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ABSTRACT

An interface condition for hybrid Py-Sy calculations is proposed for the self-adjoint angu-
lar flux (SAAF) formulation of the transport equation using the continuous finite element method
(FEM) for spatial discretization. This interface condition is implemented in Rattlesnake, the radia-
tion transport application built on MOOSE, for the on-going multiscale transport simulation effort
at INL. The interface condition uses the mortar FEM framework in MOOSE for spatial coupling
that is based on a Lagrange multiplier approach for constraining the solution in angle. For smooth-
ing the solution at the interface a method based on Sy Lagrange interpolation on the sphere is
proposed. Numerical results indicate that the interface condition gives the expected convergence.

Key Words: Hybrid Py-5Sy, Multiscale transport, SAAF, Mortar FEM, Lagrange
multiplier

1. INTRODUCTION

Transport calculations for simulating the neutron behavior in a nuclear reactor core with fine reso-
lution in the seven-dimensional phase space (1 in time, 3 in space, 2 in angle and 1 in energy) will
remain a challenge for the foreseeable future. However, fine resolution over the entire core is rarely
required or necessary. Typically we can apply higher resolutions in regions of interest, for instance the
experiment bundle of TREAT (transient reactor test facility) at INL, and lower resolutions with vari-
ous homogenization levels everywhere else. Although the solution accuracy of the regions of interest
can be bounded by the accuracy of the lower-resolution regions especially close to the interface, it is
argued that the accuracy can be significantly improved by taking into account the environmental con-
dition imposed by lower-resolution regions. On the other hand, we can avoid the pre-homogenization
of high-resolution regions, which often couldn’t be conducted accurately. We will label this approach
as the multiscale transport methods. Discrete ordinates methods (Sy) are suitable for handling het-
erogeneous problems due to the decoupling of angular variables in the streaming operators, while the
spherical harmonics expansion methods (Py) typically generate more accurate results with the same
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number of unknowns for problems with significant homogenization. It is believed that regions of dif-
ferent levels of homogenization can be treated most efficiently with the hybrid Sy-Py calculations.
Hybrid Sy-Py calculations have been studied in the past [1-6]. Among them Ref. [1, 2, 5, 6] are for
the one-dimensional. Ref. [3, 4] handles the coupling between VNM (variational nodal method) with
Py and SNM (S nodal method), both of which are locally conservative.

Rattlesnake is the radiation transport application built with MOOSE for modern multiphysics simu-
lations. Multiple discretization schemes have been developed in Rattlesnake. Among them, SAAF-
CFEM-SN and SAAF-CFEM-PN [7-10] are based on the self-adjoint angular flux formulation (SAAF)
with the continuous finite element method (FEM). They differ from each other only by the angular treat-
ment, either Sy or Py. Similarly we have implemented LS(least square)-CFEM-SN and LS-CFEM-
PN [1 1] for a better void treatment. We also have a first-order Sy method discretized with discontinuous
FEM [12, 13], but the deployed transport sweeper requires further optimization. Diffusion approxima-
tion with continuous and discontinuous FEM are also available. All of these are developed on top of the
general mesh framework with MOOSE supporting multidimensional unstructured mesh with massive
parallelization. We want to implement the multiscale transport capability to leverage these transport
schemes.

Implementing the multiscale transport capability in a production code is a non-trivial task. It involves
three parties: the framework developers, application developers and reactor analysts. In our case, they
are the MOOSE developers, Rattlesnake developers and INL Rattlesnake users for the initial deploy-
ment, respectively. Although the interface condition for coupling S and Py is special, it contains the
common spatial-coupling piece, which can be useful to other physics. For example, mortar FEM for
coupling two regions or subdomains has been investigated intensively outside of the transport com-
munity [!4—17]. Multiscale transport should be able to benefit from the solver development on the
framework side as well. The role of application developers is to develop and implement the interface
condition and to provide for any special needs, if there are any, to the framework developers. It is
also the application developers who are responsible for assuring the good usability by incorporating
the feedback from the analysts. Reactor analysts are the end users who create the models for the real
reactor simulations: the mesh, cross section library and etc. This paper focuses on the Sy- Py interface
condition, particularly, the coupling between SAAF-SN-CFEM and SAAF-PN-CFEM in the viewpoint
of the application developers.

It should be mentioned that the adaptive domain partitioning based on a posterior estimation technique
as Ref. [5] is not our current interest. Instead, the domain is partitioned by the user before the calcu-
lation and the discretization schemes applied on each subdomain is set by the user. Spatial interface
conditions are implemented via the general mortar FEM framework available in MOOSE. Leveraging
the flexibility of the mortar FEM capability, the meshes on different subdomains can be conforming
at the mortar interface but they are not required. A custom MOOSE mesh modifier is used to split
conforming meshes behind the scenes and interface conditions are added automatically during the
simulation. The only difference in users’ perspective is that a separate transport method has to be spec-
ified for each subdomain. We will not report CPU times in this study because more efficient solving
techniques handling the resultant saddle point problem from the multiscale are under development.
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We are exclusively considering the multigroup approximation in energy variable. Embedded energy
structures are assumed across two neighboring scales, i.e. any group in these two scales is either a
subset or completely outside of another group. Although we will only show the method with one-
group steady-state source problem, it can be extended to multigroup transient or eigenvalue problems
without any fundamental difficulty. Although users are allowed to amend the interface conditions with
the properties defined on interfaces, such as discontinuity factors from the generalized homogenization
theory [ 18], this paper will only talk about the nominal conditions.

The rest of this paper is arranged as follows: Section 2 gives the theory of the condition and Section 3
shows some representing results. Conclusions will be drawn and future works will be discussed at the
end.

2. THEORY

We use the following one-group steady-state transport equation with isotropic scattering and external
sources to demonstrate our methodology:

G- 90+ o (U D) = L (0,78 + Q) Fe DG e S, M)

where 7 and () are the spatial and angular independent variables defined in the domain D and on the
two-dimensional unit sphere S. W is the angular flux and @ is the scalar flux defined as |, s YdQ. oy
and o are the total and scattering cross sections respectively. () is the external source. This equation
is solved along with the surface source boundary condition

W(7, Q) = Wine(7, ), 7 € 9D, Q- (7)) < 0 2)
and/or the reflecting boundary condition
U(7, Q) = U(7, Q,),7 € 0D, Q- i(7) < 0, 3)

where O, = Q0 — 2(@ -7)7. There is nothing significant to extend the method to anisotropic scattering
and external sources.

We will first state the weak form of the SAAF equations with domain decomposition which takes the
form of a convection-reaction equation along a particular angular direction given the directional source.
A Lagrange multiplier is introduced for coupling subdomains and its physical meaning is explained.
We then move to the full transport weak form including all interface terms. To this end, we define
the angular space for the Lagrange multipliers on the interface and derive the interface condition. It
has been observed numerically that Lagrange interpolation of Sy solution needs to be constructed to
ensure a smooth coupling of Sy and Py . This smoothing treatment is detailed at the end of this section.
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2.1. SAAF Weak Form for the Convection-Reaction Equation with Domain Decomposition

The simple convection-reaction equation defined over a solution domain D is

Q- Vi + o)y (7) = (7). )

We use lower case of U and () for this directional equation. The weak form with SAAF is to find
1 € Wp, such that

b (v, ¥") =1(y*), V" € Wp, (5)
where
1l = = =
b (Y, %) = <;tﬂ N, Q- VY )p + (1, o) p + (b, )T (6)
1. - . _
(") = (S, w*+;tﬁ-w*>p+<wmw*> : (7)

Wp is a continuous function space in which the solution is sought although the solution may present
discontinuity perpendicular to the characteristic lines. Notations used in Eq. (6) and Eq. (7) are defined
as,

mmpzéfmmmm ®)

=

where OD™ and 0D~ are the downwind (ﬁ -1 > 0) and upwind (Q -1 < 0) boundary with respect to
Q2 respectively.

-7l (Mg (7)ds, ©)

We have an arbitrary domain decomposition D_: Ule Dy and the interface is given by I';,,; =
UkK:1(U§{:1(Dk (1D;)). We use a new notation W, for the function space which is now subdomain-
wise continuous. We can use the Lagrange multipliers to enforce the continuity:

—([¥1; A)r,., - (10)
Without destroying the consistency, we add the term symmetric to the above term
—([¥*], M, » (11)
where
YE = lim (7 % s7), (12)
s—0
[Wl=v" -y~ (13)
(o), = [ Fods (14)
Fint
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77 is the norm unit vector associated with interior sides and can be arbitrarily oriented.

The bilinear form with the Lagrange multipliers becomes:

b (10, A, 9%, A7) = bg (¢, 4%) — (W], A, — (7], A)r

where both A and \* are in a function space denoted with V1. Some further explanations are in order:

(15)

int ’

1. It can be proved that the above bilinear form yields the same solution ¢/ as the original one.

2. The physical meaning of the Lagrange multiplier is the angular flux times Q-7. However, it could
not be equal to Q- i) when the analytical solution does not belong to Wp. Exact subdomain-
wise balance is obtained with A but not with 1), which can be seen with the subdomain-wise
constant test functions.

3. Although with domain decomposition, we do not have to enforce the continuity on the domain
interface when (2 - 7 = 0. We can develop a Lagrange multiplier having the exact angular flux,
but we still want to use the currently form in order to preserve the solution of the original weak
form.

4. It is noted that there are ways of introducing null spaces in V. For instance, if we break the
function space on each individual subdomain interface, and there is a node shared by more than
two interfaces, then we add one redundant constraints for this node. These null spaces do not
affect the solution of angular flux though.

5. The basis function spanning the function space V' can be sophisticated for a general mortar FEM.
If we have conforming meshes on subdomains, i.e. no hanging nodes on interfaces, we can simply
use the non-zero traces of the basis functions of the original space Wp.

6. The matrix structure resulted from the above weak form is a typical saddle point matrix:

A BT Y| | b

B 0 D N R I
where the normal streaming, collision and boundary terms are assembling the invertible block
diagonal matrix A, where each block is corresponding to a subdomain.

2.2. SAAF PN-SN Weak Form and the Interface Condition

After the integration of simple transport equations, Egs. (6) and (7), of all directions, we obtain

b(W, W) = I(¥7) (16)
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b(\If,\I/*)E/ Kﬁﬁqﬁ,iﬁ W:) ] <\y*+iﬁ.ﬁqj*73) n
S Ot O¢ 47 D
dQ (0", U —/ dQ (U, 0 (0 (17)
/ﬁ-ﬁ>0 < >3D Q-7<0 < ( )>6Dr
. 1 o -
1(¥) z/ dQ (W, e +/dQ (\IJ*+—Q-V\IJ*,Q) : (18)
Q-i<0 ° S 0y D

U belongs to a function space Wp ® S, where S is the angular space. The weak form with domain
decomposition for the SAAF is to find a solution ¥ in a function space Wp ® S and A in V4 ® S, such
that VU* and A* in the same corresponding function space

b(W, A, U A*) = [(T7), (19)
where
b(W, A, U* A*) =b(¥, U*) — /S (W], Ay, + (197, A)p, ] dS2. (20)
We define the two subdomains as
Dsy = {7 € D, where SN is applied} , 21
Dpn = {7 € D, where PN is applied} . (22)

On Dgy, we solve the equation in a given set of directions specified by an angular quadrature
{Qm, Wpy,m =1,--- M } We will denote angular flux on Qo as U = (7) and all the angular fluxes as
U. On Dpy, we let S be spanned by the spherical harmonics up to order V. Angular flux in this space

can be represented as ¥ = RT(Q)<I>( 7), where @ is the column vector of all angular flux moments and
R is the spherical harmonics Y times the normalization factors, i.e.

—

R = PY, (23)

L -1
where P = ( i) s YYTdQ) is diagonal and composing of all normalization factors. Because typically

the dimension of Py angular space is smaller, we let the Sy side as the master, i.e. we make the unit
norm of the interface n always point toward to Sy side. We will skip the detailed weak forms on both
Dsy and Dpy. The boundary needs to be split with Sy and Py .

Now, we need to handle the term on Sy -Py domain interface I' = 0Dpx N 0Dgy:

/S (1], A%y + ([°], A)y) dEh 24)
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We will use the same angular space of the Sy side for the Lagrange multiplier, i.e. we have
{Apm,Af,,m=1,--- M}. Onthe Sy side,

M
> W (W, A+ (W5, A)p) - (25)
m=1

On the Py side,

M
— m (RT(Q,,)®, A" ) — (&, PA) |, 26
mzlw ( (Em) m)r ( )F (26)
where
M
A= w, Y (L) A, (27)
m=1

It is noted that if the angular quadrature can integrate spherical harmonics up to order Ngy > N, the
first term in Eq. (25) and Eq. (26) will ensure the continuity of the angular flux moments. It also will
cause all the flux moments evaluated on the Sy side with order being greater than N and less equal to
Ngn to be zero. However, the above interface condition creates non-smooth PN solutions close to the
interface based on observations in numerical experiments.

2.3. SN Lagrange Interpolation for the Interface Condition

It is noted that the angular function space on the Sy side is not clearly defined so far. Different inter-
polation schemes can be applied to construct the space, or to construct the solution over the sphere,
with M discrete angular fluxes. One way of achieving this is through Lagrange interpolation. We let
the constructed flux in a space spanned by the spherical harmonics with the dimension being the num-
ber of directions M. We will denote the set of these basis spherical harmonics as Y. It is noted that
the spherical harmonics on the Py side will always be a subspace of the above space. Then we can
more or less freely select some spherical harmonics in the L > N space to make the dimension equal
to M. If level-symmetric quadrature with Sy is used, Ref. [19] suggested that the following space
Y = {Yim,0<m <L0<1<N—1;misoddand 0 < m < N with { = N'} for two-dimensional
calculations if level-symmetric quadrature is used. Here /N is the level-symmetric Sy order.

We denote the sphere nodal function associated with direction m as L, (Q). L,,(€)) satisfies the fol-
lowing conditions

Lon(Q) = O, m/ =1, , M (28)
We expand the nodal functions as

Lon(Q) = RT(Q)a,, (29)
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and form the following linear equation from the conditions,

Ra,, = €, (30)
where R, v = Rm/(ﬁm). If we define A = {d;,a,,--- ,ay}, we have
RA =1 (31)
The constructed angular flux
M M
V(D) => ULn(d) =D ¥, R(Da,, = RT(DHAE (32)
m=1 m=1

From the constructed angular flux, we can evaluate the angular moments
®= [ YIQUD)dQ = AU. (33)

Typically the angular flux moments evaluated using Eq. (33) is different from the one directly evaluated
from the angular quadrature. We want to use

K=Y A, (34)

where l&m is the m-th row of the matrix A. We will use Eq. (34) for the interface condition in Eq. (26).

Before closing this section, it is worthwhile to mention that the interface conditions for Py-Py with
different orders can be implemented by making the Lagrange multiplier angular space the same as
the angular space with the higher Py order. The Lagrange multiplier essentially make all the angular
moments of the lower Py order continuous across the interface and the higher angular moments on
the higher Py order side zero. SAAF-CFEM-PO is equivalent with the diffusion approximation if the
boundary condition is imposed in a way of decoupling the even and odd parities. Both SAAF-CFEM-
SN and SAAF-CFEM-PN interface condition with diffusion continuous FEM are tested and working.

3. Numerical Results

We tested the implemented interface condition with a one-group homogeneous fixed-source problem.
The domain is 8cm x 8cm discretized by a 8-by-8 uniform Cartesian grid. Total and scattering cross
sections are uniform, 1em~! and 0.9cm ™~ respectively, and the external source is isotropic and uniform
with 1em~3s~ 1. Left, right and top boundaries are reflecting and the bottom boundary is vacuum. The
problem is illustrated in Fig. 1. It should be pointed out that the exact scalar flux is constant along lines
with y = const. We divide the domain into two subdomains by the line starting through (0, 6)cm and
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Figure 1: A one-group homogeneous problem.

(6,6)cm and apply SAAF-CFEM-SN at the lower part and SAAF-CFEM-PN at the upper part. Level-
symmetric angular quadratures of orders ranging from 8 to 18 are used for the angular discretization
within the SAAF-CFEM-SN subdomain. Within the SAAF-CFEM-PN subdomain, Py orders ranging
from O to 6 are used. For the solution of the equation system resulting from the FEM discretization,
we exclusively employ the PIFNK (preconditioned Jacobian-free Newton-Krylov) solver in this study.
The preconditioning matrix comprises contributions from the streaming, collision, vacuum boundary
condition, and the interface terms. We gathered the relative errors of integration of scalar flux in the
lower part and upper part with the corresponding Sy solution over the entire domain into Table I
and Table II. The last row of these two tables show the the relative error between the Sy solution and
the reference solution 379.046¢m /s and 156.31848cm /s generated with S24 all on the entire domain.

Table I: Relative error of the lower integrated scalar flux.

Py Sy order
order 8 10 12 14 16 18

0 1.93E-04 1.93E-04 1.93E-04 1.93E-04 1.93E-04 1.93E-04
2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04
3.68E-06 3.62E-06 3.60E-06 3.59E-06 3.58E-06 3.58E-06
-1.71E-06 -1.77E-06 -1.80E-06 -1.81E-06 -1.81E-06 -1.82E-06
4.59E-09 1.67E-08 1.78E-08 1.68E-08 1.76E-08 1.74E-08
7.82E-09 1.82E-08 1.97E-08 1.86E-08 2.00E-08 1.98E-08
-5.63E-09 1.55E-09 8.04E-10 -1.09E-09 -2.22E-10 -8.34E-10

-8.68E-04 -5.78E-04 -3.83E-04 -2.70E-04 -1.80E-04 -1.21E-04

AN NN

We can see that the integrated flux at the lower part has larger angular discretization error than the
one at the upper part because of the stronger transport effect close to the vacuum boundary. With a
fixed Sy order, errors drop with the increased Py order. For all Sy orders, the errors with different
Py orders are very close except the Py order 6 or Py order larger than 4 with S8, possibly due to the
contamination with the iterative error. We see significant error drop for N to N + 1 when N is odd,
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Table II: Relative error of the upper integrated scalar flux.

Py Sy order
order 8 10 12 14 16 18

0 -5.30E-04 -5.31E-04 -5.31E-04 -5.31E-04 -5.31E-04 -5.31E-04
-5.80E-04 -5.81E-04 -5.81E-04 -5.81E-04 -5.81E-04 -5.81E-04
-1.01E-05 -1.00E-05 -9.95E-06 -9.93E-06 -9.93E-06 -9.93E-06
3.57E-06 3.72E-06 3.79E-06 3.81E-06 3.82E-06 3.82E-06
-2.88E-08 -5.93E-08 -6.15E-08 -5.89E-08 -6.11E-08 -6.04E-08
-2.10E-08 -4.67E-08 -4.93E-08 -4.64E-08 -4.99E-08 -4.92E-08
1.35E-08 -4.84E-09 -1.79E-09 3.28E-09 1.09E-09 2.88E-09

-4.55E-05 -3.07E-05 -2.05E-05 -1.46E-05 -9.77E-06 -6.57E-06

AN W=

which can be explained by the weak coupling from odd parity to even parity at the boundaries [10].

The flux of S16-P4 are plotted in Fig. 2a along with its contour lines. We can see the scalar flux are
continuous across the mortar interface and the solution is relatively flat along the x direction even
though it is not exactly constant. The same solution but with the interface condition in Eq. (26) are
plotted in Fig. 2b. We can clearly see the non-smoothness of the solution along the interface. The
solution is indeed symmetric with respect to the line at (4,0)cm to (4, 8)cm, which is not the case
indicated by the color rendering during visualization.

We then rotated the mesh with 45° to test if the rotation can severely impact the validity of the imple-
mented interface condition. 45° makes all the reflecting directions on the left, right and top boundaries
are still in the quadrature. The solution is indeed affected by the rotation, for example, the integrated
fluxes at the lower part and upper part are 379.245510c¢m /s and 156.323143¢m /s from those un-rotated
378.977864cm /s and 156.316943cm /s. The flux are plotted in Fig. 2c. Color bars show the the same
limits of the fluxes as in Fig. 2a. We can see that the interface condition is still working properly, i.e.,
the solution remains continuous across and smooth along the mortar interface.

4. CONCLUSION

We presented the interface condition for hybrid Sy and Py calculations with SAAF and continu-
ous FEM. Particle conservation with the Lagrange multiplier defined on the subdomain interfaces is
achieved subdomain-wise. Lagrange interpolation on sphere are proposed to smooth the transition of
the Sy and Py solutions on the interfaces. A one-group homogeneous steady-state source problem
shows the interface condition works properly and does not depend on the mesh rotation. We would
like to test the hybrid calculations with more sample problems, either multigroup eigenvalue or tran-
sient, with or without group collapsing in the future. We will also show the CPU-time results with
the fine-tuned mortar FEM framework and solvers of the saddle point problems. Ultimately, we will
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Figure 2: Flux with S16 and P4.

apply the multiscale transport capability in Rattlesnake for applications to the real reactors like ATR
(advanced test reactor) and TREAT at INL.
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