter covariance submatrix are multi-
plied. Total response uncertainty contribution (percent standard deviation
of response value) from cross section uncertainties is 0.3664%. The uncer-
tainty contribution shown below is a percentage of this standard deviation.

Squared o U

Constituent 1 Constituent 2 pe ey certainty

Sensitivities .

Contrib.
Active Fill Gas, He-3, (n, p) Active Fill Gas, He-3, (n, p) 4.866168E-01 90.61756
HDPE Sheath, H-1, (n,v) HDPE Sheath, H-1, (n,~) 4.737970E-02 8.82229
HDPE Sheath, H-1, EL HDPE Sheath, H-1, EL. 3.102513E-01 2.35062
Active Fill Gas, He-3, (n, p) Inactive Fill Gas, He-3, (n, p) -5.741667E-03 -2.13842
Inactive Fill Gas, He-3, (n, p) Active Fill Gas, He-3, (n, p) -5.741667E-03 -2.13842
Cd Sheath, Cd-113, (n,~) Cd Sheath, Cd-113, (n,~) 5.779647E-04 1.60104
HDPE Inner Crdle, H-1, (n,v) HDPE Sheath, H-1, (n, ) 1.149239E-03 0.42793
HDPE Sheath, H-1, (n, v) HDPE Inner Crdle, H-1, (n,~) 1.149239E-03 0.42793
HDPE Inner Crdle, H-1, El. HDPE Sheath, H-1, El. —1384882E—02 —021 196
HDPE Sheath, H-1, EL HDPE Inner Crdle, H-1, El. -1.384882E-02 -0.21196
HDPE Sheath, H-1, EL. Floor Concrete, H-1, El. 8.166275E-03 0.11676
Floor Concrete, H-1, El. HDPE Sheath, H-1, El. 8166275E—03 011676
HDPE Sheath, H-1, (n, v) HDPE Outer Crdle, H-1, (n,~) 1.837713E-04 0.06843
HDPE Outer Crdle, H-1, (n, v) HDPE Sheath, H-1, (n, ) 1.837713E-04 0.06843
HDPE Sheath, H-1, (n, ) Floor Conerete, H-1, (n, ~) 9.320160E-05 0.03469
Floor Conerete, H-1, (n, v) HDPE Sheath, H-1, (n, ~) 9.320160E-05 0.03469
Inactive Fill Gas, He-3, (n, p) Inactive Fill Gas, He-3, (n, p) 6.774682E-05 0.01262
HDPE Outer Crdle, H-1, EL. HDPE Sheath, H-1, EL -4.451949E-04 -0.00650
HDPE Sheath, H-1, El. HDPE Outer Crdle, H-1, El. —4451949E—04 _000650
Floor Concrete, H-1, El. HDPE Inner Crdle, H-1, El —3645214E—04 —000605
HDPE Inner Crdle, H-1, EL Floor Concrete, H-1, El. -3.645214E-04 -0.00605
HDPE Sheath, C, Bl HDPE Sheath, C, El. 3.177315E-05 0.00589
HDPE Inner Crdle, H-1, (n, ) HDPE Inner Crdle, H-1, (n,~) 2.787586E-05 0.00519
HDPE Inner Crdle, H-1, El. HDPE Inner Crdle, H-1, El. 6181755E—04 000489
Floor Conrete, H-1, EL Floor Conerete, H-1, Bl 2.149485E-04 0.00318

70




IV Overall Results Comparison

Comparison between the MCNP DREF and full simulations versus experimen-
tal measurements are presented. For both sets of simulations, uncertainties
pertaining to the stochastic nature of the MCNP results, response uncertain-
ties introduced due to uncertainties in input cross section information, and
uncertainty due to the californium source emission rates are addressed.

Table (18 and Table[19|represent the computed count rates of the DRF and
full simulations compared directly to experimentally measured count rates
which are displayed in Figure and Figure respectively. Uncertainty
information about experimental uncertainty (Exp. Unc.), stochastic uncer-
tainty (Sto.), response uncertainty due to cross section data (XS), source
emission rate uncertainty (Src.), and the total combination of stochastic,
cross section data, and source emission uncertainties (Sim. Total) are given
in Table 20 and Table 21] and also displayed as error bars in Figure [25] and
Figure [26]

The DRF approximation simulations add a noticeable positive bias on
the order of 1% as compared to the full simulations. Both simulation sets
fall within the 1o total uncertainty ranges. The largest contributor to un-
certainty is the source emission rate with an uncertainty of 2.4% of 157755
neutrons per second. Next, at roughly an order of magnitude smaller, is the
uncertainty due to cross section data uncertainty which was estimated at

0.3664% of the response value. Then, enough histories within MCNP were
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used to minimize the stochastic uncertainty to the order of the experimen-
tal count rate uncertainty; roughly on the order of 0.25% depending on the
source distance away from the detector.

Overall, this validation exercise serves as a sound base for which to test
inverse algorithm methodologies while attempting to locate and identify nu-
clear holdup via passive neutron assay techniques. If plans to more accurately
bound the source emission data are sucessful, then this would serve to narrow
the overall uncertainties within this work. One other possibility that may be
worth pursuing would be to recreate the experimental Mannhart californium-
252 fission spectrum for use with the MCNP DRF and full simulation runs.
This could potentially bring the simulated response values even closer to the
experimentally measured values.

Appendices [A] [B] and [C] give detailed information for the detector used
and inputs for the MCNP, SCALE, and Denovo codes used to generate the

simulated output dislpayed throughout this work.
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Table 18: Comparison of detector response between simulated MCNP
DRF run and experimental measurements.

lesriz)arrrllce Experimental Simulated Percent
Count Rate Count Rate Difference
Detector
o (c/5) (c/5) (%)

16 4565.001 4587.164 0.4855
21 3402.641 3445.572 1.2617
26 2610.021 2648.537 1.4757
31 2058.254 2103.065 2.1771
36 1676.399 1705.077 1.7107
41 1378.492 1409.865 2.2759
46 1161.146 1186.093 2.1485
51 1000.609 1013.279 1.2662
56 861.684 878.595 1.9625
61 758.584 768.335 1.2855

Table 19: Comparison of detector response between simulated MCNP
Full run and experimental measurements.

D§2a£ce Experimental Simulated Percent
Count Rate Count Rate Difference
Detector o7
i (c/5) (c/5) (%)

16 4565.001 4525.103 -0.8740
21 3402.641 3393.595 -0.2659
26 2610.021 2616.302 0.2407
31 2058.254 2069.340 0.5386
36 1676.399 1680.829 0.2643
41 1378.492 1381.307 0.2042
46 1161.146 1161.272 0.0109
51 1000.609 991.550 -0.9053
56 861.684 859.007 -0.3106
61 758.584 754.228 -0.5742
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Table 20: Comparison of absolute detector response uncertainties
between MCNP DRF run and experimental measurements.

Distance Exp Sim
from : Sto. XS Src. i
Unc. Total
Detector (c/s) (c/s) (c/s)
vector | e/s) (c/s)
16 3.973 8.779 16.807 || 110.092 111.713
21 2.025 7.534 12.625 82.694 83.990
26 1.846 6.529 9.704 63.565 64.632
31 2.419 5.827 7.706 50.474 51.390
36 1.936 5.160 6.247 40.922 41.716
41 1.151 4.637 5.166 33.837 34.542
46 1.997 4.225 4.346 28.466 29.104
51 1.780 3.914 3.713 24.319 24.910
56 1.521 3.627 3.219 21.086 21.637
61 1.372 3.370 2.815 18.440 18.956

Table 21: Comparison of absolute detector response uncertainties
between MCNP Full run and experimental measurements.

Distance Exp Sim
from ’ Sto. XS Src. )
Unc. Total
Detector (c/s) (c/s) (c/s)
(cm) (c/s) (c/s)
16 3.973 6.966 16.580 108.602 110.081
21 2.025 5.991 12.434 81.446 82.607
26 1.846 5.273 9.586 62.791 63.737
31 2.419 4.697 7.582 49.664 50.459
36 1.936 4.235 6.159 40.340 41.026
41 1.151 3.818 5.061 33.151 33.752
46 1.997 3.503 4.255 27.871 28.410
51 1.780 3.201 3.633 23.797 24.291
50 1.521 3.031 3.147 20.616 21.074
61 1.372 2.835 2.763 18.101 18.529
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A Detector CAD Model

Detector measurements were taken at ORNL during the measurement cam-
paign. The detector was disassembled for each piece to be individually mea-
sured. The following figures contained within Appendix [A] are a close ap-
proximation to the detector measurements. Approximations were used when
geometry translation to implicit equations were prohibitive. Specific approx-
imations include the hand truck scoop, shown in Figure {2} the internals of
the junction box, shown in Figure [31] and various bolt or screw holes that
may appear in the CAD drawings but are absent from the actual input deck.

The CAD drawings represent measurements in millimeters and each of
the numbered surfaces is used within the MCNP input deck template. Origin
labels designate the locate origin chosen for input within the MCNP input
deck. If necessary, a piece was then translated and/or rotated to the ap-
propriate global coordinate in MCNP. The drawings in this appendix are no

longer drawn to the scale represented in the title blocks.
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B MCNP Template and Run Scripts

The following Python scripts and input templates give all the necessary
tools to run a sample sensitivity analysis similar to the results in Table [13|
“run_all.py” takes three command-line arguments. “run_all.py” will read in
information from “energy.list”, “sample_perturbations.list”, and
“upright_spatial_setup_FTC-CF-004.mcnp.inp.template”.
Using “spawn_mcnp_child.py”, “run_all.py” will manage all jobs based on the
total number of CPU’s its given until all MCNP runs are complete. “sam-
ple_post_process.py” will read the directory names given in “sample_dir.list”
and mine relevant tally data in each of the runs to produce several comma
separated value files.

Also, “fission_spectrum.txt” was used to generate the comparison fission

spectrums in Maplel7 used in Figure |14}

#1/usr/bin/env python
# W. Cyrus Proctor
import os
import sys
import numpy as np
import math
from spawn_mcnp_child import spawn_mcnp_children
def run_mcnp_jobs():
# Takes three arguments
# 1.) Which file prefix to run
# 2.) Number of processes per file to use

# 3.) Total number of processes to use at once

file_prefix = sys.argv(i]

processes_per_file = int(sys.argv([2])
total_num_processes = int(sys.argv[3])

print "File Prefix:",file prefix

print "Processes per File:",processes_per_file

print "Total Number of Processes:",total_num_processes

if total_num_processes % processes_per_file !=0:
print "WARNING: you will have idle processes!"

# Current working directory
cud = os.getcwd(

template_filename = "upright_spatial_setup FTC-CF-004.mcnp.inp.template"
pert_filename = "sample_perturbations.list"

generate_mcnp_perturbation_decks(file prefix,cwd,template_filename,pert_filename)
#generate_mcnp_rotation_decks(file_prefix,cwd,template_filename,rot_filename)
# exit (0)

run_list = list ()
# Cycle through all directories
for root, dirs, files in os.walk(cwd):
# Cycle through all files
for filename in files:
# Find only files that match the file prefix and end with ".inp"
if filename.startswith(file prefix) and filename.endswith(".inp"):
file_path = root

input_filename = filename
output_filename = filename[:-4]+".out"
restart_filename = filename[:-4]+".runtp"

run_list.append(tuple ((file_path,input_filename,output_filename,)\
restart_filename)))
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for combo in run_list:
print combo

spawn_mcnp_children(total num_processes,processes_per_file,run_list)

def generate_mcnp_perturbation_decks(file_prefix,cwd,template_filename,pert_filename):
with open(pert_filename) as f:
while True:
line = f.readline()
if not line: break
if line([0] #7:
if line.find(’sdist’)
sdist_list = f. readune() spln()
if line.find(’sorient’
sorient_list = f.readline().split()
line. f1nd( smat’)
smat_list = f. readl)ne() split ()
if line. flnd( sden’) !=
sden_list = f. readl)ne() split ()
if line.find(’scoord’
scoord_list = f. read])ne() split ()
if line.find(’pden’) !=
pden_list = f. readlme() split ()
if line.find(’fgden’) != -
fgden_list = f. readhne() split ()
if line.find(’fe’
fe_list = £. readl)ne() split ()
if line.find(’fden’) != -
fden_list = f. readl)ne() split ()

S

il

template = open(template_filename,’r’).read()
count = 1

# Default Indices
isorient_default
ismat_default
isden_default
iscoord_default
ipden_default
ifgden_default
ife_default
ifden_default

# 0 degrees
o # 304L sSS
ismat_default # 8.0 g/cc

# 0 cm off-center

# 0.95 g/cc

# 0.0020628254 g/cc

# Concrete material 14
# 2.35 g/cc

coown

ife_default

for isdist,sdist in enumerate(sdist list
isorient_defa

)smat,defanlt

isden_default
iscoord_default
ipden_default
ifgden_default

ife_default

ifden_default

sorient_list[isorient_default]
smat_list[ismat_default]

sden = sden_list[isden_default]
scoord_list[iscoord_default]
pden_list [ipden_default
fgden_list[ifgden_default]
fe_list[ife_default]

fden = fden_list[ifden_default]

for isorient,sorient in enumerate(sorient_list):
count = create_template(count,cwd,file prefix,isdist,isorient,ismat,isden,iscoord,\
ipden,ifgden,ife,ifden,template,sdist,sorient,smat,sden,scoord,pden,\
fgden, fe,fden)
isorient = isorient_default
sorient = sorient_list[isorient_default]

for ismat,smat in enumerate(smat_list):
count = create_template(count,cwd,file_prefix,isdist,isorient,ismat,isden,iscoord,\
ipden,ifgden,ife,ifden,template,sdist,sorient,smat,sden,scoord,pden,\
fgden,fe,fden)

ismat = ismat_default
isden isden_default
smat = smat_list[ismat_default]
sden = sden_list[isden_default]

for iscoord,scoord in enumerate(scoord_list):
count = create_template(count,cwd,file_prefix,isdist,isorient,ismat,isden,iscoord,\
ipden,ifgden,ife,ifden,template,sdist,sorient,smat,sden,scoord,pden,\
fgden, fe, fden)
iscoord = iscoord_default
scoord scoord_list[iscoord_default]

for ipden,pden in enumerate(pden_list):
count = create_template(count,cud,file_prefix,isdist,isorient,ismat,isden,iscoord,\
ipden,ifgden,ife,ifden,template,sdist,sorient,smat,sden,scoord,pden,\
fgden.fe, fden)
ipden_default
pden_list [ipden_default]

for ifgden,fgden in enumerate(fgden_ list):
count = create_template(count,cwd,file_prefix,isdist,isorient,ismat,isden,iscoord,\
ipden,ifgden’ife,ifden,template,sdist,sorient ,smat,sden,scoord,pden,\
fgden,fe, fden)
ifgden ifgden_default
fgden fgden_list[ifgden_default]

for ife,fe in enumerate(fe_list):
count = create_template (count,cwd,file_prefix,isdist,isorient,ismat,isden,iscoord,\
ipden,ifgden,ife,ifden,template,sdist,sorient,smat,sden,scoord,pden,\
fgden ,fe,fden)

ife = ife_default
ifden ifden_default
fe = fe_list[ife_default]

fden fden_list[ifden_default]

def create_template(count,cwd,file prefix,isdist,isorient,ismat,isden,iscoord,\
ipden,ifgden,ife,ifden,template,sdist,sorient,smat,sden,scoord,pden,\

dir_name = str(isdist) + "_" + str(isorient) + "_" + str(ismat) +\

str(iscoord) + "_" + str(ipdemn) + "_" + str(ifgden) +\

_" + str(ife)

working_template = generate_input_deck(template,sdist,sorient,\
smat , sden, scoord, pden, fgden,fe,fden)

dir_path = cwd + "/% + dir_name

if not os.path.exists(dir_path):
os.makedirs (dir_path

os.chdir(dir_path)

open(file_prefix + "upright_spatial_setup FTC-CF-004_" + dir_name + ".inp","w").write(working_template)

Print strloount) + " Wrote out * + Fileprefix + "upright.spatial.setup FTG-CF-004." + dir.name + " inp in directory: * + dir_path
os.chdir (cwd)

count = count + 1

return count

def generate_input_ deck(:emplate sdist,sorient ,smat,sden,scoord,\
pden , fgden , fe, fde
t = template
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t = t.replace("<smat>",smat)
if float(sden) != 0:

t = t.replace("<sden>",sden)
else:

t = t.replace("<sden>","")
t.replace("<pden>",pden)
t.replace("<fgden>",fgden)
= t.replace("<fe>",fe)
£ float(fe) != 0:
t.replace("<fden>",fden)

kot ot

t.replace("<fden>","")

# Nominal Source Coordinates
sxnom = 0.

synom = float(sdist)

sznom = 29.21

# Perturbed Source Coordinates
sxpert = sxnom + float(scoord)
sypert = synom + float(scoord)

szpert = szmom + float(scoord)

t t.replace("<sxdist>",str(sxpert))
t t.replace("<sydist>",str(sypert))
£ = t.replace("<szdist>"; str/(azpert))

transform_list x_rotation_transform(float(sorient))
= t.replace("<sorient>",’\n’.join(map(str,transform_list)))

return t

def generate mcnp_rotation decks(file prefix,cwd,template filename,rot_filename):
rotation_list = np.loadtxt(rot_filename
template = open(template_filename,’r’).read()
for rot in rotation_list:
transform_list = x_rotation_transform(rot)
working_template = template
working_template orking_template.replace("<<<rotation>>>",
dir_name = str(abs(int(rot)))

\n’.join(map(str,transform_list)))

"neg_" + dir_name

"pos_" + dir_name
cwd + "/" + dif_name
if not os.path.exists(dir_path):
os.makedirs (dir_path
os.chdir (dir_path)
open(file_prefix + "upright_spatial_setup FTC-CF-004_" + dir_name + ".inp","w").write(working_template)
print "Wrote out " + file_prefix + "upright_spatial_setup_ FTC-CF-004_" + dir_name + ".inp in directory:
os. chdir (cwd)

+ dir_path

def x_rotation_transform(deg):
return [1,0,0,0,math.cos(deg*(math.pi/180)),\
-math.sin(deg*(math.pi/180)),0,math.sin(deg*(math.pi/180)),\
math.cos(deg*(math.pi/180))]

if __name__ “__main__":
run_mcnp_jobs ()

fig/menp /run_all.py

#1/usr/bin/env python

# W. Cyrus Proctor

import sys

import subprocess

import os

def spawn_mcnp_children(total num_processes,processes_per_file,run_list):

# Find initial working directory
iwd = os.getcwd ()

child_list = 1list ()
restart_list = list()
is_running_list = list()

process_pool

while True:
if total num_processes - process_pool
Add another child
child,file_path,restart_filename = add_child(run_list,processes_per_file)
if child:
child_list.append(child)
restart_list.append(file path + "/" + restart_filename)
is_running_list.append (1)
process_pool += processes_per_file
# Cycle through all children
for i,a_child in enumerate(child list):
# See if this child has already completed
if is_running_list[i] ==
# Poll child for completion
if a_child.poll() None:
print "\n\nChild",a_child.pid,"is complete!"
Print "sxkkksasxx DULPUL **kksdskxs"
print a_child.communicate () [0],

= processes_per_file:

print "Fxkkxkkx End Dutput kekkkxes’
is_running_list[il = 0
process_pool -= processes_per_file
else:
# Remove runtp files for size
try:
os.remove(restart_list[il)
except OSError:
ass
# Last One
try:

os.remove(restart_list[i])
except OSError:
pass

if process_pool 0 and not run_list:
print "All Runs Complete!"
break

# Change back to initial working directory
o0s. chdir (iwd)
print "Done!"

def add_child(run_list,processes_per_file):
if run_list:
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file_path,input_filename ,output_filename,restart_filename = run_list.pop(0)
else:
return None,None,None
print “\n\nMoving to:",file_path
os.chdir(file_path)
child = spawn_mcnp_child(input_filename ,output_filename,restart_filename,\
processes_per_file
print "Started Child Process:",child.pid

print " In Directory:",file_path

print " Input File:",input_filename

print " Output File:",output_filename

print " Binary Restart File:",restart_filename
rint " Number of Tasks:",processes_per_file

return child,file_path,restart_filename

def spawn_mcnp_child(input_filename,output_filename,restart_filename,\
num_shared_processes):
child = subprocess.Popen(’mcnp5’ + ’ i=’ + input_filename +\
’ 0=’ + output_filename + ’ r=’ + restart_filename + ’° TASKS ’ +\
str(num_shared_processes) + ’ 2>&1°,\
shell=True, stdout = subprocess.PIPE)

return child
# Test Routine
def spawn_mcnp_child(input_filename,output_filename ,num_shared_processes):
child = subprocess.Popen(’sleep 10 && 1ls -1’+\
2>%1’, shell=True, stdout = subprocess.PIPE)

return child

fig/menp /spawn_menp_child.py

#1/usr/bin/env python
Cyrus Proctor

import
import numpy as np

# Change for Windows or Unix
slash = "\\"

# Define all perturbations
sdist_dict = {0:-16.1275}
sorient_dict = {0:-90, 1:0}

smat_dict

sden_dict o

scoord_dict = -6, 2:0, 4:5}

pden_dict = -0.95, 2:-1.045}

fgden_dict = -0.0020628254, 2:-0.00226910794}
fe_dict = 14}

fden_dict = -2.35}

def read_in_data(prefix,dir_filename,energy_filename,):
energy = np.loadtxt(energy_filename)
cwd = os.getcwd ()
dir_list = open(dir_filename).read().split(’\n’)
dir_list = dir_list[:-1]

default_rr_dict = dict()
default_rr_error_dict = dict()

default_rr_sum_dict dict ()
rr_dict = dict ()
rr_error_dict = dict()
rr_diff_dict = dict()
rr_diff_sum_dict = dict()

for isdist in sdist_dict:
default_dir = str(isdist) + "_1.0.2.0.0.0
out_filename = prefix + default_dir + ".out"
os.chdir (cwd + slash + default_dir)
print cwd + slash + default_dir
rr_array,rr_error_array = read_tally(out_filename)
default_rr_dict[isdist] = rr_array
default_rr_error_dict[isdist] = rr_error_array
default_rr_sum_dict[isdist] = np.sum(rr_array)
os.chdir (cwd)

for isdist in sdist_dict:
for isoriemt in sorient_dict:
for ismat in smat_dict:
for iscoord in scoord_dict:
for ipden in pden_dic
for ifgden in fgden_dict:
for ife in fe_dict:
dir = str(isdist)
str(isorient)
str(ismat)
str(iscoord)
str(ipden)
str(ifgden)
str(ife)
out_filename = prefix + dir + ".out"
if os.path.exists(cwd + slash + dir):
os.chdir (cwd + slash + dir
print cud + slash + dir
rr_array,rr_error_array = read_tally(out_filename)

IR

+
+
+
+
+
+

e

rr_dict[dir] = rr_array

rr_error_dict[dir] = rr_error_array

rr_diff _dict[dir] = 100.0 * np.divide(rr_array-default_rr_dict[isdist],default_rr_dict[isdist])
rr_diff_sum_dict[dir] = 100.0 #* np.divide(np.sum(rr_array)-default_rr_sum_dict[isdist],default_rr_sum_dict[isdist])

os.chdir (cwd

return energy,rr_dict,rr_error_dict,rr_diff_dict,rr_diff_sum_dict

def translate(key):

key_list = key.split(’_’)
isdist int (key_list [0])
isorient = int(key_list[1])

ismat int (key_list[2])

isden int(key_list[2]) # should match ismat
iscoord int (key_list [3])

ipden int (key_list [4])

ifgden int (key_list [5])

ife int (key_list [6])

ifden = int(key_list[6]) # should match ife
trans = str(sdist_dict[isdist]) e

str(sorient_dict [isorient])
str(smat_dict [ismat])
str(sden_dict[isden])

e

PR

\
\
\
\
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str(scoord_dict [iscoord])

str(pden_dict [ipden])

str(fgden_dict[ifgden])

str(fe_dict[ifel])

str(fden_dict[ifden])
return trams

PR
e

P

def read_tally(output_filename):
with open(output_filename,"r") as f:
while True:

line = f.readline()

if not line: break

if line.find("cell: total") = -1:
rr_array = np.array ([])
rr_error_array = mp.array([])
f£.readline ()

f.readline ()

if line.find("total") != -1:
break

line = line.split()

rr_array = np.append(rr_array,float(line([1]))

rr_error_array np.append (rr_error_array,float(line[2]))

return rr_array,rTr_error_array

def write_data(filename,energy,rr_dict,rr_error_dict,rr_diff dict,rr_diff_sum_dict):
0

length = 2
precision = length - 7
rr_data energy.reshape (len(energy) ,1)

Tr_error_data energy.reshape (len(energy),1)

rr_diff_data energy .reshape (len(energy) ,1)

rr_diff_sum_data = np.array ([[0.0]])

master_label = "Energy,".rjust(length-2)

for key in rr_dict.keys():
master_label = key + ",".rjust(length+1)
rr_data np.hstack ((rr_data,rr_dict[key].reshape (len(energy),1)))
rr_error_data np.hstack((rr_error_data,rr_error_dict [key].reshape(len(energy),1)))
rr_diff_data np.hstack ((rr_diff_data,rr_diff_dict[key].reshape(len(energy),1)))
rr_diff_sum_data np.hstack ((rr_diff_sum_data,rr_diff_sum_dict [key].reshape(i,1)))

np.savetxt(filename + "_rr" + ".csv',rr_data,header = master_label, fmt = ’%’ + str(lemngth) + ’.’ + str(precision) + ’e’,delimiter=",")
np.savetxt(filename + "_rr_error" + ".csv',rr_error_data,header = master_label, fmt = ’%’ + str(length) + ’.’ + str(precision) + ’e’,delimite
np.savetxt(filename + "_rr_diff" + ".csv',rr_diff_data,header = master_label, fmt = ’%’ + str(lemngth) + ’.’ + str(precision) + ’e’,delimiter=",")
np.savetxt(filename + "_rr_diff_sum" + ".csv',rr_diff_sum_data,header = master_label, fmt = ’%’ + str(length) + ’.’ + str(precision) + ’e’,delimiter="
def main():
energy ,rr_dict,rr_error_dict,rr_diff_dict,rr_diff_sum_dict = \
read_in_data("Olupright_spatial_setup FTC-CF-004_","sample dir.list","energy.list")

write_data("2014-06-13_data_master",energy,rr_dict,rr_error_dict,rr_diff_dict,rr_diff_sum_dict)

if __name a 3

main(

__main__

fig/menp /sample_post_process.py
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fig/menp/energy.list

# sdist

-16.1275

# sorient
0 0

# smat
400

# fgden
-0.0020628254 -0.00226910794
# fe
14
# fden
-2.35

fig/menp /sample_perturbations.list
0_0_0_2_0_0_0
0_.1.0_0_0_0_0
0.1.0_1_0_0_0
0.1.0.2_0.0_0
0_1_0_2_0_1_0
0.1.0_2_1_0_0

fig/menp/sample_dir.list

ORNL He-3 Slab Neutron Detector Template -- Upright
[
¢ Created by: W. Cyrus Proctor
(4 Created on Wednesday April 16, 2014 15:18:18
c Modified on June 11, 2014 09:50:14
c
C
C Cell Cards
(4
C +++++ttttttttttrttts
C Californium Source +
1 -15.10000 -1 $ Cf-252 Sphere
2 200 -0.001205 (-8 -3 6 (11 -3 11 ) $ Capsule Inner Chamber
3 <smat> <sden> -10 -4 5 (3:8:-6 (-8:10:3) $ Capsule Wall with 304L SS density
4 <smat> <sden> -9 -11 7 $ Capsule Cork -- with 304L SS demnsity
C Aluminium Sheath +
(o R
1001 1 -2.698900 +1001 -1002 +1004 -1007 +1008 -1011 $ Aluminium Sheath Bottom
1002 1 -2.698900 +1002 -1003 +1004 -1005 +1008 -1011 $ Aluminium Sheath Negative X
1003 1 -2.698900 +1002 -1003 +1006 -1007 +1008 -1011 $ Aluminium Sheath Positive X
1004 1 -2.698900 +1002 -1003 +1005 -1006 +1008 -1009 $ Aluminium Sheath Negative Y
1005 1 -2.698900 +1002 -1003 +1005 -1006 +1010 -1011 $ Aluminium Sheath Positive Y

C +btttbbb bbbttt
C Cadmium Sheath +
C Hhttrbtbbabiaas




2001 2 -8.650000 +2001 -2002 +2004 -2007 +2008 -2010 $
2002 2 -8.650000 +2002 -2003 +2004 -2005 +2008 -2010 $
2003 2 -8.650000 +2002 -2003 +2006 -2007 +2008 -2010 $
2004 2 -8.650000 +2002 -2003 +2005 -2006 +2009 -2010 $
C 4+ttttitistss
C HDPE Sheath +
C 4+ttttittitid
3001 3 <pden> +3001 -3002 +3003 -3004 +3005 -3006
+3007 +3008 +3009 +3010 +3011 imp:n=1 §
C tttttttiitast
C He-3 Tube #1 +
C +tttibbiitiet
4101 4 <fgden> +4102 -4103 -4107 $
4102 4 <fgden> +4103 -4104 -4107 $
4103 4 <fgden> +4104 -4105 -4107 $
4104 5 -2.698900 (+4101 -4102 -4108):
(+4101 -4105 +4107 -4108) :
(+4105 -4106 -4108) imp:n=1 §
C +htttbbbbbat
C He-3 Tube #2 +
C tbttatbbbttitt
4201 <fgden> +4202 -4203 -4207 $
4202 4 <fgden> +4203 -4204 -4207 $
4203 4 <fgden> +4204 -4205 -4207 $
4204 5 -2.698900  (+4201 -4202 -4208):
(+4201 -4205 +4207 -4208):
(+4205 -4206 -4208) imp:n=1 $
C 4btttitbittaet
C He-3 Tube #3 +
C 4+tttittittist
4301 A <fgden> +4302 -4303 -4307 $
4302 4 <fgden> +4303 -4304 -4307 $
4303 4 <fgden> +4304 -4305 -4307 $
4304 6 -2.698900  (+4301 -4302 -4308):
(+4301 -4305 +4307 -4308) :
(+4305 -4306 -4308) imp:n=1 §
C Hhtttttbbibtatt
C He-3 Tube #4 +
C +dttbbbtbbbait
4401 <fgden> +4402 -4403 -4407
4402 4 <fgden> +4403 -4404 -4407
4403 4 <fgden> +4404 -4405 -4407
4404 5 -2.698900  (+4401 -4402 -4408):
(+4401 -4405 +4407 -4408) :
(+4405 -4406 -4408) imp:n=1 §
C btttabbbttaet
C He-3 Tube #5 +
C 4+tttittittist
4501 <fgden> +4502 -4503 -4507
4502 4 <fgden> +4503 -4504 -4507
4503 4 <fgden> +4504 -4505 -4507
4504 6 -2.698900  (+4501 -4502 -4508):
(+4501 -4505 +4507 -4508) :
(+4505 -4506 -4508) imp:n=1 §
C 4ttttibbiitiet
C Junction Box +
C +Htttbbtbbiiet
5001 -2.698900 +5001 -5002 +5006 -5011 +5012 -5017
+5018 +5019 +5020 +5021 +5022 imp:n=1 §
5002 6 -2.698900 (+5002 -5003 +5006 -5011 +5012 -5017)
#(+5002 -5003 +5008 -5009 +5014 -5015) $
5003 6 -2.698900 (+5003 -5004 +5006 -5011 +5012 -5017)
#(+5003 -5004 +5007 -5010 +5013 -5016) $
5004 6 -2.698900 +5004 -5005 +5006 -5011 +5012 -5017 $
C httttttiitiet
C Inner Cradle +
C +htttbrttbiait
6001 7 -2.698900 +6001 -6002 +6009 -6012 -6016 +6017 impin=1 §
6002 7 -2.698900 (+6002 -6007 +6009 -6012 -6013 +6017)
#(+6003 -6006 +6010 -6011 -6014 +6017)
#(+6004 -6005 +6011 -6012 -6015 +6017) imp:n=1 §
6003 7 -2.698900 +6007 -6008 +6009 -6012 -6016 +6017 imp:n=1 §
C ttttdtbit bbbt
C Imner Cradle HDPE +
C bttt bt bb bbbt
7001 8 <pden>  +7001 =-7006 +7007 =7010 +7011 -7015
#(-7016 +7011 -7012)
#(-7017 +7011 -7012)
#(-7018 +7011 -7012)
#(-7019 +7011 -7012)
#(-7020 +7011 -7012)
#(-7021 +7011 -7012)
#(-7022 +7011 -7012)
#(-7023 +7011 -7012
#(+7002 -7005 +7008 -7009 +7011 -7014)
#(+7003 -7004 +7009 -7010 +7011 -7013) imp:n=1 §
C Hhtbbabbbat
C Outer Cradle +
C ttttabbittitt
8001 9 -2.698900 +8001 -8003 +8011 -8016 -8020 +8021 imp:n=1 §
8002 9 -2.698900 (+8003 -8009 +8011 -8016 -8017 +8021)
#(+8004 -8008 +8012 -8015 -8018 +8021)
#(+8006 -8007 +8015 -8016 -8019 +8021)
8003 9 -2.698900 +8009 -8010 +8011 -8016 -8020 +8021
8004 9 -2.698900 (+8002 -8004 +8013 -8014 -8021 +8023):
(+8004 -8005 +8013 -8014 -8022 +8023)
C bttt bbbttt
C Outer Cradle HDPE +
C ottt tdtbbb bbbttt
9001 10 <pden> +9001 -9002 +9003 -9004 -9005 +9006 imp:n=1 §
9002 10 <pden> +9101 -9102 +9103 -9104 -9105 +9107
#(-9108 -9106 +9107)
#(-9109 -9106 +9107)
#(-9110 -9106 +9107)
#(-9111 -9106 +9107) imp:n=1 §
9003 10 <pden> +9201 -9202 +9203 -9204 -9205 +9207
#(-9208 -9206 +9207)
#(-9209 -9206 +9207)
#(-9210 -9206 +9207)
#(-9211 -9206 +9207) imp:n=1 §$
9004 10 <pden> (+9301 -9304 +9305 -9306 -9307 +9308):
(+9302 -9303 +9305 -9306 -9308 +9309) imp:n=1 §
9005 10 <pden> ((+9401 -9406 +9407 -9408 -9409 +9411):
(49402 -9405 +9407 -9408 -9411 +9412))
#(+9403 -9404 +9407 -9408 -9410 +9412) imp:n=1 §

C 4ttttittitiiies
C Outer Housing +
C ttttbbbitbttd
10001 11

C +htdtdtebebs
C Hand Truck +
C +ttdtdbbbs

-2.698900 (+10001 -10012 +10013 -10018 -10020 +10024
#(+10002 -10011 +10014 -10017 -10021 +10023)
#(+10003 -10010 +10015 -10016 -10023 +10024)
#(+10006 -10009 +10016 -10018 -10022 +10024)
#(-10025 -10023 +10024)

#(-10026 -10023 +10024)

#(-10027 -10023 +10024)

#(-10028 -10023 +10024)

#(-10029 -10023 +10024)

#(-10030 -10023 +10024)

#(-10031 -10023 +10024)

#(-10032 -10023 +10024)):

(+10004 -10005 +10013 -10018 -10019 +10020
(+10007 -10008 +10013 -10018 -10019 +10020)

102

Cadmium
Cadmium
Cadmium
Cadmium

HDPE She.

Tub
Tub
Tub

Tub

He-3
He-3
He-3

Tub
Tub.
Tub

Tub

He-3
He-3
He-3

Tub
Tub
Tub.

Tub

Tub.
Tub
Tub

Tub

He-3
He-3
He-3

Tub
Tub.
Tub

Tub

Junction

Junction

Junction
Junction

Inner Cr

Inner Cr
Inner Cr:

Inner Cr

Outer Cr

Outer
Outer

cr
cr

Outer Cr

Outer Cr

Outer Cr

Outer

Outer

Outer

Cradle

Cradle

Cradle

Sheath
Sheath
Sheath
Sheath

Bottom

Negative X
Positive X
Positive Y

ath

e #1
e #1
e #1

Lower Insensitive
Active Region
Upper Insensitive

e #1 wall

e #2
e #2
e #2

He-3
He-3
He-3

Lower Insensitive
Active Region
Upper Insensitive

e #2 Tube wall

e #3
e #3
e #3

He-3
He-3
He-3

Lower Insensitive
Active Region
Upper Insensitive

e #3 Tube wall

e #4
e #4
e #4

Lower Insensitive
Active Region
Upper Insensitive

e #4 wall

e #5
e #5
e #5

He-3
He-3
He-3

Lower Insensitive
Active Region
Upper Insensitive

e #5 Tube wall

Box Bottom

Lower Section

Box Upper Section
Box Top

adle Bottom Flap

adle

adle Top Flap

adle HDPE

adle Bottom Flap

adle

adle Top Flap

adle Bottom Lip

adle HDPE Back

adle HDPE

HDPE Bottom

HDPE Left

HDPE Right

imp:n=1 $ Outer Housing

Region

Region

Region

Region

Region

Region

Region

Region

Region

Region




11001 12 -2.698900 (+11001 -11002 +11006 -11017 +11018 -11024
#(-11026 +11001 -11002)
#(-11027 +11001 -11002)):
(+11002 -11003 +11006 -11017 +11019 -11020) :
(+11001 -11005 +11007 -11008 +11022
(+11004 -11005 +11007 -11008 +11024
(+11001 -11005 +11015 -11016 +11022
(+#11004 -11005 +11015 -11016 +11024 -11025):
(-11028 +11006 -11017):
(+11001 -11005 +11009 -11010 +11022 -11023):
(+11001 -11005 +11010 -11011 +11021 -11024):
(+11001 -11005 +11012 -11013 +11021 -11024):
(+#11001 -11005 +11013 -11014 +11022 -11023) $ Hand Truck Scoop
11002 12 -2.698900 +11101 -11102 +11103 -11104 $ Hand Truck Left Wheel
11003 12 -2.698900 +11201 -11202 +11203 -11204 $ Hand Truck Right Wheel
11004 12 -2.698900 (+11301 -11302 +11303 -11304 +11306 -11309):
(+11301 -11302 +11304 -11305 +11306 -11307):
+11301 -11302 +11304 -11305 +11308 -11309) $ Hand Truck Left Vertical Support
11005 12 -2.698900 (+11401 -11402 +11404 -11405 +11406 -11409):
+11401 -11402 +11403 -11404 +11406 -11407):
(+11401 -11402 +11403 -11404 +11408 -11409) imp:n=1 $ Hand Truck Right Vertical Support
11006 12 -2.698900 (+11501 -11504 +11505 -11506 +11508 -11509):
(+11501 -11502 +11505 -11506 +11507 -11508)
+11503 -11504 +11505 -11506 +11507 -11508) n=1 § Hand Truck Lower Horizontal Support
11007 12 -2.698900 (+11601 -11604 +11605 -11606 +11608 -11609)
(+11601 -11602 +11605 -11606 +11607 -11608)
(+11603 -11604 +11605 -11606 +11607 -11608) imp:n=1 $ Hand Truck Middle Horizontal Support
11008 12 -2.698900 (+11701 -11704 +11705 -11706 +11708 -11709)
(+11701 -11702 +11705 -11706 +11707 -11708)
(+11708 -11704 +11705 -11706 +11707 -11708) imp:n=1 $ Hand Truck Upper Horizontal Support
11009 12 -2.698900 (+11801 +11803 -11804 +11805 -11806):
(+11802 +11803 -11804 +11807 -11808) imp:n=1 $ Hand Truck Handle
C 4ttatts
C Floor +
C 4ttitts
12001 <fe> <fden> +12001 -12002 +12003 -12004 +12005 -12006 imp:n=1 $ Floor
C bttt bbb bbb bbbt
C Detector Bounding Box +
[ R
13001 13 -0.001205 #1001 #1002 #1003 #1004 #1005
01 #2002 #2003 #2004
#3001
#4101 #4102 #4103 #4104
#4201 #4202 #4203 #4204
#4301 #4302 #4303 #4304
#4401 #4402 #4403 #4404
#4501 #4502 #4503 #4504
#5001 #5002 #5003 #5004
#6001 #6002 #6003
#7001
#8001 #8002 #8003 #8004
#9001 #9002 #9003 #9004 #9005
#10001
(+13001 -13002 +13003 -13004 +13005 -13006) imp:n=1 § Air
[
C Air +
C tad
25001 13 -0.001205 #1 #2 #3 #4
#11001 #11002 #11003 #11004 #11005 #11006
#11007 #11008 #11009
#12001
#(+13001 -13002 +13003 -13004 +13005 -13006)
-50000 i ir
25002 4 +50000 imp:n=0 § Outside
c
c
C Ssurface Cards
c -
c
50000 s0 500

C bttt bbbt
C Californium Source +
C bbbttt

1.681774274e-005
58

0.195!

0.27686

-0.8009
-0.6104
0.6104
0.7866
1.0041
1.1803

Source
Cylinder
Cylinder
Capsule
Capsule
Capsule

-- Capsule Inner Radius
-- Capsule Outer Radius
Outside Radius Bottom
Inside Radius Bottom
Bottom of Cork

Inside Radius Top

Top of Cor!

Outside Radius Top

RRO®~N OO WR

5o

1 kz

L e

C Aluminium Sheath +

C +ttb bbbt
10

1001 Pz
1002 10 pz
1003 10 pz
1004 10 px
1005 10 px
1006 10 px
1007 10 px
1008 10 Py
1009 10 Py
1010 10 Py
1011 0 Py
C +hbtbbbbbbiddttt

C Cadmium Sheath +

C +4ttttitbbiidtts
2001 20 pz
2002 20 pz
2003 20 pz
2004 20 px
2005 20 px
2006 20 px
2007 20 px
2008 20 Py
2009 20 Py
2010 20 Py
C +dttbbittbies

C HDPE Sheath +

C +dttbiittbiis

3001 30 pz
3002 30 pz
3003 30 px
3004 30 px
3005 30 Py
3006 30 Py
3007 30 c/z
3008 30 cl/z
3009 30 c/z
3010 30 c/z
3011 30 c/z
L

C He-3 Tube #1 +

C +httttittbtiit

4101 40 Pz
4102 40 pz
4103 40 Pz
4104 40 pz
4105 40 pz
4106 40 Pz
4107 40 c/z

vhovannns

-1.089220919 0.01085267467 0 -- Cork

0.000000
0.158750
60.96000
-15.55750
-15.39875
15.39875
15.55750
-4.762500
-4.603750
4.603750
4.762500

0.000000

0.0000001 $
60.642499
-15.239999
15.239999

Shifted

1000000
000000
000000
000000
000000

270000
270000
270000
270000
270000

6.032500
12.06500

°

o

S

S

3

S

3
cocococo

0.000000
0.158750
3.810000
54.61000
58.89625
59.05500
-12.06500

°

.000000 1.190625
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4108

[ e
C He-3 Tube #2 +
C +ttttttttets

40

4201 40 Pz
4202 40 pz
4203 40 pz
4204 40 pz
4205 40 pz
4206 40 Pz
4207 40 c/z
4208 40 c/z
C btttdtbbbttatt

C He-3 Tube #3 +

C 4+tttitbittiet

4301 40 pz
4302 40 pz
4303 40 pz
4304 40 pz
4305 40 Pz
4306 40 pz
4307 40 c/z
4308 40 c/z
C +dtttbitbbiait

C He-3 Tube #4 +

C Hhbttabbbttatt

4401 40 pz
4402 40 pz
4403 40 pz
4404 40 pz
4405 40 pz
4406 40 Pz
4407 40 c/z
4408 40 c/z
C tttttttiitiet

C He-3 Tube #5 +

C 4+tttitbiitiet

4501 40 Pz
4502 40 pz
4503 40 Pz
4504 40 pz
4505 40 pz
4506 40 Pz
4507 40 c/z
4508 40 c/z
C Hhtttabbbttatt

C Junction Box +

C 4+tttittittist

5001 50 pz
5002 50 pz
5003 50 pz
5004 50 pz
5005 50 Pz
5006 50 px
5007 50 px
5008 50 px
5009 50 px
5010 50 px
5011 50 px
5012 50 Py
5013 50 Py
5014 50 Py
5015 50 Py
5016 50 Py
5017 50 Py
5018 50 c/z
5019 50 c/z
5020 50 c/z
5021 50 c/z
5022 50 c/z
C htttabbittaet

C Inner Cradle +

C 4tttttttittiet

6001 60 pz
6002 60 pz
6003 60 pz
6004 60 pz
6005 60 Pz
6006 60 pz
6007 60 pz
6008 60 Pz
6009 60 px
6010 60 px
6011 60 px
6012 60 px
6013 60 Py
6014 60 Py
6015 60 Py
6016 60 Py
6017 60 P

v
[ e

C Inner Cradle HDPE +
C +tttbtb bbb

C bttt bbbt
C Outer Cradle +
C +htdtdtd bbb

-12

0.
0.
Do
54
58
59
-6.
-6,

0.
0.
BN
54
58
59
0.
0.

0.
0.
N
54
58
59
6.
6.

0.
0.
o
54
58
59
12
12

0.
0.
4.
9.

0.
5.
5.
66
74
76

8

-8.

0.
5.

)
9

76.
7.
82.
-21.
-16.
16.

~

0.
6.
o
9.
14

13

vanno

73.
82.
89.
89.
95.
-21.
-21.

-6.
6.
21
21

06500

000000
158750
810000
61000
89625
05500
032500
032500

000000
158750
810000
61000
89625
.05500
000000
000000

000000
158750
810000
61000
89625
05500
032500
032500

000000
158750
810000
61000
89625
05500
06500
06500

000000
812800
114800
380220

000000
080000
397500
67500
61250
.83500
15250

890000

000000
080000
94500
20000
47000
55000
27250
19250
19250
27250
000000
985000
937500
525000
60500

33500

000000
080000
397500
715000
207500
97750
55000
53500
85250
25000
59000
27250
350000
350000
27250
59000

oo oo °

oo

oo

coocoo

TSI

80
80

80

000000

000000
1000000

1000000
000000

000000
000000

000000
1000000

000000
000000
000000
000000
000000

540000
540000
540000
540000
01000
01000
01000
01000

cooocoocoo

.27000

190625
.27000

1190625
.27000

190625

.27000

190625
.27000

27000
27000
27000
27000
27000

952500
952500
952500
952500
952500
952500
952500
952500
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y
C bbbt

C Outer Cradle HDPE +
e

9001 90
9002 90
9003 90
9004 90
9005 90
9006 90
C Top Piece
9101 90
9102 90
9103 90
9104 90
9105 90
9106 90
9107 90
9108 90
9109 90
9110 90
9111 90
C Bottom Piece
201 90
9202 90
9203 90
9204 90
9205 90
9206 90
9207 90
9208 90
9209 90
9210 90
9211 90
C Left Piece
9301 90
9302 90
9303 90
9304 90
9305 90
9306 90
9307 90
9308 90
9309 90
C Right Piece
9401 90
9402 90
9403 90
9404 90
9405 90
9406 90
9407 90
9408 90
9409 90
9410 90
9411 90
9412 90

C tttttbbtbtbt

C Outer Housing +

C +brbbaiidit
100

10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032

100
100

C +httttttbebs
C Hand Truck +
C +htdtdbdbdts

C Scoop
11001 110
11002 110
11003 110
11004 110
11005 110
11006 110
11007 110
11008 110
11009 110
11010 110
11011 110
11012 110
11013 110
11014 110
11015 110
11016 110
11017 110
11018 110
11019 110
11020 110
11021 110
11022 110
11023 110
11024 110
11025 110
11026 110
11027 110
11028 110
C Left Wheel
11101 110
11102 110
11103 110

0.000000

-5.080000

84.45500
89.53500
-21.59000
21.59000
0.000000
-13.33500
-19.68500
-19.20875
-9.207500
9.207500
19.20875

-5.080000
0.000000
-21.59000
21.59000
0.000000
-13.33500
-19.68500
-19.20875
-9.207500
9.207500
19.20875

-5.080000

-19.68500

-5.080000

0.000000
89750
77.15250
84.45500
89.53500

@
&

-19.68500

0.000000
0.317500
5.397500
19250
20.00250
73.34250
75.24750
79.05750
82.23250
89.85250
94.93250
95.25000
-27.38438
-27.06688
-21.98688
21.98688
27.06688
27.38438

a

19.12938

0.000000
0.635000
1.270000
8.255000
33500
-22.86000
-16.19250
-15.24000
-14.76375
-12.70000
-11.43000
11.43000
12.70000
14.76375
15.24000
16.19250

@

-21.00000

87.
87.
87.
87.

63000
63000
63000
63000

-3.175000
-3.175000
-3.175000
-3.175000

2.670100
2.670100
2.670100
2.670100

92.
92.
92.
92.

12.
12.
10.

10.
10.

57990
57990
57990
57990

53300
53300
79500

79500
79500

031875
031875
031875
031875

1.031875
1.031875
1.031875
1.031875

952500
952500
952500
952500
952500
952500
952500
952500

cocococoooo

350000
350000
635000

oo

0.635000
10.16000
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11104 110 px
C Right Wheel

11201 110 c/x
11202 110 c/x
11203 110 px
11204 110 px
C Left Vertical Support
11301 110 pz
11302 110 pz
11303 110 px
11304 110 px
11305 110 px
11306 110 Py
11307 110 Py
11308 110 Py
11309 110 Py
C Right Vertical Support
11401 110 pz
11402 110 pz
11403 110 px
11404 110 px
11405 110 px
11406 110 Py
11407 110 Py
11408 110 Py
11409 110 Py
C Lower Horizontal Support
11501 110 pz
11502 110 pz
11503 110 Pz
11504 110 pz
11505 110 px
11506 110 px
11507 110 Py
11508 110 Py
11509 110 Py
C Middle Horizontal Support
11601 110 Pz
11602 110 pz
11603 110 pz
11604 110 pz
11605 110 px
11606 110 px
11607 110 Py
11608 110 Py
11609 110 Py
C Upper Horizontal Support
11701 110 Pz
11702 110 pz
11703 110 pz
11704 110 pz
11705 110 px
11706 110 px
11707 110 Py
11708 110 Py
11709 110 Py
C Handle

11801 110 Pz
11802 110 pz
11803 110 Py
11804 110 Py
11805 110 cly
11806 110 c/y
11807 110 c/y
11808 110 c/y
C o +adttts

C Floor +

C +4dttts

12001 120 pz
12002 120 pz
12003 120 px
12004 120 px
12005 120 Py
12006 120 Py

[
C Detector Bounding Box +
C bttt bbbt bbbt

-16.55500
31.43250
31.43250
16.55500
21.00000

0.635000
12350
-15.24000
-14.76375
-12.70000
19.54496
20.02121
22.87871
23.35496

©
©

0.635000
12350
70000
76375
24000
54496
02121
87871
35496

©
©

12
14.
15.
19.
20.
22.
23.

36.
37.
39.
39.
-14.
14.

67125
14750
05250
52875
76375
76375
20.02121
22.40246
22.87871

64.
65.
66.
67.
-14.
14.
20.
22.
22.

61125
08750
99250
46875
76375
76375
02121
40246
87871

92.55125
93.02745
94.93250
95.40875
-14.76375
14.76375
20.02121
22.40246
22.87871
95.40875
99.12350
20.02121
49500
0.000000
0.000000
0.000000
0.000000

I
@

0.000000
32000
-150.00000
150.00000
-150.00000
150.00000

»
S

10
10

79500
79500

40875
40875
12350
12350

0.635000

10

16000

119120
66880
70000
24000

-0.0000001 $ Shifted Bounding Box le-7 outwards to be unique surfaces for tallys
1

13001 130 Pz

13002 130 Pz 95.25000

13003 130 px -27.384381

13004 130 px 27.384381

13006 130 PY =-0.0000001

13006 130 Py 23.812501

C CCCCCCCCCCCCCeece

C Transformations C

C cceeccceeccecccece

# tri

<sxdist>

<sydist>

<szdist>

<sorient>

£r10 0.0 0.63500 -0.476250

tr20 0.0 0.63500 -0.317500

£r30 0.0 0.00000 -0.158750

£r40 0.0 0.00000  1.428750

tr50 0.0 0.00000 60.48375

£r60 0.0 5.71500 -5.873750

tr70 0.0 -2.85750 -5.873750

+r80 0.0 12.0650 -11.58875

£r90 0.0 17.7800 -6.191250

tr100 0.0 18.4150 -11.58875

tr110 0.0 0.140042 -12.858751

tri20 0.0 0.00000 -33.178751

£r130 0.0 -4.12750 -11.58875

C CCCCCCeeeceeeeee

C Material Input C

€ CCCCCCeeeceeeece

ml 302 1.0

n2 48000 1.0

n3 1001 0.666662
6000 0.333338

nt3 poly .60t

mé 001 -0.008125016100
2003 -0.243122473900
6000 -0.024204598210
18000 -0.724547911700

nS 13027 s

mé 13027 1.0

n7 13027 1.0

ng 1001 0.666662
6000 0.333338

nt8 poly .60t

n9 3027 1.0

mi0 1001 0.666662
6000 0.333338

mt10 poly .60t

mi1 3027 1.0

ni2 13027 1.0

m13 6000 -0.000124
7014 -0.755268
8016 -0.231781
18000 -0.012827

ni4 1001 -0.008485
6000 -0.050064

Aluminium Sheath
Cadmium Sheath

o

HDPE Sheath

@

He-3 4 atm with P-10 quench 1 atm
He-3 Aluminum Tube

Junction Box Aluminum

Inner Cradle Aluminum

e

Inner Cradle HDPE
Outer Cradle Aluminum

wo

Outer Cradle HDPE
Outer Housing Aluminum
Hand Truck Aluminum

oo

@

Air (Dry, Near Sea Level)
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8016 -0.473483

26000 -0.011031 $ Ordinary Concrete NBS 03
m100 98252 1.0 $ Californium-252
m200 6000 -0.000124 $ Air (Dry, Near Sea Level) -- from PNNL

18
m400 6000 -0.0003 $55-304,55-304L (with ENDF-VI) -- from Vised

m500 8016 -0.001197 $Zircaloy -2

50000 -0.013962

C CCCCCCCCCCCCCCCeeee

C Source Definition C

€ cceeeceeccecceeccee

sdef pos=<sxdist> <sydist> <szdist> SUR=0 ERG=D1 CEL=1 RAD=D2
1.18 .03419 $ Watt Fission Spectrum with Coeffs a & b for Cf-252 (MCNP6)

s12 0 1.681774274e-005 $ Sampling Radius from R1 to R2
2 $ Power law p(x) = x°A <-- Specify A

S
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30E+01
40E+01
50E+01
60E+01
TOE+01
BOE+01
90E+01
.00E+01
€ cceeeceeee
C Tallies C
c cceeececee
C Detector Front Surface
5

R R R R R R 0 0~ 0 01 i R 0 0~ O € i R 0 00~ O
°
S
&
¥
S
8

C Detector Back Surface
£21:n 13006

£q31 e c
C Detector Right Surface
£41:n 13004

fcdl right

C ft41 scx 1

cat 01

£q41 e

C Detector Bottom Surface
£51:n 13001

£c51  bottom

C ft51 scx 1

c51 1

£g51 e c

C Detector Top Surface
£61:n 13002

fc61  top
C £t61 scx 1
c61 01

£q61 c

C Inner Detector Front Surface
£71:n 3005

fc71  front

C ft71 scx 1

71 01

£q71

C Imner Detector Back Surface
£81:n 3006

£c81 back

C ft81 scx 1

c81 1

£q81

C Inner Detector Left Surface
£91:n 3003

£q91 e

C Inmer Detector Right Surface
£101:n 3004

£c101 right

C £ft101 scx 1

<101

£q101 e c

C Inner Detector Bottom Surface
£111:n 3001

fc11l bottom

Cc ft111 sex 1

ciit

£qi11 e c

C Inner Detector Top Surface
£121:n 3002

£c121  top

£q121

C He-3 Tubes (Active Regions) Reaction Rates
f4:n 4102 4202 4302 4402 4502 t

fc4 (n,p) Reaction Rate

fmd -1 4

C ft4 secx 1

qd e
€ CCCCeeeeeeee
C Data Cards C
c cceeeececeee
mode n

rand gen=2
C print

fig/mcenp /upright_spatial_setup_FTC-CF-004.mcnp.inp.template

> # W. Cyrus Proctor
> # 01/15/2014
> # Updated 06/13/2014
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> # Updated 11/30/2014

> # Generates the fission spectrum in SCALE 200-Group format for Denovo. Using
Mannhart fit.

v

# Now includes a fit from modified Maxwellian from Mannhart’s experiments
> # Nucl. Sci. Eng., 91, 114 (1985) as well as a comparison from MCNP6 and 5.

> # Calculates area under watt spectrum of Cf-252. Bins are used in

> # MCNP simulations as well as the a and b parameters. With no alteration
> # (point source in vacuum) a source distribution should match this one.
restart

w)th(plobs)

Digits

> # MCNP 5 Cf 252 Spontaneous Fission Watt Spectrum Parameters

a 1.025

b 2.926
> # MCNP 6 Cf-252 Spontaneous Fission Watt Spectrum Parameters
a6 := 1.18

b6 1.03419

> # Mannhart Experimental

> # Nuclear Temperate for C£-252 (MeV)

T := 1.4

3 # Mannhart Maxwellian correction factor for Cf-252
:= proc (E) options operator, arrow; piecewise(E <=
955+o 707e-1%E+(-1)*0.444e-1%E"2+0.1998e-1+E"3+(~1) x0.457e-2+E"4+0.368e-3+E"5,

5§ < E, 1.16+(-1)%0.432e-1%E+0.185e-2*E"2+(~1)*0.316e-4*E"3) end proc

> # MCNP § PDF

:= proc (E) options operator, arrow; exp(-E/a)*sinh(sqrt(b*E)) end proc
> # MCNP 6 PDF
26 := proc (E) options operator, arrow; exp(-E/a6)*sinh(sqrt(b6+E)) end proc
B # Prompt SOWGHID CHONE) CROGEHT ncn Mannhart correction for Cf-252
options operator, ar
Z*R(E)*sqrt(E)*exP( E/T)/(sqrt(P))*T (3/2)) end proc

> # MCNP 5 Normalization Ccnstant
:= evalf (1/(int(£(E), E = 20)))

> # MCNP 6 Normalization Cens tant

C6 := evalf(1/(int(f6(E), E = 0 .. 20)))

> # Mannhart Normalization Constant

Cm := evalf (1/(int(N(E), E = 0 .. 20)))

> # Expected Values
> # MCNP 5

EC := evalf ((int(E*f(E), E = 0 .. 20))/(int(f(E), E = 0 .. 20)))

> # MCNP 6

EC6 := evalf ((int(Exf6(E), E = 0 .. 20))/(int(£6(E), E = 0 .. 20)))
> # Mannhart

ECm := evalf ((int(E*N(E), E = 0 .. 20))/(int(N(E), E = 0 .. 20)))

> # Variance

> # MCNP §

VC := evalf ((int((E-EC) 2xf(E), E = 0 .. 20))/(int(f(E), E = 0 .. 20)))

> # MCNP 6

VC6 := evalf ((int ((E-EC6) 2%f6(E), E = 0 .. 20))/(int(£6(E), E = 0 .. 20)))
> # Mannhart

VCn := evalf ((int ((E-ECm)"2*N(E), E = 0 .. 20))/(int(N(E), E = 0 .. 20)))

> # Energy Grid [1E-5,20 MeV] Copied from Excel with 200 bins

EE := Vector (201, {(1) = 0.10000e-10, (2) = 0.50000e-9, (3) = 0.20000e- 8 (4) =
0.50000e-8, (5) = 0.10000e-7, 0.14500e-7, (7) = 0.21000e-7, (8)
0.30000e-7, (9) 0.40000e-7, 0.50000e-7, 0.70000e-7, (12) -
0.10000e-6, (13) = 0.12500e-6, 0.15000e-6, 0.18400e-6, (16) =
0.22500e-6, (17) = 0.27500e-6, (18) = 0.32500e-6, 0.36680e-6, (20) =
0.41399e-6, (21) = 0.50000e-6, (22) = 0.53158e-6, 0.62506e-6, (24) =
0.68256e-6, (25) = 0.80000e-6, (26) = 0.87643e-6, 0.10000e-5, (28) =
0.10400e-5, (29) = 0.10800e-5, (30) = 0.11253e-5, 0.13000e-5, (32) =
0.14450e-5, 0.18554e-5, (34) = 0.23824e-5, 0.30590e-5, (36) =
0.39279e-5, 0.50435e-5, (38) = 0.64760e-5, 0.83153e-5, (40) =
0.10677e-4, 0.13710e-4, (42) = 0.17604e-4, 0.22603e-4, (44) =
0.29023e-4, 0.37266e-4, (46) = 0.47851e-4, 0.61442e-4, (48) =
0.78893e-4, 0.10130e-3, (50) = 0.13007e-3, 0.16702e-3, (52) =
0.21445¢e-3, 0.27536e-3, (54) = 0.35357e-3, 0.45400e-3, (56) =
0.58295e-3, 0.74852e-3, (58) = 0.96112e-3, 0.12341e-2, (60) =
0.15846e-2, 0.20347e-2, (62) = 0.22487e-2, 0.24852e-2, (64) =
0.261260-2, 0.27465e-2, (66) = 0.30354e-2, 0.33546e-2, (68) =
0.37074e-2, 0.43074e-2, (70) = 0.55308e-2, 0.71017e-2, (72) =
0.91188e-2, 0.10595e-1, (74) = 0.11709e-1, 0.15034e-1, (76) =
0.19305e-1, 0.21875e-1, (78) = 0.23579e-1, 0.24176e-1, (80) =
0.24788e-1, 0.26058e-1, (82) = 0.27000e-1, 0.28501e-1, (84) =
0.31828e-1, 0.34307e-1, (86) = 0.40868e-1, 0.46309e-1, (88) =
0.52475e-1, 0.56562e-1, (90) = 0.67379e-1, 0. =
0.79499e-1, ° . (94) = 0. 5

4

©11109, (97) 12277,
14264, (102) 6, (103) = .15764, 573, (105) =
.18316, (107) 19255, (108) 20242, 21280, (110) =
23518, (112) 24724, (113) 732 28725, (115) =
.29721, (117) 29849, (118) 30197, 33373, (120) =
38774, (122) 40762, (123) 45049, 49787, (125) =
.55023, (127) 57844, (128) 60810, 63928, (130) =
.70651, (132) 74274, (133) 78082, 82085, (135) =
90718, (137) 96164, (138) 0026, 1.1080, (140) =
1.2246, (142) = 1.2874, (143) 3534, 1.4227, (145) = =
1.5724, (147) = 1.6530, (148) 7377, 1.8268, (150) = =
2.0190, (152) = 2.1225, (153) 2313, 2.3069, (155) = =
2.3653, (157) = 2.3852, (158) 4660 2.5924, (160) = =
2.8651, (162) = 3.0119, (163) 1664, 3.8287, (165) = =
4.0657, (167) = 4.4933, (168) 7237 4.9659, (170) = =
5.4881, (172) = 5.7695, (173) 0653, 6.3763, (175) = 6. =
6.7032, (177) = 7.0469, (178) 4082 7.7880, (180) = 8.1873, (181) =
8.6071, (182) = 9.0484, (183) 5123, 10.000, (185) = 10.513, (186) =
11.052, (187) = 11.618, (188) = 12.214, 12.523, (190) = 12.840, (191) =

= 14.918, (196) =

13.499, (192) = 13.840, (193) = 14.191, (194) = 14.550, (195)
15.683, (197) = 16.487, (198) = 16.905, (199) = 17.332, (200) = 19.640, (201)
interface (displayprecision = 30)

> # Uncomment to produce Integrals of PDFs

> # MCNP 5 Integral of

for i to 200 do prxntx‘("740 30f ", evalf(int(C*£(E), E = EE[i] .. EE[i+11))) end
do

> # MCNP 6 Integral of

for i to 200 do pnncr("uo 30f ", evalf(int(C6+£6(E), E = EE[i]l .. EE[i+11)))
end do

> # Mannhart Integral of

for i to 200 do p!)ntf("'/40 30f ", evalf(int(Cm*N(E), E = EE[i] .. EE[i+1])))
end do

fig/menp /fission_spectrum.txt
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C SCALE and Denovo Inputs

Denovo runs were started firstly by creating a SCALE input for MAVRIC.
Materials were input using information from Table [0 and Table [7] Each de-
tector component was given a unique material number, even if the actual
material was the same composition as material in other components. By
having unique material numbers for each component, this allows Denovo to
track separate sensitivities that are not only a function of composition but
also position and/or geometry within the problem. KENO VI geometry spec-
ifications were used when manually converting the MCNP input to SCALE.
Mesh generation occured within the SCALE input deck.

MAVRIC was run in input mode to generate a shielded ampx cross section
library for use in Denovo. The input was run twice with two separate versions
of SCALE. Once, with SCALEG6.1, to generate the ampx file and ice file.
Agian, with a snapshot of a development version of SCALE dated 2012-05-22.
This version contains a set of material mixer routines for volume averaging
that tends to work well for Denovo and is preferred over the SCALEG.1
version. The development version would generate the matertial mixing file
and binary xkba input file read in by Denovo. A covariance library for
cross section uncertainty information was also obtained from the SCALEG.1
version.

With the necessary SCALE files generated, pykba input decks were set

up to complete the forward, adjoint and sensitivity computations. Cross
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sections and mesh information were read in from the SCALE files while run
specific information, boundary conditions, Pn order, quadrature, tolerance,
etc., were input in the pykba input files. Each file was then run in sequence

to generate the corresponding sensitivities.

=mavric parm=(nodose,forinput)
Upright w/ FTC-CF-004

V7-200N47G
read comp
AL 1

6.023709E-02 END
cd 2 4.633948E-02 END
c 3 4.078643E-02 END
H 3 8.157286E-02 END
He-3 4 1.001373E-04 END
c 4 2.503433E-06 END
H 4 1.001373E-05 END
Ar 4 2.253089E-05 END
He-3 5 1.001373E-04 END
c 5 2.503433E-06 END
H 5 1.001373E-05 END
Ar 5 2.253089E-05 END
AL 6 6.023709E-02 END
Al 7 6.023709E-02 END
AL 8 6.023709E-02 END
c 9 4.078643E-02 END
H 9 8.157286E-02 END
AL 10 6.023709E-02 END
@ 11 4.078643E-02 END
H 11 8.157286E-02 END
AL 12 6.023709E-02 END
C 13 7.491768E-09 END
N 13 3.912866E-05 END
0 13 1.051248E-05 END
Ar 13 2.330027E-07 END
H-1 14 1.191457E-02 END

14 5.898872E-03 END
0-16 14 4.189230E-02 END
M 14 1.408077E-03 END
Al-27 14 1.891502E-03 END
1 14 7.311340E-03 END
S 14 1.310802E-04 END
K 14 6.142366E-05 END
ca 14 8.719047E-03 END
Fe 14 2.795390E-04 END

15 1.203336E-04 END

15 7.910881E-04 END

15 4.006868E-05 END

15 2.652018E-05 END

15 3.499632E-05 END

15 2.139693E-05 END

15 1.461153E-07 END

15 9.928043E-07 END

15 7.649022E-04 END

15 1.475059E-02 END

15 1.672410E-03 END

15 4.163044E-04 END

15 8.769213E-04 END

15 3.572256E-03 END

15 5.553304E-02 END

15 1.271437E-03 END

15 1.695598E-04 END

15 5.183905E-03 END

15 1.981852E-03 END

15 8.578767E-05 END

15 2.725891E-04  END

15 6.910545E-05 END

16 3.607278E-02 END
read geometry
Junit 1
’com="He-3 Tube"
’cylinder 10 1.190625 58.89625 54.61000
’cylinder 20 1.190625 54.61000 3.810000
’cylinder 30 1.190625 3.810000 0.158750
’cylinder 40 1.270000 69.05500 0.000000
’cylinder 70 1.270000 60.64250 0.000000
’cylinder 70 1.270000 59.05500 0.000000
’media 5 1
’media 4 1 20
’media 5 1 30
’media 6 1 40 -10 -20 -30
’media o 1 70 -40
’boundary 70
unit 1
com="He-3 Tube"
cylinder 10 1.270000 60.64250 0.000000
cylinder 20 1.190625 60.48375 56.19750
cylinder 30 1.190625 56.19750 5.397500
cylinder 40 1.190625 5.397500 1.746250
cylinder 50 1.270000 1.587500 0.000000
media 6 1 10 -20 -30 -40 -50
media 5 1 20
nedia 1 1 30
media 5 1 40
media 13 1 50
boundary 10
unit
com="HDPE Sheath"
cuboid 10 15.24000 -15.24000 5.080000 -3.810000 60.64250 0.000000
cylinder 20 1.270000 60.64250 0.000000 origin x .06500 .0 .0
cylinder 30 1.270000 60.64250 0.000000 origin -6.032500 .0
cylinder 40 1.270000 60.64250 0.000000 origin 0.0 .0
cylinder 50 1.270000 60.64250 0.000000 origin x=6.032500 .0
cylinder 60 0.000000 origin x=12.06500 .0
hole 1 -12.06500 y=0.0 =z
hole 1 -6.032500 y=0.0
hole 1 x=0.0 y=0.0
hole 1 origin  x=6.032500  y=0.0
hole 1 origin  x=12.06500  y=0.0
media 3 1 10 -20 -30 -40 -50
media 0 1 20 30 40 50 60
boundary 10
unit 3
com="Cadmium Sheath"
cuboid 10 15.39875 -15.39875 4.603750 -4.603750 60.80125 0.000000 origin x=0.0 y=0.63500 z=-0.317500
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cuboid 20
hole 2
’media 2
media 2
media 13
boundary 10
unit 4
con="Aluminun Sheath"
cuboid 10
hole 3
media 1
boundary 10
unit 5
com="Junction Box"
cuboid 10
cuboid 20
cuboid 30
cylinder 40
cylinder 50
cylinder 60
cylinder 70
cylinder 80
media 7
media 13
media 13
media 13
media 13
media 13
media 13
media 13
boundary 10
’unit 6
’com="Inner Cradle"

> cuboid 10
> cuboid 20
> cuboid 30
> cuboid 40
> cuboid 50
> cuboid 60
’media 13
’media 8
’media 13
’media 8
’media 8
’media 13
’hole 4
’hole 5
’boundary 10
unit

com="Inner Cradle"
cuboid 10
cuboid 20
cuboid 30
> cuboid 40
> cuboid 50
cuboid 60
media 13
media 8
media 13
’media 8
’media 8
media 13
hole 4
hole 5
boundary 10
unit 7
com="Inner Cradle HDPE"
cuboid 5
cuboid 10
cuboid 20
cuboid 30
cuboid 140
cuboid 150
yeylinder 40
yeylinder 50
yeylinder 60
yeylinder 70
ycylinder 80
yeylinder 90
yeylinder 100
ycylinder 110
media 13
media 9
media 13
media 13
media 13
media 13
media 13
media 13
media 13
media 13
media 13
media 13
media 8
media 8
hole 6
boundary 5
unit 8
com="0Outer Cradle"
cuboid 10
cuboid 20
cuboid 30
cuboid 40
cuboid 50
cuboid 60
cuboid 70
cuboid 80
cuboid 90
cuboid 100
cuboid 110
cuboid 120
media 13
media 10
media 13
media 10
media 10
media 13
media 10
media 10
media 11
media 11
media 12
media 12
hole 7
boundary 10
unit 9
con="Outer Housing HDPE Back"
cuboid 10
media 11
boundary 10
unit 10
con="Outer Housing HDPE Top"
cuboid 10
media 11
boundary 10

15.24000
origin
1
1
1

15.55750
origin
1

15.55750
14.19098
14.77772

95438
15.95438
15.63688
15.95438
15.95438
95438

origin
origin

15.95438
15.95438
15.63688
15.95438
15.95438
15.95438

1
1

origin
origin

21.27250
21.27250
16.19250
21.27250
15.95438
15.95438
0.952500
0.952500
0.952500
0.952500

01952500

origin
origin

21.
21.
21.
21.
21.

59000
59000
27250
59000
59000

~

.59000
6.350000
6.350000
21.59000

rigin

21.59000
1

21.59000
1

-15.24000
x=0.0
10
10 -20
20
-15.55750 4.762500
x=0.0 y=0.0
10
-15.55750 5.397500
-14.19098 4.030980
-14.77772  4.617720
0.812800 0.000000
0.812800 0.000000
0.812800 0.000000
0.812800 0.000000
0.812800 0.000000
10 -20 -30 -40 -50
20
30
40
50
60
70
80
-15.95438 0.000000
-15.95438  0.000000
-15.63688 -0.317500
-15.95438 -8.572500
-15.95438 -8.572500
15.63688 -2.540000
10 -20 -40 -50
20 -30 -60
30
40
50
60
x=0.0
x=0.0
-15.95438 0.000000
-15.95438 0.000000
-15.63688 -0.317500
-15.95438 -8.572500
-15.95438 -8.572500
15.63688 -2.540000
10 -20
20 -30 -60
30
40
50
60
x=0.0 y=0.0
x=0.0 y=0.0
-21.27250 14.60500
-21.27250 14.60500
-16.19250 9.525000
16.19250 7.937500
-15.95438  0.000000
-15.95438  0.000000
6.985000 0.000000
6.985000 0.000000
6.985000 0.000000
6.985000 0.000000
6.985000 0.000000
6.985000 0.000000
6.985000 0.000000
6.985000 0.000000
5 ~-10 -140 -150
10 -20 -30 -40 -50 -
20
30
40
50
60
70
80
90
100
110
140
150
x=0.0 0
x=0.0 .0
-21.59000 0.000000
-21.59000 0.000000
-21.27250 -0.317500
-21.59000 -14.28750
-21.59000 -14.28750
21.27250 -6.350000
-6.350000 -15.24000
-6.350000 -14.60500
-21.59000 0.000000
-21.59000 0.000000
-21.59000 0.000000
-21.59000 0.000000
10 -20 -40 -50 -70
20 -30 -60
30
40
50
60
70
80
90
100
110
120
x=0.0 y=0.0

-4.603750 60.80125 0.158750 origin
2=0.0
-4.762500 60.96000 0.000000 origin
2=0.0
-4.127500 10.16000 0.000000 origin
-2.760980 .114800 0.812800 i
-3.347720 380220 4.114800
origin -12.06500
origin -6.032500
origin [
origin x=6.032500
origin x=12.06500
-60 -70 -80
-10.89000 82.23250 0.000000 origin
-8.890000 77.15250 5.080000 origin
-8.890000 76.83500 5.397500 origin
-8.890000 82.23250 77.15250 origin
-8.890000 5.080000 0.000000 origin
-8.890000 74.61250 66.67500 origin
2=0.0
2=0.0
-10.89000 77.15250 §5.080000 origin
-8.890000 77.15250 5.080000 origin
-8.890000 76.83500 5.397500 origin
.890000 82.23250 77.15250 origin
-8.890000 5.080000 0.000000 origin
-8.890000 74.61250 66.67500 origin
2=0.0
z=0.0
-2.000000 82.55000 0.000000 origin
0.000000 82.55000 0.000000 origin
0.000000 77.47000 5.080000 origin
0.000000 76.20000 67.94500 origin
-0.317500 82.23250 77.15250 origin
-0.317500 5.080000 0.000000 origin
origin -13.33500 y=-2.85750 z=-3.
origin -3.175000 y=-2.85750
origin 3.175000 y=-2.85750
origin 13.33500
origin -13.33500 y
origin -3.175000 y=-2
origin 3.175000 y=-2.
origin x=13.33500 y=-2.
60 -70 -80 -90 -100 -110
-17.55750 95.25000 0.000000 origin
-14.60500 89.85250 5.397500 origin
-14.60500 89.53500 5.715000 origin
-14.60500 95.25000 89.85250 origin
-14.60500 5.397500 0.000000 origin
-14.60500 82.55000 73.97750 origin
-15.55750 9.207500 5.080000 origin
-15.24000 5.715000 5.080000 origin
-14.28750 5.397500 0.317500 origin
-14.28750 94.93250 89.85250 origin
-14.28750 0.317500 0.000000 origin
-14.28750 95.25000 94.93250 origin
-80 -90 -100 -110 -120
z=0.0

-21.59000 0.000000 -5.080000 84.45500 0.000000 origin
10

-21.59000 0.000000 -5.715000 89.53500 84.45500 origin
10

112

Fhwo

cooooo

x=0.0
x=0.0

33375

13625

x=0.

x=0.

cooooo

cooocooobo0000

0

0

0

y=0.63500 z=-0.

317500

y=0.63500 z=-0.476250
y=0.0 2=60.48375
y=0.0 2=60.48375
y=0.0 2=60.48375

.873750
.873750
.873750
873750
.873750
.873750

y=-2.85750 5.873750
y=-2.85750 5.873750
y=-2.85750 z=-5.873750
y=-2.85750 z=-5.873750
y=-2.85750 5.873750
y=-2.85750 5.873750

58875

58875

2=-11.58875

11.
A,
it
z=-11.

58875

58875
58875
58875
58875

58875
58875
58875
58875

y=17.7800 z=-6.191250

y=17.7800 z=-6.191250




nit
com="Outer Housing
cuboid
media
boundary
unit
com="Outer Housing
cuboid
cuboid
cuboid
media
media
media
boundary
unit
com="Quter Housing

media

boundary

unit

com="Outer Housing
cuboid

cuboid

ycylinder
yeylinder
ycylinder
ycylinder
ycylinder
ycylinder
yeylinder
ycylinder
media
media
media
media
media
media
media
media
media
media
media
media
media
media
media
media
hole

hole

boundary
unit
com="Floor"
cuboid
media
boundary

nit
com="Model 10 Cali.
cuboid

zcylinder
zcylinder
zcylinder

cuboid

> sphere

media

media

media

media

media

boundary

unit

> Y-Position from
> a2=0 Vertical; a
hole

boundary

global unit
cuboid

media

hole

boundary

end geometry

read definitions
gridGeometry 1
planes

2]
27.384380

2

11
HDPE Bottom"
10 2

-70
-40

-0.05

0.000000

0.000000
000000
-19.36750

0.000000
0.000000
-19.36750
-11.43000

1.270000

0.000000
-0.317500
-20.32000
-20.32000
-20.32000

1.270000

1.270000
63750
63750
63750
63750
63750
63750
63750
63750
-80

-50 -60

150.0000

0.27686
-0.8009
-0.6104
0.6104
0.05

1.59000 -21.59000

11 10

10

12

HDPE Left"

10 -21.59000 -26.67000
20 -21.59000 -26.67000
30 -21.59000 -26.67000

13 1 10 -20 -

11 1 20

11 1 30

10

13

HDPE Right"

10 26.67000 21.59000
20 26.67000 21.59000
30 26.67000 21.59000
40 26.67000 21.59000

13 1 10 -20 -

11 1 20 -40

11 1 30 -40

13 1 40

10

14

10 27.38438 -27.38438
20 27.38438 -27.38438
30 27.06688 -27.06688
40 21.98688 -21.98688
50 27.38438 27.06688
60 27.38438 21.98688
70 27.38438 -27.38438
80 27.38438 -27.38438
90 0.952500 -20.32000
100 0.952500 -20.32000
110 0.952500 -20.32000
120 0.952500 -20.32000
130 0.952500 -20.32000
140 0.952500 -20.32000
150 0.952500 -20.32000
160 0.952500 -20.32000

13 1 10 -20

12 1 20 -30

13 1 30

13 1 40

13 1 50

13 1 60

12 1 70

12 1 80

13 1 90

13 1 100

13 1 110

13 1 120

13 1 130

13 1 14

13 1 150

13 1 160

8 origin x=0.0

9 origin x=0.0

10 origin x=0.0

11 origin x=0.0

12 origin x=0.0

13 origin x=0.0

10

15

10 150.0000 -150.0000

14 1 10

10

16
fornium Source"

10 0.27686 -0.27686
20 0.27686  1.1803
30 0.19558  1.1803
40 0.19558  1.0041
50 0.05 -0.05 0.05
50 1.681774274e-005

13 1 10 -20

15 1 20 -30

13 1 30 -40

15 1 40

16 1 50

10

17

10 -200 200

20 -150 150

0 1 10 -20

13 1 20

14 origin x=0.0

15 origin x=0.0
-16 to -61
2=90 Horizontal facing away; a2

16 gin =0.0

10

999

10 200 -200

0 1 10

17 origin x=0

10

27
26.
25
24
23.
22
i,
21.
21.
20.
19
19.
18
17
16.
16.
15.
15
15
5,
15
15.
14
14.
13.
13
12.
12
11.

066880

670000

670000
670000

670000

670000

986880
590000
272500
522500

772500

022500

.272500
522500

772500
192500
954380

.636880
557500

398750

.319375

240000

.TTT720

190980
589000

081000

573000

065000

557000

-5.715000

-19

-19

.68500
36750
.68500

.68500
36750
.68500
.68500

.63750
.63750
.32000
.63750
06500
.63750

0.000000
0.000000
origin
origin
origin
origin
origin
origin
origin
origin

-90 -100

cooooo

-150.00000

-0.27686

-0.05

200
150

.0
0

z=

-200

2=0

-90 Horizontal facing towards
-16.1275 z=29.21

0.000000 -5.080000
89.53500 -5.080000
89.53500 -5.080000
84.45500 0.000000
89.53500 -5.080000
89.53500 -5.080000
84.45500 0.000000
77.15250 68.89750
95.25000 0.000000
95.25000 0.000000
94.93250 0.317500
89.85250 397500
82.23250 73.34250
82.23250 73.34250
79.05750 75.24750
20.00250 16.19250
x=-19.12938 y=18
x=-8.969380 y=18
x=8.969380 y=18
x=19.12938 y=18.
x=-19.12938 y=18
x=-8.969380 y=18.
x=8.969380 y=18.
x=19.12938 y=18.

-110 -120 -130 -140
20.32000 0.000000
1.1803  -0.8009
200.0 -200.0
150.0 -150.0

rotate a1=0.0
200 -200
rotate a1=-90
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-150

origin

origin
origin
origin

origin
origin
origin
origin

origin

-160

origin

a2=0

a2=-91

x=0.

.91865
.91865
.91865
.91865
199115
99115
199115
99115

x=0.

.0

0

cooo

cooocoooo

o

23=90

0

23=0.0

y=17.7800 z=-6.191250

y=0.00000 z=-33.178751
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78.843750
78.263750
77.946250
76.676250
76.358750
75.858750
75.358750
74.858750
74.358750
73.858750
73.358750
72.858750
72.358750
71.596250
71.278750
70.961250
70.643750
69.863970
67.468750
64.598550
63.658750
62.706250
62.388750
62.071250
61.753750
61.296550
60.483750

54.483750
53.483750
52.483750
51.483750
50.483750
49.483750
48.483750
47.483750
46.483750
45.483750
44.483750
43.483750
42.483750
41.483750
40.483750
39.483750
38.483750
37.483750
36.483750
35.483750
34.483750
33.483750
32.483750
31.483750
30.390300
29.825150
29.260000
29.210000
29.160000
28.784550
28.409100
27.409100
26.409100
25.409100
24.409100
23.409100
22.409100
21.409100
20.409100
19.409100
18.409100
17.409100
16.409100
15.409100
14.409100
13.409100
12.409100
11.409100

-27.358751

-33.178751 end

end gridGeometry

end definitions

read sources
src
strength=100
neutrons
sphere 0.0 origin x=20.0 y=0.0 z=1.0
end src

end sources

read importanceMap
gridGeometryid=1
mmsubcells=1
nmtolerance=0.0001

end importanceMap

end data

end

=shell

echo $TMPDIR

cp ${TMPDIR}/i_ice ${RTNDIR}/ice

cp ${TMPDIR}/£t42£001 ${RTNDIR}/xs42.ampx
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cp ${TMPDIR}/xkba_b.inp ${RTNDIR}/xkba_b.inp
end

’zlinear 10 0.0 -150.0

fig/denovo/neup_scale.inp

#1/usr/bin/env python

# File automagically generated on Sun, 30 Nov 2014 13:18:56
# Copywrite (C) 2013 W. Cyrus Proctor & R. Todd Evans

import s
import sc as denovo
import numpy as np

# Begin by initializing the MPI environment
denovo.initialize (sys.argv)

reader = denovo.Mavric_Binary_Input("xkba_ b.inp")
db = denovo.DB("pykba"
reader.read_db(db)

# Specify the number of x-, y- and z- blocks plus number of energy sets for the solves
# based on the number of processes (nodes).Choices seen here are default and are free to change.
if denovo.nodes() == 1:
db. insert ("num_blocks_i", 1)
db.insert ("num_blocks_j", 1)
db.insert ("num_sets", 1)
elif denovo.nodes () 2

» 2)
» 1)

2)
2)

elif denovo.nodes() == 8:
db. insert ("num_blocks_i", 2)
db. insert ("num_blocks_j",
db.insert ("num_sets", 2)
elif denovo.nodes () 6
db.insert ("num_blocks_i", 8)
db. insert ("num_blocks_j", 8)
db. insert ("num_sets",1)
else:
prxnt( "ERROR: Set number of CPUs does not match default blocks * sets"
exit(-1)

db.insert("problem_name
db.insert("eigen_solver
db.insert("eq_set","1")

,"neup")
"arnoldi")

# Multi-group structure options
db.insert ("num_ groups" 200
db.insert("Pn_order",

db. xnsert(”deunscatter”.o 1)
db.insert("partition_upscatter",1,1)
db.insert ("transport_correction","none")

# Within-group solver options
db.insert("tolerance",1.0E-9)
db.insert("max_itr", 500
db.insert("aztec_diag", 0)
db.insert("aztec_output”, 0)

# Quadrature options

if denovo.node() != 0:
db.add_db("quadrature_db"

db.insert("quadrature_db,"quad_type","glproduct")

db.insert("quadrature_db", "polars_octant',12

db.insert("quadrature_db", "azimuthals_octant",14)

"quad_options")

db.insert("quadrature_db","adjoint",0,1)
db.insert("quadrature_db","Pn_order",1)

# boundary conditions
db.insert("boundary", "reflect")
db.add_db("boundary_db","reflect")

db.insert ("boundary_db","reflect",[0, 0, 0, 0, 1, 0],1)

# output options
db.add_db("silo_db","silo_options

db.insert("silo_db","silo_out_moments",1,1)
#db. insert ("silo_ "silo_out_keff",1,1)
db.insert("silo_db","silo_output","forward"

#db.insert ("problem_type","EIGENVALUE")

db.insert("problem_type","FIXED_SOURCE")
db.insert("mg_solver","krylov")
db.add_db("upscatter_db", "upscatter");
!max_itr', 1000)

db.insert("upscatter_db
db.insert("upscatter_db
db.insert("upscatter_db
db.insert("upscatter_db
db.insert("upscatter_db
db.insert("keff",1.0)
db.insert("add_fission_left",1,1)

# Add GPT database
db.add_db("gpt_db","gpt_options")
db.insert("gpt_db","source_data","source")

"aztec_kspace", 5)
"max_itr", 500)

# Make manager, material, and angles
manager = denovo.Manager ()

mat denovo.Mat ()

source = denovo.Zero_Source ()

angles = denovo.Angles()

# partition the problem
manager.partition(db, mat, angles)

# get mapping and mesh objects

mapp = manager.get_map ()
indexer = manager.get_indexer ()
mesh = manager.get_mesh ()

# global and local coll numbers
Gx = indexer.num_global(denovo.X)
indexer.num_global (denovo.Y)
mesh.num_cells_dim(denovo.2)
mesh.nun_cells_dim(denovo.X)
mesh.nun_cells_dim(denovo.Y)
Nz = mesh.num_cells_dim(denovo.Z)

if denovo.node ()
print ">>> Partitioned global mesh with

i x %i cells" % (Gx, Gy, Gz)

# Read in material IDs
matids = denovo.Vec_Int(mapp.num_global(),0)
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for k in xrange(Gz):
ids = denovo.Vec In:(cxxcy 0)
reader.read_ids (ids
for cell in xrange(Gx»Gy)
natids [cell+k*Gx*Gy]=ids [cell]
reader.close ()
denovo.barrier ()
denovo.gsum_Vec_Int (matids)

# Read in the ampx microscopic cross section file and number density file
ampx = denovo.AMPX_Micro (
# ampx.read AMPX (xs file,density file)
ampx .read AMPX(“x542 ampx","ice")
# get the ampx
i © o ampx ids O
mat.build(db,
nat . set_num (i7)
# assign the vacuum
mat.assign_zero (0)
# here we convert ampx ids into material ids
# then we read from the ampx class into the material class.
# the XS_DB class is under the material class Mat
C = int(1e6)
for aid in ampxids:
nid = aid/C
nid = aid - mid*C
# mat.assign_ampx (material id,nuclide id,ampx id,ampx class, density file)
mat.assign_ampx (mid,nid,aid,ampx,"ice")

# we can dump this to a SILO file for later use if desired
if denovo.node ( : mat.write_SILO("XS_200")

# Build macroscopic xs’s from micro for each materials
for mid in xrange(mat.num_mat
mat.build_macro_mat (mid)

#####ssy Cross sections are completely defined at this point

if denovo.node
print "finished readmg from input file"

# here we build the mixing table (materials are spatially homogenized)

table = denovo.Mixing Table ()

table.read("scale.mmt”

mixer = denovo.Macro_Mixer (mat)

mixer.read_table(table)

mixer.mix_with_global_ids(matids,mat)

# Output the geometry SILO file
silo = denovo.SILO()
silo.open("geometry")
silo.close ()

# Assign source data
source_data = denovo.Source_Data(mat.num_groups());

# Mannhart 27-group PDF
if mat.num_groups ()
spectrum = np.array ([ 4 246206E-13, 1.781829E-12, 2.541090E-12, 8.680554E-12,
.189175E-11, 3.335569E-11, 3.443406E-11, 1.907337E-10,
1.207906E-10, 8.226006E-11, 1.225102E-10, 4.437715E-10,
1.198695E-09, 1.254263E-08, 5.157869E-08, 3.665315E-07,
5.542462E-06, 6.495629E-05, 7.073864E-04, 1.429646E-02,
7.959341E-02, 1.657301E-01, 1.629723E-01, 1.105391E-01,

2.306726E-01, 2.082133E-01, 2.720441E-02

P

# Unexpected group structure
se:
print "ERROR: forward.py: Expecting 27 energy group structure!"
exit )

source_mid = 16

source_nid = str(98252)

for g in xrange (mat.num_groups ()):
source_data.set(source_mid,source_nid,’S.F.

print source_data.get(source_mid)

, spectrun[g])

# Assign response data
response_data = denovo.Source_Data(mat.num_groups());
MT = str(103) #’(n,p)’
MID = 4
NID = str(2003) #’He"3’
for g in xrange (mat.num_groups()):

response_data. set(MID NIDHT g,

at.rho(MID, int (NID))*mat.total (MID,int (NID),int (T),g))

here we partition, setup and solve
manager.partition_energy (mat ,angles)

# Display the contents of the database on screen
db. output (

manager . setup (source_data)
manager . verify (

manager .solve (angles)

#eig = denovo.Eigenproblem()
#keff = eig.eigenvalue()

manager . output ()

manager . compute_response ("forvard",response_data)

manager . clear ()

if denovo.node()
P AT R GEAe

manager.close

denovo.finalize ()

fig/denovo/forward.py

#1/usr/bin/env python

# File automagically generated on Sun, 30 Nov 2014 13:18:56
# Copywrite (C) 2013 W. Cyrus Proctor & R. Todd Evans

import sys
import sc as demovo
import numpy as np

# Begin by initializing the MPI environment
denovo.initialize (sys.argv)

reader = denovo.Mavric_Binary_Input ("xkba_b.inp")

db = denovo.DB("pykba")
reader.read_db(db)
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# Specify the number of x-, y- and z- blocks plus number of energy sets for the solves
# based on the number of processes (nodes).Choices seen here are default and are free to change.
if denovo.nodes() == 1:

ity 1)

, 1)

»2)

1)

_iv, 2)

db. insert("num_blocks_j", 2)

db.insert ("num_sets", 1)

elif denovo.nodes ()
db.insert ("num_blocks_i", 2)
db. insert ("num_blocks_j", 2)
db.insert ("num_sets" 2)

elif denovo.nodes () 6
db.insert("num_blocks_i", 8)
db. insert ("num_blocks_j", 8)
db.insert ("num_sets",1)

else:
print "ERROR: Set number of CPUs does not match default blocks * sets"
exit (-1)

db.insert("problem_name","neup")

db.insert("eq_set","1")

# Multi-group structure options
db.insert("num_groups",200)
db.insert("Pn_order",
db.insert("downscatter",0,1)
db.insert("partition_upscatter",1,1)
db.insert("transport_correction none")

# Within-group solver options
db.insert("tolerance",1.0E-9)
db.insert("max_itr", 500)
db.insert("aztec_diag", 0)
db.insert("aztec_output", 0)

# Quadrature options
if denovo.node() !=
db.add_db("quadrature_db"
db.insert ("quadrature_db","quad_ type"."glproducc”)
db.insert("quadrature_db", "polars_octant',l
db.insert("quadrature_db", " azlmnthals,ucbant ", 14)

"quad_options")

db.insert("quadrature_db","adjoint",1,1)
db.insert("quadrature_db","Pn_order",1)

# boundary conditions
db.insert("boundary", "reflect")
db.add_db("boundary_db","reflect")
db.insert("boundary_db","reflect",[0, 0, 0, 0, 1, 0],1)

# output options
db.add_db("silo_db","silo_options")
db.insert("silo_db","silo_out_unknowns",1,1)
db.insert("silo_db","silo_out_moments",1,1)
#db.insert ("silo_db","silo_out_keff",1,1)
db.insert("silo_db","silo_output","adjoint"

#db.insert ("problem_type","EIGENVALUE")
db.insert ("problem_type","FIXED_SOURCE")
db.insert("mg_solver", "krylov'
db.add_db("upscatter_db"
db.insert("upscatter_db
db.insert("upscatter_db
db.insert("upscatter_db
db.insert("upscatter_db
db.insert("upscatter_db"
db.insert ("keff",1.
db.insert("add_fission_left",1,1)
# Add GPT database
db.add_db("gpt_db","gpt_options")
db.insert("gpt_db","source_data

source")

# Make manager, material, and angles
manager = denovo.Manager ()

mat denovo.Mat

source = denovo.Zero_Source ()

angles = denovo.Angles(

# partition the problem
manager.partition(db, mat, angles)

# get mapping and mesh objects

mapp = manager.get_map()
indexer = manager.get_indexer ()
mesh = manager.get_mesh()

# global and local cell numbers
Gx = indexer.num_global(denovo.X)
= indexer.num_global(denovo.Y)
mesh.nun_cells_dim(denovo.Z)
mesh.num_cells_dim(denovo.X)
mesh.nun_cells_dim(denovo.Y)
Nz = mesh.num_cells_dim(denovo.Z)

if denovo.node () 0:
print ">>> Partitioned global mesh with

i x %i cells” % (Gx, Gy, Gz)

# Read in material IDs
matids = denovo.Vec_Int(mapp.num_global(),0)
for k in xrange(Gz):

ids = denovo.Vec In:(cxxcy 0)

reader.read_ids (ids,k)

for cell in xrange (Gx*Gy

natids [cell+k#Gx*Gyl= 1ds[cell]

reader.close
denovo.barrier ()
denovo.gsun_Vec_Int (matids)

# Read in the ampx microscopic cross section file and number density file
ampx = denovo.AMPX_Micro(
# ampx.read_AMPX(xs file, dens)ty file)
ampx.read_AMPX ("xs42. ampx" "ice")
# get the ampx ids
ampxids = ampx.ampx_ids ()
mat.build(db,mapp)
mat.set_num
# assign the vacuunm
mat.assign_zero (0)
# here we comvert ampx ids into material ids.
# then we read from the ampx class into the material class.
# the XS_DB class is under the material class Mat
C = int(1e6)
for aid in ampxids:
mid = aid/C
nid = aid - mid*C
# mat.assign_ampx(material id,nuclide id,ampx id,ampx class, demsity file)
mat.assign_ampx (mid,nid,aid,ampx,"ice")
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# we can dump this i a SILO file for later use if desired
if denovo.node ( : mat.write SILO("XS_27")

# Build macroscopic xs’s from micro for each materials
for mid in xrange(mat.num_mat()):
mat.build_macro_mat (mid

###teaEr Cross sections are completely defined at this point

if denovo.node (
print "finished read)ng from input file"

# here we build the mixing table (materials are spatially homogenized)

table = denovo.Mixing Table()

table.read("scale.mmt”

mixer = denovo.Macro_Mixer (mat)

mixer.read_table (table)

mixer.mix_with_global_ids(matids,mat)

# Output the geometry SILO file
silo = denovo.SILO()
silo.open("geometry")
silo.close

# Assign source data
source_data = denovo.Source_Data(mat.num_groups());

# Mannhart 27-group PDF
if mat.num_groups ()
spectrum = np.array ([ 4 246206E-13, 1.781829E-12, 2.541090E-12, 8.680554E-12,
.189175E-11, 3.335569E-11, 3.443406E-11, 1.907337E-10,
1.207906E-10, 8.226006E-11, 1.225102E-10, 4.437715E-10,
1.198695E-09, 1.254263E-08, 5.157869E-08, 3.665315E-07,
5.542462E-06, 6.495629E-05, 7.073864E-04, 1.429646E-02,
7.959341E-02, 1.657301E-01, 1.629723E-01, 1.105391E-01,

2.306726E-01, 2.082133E-01, 2.720441E-02

P

# Unexpected group structure
se:
print "ERROR: forward.py: Expecting 27 energy group structure!"
exit (-1)

source_mid = 16
source_nid str(98252)
for g in xrange (mat.num_groups ()):
source_data.set (source_mid,source_nid,’S.F.’,g,spectrumigl)
print source_data.get(source mid

# Assign response data
response_data = denovo.Source_Data(mat.num_groups());
MT = str(103) #’(n,p)’
MID 4
NID = str(2003) #’He 3’
for g in xrange(mat.num_group <)>-
response_data.set (MID,NID,MT,
nat . rho (HID - int (NID)) #mat . total (HID, int (NID) , int (MT) ,g))

here we partition, setup and solve
manager.partition_energy (mat,angles)

# Display the comtents of the database on screen
db. output ()

manager . setup (response_data)
nanager . verify O
manager.solve (angles)

manager . output ()

manager . compute_response ("adjoint",source_data)

manager . clear ()

if denovo.node() ==
print "Homogeneous Run Complete"

manager . close

denovo.finalize ()

fig/denovo/adjoint.py

#1/usr/bin/env python

# File automagically generated on Sun, 30 Nov 2014 19:41:49
# Copywrite (C) 2013 W. Cyrus Proctor & R. Todd Evans

import sys
import sc as demovo
import numpy as np

# Begin by initializing the MPI environment
denovo.initialize (sys.argv)

reader = denovo.Mavric_Binary_Input ("xkba_b.inp")
db = denovo.DB("pykba"
reader.read_db (db)

# Specify the number of x-, y- and z- blocks plus number of energy sets for the solves
# based on the number of processes (nodes).Choices seen here are default and are free to change.
if denovo.nodes() == 1:

insert ("num_blocks_i", 1)
db.insert ("num_blocks I
db.insert ("nun_sets", 1)

elif denovo.nodes()
db.insert ("mum_blocks i", 2)
db.insert ("num_blocks_j", 1)
db.insert ("num_sets", 1)
elif denovo.nodes () 4:
db.insert ("num_blocks_i", 2)
db.insert ("num_blocks_j",
db.insert("num_sets", 1)
elif denovo.nodes () 8:
i num_blocks_i", 2)
num_blocks_j",
db.insert ("num_sets",2)
elif denovo.nodes 64:
db.insert ("num_blocks_i", 8)

db.insert ("num_sets",1)

else:
print "ERROR: Set number of CPUs does not match default blocks * sets"
exit

db.insert ("problem_name","neup")

db.insert("eigen_solver","arnoldi
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db.insert("eq_set","1")

# Multi-group structure options
db.insert("num_groups",200)

db.insert ("Pn_order",1

db.insert ("downscatter",0,1)
db.insert("partition_upscatter",1,1)
db.insert("transport_correction”,"none")

# Multi-group Eigenvalue solver options
db.add_db("eigenvalue_db","eigenvalue_options")
db.insert("eigenvalue_db","diagnostic_level, 2)
db.insert("eigenvalue_db","k_tolerance",1.0E-9)
db.insert("eigenvalue_db","L2_tolerance",1.0E-9)
db.insert("eigenvalue_db","energy_dep_ev",1,1)

# Within-group solver options
0E-9)

. 0)

"quad_options")
quad_type","glproduct")
"polars_octant",12)
"azimuthals_octant”,14)
"adjoint",1,1)
"Pn_order",1)

db.insert("quadrature_db"
db.insert("quadrature_db"
db.insert("quadrature_db"
db.insert ("quadrature_db"

# boundary conditions
db.insert("boundary”, "reflect")
db.add_db("boundary_db","reflect")

db.insert ("boundary_db","reflect",[0, 0, 0, 0, 1, 0],1)

output options
db.add_db("silo_db
db.insert("silo_db"

"silo_options
"silo_out_unknowns",1,1)

db.insert("silo_db","silo_out_moments",i,1)
db.insert("silo_db","silo_out_keff",1,1)
db.insert("silo_db","silo_output","adjoint"

db.insert("problem_type","SENSITIVITY")
db.add_db("gpt_db","gpt_options")
db.insert("gpt_db","forward_input","forward")
db.insert ("forward input","forward"

db.insert ("gpt_db","adjoint_input
db.insert ("gpt_db","text_suq_file
db.insert ("gpt_db","silo_suq_file

adjoint")
sensitivity")
sensitivity")

# Make manager, material, and angles
manager = denovo.Manager ()

mat denovo . Mat

source = denovo.General_Source ()
angles = denovo.Angles()

# partition the problem
manager.partition(db, mat, angles)

# get mapping and mesh objects

mapp = manager.get_map()
indexer = manager.get_indexer ()
mesh = manager.get_mesh ()

# global and local cell numbers
= indexer.num_global(denovo.X)
= indexer.num_global(denovo.Y)
Gz = mesh.num_cells_dim(denovo.Z)

= mesh.num_cells_dim(denovo.X)
Ny mesh.num_cells_dim(denovo.Y)
Nz = mesh.num_cells_dim(denovo.Z)

if denovo.node() == 0:
print ">>> Partitioned global mesh with

# Read in material IDs
matids = denovo.Vec_Int(mapp.num_global(),0)
for k in xrange(Gz):

ids = denovo.Vec_Int (Gx*Gy,0)

reader.read_ 1ds(1ds,k

for cell in xrange (Gx

mands[celhkmxmy] 1ds[cell]

reader.close ()
denovo.barrier ()
denovo.gsum_Vec_Int (matids)

# Read in the ampx microscopic cross section file and number density file
ampx = denovo.AMPX_Micro(
# ampx.read AMPX(xs file, ooy file)
ampx.read_AMPX("xsd2.ampx","ice”)
# get the ampx ids
ampxids = ampx.ampx_ids ()
mat.build(db,mapp)
mat.set_num
# assign the vacuunm
mat.assign_zero (0)
# here we convert ampx ids into material ids.
# then we read from the ampx class into the material class.
# the XS_DB class is under the material class Mat
C = int(le6)
for aid in ampxids:
mid = aid/C
nid = aid - mid*C

i x %i cells” % (Gx, Gy, Gz)

# mat.assign_ampx(material id,nuclide id,ampx id,ampx class, demsity file)
")

mat.assign_ampx (mid,nid,aid,anpx,"ice

# we can dump this to a SILO file for later use if desired
if denovo.node ( mat.write SILO("XS_27"

# Build macroscopic xs’s from micro for each materials
for mid in xrange(mat.num_mat()):
mat.build_macro_mat (mid)

(OO @eon Qowions o0 CoNpIOROly GURINCH o e polm
if denovo.node (
print Viinighed) read)ng from input file"
# here we build the mixing table (materials are spatially homogenized)
table = denovo.Mixin, Table()

mixer = denovo.Macro M)xer(mat)
mixer.read_table(table
mixer.mix_with_global_ids(matids,mat)

# Assign source data
source_data = denovo.Source_Data(mat.num_groups());

# Mannhart 27-group PDF
if mat.num_groups ()

spectrum = np.array ([ 4 246206E-13, 1.781829E-12, 2.541090E-12, 8.680554E-12,
.189175E-11, 3.335569E-11, 3.443406E-11, 1.907337E-10,

1.207906E-10, 8.226006E-11, 1.225102E-10, 4.437715E-10,

1.198695E-09, 1.254263E-08, 5.157869E-08, 3.665315E-07,

5.542462E-06, 6.495629E-05, 7.073864E-04, 1.429646E-02,
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7.959341E-02, 1.657301E-01, 1.629723E-01, 1.105391E-01, \
2.306726E-01, 2.082133E-01, 2.720441E-02 1)

# Unexpected group structure
else:

print "ERROR: forward.py: Expecting 27 energy group structure
exit (-1

source_mid = 16

source_nid = str(98252)

for g in xrange (mat.num_groups()):
source_data.set (source_mid,source_nid,’S.F.

print source_data.get (source_mid)

g, spectrunlg])

# Assign response data
response_data = denovo.Source_Data(mat.num_groups());
MT = str(103) #’(n,p)’
MID = 4
NID = str(2003) #’He"3’
for g in xrange(mat.num_groups()):

response_data.set (MID,NID,MT,g,

mat . rho (MID, int (NID))#*mat . total (MID,int (NID),int (MT),g))

# here we partition, setup and solve
manager.partition_energy (mat ,angles)

# Display the comtents of the database on screen
db.output ()

#####4 Compute the sensitivities
if denovo.node()==0: print "Start sensitivity coefficients"
manager.sc_coeff (mat,response_data,source_data)

manager .close

denovo.finalize ()

fig/denovo/sensitivity.py
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4.5. Task E: Implement data integration and inverse methods

These methods build on recent advances in probabilistic inverse problems and data assimilation
methods. Using sensitivities from the radiation transport simulator, the deterministic moments-
based data assimilation method is computationally efficient, where the largest work is expended
into the inversion of a small-to-medium covariance matrix. A Newton-type non-linear
optimization method was employed here. Furthermore, we had anticipated the need to be a
bound-constrained optimization method, so that unphysical solutions are precluded. The
requirement for constrained optimization eliminates many optimization libraries as candidates
for deployment in this module, but some libraries do provide this functionality. Monte Carlo
methods for sampling the solution PDF were also examined, especially if the holdup problem
solution PDF is found to have multiple local maxima. The University of South Carolina was
responsible for completing this task.

The accomplishment of this task was reported in: Dan G. Cacuci and Madalina C. Badea, MULTI-
PRED: A Software Module for Reducing Uncertainties in Predicted Results through Data
Assimilation, Model Calibration and Validation — MULTI-PRED User’s Manual Version 1, University
of South Carolina, November 2016. This document is replicated on the following pages.

300



MULTI-PRED: A Software Module for
Reducing Uncertainties in Predicted
Results through Data Assimilation, Model
Calibration and Validation

MULTI-PRED User’s Manual Version 1

November 2016
Dan G. Cacuci and Madalina C. Badea

University of South Carolina

Department of Mechanical Engineering,

300 Main Street, Columbia, SC 29208, USA
badea@cec.sc.edu






Table of Contents

1
2

3

Fundamentals of Predictive Modeling
Iustrative Examples ..........................

2.1 A Simple Time-Independent Neutro
2.2 Time-Dependent A Spent Fuel Diss

MULTI-PRED Module........................
3.1 (] 1
3.2 Input data and their preparation....
3.3 Output data.........cceeeveereeiereennne.
3.4  Display results..........ccoceeievieenennn.

n Diffusion Model ........cc.ooevvveeeiiiiiieeeen, 20
OIVEr MOAEL ..., 27



1 Fundamentals of Predictive Modeling

The MULTI-PRED module embodies the time-dependent predictive modeling methodology
of Cacuci and lonescu-Bujor [Ca2010a], which considers a time-dependent generic physical

system comprises N’ model parameters and N; distinct responses, respectively, at every
time node v = 1,2,..,N,. Hence, at every time node v, the (column) vector «” of J! system
parameters, and the (column) vector r” of J/ measured responses can be represented in

component form as

@ ={ayIn=1.NZ} " ={fli=1...Ny}, v=1.. N, (1.1)

At any time node v, the system parameters are considered to be variates with mean values
(ao )V. Furthermore, the correlations between two parameters o and «f, at two time nodes

u and v, have the general form

ety = (o -(a) [ at () ) (1.2)

The above covariances constitute the elements of symmetric covariance matrices of the

form
y T
Célv E<(a—a0)ﬂ[(a—ao) j| >:(C5V)T :C;ﬂ :(C;‘u)f (13)

Similarly, the measured responses are characterized by mean values (r,)" at a time node

v, and by symmetric covariance matrices between two time nodes x and v defined as

cu E<(r_rm V() T>:(c;;V)T ey =(cy) (1.4)



In the most general case, the measured responses may be correlated to the parameters

through symmetric response-parameter uncertainty matrices of the form
v H 0\ ' v T 7 7 U
Cly =((r-n,) (a—a ) :(Cﬁl) =Cr§:(Cr§) (1.5)

Note that the matrices C* are not bona-fide variance-covariance matrices, in that they are

not necessarily square positive matrices (often, they are rectangular), and the elements on
their respective main diagonals (if they happen to be square) are also covariances (or
correlations) rather that variances.

At any given time node v, a response r” can be a function of not only the system

parameters at time node v, but also of the system parameters at all previous time nodes x,
I<u<v ; this means that r"'=R" (p“) , where the vector p” E(al,...,a",...,a") has been

introduced for notational convenience. In general, the response computed using the model
depends nonlinearly and implicitly (in an analytically intractable form) on the model
parameters. Furthermore, the uncertainties in parameters and modeling induce uncertainties in
the computed responses, and can be computed either by means of statistical methods (for
relatively simple models with few parameters) or deterministically, by using the propagation
of moments (errors) method, as described by [Ca2003]. In this method, the computed

response is linearized via a functional Taylor-series expansion around the nominal values,

Po ((azo)1 ,...,(ao)” ,...,(ao)vj , of the parameters p”, as follows:

rv:Rv(,,v):Rv(,,g)ésw(pg)[a#_(aO)”}..., v LN, (16)

where R” ( )2 ) denotes the vector of computed responses at a time node v, at the nominal

parameter values p;, while §™ (pg’) , 1<u<v, represents the (J,V xJ# )—dimensional matrix

containing the first Gateaux-derivatives of the computed responses with respect to the

parameters, defined as



R/ ( i ) ORY ( i )
Py P
S sk “ - o
Svﬂ(pél)z Sil;]’u = aaiﬂ < u<y (17)
ST ”
R} (p4!) R} (p4')
oaf! oay

Since the response R'(pjy) at time node v can depend only on parameters (ao)” which

appear up to the current time node v, it follows that §" =0 when x>v, and hence non-zero
terms in the expansion shown in (1.6) can only occur in the range 1< x<v. It is important to

note that discretization parameters are also included among the components of «, and the
sensitivities of responses to such discretization parameters can be computed as described in
[Ca2003].

By introducing the block matrix

st 0
Ss=| ., (1.8)
gl SN
and the (block) column vectors
az(al,...,a”,...,aN‘), (1.9)
rs(rl,...,r”,...,rN‘), (1.10)
R(a")=(R' .. .R" . .R™), (1.11)

the system shown in (1.6) can be written in the form

r:R(a°)+S(a—a°)+higher order terms (1.12)



Applying the propagation of errors method to (1.12), which involves the formal integration
of the over the unknown joint distributions of the parameters « , yields the following

expressions for the expectation value, (r), of the response r, and the corresponding

covariance matrix, C,, (ao) , of the computed responses, i.e.,

(r)=R(a"), (1.13)

and

Co(a”)=(sror')=[ 5(a"))(5asa’ [ ()] =[5(a*)]C.[5(a")] . (1.14)
The covariance matrix of the computed responses, C,., has the symmetric structure

11 1IN
cll ...
C.= : . :

b

N, 1 NN,
Crc o Crc

with components defined as

|4

Cfé’:Zﬁ:sV"CZP(SyP)T:(Cr/éV)T; vou= 1., N;. (1.15)

n=1p=1

As indicated by (1.13), the expectation value of the computed responses for linearized
models in which the numerical errors are neglected is given by the value of the response
computed at the nominal parameter-values.

According to the maximum entropy algorithm described in [Ca2010a], to the
computational and experimental information described in (1.1) through (1.15) indicates that
the most objective probability distribution for this information is a multivariate Gaussian of

the form



1
o500 e <o s
Pel€)d(z) det(27C)"” d(z),Q(z)=2"C"z, Zj < (1.16)

where:
—a° 1 . N,
ZE[“ aJ,aOé(((zo) @) () ) (1.17)
r—rm
c, C
cz( @ ar], (1.18)
C, Cn
with
c' ¢ ... cll ¢
21 22 21 22
Ca:C“ c? .. . C, - Ca Cat = | and
.o e O
clloc?
c - cil ¢z
m
CNlNI
* m

The posterior information, which is contained in (1.16) and (1.12), can now be condensed
into a recommended best-estimate value (zbe )V at a time node v for the parameters «” and

responses r”, together with corresponding best-estimate recommended uncertainties for these
quantities. If a loss function is given, decision theory indicates how these best-estimate

quantities are to be computed. If no specific loss function is provided, the recommended best-
estimate updated posterior mean vector (zbe )V and its respective best-estimate posterior

covariance matrix are usually evaluated by assuming “quadratic loss”. In such a case, the bulk

of the contribution to the distribution p(z|C) in (1.16) is extracted by computing it at the

point in phase space where the respective exponent attains its minimum, subject to (1.12).

Subsequent computations are facilitated by recasting (1.12) in the form



Z(ao)z+d:0, dER(ao)—rm, (1.19)

where z(r,#,...,rnﬁ‘,...,rnﬁ‘l) is the vector comprising all of the experimentally measured

responses, d ER(ao)—Vm is a vector of “deviations” reflecting the discrepancies between the

nominal computations and the nominally measured responses, while Z denotes the

partitioned matrix

zZ=(§ U);, U= 1 . i |, (1.20)
0 .. —JNMN

where 1',v=1,...,N,, denotes the identity matrix of corresponding dimensions.
Computing the stationary point of Q(z) subject to (1.19) poses a constrained minimization

problem which can be solved by introducing Lagrange multipliers, 4, to construct the

augmented Lagrangian functional P(z,1) defined as
abe _aO
P(z,l)EQ(z)JrUT[Z(ao)z+d]=min, atz=z"= . (1.21)

where 4= (,11 ,...,iv,...,le) denotes the corresponding vector of Lagrange multipliers. In the

above expression, the superscript “be” denotes “best-estimated values”, and the factor “2”
was introduced for convenience in front of 4 in order to simplify the subsequent algebraic

be

derivations. The point z*° where the functional P(z,4) attains its extremum (minimum) is

defined implicitly through the conditions
V.P(z,4)=0, V,P(z,4)=0, atz=z". (1.22)

The solution to the above constrained minimization problem leads to the following final
results for the predictive best-estimate parameters, responses, and their corresponding reduced
uncertainties (covariance matrices) are as follows:

1. The best-estimate predicted nominal values for the calibrated (adjusted) parameters:



a® =a0+(CM -c, [s(ao)m[cd (aO)Td. (1.23)

In component form, the above expression for the calibrated best-estimate parameter values

becomes

(a”e)v=(a°)v&ﬂc;f:—ic;p(S*)””}&Ké‘"d”} vel N, (1.24)

p=1 n=1
where K7 denotes the corresponding (v,7)-element of the block-matrix C¢;', with the

block-matrix C, (ao) defined as follows:

e =or-sfeoeo' o' [s{e")]
e st0)] (s

(1.25)

In component form, the matrix C; is expressed as

11 IN 11 11 1IN IN
cl' ..o clecll .. Ny

Cq

N1 NN N1 N1 NN NN
Cd‘ Cdt t CI’Ct +Cmt Cl’Ct t+Cmt t

Nl
(s’ )11 I S &4 R )N"’ (1.26)

p=1

N N
C,“ﬁ;l(s*)”JrzsNrchg z[cﬁ‘atp(sT)N‘ers“tpcngt}
p=1 p=1

2. The best-estimate predicted nominal values for the calibrated (adjusted) responses:
r(abe) =r, +(Cm -C,, [S(ao)T j[Cd (ao)}il d. (1.27)

At a specific time node v, each component (rbe)v of r(abe) has the explicit form



(rbe)" =(r)" +i{q‘v¢ _icrvé’ (ST )ﬂp}[i[(&lﬂdﬂ}} v=1..,N;. (1.28)

u=1 n=l1

3. The expressions for the best-estimate predicted covariances € and €, corresponding

be

to the best-estimate parameters «>° and responses r(abe) , together with the predicted best-

estimate parameter-response covariance matrix C™:

P = <(a_abe)(a_abe )*>

7 (1.29)
- feale o] e (]
e =((r r<abe))<r—r<abe))*>l (130)
-C, —[Crd (aoﬂ |:Cd (ao)} [Crd («f )J T
Cr = Car =<(“‘“b9)("”(“be))T> (1.31)
= Cua () [ s ()] [aae”) ]
where
c, (ao)z<(r—rm)df>:(cm_cm [S(aO)T) (1.32)
and

C,q (ao)s<(a—a°)d*>=(cm—Ca[s(a‘))m. (1.33)

For completeness, the block-matrix components, which correlate two (distinct or not) time-

nodes, of the above calibrated best-estimate covariance matrices are given below:
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be\  _ o | v - t p”_ on| e z nx ;ry_ 1.34
(c)" =cr-> 3 cn-Ycr(s)" kg cp - s |, (1.34)
n=1p=1__ =1 i L =1 i

(Cbe)w —C™ _ZZ_Cvp _ icwr (sT )pﬂ KA _CI]‘LI _isl}ﬂ'cﬂﬂ (1 35)
r m m “~ ra d m ~ ar |» .

be \"# vu [ 72 Z vr [ ot \P* pn nu z NI
(cre)" =c->>law-Ycr(s')" kg cm-Ys7c . (1.36)
L =1 L J

=1

Note in Eq. (1.29) that a symmetric positive matrix is subtracted from the initial parameter

covariance matrix C,; hence, in this sense, the best-estimate predicted parameter uncertainty
matrix C%* has been reduced by the calibration (adjustment) procedure, through the

introduction of new information from experiments. Similarly, a symmetric positive matrix is
subtracted in (1.30) from the initial covariance matrix C,, of the experimental-responses;
hence, the best-estimate predicted response covariance matrix €™ has been improved
(reduced) through the introduction of new experimental information. Furthermore, (1.31)
indicates that the calibration (adjustment) procedure will introduce correlations between the
calibrated (adjusted) parameters and responses even if the parameters and response were

initially uncorrelated, since € %0 evenif C,, =0 , i.e.,
-1
Cre =Cp| Co(a®)+Cp | [ 8(e")]C,» when €, =0. (1.37)

As the above expression indicates, the adjustment (calibration) modifies the correlations
among the parameters through couplings introduced by the sensitivities of the participating
responses. In the calibration procedure, the sensitivities play the role of weighting functions
for propagating the initial parameter-covariances and experimental-response covariances to
the adjusted best-estimate predicted quantities. Thus, as indicated by Eqs. (1.29) through
(1.31), the incorporation of additional (experimental) information in the adjustment
(calibration) process reduces the variances of the adjusted parameters and responses while
also modifying their correlations.

Note that Eq. (1.30) expresses the best-estimate response covariance matrix C* in terms of

the initial covariance matrix C,, of the experimental-responses. Alternatively, it is of interest

to derive the expression of the computed best-estimate response covariance matrix, C% ,

11



directly from the model (the subscript “rc”, denotes “computed response”, to distinguish it

from the covariance €™, which is obtained directly from the calibration/adjustment process).
The starting point for computing €= is the linearization of the model, similar to that shown in

Eq. (1.12), but around «™ instead of o°, i.e.

r= R(abe)+s(abe)(a - abe)+ higher order terms . (1.38)

It follows from Eq. (1.38) that

cie - <(r_ R(a))(r- R () > 2 [(a)]{(a-a")(w-a) )[5(o)]
=[s(o) e[ s(e)] (139)
[s(a)] €. ~{ cur-ca[se)] s ()] (€[50 e [s(a)]

Comparing Eq. (1.39) to Eq. (1.30) reveals that, in general, C% =™ since § (abe);ts (ao).

Nevertheless, when the model is “perfect” (i.e., free of higher-order numerical errors) and

exactly linear, then the sensitivity matrix § is independent of the parameter values «, i.e.,

S(abe) = S(ao) =S8, for “perfect” and linear models, (1.40)

Using (1.40) in (1.39) reduces the later expression to

Cre=5€,~(Cor=C.8") G5 (Cur -5C, ) IS
=Cr _(Crc _SCar)[Crc +C, _CraST _SCar:|_1 (Crc _CarST) (141)

=C™, for" perfect” linear models.

It is important to note that the computation of the best estimate parameter and response
values, together with their corresponding best-estimate uncertainties --see Egs. (1.23), (1.27),

(1.29), (1.30) and (1.31) -- require the inversion of a single matrix, namely the matrix Cj (ao)

defined in Eq. (1.26). This is usually advantageous in practice, since the order of the matrix

12



C, (ao) is given by the number of measured (or computed responses), which is most often

considerably smaller that the number of model parameters under consideration.

On the other hand, when the number of parameter exceeds the number of responses, it is
possible to derive alternative expressions for the best-estimate calibrated parameters and their
corresponding best-estimate covariances, by performing all derivations in the “parameter
space” rather than in “response space”. This entails using Eq. (1.12) to eliminate the response
(variables) r at the outset, and carrying out the minimization procedure solely for the
parameters (variables) « . Equivalently, as shown by [Ca2010a], the Sherman-Morrison-

Woodbury extension can be employed to obtain the alternative expression

_ -1
Cdl = (Crc _CraST -S8C,, +Cm)
-1
= —a's(c 4 STals) sTAT (1.42)

A=C,-C,, S -sC,,.

The above expression provides the bridge between the “response-space” and “parameter-
space” formulations. This expression also highlights the fact that the response-space
formulation requires a single inversion of a square symmetric matrix (namely, the matrix C,)
of the same dimensions as the number of responses. In contradistinction, the “parameter
space” formulation requires the inversion of three symmetric matrices, two of which have
dimensions equal to the number of parameters and one of dimensions equal to the number of
responses. Hence, from a computational standpoint, the “response-space” formulations should
be used whenever possible.

In view of Eq. (1.26), it is essential to note that the inverse matrix, C;', incorporates
simultaneously all of the available information about the system parameters and responses, at
all time nodes [i.e., v=12,.,N, ]. Specifically, at any time node v, C;' incorporates
information not only from time nodes prior in time to v (i.e., information regarding the "past"
and "present" states of the system) but also from time nodes posterior in time to v (i.e.,

information about the “future” states of the system). Through the matrix €', at any specified

A be

time node v, the calibrated best-estimates parameters (abe)v and responses r(abe) e

together with the corresponding calibrated best-estimate covariance matrices (cge)"” , (CPe )W ,

13



and (cgi)"” will also incorporate automatically all of the available information about the

system parameters and responses at all time nodes [i.e., v=1,2,...,N,].

In this respect, the methodology presented in this section is conceptually related to the
"foresight" aspects encountered in decision analysis. It is also important to note that, in
practice, the application of the methodology developed in this section involves two distinct
computational stages. A complete sensitivity data base (i.e., sensitivities s* at all times nodes
v,u=1,..,N;) needs to be generated “off-line” prior to performing the “data assimilation” and

“model calibration” (or data adjustment) stages. All sensitivities are subsequently combined
with appropriate covariance matrices to compute calibrated best-estimate responses,
parameters, and best-estimate covariance matrices.

Because of the “foresight” and “oftf-line” characteristics, the methodology presented in this
Section can be called the “off-line with foresight” data assimilation and adjustment (model
calibration) methodology, underscoring that all sensitivities are generated separately, prior to
performing the uncertainty analysis, and that foresight characteristics are included in the
calibration procedure. Since the incorporation of foresight effects involves the inversion of

the matrix C,, this methodology is best suited for problems involving relatively few time
nodes. For large-scale highly nonlinear problems involving many time nodes, the matrix C,
becomes very large, requiring large amounts of computer storage; the inversion of C; may

become prohibitively expensive in such cases. These difficulties can be reduced at the
expense of using less than the complete information available at any specific time node. For
example, even in time-dependent problems in which the entire time history is known (e.g.,
transient behavior of reactor systems), one may nevertheless choose to use only information
up to the current time index, and disregard the information about “future” system states.

On the other hand, in dynamical problems such as climate or weather prediction, in which
the time variable advances continuously and states beyond the current time are not known,
information about future states cannot be reliably accounted for anyway. Thus, the most
common way of reducing the dimensionality of the data assimilation and model calibration
problem is to disregard information about future states and limit the amount of information
assimilated about “past states”. Data assimilation and model calibration procedure using such
a limited amount of information can be performed either off-line or on-line, assimilating the

new data as the time index advances.

14



The simplest case of dynamic data assimilation and model calibration is when these
operations are performed by using information on-line from only two successive time-steps.
In this particular case, the expressions given by Eqgs. (1.24), (1.28), (1.34), (1.35) and (1.36)

for the best-estimate predicted calibrated quantities reduce to the following explicit formulas:
k . . .
The components (abe) , representing the calibrated best-estimates for the system

parameters at time node k, can be written in a particular form of Eq. (1.24), as follows:

u K (1.43)
{Cﬁﬁ‘— Y cl(s')’ M > Kﬂ']d"} k=12,...N,.

k . . .
The wvector (rbe) , representing the best-estimates predicted values for the system

parameters at a time node k , take on the following particular form of Eq. (1.28):

(1.44)

K
> Kﬂ']d’?} k=1,2,..N,.
=k-1

The components (Cﬁe)m, (v.u=k-1,k), of the calibrated best-estimate covariance matrix,

¢, for the calibrated best-estimates system parameters is obtained by particularizing Eq.

(1.34) to two consecutive time nodes (k-1,k), k=1,2,..,N,, leading to

Cbe V#_Cv,u . . c” £ Poicd ST e A Welld L ST O
(a) _a_z ;1 ar_z a( ) Kd ra_z a , (145)

n=k—1p=k- r=k-1 r=k-1
for v=k-1,k; and wu=k-1,k; k=1.2,.,N;.

4. The components (CPe )W , (viu=k-1,k), of the calibrated best-estimate covariance matrix

c?®, for the best-estimate responses takes on the following particular form of Eq. (1.35):
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k

()<~ 3 3= 3 en(s')” a3 s
r m ~ m ra d m ar , (146)

n=k-1p 1 7=k-1 r=k-1
for v=k-1,k; and wu=k-1,k; k=1.2,.,N;.

5. The components (cgi)v” , (viu=k-1k) , of the best-estimate response-parameter

covariance matrix C take on the following form:

Vi k k P pr n
()" =cr=> > lear- Y s’ }Ks’” {c:cf— > s””c;;”}

n=k—-1p=k-1 z=k-1 =k-1 (147)
for v=k-1Lk; and wu=k-1,k; k=12,.,N;.

For each time node, k=1,2,..,N,, the quantities K;7 which appear in Eq. (1.43) through

(1.47) have the following expressions:

-1
-1
K - [cg—lvk—l - () cgvk“}

1.48
:(C[I;—l,k—l)’l +<C[|j<—1,k—1)*1 C1K ik ot (Cg—Lk—l)*‘ (149
_ B -1
KL :_<C§71,k71) 1C§71,k {Cg,k Wols (C(l;—l,k—l) 1C§71,k} (1.49)
_ _(C(l;—l,k—l)_l Ch1k kK
kk _| pkk  pkk=1  rk=Tk=1\"' ~k-1k !
K —[Cd c (i) el } (150,
_ (Cg K )*1 +(C§,k )*1 Kk gkl kol (Cg,k )*1
_ B -1
KLk :_<C(lj<,k) IC(I;,k—l [C(I;—l,k—l_cg—l,k (C(I;,k) IC(I;,k—l:| wsh)

_(kk YT Ak k=l k-1 k-1
= (Cd ) G Ky

For time-independent problems, the (time-dependent) results derived in Eqgs. (1.43)
through (1.47) reduce to expressions that are formally identical to Egs. (1.23), (1.27), (1.29),
(1.30) and (1.31). Hence, the later expressions can be used directly to obtain the best-estimate
predicted values for parameters, responses, and their respective covariances. Recall that

modeling errors can be treated in a manner similar to parameter uncertainties, by including the
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discretization intervals among the components of the vector « of model parameters, as
detailed in [Ca2003].

Finally, it is important to emphasize that the explicit formulas presented in this Section are
based on the linearized relationship between responses and parameters that customarily
underlies the “propagation of moments” method, i.e., Eq. (1.12), without considering
nonlinearities explicitly. Nevertheless, this limitation is not as severe as it may appear at first
glance, since nonlinear relations between computed responses and model parameters can be
treated by considering Eq. (1.12) iteratively, starting with the known nominal values of the
quantities involved. The first iteration (in such an iterative procedure) would yield all of the
major explicit results derived in Egs. (1.23), (1.27), (1.29), (1.30) and (1.31).The subsequent
iteration would the results of Egs. (1.23), (1.27), (1.29), (1.30) and (1.31) as the “prior
information” in a second application of these formulas, and compute the new (“second-
iteration”) best-estimate quantities by using once again these formulas. This iterative
procedure would be continued until the best-estimated values would converge within a small,
user-specified, convergence criterion. The actual application of the model calibration
(adjustment) algorithms —see Eqgs. (1.23), (1.27), (1.29), (1.30) and (1.31), to a physical
system is straightforward, in principle, although it can become computationally very

demanding in terms of data handling and computational speed requirements.

The minimum value, Q;, = Q(zbe) , of Q(z)takes on the following expression:

Quin =Q(%) =4[ ¢, (ao)}_l d.,d=R(a")-r,. (1.52)

As the above expression indicates, Qu, EQ(zbe) represents the square of the length of the

vector d , measuring (in the corresponding metric) the deviations between the experimental
and nominally computed responses, and can be evaluated directly from the given data (i.e.,

given parameters and responses, together with their original uncertainties) after having

inverted the deviation-vector uncertainty matrix C, (ao). It is also very important to note that

Quin = Q(zbe) is independent of calibrating (or adjusting) the original data. As the dimension of

d indicates, the number of degrees of freedom characteristic of the calibration under

consideration is equal to the number of experimental responses. In the extreme case of
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absence of experimental responses, no actual calibration takes place since d :R(ao) , so that

. . . . . k k
the best-estimate parameter values are just the original nominal values, i.e., (abe) :(ao) ; an

actual adjustment occurs only when at least one experimental response is included.
Replacing Eq. (1.52) in Eq. (1.16) shows that the bulk of the contribution to the joint
posterior probability distribution, which comes from the point z=z", takes on the form of the

following multivariate Gaussian distribution:

p(z™IC) Eexp[—

=exp {—

The above relation indicates that experimental responses can be considered as random

of") |
o= ()] [ (o")] [~ ()]}

(1.53)

variables approximately described by a multivariate Gaussian distribution with means located

at the nominal values of the computed responses, and with a covariance matrix C, (ao). In

turn, the random variable Q;, EQ(zbe) obeys a y*-distribution with n degrees of freedom,

where n denotes the total number of experimental responses considered in the calibration

(adjustment) procedure. Since QminEQ(zbe) is the “ 4? of the calibration (adjustment) at

hand“, it can be used as an indicator of the agreement between the computed and
experimental responses, measuring essentially the consistency of the experimental responses
with the model parameters. For model calibration (adjustment), it is important to assess if: (i)
the response and data measurements are free of gross errors (blunders such as wrong settings,
mistaken readings, etc), and (ii) the measurements are consistent with the assumptions

regarding the respective means, variances, and covariances. As has been noted there, when the

distance between any two nominal response values, R -R}|, is smaller or at least not much

larger than the sum of the corresponding uncertainties, say o; +0;, the data is considered to be
consistent or to agree “within error bars”. However, if the distances |Ri° —Rj-’| are larger than

(GJ- +O'k), the data are considered to be inconsistent or discrepant. Inconsistencies can be

caused by unrecognized or ill-corrected experimental effects (e.g., background, dead time of

the counting electronics, instrumental resolution, sample impurities, calibration errors, etc,).
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Note that the probability that two equally precise measurements yield a separation greater

than o, + o =20 is very small, namely erfc(1)~0.157 for Gaussian sampling distributions with

standard deviation o . Thus, although there is a nonzero probability that genuinely discrepant
data do occur, it is much more likely that apparently discrepant experiments actually indicate

the presence of unrecognized errors, an issue addressed in the work of [Ca2010b].
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2 lllustrative Examples

Two models have been considered as examples for the time-independent (Paragraph 2.1) and

time-dependent (Paragraph 2.2) use of the MULTI-PRED module.

2.1 A Simple Time-Independent Neutron Diffusion Model

More details of this model (a steady-state neutron diffusion problem) may be accessed in the
reference [Ca2014].

Consider the diffusion of monoenergetic neutrons due to distributed sources of strength S
neutrons/cm’ -s within a slab of material of extrapolated thickness 2a. The linear neutron

diffusion equation that models mathematically this problem is
D-2_5p+S=0, xe(-aa), @.1)

where (0(X) is the neutron flux, D is the diffusion coefficient, 2, is the macroscopic

absorption cross section, and S is the distributed source term. Note that, in view of the
problem’s symmetry, the origin X =0 has been conveniently chosen at the middle (center) of
the slab. The boundary conditions for Eq. (3.1) are that the neutron flux must vanish at the

extrapolated distance, i.e.,
p(+a)=0. (2.2)
A typical response R for the neutron diffusion problem modeled by Egs. (2.1) and (2.2)

would be the reading of a detector placed within the slab, for example, at a distance b from

the slab’s midline at x = 0. Such a response is given by the reaction rate

R(e)=Z,0(b), (2.3)
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where X, represents the detector’s equivalent reaction cross section. The system parameters
for this problem are thus the positive constants 2,, D, S, and 2, which will be considered

to be the components of the vector a of system parameters, defined as

a=(2,,D,S8,2,). (2.4)

Consider that the components of a = (Za, D, S, Zd) are imprecisely (e.g., experimentally)
determined quantities, with mean nominal values @’ = (2,2 ,D°, 8%, %) ) and standard
deviations h, = (5 2,,0D,0S, 527d) , respectively. The vector e(X) appearing in the

functional dependence of R in Eq. (2.3) denotes the concatenation of gp(x) with a , defined

as

e

(p.a). (2.5)

The nominal value ¢° (X) of the flux is determined by solving Egs. (2.1) and (2.2) for the

nominal parameter values a’ = (Z : ,D?,S°, Zé) ) , to obtain

o (x) s° (1 coshxkj’ K = /2;)/DO, 2.6)

~ 2% coshak

where k =,/27 / D’ is the nominal value of the reciprocal diffusion length for our illustrative

example. Inserting Eq. (2.6) together with the nominal value X} into Eq. (2.3) gives the

nominal response

0y 0
)5 ) =) e
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Note that even though Eq. (2.1) is linear in ¢, the solution (o(x) depends nonlinearly on
a , as evidenced by Eq. (2.6). The same is true of the response R(e). Even though R(e) is
linear separately in ¢ and in &, as shown in Eq. (2.3), R is not simultaneously linear in ¢
and a, which leads to a nonlinear dependence of R(e) on a . This fact is confirmed by the
explicit expression of R(e) given in Eq. (2.7).

The sensitivities of the system response to the system parameters have been computed

efficiently using the Adjoint Sensitivity Analysis Procedure (ASAP), for details see [Ca2014].

The expressions of the partial sensitivities of R(e) to the various parameters have been

obtained as:

0
R 22_% - coshbk | (2.8)
oS 2 coshak
0
OR :S_O _ coshbk , (2.9)
0x, 2, coshak
oR s'xy coshbk 1 S"2) asinhak coshbk —bsinhbk coshak
=——dl - + - > , (2.10)
0, (2‘;) coshak | 2 /DOE',S 2 (cosh ak)
oR _ 1 |X] S°X} asinhak coshbk —bsinhbk coshak @.11)

o> 2\D’D°s’ (coshak )’

To illustrate with numerical values the application of these formulas, consider that the slab
of extrapolated thickness a consists of water with material properties having the following
nominal values: X° =0.0197cm™, D’ =0.16 cm , containing distributed neutron sources
emitting nominally S° =10"neutrons-cm™-s™'. For the sake of argument, consider that all of
these parameters are uncorrelated and have the following relative standard deviations:
AZ) 12! =5%,4D" I D’ =5%, AS° /S’ =15%.

Furthermore, consider that measurements are performed with an infinitely thin detector

immersed at different locations, X =b, in the water slab, having an indium-like nominal
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detector cross section 2(? =7.438cm™, uncorrelated to the other parameters, with a standard

deviation AX)/X] =10%. Collecting this information (and omitting, for simplicity, the

respective units), it follows that the covariance matrix for the model parameters is

(9.85x10%)’
0

0

0

0
(8.0x10%)
0

0

0
0
(1.5><106)2

0

0
0
0

(7.44x107")

(2.12)

To illustrate the effects of several consistent measurements, and also to test that symmetric

measurements (with respect to the vertical plane through the origin) do preserve the solution’s

symmetry, we consider four consistent ( x> =1.21) measurements, taken at the symmetric

locations 10cm, —10cm,

standard deviations (abbreviated as “rsd”):

r

1>

I1>

1>

m
r

m
I

m
I

" £r(meas.at 10cm)=3.40x10"n-cm™-se

(
r(meas.at —40cm)=3.77x10’n-cm™ - sec”
(

-1

C
€

r(meas.at —10cm)=3.59x10"n-cm™-sec™; rs

1

Thus, the covariance matrix of the measured responses is

(1.7x10°)
0
0

0

The nominal values of the computed responses at the above locations are as follows:

0
(2.15x10%)
0

0

0
0
(1.89x10°)

0

; rsd(
d

") =5%;

") = 6%;

(
; rsd (r;“) =5%;

r(meas.at 40cm)=3.74x10’n-cm-sec™; rsd(r4m)=5%;

0

0

0

(1.87x10°)

—40cm, 40cm , and having the following values and relative

(2.13)
(2.14)
(2.15)

(2.16)

(2.17)
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r,(comp. at 10cm)=3.77x10’n-cm™-sec™’; (2.18)
r,(comp.at —10cm)=3.77x10"n-cm™ -sec™; (2.19)

r, (comp. at —40cm)=3.66x10"n-cm™ -sec™; (2.20)

r,(comp. at 40cm)=3.66x10"n-cm™-sec”; (2.21)

As expected, the above computed responses confirm the problem’s symmetry. The

matrices S and S with Aq; éStd.dev.(Otj) , containing the nominal values of the

rel >

absolute and relative sensitivities, respectively, are:

-1.92x10" —1.33x10° 3.78x10* 5.08x10°
sé(@jz ~1.92x10" —1.33x10° 3.78x10> 5.08x10°
da; | |-1.76x10" -1.24x10° 3.66x10> 4.92x10* |’
-1.76x10" —-1.24x10° 3.66x10*> 4.92x10°

(2.22)

—5.41x10°°
—-5.64x107°
—5.64%x107
-5.41x107

—-0.99999
—0.99999
-9.46x107"
—9.46x10™"

1.00
1.00
1.00
1.00

1.00
1.00
1.00 |
1.00

Aa,
S 2| B2 (2.23)
oa; R

Using the above sensitivities together with the covariance matrix shown in Eq. (2.12)

yields the following value for the covariance matrix of the computed responses:

4.99%10"
4.99x10"
4.82x10"
4.82x10"

=SC S" =

rc a

C

4.99x10"
4.99x10"
4.82x10"
4.82x10"

4.82x10"
4.82x10"
4.66x10"
4.66x10"

4.82x10"
4.82x10"
4.66x10"
4.66x10"

(2.24)
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Note that the particular values (essentially either unity or zero) of the components of the
sensitivity matrix lead to a fully correlated covariance matrix for the four computed
responses.

Applying the data assimilation and adjustment procedure to the above information leads to the
following best estimate parameter values, relative standard deviations (abbreviated as “rsd”),

and covariances:

2 =0.0198cm™, rsd(Z}") = 4.79%; (2.25)
D" =0.1591 cm, rsd (D*) =5.00%; (2.26)
$™ =9.85x10°n-cm” s, rsd (™) =9.21%; (2.27)
2 =7.388cm™, rsd () =8.53%; (2.28)
9.50x10™* 0 0 0
o — 0 7.99x10° 0 0
“ 0 0 9.08x10° 0
0 0 0 6.30x10"'
1.0 -8.89x10* 3.51x10" 1.67x10"
_4 -2 -3
| -8:89%10 1.0 1.02x102  4.84x10 229
3.51x10"  1.02x107 1.0 -8.24x10™
1.67x10"  4.84x10° -8.24x10" 1.0
9.50x10* 0 0 0
. 0 7.99%10° 0 0
0 0 9.08x10° 0 ’
0 0 0 6.30x10™

Here are the best estimate response values, relative standard deviations (abbreviated as “rsd”),

and covariances:

at (10cm): r* =3.66x10"n-cm™-sec™'; rsd(rlbe)=2.59%; (2.30)
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at (—10cm): n* =3.66x10"n-cm™-sec™'; rsd(r*)=2.59%;
at (—40cm): r® =3.56x10’n-cm~ -sec”™'; rsd (ere) =2.58%;

at (40cm): 1 =3.56x10n-cm-sec™'; rsd (1) =2.58%;

9.04x10" 9.04x10" 8.64x10"” 8.64x10"
9.04x10"” 9.04x10"” 8.64x10" 8.64x10"
8.64x10” 8.64x10” 8.45x10" 8.45x10"
8.64x10"” 8.64x10"° 8.45x10"” 8.45x10"

Cbe —

r

Predicted response-parameter correlation matrix:

-7.81x10°  3.89x10* 1.38x10"” 4.57x10°

e | -7.81x10°  3.89x10* 1.38x10" 4.57x10°

1 1.50%10° —4.13x10* 1.64x10° 5.41x10°
1.50x10° —4.13x10* 1.64x10"” 5.41x10°

Resnonsel 107 e =571

Figure 2.1.1: Four precise consistent precise measurements ( y*> =1.21)

x[cm]

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

Figure 2.1.1 shows the spatial variation of the original nominal computed values and standard

deviations (depicted using solid lines) together with the best estimate response values and

corresponding standard deviations (depicted using broken lines). The value of y° =1.21

indicates a very good consistency among the four measurements.
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2.2 Time-Dependent A Spent Fuel Dissolver Model

The “dissolver” is a mechanical and chemical module that produces feed stock for the
chemical separation processes employed in the “head end” segment of an aqueous nuclear
fuel reprocessing facility. The specific dissolver model considered in this work was originally
developed by Lewis and Weber [Le1980], and has been selected due to its applicability to
material separations and its potential role in diversion activities associated with proliferation
and international safeguards. The equations that model the time dependent start-up conditions
for the dissolver are presented in this section . The dissolver model comprises sixteen time-
dependent state functions and 635 model parameters related to the model’s equation of state
and inflow conditions. In particular, the most important response for the dissolver model is
the time-dependent nitric acid in the compartment furthest away from the inlet, because this is
the location where Lewis and Weber [Le1980] reported measurements (unique in the open

literature) at 307 time instances, t,, i =1,...,1 =307, over a period of 10.5 hours.

The predictive modeling formalism presented in Section 1 is subsequently used to combine
the computational results with the experimental information measured in the compartment
furthest from the inlet, and then predict optimal values and uncertainties throughout the
dissolver. The numerical results presented in this section show that, even though the
experimental data pertains solely to the compartment furthest from the inlet (where the data
was measured), the predictive modeling procedure actually improves the predictions and
reduces the predicted uncertainties not only in the compartment in which the data was actually
measured, but throughout the entire dissolver including the compartment furthest from the
measurements. This is because the predictive modeling methodology combines and transmits
information simultaneously over the entire phase-space, comprising all time steps and spatial
locations. Further details are provided in References [Ca2015, Pe2015a, Pe2015b, Pe2015c,
Ca2016] .

The spent nuclear fuel dissolver model considered in this work is schematically depicted in
Figure 2.2.1. The dissolver start-up conditions involve a non-ideal mixture of nitric acid and

water at ambient conditions.
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PRODUCT

Figure 2.2.1: Liquid flow diagram for the compartmented rotary dissolver (after Lewis and

Weber [Le 1980])

The liquid flows through the dissolver’s eight compartments, labeled using the superscript K,
k=1,..,8, from compartment #8 towards compartment #1. Compartment 9 is used for
rinsing, and is not relevant to this work. The equation modeling the time and spatial variation
of the physical and chemical processes occurring within the dissolver’s start-up were
originally developed by Weber and Lewis [Le1980] and subsequently modified by Peltz and

Cacuci [Pe2015b], to obtain the following system of first-order nonlinear ordinary differential

equations:
V(k)(t)%[pgk)}{pgk)(t)— 0 ()] [VE ()] =0, k=17, 0<tst,,
v (t)%[pgs)]+p£8) (6) £ (1) = " (1) £ (1), 0<t<t,.
%[v(” (0)]=-C[V¥ (1) ]«C[VEI(1)], k=1...7. 0<t<t,,
%[v@ (t)]:—C[V(S) (t)]+ £V (), 0<t<t,.
where

vy Y’ _
C(V(k))z ( G OJ [g/h]’ If V(k)(t)_V0>O’ kzla---aga

0, otherwise.
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The quantities appearing in the above equations are defined as follows: (i) v® (t) denotes the
volume of the liquid phase, in units of liters[ﬁ]; (i1) pgk) (t) denotes the volumetric mass
concentration of nitric acid of the liquid phase, in units of [g / f]; (ii1) pgi") (t) denotes the

inlet nitric mass concentration; (iv) £ (m (t) denotes the inflow volumetric flow rate; (iv) the
scalar quantities G , V, and p are experimentally determined parameters, with nominal

(mean) values and estimated relative standard deviations presented in Table 2.2.1.

The initial conditions for above equations are as follows:
P (0)=0.0, VM (0)=V,", k=1,..8.

The compatibility condition for a fully developed initial flow implies that

%V(k) (O) =0, k =1,...,8; in turn, this condition implies that

1/p

V=Gl EM(0) ]+, k=1,...8.
The equation of state for the dissolver model is

P (t)=63ap® (t)+b, k=1,...,8.

a

where p(k) (t) denotes the volumetric mass density of the liquid phase, in units of gram/liter

[g / f], and where a and b are experimentally determined scalar parameters with nominal

(mean) values and estimated relative standard deviations presented in Table 2.2.1.

The time-dependent nominal value of the inflow volumetric flow rate, f () (t), i1s obtained

from the following expression:
1) =) = st )]

where n'fz(m)(t) denotes the liquid solution mass rate inflow in units of gram/hour [g / h]. In

particular, the initial nominal value of f (" (t) is 0 (0)=36.79x10°/1001.2 at t=0. The
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time-dependent variations of the inlet mass flow rate of solution, n’q(m)(t), and inlet nitric

mass concentration, ,ogi") (t), are presented in Figures 2.2.2 and 2.2.3, respectively. The

estimated relative standard deviations of pgn) (t) and m(’”) (t) are presented in Table 2.2.1.

Table 2.2.1: Nominal (mean) values and corresponding standard deviations for model

parameters.
Parameter | 5 (t) n'a(m)(t) a b v, p G
Nominal See See 0.48916 | 1001.2 | 4.8 2.7 0.201941
4 l 4

9/ |11 0
Standard
deviation | 20% 10% 10% 10% 10% 10% 10%

50— T I

= L

340

=3

3 30 .

o

5

Ezo_ N

w

S

= 10

% 1T 23 456 7 8 9 10 11
Time [h]

Figure 2.2.2: Time variation of the inlet mass flow rate of solution, i) (t) /1000 [kg/ h].
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Figure2.2.3: Time variation of the inlet nitric acid mass concentration, pgin) (t) / 63 [moles].

The dissolver model comprises sixteen state variables [pgl) (t)seems o) (t),v ) (t),....V ®) (t)]

a

as well as 635 model parameters

[P (1Yo (b )T (8ol (1) 7 (0). 7 (0).V 0 (0)....V ¥ (0). 2.0V, .G ]

At any time instance, v, the system parameters are considered to be uncorrelated variates,

14
a

denoted as avz{arf [n=1,...N } with mean values, denoted as (ao)v, and standard

deviations as given in Table 2.2.1. Solving the equations presented in the foregoing at the
nominal values for the model’s parameters yields the time-dependent evolutions of the

computed nominal values of the nitric acid concentrations in all of the compartments. In

particular, the computed nominal values for p." (t) , pf,?om , and p” . of the time-

a,nom a,nom >
dependent acid concentrations in compartments #1 (furthest from the dissolver’s inlet), #4 (in
the dissolver’s middle section), and #7 (closest to the dissolver’s inlet), respectively, are
depicted in Figure 2.2.4. The time evolutions of these concentrations are similar to each other,
albeit time-delayed, as expected, and also resemble the time variation, depicted in

Figure 2.2.3, of the inlet nitric acid mass concentration, pgm) (t)
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Figure 2.2.4: Time-evolution of the nominal values of the computed nitric acid concentrations

p;fgom , pf,fom , p;?om , In compartments #1, #4, and #7, respectively.

The nitric acid concentration in compartment 1, ,0;1) (t) , was measured by Lewis and Weber

[Le1980] at 307 time instances, t,, i =1,...,1 =307, over a period of 10.5 hours. The nominal

values of these measurements are denoted as p. (ti ) , and are depicted using blue circles

a,meas
in Figure 2.2.5. Notably, these experimental results are unique in the open literature for a
rotary dissolver. The relative standard deviation of each of these measurements has been
estimated to be 5%. Figures 2.2.5 also depicts the time-evolution of the normalized nominal

values of the computed nitric acid concentration in compartment #1, pgz\om , which is

obtained by solving the dissolver equations using the nominal values for the model’s
parameters. The agreement between the nominal values of the computed and experimentally

measured nitric concentration in compartment #1 is remarkable.
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Figure 2.2.5: Red graph: time-evolution of the nominal values of the computed response of

the nitric acid concentration, p."

a.nom (t) . Blue circles: experimentally measured nominal

values, p;fr)neas (ti), of the nitric acid concentration, at time instances t., i=1,...,1 =307
(Lewis and Weber [Le1980]).

Numerical Results

The optimally predicted “’best-estimate” nominal values for the model parameters result from
applying Eq. (1.24), and the reduced predicted covariances (“uncertainties”) accompanying
these predicted nominal values are computed using Eq. (1.34). Table 2.2.2 and Figures 2.2.6
through 2.2.9 present the results of applying these equations for the scalar model parameters

involved in the equation of state.

Table 2.2.2: Initial and Predicted Nominal Values and Standard Deviations for the Scalar
Model Parameters

Scalar Nominal Predicted Nominal Predicted
Parameters Values Values Relative Relative
Standard Standard

Deviation Deviation

#1: a 0.48916 0.50621 10% 7.67834%

#2:b 1001.2[g/¢] | 948.7 [9/] 10% 4.54535%
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#3: Vo 4.8[/] 5.123[¢] 10% 4.97098%
#4: G 0.20194/] 0.20591/] 10% 9.82085%
#5:p 2.7 2.61256 10% 9.44417%

As Table 2.2.2 indicates, the uncertainties for these parameters are reduced from initially 10%
to values as low as 4.5%. The uncertainty reduction is proportional to the sensitivity of the
responses (i.e., acid concentrations) to the respective parameters. The predicted optimal
values were also calibrated accordingly, as shown in Table 2.2.2, differing from their original

nominal values.

Figure 2.2.6 displays the initial correlation matrix for the scalar parameters listed in
Table 2.2.2, which are uncorrelated, having a relative standard deviation of 10%. The
numbers on the vertical axis are in units of (%)?, so the numbers shown are to be multiplied
by 10, while the numbers on the two horizontal axes correspond to the parameter numbering
in Table 2.2.2. The results after having applied Eq. (1.34) are displayed in Figure 2.2.7, which
shows the predicted correlation matrix for the scalar parameters listed in Table 2.2.2. It is seen
that the application of the predictive modeling methodology induces non-zero correlations
among several of the parameters notably between parameters #4 and #5 (G and p) and, to a

lesser extent, between parameters #2 and #3 (b and V). The diagonal values in Figure 2.2.7

are the predicted variances, i.e., the squares of the values shown in the last column of

Table 2.2.1
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Figure 2.2.6: Initial correlation matrix for the scalar parameters listed in Table 2.2.2.

Figure 2.2.7: Predicted correlation matrix, (Cge )W , for the scalar parameters listed in
Table 2.2.2.

The results of applying Egs. (1.24) and (1.34) for the time dependent inlet acid concentration,
P (t), are depicted in Figures 2.2.8 and 2.2.9, respectively. The time-dependent calibration

of the nominal value pf”) (t) is relatively small, and so is the reduction in the corresponding

time-dependent standard deviation, from the initial value of & [ o (t)] =20%.

Figure 2.2.8: Time-dependent behavior of the difference between the nominal value, pgm) (t) ,

and the optimally predicted “best estimate” value, o™

» (t), for the inlet acid concentration.
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Figure 2.2.9: Time-dependent behavior of the original relative standard deviation
0'[ pgi”) (t)] =20% (in red) and the optimally predicted “best estimate” relative standard

deviation o [ pey (t)] (in black), for the inlet acid concentration.

The results of applying Eqgs. (1.24) and (1.34) to the time dependent mass flow rate, m(”’) (t),

are depicted in Figure 2.2.10 and 2.2.11, respectively. The time-dependent calibration of the

nominal value m("”) (t) is also relatively small, and so is the reduction in the corresponding

time-dependent standard deviation, from the initial value of & [m“”) (t)} =10% .

Figure 2.2.10: Time-dependent behavior of the difference between the nominal value,

") (t), and the optimally predicted “best estimate” value, gl (f ), for the inlet mass flow

rate.
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Figure 2.2.11: Time-dependent behavior of original relative standard deviation,
a[m“”) (t)] =10%, and the optimally predicted “best estimate” a[m(beSt) (t)] , for the inlet
mass flow rate.

The predicted best estimate nominal values for the nitric acid concentration responses are
obtained using Eq. (1.28). Figure 2.2.12 presents the computed, experimental, and best
estimate predicted nominal values for the nitric acid concentration in compartment #1. All of

these values are in close agreement with one another.

Figure 2.2.12: Computed, experimental, and best estimate predicted nominal values for the
nitric acid concentration in compartment #1.

The full covariance matrix of the computed acid concentration in compartment #1, which
arises due to uncertainties in the model parameters and is obtained using Eq. (1.15), is
depicted in Figure 2.2.13. As can be noted from this figure, the computed responses in the

early stages of the transient, between time instances 5 - 75, are strongly (up to -0.86
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[moles/l]?) anti-correlated in time with the responses computed towards the end of the
transient, between time instances 266-307. At other time instances, the responses are weakly
correlated, except for the responses between time instances 5-60, which are strongly (up to
0.86 [moles/1]?) correlated to each other, and again at the end of the transient, between time
instances 260-307, when they again become strongly correlated. Variances of 0.86 [moles/1]?,

as noticed at the end of the transient, correspond to relative standard deviations of about 20%.

Figure 2.2.13: Time-dependent computed correlation matrix (arising from parameter
uncertainties), C,%, for the nitric acid concentration in compartment #1.

rc?

The predicted best estimate response correlations are obtained by using Eq. (1.35) and are
depicted in Figure 2.2.14. As indicated in this figure, all best-estimate correlations, including
the predicted standard deviations, are significantly reduced and rendered uniform. The
corresponding (+/-) one-standard deviations are plotted in Figure 2.2.15, which depicts the
behavior in time of the measured response standard deviation (5%), the computed response
standard deviation [i.e., the diagonal elements of Eq. (1.15) stemming from uncertainties in
the model parameters], and the best-estimate predicted response standard deviation obtained
using Eq. (1.35). It is evident from Figure 2.2.15 that the “predicted best-estimate” response
standard deviation is smaller than either the “measured” standard deviation or the “computed”

one, for the entire time-interval under consideration.
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Figure 2.2.14: Time-dependent best-estimate predicted correlation matrix, (C e )W , for the

nitric acid concentration in compartment #1.

Figure 2.2.15: Computed, experimental, and best estimate predicted (+/-) absolute standard
deviations for the nitric acid concentration in compartment #1.

Even though no measurements were performed in the dissolver compartments 2 through &, the

. . be \V .
nominal values of the “best-estimate” responses, (r e) , in these compartments can be

computed by using the calibrated best estimate parameter values (abe )V . In this vein, the best-
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estimate predicted parameter values for all 635 model parameters (as presented in Table 2.2.2
and depicted Figures 2.2.8 and 2.2.10) together with their reduced predicted uncertainties (as
presented in Table 2.2.2 and depicted Figures 2.2.9 and 2.2.11) were used to re-compute the

nominal values of the best-estimate responses, (rbe)v. It turned out that these best-estimate

responses were very close to the originally computed nominal values. In addition, the best-
estimate predicted uncertainties in the best-estimate computed responses can be obtained by
using the “propagation of errors” formula given Eq. (1.15), but using the best estimated

parameter values and their corresponding best-estimate standard deviations, i.e.,

v be

(c)" = f[sv”]be[cg’?]be[(swﬂ; v= LN, (A)

n=lp=

—_

As will be shown below, the computation of the best-estimate uncertainties using Eq. (A) for
the compartments in which no measurement were performed indeed underwent reductions, in
all compartments, by comparison to the originally computed uncertainties. Typical results will
be presented in the figures below, for compartment #4 (in the middle of the dissolver) and for
compartment #7; the uncertainty reductions in the other compartments are not reproduced
here because they can be obtained by interpolating linearly between the results presented for

compartments #1, #4, and #7.

The original covariance matrix of the computed acid concentration in compartment #4,
obtained using Eq. (1.15), is depicted in Figure 2.2.16. As can be noted from this figure, the
computed responses in the early stages of the transient, between time instances 5 - 30, are
anti-correlated in time with the responses computed towards the end of the transient, between
time instances 266-307. The anti-correlations for the acid concentration in compartment #4
are similar to the time-dependent response anti-correlations in compartment #1. The acid
concentration responses in compartment #4 are less strongly correlated at other time instances,
except for the responses between the initial stages of the transient (time instances 1-50) and

again at the end of the transient (time instances 260-307), when they are positively correlated,
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with variances reaching as high as 0.6 [moles/l]>. This value corresponds to an absolute
standard deviation of 0.77 [moles/l], which in turn corresponds to a relative standard
deviation of over 50% --which is rather large compute uncertainty in this response (i.e., the
acid concentration in compartment #4). Overall, the time-correlations for the acid
concentration in compartment #4 are similar to the time-dependent response correlations in

compartment #1, but stronger, in relative terms.

Figure 2.2.16: Time-dependent computed correlation matrix (arising from parameter
uncertainties), C,%, for the nitric acid concentration in compartment #4.

rc

The predicted best estimate response correlations obtained by using Eq. (A) are depicted in
Figure 2.2.17. As indicated in this figure, all best-estimate correlations, including the
predicted standard deviations, are drastically reduced and rendered much more uniform. The
corresponding (+/-) one-standard deviations are plotted in Figure 2.2.18, which depicts the
behavior in time of the computed response standard deviation [i.e., the diagonal elements of
Eq. (1.15) stemming from uncertainties in the model parameters] and the best-estimate
predicted response standard deviation obtained using Eq. (1.35). It is evident from Figure
2.2.16 that the “predicted best-estimate” response standard deviation is considerably smaller

than the “computed” one, for the entire time-interval under consideration.
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Figure 2.2.17: Time-dependent best-estimate predicted correlation matrix, (C:’e )W , for the

nitric acid concentration in compartment #4.

Figure 2.2.18: Computed and best estimate predicted absolute standard deviations (+/-) for the
nitric acid concentration in compartment #4.

The original covariance matrix of the computed acid concentration in compartment #7,
obtained using Eq. (1.15), is depicted in Figure 2.2.19, which displays an “island of anti-
correlated responses between time instances 1-10 and responses at instances 220-260, as well
as an “island” of positively correlated acid concentrations among the time instances 220-260.
Although the absolute values of the overall uncertainties are smaller in this compartment, by
comparison to the other compartments, their relative values are actually larger than in the

other compartments. For example, the largest variance of the acid concentration in
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compartment being 0.2 [moles/I]>, which occurs during the time instances 220-240; this
variance corresponds to a relative standard deviation of 90%, as can be deduced from Figure
2.2.21. The predicted best estimate response correlations obtained by using Eq. (A) are
depicted in Figure 2.2.20. As indicated in this figure, all best-estimate correlations, including
the predicted standard deviations, are drastically reduced and rendered much more uniform.
The corresponding (+/-) one-standard deviations are plotted in Figure 2.2.21, which depicts
the behavior in time of the computed response standard deviation [i.e., the diagonal elements
of Eq. (1.15) stemming from uncertainties in the model parameters] and the best-estimate
predicted response standard deviation obtained using Eq. (A). It is evident from Figure 2.2.21
that the “predicted best-estimate” response standard deviation for the acid concentration in
compartment #7 is considerably smaller than the “computed” one, over the entire time-

interval under consideration.

Figure 2.2.19: Time-dependent computed correlation matrix (arising from parameter

uncertainties), C,%, for the nitric acid concentration in compartment #7.

rc

43



Figure 2.2.20: Time-dependent best-estimate predicted correlation matrix, (Cf’e )W , for the

nitric acid concentration in compartment #7.

Figure 2.2.21: Computed (blue graph) and best estimate predicted (black graph) absolute
standard deviations (+/-) for the nitric acid concentration in compartment #7.

The results presented in the forgoing highlight the very beneficial effects of the
comprehensive framework of the predictive modeling methodology of Cacuci and Ionescu-
Bujor [Ca2010a,b], which considers the entire phase-space of parameters and responses
simultaneously over the entire time interval of interest. In particular, this unique feature made
it possible to “spread out” the positive effects of having performed measurements in one

region of the dissolver (in this case, in compartment #1) to reduce significantly the predicted
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uncertainties in the acid concentration not only in the compartment where measurements were
performed but also in all of the other compartments, where measurements were lacking.

Further results are presented in [Ca2015], [Ca2016], [Pe2015a], [Pe2015b] and [Pe2015c].
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3 MULTI-PRED Module

The module MULTI-PRED is a computational implementation of the time-dependent
mathematical formalism of Cacuci and lonescu-Bujor [Ca2010a].
All routines are written as C++ scripts running under the CERN Platform ROOT

(https://root.cern.ch/) compatible with both Linux/Unix and Windows operating systems.

The developed software has the following tree-structure of the directories:

1) MULTI-PRED/example/KERNEL directory containing the kernel of
the MULTI-PRED module; the kernel is invariant on its time-independent or time-dependent
use; this is an intrinsic property of the mathematical formalism of Cacuci and Ionescu-Bujor

[Ca2010a].

2) MULTI-PRED/example/INPfiles directory containing the (ASCII format)

initial/raw input files
3) MULTI-PRED/example /vorKERNEL directory containing the script
vorMULTI-PRED.C which transforms the initial/raw input files into compatible format for

the MULTI-PRED kernel.

4) MULTI-PRED/example /nachKERNEL directory containing the scripts for
extracting and displaying the results of the MULTI-PRED module.

“example” means “diffusion” or “dissolver”.
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3.1 Kernel

The following relations from the work [Ca2010a] have been selected for implementation in

the kernel of the MULTI-PRED module.

Covariances of the computed responses:
Ceo(a*)=(orort) = [s(a‘) )}<§aé‘af >[S(a0 )T _
[s(e")Je[s(a")]

Discrepancy between the nominal computations and the nominally measured responses:

m

dsR(aO)—r

The calibrated best-estimate parameter values:
@™ =’ +(Car -c, [S(ao )T j[cd (a" )T d
with:
Cy ()= (dd") = <(§r -8§(a" )é’a)(érT ~5d' [s(ao )T ]>
=C.(d")-C,, [S(ao )T —[s(a‘) )J C, +C,.

The best-estimate predicted nominal values for the calibrated (adjusted) responses:

r(a®)=r, +(Cm -c,, [s(a())m[cd (aoﬂ_l d.

Best-estimate predicted covariances corresponding to the best-estimate parameters:

Cc = <(a —a™ )(a —a™ )T >
= ¢, [ Coala)][ s ()] [Cun ()]

Best-estimate predicted covariances corresponding to the best-estimate responses:

3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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(3.7)

Predicted best-estimate parameter-response covariances:

€% = €[ o ()] o ()] [ Cuaa ()] (3.8)

where
Cyq (a0)5<(r—rm)dT>=(Cm—Cm [S(aO)TJ, (3.9

and

C,q (a°)z<(a—a°)d*>=[cm—ca [S(ao)Tj. (3.10)

The formulas above (Egs. 3.1-10) correspond to Eqs. 30, 35, 39, 41, 43, 45-49 from
[Ca2010a], respectively.

For computational reasons, Egs. 3.1-10 have been organized as follows:

Notations:

A=C, -C,,S" (3.11)

=-C! +C,S' (3.12)

and then:

d=r-m (3.13)
C.=SC,S’ (3.14)
C,=A+SB (3.15)
a** =a—-BC}d (3.16)
c¥*=C,-BC;/B" (3.17)
r*f =m+AC/d (3.18)
C*¥=C,-AC'A" (3.19)
cr=cC,-AC,'B’ (3.20)

Additionally, the consistency indicator:

¥=d cd (3.21)
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Here are the block-matrix structures of the basic input elements (a ,r ,m,C,,C,,C, ,S) in
the equations 3.11-21:
i) Nominal system parameters, computed responses, and measured responses:
o r m;
o, r) m,
ay, . my,
al r m;/* .
, N, = number of time nodes
o ry my -
a= r= m= N, = number of sistem parameters (3.22)
; ' L N, = number of sistem responses
oy rﬁ, mgr
alN‘ r N, m]N‘
o m
ay e myy
Observation: «® has the same structure as a ; r° has the same structure as r .
ii) Nominal correlations between system parameters:
11 12 1v IN
c, ¢ .. cCc5 .. CJ
21 22 2v 2N
c, Cc- .. cCcr .. cC™
Ca = C.”I C;’z o C;/V o C/;N‘ (3 23)
a a s a - a .
N1 N2 N N¢N
c,o Cc .. Ccm .. Cc

The matrices (C.,C>,...,CY™ ) on the diagonal of the block-matrix structure C, contain
the correlations between system parameters at the same time node (1,2,...,N,). The off-
diagonal matrices contain correlations between system parameters at different time nodes.

This is the structure of a matrix of the type C.,"
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uv uv uv uv

Ca,ll Ca,lZ R Ca,lj st Ca,lNa
uv Hv Hv uv

Ca,21 Ca,22 R Ca,Zj st Ca,2 N,

uv . . . .
Ca - Cyv Cyv C v C,uv

il aj2 v aji ¢ a,iN, (3.24)
Hv uv uv Hv

Ca,Nal Ca,Na2 o Ca,Naj Ca,NaNa

where N is the number of system parameters (static and transient).
The elements in the matrix above are (finally!) numbers. For example:

(3.25)

CZ;,- = <Au{’Aa?> = <Aa?Aa{‘> = CZ‘fji
is the correlation between response i at time node £ and the response j at time node V' .
Therefore:
Vv Vi T
cu=(Ct) ,Vuv <N, (3.26)

a

Observation: C* has the same structure as C, .

iii) correlations of the measured responses:

c' ¢’ .. cv .. cn
cr ¢z .. cr .. cM
1 2 v N,
ca ¢cm .. cr .. cH 62
chogNe g M

. . N¢N . .
The matrices on the diagonal (Cin1 ,C,znz ,--»Cp"" ) contain the correlations between measured
responses at the same time node (1,2,..., N,). The off-diagonal matrices contain correlations
between measured responses at different time nodes.

This is the structure of a matrix of the type C},” in the block matrix C,,:
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uv uv uv uv
Cm,ll Cm,lz R Cm,lj R Cm,lNr
v H uv uv
Cm,Zl Cm,22 R Cm,2j s Cm,2Nr
av . . P . . .
Cm - Cyv C,uv C,uv C,uv
m,il mi2 - mij o m,iN, (3.28)
uv uv uv uv
Cm,er Cm,er - Cm,Nrj o Cm,NrNr

where Nr is the number of (TRANSIENT) responses.

The elements in the matrix above are numbers. For example:
Cy = (AmfAm}) = (Am}Am{ ) = C, (3.29)
is the correlation between response i at time node £ and the response j at time node V .

Therefore: & =(Cy )T ,Vu,v <N, (3.30)

Observation: C, and C™* have the same structure as C,,.

iv) correlations of the measured responses with system parameters

11 12 v INg
Cra Cra * * Cra * ‘ Cra
21 22 2v 2N,
Cra Cra * * Cra ‘ ‘ Cra
Crﬂf = C:ul C:uZ - C;W - C/.JNI
ra ra * * ra * ° ra (33 1)
N1 N2 Nv N; Ny
Cra Cra * ° Cra ° * Cra

The matrices on the diagonal (Clnl,, , C?i ) --.,CrN;N‘ ) contain the correlations between measured
responses and system parameters at the same time node (1,2,...,N,). The off-diagonal

matrices contain correlations between measured responses and system parameters at different

time nodes.

This is the structure of a matrix of the type Cr,, :
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uv )% uv uv
Cra,ll Cra,lZ R Cra,lj R Cra,lNa
uv uv uv uv
Cra,2l Cra,22 c Cr0(,2j ct Cra,ZNa
CH = . . . .
ra T C,uv C/tv C/tv C,uv
ra,il raiz ot - raij raiN, (3.32)
uv uv uv uv
Cra,er Cra,N,Z s Croz,N,rj o Cra,N,Na

Where N is the number of system parameters (static and transient) and N, is the number
of system responses.
The elements in the matrix above are numbers. For example:

Ciry =(AmfAa)) = (AajAm{ ) = C (3.33)
is the correlation between the measured response i at time node £/ and the parameter j at

time node V.

Observation: C:* has the same structure as C,, .

v) sensitivities of the system responses to the system parameters

st 0O . . 0
s s 0. 0

R R € X

gt gtz gl gl gl

This is a block-matrix structure. The structure of a matrix of the type S“
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or*  or! or’
oa/ Oa, day.
ory orf ory’
g _ oa) Oa, ' oay,
- or* (3.35)
oa; '
ar,j‘r arN“r arN“r
oa/ Oa, ' oay,

where Nr is the number of responses and N, the number of system parameters.

An element in the matrix above, with the general form:

or!
si = az}_, (3.36)

J

is the sensitivity of response i at time node A/ to the parameter j at time node V .

The MULTI-PRED kernel computation can be launched with the ROOT command:

root -1 bestpred.C

in the directory:

MULTI-PRED/example/KERNEL

under Linux/Unix operating systems.

In Windows, the script bestpred.C is launched by a simple double click (the first launch may
need an explicit “Open With” ROOT preinstalled software).

Table 3.1: Input and output files (matrices) for the MULTI-PRED kernel

Input matrix Input file Output matrix Output file
a a.abs o aBE.out
C, ca.abs CfE caBE.out
r r.abs rBE rBE.out
m m.abs
C, cm.abs Cf,E cmBE.out
C., car.abs CrBaE carBE.out
S s.abs C, CR.out
Ve chi2.out
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The prerequisite input files (a.abs, ca.abs, ..., s.abs) for the MULTI-PRED kernel are listed
on the left (yellow) side of the Table 3.1. Let us recall their contents:

a.abs nominal parameters

ca.abs nominal parameter correlations

m.abs measured response(s)

r.abs nominal computed response(s)

cm.abs correlations for measured response(s)

s.abs sensitivities of the response(s) to all parameters (static

and transient)

car.abs initial correlations between parameters and response(s)

They must exist in the directory MULTI-PRED/example/vorKERNEL (see also the
Paragraph 3.2) before launching the MULTI-PRED kernel. The prerequisite input files (a.abs,
ca.abs, ..., s.abs) contain the corresponding block-matrices from the first column of Table 3.1
(with block-matrix structures given by the Eqs. 3.22-3.35), written in sparse format:
1) first row:
nr nc nz
where:
nr (integer) — number of rows
nc (integer) — number of columns
nz (integer) — number of non-zero elements / number of following lines in the file
2) nz rows of the type:
iricw
where:
ir (integer) — global row coordinate in the corresponding block-matrix
ic (integer) — global column coordinate in the corresponding block-matrix
w (float) — numerical value of the element with the global coordinates (ir,ic) in the block-
matrix
Remark: The prerequisite input files (a.abs, ca.abs, ..., s.abs) are created semi-

automatically (see next Paragraph!).

54



3.2 Input data and their preparation

The raw input data have to be delivered by the user, respecting some simple formatting.

The following steps (1-3) have to be strictly followed by the user:

STEP 1) Edit and fill the TXT file:
MULTI-PRED/example/vor KERNEL/dimensions.txt

which is a header file (to contain the steering data of the chosen model) for the C++ script:

MULTI-PRED/example/vorKERNEL/vorbestpred.C (to be NEVER changed!)

Examples:
A) dimension.txt-file in the case of the “Diffusion Model” (Paragraph 2.1):

st s sk sk sk sk s sk sfe sk sk s sk sk s sk s s sk sk sk sk sk st s sk sk sk sk sie sk sl sk sk s sk sk s sk sie sk sk sk sk sl sk sk s sk sk s sk sk seoske sk sk sk skeskoskoske skoskoske skoskok

//number of responses

4
//number of time nodes

1

//number of static parameters

4

//number of transient parameters

0

//0nly standard deviations for nominal sistem parameters? ; 1-
YES absolut; 2-YES relativ

2

//0nly standard deviations for measured responses? ; 1-YES
absolut; 2-YES relativ

2

//1Initial correlations between parameters and responses? 0-NO;
0]

st sk sk ke sk sk ke sk sk sk s s sk sk s sk sk s sk sk sk sk sk st s sk sk sk sk sk sk sk sk st s sk sk s sk sk sk sk sk sk sk sk sk s sk sk sk sk sk s sk sk sk sk sk ke sk sk skeosko sk skoskok

B) dimension.txt-file in the case of the “Dissolver Model” (Paragraph 2.2):

sk s sk sk sk sk s sk sfe sk st s sk sk s s sk s sk sk sk sk sk st s sk sk sk sk sk sk sl sk sk s sk sk s sk sk sk sk sk sk sl sk sk s sk sk sk sk sk sk sk sk sk sk sk skoskoske skoskosk skoskok

//number of responses

1

//number of time nodes

307

//number of static parameters

5

//number of transient parameters
2
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//0nly standard deviations for nominal sistem parameters? ; 1-
YES absolut; 2-YES relativ

2

//0nly standard deviations for measured responses? ; 1-YES
absolut; 2-YES relativ

1

//1Initial correlations between parameters and responses? 0-NO;

IMPORTANT!!:

The file vorbestest.C will create the sparse matrices:

a.abs nominal parameters

m.abs measured response

r.abs nominal computed response

s.abs sensitivities of the response to all parameters (static and
transient)

directly (according to the steering data), making use of the raw input data (already) existing in

the directory MULTI-PRED/example/INPfiles.

Any of the next 3 files (sparse matrices with structures according to Eqs. 3.23, 3.27 and 3.31)

have to be provided by the user (and automatically no more touched by vorbestpred.C) in the

case that the steering file dimensions.txt is asking for (“ ” options in the 2 examples
before):

ca.abs nominal parameter correlations

cm.abs correlations for measured response

car.abs initial correlations between parameters and responses

As an example, let us consider the following logical ramifications in the (final part of)

steering file dimensions.txt:

st sfe sk ke sfe sfe e sk sfe sk st sfe sk sk sfe sfe s sfe sfe s sfe sfe sk sk s she s she sfe sk sfe sfe sk st sk she ke s sfe sk st sfe sk st sfe sk ke sk sfe sk st sfe sk st sfe sk ke s she sk st sfeoske sk sfeoskeoske sleskeosk skeskoskok

//Only standard deviations for nominal sistem parameters? ; 1-YES absolut; 2-YES relativ
//Only standard deviations for measured responses? ; 1-YES absolut; 2-YES relativ

//Initial correlations between parameters and responses? 0-NO;
0

st sfe sk ke sfe sfe e sk she s st sfe ske sk sfe sfe s sfe sfe sk sk sfe sk sk sfe she s she sfe sk st she sk st sk she s s sfe sk st sfe sk st sfe sk ke sk sfe sk st sfe sk st sfe sk ke s she sk st sfeoske sk sfeskeoske sleseosk skeskeoskok
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This logical configuration will lead to:

the sparse matrix car.abs (initial correlations between responses and parameters) will be still
automatically provided by the script vorbestpred.C; it will contain in fact only one line of 3
integers:

nrnc 0, i.e.:

nr — number of rows

nc — number of columns

0 non-zero elements (in sparse format).

ca.abs and cm.abs have to be provided by the user.

STEP 2) The user has to create the following ASCII format input files (containing the raw
input data) in the directory MULTI-PRED/example/IN Pfiles:

experimental.txt the experimental response(s)

NOM.txt the nominal response(s)

paramSTAT.txt the nominal values of the static system parameters
paramTRANSIL.txt the nominal values of the transient system parameters
sensiSTAT.txt sensitivities to the static parameters
sensiTRANSI.txt sensitivities to the transient parameters
respSIGMA.txt standard deviations for experimental response(s)
paramSIGMA.txt nominal standard deviations for parameters

Here are the structures of these files (A refers to “Diffusion Model” and B means “Dissolver

Model”):

experimental.txt

It contains two columns:
1% column - time nodes (but it may contain only a time node counter);
2" column — the experimental values of the response(s)
The iteration tree looks like:
LOOP for the number of responses (A=4 or B=1)
LOQP for time nodes (A=1 or B=307)
Model A: 4 x 1 lines.
Model B: 307 x 1 lines.
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NOM.txt

It has the same structure as experimental.txt!

paramSTAT.txt

It contains only one column with the nominal values of the static parameters.

The iteration tree looks like:

LOOP for the number of static parameters (A=4 or B=5)
Model A: 4 lines.

Model B: 5 lines.

paramTRANSI.txt

This is a file needed only for Model B.
It contains two columns:
1% column - time nodes (but it may contain only a time node counter);
2" column — the nominal values of the transient parameters
The iteration tree looks like:
LOQP for the number of transient parameters (B=2)
LOQP for time nodes (B=307)
Model B: 2 x 307 lines.

sensiSTAT.txt
It contains two columns:
15t column: time nodes (but it may contain only a time node counter);
2" column: sensitivity values
The iteration tree looks like:
LOQP for the number of responses (A=4 or B=1)

LOOP for the number of static parameters (A=4 or B=5)

LOOQP for time nodes (A=1 or B=307)

Model A: 4 x 4 x 1 lines.
Model B: 1 x 5 x 307 lines.

58



sensiTRANSI.txt

This is a file needed only for Model B.
It contains two columns:
1% column: time nodes (but it may contain only a time node counter);
2" column: sensitivity values
The iteration tree looks like:
LOQP for the number of responses (B=1)
LOQP for the number of transient boundary conditions (B=2)
LOOP for perturbation nodes (B=307)
LOOQOP for time nodes (B=307)
Model B: 1 x 2 x 307 x 307 lines!

The zeros before perturbation nodes (because of causality reasons) are formally kept in the

(row number and column number).

respSIGMA..txt

file structure for safety reasons. Anyhow, these zeros will be not transferred towards the

sparse matrices as they will contain only the non-zero elements and their matrix coordinates

It contains one column with standard deviations (absolute or relative, according to the

logical option in the steering file dimensions.txt) of the response(s).

The iteration tree looks like:

LOQP for the number of responses (A=4 or B=1)
LOOQP for time nodes (A=1 or B=307)

Model A: 4 lines.

Model B: 307 lines.

paramSIGMA.txt

It contains one column with standard deviations (absolute or relative, according to the

logical option in the steering file dimensions.txt) of the system parameters

The iteration tree looks like:

LOOP for the number of all parameters (static and transient) (A=4 or B=7)

Model A: 4 lines.
Model B: 7 lines.
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STEP 3) The user has to run the C++ script
MULTI-PRED/example/vorKERNEL/vorbestpred.C C++ script for reading the input files
from MULTI-PRED/example/INPfiles and generating the sparse matrices a.abs, ca.abs,
m.abs, r.abs, cm.abs, s.abs, car.abs (ASCII files containing in sparse matrix format the
required data structure for the BEST-EST module)

Remark: As user, never modify the file vorbestpred.C!

3.3 Output data

The output data obtained by running the BEST-EST procedure are contained in the directory:
MULTI-PRED/example/KERNEL
All files to be found in this directory are explained in the Table 3.2:

Table 3.2: Output files (matrices) for the MULTI-PRED kernel

Matrix File Output matrix Output file

a a.inp a®F aBE.out
C, ca.inp COE‘E caBE.out
r r.inp rBE rBE.out

m m.inp
C, cm.inp CrﬁE cmBE.out
C.. car.inp CSZE carBE.out
S s.inp C, CR.out
7 chi2.out

The prerequisite input files (a.abs, ca.abs, ..., s.abs) for the MULTI-PRED kernel are listed
on the left (yellow) side of the Table 3.1, in Paragraph 3.2. The same information with the
same format is formally written/practically cloned (as safety measure) by the kernel in the
files (a.inp, ca.inp, ..., s.inp), see the left (yellow) side of the Table 3.2. Let us recall their
contents:

a.inp nominal parameters (same as a.abs)
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ca.inp nominal parameter correlations (same as ca.abs)

m.inp measured response(s) (same as m.abs)

r.inp nominal computed response(s) (same as r.abs)

cm.inp correlations for measured response(s) (same as cm.abs)
s.inp sensitivities of the response(s) to all parameters (static

and transient) (same as s.abs)
car.inp initial correlations between parameters and response(s)
(same as car.abs)
The (real) output of the kernel is written in the files on the right (blue) side of the Table 3.2.

Here are their contents:

aBE.out best-estimate parameters (same structure as a.abs)

caBE.out best-estimate parameter correlations (same structure as
ca.abs)

rBE.out best-estimate response(s) (same structure as r.abs)

cmBE.out best estimate correlations for response(s) (same structure
as cm.abs)

carBE.out best-estimate correlations between parameters and

response(s) (same structure as car.abs)
CR.out initial correlations between computed response(s) (same

structure as cm.abs)

chi2.out value of the consistency indicator °

The data contained in these files from Table 3.2 (*.inp and *.out) plus the steering data from
the file (already existing, used for the data preparation)

MULTI-PRED/example/vor KERNEL/dimensions.txt

are sufficient for displaying the results of the MULTI-PRED procedure.
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3.4 Display results

The results of the MULTI-PRED procedure, as well as their comparison with the a-priori data,

are displayed by semi-automatic C++ scripts. Here are the scripts with their descriptions:

Script and Figure Function
paramMOnom.C - plot nominal correlations of the static parameters
(see Fig. 3.1) - create the file paramMOnomBest.out (it contains a one-to-

one comparison of the nominal an best-estimate static

parameters with their relative standard deviations)

paramMObest.C - plot best-estimate correlations of the static parameters

(see Fig. 3.2) - create the file paramMOnomBest.out (the same content as
above)

corRESPnom.C plot initial correlations between computed responses

(see Fig. 3.3)

corRESPbest.C plot best-estimate correlations between responses

(see Fig. 3.4)

RESPsimexpbest.C plot computed, experimental and best-estimate responses

(see Fig. 3.5)

sigonlyRESPsimexpbest.C | plot (x) one standard deviation bands for computed, experimental

(see Fig. 3.6) and best-estimate responses

paramBCexpbest.C plot experimental and best-estimate transient boundary conditions

(see Fig. 3.7)

sigrelparamBCexpbest.C plot experimental and best-estimate relative standard deviations (in

(see Fig. 3.8) percent) of the transient boundary conditions

These scripts are semi-automatic in the sense they ask the user (after launching) for some

preferred options.
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The interactions possible with these scripts are exposed in the next panels.

Script: paramMOnom.C

Action: plot nominal correlations of the static parameters

Launching command: root -1 paramMOnom.C

Produced figure: Fig. 3.1

Dissolver Model

Diffusion Model

root -1 paramMOnom.C

root [O]

Processing paramMOnom.C. ..

Number of responses: 1

Number of time nodes: 307

Number of model parameters: 5
Number of transient parameters: 2
What kind of best-estimate
relative standard deviations?

1 = relative to nominal values

2 = relative to best-estimate
values

1

Set a minimum and a maximum for
the histogram?

1 = Yes!

2 = No!

2

root [1]

root -1 paramMOnom.C

root [O]

Processing paramMOnom.C. ..

Number of responses: 4

Number of time nodes: 1

Number of model parameters: 4
Number of transient parameters: 0O
What kind of best-estimate
relative standard deviations?

1 = relative to nominal values

2 = relative to best-estimate
values
2

Set a minimum and a maximum for
the histogram?

1 = Yes!
2 = No!

2

root [1]

Figure 3.1: Nominal static parameters correlations. Left: Dissolver Model. Right: Diffusion

Model.
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Some observations:

1) All scripts are applicable to both type of results (time-independent or time-dependent);
some user feed-back may be required during running.

2) The user (required) feed-back is displayed in red in all panels.

3) Sometimes it appears the question:

What kind of best-estimate relative standard deviations?

1 = relative to nominal values

2 = relative to best-estimate values

Because the best-estimate nominal values can be sometimes smaller than the a-priori values,

the a-priori values may be chosen as normalizations for the best-estimate relative standard
deviations (option 1); in such a case the best-estimate relative standard deviations will be
always smaller than the a-priori relative standard deviations.

4) By selecting on the tool-bar of any plot the option File->Save the following picture format
may be selected: ps, eps, pdf, gif, jpg, png. The corresponding file will keep the name of the
script producing it, with the extension ps, eps and so on.

5) The scripts of the type paramMOnom.C and paramMObest.C are delivering also a text
file paramMOnomBest.out which contains a one-to-one comparison of the nominal and
best-estimate static parameters with their relative standard deviations.

Here is the content of this file in the case of the diffusion model:

6) Under Windows operating system the launching command for all scripts is Double Click.
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Script: paramMObest.C

Action: plot best-estimate correlations of the static parameters

Launching command: root -1 paramMObest.C

Produced figure: Fig. 3.2

Dissolver Model

Diffusion Model

root -1 paramMObest.C

root [O]

Processing paramMObest.C. ..
Number of responses: 1

Number of time nodes: 307

Number of model parameters: 5
Number of transient parameters: 2
What kind of best-estimate
relative standard deviations?

1 = relative to nominal values
2 = relative to best-estimate
values

2

Set a minimum and a maximum for
the histogram?

1 = Yes!

2 = No!

2

root [1]

root -1 paramMObest.C

root [O]

Processing paramMObest.C. ..
Number of responses: 4

Number of time nodes: 1

Number of model parameters: 4
Number of transient parameters: 0O
What kind of best-estimate
relative standard deviations?

1 = relative to nominal values

2 = relative to best-estimate
values
2

Set a minimum and a maximum for
the histogram?

1 = Yes!
2 = No!

2

root [1]

Figure 3.2: Best-estimate static parameters correlations. Left: Dissolver Model. Right: Diffusion

Model.
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Script: corRESPnom.C

Action: plot initial correlations between computed responses

Launching command: root -1 corRESPnom.C

Produced figure: Fig. 3.3

Dissolver Model

Diffusion Model

root -1 corRESPnom.C

root [O]

Processing corRESPnom.C. ..

Number of responses: 1

Number of time nodes: 307

Number of model parameters: 5
Number of transient parameters: 2
What kind of response?

1 = static
2 = transient
2

Which response to be plotted?
Enter an integer between 1 and
1.
1
Set a minimum and a maximum for
the histogram?
1 = Yes!
2 = No!
1
Provide
0.0
Provide
0.35
root [1]

the minimum!

the maximum!

root -1 corRESPnom.C

root [O]

Processing corRESPnom.C. ..

Number of responses: 4

Number of time nodes: 1

Number of model parameters: 4
Number of transient parameters: 0O
What kind of response?

1 = static

2 = transient

1

Set a minimum and a maximum for
the histogram?

1 = Yesl!

2 = No!

2

root [1]

Figure 3.3: Initial correlations between computed responses. Left: Dissolver Model. Right:

Diffusion Model.
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Script: corRESPbest.C

Action: plot best-estimate correlations between computed responses

Launching command: root -1 corRESPbest.C

Produced figure: Fig. 3.4

Dissolver Model

Diffusion Model

root -1 corRESPbest.C

root [O]

Processing corRESPbest.C. ..
Number of responses: 1

Number of time nodes: 307

Number of model parameters: 5
Number of transient parameters: 2
What kind of response?

1 = static
2 = transient
2

Which response to be plotted?
Enter an integer between 1 and
1.

1

Set a minimum and a maximum for
the histogram?

1 = Yes!

2 = No!

2

root [1]

root -1 corRESPbest.C

root [O]

Processing paramMObest.C. ..
Number of responses: 4

Number of time nodes: 1
Number of model parameters: 4
Number
What kind of best-estimate
relative standard deviations?
1 = relative to nominal values

2 = relative to best-estimate
values

2

Set a minimum and a maximum for
the histogram?

1 = Yes!

2 = No!

2

root [1]

of transient parameters: 0

Figure 3.4: Best-estimate correlations of the responses. Left: Dissolver Model. Right: Diffusion

Model.
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Script: RESPsimexpbest.C

Action: plot computed, experimental and best-estimate responses

Launching command: root -1 RESPsimexpbest.C

Produced figure: Fig. 3.5

Dissolver Model Diffusion Model
root -1 RESPsimexpbest.C root -1 RESPsimexpbest.C
root [O] root [O]
Processing RESPsimexpbest.C. .. Processing RESPsimexpbest.C...
Number of responses: 1 Number of responses: 4
Number of time nodes: 307 Number of time nodes: 1
Number of model parameters: 5 Number of model parameters: 4
Number of transient parameters: 2 | Number of transient parameters: O
transient response static response
Which response to be plotted? Set a minimum and a maximum for
Enter an integer between 1 and the histogram?
1. 1 = Yes!
1 2 = No!
Set a minimum and a maximum for 2
the histogram? root [1]
1 = Yes!
2 = No!
2
root [1]

Figure 3.5: Computed (blue), experimental (red) and best-estimate response (black). Left: Dissolver
Model. Right: Diffusion Model
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Script: sigonlyRESPsimexpbest.C

Action: plot () one standard deviation bands for computed, experimental and best-estimate

responscs

Launching command: root -1 sigonlyRESPsimexpbest.C

Produced figure: Fig. 3.6

Dissolver Model Diffusion Model
root -1 sigonlyRESPsimexpbest.C root -1 sigonlyRESPsimexpbest.C
root [O] root [O]
Processing Processing

sigonlyRESPsimexpbest.C. ..

Number of responses: 1

Number of time nodes: 307

Number of model parameters: 5

Number of transient parameters: 2

transient response

Which response to be plotted?
Enter an integer between 1 and
1.

1

Set a minimum and a maximum for

the histogram?

1 = Yes!
2 = No!
2

root [1]

sigonlyRESPsimexpbest.C. ..

Number of responses: 4

Number of time nodes: 1

Number of model parameters: 4
Number of transient parameters: 0O
static response

Set a minimum and a maximum for
the histogram?

1 = Yes!

2 = No!

1

Provide the minimum!

2500000000

Provide the maximum!

5000000000

root [1]

Figure 3.6: Upper- and lower bands indicate () one standard deviation about the respective mean
response values depicted in Figure 4.5. Left: Dissolver Model. Right: Diffusion Model.
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Script: paramBCexpbest.C

Action: plot experimental and best-estimate transient boundary conditions

Launching command: root -1 paramBCexpbest.C

Produced figure: Fig. 3.7

Dissolver Model

Diffusion Model

root -1 paramBCexpbest.C

root [O]

Processing paramBCexpbest.C. ..
Number of responses: 1

Number of time nodes: 307

Number of model parameters: 5
Number of transient parameters: 2
Which boundary conditions have to
be plotted?

Integer allowed between 1 and 2.
1

Set a minimum and a maximum for
the histogram?

1 = Yes!
2 = No!
2

root [1]

NOT applicable!

Figure 3.7: Dissolver Model: Experimental (red) and best-estimate (black) transient boundary
conditions. Left: inlet nitric acid mass concentration. Right: inlet mass flow rate.
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Script: sigrelparamBCexpbest.C

Action: plot experimental and best-estimate relative standard deviations (in percent) of the

transient boundary conditions

Launching command: root -1 sigrelparamBCexpbest.C

Produced figure: Fig. 3.8

Dissolver Model Diffusion Model
root -1 sigrelparamBCexpbest.C NOT applicable!
root [O]
Processing

sigrelparamBCexpbest.C. ..

Number of responses: 1

Number of time nodes: 307

Number of model parameters: 5
Number of transient parameters: 2
What kind of best-estimate
relative standard deviations?

1 = relative to nominal values

2 = relative to best-estimate
values

1

Which boundary conditions have to
be plotted?

Integer allowed between 1 and 5.
1

Set a minimum and a maximum for
the histogram?

1 = Yes!
2 = No!
1

Provide the minimum 9.98
Provide the maximum 10.01
root [1]

Figure 3.8: Dissolver Model: Experimental (red) and best-estimate (black) relative standard
deviations (in percent) of the transient boundary conditions. Left: inlet mass flow rate. Right: inlet
nitric acid mass concentration.
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4.6. Task F: Perform high-quality holdup measurements

To test the DIMP method, some holdup detector measurements are necessary. It is crucial that
the pipe, box, or duct geometry be known precisely, as well as any other significant surroundings.
Also, the uncertainties in the detector response should be well documented. In order to ensure
the quality of the measurements and uncertainties, and to enable replication in case of identifying
discrepancies between the measured and computed results we conducted our own set of holdup
experiments. This was done in collaboration with ORNL where our partner operates a state-of-
the-art holdup lab whose staff supervised a graduate student conducting these experiments and
helped trouble-shoot observed discrepancies when they arose. NC State University and ORNL
were responsible for completing this task.

The accomplishment of this task was reported in: Noel Benjamin Nelson, Validation and
Uncertainty Quantification of the Data Integration with Modeled Predictions (DIMP) Inverse
Radiation Transport Model for Holdup Measurements, Doctoral Proposal, NC State University,
2016. This document is replicated on the following pages.
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CHAPTER

INTRODUCTION

1.1 Research Motivation and Goals

The goal of this work is to validate the Data Integration with Modeled Predictions (DIMP) inverse
particle transport method for solving the special nuclear material (SNM) holdup problem. Holdup
problems arise when radioactive material becomes trapped in processing equipment at nuclear fuel
processing facilities. Examples of processing equipment can include but are not limited to pipes,
ducts and filters, glove boxes, and valves. [1] SNM holdup is of interest to the nuclear fuel industry
for many reasons. These reasons include: criticality safety, maintaining accurate SNM inventory
and nuclear safeguards regime, and radiation worker safety.

Criticality safety is important for fairly obvious reasons. If enough nuclear material buildup
occurs over time in a section of equipment, it can present a criticality risk. Even if the holdup
deposit geometry is not at risk of becoming critical, accumulation of radioactive materials can pose
aradiation hazard to facility employees who may become exposed to the resulting radiation field
while working in the vicinity of the heldup material. Finally, SNM is important to track for economic
purposes and to ensure transparency. All fissile nuclear material must be accounted for within
reasonable margins to verify that it is exclusively used for the peaceful purposes of the facility’s

operations under applicable international safeguard protocols and treaties.
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Therefore, holdup sources are important to quantify in total material mass, isotopic composition,
as well as distribution and location. There are several models to choose from in order to solve the
holdup problem. The most common model used in industry is called the Generalized Geometry
Holdup (GGH) model. [1] The GGH model is based on a set of core assumptions. All sources in the
model must be approximated as a point, line, or area source. The source type is chosen based on
the measurements and judgements of a holdup survey crew. They use handheld field detectors
(often simple Geiger counters) to measure the approximate distribution of the source in a piece
of equipment. After determining the relative size, shape, and location of a source, measurement
points are determined and another survey crew will take spectral measurements of the source with
gamma-ray detectors (generally Nal or CDTe). The GGH model is then employed based on one of
the three GGH source distributions using background correction models and a self-attenuation
factor to calculate the approximate amount of radiation source material present in grams. [1] This
model can have a high degree of uncertainty and requires a large amount of measured data and
application of user judgement.

The DIMP method, in contrast, seeks a more automated system by posing the holdup config-
uration as an inverse problem. Initial survey crews would not be required, and few assumptions
are necessary to predict source distribution, size, strength, and location within equipment. DIMP
uses an adjoint particle transport model to calculate an importance map for a grid of detectors
in the target geometric configuration utilizing as-built information of dimensions and material
composition of the facility’s structure. Deterministic transport codes are capable of modeling such
configurations with a varying degree of fidelity of the models to achieve a desirable computational
precision. Together, the computed flux and detector response function can be used to predict detec-
tor responses from a given source distribution. Alternatively, and more efficiently in the present
case, folding the importance function with a given source distribution yields an estimate of the
detector response where the importance function is the adjoint flux computed with an adjoint
source set to that detector’s response function. DIMP calculates the optimal source distribution(s),
location(s), and strength(s) that best match calculated responses to experimental responses with no
presumptions of the source shape and minimal obvious restrictions on its physical location, e.g. a
source cannot be hanging in the air in the middle of a room.

Currently, the DIMP model has been validated for a Cs-137 point source and a Co-60 line source.
[2] It performed well with low error that was mostly attributed to the weakness of the available
sources (older button sources). [2] This work intends to expand upon the model and previous
research with realistic holdup experiments using strong Uranium sources measured with a field
holdup Nal detector, and compare the results to the Holdup Measurement System (HMS-4), a

GGH model. [3] Four experimental holdup measurement campaigns were performed in this work
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including a Cs-137 point source, a highly enriched Uranium (HEU) disk source, an HEU line source

in a pipe, and a set of HEU area sources in a duct.

1.2 Preliminary Work & Results

The initial work performed thus far, includes two numerical convergence studies performed with
synthetic detector responses computed with simulated Cs-137 and Co-60 point sources and the
first holdup source validation exercise conducted with experimental responses measured from a
Cs-137 calibration source. The synthetic convergence studies demonstrated the ability of DIMP to
converge as additional detection points were added. DIMP performed well above 5 detection points
and reached a reasonaby accurate spatial distribution for the Cs-137 point source alone. A definite
convergence was not quite achieved for the Cs-137 point source and Co-60 line of point sources
simulated together. While most of the Co-60 sources were resolved (especially the stronger ones),
all five were never mapped. DIMP eventually appeared to diverge after 21 detector points, and it
was surmised that this was due to the build up in total response error overcoming the information
supplied by the new detection information. Additionaly, another convergence study was performed
to access the functionality of DIMP with purely uncollimated detector responses. The study produced
promising results for the Cs-137 point source case with synthetic responses if the true source
distribution was used as the initial guess. Otherwise, DIMP became stuck in local minima, so a new
set initial guess values for the source parameter vector, a will have to be used for future work with
purely uncollimated responses.

The validation exercise used experimental measurements taken by the 1"x2" Nal ORNL field
holdup detector of a Cs-137 point source held by a ring stand to validate against responses gener-
ated by DIMP’s predicted sources. These measurements required a collimator correction factor to
calibrate DIMP according to the complex collimator geometry of the field holdup detector. DIMP
performed well with only two minor issues, and produced the correct source distribution in space
with 80% of the true source activity. The two issues that will require further attention include two
possible outlier measurement points that did not match the value projected by the MCNP calcu-
lated colimator correction factor, and that the run under the standard initial guess caused DIMP
to become stuck in a local minima. Future work with the new detector configuration will require

recalibration of the initial guess.
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1.3 Planned Work for PhD

This proposal seeks to outline a set of tasks planned for completion as part of this project. The
planned work covers three areas. The first is completion of DIMP’s validation against the experi-
mental measurements using well quantified holdup-like SNM sources taken at Oak Ridge National
Laboratories (ORNL) and comparing the results against HMS-4. These measurements include detec-
tor responses of an HEU disk source, an HEU line source in a large round duct, and area sources in
an L-duct in addition to various sources in a large round duct. The second task involves improving
the point DRF to account for the special collimation geometry of the ORNL field holdup detec-
tor. The final task will cover the investigation of a new peak DRF to improve DIMP’s performance
over the current point DRE Additionally refinement of the preliminary work completed so far and

summarized above will continue as needed.

1.4 Proposal Outline

The second chapter of this Proposal will discuss relevant background information, such as inverse
methodology and details of the DIMP system in the context of the available literature. The third
chapter covers the preliminary numerical convergence results of DIMP. The fourth chapter will
describe the experimental setup of the SNM holdup measurements. The fifth chapter discusses the
preliminary experimental results of the first experimental validation conducted with a Cs-137 point
source. The final chapter will outline future work intended to bring the project to the desirable state

of completion.
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REVIEW OF THE LITERATURE

2.1 Inverse Problems

Inverse problems are often more complex than their counterparts, the forward problem. In the
forward problem, an effect is predicted from an imposed cause. For example, in the typical forward
radiation transport problem, a source with an initial state and parameters (e.g. radiation source
distribution in space and angle, and its energy spectrum, etc.) are known and the state of the system
at other points in space and time (e.g. radiation flux, temperature, dose, etc.) are unknown. A forward
model is used to calculate the solution at those points from the known source and properties of the
problem domain (e.g. dimensions, material composition, nuclear data, etc.).

An inverse problem, in contrast, poses the reverse question. The cause(s) are sought from a
set of measured effects, or a model is identified to connect a set of input causes to output effects
. Information at various points in space and time called "measurements" are considered known,
but the source state or the domain configuration that produces them is treated as unknown. An
inverse model is used to calculate a possible solution state of the system from the measurements.
This is where the difficulty of inverse problems arises. The existence and uniqueness of an inverse
solution is typically not certain, and solutions can be very unstable depending on the quality of the

measurements.
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One way to approach the difficulty of inverse problems is to find solutions with probabilistic
methods. While the solution that best fits the measurement data is not always the true solution, the
chance that it is the true solution should increase with increasing amount of measured data. This

idea is formalized via Bayes’ theorem [4]:
plhypothesisldata,I)o< p(datalhypothesis,I)p(hypothesis|I), 2.1

where data is the experimentally measured data (e.g. detector responses), the hypothesis is
the unknowns of the system (source parameters in this work), and I is all the additional knowl-
edge of the system (system geometry, detector efficiency, detector response functions, etc.). The
three probability density functions (PDFs) appearing in Eq. 2.1, namely p(hypothesis|data,l),
pldatalhypothesis,I), and p(hypothesis|I) are the posterior, likelihood, and prior respec-
tively. The prior is the conditional probability that the hypothesis occurs based only on information
I. The likelihood represents the probability of measurement data occurring based on a given con-
figuration of the unknown data (hypothesis) and the information in I. This is proportional to the
posterior, or the probability of the given hypothesis (source configuration) being true based on
the information I and the measurement data.

In order to solve an inverse problem, the likelihood function is maximized thereby minimizing
the error between the experimentally measured data and the results predicted by the model from
an input configuration of the source parameters. The most probable source parameter values are
determined by nonlinear least squares estimation. Ideally, the source configuration that produces
the minimum error between the measured data and the predicted data is close to the true solution

(if the measurement and model errors are sufficiently small).

2.2 NDA and GGH

Nuclear fuel holdup is an application of the unknown radiation source inverse problem. The typical
holdup configuration comprises material containing sources of radiation that have accumulated
potentially for decades as radioactive deposits in nuclear fuel processing equipment at facilities.
These deposits need to be located and their mass quantified for criticality safety, radiation safety,
inventory, and nonproliferation purposes. One method of achieving this goal is destructive analysis
(DA). DA involves taking the piece of equipment apart or dislodging the radioactive deposit chemi-
cally by dissolution to physically examine the source. Naturally, DA is often costly and disruptive to
ordinary fuel processing operations. Therefore, it is often more appealing to perform nondestructive

analysis or NDA.
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NDA methods seek to gather information about the fuel deposit (or radiation source) without
physically or chemically altering it or the structure containing it. This is normally accomplished
through the interpretation of information obtained from radiation detector response spectra. Several
models have been developed for interpreting radiation measurements and solving general inverse
radiation problems including: the Monte Carlo Library Least-squares method for determining
elemental composition of a target material by active source interrogation [5], a Levenberg-Marquardt
nonlinear optimization of the radiation transport model for determining nuclear metal thicknesses
[6], and the GGH model [1] commonly used in the nuclear fuel processing industry to quantify
holdup sources.

The base model used for performance comparison of the DIMP methodology developed in this
work is the GGH model, a standardized industry approach. GGH is often used in industry because
of its ease of implementation and acceptable accuracy for relatively simple calculations. However, it
requires a fair amount of active user interface and time, as the method requires an initial source
search survey. Then after planning a case by case measurement scheme depending on the type of
source discovered, the attention of a measurement crew is required to execute the measurements
with portable field radiation detectors.

GGH requires a specific set of assumptions and conditions in order to accurately predict holdup
source characteristics. The system based on the GGH model used in this work for direct comparison
is called the Holdup Measurement System (HMS-4) [3]. HMS-4 relies on a survey crew to scan for
sources inside equipment, and when found, determine their approximate spatial distribution. After
the survey, measurement points are chosen based on the approximate source distribution, local area
geometry, and model assumptions. Then these measurements are used to calculate the approximate
mass of radioactive material contained within the holdup source.

The four core assumptions of GGH are as follows: first, the radiation detector used for measure-
ments is shielded on the back and sides. Second, a cylindrical collimator is attached to the front of
the crystal to restrict the field of view of the detector to a known solid angle. Third, the detector is
properly placed such that each holdup source can be generalized to a point source, uniform line
source, or uniform area source. Fourth, the distance between the detector and holdup source is
known. Several correction factors are used along with these assumptions to calculate the total mass
of the holdup deposit. [1]

In order to comply well with the third assumption, many measurements locations are determined
by the detector’s field of view. For example, in order to measure a point source the source distribution
must hold 5% or less of the detector’s field of view (based on the solid angle between source and
detector). A line source must cross the entire view of the detector but remain thin. An area source

must occupy 95% or more of the detector’s field of view. [1] Some of the measurement locations
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chosen in this work followed these constraints in order to serve as HMS-4 measurement points and
potentially serving the purposes of response measurements for our new approach, DIMBP, as well.

2.3 DIMP methodology

DIMP is a more general inverse problem solution method that requires no correction factors and
that does not limit the spatial distribution of the source to a preconceived set of options. Instead, it
maximizes agreement between the measurement vector 7, (responses) and the modeled responses,

7, predicted by a configuration of the model parameters, d
7., =Rad 2.2)

where R is the mapping operator from the model parameter input space to the response space.
The solution of this problem is linear for radiation transport and has a closed form solution for the
posterior means and covariances. Cacuci’s Best Estimate method based on Bayesian inference is

used to find the posterior solution mean and uncertainty. [7]

2.3.1 Radiation Transport

First, the model used in the inverse framework will be described in detail followed by specification
of the source parameters contained in @, and a few notes on the measurements 7,,. The model
for the radiation transport problem is based on the time independent linear Boltzmann Transport

equation for neutral particles in non-multiplying media. [8]
Q-%w(ic’,E,Q)+a(5c’,E)¢(5c’,E,Q)=JdE’f dVo, (% E, 0 — E,Y (R, E,Y)+q(% E,Q), (2.3)

where Y(X, E, Q)is the angular flux of particles [par ticles/c m?-s] defined over the spatial domain
xeV, Qedn, Ee(0,00),

and with explicit boundary conditions

YR, E,D)=1y(% E,Q) forx€dVandQ-7<0 .

Q1 is the unit directional vector along which particles are traveling, 7 is the unit vector normal
to the boundary surface d V at the point X, and o (X, E) the total particle interaction macroscopic
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cross-section [c m™']. Also, o 4(*; E/,QY — E,) is the macroscopic scattering cross-section of parti-
cles from one direction () and energy (E’) to the direction and energy range d<Y, d E’ about the
direction and energy of interest (, E), and q(%, E,) is the external source of radiation particles
in the configuration of interest [in particles/cm?3-s]. In DIMP the geometric configuration and
material composition of all objects in the problem domain are considered known, hence the cross
sections are retrieved and calculated for nuclide mixtures by MAVRIC [12]. Next, it is useful to define

the scalar flux ¢(X, E) as

(p()_C),E):f dwp(%,E,Q). (2.4)
4n

Reaction rates are key components to many radiation problems, such as dose and fission rates. In

this case, the reaction rate definition can be used to define a detector response, 7, as

r(E’)zf dEf dXoy(%,E  E)p(X,E), (2.5)
0 %4

where 0 ,(X, E’, E) is the detector response function (DRF). There are several ways to model and
define DRFs, and this will be explored further in the full dissertation. In Eq. 2.5, 0 4(X, E’, E) is the
probability per unit path length that a particle at X incident with energy E registers a response
in the detector’s channel dedicated to energy E’. With this definition in mind, one could use the
inverse of the forward transport equation, Eq. 2.3 as the mapping function for the inverse problem.
However, direct inverses are often numerically unstable and computationally expensive. Equation
2.5 requires a solution of the transport equation for every potential source distribution in order
to determine the corresponding ¢ (X, E) then compute r and compare it to the measured values.
Alternatively, the problem can be reformulated using the adjoint of the transport equation [2]. The
adjoint identity can be stated as

(Ap,h)=(p,A"h), (2.6)

where (,) denotes an inner product, A is an operator, p and h are any pair of functions in the domain
of A, and A' is the adjoint operator. Furthermore, in this application we define the inner product as

follows oo
(p,h):f dfzf dEJ dVp(X,E,Dh(Z,E,Q). 2.7)
4r 0 14

Now, consider the fixed source linear transport equation in operator form

Ly =gq, 2.8)
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where L is the transport operator (for all angular fluxes, ), and g is the external source. Next, take
the inner product of Eq. 2.8 with the adjoint angular flux i

(Ly,y")=(q,y"). (2.9)
Applying the adjoint identity (Eq. 2.6) to the above equation yields [9]

(Ly, )=, LTy + Py, ], 2.10)

where { is an arbitrary function ({ =T in our case) and P, {] is the bilinear concomitant, evalu-

ated on the external surface of volume V,

Py, ] :f dﬁfoo dEf dsQ- (X, E,Q0(X,E,Q). (2.11)
an 0 v
Substituting Eq. 2.10 into Eq. 2.9 yields
(W, L'y") =(q.y") = Ply,y"]. (2.12)
Next we set the adjoint source to the detector response function, DRE, namely q' = o4, implying
L'yt=0,. (2.13)
Substituting this relationship into Eq. 2.12 yields
(W,0a)=(a,y")—Ply, Y] (2.14)
Now, applying the following vacuum boundary conditions
Y(E,E,0)=0; for ¥€dV and Q-1 <0, (2.15)

Y%, E,0)=0 for ¥€dV and Q-7 >0, (2.16)

will cause the bilinear concomitant term to vanish thus producing

W, o0)=(q.y"). 2.17)

10
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Finally, recalling the reaction rate Eq. 2.5 and substituting it in Eq. 2.17 leads to

?p(E)=f dEf dve¢'(%,E)q(%, E) (2.18)
0 \%4

where ¢ (%, E) is the adjoint scalar flux, or importance, and 7p(E) is the predicted response. The
advantage of the formulation in Eq. 2.18 over the one in Eq. 2.5 is the computationally inexpensive
evaluation of the former once ¢ is known for a set of detectors. During the search for optimal
source distribution Eq. 2.18 comprises an inner product of the precomputed adjoint fluxes and a
guess of the source distribution. In contrast, Eq. 2.5 requires a full forward transport solution for
every attempted source distribution. The set of discretized importance values are calculated by
the discrete ordinates package DENOVO [12], and folded with the predicted source distribution
(q(X, E)) during the search for the best match between the resulting responses and the measurement
responses 7,,,. The optimal source distribution is found through an optimization process that if
successfully converged, yields 7,(E) = 7,,,(E), and in this case we call the corresponding q(%, E) a
solution to the inverse problem.

Currently, only the peak responses are compared for both predicted and measured responses. A
full response comparison was attempted in previous work [2] including the continuum and peak
responses, but the continuum response was very difficult to calculate. Accurate representation of
the continuum response requires a fairly sophisticated DRE Some research has been invested in the
area of DRFs for unshielded detectors [10], but more development of the DRF is required to apply it
to collimated detector responses as shown in Ref. [11].

2.3.2 Nonlinear Optimization

In order to optimize the predicted source distribution, the posterior probability is maximized by
minimizing the residual (Q(Z)) of the difference vector (Z) which contains the absolute differences
in the model parameters from the initial guess and those between the measured and predicted
responses. The optimization method implemented in this work is the gradient based Quasi-Newton
method with the best estimate covariance as described in Ref. [7]. The method works by minimizing
Q(Z) according to nonlinear least squares using the following Newton update step for the k'"

iteration

-1 .
A =~ 2e(V2Q(Z)  VaQ(Z). (2.19)

where A €0, 1] is the line search parameter which controls the search step size. o is the source

spatial distribution written in vector form (model parameters) for all peak energies at iteration k,

11
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and q, is the priori or initial guess. The gradient of Q is

VeQR)=C'Z,+STC 2, (2.20)

where C,, C,,, and S are the source distribution and measurement covariance matrices, and the
collective matrix of adjoint sensitivies (¢ '(E)), respectively as defined in Ref. [9]. Under the Gauss-

Newton approximation, the Hessian is defined as
20 (N a -1 1 T -1
vV, Q(Z)~C, +S'C'S (2.21)

where the inverses of the covariance matrices are replaced by the appropriate linear systems of
equations (consult Ref. [9]) and solved for efficiently using standard linear methods (e.g. Gaussian

Partial Pivoting). Finally, the functional of the difference vector, Q(Z) is then defined as
QZ)=z"c™'z, (2.22)

and the inverse of the covariance, C7!, is

c;' o
cl=| ¢ (2.23)
0 C;
The difference vector, Z is
. a—a° Z,
z2=l L L =] 4 (2.24)
Tp—Tm Z,

where 7, is the response calculated with the attempted source distribution and 7,,, is the measured

response.

2.4 DIMP Structure and Outline

DIMP is a system of modules assembled from various existing, production-level computer codes
where the system-level control is implemented in a Python command structure. The input to
DIMP comprises all prior information such as system object dimensions, material composition
and corresponding radiation interaction cross-sections, source energy information, etc., that the
DIMP system overlays in a 3-D adjoint photon transport model to calculate response information
for comparison with measured responses. Finally, the optimization algorithm calculates the best
estimate of the source distribution from the minimization of the response error.

A general outline of DIMP’s procedure is shown in Figure 2.1

12
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Figure 2.1 DIMP Algorithm Flowchart
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First, numerous model parameters such as detector specifications, object dimensions, material

compositions, and locations, and expected source energy peak ranges are initialized as inputs

by Python for use by MAVRIC. MAVRIC calculates cross-sections for all materials appearing in

the problem configuration after retrieving the basic elemental cross-sections from the Evaluated
Nuclear Data Files (ENDF) tables. Next, MAVRIC initializes the 3-D mesh for the adjoint transport
problem and passes this information along with the cross-sections to DENOVO. DENOVO calculates

13
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the importances or adjoint fluxes, ¢ '(E) in each computational cell across the entire mesh. The
importances from DENOVO are then folded with an iterate of the source parameters vector, «,
yielding the set of detector responses that correspond to that particular source distribution. These

are passed to the Python based gradient optimizer program.

The Quasi-Newton optimizer compares the predicted responses from DENOVO’s adjoint flux to the
measured responses. Measured responses are normally taken by field detector measurements, but
in this proof-of-principle stage and in support of debugging activities we exercised the option of
calculating synthetic responses by MCNP tallies, except in Chapter 5 where we utilize measured
detector responses. With each iterative step, the optimizer attempts to reduce the difference between
the predicted and measured responses by nonlinear least squares operations, until a local minimum
in the error is found. The source distribution that has the least error is called the best estimate source
distribution and is considered the solution of the inverse problem in a PDF sense. The distribution
that minimizes the sum of the errors squared has the inverse property of maximizing the likelihood
distribution from the original Bayes equation, Eq. 2.1. The source distribution that maximizes the
likelihood distribution has the highest probability of matching the true source distribution. Note,
there is no guarantee that this distribution is the global minimum; however, a good initial guess will

often yield a result that is sufficiently close to the global minimum.

14
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NUMERICAL CONVERGENCE STUDY

In order to prepare for quantifying the uncertainty introduced by changing many variables in
the realistic holdup experiments conducted for the purpose of validating the DIMP methodology,
numerical convergence studies were performed. In this study, a previous source configuration
benchmarked in Ref. [2] (a Cs-137 point source and five Co-60 point sources arranged along a straight
line) was simulated using synthetic MCNP detector responses and the results used to verify DIMP’s
convergence to the known source distributions while varying selected features or parameters. The
choice to employ synthetic responses as opposed to experimentally measured responses is dictated
by the large number of cases needed to test the desired dependencies. Also, the ability to repeat
certain "experiments" either exactly or with tweaks to the setup, to facilitate debugging a certain
feature of the code or limitations of the model demand such simulated measurement environments.
Convergence of DIMP was measured by the accuracy of the predicted source’s position, strength,
and spatial distribution compared with the true source used in generating the synthetic responses.
An additional measure of DIMP convergence is provided by the level of agreement of the predicted
and synthetic responses as quantified by the reduced chi-squared. To test the convergence behavior,
DIMP source maps over the spatial extent of the room were computed as a sequence of increasing
number of detectors starting with one detector all the way up to 24 detector points. DIMP showed

stable convergence towards the true point source configuration with a minimum of 5 detectors to

15



3.0. CONV. OF CS-137 POINT CHAPTER 3. NUM. CONV. STUDY

resolve a reasonable approximation of the true source configuration.

The original study that employed this setup [2] involved synthetic and experimental measurements
of calibration radioisotope sources placed in room 2144 in Burlington Engineering Laboratories at
North Carolina State University. A stack of Cs-137 sources was placed in the corner on the floor and
a string of five Co-60 sources were placed in a straight line on a counter in the middle of the room.
The first source was meant to represent a point source and the second approximates a line source.
See Ref. [9] for a detailed description and photos of the room, placement of the radiation sources,

and the experimental setup.

In the original work, source maps predicted by the optimization of detector responses would often
yield configurations with multiple source cells even for a single point source in the true source setup.
This is because DIMP makes no prior assumptions about the spatial distribution of a source (unlike
other methods such as GGH), and bases its source predictions solely on prior information (room
geometry, energy of source peaks, etc.) and measured responses. So, it is quite likely in a given DIMP
source map mesh that many cells will have non-zero values due, among other reasons to noise in
the measrued (or synthetic) responses and numerical errors in the computational model. Therefore,
a cut-off criterion is normally chosen to exclude from the solution to the inverse problem sources

that are too small in magnitude.

3.1 Convergence of DIMP for a Mono-energetic Point Source

The first test involves only a simulated Cs-137 point source considered in the original setup [2].
Synthetic responses of a varying number of detectors were computed with MCNP using the true
source strength and location, then these responses were fed into DIMP to predict the optimal source
distribution. The resulting DIMP-predicted source distribution is then compared to the the true
source distribution used in MCNP as the number of detection points was increased from three to
nine. DENOVO solves the inverse problem using a deterministic discrete ordinates particle transport
method, whereas MCNP uses a stochastic particle transport model, so in the sense described in
Ref. [9] this presents an "inverse misdemeanor" not an "inverse crime". The two codes produce
non-identical numerical errors that prevent the exact true source distribution from being predicted
by DIMP. Each detector point’s set of simulated responses comprised one unshielded measurement
and six directional measurements along positive and negative coordinate axes in three dimensions.
The results of this convergence study are displayed in Table 3.1. The true location of the Cs-137
point source is (440, 5, 1) cm, and its true strength is 107.685 kBq.

16



3.1. CONV. OF CS-137 POINT

CHAPTER 3. NUM. CONV. STUDY

Table 3.1 Spatial distribution of the Cs-137 point source computed with DIMP from synthetic responses
as a function of increasing number of detectors. Only cells with source strength larger than 1% of the true
source strength are listed.

3 Det. X (cm) y (cm) z (cm) Ad (cm) | q (Bq) qti’ue (%) | x3/det.
Ax (cells) | Ay (cells) | Az (cells)
391.16 50.04 3.31 66.47 | 4.02E4 | 37.33 3.919E5
-5 6 0
410.46 58.17 3.31 60.86 2.05E4 19.06
-3 7 0
72.64 171.96 -6.22 403.58 1.30E3 1.21
-38 21 -2
4 Det.
410.46 25.65 3.31 36.11 591E4 | 54.90 3.391E5
-3 3 0
444.37 41.91 3.31 37.24 2.34E4 21.71
1 5 0
439.42 253.24 173.40 302.23 | 2.43E3 2.26
0 31 22
5 Det.
439.42 2.67 3.31 3.33 8.77E4 | 81.48 72.34
0 0 0
439.42 17.53 3.31 12.75 1.98E4 18.42
0 2 0
6 Det.
444.37 2.67 3.31 5.47 9.80E4 | 91.01 69.17
1 0 0
444.37 17.53 3.31 13.47 1.33E4 12.32
1 2 0
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Table 3.1 Convergence data cont.

7 Det. X (cm) y (cm) z (cm) Ad (cm) | g (Bq) qt?ue %) | x3/det.
Ax (cells) | Ay (cells) | Az (cells)
439.42 9.40 3.31 5.00 5.51E4 51.12 20.74
0 1 0
439.42 2.67 3.31 3.33 5.21E4 48.35
0 0 0
8 Det.
439.42 9.40 3.31 5.00 5.51E4 51.13 18.73
0 1 0
439.42 2.67 3.31 3.33 5.21E4 48.35
0 0 0
9 Det.
439.42 9.40 3.31 5.00 5.59E4 51.88 17.78
0 1 0
439.42 2.67 3.31 3.33 5.11E4 47.49
0 0 0

The table shows the coordinates and strength of each individual cell where the predicted source
strength exceeded 1% of the true source’s strength, along with the distance from its true location
(Ad) to the mesh cell center and its strength relative to that of the true strength used in generating
the synthetic responses. The x,y,z coordinates listed for each cell correspond to the coordinates of
that cell’s center point, and the Ax,Ay,Az indicates the difference of the cell’s x,y,z mesh index
from the corresponding mesh index of the cell that contains the true point source, respectively.
Also shown in Table 3.1 is the reduced chi-squared value per detector of the detector responses

computed from the predicted source configuration computed via

n 2

2 1 (rm,i_rp,i)
)(R:_E : 2
vi:l 0;

where v=n—p is the degree of freedom or the difference between the number of measurements, n,

(3.1)

and the number of parameters, p. o2 is the variance (Poisson or MCNP variance) in the measure-
ments, r,, ;, and r,, ; are the modeled responses. The reduced chi-squared is normalized per detector

in order to screen out the expected modeling error between DENOVO adjoint-based responses and
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MCNP responses that accumulate with each additional detector. As evidenced by the large error in
the predicted source locations, weak strengths, and the resulting very large chi-squared-per-detector
values, DIMP does not perform adequately with fewer than 5 detectors for this source configuration.
With so few detectors, the code places the source near to one of the detectors. From 5 detection
points upwards to 9 detectors, DIMP converges on a 50/50 split between two very probable source
cells in the corner near to where the true source is in fact located. While it does not converge to a
single cell that contains the true source, it remains stable and converges to the true source cell and
its neighbor as a consequence of inconsistent numerical errors in the MCNP and DENOVO models

of the radiation transport process.

3.2 Convergence of DIMP for Poly-energetic Multiple Point Sources

The second DIMP convergence test involves the full original source setup with the Cs-137 point
source in the corner and the five Co-60 point sources along the center of the southern wall. Again,
purely synthetic measurements generated with MCNP were used as detector responses where the
number of detection points was increased from 3 to 24 points total, each comprising one bare
detector and six directional responses as described earlier. The results of the second convergence
study are shown in Table 3.2. The true location and strength of the Cs-137 point source remains the
same as stated in Sec. 3.1, while the true location of the Co-60 line source is centered at approximately
(120, 9.525, 90.17) cm. The individual x coordinates of the five point sources that compose the line
source are x=96.52, 107.95, 119.38, 130.175, and 143.764 cm, and their strengths are 0.525, 2.218,
5.767, 31.793, and 3.845 kBq respectively. Note, DIMP treats the two coincident photons from Co-60
as independent sources with no correlation in their spatial location. Therefore, each Co source cell
mapped by DIMP from one of these two energies may or may not coincide with source cells from

the other energy.
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Table 3.2 Spatial distribution of the Cs-137 point source and the Co-60 line source computed with DIMP
from synthetic responses as a function of increasing number of detectors. Ad is measured from the
strongest point source on the Co-60 line at x=130.175 cm.

Energy (MeV) | x (cm) y (cm) z(em) | Ad(cm) | q B | 725 %) | y3/det.
Ax (cells) | Ay (cells) | Az (cells)
3 Detectors

1.332 82.30 17.53 207.62 127.08 3.00E4 135.96 2.634E4
-5 1 15

1.173 72.64 17.53 190.51 115.94 2.81E4 127.42
-6 1 13

0.662 381.51 66.29 3.31 84.76 2.70E4 25.12
-6 8 0

0.662 391.16 66.29 3.31 78.41 2.34E4 21.72
-5 8 0

0.662 72.64 171.96 -6.22 403.58 1.80E3 1.67
-38 21 -2

4 Detectors

1.332 82.30 17.53 92.90 48.62 2.00E4 90.40 774.1
-5 1 1

1.173 91.95 17.53 113.53 45.51 2.10E4 95.34
-4 1 4

0.662 400.81 58.17 3.31 66.09 4.39E4 40.78
-4 -2 0

0.662 381.51 50.04 3.31 73.86 1.44E4 13.40
-6 6 0

0.662 458.72 261.37 139.19 291.84 | 4.04E3 3.76
3 32 18
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Table 3.2 Convergence data cont.

Energy (MeV) | x (cm) y (cm) z(em) | Ad(cm) | q By | z20- (%) | yi/det.
Ax (cells) | Ay (cells) | Az (cells)
5 Detectors

1.332 120.90 17.53 92.90 12.55 1.37E4 62.06 29.84
-1 1 1

1.332 149.86 17.53 92.90 21.42 6.95E3 31.48
2 1 1

1.173 130.56 17.53 92.90 8.46 2.09E4 94.72
0 1 1

0.662 439.42 2.67 3.31 3.33 5.59E4 51.94
0 0 0

0.662 439.42 9.40 3.31 5.00 4.73E4 43.90
0 1 0

0.662 439.42 2.67 10.13 9.44 4.14E3 3.85
0 0 1

6 Detectors

1.332 120.90 9.40 92.90 9.67 1.88E4 85.14 69.73
-1 0 1

1.332 169.16 9.40 92.90 39.08 2.73E3 12.36
4 0 1

1.173 120.90 17.53 92.90 12.55 1.71E4 77.42
-1 1 1

1.173 169.16 2.67 92.90 39.68 3.78E3 17.14
4 -1 1

0.662 444.37 2.67 3.31 5.47 9.32E4 86.58
1 0 0

0.662 439.42 17.53 3.31 12.75 1.64E4 15.21
0 2 0
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Table 3.2 Convergence data cont.

Energy (MeV) | x (cm) y (cm) z(em) | Ad(cm) | q By | z20- (%) | yi/det.
Ax (cells) | Ay (cells) | Az (cells)
7 Detectors

1.332 130.56 9.40 92.90 2.76 1.10E4 49.74 47.39
0 0 1

1.332 130.56 17.53 97.18 10.64 1.06E4 48.00
1 1 2

1.173 130.56 9.40 92.90 2.76 1.31E4 59.42
0 0 1

1.173 130.56 17.53 92.90 8.46 8.39E3 38.02
0 1 1

0.662 439.42 2.67 3.31 3.33 1.05E5 97.22
0 0 0

0.662 439.42 33.78 10.13 30.20 4.99E3 4.64
0 4 1

8 Detectors

1.332 130.56 17.53 92.90 8.46 9.17E3 41.54 93.56
0 1 1

1.332 140.21 17.53 92.90 13.12 7.33E3 33.22
1 1 1

1.173 140.21 9.40 97.18 12.24 1.34E4 60.78
1 0 2

1.173 120.90 17.53 92.90 12.55 6.63E3 30.04
-1 1 1

0.662 439.42 9.40 3.31 5.00 5.63E4 52.31
0 1 0

0.662 439.42 2.67 3.31 3.33 5.03E4 46.70
0 0 0
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Table 3.2 Convergence data cont.

Energy (MeV) | x (cm) y (cm) z(em) | Ad(cm) | q By | z20- (%) | yi/det.
Ax (cells) | Ay (cells) | Az (cells)
9 Detectors
1.332 130.56 9.40 97.18 7.02 1.84E4 83.40 75.84
0 0 2
1.332 140.21 9.40 92.90 10.40 2.40E3 10.86
1 0 1
1.332 159.51 -1.40 97.18 32.08 1.39E3 6.32
3 -2 2
1.173 140.21 -1.40 97.18 16.40 3.04E4 137.72
1 -2 2
1.173 169.16 -6.86 97.18 42.87 8.81E2 4.00
4 -3 2
0.662 449.20 17.53 3.31 15.71 7.52E4 69.83
2 2 0
0.662 439.42 2.67 3.31 3.33 6.57E4 60.97
0 0 0
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Table 3.2 Convergence data cont.

Energy (MeV) | x (cm) y (cm) z(em) | Ad(cm) | q By | z20- (%) | yi/det.
Ax (cells) | Ay (cells) | Az (cells)
12 Detectors

1.332 140.21 9.40 92.90 10.40 1.08E4 48.90 43.91
1 0 1

1.332 111.25 17.53 97.18 21.71 8.60E3 38.94
-2 1 2

1.332 130.56 17.53 104.98 16.83 8.64E2 3.92
0 1 3

1.332 130.56 17.53 87.87 8.33 8.42E2 3.82
0 1 0

1.332 169.16 -1.40 97.18 41.09 7.72E2 3.50
4 -2 2

1.173 130.56 9.40 92.90 2.76 1.80E4 81.70
0 0 1

1.173 120.90 9.40 92.90 9.67 3.02E3 13.68
-1 0 1

1.173 111.25 17.53 104.98 25.32 1.13E3 5.14
-2 1 3

1.173 159.51 17.53 92.90 30.53 4.76E2 2.16
3 1 1

0.662 439.42 2.67 3.31 3.33 9.32E4 86.55
0 0 0

0.662 439.42 25.65 3.31 20.79 1.07E4 9.89
0 3 0

0.662 439.42 9.40 10.13 10.15 3.98E3 3.69
0 1 1
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Table 3.2 Convergence data cont.

Energy (MeV) | x (cm) y (cm) z(em) | Ad(cm) | q By | z20- (%) | yi/det.
Ax (cells) | Ay (cells) | Az (cells)
15 Detectors

1.332 140.21 9.40 92.90 10.40 9.96E3 22.56 64.60
1 0 1

1.332 111.25 17.53 92.90 20.73 8.46E3 38.32
-2 1 1

1.332 130.56 17.53 92.90 8.46 1.74E3 7.90
0 1 1

1.332 140.21 17.53 104.98 19.59 7.37E2 3.34
1 1 3

1.173 130.56 17.53 92.90 8.46 7.99E3 36.20
0 1 1

1.173 140.21 2.67 92.90 12.46 7.84E3 35.52
1 -1 1

1.173 101.60 17.53 97.18 30.49 4.85E3 22.00
-3 1 2

1.173 140.21 17.53 104.98 19.59 6.28E2 2.84
1 1 3

0.662 439.42 9.40 3.31 5.00 7.96E4 73.88
0 1 0

0.662 444.37 2.67 3.31 5.47 2.65E4 24.64
1 0 0
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Table 3.2 Convergence data cont.

Energy (MeV) | x (cm) y (cm) z(em) | Ad(cm) | q By | z20- (%) | yi/det.
Ax (cells) | Ay (cells) | Az (cells)
18 Detectors
1.332 140.21 9.40 92.90 10.40 1.15E4 52.16 37.00
1 0 1
1.332 120.90 17.53 92.90 12.55 6.75E3 30.56
-1 1 1
1.332 91.95 17.53 104.98 41.77 2.09E3 9.48
-4 1 3
1.332 120.90 17.53 79.31 16.36 1.11E3 5.02
-1 1 -1
1.173 130.56 9.40 92.90 2.76 2.14E4 97.12
0 0 1
1.173 91.95 17.53 104.98 41.77 1.33E3 6.02
-4 1 3
0.662 439.42 9.40 3.31 5.00 5.76E4 53.50
0 1 0
0.662 439.42 2.67 3.31 3.33 4.91E4 45.56
0 0 0
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Table 3.2 Convergence data cont.

Energy (MeV) | x (cm) y (cm) z(em) | Ad(cm) | q By | z20- (%) | yi/det.
Ax (cells) | Ay (cells) | Az (cells)
21 Detectors

1.332 140.21 9.40 92.90 10.40 1.13E4 51.24 37.97
1 0 1

1.332 120.90 9.40 92.90 9.67 9.81E3 44.46
-1 0 1

1.332 91.95 17.53 70.76 43.61 1.10E3 4.98
-4 1 -2

1.173 140.21 9.40 92.90 10.40 7.60E3 34.44
1 0 1

1.173 130.56 9.40 92.90 2.76 7.01E3 31.76
0 0 1

1.173 120.90 9.40 92.90 9.67 6.95E3 31.48
-1 0 1

1.173 91.95 17.53 70.76 43.61 7.81E2 3.54
-4 1 1

0.662 439.42 2.67 3.31 3.33 9.34E4 86.70
0 0 0

0.662 439.42 25.65 3.31 20.79 1.38E4 12.86
0 3 0

27



3.2. CONV. OF CS-137 POINT AND CO-60 LINE

CHAPTER 3. NUM. CONV. STUDY

Table 3.2 Convergence data cont.

Energy (MeV) | x (cm) y (cm) z(em) | Ad(cm) | q By | z20- (%) | yi/det.
Ax (cells) | Ay (cells) | Az (cells)
24 Detectors

1.332 111.25 17.53 87.87 20.67 6.14E3 27.84 299.1
-2 1 0

1.332 120.90 9.40 92.90 9.67 5.08E3 23.02
-1 0 1

1.332 149.86 17.53 87.87 21.37 3.10E3 14.04
2 1 0

1.332 149.86 17.53 92.90 21.42 2.33E3 10.54
2 1 1

1.332 111.25 17.53 79.31 23.24 1.32E3 6.00
-2 1 -1

1.332 120.90 17.53 104.98 19.21 1.16E3 5.26
-1 1 3

1.173 140.21 17.53 92.90 13.12 7.71E3 34.92
1 1 1

1.173 111.25 17.53 87.87 20.67 4.94E3 22.36
0 1 0

1.173 82.30 17.53 79.31 49.74 2.10E3 9.50
-5 1 -1

1.173 149.86 17.53 87.87 21.37 2.07E3 9.36
2 1 0

1.173 120.90 17.53 104.98 19.21 8.21E2 3.72
-1 1 3

0.662 439.42 2.67 3.31 3.33 8.67E4 80.51
0 0 0

0.662 439.42 17.53 3.31 12.75 1.66E4 15.45
0 2 0

0.662 439.42 25.65 10.13 22.59 3.64E3 3.38
0 3 1
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The tables show similar types of information as the previous convergence study, but reveal a more
interesting feature. Again, DIMP does not converge with fewer than 5 detectors for this source
configuration comprising a six-point distribution with three distinct energies. From 5-7 detectors
the point source is well resolved, merely wavering between two configurations: a 50/50 split of
the source with the correct cell and a neighboring cell and most of the source strength (>70%)
concentrated in one of these two cells. The Co-60 line source however, is only resolved as one- or
two-cell sources. The predicted Co-60 point sources match approximately in total strength and
location with the stronger sources on the true line source.

From 8-21 detectors, more points on the predicted Co-60 line source are resolved. How-
ever, DIMP never maps all five source points of the true Co-60 line source, and typically smears the
locations of the stronger points on the line between the correct cell and a neighbor. Unfortunately,
at 24 detectors, DIMP begins to diverge by predicting source points beyond the boundaries of the
true Co-60 line source. The new detector information creates more source configurations than it
eliminates as the total error between the transport model and the synthetic responses increases

with the addition of each new detector. This failure will be investigated further in the near future.

3.2.1 Convergence of DIMP Using Uncollimated Responses Only

Verifying the necessity and contribution of directional responses to the performance of DIMP’s
source prediction is of high interest for future work. Collimated detectors require more complex
DRFs in order to calculate full response spectra [11], so it would be easier and more efficient to
run DIMP with only unshielded detection points. In order to determine DIMP’s dependence on
directional responses, a convergence study was conducted with only unshielded responses. This
numerical simulation involved only the Cs-137 point source, as reported in Section 3.1. Purely
synthetic measurements generated with MCNP were used as unshielded detector responses where
the number of detection points was increased from 3 to 42 points total, in order to provide an
equivalent number of data points to the base six detection points case with seven responses per
detection point. The results of this convergence study are shown in Table 3.2.1.
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Table 3.3 Spatial distribution of the Cs-137 point source computed with DIMP from synthetic responses
as a function of a selected number of detectors using only unshielded responses. Only cells with source
strength larger than 1% of the true source strength are listed.

3 Det. X (cm) y (cm) z (cm) Ad (cm) | q(Bq) qtlfw (%) | x3/det.
Ax (cells) | Ay (cells) | Az (cells)
391.16 220.73 97.18 241.19 | 6.11E3 5.67 2.777E-2
-5 27 13
7 Det.
400.81 245.11 92.90 260.07 | 1.92E4 17.87 2.87E-2
-4 30 12
198.12 -6.86 92.90 259.02 | 8.47E3 7.87
-25 -2 12
410.46 50.04 14.41 55.50 6.51E3 6.04
-3 6 2
400.81 236.98 97.18 254.17 | 1.81E3 1.68
-4 29 13
15 Det.
400.81 74.42 3.31 79.75 1.88E4 17.50 31.11
-4 9 0
246.38 17.53 147.74 243.27 | 6.53E3 6.06
-20 2 19
217.42 131.32 14.41 256.27 | 3.68E3 3.41
-23 16 2
391.16 228.85 87.87 245.03 2.91E3 2.71
-5 28 11
400.81 220.73 122.08 250.47 | 2.01E3 1.86
-4 27 16
420.12 58.17 27.99 62.85 1.53E3 1.42
-2 7 4
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Table 3.3 Convergence data cont.

30 Det. X (cm) y (cm) Z (cm) Ad (cm) | q(Bq) q:ue %) | x3/det.
Ax (cells) | Ay (cells) | Az (cells)
410.46 25.65 3.31 36.11 1.57E4 14.54 2.82
-3 3 0
420.12 115.06 181.96 212.73 1.29E4 11.98
-2 14 23
400.81 17.53 3.31 41.21 1.22E4 11.37
-4 2 0
420.46 131.32 3.31 129.75 | 6.54E3 6.07
-2 16 0
284.99 9.40 181.96 238.31 | 4.24E3 3.94
-16 1 23
159.51 66.29 14.41 287.42 1.86E3 1.72
-29 8 2
246.38 171.96 14.41 256.01 1.82E3 1.69
-20 21 2
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Table 3.3 Convergence data cont.

42Det. | x(cm) y (cm) z(em) | Ad(cm) | qBq) | 7= (%) | xi/det.
Ax (cells) | Ay (cells) | Az (cells)

429.77 33.78 45.10 53.65 1.85E4 17.18 6.37
-1 4 6

400.81 17.53 3.31 41.21 1.08E4 10.0
-4 2 0

371.86 2.67 3.31 68.22 8.78E3 8.16
-7 0 0

333.25 9.40 190.51 217.55 | 6.76E3 6.28
-11 1 24

439.42 66.29 10.13 61.97 4.90E3 4.55
0 8 1

381.51 147.57 3.31 154.12 | 4.59E3 4.26
-6 18 0

429.77 33.78 3.31 30.63 3.26E3 3.02
-1 4 0

140.21 -1.40 3.31 299.87 | 3.21E3 2.99
-31 -1 0

227.08 163.83 -0.97 265.65 | 2.63E3 2.44
-22 20 -1

420.46 115.06 156.30 191.38 2.09E3 1.94
-2 14 20

Unfortunately, DIMP did not perform well leading to the conjecture that directional responses are
indeed necessary and integral to the accuracy of DIMP’s source prediction. In all of the simulations,
the Cs-137 point source was predicted broadly distributed throughout the mesh with the closest
cells (not always the highest activity cells) being at least 5 cells away from the true source cell. None
of the sources were above 18% of the true source strength, and the reduced chi-squared values were
lower or comparable to DIMP’s predictions with directional responses (Table 3.1). Usually, when
DIMP predicts an incorrect source distribution, it places weak sources near prominent detector
points. The possibility of DIMP being stuck in a local minimum was also investigated by using the

true source distribution as an initial guess. DIMP predicted the solution in the true source cell with
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95% or above of the true source strength for each case with a reduced chi-squared value closer to
one, so many of the cases reported in Table may have only shown a local minimum. The reduced
chi-squared was also greatly improved for searches with greater than 14 detection points. Therefore,
it seems the initial guess and alpha vector parameters for the unshielded responses source search
must be fairly different from those of the combined directional and unshielded response source
search. Once the correct alpha vector range for unshielded responses is found, further investigation
with the full Cs-137 and Co-60 source search will continue in order to better test DIMP’s performance

with unshielded responses for more complex source configurations.

3.2.2 Limitations of the DIMP algorithm and Assumptions for synthetic responses

While in the process of testing the convergence properties of DIMP for the original test case, two
limitations of the model and model assumptions were discovered. These limitations include the
alignment of sources and detection points in plane with one another and close proximity of a source
to a detector. The issue arises from an assumption (involving the lead brick collimator model) made
in the computation of MCNP directional responses as synthetic measurements which causes signif-
icant disagreement with the predicted responses from DENOVO under the prescribed conditions.
DENOVO calculates the adjoint flux, and consequently we compute the detector response from the
adjoint flux and the source configuration at the center of the detector coordinates, whereas MCNP
calculates responses at the face of the brick about five centimeters off of the detector face along
the axis in the intended measurement direction. This difference between the MCNP and DENOVO
models that was originally designed to simplify computation of the synthetic directional responses
caused the two abovementioned limitations that produced discrepancies between the responses

computed with the two models as elaborated below.

3.2.2.1 In-plane Sources and Detectors

The first limitation was discovered after poor convergence was observed for an earlier 12 detector
simulation where 6 detection points were kept the same as the previous work [2], and 6 new, distinct
points were chosen within the room enclosure in cells whose material assignment is air but without
preference of specific locations or alignment with other mesh or room features. The resulting poorly

converged results are shown in Table 3.4.
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Table 3.4 Spatial distribution of the Cs-137 point source and the Co-60 line source computed with DIMP
from synthetic responses of 12 detectors that include three coplanar detectors with sources.

Energy (MeV) | x (cm) y (cm) z(cm) | Ad(em) | qBy | 722 (%) | y3/det.
Ax (cells) | Ay (cells) | Az (cells)
1.332 140.21 17.53 97.18 14.62 | 3.87E3 8.76 1551
1 1 2
1.173 140.21 17.53 97.18 14.62 | 1.488E3 3.34
0 1 0
1.173 130.56 17.53 97.18 10.64 | 1.33E3 3.02
3 1 3
0.662 391.16 41.91 -0.97 61.25 | 7.56E3 7.02
5 5 -1
0.662 439.42 98.81 19.44 95.60 | 3.05E3 2.84
0 12 0

Clearly, DIMP did not converge well for this early 12 detector case as evidenced by the poor agreement
of strength and location with the true source and also by the large reduced chi-squared value
especially in comparison with the 12 detector case shown in Table 3.2 where none of the detection
points suffered the poor placement conditions under investigation in this section. This discrepancy
was very puzzling considering the good agreement reported previously [2] with six detectors that are a
subset of the 12 detectors employed to generate the results reported in Table 3.4. Convergent behavior
of DIMP would have improved the agreement between the true and predicted source distribution
with increasing number of detection points. All of the predicted source cells are excessively weak
in strength and placed away from the walls at least a few cells closer to the detectors. While the
Co-60 prediction was only a few cells off in location from the center of the true line source, it spans
cells in the z direction instead of the x direction. The Cs-137 predicted point source is more than
a few cells off from the corner of the room where the true source was located. Furthermore, the
large value of the reduced chi-square per detector indicated a significant disagreement between
predicted responses and the measured responses especially in view of the much smaller value of
69.73 achieved with the first six detectors [2]. Figure 3.1 compares the synthetic responses computed
by MCNP with those predicted by the inner product of the true source configuration with DENOVO’s
adjoint fluxes. The logarithmic scale shows the overall differences in responses, while the linear

scale emphasizes those in the higher intensity Co-60 responses.
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Figure 3.1 DENOVO Responses computed with the true source configuration (7;) and the MCNP syn-

thetic responses (7,,) for a detector that is in-plane with a source, and located at x=101.6 cm, y=88.9 cm,
z=114.3 cm on logarithmic (above) and linear (below) scales. The horizontal axis indicates the type of

response (collimated or uncollimated), the response’s energy, and the axis of alignment if it is a collimated
response.

Upon comparison of the two sets of responses, significant differences were observed in all of the
responses except for the unshielded or "full" responses. Again, the true Co-60 line source is located
at approximately x=96.5-143.8 cm, y=9.5 cm, and z=90.2 cm.

Since the full responses agreed rather well, this pointed to the lead block collimator as the

reason for the discrepancy. In DENOVO, the detector response is computed at a single cell, namely

the cell containing the coordinates of the centerpoint of the detector’s face, and a point DRF
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function determines the level of attenuation for the flux at that point by the collimator. Some of
the differences can be attributed to when the DRF in the DENOVO adjoint transport calculations
causes an uncollided flux to be zero, while a nonzero heavily attenuated flux is computed by MCNP.
In MCNP the lead block’s center point is chosen to be the original center point of the detector face
and the tally is moved approximately five centimeters along the detector’s measurement axis to the

corresponding face of the lead block for each directional response tally (refer to sketch in Fig. 3.2.

Figure 3.2 Representation of the synthetic response calculation for DENOVO (above) and MCNP (below)
for an arbitrary detection point.
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As seen above, the origin is shifted from the original coordinates in DENOVO by five centimeters
for each directional response. In MCNP, the whole setup is replaced with a single 10 cm?® lead cube,
and the tally is shifted by five centimeters from the original origin to the face of the lead cube for
the directional response of interest. This changes the angle of incidence as well as the distance
between source and detector slightly from the original geometry at the detector’s face coordinates.
When detector and source are co-planar, this can affect the synthetic response greatly, causing
false positive or negative responses for point sources and noticeable variation in intensity for line
sources. To resolve this discrepancy in the MCNP model, future synthetic collimated responses will
be generated separately on a direction by direction basis (further separation may be required to

prevent the tally interference effects mentioned above).

3.2.2.2 Proximity Between Sources and Detectors

A similar discrepancy in the responses was observed when all of the in-plane detectors were moved
a necessary distance out of alignment with source cells, and yet, the source map was only slightly
improved. The DIMP predicted source distribution provided measures of agreement with the true
source for this 12 detector arrangement that had no coplanar sources and detectors that are displayed
in Table 3.5.
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Table 3.5 Spatial distribution of the Cs-137 point source and the Co-60 line source computed with DIMP
from synthetic responses of 12 detectors with some detectors and sources in close proximity.

Energy (MeV) | x (cm) y (cm) z(cm) | Ad(em) | qBq) | 722 (%) | y2/det.
Ax (cells) | Ay (cells) | Az (cells)
1.332 140.21 17.53 87.87 13.04 | 6.34E3 | 28.72 109.3
1 1 0
1.332 149.86 9.40 87.87 19.82 | 5.98E3 | 27.10
2 0 0
1.332 149.86 17.53 79.31 23.86 | 5.16E2 2.34
2 1 -1
1.173 140.21 17.53 87.87 13.04 | 6.49E3 | 29.42
1 1 0
1.173 149.86 9.40 87.87 19.82 | 6.29E3 | 28.48
2 0 0
0.662 439.42 2.67 3.31 333 | 9.63E4 | 89.46
0 0 0
0.662 439.42 17.53 3.31 12.75 | 1.29E4 | 12.02
0 2 0

In this case, DIMP’s prediction is much improved, but the results were still worse than the 6 detector

case reported earlier [2]. The reduced chi-squared per detector is nearly double the six detector

value, and the predicted Co-60 source only reached half of its true strength. Again, comparison

of the synthetic and predicted responses reveal a few discrepancies as seen for one such detector

that was placed too close to the source (within 35 cm or about nine cells) in Figure 3.3 for all seven

directions. The detector is closest in proximity to the true location of the Cs-137 point source (x=440

cm, y=5cm, z=1cm).
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Figure 3.3 Responses for a detector in close proximity to the Cs-137 source, and located at x=424.9 cm,

¥=30.0 cm, z=16.0 cm on logarithmic (top) and linear (bottom) scales.

Oddly, even the unshielded responses show a slight discrepancy between the synthetic and true
response values this time. The linear scale of Fig. 3.3 highlights this and illustrates the differences
in the large magnitude Cs-137 responses. There is still a problem with the MCNP +x, —y, and —z
directional responses, since a directional response should never significantly exceed the unshielded
response in magnitude as is the case for the —y -cs value. Here too, the cause for the discrepancy

is the MCNP lead block face tally assumption. While the angular collimation based attenuation
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may remain small, the geometric attenuation differences incurred by moving the detection point 5
cm closer to the source can be significant on a relative scale when the detector-source separation

distance is of comparable length.
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CHAPTER

4

HOLDUP EXPERIMENTAL SETUP

Four measurement experimental campaigns were conducted at the International Safeguards
laboratory at ORNL using a calibration button point source, an HEU disk calibration source, a set
of HEU line sources tied together within a small round duct structure, and a case with multiple
HEU sources and fixtures. Each measurement campagin was designed to test and validate source
prediction results calculated by the DIMP code system in a specific configuration relevant to the
validation of the fundamental methodology or the holdup application. Each campaign’s measured
results except for the first one were also compared to the current holdup model used in practice at
ORNL, HMS-4 (Holdup Measurement System). This chapter will discuss the experimental setup
including source location, structure, dimensions and composition, and detector location choice

rationale.

The activities and active source dimensions of the calibration source are included with all of the
sources used in the measurement campaign in a consolidated table (Table 4.1). Note that only the
active volume of these sources was simulated in DIMP and not their containers, since attenuation
was deemed to be negligible with one exception, the HEU disk, which was encased in a 0.159cm

thick stainless steel casing instead of the typical plastic and cardboard casings.
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Table 4.1 Dimensions and activities of all sources used for experimental measurements conducted in the
International Safeguards laboratory at ORNL.

Point/Disk Sources
Source Active Thickness | Activity | Manufa- | Measured Activity
Radius (cm) (cm) (uCi) ctured Measured (uC1i)
Cs-137* 0.25 0.318 5.01 9/28/2005 | 5/14/2015 4.04 +£0.61
HEU Disk 2.381 0.0701 235 12/5/2004 | 5/19/2015 23.5+0.24
Line Sources
Source Active Diameter | Activity | Manufa- | Measured Activity
Line (cm) (cm) (uCi) ctured Measured (uCi)
HEU Rod 1 28.5 0.5 3.335 5/2004 5/27/2015 3.335+0.003
HEU Rod 2 28.5 0.5 3.357 5/2004 5/27/2015 3.357+0.003
HEU Rod 3 28.5 0.5 3.285 5/2004 5/27/2015 3.285+0.003
HEU Rod 4 28.5 0.5 3.257 5/2004 5/27/2015 3.257+0.003
HEU Rod 5 28.5 0.5 3.372 5/2004 5/27/2015 3.372+0.003
HEU Rod 6 28.5 0.5 3.214 5/2004 5/27/2015 3.214+0.003
Area Sources
Source Active Thickness | Activity | Manufa- | Measured Activity
Area (cm) (cm) (uCi) ctured Measured (uC1i)
HEU Card 1 1058 0.1 23.99 5/2004 6/29/2015 23.99+0.022
HEU Card 2 1058 0.1 24.01 5/2004 6/29/2015 23.99+0.022
HEU Card 3 1058 0.1 28.01 5/2004 6/29/2015 23.99+0.022
HEU Card 4 1058 0.1 2413 5/2004 6/29/2015 23.99+0.022

*Note: The calibration sources used in this work were created by Eckert and Ziegler, and the active source dimensions (active
radius, A.R., and thickness) used in the MCNP model were taken from the Type D disc model in the catalog. Furthermore,
according to the supplier "Sources are manufactured with contained activity (Act.) values of £15% of the requested activity
value unless otherwise noted in the catalog.” [13]

The HEU source record maintained at ORNL reports each source’s mass. The uncertainties in the
activity were calculated from the mass measurement uncertainty to be about 0.1 %. The emission
energies and relative intensities of the gamma-rays of interest for each source used are listed in
Table 4.2.
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Table 4.2 Gamma ray energies and relative intensities with their uncertainties listed in parentheses, of all
sources measured were taken from Brookhaven National Laboratory’s Nudat2.6 database. [14] Unlisted

uncertainties in Ref. [14] were assumed to be one in the last digit.

Source | Peak No. | Energy (keV) | Relative Intensity (%)
Am-241 1 59.5409(1) 35.9(4)
U-235 1 105.0(1) 2.00(3)"
U-235 2 109.0(1) 2.16(13)"
U-235 3 143.76(2) 10.96(14)
U-235 4 163.356(3) 5.08(6)
U-235 5 185.715(5) 57.0(6)
U-235 6 202.12(1) 1.080(23)
U-235 7 205.316(10) 5.02(6)
Ba-133 1 80.9979(11) 35.6(3)°
Ba-133 2 356.0129(7) 62.05(1)
Cs-137 1 661.657(3) 85.10(20)
Co-60 1 1173.228(3) 99.85(3)
Co-60 2 1332.492(4) 99.9825(6)

"Note: gamma-rays from the same source that were within 1 keV of each

other were assigned their average energy and their intensities summed

together.
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4.1 Unshielded Cs-137 Button

The first measurement involved only one Cs-137 point source (calibration button source) held
above the origin in the selected coordinate system for the computational models by a clamp on a
ring stand. This simple experiment was performed to confirm previous results presented by Hykes
[2]. It was surmised that some of the inconsistency in the previous results could be attributed to
weakness of the employed sources. Although the Cs-137 button source is only slightly stronger than
the source used by Hykes, it will make a good initial source configuration for the calibration of
DIMP to the ORNL field detector.

In order to minimize the influence of gamma ray scattering by various objects in the lab a
5m x 5m floor space was marked with tape and cleared of all objects deemed non-essential for the
experimental measurement. For the vast majority of the measurement time, this remained true.
Occasionally, a chair or stool was moved within the measurement boundaries to hold the MCA, or a
staff member might have walked through the marked zone inadvertently. However, the effect of
these infractions on the precision of the measured response is considered negligible as no foreign
object (including the chair carrying the MCA) remained in the field of view of the detector for any
significant length of the measurement time.

The equipment deployed in conducting the experiment included two ring stands, a 2"x1" Nal
detector, and a Cs-137 calibration source. The stands each had a pole approximately 1.5m tall and
a diameter of 2cm and a rectangular base (0.27m x 0.16m). The list of coordinate locations of the
center-point of the face of the detector for each detector measurement and the source location are
shown in Table 4.3.

44



4.2. HEU DISC CHAPTER 4. HOLDUP EXP SETUP

Table 4.3 Coordinate locations of the center point of the detector face for each measurement of the Cs-137
point source. The origin is located on the floor at the very center of the cleared square. The uncertainty in
each measurement coordinate is 1 mm.

Measurement | Location (cm) | Total Distance Detector
# Orientation
Source (0,0,87) 0
1 (51,140,87) 149.0 -y
2 (120,32,77) 124.6 —X
3 (100,-20,96) 102.4 —X
4 (10,-74,81) 74.9 +y
5 (-5,-60,93) 60.5 +y
6 (-50,0,97) 51.0 +x
7 (-40,16,84) 43.2 +Xx
8 (-7,20,89) 21.3 -y
9 (3,10,87) 10.4 -y
10 (2,0.3,87) 2.02 —X

4.2 HEU Disc

The next validation experiment involved measuring a larger HEU source that could either be treated
as an area source (multiple cells in a block) or a single cell source depending on mesh resolution.
This source again was held above the origin of the measurement area by a clamp on a ring stand.
This allowed for measuring a more relevant radiation source to holdup and calibrating DIMP to
HEU sources without significantly increasing the complexity of the source geometry. The detector
measurement coordinates and the coordinates of the center of the HEU disk source are shown in
Table 4.4. A photograph of the experimental setup is presented in Fig. 4.1.
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Figure 4.1 Photograph of the HEU Disk source measurement experimental setup.

Table 4.4 Coordinate locations of the detector face for each measurement of the HEU Disk source. The
uncertainty in each measurement coordinate is 1 mm.

Measurement | Location (cm) | Total Distance to Detector
# Orientation
Source (0,0,91) 0
(100,-20,100) 102.4 —X
2 (16,-40,88) 43.2 +y
3 (5,-50,95) 50.4 +y
4 (-60,-5,97) 60.5 +x
5 (-74,10,85) 74.9 +x
6 (-7,20,93) 21.3 —y
7 (3,10,91) 10.4 -y
8 (2,0.3,91) 2.02 —X
9 (40,0,91) 40.0 —X
10 (6,-1,91) 6.08 —X
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4.3 HEU Line Source in the Small Round Duct

The next set of experiments involved the arrangement of various HEU sources chosen from Table 4.1
within three steel fixtures to simulate realistic holdup in a facility environment. The three fixtures
were: a small round duct, an L-duct, and a pipe array. The coordinate locations and the dimensions
of the fixtures and their respective carts are displayed in Table 4.5. Each cart is a metal dolley with
wheels and steel strut supports to hold the fixture in place. Detailed drawings of the small round
duct and the L-duct are included in Figs. 4.2 and 4.3. The pipe array is not included because it was

never filled with a source.

Table 4.5 Coordinate locations and dimensions of the holdup equipment structures.

Fixture Dim. 1 (cm) | Dim. 2 (cm) | Dim. 3 (cm) | Dim. 4 Obj. Center Loc. (cm)
SRD Cart x=57 y=122 7=2.54 Th.~0.25 (0,0,8)
L-duct Cart x=122 y=57 z=2.54 Th.~0.25 (140,140.5,8.27)*
Pipe Ar. Cart x=122 7=57 7z=2.54 Th.~0.25 (-131,-152.5,8.27)
SRD L=189 Ryu:=7.5 Th.~0.45 (0,-1,123.5)
L-duct x=175 y=38 z=91/76/61 | Th.~0.5 | (118,141,106.5/99/91.5)
Pipe Array L=130 R,y =2 Th.~0.55 (-129,-152.5,95)

*Note: The height dimensions are variable along three sections of the L-duct.
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Figure 4.2 Drawing of the small round duct fixture with the appropriate dimensions.
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Figure 4.3 Drawing of the L-duct fixture with the appropriate dimensions.
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For the first case, the small round duct was loaded with a set of six line sources taped end to end
across the majority of the length of the pipe (the source did not span the last six centimeters of the
southern end of the pipe). The pipe was enclosed on both ends with steel end caps. The coordinate
locations for each detector measurement and the center of the line source are displayed in Table 4.6.

A photograph of the general experimental setup is included for perspective in Fig. 4.4

Table 4.6 Coordinate locations of the detector face for each measurement of the line sources in the small
round duct. The uncertainty in each measurement coordinate is 1 mm.

Measurement | Location (cm) Total Distance to Detector
# Midpoint of the Source | Orientation
Source (0,1.5,116.5) 0
1 (36,-74.2,115) 36 —X
2 (36,-43,115) 36 —X
3 (36,-12.8,115) 36 —X
4 (36,17.8,115) 36 —X
5 (36,48.5,115) 36 —X
6 (36,79.2,115) 36 —X
7 (-10,-50,120) 10.6 +x
8 (-20-,-25,112) 20.5 +x
9 (-50,10,107) 50.9 +x
10 (-60,40,123) 60.4 +x
11 (0,114,117) 20.5 -y
12 (0,-104,119) 13.7 +y
13 (0,1.5, 81) 35.5 +z
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Figure 4.4 Photograph of the general holdup-like source measurement experimental setup.

4.4 HEU Line Source in the Small Round Duct & HEU Area Sources in
the L-Duct

For the final case, the small round duct was left loaded with the same source as in the previous case,
and then the L-duct was loaded with four rectangular area sources (also known as "card" sources).
The first two were taped together vertically across the diameter of the duct at the eastern section.
The other two card sources were taped diagonally across a filter in L section at the western end. This
geometry was chosen as a difficult geometry for traditional holdup measurements. The coordinate
locations of the center of each card source and those of the detector measurements are shown in
Table 4.7.
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Table 4.7 Coordinate locations of the detector face for each measurement of the line sources in the small
round duct and the area sources in the L-duct. The uncertainty in each measurement coordinate is 1 mm.

Measurement Location (cm) Total Distance Detector

# to Source Center | Orientation

Source 1 (0,1.5,116.5) 0

Source 2 (46.5,141.5,83.28) 0

Source 3 (78.28,141,123.5) 0

Source 4 (120.5,133.5,86.4) 0

Source 5 (121,148.5,86.4) 0
1 (36,-74.2,115) 36 —X
2 (36,-43,115) 36 —X
3 (36,-12.8,115) 36 —X
4 (36,17.8,115) 36 —X
5 (36,48.5,115) 36 —X
6 (36,79.2,115) 36 —X
7 (-10,-50,120) 10.6 +x
8 (-20-,-25,112) 20.5 +x
9 (-50,10,107) 50.9 +x
10 (-60,40,123) 60.4 +x
11 (0,114,117) 20.5 -y
12 (0,-104,119) 13.7 +y
13 (36,27.8,116.5) 113 +y
14 (36, 79.2,116.5) 62 +y
15 (22.5,141,83.3) 24 +x
16 (30.5,141,123.5) 47.8 +x
17 (116.8,184.1,84.4) 35.9 -y
18 (108,230,92.4) 82.6 -y
19 (122.8,97.9,90.4) 38.8 +y
20 (135.8,32,80.4) 102.7 +y
21 (78.3,180,123.5) 39 -y
22 (126,210,86.4) 61.7 -y
23 (62.3,62,83) 80.6 +y
24 (80,22,94.9) 122.4 +y
25 (215.5,141,86.4) 94.8 —X
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4.5 Simulation Experimental Geometry

The base simulation geometry for all experiments includes a main void cell on top of a floor cell
composed of a standard tile and concrete mixture across a 5m x 5m square area. The cells are
contained between —2.5 m on the west boundary to +2.5 m on the east boundary. The same is
true for —2.5 m from the south boundary and ending at +2.5m at the north boundary. The origin
is in the center, just above the upper floor surface boundary. The z axis is defined from —10 cm
(the underside of the floor) to 3 m above the floor. For DENOVO, each cell (e.g. floor, steel fixtures,
ring stand, etc.) is simulated with parallelepipeds to approximate all of the necessary surfaces in
Cartesian geometry since DENOVO does not permit curved surfaces. However, curved surfaces
were employed in the synthetic response simulations to model the detector and the geometric
arrangement executed by MCNP.

Though the physical geometry of the detector is simulated in MCNB it is not simulated in DENOVO.
Instead, the response values are taken at the center face of the detector after multiplying the adjoint
source by a point DRF factor to approximate the effects of the shielding and collimator. The current
point DRF formulation used by DIMP is described in Ref. [9]. Further details of the DRF and material
geometry will be formalized in the dissertation (the full laboratory room specs. are being obtained
from ORNL and the DRF is being updated for the new detector).

4.6 Experimental Measurement Equipment

The field equipment used to take measurements for all experimental campaigns included a detector
with a preamplifier and a multichannel analyzer with full pulse processing integration. Both pieces

of equipment were essential for HMS-4 and DIMP holdup measurements.

The detector was a 1 inch diameter by 2 inches height right cylinder EFC Model 1X2P collimated Nal
scintillation detector. This is a standard field detector for HMS-4 measurements. [3] The detector
is well shielded with lead except on the front face where the collimator aperture allows radiation
into the detector from a limited extent of directions, i.e. fixed solid angle. Hence, the detector has

approximately a 23 degree in-axial-plane angle of vision from the axis normal to its circular front face.
The MCA is a GBS Elektronik GmbH MCA-166 Rossendorf model [15] that has a self-contained set

of pulse processing equipment. The MCA receives a preamplified signal directly from the detector

through a coaxial cable, which it amplifies and counts across a spectrum of energies. The number
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of counts is divided into channels (proportional to energy) and sent directly to the computer for

recording and post-processing.
*Note: Detector fell once. No significant changes in the spectra were seen. Channel (energy) calibra-

tion drift was observed before and after the event (no apparent correlation).
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PRELIMINARY EXPERIMENTAL
VALIDATION RESULTS

DIMP performed fairly well for the first ORNL experiment involving the Cs-137 point source after
some adjustments. Under the standard initial guess (¢ = 107, the baseline static low source cell
probability), DIMP failed to predict any source cells with magnitude larger than 1% of the true
source strength, however using the true source configuration as the initial guess yielded a very good
result alluding to DIMP becoming trapped in a local minimum during the first source search. The
usual initial guess is chosen with a flat low source probability in every mesh cell allowing feedback
with the measured responses to increase the source probability in the appropriate cells. Also, a
correction factor had to be applied to the measured responses to account for the effects observed as
aresult of the special collimator geometry for ORNLs 1" x 2" Nal field holdup detector that were not
featured in the previous detector design used in Ref [2] and utilized in the synthetic data presented
in previous chapters of this work. Furthermore, two measurement points had higher than expected
flux values, so further investigation will be made to determine if they are statistical outliers or further

adjustments to the detector model should be made.
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5.1 Development of the Collimation Correction Factor

The detector used in [2] was a 2" x 2" Nal detector, collimated by the placement of lead bricks (as in
Fig. 3.2) above and to the sides of the detector to produce a forward facing hemisphere FOV. The
1" x 2" Nal field holdup detector provided by ORNL to conduct the measurement campaigns has
a much more sophisticated collimator that narrows the FOV to roughly 23 degrees and partially

obscures the crystal face as shown in Fig. 5.1 below.
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Figure 5.1 Schematic of the 1" x 2" Nal field holdup detector.
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The front of the lead collimator touches the crystal face and covers about 12% the face reducing the
detector’s solid angle FOV. Since the previous configuration [2] did not suffer such a reduction in
solid angle, DIMP requires a collimation correction factor to adjust the detector efficiency for the
effect of this collimation on the directional responses. The reduction in solid angle is illustrated by
Fig. 5.2

Figure 5.2 Sketch of the detector collimator shadowing effect on the detector crystal (reducing the effective
solid angle).

A fairly simple way to compute such a factor, is to simulate the detector with and without the
collimator geometry (just the detector crystal) in MCNP and compare the results to the analytical
solid angle calculations. Using the ratio of the two fluxes (with and without the collimator) as the
collimation correction factor, the measured responses can be corrected by this factor to better match
the responses predicted by the true source distribution folded with DENOVO adjoint fluxes. Thus,

the collimation correction factor (S,,;(7, E)) can be calculated as follows

Pcor (7 E)

Seol(TE)= —o—— (5.1)
ol une(7, E)
where ¢j§ 7( 7, E)and ¢, (7, E) are the collimated and uncollimated synthetic responses calculated
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from the true source configuration in MCNP. Dividing the measured responses by S, (7, E) will
produce an approximate value of the response that would have been measured with a 2 pi FOV
detector that is assumed in the current version of DIMP. A more appropriate way to account for the
collimator’s effect is to determine a directionally dependent DRE

The correction factor was used to adjust each of the measured responses from the Cs-137 point
source campagin before initializing DIMP’s source search algorithm. The experiment involved
ten detection points measured within the experimental area in a spiral pattern around the 4 u Ci
point source held by a clamp on the ring stand (similar to the HEU setup in Fig. 4.1). The distance
between the source and detection points ranged from 0.02-1.25 m as discussed in the previous
chapter, and the coordinates of the true Cs-137 point source are (0,0,87) cm.

Consider the DIMP predicted source map shown in Figure 5.3.
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Figure 5.3 DIMP predicted source map (above) for a 5m x 5m square space (reduced to a 2m x 2m search
area) with a Cs-137 point source suspended by clamps on a ring stand, and the corresponding uncertainty
(below). 60
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As seen above, DIMP performed well predicting the source in the correct cell (0,0,90) with 80% of the
true source activity with fairly low uncertainty. Only 80% of the true source strength was obtained
because the corrected measured responses still had a margin of error when compared with those
calculated by DENOVO. This is a promising result for the first of four experimental measurements,
but there are two issues with this result. The first, is that as in [2] the source search had to be narrowed
to a lower number of mesh cells in order to find a good source configuration. Otherwise, the gradient
source search algorithm often becomes stuck in local minima and predicts weak distributed sources.
The second is that two detection point fluxes did not match up with MCNP synthetic fluxes, so
for the time being they were adjusted to the synthetic values artificially. Further investigation will
determine a physical justification for those values if possible. They may be removed as outliers,

since both points were measured fairly close to the source.
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PLAN OF WORK

The full extent of the work intended for the PhD dissertation includes validation of the data from the
3 other experimental campaigns, developing a DRF factor to account for the collimation geometry
of the detector, and exploring the use of peak detector response functions from the original Master’s
work to improve response accuracy. Each area of work is valuable to the development of the DIMP
methodology and its application to the holdup problem and more generally future inverse radiation

transport research.

Each experimental campaign provides more information about the capabilities and limitations
of DIMP. The first campaign (the Cs-137 point source) provided a working base data set similar to
previous results. Only the geometry was significantly changed to allow for easy calibration of the
model. The second campaign (the HEU disk source) maintained the same geometry as the first, but
used a source that was more typical for holdup to finalize the calibration of DIMP for SNM. The
third campaign (HEU in the large round duct) provides the first realistic simulation of a field holdup
deposit in steel piece of equipment, by placing a set of line sources across the bottom of a pipe.
The final campaign tests the most difficult situation by providing a case with multiple sources with
difficult geometry in two pieces of equipment. The final test was designed to challenge both the

HMS-4 and DIMP systems and reveal their capabilities and relative strengths and weaknesses.
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After considering the DIMP system without directional detectors, there appears to be some promise
for using detection without collimation. DIMP performed well for the Cs-137 point source from
the Burlington simulation case under an ideal initial guess and a sufficient number of detectors
to narrow the solution set. However, this work was only carried out for the simplest case. DIMP’s
uncollimated responses only configuration will have to be verified for a more complex source
distribution to be certain of its potential for future application. This requires the development of
better guesses for the initial source distribution or more robust search procedures that improve the
probability of DIMP’s optimizer locating the global minimum rather than getting stuck in local
minima, such as an adaptive program that identifies equipment structures and limits the source
search to mesh cells contained within those structures. Another alternative is to replace the gradient

based optimization subroutine with one that is less prone to becoming stuck in local minima.

While conducting the work that yielded the preliminary results, it quickly became clear that a
new DRF would have to be developed for the 1"x2" Nal field holdup detector. Overestimation
of the measured responses by the responses predicted with the true source configuration lead
to the conjecture that the former detector DRF based on a full hemisphere field of view was no
longer sufficient to account for the new detector collimator geometry. The previously used detector
experimental setup consisted of an unshielded 2"x2" detector that was covered with improvised
lead shielding (a set of lead bricks) [2]. The setup restricted the detectors FOV to the forward 27
hemisphere. The former detector had only a hemispherical collimator, whereas the field holdup
detector has a more complex and restrictive collimator. The field detector has a collimator which
restricts the FOV to a narrower cone (23 degrees from center of face to the normal axis) of the
forward unit sphere. This not only restricts the solid angle of the detector, but reduces the area of
the front surface of the detector crystal which can be intersected by uncollided rays of radiation. A
preliminary collimation factor has been calculated with MCNP to verify the extent of this effect
on the uncollided photon flux, but further refinement may be necessary. Again, the new detector
configuration will also require a suitable initial source guess range in DIMP that can function for all

of the experimental campaign measurements.

Furthermore, DRF improvement is also being sought by using Gardner’s model [10] to improve the
calculation of peak responses. Our previous investigation [11] sought to modify the DRF model
in order to improve DIMP’s collided flux algorithms for full response simulation. Utilizing the full
response in DIMP would have improved the counting efficiency thereby reducing counting times
to achieve the same statistical confidence level in the measured responses. Unfortunately, there
were too many limitations in the Compton continuum responses predicted by the DRF for shielded
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and collimated detectors to warrant implementation of the full DRF in the DIMP formalism. The
peak responses predicted by Gardner’s DRF model still compared well with those measured with
the field detector, so a filtered peak DRF could be implemented in the uncollided flux algorithms of
DIMP. Further investigation will be conducted to determine if the peak DRF from Gardner’s model

significantly improves the performance of DIMP.
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4.7. Task G: Validate DIMP method against measured and manufactured
data

This project was designed to culminate in a test of the DIMP methodology on holdup problems. A
few representative configurations were to be tested, e.g. pipe, duct, and box sources. To
demonstrate the viability of the DIMP method, the mass of the nuclides of interest and its
uncertainty were to be estimated for the selected configurations, using gamma responses. In early
stages of this task, the problems were solved using manufactured responses (i.e. computed by a
tool such as MCNP). In the latter stages of the project, the data driving DIMP were to come from
actual measurements at the holdup laboratory cited in Task F. While we started on this task,
progress has been limited so far, but work on it will continue even after this project concluded.
NC State University was responsible for completing this task, in consultation and with support
from ORNL.

The accomplishment of this task was reported in: Noel Nelson, Yousry Azmy, “Numerical
Convergence and Validation of the DIMP Inverse Particle Transport Model,” accepted for
publication in the proceedings of M&C 2017 - International Conference on Mathematics &
Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea, April 16-20,
2017, on USB (2017). This document is replicated on the following pages.
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INTRODUCTION

The goal of this work is to validate the Data Integration
with Modeled Predictions (DIMP) inverse particle transport
method for solving the special nuclear material (SNM) holdup
problem. Holdup problems arise when radioactive material
(with a known emission spectrum) becomes trapped in process-
ing equipment at nuclear fuel processing facilities. Examples
of processing equipment can include but are not limited to
pipes, ducts and filters, glove boxes, and valves. [1] SNM
holdup is of interest to the nuclear fuel industry for many rea-
sons. These reasons include: criticality safety, maintaining
accurate SNM inventory and nuclear safeguards regime, and
radiation worker safety.

Therefore, holdup sources are important to quantify in
total material mass as well as distribution and location. The
DIMP method offers a well automated system that poses the
holdup configuration as an inverse problem. Initial survey
crews would not be required, and few assumptions are nec-
essary to predict source distribution, strength, and location
within equipment. DIMP uses an adjoint particle transport
model to calculate an importance map for a grid of detectors
in the target geometric configuration utilizing as-built informa-
tion of dimensions and material composition of the facility’s
structure. Deterministic transport codes are capable of mod-
eling such configurations with a varying degree of fidelity
of the models to achieve the desired computational accuracy.
Together, the computed flux and detector response functions
can be used to predict detector responses from a given source
distribution. Alternatively, and more efficiently in the present
case, folding the importance function with a given source dis-
tribution yields an estimate of the detector response where
the importance function is the adjoint flux computed with an
adjoint source set to that detector’s response function. DIMP
calculates the optimal source distribution(s), location(s), and
strength(s) that best matches calculated responses to experi-
mental responses with no presumptions of the source shape
and minimal obvious restrictions on its physical location, e.g.
a source cannot be hanging in the air in the middle of a room.

Currently, the DIMP model has been validated for a Cs-
137 point source and a Co-60 line source. It performed well
with low error that was mostly attributed to the weakness of
the available sources (older button sources). [2] This work
intends to expand upon the model and previous research with
realistic holdup experiments using strong Uranium sources
measured with a field holdup Nal detector, and compare the
results to the Holdup Measurement System (HMS-4), a Gen-
eralized Geometry Holdup (GGH) model. Four experimental
holdup measurement campaigns were performed in this work
including a Cs-137 point source, a highly enriched Uranium
(HEU) disk source, an HEU line source in a pipe, and a set of
HEU area sources in a duct.

THEORY: DIMP FORMALISM

Inverse problems are often very complex and ill-
conditioned. For such problems, information at various points
in space and time denoted "measurements” are considered
known, but the source state or its spatial configuration is
treated as unknown. An inverse model is used to calculate a
possible solution state of the system from the measurements.
This is where the difficulty of inverse problems arises. The
existence and uniqueness of an inverse solution is typically
not certain, and solutions can be very unstable depending on
the quality of the measurements.

One way to address the difficulty of inverse problems
is to find solutions with probabilistic methods. While the
solution that best fits the measurement data is not always the
true solution, the chance that it is the true solution should
increase with increasing amount of measured data. This idea
is formalized via Bayes’ theorem [3]:

p(hypothesis|data, I) «c p(datalhypothesis, I)p(hypothesis|I),

(1
where data is the experimentally measured data (e.g. detec-
tor responses), the hypothesis is the unknowns of the sys-
tem (source parameters in this work), and [ is all the addi-
tional knowledge of the system (system geometry, detector
efficiency, detector response functions, etc.). The three prob-
ability density functions (PDFs) above p(hypothesis|data, I),
p(datalhypothesis, I), and p(hypothesis|I) are the posterior,
likelihood, and prior respectively. The prior is the condi-
tional probability that the hypothesis occurs based only on
information /. The likelihood represents the probability of
measurement data occurring based on a given configuration
of the unknown data (hypothesis) and the information in /.
This is proportional to the posterior, or the probability of the
given hypothesis (source configuration) being true based on
the information / and the measurement data.

In order to solve an inverse problem, the likelihood func-
tion is maximized thereby minimizing the error between the
experimentally measured data and the synthetic responses (re-
sults predicted by the model from an input configuration of the
source parameters). DIMP maximizes agreement between the
measurement vector r,, (responses) and the modeled responses,
rp, predicted by a configuration of the model parameters, @

rm = Ra 2)

where R is the mapping operator from the model parameter
input space to the response space. The solution of this problem
is linear for radiation transport and has a closed form solution
for the posterior means and covariances. Cacuci’s Best Esti-
mate method based on Bayesian inference is used to find the
posterior solution mean and uncertainty. [4]



Radiation Transport

First, the model used in the inverse framework will be
described in detail followed by specification of the source pa-
rameters contained in @, and a few notes on the measurements
r,,. The model for the radiation transport problem is based on
the time independent linear Boltzmann Transport equation for
neutral particles in non-multiplying media. [5]

Q- Vy(x,E,Q) + o(x, EW(x,E, Q) =
de' fdf!’o-s(x; E. QY > E, f))l//(x, E, Q)+ q(x,E, Q),
3)

where Y(x, E, Q) is the angular flux of particles
[particles/cm?-s] defined over the spatial domain

xeV, Qedn, E€(0,0),
and with explicit boundary conditions
Y(x, E,Q) = yo(x, E,Q) forxedVandQ -2 <0.

Q is the unit directional vector along which particles
are traveling, 7 is the unit vector normal to the boundary
surface dV at the point x, and o(x,E) the total parti-
cle interaction macroscopic cross-section [em™']. Also,
o-s(x;E’,fZ’ - E, f)) is the macroscopic scattering cross-
section of particles from one direction (f)’) and energy (E’) in
the direction and energy range of dCY, dE’ about the direction
and energy of interest (fl, E), and ¢g(x, E, fl) is the external
source of radiation particles in the configuration of interest [in
particles/cm?-s]. In DIMP the geometric configuration and
material composition of all objects in the problem domain are
considered known, hence the cross sections are retrieved and
calculated for nuclide mixtures by MAVRIC [6]. Next, it is
useful to define the scalar flux ¢(x, E) as

d(x,E) = f dQu(x,E, Q) . 4)
4r

Reaction rates are key components to many radiation problems,
such as dose and fission rates. In this case, the reaction rate
definition can be used to define a detector response, r, as

r(E') = fm dEfdxa'd(x,E’,E)gb(x,E) , 5)
0 v

where o4(x, E’, E) is the detector response function (DRF).
There are several ways to model and define DRFs, and this is
currently under active consideration. In Eq. 5, o4(x, E’, E) is
the probability per unit path length that a particle at x incident
with energy E registers a response in the detector’s channel
dedicated to energy E’. With this definition in mind, one could
use the inverse of the forward transport equation, Eq. 3 as the
mapping function for the inverse problem. However, direct
inverses are often numerically unstable and computationally
expensive. Equation 5 requires a solution of the transport
equation for every potential source distribution in order to

determine the corresponding ¢(x, E) then compute » and com-
pare it to the measured values. Alternatively, the problem can
be reformulated using the adjoint of the transport equation [2].
The adjoint identity can be stated as

(Ap,hy = (p,Ah), (6)

where (, ) denotes an inner product, A is an operator, p and
h are any pair of functions in the domain of A, and A" is the
adjoint operator. Furthermore, in this application we define
the inner product as follows

(p,h) = f dQ f wdE f dVp(x,E,Q)h(x,E,Q) . (7)
4 0 14

Now, consider the fixed source linear transport equation in
operator form

Ly =gq, ®)

where L is the transport operator (for all angular fluxes, ¥),
and q is the external source. Next, take the inner product of
Eq. 8 with the adjoint angular flux v

(Lyr,y'y = {q, 0"y . 9)

Applying the adjoint identity (Eq. 6) to the above equation
yields [7]
Ly, ) = W, L'y + Py (10)

where ¢ is an arbitrary function ({ = ' in our case) and
P[y, {] is the bilinear concomitant, evaluated on the external
surface of volume V,

Py, (] = f dQ f de f dSQ - (x, E, Q) (x, E, Q) .
4 0 1'%

(1)
Substituting Eq. 10 into Eq. 9 yields

W, L'y"y = (q.y") - Ply,y". (12)

Next we set the adjoint source to the detector response func-
tion, DRF, namely ¢' = o, implying

L'yt =0,. 13)
Substituting this relationship into Eq. 12 yields
W.0a) =4q.y"y = Ply.y"]. (14)
Now, applying the following vacuum boundary conditions
Y, E,Q)=0; for x€dV and Q-7n <0, (15)

WX, E,Q) =0 for x€dV and Q-2 >0, (16)

will cause the bilinear concomitant term to vanish thus pro-
ducing

W,oa) =g, v (17)

Finally, recalling the reaction rate Eq. 5 and substituting it in
Eq. 17 leads to

r,(E) = fo de fv dve'(x, E)q(x, E) (18)



where ¢T(x, E) is the adjoint scalar flux, or importance, and
r,(E) is the predicted response. The advantage of the formu-
lation in Eq. 18 over the one in Eq. 5 is the computationally
inexpensive evaluation of the former once ¢ is known for a set
of detectors. During the search for optimal source distribution
Eq. 18 comprises an inner product of the precomputed adjoint
fluxes and a guess of the source distribution. In contrast, Eq. 5
requires a full forward transport solution for every attempted
source distribution. The set of discretized importance values
are calculated by the discrete ordinates package DENOVO [6]
using §,=8 and 23 groups, and they are folded with the pre-
dicted source distribution (g(x, E)) during the search for the
best match between the resulting responses and the measure-
ment responses r,,. The cross-sections for DENOVO are gen-
erated by MAVRIC (part of ORNL’s SCALE package) from
the Evaluated Nuclear Data Files (200n-47g ENDF/B-VII.0)
libraries. The optimal source distribution is found through
an optimization process that if successfully converged, yields
r,(E) = r,(E), and in this case we call the corresponding
q(x, E) a solution to the inverse problem.

Currently, only the peak responses are compared for both
predicted and measured responses. A full response comparison
was attempted in previous work [2] including the continuum
and peak responses, but the continuum response was very
difficult to calculate. Accurate representation of the continuum
response requires a fairly sophisticated DRF. Some research
has been invested in the area of DRFs for unshielded detectors
[8], but more development of the DRF is required to apply it
to collimated detector responses as shown in Ref. [9].

Nonlinear Optimization

In order to optimize the predicted source distribution, the
posterior probability is maximized by minimizing the residual
(Q(2)) of the difference vector (z) which contains the absolute
differences in the model parameters from the initial guess and
those between the measured and predicted responses. The
optimization method implemented in this work is the gradient
based Quasi-Newton method with the best estimate covariance
as described in Ref. [4]. The method works by minimizing
Q(z) according to nonlinear least squares using the following
Newton update step for the k" iteration

) -1
@ = @~ A(V20)  Va0(zi). (19)

where A; € [0, 1] is the line search parameter which controls
the search step size. a is the source spatial distribution written
in vector form (model parameters) for all peak energies at
iteration k, and « is the priori or initial guess. The gradient
of Qis

V.02 =C,'z, +S7C, 'z, (20)

where C,, C,,, and S are the source distribution and measure-
ment covariance matrices, and the collective matrix of adjoint
sensitivies (¢'(E)), respectively as defined in Ref. [7]. Under
the Gauss-Newton approximation, the Hessian is defined as

V20(z) ~ C;' +STC,'s 1)

where the inverses of the covariance matrices are replaced
by the appropriate linear systems of equations (consult Ref.
[7]) and solved for efficiently using standard linear methods
(e.g. Gaussian Partial Pivoting). Finally, the functional of the
difference vector, Q(z) is then defined as

0(z) =z7'C'z, (22)

and the inverse of the covariance, C~!, is

cl oo
-1 _ a
C _[ 6 oo } (23)

The difference vector, z is

Atz

rpy —rpy Zr

where r, is the response calculated with the attempted source
distribution and r,, is the measured response.

RESULTS AND ANALYSIS

Several simulations of radiation sources in various ge-
ometries have been performed with DIMP. To confirm the
stability of the DIMP method, several simulations of a source
configuration was performed using synthetic responses while
increasing the number of detection points per simulation to
verify if DIMP converges to the true solution.

Preliminary Convergence Studies

A preliminary convergence study was performed involv-
ing only the Cs-137 point source using 3 to 9 detection points.
DIMP converged and performed well for that case resolving
the source to the cell with the true coordinate location and a
neighboring cell and determining the source strength within
0.7% of its true value. These small errors in the DIMP solution
are to be expected due to the different computational models
applied to the computation of detector responses (Monte Carlo)
and the adjoint responses (Discrete Ordinates) but are repre-
sentative of measurement errors. Another numerical study was
performed with synthetic responses for the Cs-137 and Co-60
sources using only unshielded detector responses and another
using only directional responses. DIMP performed adequately
with directional responses, but failed to resolve the unknown
source using only unshielded responses due to the optimizer
becoming trapped in local minima. If an initial guess close to
the true source configuration was supplied, the global mini-
mum was found by DIMP producing the correct answer with
a greatly reduced chi-squared value. This suggests that the
DIMP gradient based optimizer only supplied a local minima
under the original initial guess supplied. Adaptive meshing
and alternative optimization methods are being explored for
DIMP to avoid this issue.

DIMP Convergence with Multiple Sources

The convergence test involves the original source setup
used in Ref. [2] depicting a Cs-137 point source and five Co-
60 point sources located at two separate locations in a room at



NC State University. The basic source layout is shown in Fig.
1.

Co-60 Point Sources Cs-137 Point Source

(~90-140 cm, 9.5 cm, 90 cm) (440 cm, Sem, 1 cm)

Fig. 1. Rough layout schematic of the simulation geometry of
Burlington 2144 at NC State University.

Initial results indicated that DIMP seemed to diverge be-
yond 21 detection points for this case. This anomaly has been
further investigated, and the reason for the divergence was
poor detector response agreement between one of DENOVO’s
predicted responses and the MCNP synthetic response. This
response was overlooked because it was a detection point,
coplanar (in xy) with one of the Co-60 point sources originally
chosen in the Hykes experiment Ref. [2]. The DIMP DREF pro-
duced a false positive and negative result in the z-directional
predicted responses from DENOVO for that point. Upon re-
placement of the detection point with a low error detection
point, DIMP converged with fairly stable results.

For the purposes of this convergence study only synthetic
measurements generated with MCNP were used as detector
responses where the number of detection points was increased
from 3 to 24 points total. Each detection point consists of
7 measurements: an unshielded detector response and six
collimated directional detector responses along the coordinate
axes (e.g. +X, -X, etc.). [2] The results of the convergence study
are shown in Figures 2-6. The true location and strength of the
Cs-137 point source is (440, 5, 1) cm, and the corresponding
strength is 107.685 kBq. The true location of the Co-60 line
source is centered at approximately (120, 9.525, 90.17) cm.
The individual x coordinates of the five point sources that
compose the line source are x=96.52, 107.95, 119.38, 130.175,
and 143.764 cm, and their strengths are 0.525, 2.218, 5.767,
31.793, and 3.845 kBq respectively. Note, DIMP treats the
two coincident photons from Co-60 as independent sources
with no correlation in space. Therefore, each Co source cell
mapped by DIMP from one energy can be in the same cell or
a different cell from the ones of the other energy.

Fig. 2. Comparison of the reduced chi-squared per detector as
a function of an increasing number of detection points for the
original 24 detectors and a low-error detector responses set.

The reduced chi-squared is normalized per detector in order
to screen out the expected modeling error between DENOVO
adjoint based responses and MCNP responses that accumulate
with the addition of each detector. As evidenced by the large
error in the predicted source locations, weak strengths, and the
resulting very large chi-squared-per-detector values, DIMP
does not perform adequately with fewer than 5 detectors for
this source configuration. With so few detectors, the code
places the source near to one of the detectors. DIMP does not
converge with fewer than 5 detectors for this source configu-
ration comprising a six-point distribution with three distinct
energies. Beyond seven detectors, the low-error detection
points curve decreases gradually and flattens off suggesting
convergence, instead of the unstable divergence of the old set.
Each source configuration consisted of activities (in Bq) cal-
culated across a 52x53x54 mesh employed in the DENOVO
model of the room’s configuration where the predicted source
strength exceeded 1% of the source’s known true strength
along with its strength relative to that of the true strength used
in generating the synthetic responses (Figs. 3 and 4) and the
distance from its true location (Ad) to the mesh cell center (as
shown in Figs 5 and 6). The Xx,y,z coordinates listed for each
cell correspond to the coordinates of that cell’s center point,
and the Ax,Ay,Az indicates the difference of the cell’s x,y,z
mesh index from the mesh index of the cell that contains the
true point source.

Fig. 3. Total predicted source strength across all cells above
1% relative to the total true source strength as a function of
increasing detection points using the original 24 detection
points.



Fig. 4. Total predicted source strength across all cells above
1% relative to the total true source strength as a function
of increasing detection points using the low-error detection
points.

Fig. 5. Distance between the predicted source cell and the true
source cell (Ad) as a function of increasing detection points
using the original 24 detection points. Note: the location of
the closest cell of the predicted set is compared to the strongest
Co-60 point source location.

Fig. 6. Distance between the predicted source cell and the true
source cell (Ad) as a function of increasing detection points
using the low-error detection points. Note: the location of the
closest cell of the predicted set is compared to the strongest
Co-60 point source location.

Similar gradually decreasing and fairly flat curves can be
observed for the low-error sets of the relative source strength
and distance graphs. From 5-7 detectors the Cs-137 point
source is well resolved, merely wavering between two con-
figurations: a 50/50 split of the source with the correct cell
and a neighboring cell and most of the source strength (>70%)
concentrated in one of these two cells. The Co-60 line source
however, is only resolved as one- or two-cell sources. The

predicted Co-60 point sources match approximately in total
strength and location with the stronger sources on the true
line source. From 8-24 detectors, 2-3 of the point sources
in the predicted Co-60 line source are resolved. However,
DIMP never maps all five source points of the true Co-60
line source, and typically smears the locations of the stronger
points on the line between the correct cell and a neighbor. This
is reasonable because two of the sources are less than 10% of
the strongest Co-60 point source. Overall, DIMP performed
well once the discrepant detection point was removed from
the synthetic-measurement set. Such model discrepancies be-
tween DENOVO predicted responses and MCNP synthetic
responses are correlated to current limitations in DIMP. The
DIMP DRF does not perform well if the detector cell is in-
plane with the source cell (including the neighboring cells).
In this type of situation, DIMP has a tendency to create false
positive or false negative responses for the appropriate direc-
tional responses. Adjustments to the current directional DRF
are being investigated to relax this limitation.

Experimental Results

Four measurement experimental campaigns were con-
ducted at the International Safeguards laboratory at Oak Ridge
National Laboratories (ORNL) using a calibration button point
source, an HEU disk calibration source, a set of HEU line
sources tied together within a small round duct structure, and
a case with multiple HEU sources and fixtures. Each measure-
ment campagin was designed to test and validate source predic-
tion results calculated by the DIMP code system in a specific
configuration relevant to the validation of the fundamental
methodology for the holdup application. Each campaign’s
measured results except for the first one will be compared to
the current holdup model used in practice at ORNL, HMS-
4 (Holdup Measurement System). This section will discuss
the experimental setup including source location, structure,
dimensions and composition, and detector location choice
rationale.

Experimental Setup

The activities and active source dimensions of the calibra-
tion source are available upon request from the International
Safeguards group at Oak Ridge National Laboratories. Note
that only the active volume of these sources was simulated in
DIMP and not their containers, since attenuation was deemed
to be negligible with one exception, the HEU disk, which was
encased in thin layer of stainless steel casing instead of the
typical plastic and cardboard casings.

The HEU source record maintained at ORNL reports
each source’s mass. The uncertainties in the activity were
calculated from the mass measurement uncertainty to be about
0.1 %. The emission energies and relative intensities of the
gamma-rays of interest for each source used are listed in Table
L



TABLE I. Gamma ray energies and relative intensities with
their uncertainties listed in parentheses, of all sources mea-
sured were taken from Brookhaven National Laboratory’s
Nudat2.6 database. [10] Unlisted uncertainties in Ref. [10]
were assumed to be one in the last digit. *Note: gamma-
rays from the same source that were within 1 keV of each
other were assigned their average energy and their intensities
summed together.

Source Peak Energy Relative
Number (keV) Intensity ($)
Am-241 1 59.5409(1) 35.9(4)
U-235 1 105.0(1) 2.00(3)"
U-235 2 109.0(1) 2.16(13)"
U-235 3 143.76(2) 10.96(14)
U-235 4 163.356(3) 5.08(6)
U-235 5 185.715(5) 57.0(6)
U-235 6 202.12(1) 1.080(23)
U-235 7 205.316(10) 5.02(6)
Ba-133 1 80.9979(11) 35.6(3)
Ba-133 2 356.0129(7) 62.05(1)
Cs-137 1 661.657(3) 85.10(20)
Co-60 1 1173.228(3) 99.85(3)
Co-60 2 1332.492(4) | 99.9825(6)

Unshielded Cs-137 Button

The first measurement involved only one Cs-137 point
source (calibration button source) held above the origin in the
selected coordinate system for the computational models by a
clamp on a ring stand. This simple experiment was performed
to confirm previous results presented by Hykes [2]. It was
surmised that some of the inconsistency in the previous results
could be attributed to weakness of the employed sources.
Although the Cs-137 button source is only slightly stronger
than the source used by Hykes, it will make a good initial
source configuration for the calibration of DIMP to the ORNL
field detector.

In order to minimize the influence of gamma ray scat-
tering by various objects in the lab a Sm x 5Sm floor space
was marked with tape and cleared of all objects deemed
non-essential for the experimental measurement. For the
vast majority of the measurement time, this remained
true. Occasionally, a chair or stool was moved within the
measurement boundaries to hold the MCA, or a staff member
might have walked through the marked zone inadvertently.
However, the effect of these infractions on the precision of
the measured response is considered negligible as no foreign
object (including the chair carrying the MCA) remained in the
field of view of the detector for any significant length of the
measurement time.

The equipment deployed in conducting the experiment
included two ring stands, a 2"x1" Nal detector, and a Cs-137
calibration source. The stands each had a pole approximately
1.5m tall and a diameter of 2cm and a rectangular base (0.27m
x 0.16m). The list of coordinate locations of the center-point

of the face of the detector for each detector measurement and
the source location are shown in Table II.

TABLE II. Coordinate locations of the center point of the de-
tector face for each measurement of the Cs-137 point source.
The origin is located on the floor at the very center of the
cleared square. The uncertainty in each measurement coordi-
nate is 1 mm.

Measurement | Location (cm) Total Detector
# Distance | Orientation
Source (0,0,87) 0
1 (51,140,87) 149.0 -y
2 (120,32,77) 124.6 -X
3 (100,-20,96) 102.4 -X
4 (10,-74,81) 74.9 +y
5 (-5,-60,93) 60.5 +y
6 (-50,0,97) 51.0 +x
7 (-40,16,84) 432 +x
8 (-7,20,89) 21.3 -y
9 (3,10,87) 10.4 -y
10 (2,0.3,87) 2.02 -X

The next validation experiment involved measuring a
larger HEU source that could either be treated as an area
source (multiple cells in a block) or a single cell source de-
pending on mesh resolution. This source again was held above
the origin of the measurement area by a clamp on a ring stand.
This allowed for measuring a more relevant radiation source
to holdup and calibrating DIMP to HEU sources without sig-
nificantly increasing the complexity of the source geometry.
The detector measurement coordinates and the coordinates of
the center of the HEU disk source are shown in Table III. A
photograph of the experimental setup is presented in Fig. 7.

Fig. 7. Photograph of the HEU Disk source measurement
experimental setup.



TABLE III. Coordinate locations of the detector face for each
measurement of the HEU Disk source. The uncertainty in
each measurement coordinate is 1 mm.

Measurement | Location (cm) Total Detector
# Distance | Orientation
Source 0,0,91) 0
1 (100,-20,100) 102.4 —X
2 (16,-40,88) 43.2 +y
3 (5,-50,95) 50.4 +y
4 (-60,-5,97) 60.5 +x
5 (-74,10,85) 74.9 +x
6 (-7,20,93) 21.3 -y
7 (3,10,91) 10.4 -y
8 (2,0.3,91) 2.02 —X
9 (40,0,91) 40.0 —X
10 (6,-1,91) 6.08 -X

The next set of experiments involved the arrangement of
various HEU sources within three steel fixtures to simulate
realistic holdup in a facility environment. The three fixtures
were: a small round duct, an L-duct, and a pipe array. Each cart
is a metal dolley with wheels and steel strut supports to hold
the fixture in place. The pipe array is not included because it
was never filled with a source. The HEU measurements will
be included in future publications once the validation analysis
is completed.

A photograph of the general experimental setup is in-
cluded for perspective in Fig. 8

Fig. 8. Photograph of the general holdup-like source measure-
ment experimental setup.

Simulation Experimental Geometry

The base simulation geometry for all experiments
includes a main void region on top of a floor region composed
of a standard tile and concrete mixture across a Sm x 5Sm
square area. The cells are contained between —2.5 m on the
west boundary to +2.5 m on the east boundary. The same
is true for —2.5 m from the south boundary and ending at
+2.5m at the north boundary. The origin is in the center, just
above the upper floor surface boundary. The z axis is defined

from —10 cm (the underside of the floor) to 3 m above the
floor. For DENOVO, each cell (e.g. floor, steel fixtures, ring
stand, etc.) is simulated with parallelepipeds to approximate
all of the necessary surfaces in Cartesian geometry since
DENOVO does not permit curved surfaces. However, curved
surfaces were employed in the synthetic response simulations
to model the detector and the geometric arrangement executed
by MCNP.

Though the physical geometry of the detector is simu-
lated in MCNP, it is not simulated in DENOVO. Instead, the
response values are taken at the center face of the detector
after multiplying the adjoint source by a point DRF factor to
approximate the effects of the shielding and collimator. The
current point DRF formulation used by DIMP is described in
Ref. [7].

Experimental Measurement Equipment

The field equipment used to take measurements for
all experimental campaigns included a detector with a
preamplifier and a multichannel analyzer with full pulse
processing integration. Both pieces of equipment were
essential for HMS-4 and DIMP holdup measurements.

The detector was a 1 inch diameter by 2 inches height
right cylinder EFC Model 1X2P collimated Nal scintillation
detector. This is a standard field detector for HMS-4
measurements. [11] The detector is well shielded with lead
except on the front face where the collimator aperture allows
radiation into the detector from a limited extent of directions,
i.e. fixed solid angle. Hence, the detector has approximately a
23 degree in-axial-plane angle of vision from the axis normal
to its circular front face.

The MCA is a GBS Elektronik GmbH MCA-166
Rossendorf model [12] that has a self-contained set of pulse
processing equipment. The MCA receives a preamplified sig-
nal directly from the detector through a coaxial cable, which
it amplifies and counts across a spectrum of energies. The
number of counts is divided into channels (proportional to
energy) and sent directly to the computer for recording and
post-processing.

Cs-137 Point Source

DIMP performed fairly well for the first validation exer-
cise using ORNL experimental measurements involving the
Cs-137 point source after some adjustments. Under the stan-
dard initial guess (@ = 107*, the baseline static low source
cell probability), DIMP failed to predict any source cells with
magnitude larger than 1% of the true source strength, however
using the true source configuration as the initial guess yielded
a very good result alluding to DIMP becoming trapped in a
local minimum during the first source search. The usual initial
guess is chosen with a flat low source probability in every
mesh cell allowing feedback with the measured responses to
increase the source probability in the appropriate cells. Also, a
correction factor had to be applied to the measured responses
to account for the effects observed as a result of the special



collimator geometry for ORNL’s 1" x 2" Nal field holdup de-
tector that were not featured in the previous detector design
used in Ref [2] and utilized in the synthetic data presented in
previous sections of this paper. Furthermore, two measure-
ment points had higher than expected flux values, so further
investigation is currently underway to determine if they are
statistical outliers or further adjustments to the detector model
need be made.

Development of the Collimation Correction Factor

The detector used in [2] was a 2" x 2" Nal detector, colli-
mated by the placement of lead bricks above and to the sides
of the detector to produce a forward facing hemisphere field
of view (FOV). The 1" x 2" Nal field holdup detector provided
by ORNL to conduct the measurement campaigns has a much
more sophisticated collimator that narrows the FOV to roughly
23 degrees and partially obscures the crystal face. The front of
the lead collimator touches the crystal face and covers about
12% the face reducing the detector’s solid angle FOV. Since
the previous configuration [2] did not suffer such a reduction in
solid angle, DIMP requires a collimation correction factor to
adjust the detector efficiency for the effect of this collimation
on the directional responses. The source-location dependent
reduction in solid angle is illustrated by Fig. 9

Fig. 9. Sketch of the detector collimator shadowing effect on
the detector crystal (reducing the effective solid angle).

A fairly simple way to compute such a factor, is to sim-
ulate the detector with and without the collimator geometry
(just the detector crystal) in MCNP and compare the results to
the analytical solid angle calculations. Using the ratio of the
two fluxes (with and without the collimator) as the collimation
correction factor, the measured responses can be corrected by
this factor to better match the responses predicted by the true
source distribution folded with DENOVO adjoint fluxes. Thus,
the collimation correction factor (S .,;(r, E)) can be calculated

as follows sy

S col(r, E) = Dot (72 ) (25)

T g E)

where ¢”"(r, E) and ¢,,(r, E) are the collimated and uncol-
limated synthetic responses calculated from the true source
configuration in MCNP. Dividing the measured responses by
S coi(r, E) will produce an approximate value of the response
that would have been measured with a 2 7 FOV detector that
is assumed in the current version of DIMP. A more rigorous
way to account for the collimator’s effect is to determine a
directionally dependent DRF.

The correction factor was used to adjust each of the
measured responses from the Cs-137 point source campagin
before initializing DIMP’s source search algorithm. The
experiment involved ten detection points measured within
the experimental area in a spiral pattern around the 4 u Ci
point source held by a clamp on the ring stand (similar to the
HEU setup in Fig. 7). The distance between the source and
detection points ranged from 0.02-1.25 m as discussed in the
previous section, and the coordinates of the true Cs-137 point
source are (0,0,87) cm.

Consider the DIMP predicted source map shown in Figure
10 of the Appendix. As in this source-strength map, DIMP per-
formed well predicting the source in the correct cell (0,0,90)
with 80% of the true source activity with fairly low uncertainty.
Only 80% of the true source strength was obtained because the
FOV-corrected measured responses still had a margin of error
when compared with those calculated by DENOVO. This is
a promising result for the first of four experimental measure-
ments, but there are two issues with this result. The first, is
that as in [2] the source search had to be narrowed to a lower
number of mesh cells in order to find a good source config-
uration. Specifically, instead of allowing the point source to
occupy any number of cells within the full volume of air in
the problem configuration (100 x 100 x 61 cells) we limit the
region where the source can be located to 40 x 40 x 30. Oth-
erwise, the gradient source search algorithm often becomes
stuck in local minima and predicts weak distributed sources
with larger values of the reduced chi-squared. The second is
that two detection point fluxes did not match up with MCNP
synthetic fluxes, so for the time being they were adjusted to
the synthetic values artificially. Further investigation will de-
termine a physical explanation for those discrepant values if
possible. They may be removed as outliers, since both points
were measured fairly close to the source.

CONCLUSIONS

DIMP is a reliable inverse radiation transport solver that
has proven stable for point and line radiation sources config-
urations. Although, DIMP does not resolve the entire line
source with full accuracy, it still approximates the strong point
sources in the line well. DIMP maps the source within a few
cells of its true location and generally predicts the correct
source strength when using more than 5 detection points.

DIMP performed fairly well for the first validation ex-
ercise concerning the Cs-137 point source suspended by a
clamp stand once a detector collimation factor was applied to
the measured responses and the spatial domain for the source
search was reduced by 90% (a full order of magnitude). With-
out the domain reduction, DIMP’s optimizer often failed to
predict the correct source because it became stuck in local min-
ima that were less optimal than the true source specification
as quantified by the corresponding reduced chi-squared values.
With the success of the reduced search, it can be concluded
that future DIMP optimization searches should be attempted
with either an alternate optimizer that does not easily become
trapped in local minima or an adaptive mesh algorithm applied
to reduce the search spatial domain to only logically accept-



able source cells (in equipment, not floors, walls, random air
cells, etc.).

DIMP is expected to perform well for the remaining val-
idation exercises. DIMP will also be verified against SNM
masses predicted by ORNL’s HMS-4 system. The validation
will consist of three additional measurements conducted over
experimental campaigns involving two single source cases
and one multi-source case in various geometries. Two of the
campaigns were meant to simulate holdup-like sources in a
realistic facility geometry (e.g. sources in pipes and ducts),
while the others were used for calibration of the DIMP system.
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Fig. 10. DIMP predicted source map (above) for a Sm x Sm square space (reduced to a 2m x 2m search area) with a Cs-137 point
source suspended by clamps on a ring stand, and the corresponding uncertainty (below).
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