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Large-scale system codes for simulation of safety
performance of nuclear plants may contain parameters
whose values are not known very accurately. In order to
be able to use the results of these simulation codes with
confidence, it is important to learn how the uncertainty on
the values of these parameters affects the output of the
codes. New information from tests or operating
experience is incorporated into safety codes by a process
known as calibration, which reduces uncertainty in the
output of the safety code, and thereby improves its
support  for decision-making. Modern  analysis
capabilities afford very significant improvements on
classical ways of doing calibration, and the work
reported here implements some of those improvements.
The key innovation has come from development of safety
code surrogate model (code emulator) construction and
prediction algorithms. A surrogate is needed for
calibration of plant-scale simulation codes because the
multivariate nature of the problem (i.e., the need to adjust
multiple uncertain parameters at once to fit multiple
pieces of new information) calls for multiple evaluations
of performance, which, for a computation-intensive
model, makes calibration very computation-intensive.
Use of a fast surrogate makes the calibration processes
used here with Markov Chain Monte Carlo (MCMC)
sampling feasible. Moreover, most traditional surrogates
do not provide uncertainty information along with their
predictions, but the Gaussian Process (GP) based code
surrogates used here do. This improves the soundness of
the code calibration process. Results are demonstrated
on a simplified scenario with data from Separate and
Integral Effect Tests.

L. INTRODUCTION

Bayesian inference provides a mathematically and
statistically rigorous framework for solving inverse
problems, which would otherwise be ill-posed or
analytically intractable. Observational data can be used to
calibrate computer model predictions and infer the
numerous parameters within the computer model. The
resulting posterior distributions combine data with the
expert judgment encoded within the prior distributions,
thereby accounting for as much information as possible.
However, implementing Bayesian calibration for safety
analysis codes is very challenging. Because the posterior

distribution cannot be obtained analytically, approximate
Bayesian inference with sampling is required. Markov
Chain Monte Carlo (MCMC) sampling algorithms are
very powerful and have become increasingly widespread
over the last decade'. However, for even relatively “fast”
computer models practical implementation of Bayesian
inference with MCMC would simply take too long. A
computer model that takes 1 second to run but needs 10
MCMC samples would take over 27 hours to complete.
Surrogate models (or emulators) that emulate the
behavior of the input/output relationship of the computer
model but are very computationally cheap allow MCMC
sampling to be possible. An emulator that is 1000x faster
than the computer model would need only 100 seconds to
perform the same number of MCMC samples. As the
computer model run time increases, the surrogate model
becomes even more attractive because MCMC sampling
would become impractically lengthy.

Ultimately, the goal is not to simply update the state
of knowledge about some parameter values, but to use the
updated parameters to better inform predictions on some
system response. Observational data at various “levels”
are therefore required. The lowest level or Separate
Effect Tests (SETs) deals with a specific type of physical
phenomena, or physical process. Calibrating a computer
model with SET data calibrates the parameters associated
with that specific physical process. Higher levels or
Integral Effect Tests (IETs), have multiple phenomena
interacting together and are usually larger in scale.
Calibrating a computer model with IET data alone may be
quite difficult for many reasons, especially if the total
number of parameters is very high. Incorporating the
information from the SET data into the IET calibration
would be able to improve the overall IET calibration
process. The SET data should act to constrain the
parameter distributions’.  The SET model could be
calibrated first with the resulting posterior parameter
distribution used to construct the prior for the IET model
calibration. This work, however, calibrates the SET and
IET models simultaneously. The benefit of the
simultaneous approach is that a simple prior distribution
can be used.

This work wuses emulators to perform the
simultaneous calibration of SET and IET models to their
respective data. The methodology is demonstrated on a



simple channel pressure drop scenario. The SET deals
with the specific pressure drop through one portion of the
channel, namely the driver fuel bundle within the
Experimental Breeder Reactor-II (EBR-II). The EBR-II
was a sodium cooled fast reactor that operated for 30
years, performing a large number of important operational
and safety analysis tests, before being shut down in
1994''* " The IET is the pressure drop over the entire
channel including the form loss at the inlet nozzle.
Therefore, even though this demonstration requires only
simple computer models, it still maintains the ingredients
of the SET/IET calibration process. The IET model may
not “know” the specific physics within the driver fuel
bundle. The SET data will provide that information
during the simultaneous calibration.

The rest of the paper is organized as follows: Section
I discusses the specific type of emulator used in this
work and how it is incorporated into the MCMC
sampling, and the simultaneous calibration formulation.
Section IIT describes the specific channel pressure drop
SET and IET data and computer models, and Section IV
provides the results.

II. EMULATOR-BASED BAYESIAN MODEL
CALIBRATION

II.A Overview

Surrogate models can be used to approximate long-
running computer codes to accomplish a variety of tasks.
They are common in many engineering fields usually in
the form of response surfaces and look-up tables’. An
emulator is a specific type of surrogate model that
provides an estimate of its own uncertainty when making
a prediction®. An emulator is therefore a probabilistic
response surface which is a very convenient approach
because the emulator’s contribution to the total
uncertainty can be included in the Bayesian calibration
process. An uncertain (noisy) emulator would therefore
limit the parameter posterior precision, relative to
calibrating the parameters using the long-running
computer code itself.

A commonly-used emulator is the Gaussian Process
(GP) model®*>. The GP model is a Bayesian non-
parametric, non-linear model, and has been used
successfully as an emulator in many engineering fields™®.
Non-parametric refers to the fact that the GP model
makes use of the training set in order to make a
prediction. The training set is the set of computer code
runs used to build, or, as the name implies, train the
emulator. Parametric models, such as a best-fit line,
never require the training set once the parameters within
the model have been determined. Although
computationally easier to manage, parametric models are
not as flexible, and require the analyst to pre-specify the
input/output relationship.  Non-parametric statistical
models, such as the GP, learn the input/output relationship

from the training data directly. The analyst must still pre-
specify certain aspects of the GP, such as if the output is
expected to be smooth or not, but in general the training
data dictates the functional form rather than the analyst.
For a comprehensive review of GP models see Ref. 4 and
References 3, 5, and 6 for applying GP models to
Bayesian model calibration of long-running computer
codes.

However, the GP model has certain limitations. First,
the GP does not scale very well to large amounts of data.
The GP requires inversions of matrices that grow with
increasing amounts of training data, which can be
prohibitively slow for large amounts of data. Predicting
multiple outputs is also challenging for the same reason,
since the size of the matrices grows very quickly.
Determining the training points is also not a trivial task.
Training points that are too close together in the
parameter space may cause the matrix which is required
to be inverted to be singular or at least ill-conditioned.
Naively using as many training points as possible may not
help the GP, which may view some or many of the
training points as effectively providing no new
information relative to other points. This, too, can lead to
the ill-conditioning issues.

Many different approaches have been adopted to
overcome these issues. This work chose to adopt the
Function Factorization with Gaussian Process (FFGP)
Priors approach, a pattern-recognition style framework
where the GP model is a piece of the overall statistical
model”. In the FFGP model, the training set is factored
into simpler functions. Each of the simpler functions is
trained only by a fraction of the total training set. The
pattern-recognition setup is therefore a dimensionality
reduction technique since several smaller GP models are
faster to work with than one very large GP. FFGP is a
generalization of probabilistic Principal Component
Analysis (PPCA) and Non-Negative Matrix Factorization
(NMF)’. FFGP is also referred to as Gaussian Process
Factor Analysis (GPFA) by other authors in other fields®.

II.B Function Factorization with Gaussian Process
(FFGP) Priors Model

1I.B.1 Model Formulation

The main idea of function factorization (FF) is to
approximate a complicated function, y(x), on a high-
dimensional space, X', by the sum of products of a
number of simpler functions, f;,(x;) , on lower
dimensional subspaces, X¢. The FF model is:

y(x)= Zﬂf (x,) (1)

In Eq. (1), I is the number of factors — patterns — and K is
the number of different components within each factor.



The terminology used here is consistent with Schmidt’s in
Ref. 7. The input, x, is a vector with D-elements
corresponding to the D-inputs to the problem. Each
factor’s input, X;, is a subset of the total input.

The difference between factor and component is
easier to see when Eq. (1) is rewritten in matrix form.
The training output data, Y, is a matrix of size MXN,
where N is the number of cases run and M is the number
of points taken per case. A case or case run denotes an
evaluation of the computer model (the code) at a
particular set of uncertain input parameter values. If the
problem of interest was the analysis of a transient in a
nuclear reactor, M could be the number of points taken in
time per case run. Factor 1 would be the time factor with
X, being a column vector of the M points in time taken
per case run. If there was only 1 uncertain input
parameter, X, would be a vector of the N different values
used to run the code N times. In general, either factor’s
input could be a matrix; the vectors were used here to
describe the format. The entire set of training input
values will be denoted as X = {x,,x,}, and the entire
training dataset will be denoted as p ={xy}. With

only 1-component the FF-model becomes a matrix
product of two vectors f; and f,: Y~ff . The

superscript T denotes the transpose of the vector. For
more than one component, each factor is represented as a
matrix instead of a vector. The columns within each
factor’s matrix correspond to the individual components
within that factor. For the 2-factor 2-component FF-

model the factor matrices are F; = [fEl,fEZ]T and
F, = [f{l,fZZ]T. The FF-model is then:

Y =F

F) )

The elements within each of the factor matrices are
latent or hidden variables that must be learned from the
training dataset. Performing Bayesian inference on the
FF-model requires specification of a likelihood function
between the training output data and the FF-model as well
as the prior specification on each factor matrix. The
likelihood function is assumed to a be a simple Gaussian
likelihood with likelihood noise (variance) o2 and mean
equal to the FF-model, F,F;.

The prior on each component within each factor is
specified as a GP prior. Each GP prior is assumed to be a
zero-mean GP with a squared-exponential (SE)
covariance function. The SE covariance function is
widely used in standard GP models because it is
mathmetically convenient (it is a Gaussian expression)
and provides meaningful interpretation of the input/output
relationship through a length scale hyperparameter. Each
input has its own unique length scale which represents
how far the values need to move (along a particular axis)

in each input space for the function values to become
uncorrelated®. This formulation implements what is
known as automatic relevance determination (ARD) due
to the fact that the inverse length scale determines how
relevant the particular input is. If the length scale has a
very large value, the covariance will become almost
independent of that input.

Each factor’s covariance matrix requires evaluating
the covariance function for all of that factor’s input pair
combinations. The covariance matrix for factor 1 is
therefore size MXM while the covariance matrix for
factor 2 is size NXN. This immediately shows how the
FFGP is a dimensionality reduction technique compared
to standard GP models where the covariance matrix size
for all training points would be size NMXNM. Each
factor’s covariance matrix will be denoted as K, and the

set of all covariance function hyperparameters for that
factor are denoted as ¢;. The hyperparameters are
unknown and must be learned from the training data.

The individual factors and components are all
assumed independent a priori, therefore any covariance
between components and factors results in the joint-
posterior due to the contribution of their interaction within
the likelihood function. All hyperparameters were also
assumed to be independent and for simplicity were
assumed to have improper “flat” hyperpriors. If the set of
the hyperparameters is denoted as =, the improper
hyperprior is P(E)e=<1. The probability model defining

the joint-posterior distribution on all latent variables and
hyperparameters is given in detail in Appendix A.

11.B.2 Emulator Training

As shown in Ref. 4, building standard GP models
requires learning the various hyperparameters within the
statistical model. The FFGP emulator adds an additional
layer to the training because hyperparameters as well as
latent variables must be learned simultaneously to fully
specify the emulator.

Following Schmidt in Ref. 7, the Hamiltonian Monte
Carlo (HMC) MCMC scheme was used to build the FFGP
emulator. The HMC is a very powerful MCMC algorithm
that accounts for gradient information to suppress the
randomness of a proposal. See References 7, 9, and 16
for detailed discussions on HMC. The HMC algorithm is
ideal for situations with a very large number of highly
correlated variables, as is the case with sampling the
latent variables presently.

This work has several key differences from
Schmidt’s training algorithm in Ref. 7, to simplify the
implementation and increase the execution speed.
Following Ch. 5 in Ref. 16, the latent variables and
hyperparameter sampling were split into a “Gibbs-like”
procedure. A single iteration of the MCMC scheme first
samples the latent variables given the hyperparameters,
then samples the hyperparameters given the latent



variables. The latent variables were sampled with HMC,
but the hyperparameters can now be sampled from a
simpler MCMC algorithm such as the Random-Walk-
Metropolis (RWM) sampler. Although less efficient
compared to the HMC scheme, the RWM performed
adequately for this work.

The next key difference relative to Schmidt’s training
algorithm was to use an empirical Bayes approach and fix
the hyperparameters as point estimates. Fixing the
hyperparameters as point estimates neglects their impact
on the emulator uncertainty, however the empirical Bayes
approach is far less computationally expensive and is
commonly used with GP models®. The empirical Bayes
approach used here is slightly different than most because
the hyperparameters are fixed at the end of MCMC
sampling rather than determined by an optimization
scheme. The hyperparameter point estimates are denoted
as 2. Once fixed, the HMC algorithm is restarted, but
now the hyperparameters are considered known.

The end result of the HMC algorithm is a potentially
very large number of samples of all of the latent variables.
One last simplification relative to Schmidt’s setup was to
summarize the latent variable posteriors as Gaussians.
Their posterior means and covariance matrices were
empirically estimated from the posterior samples. All of
the latent variables are denoted in stacked vector notation

as P and the empirically estimated means of the latent
variables are IE[f|D, é] The empirically estimated
covariance matrix of all the latent variables is cov[f |D, é]
As will be shown in the next section, this assumption
greatly simplified making predictions with the FFGP
emulator and ultimately provided a very useful
approximation that aided the overall goal of emulator-
based Bayesian model calibration.

11.B.3 Posterior Predictions

Once the FFGP emulator is built, it can be used to
make predictions at new input values, not used in the
training set. A prediction consists of two steps: first,
make a prediction in the latent factor space then, combine
the factor predictions together to make a prediction on the
output directly. A latent space posterior prediction is very
straightforward following MVN theory”®. Predictions on
the output space is made by assuming the FF-model
predictive distribution is a Gaussian. The FF-model
predictive mean and variance are estimated using the laws
of total expectation and variance with details given in
Appendix B. Due to the assumptions made to evaluate
the posterior predictions analytically, the FF-model
predictions are labeled as approximate posterior
predictions.

I1.C Emulator-Modified Likelihood Function
The FF-model approximate posterior predictive
distribution is used to modify the likelihood function

between the observational data and the uncertain input
parameters. The observational data will be assumed to in
vector form labeled asy, . The computer code prediction

will also be labeled in vector form asy(x_,8), with x |

denoting a set of control variables controlled by the
experimenters’ while 6 is the set of uncertain input
parameters of interest. The control variables can also be
the time the data was taken if the experiment of interest is
a transient. Typically, in Bayesian calibration of computer
models, the computer code prediction is used as a (non-
linear) mapping function within the likelihood function.
The posterior on 8 is then given as:

p(ly,)= p(yo \y(xw,,,ﬁ))p(ﬁ) 3)

The subscript “0” on the control variable locations
refers to the fact that the computer predictions are made at
the same control variable “locations” as the observational
data. The likelihood function in Eq. (3) could however be
written in a “hierarchical-like” fashion with the “total”
likelihood broken into two parts as given in Eq. (4):

p(v01y,) = p(y, 1) p(v](x..0))p(6) @

The first part on the right hand side of Eq. (4) is the
likelihood between the observational data and the

computer prediction p(y, |y) while the second is the

likelihood between the computer prediction and the inputs
p(ylx,.60). The likelihood between the observational

data and the computer prediction is simply the assumed
likelihood model for the experiment. This work assumes
a simple factorizable Gaussian likelihood function with
known measurement error (variance) oj , which is

common in practice due to its simplicity. The likelihood
between the computer prediction and the inputs is much
more complicated to specify however and is most likely
impossible to analytically determine for safety analyses
codes in the nuclear industry. However, thanks to the
emulator framework, this likelihood can be approximated
by the emulator posterior predictive distribution.

The joint posterior between the FF-model prediction
H. and the uncertain inputs 6 is:

p(H..01y,.D.£)
« p(6)p(y, | H.) p(H.|{x,,.0}.D.8)

By assuming the FF-model prediction is Gaussian,
the FF-model prediction can be integrated out when
likelihood between the observational data and computer
prediction is also Gaussian. This leads to the emulator-

)



modified calibration process where the emulator-modified
likelihood function relates the uncertain inputs directly to
the observational data. The uncertain input posterior after
the FF-model posterior prediction has been integrated out
is:

p(ﬁlyo,D,é)“p(yo\{XW,O,H},DE)JJ(H) (6)

The FFGP-modified likelihood function is used in
place of the conventional likelihood function in a MCMC
sampling scheme. The emulator-based Bayesian model
calibration process is summarized by a flowchart depicted
in Fig. 1 below.

Prior distributions
Traininginput values

Run computer code to
create trainingoutput
data

Build emulator

Emulétor-modlﬂed m
likelihood L —— " - |
T g

Emulator-based uncertain
parameter calibration
Posterior distributions

Fig. 1. Emulator-based Bayesian model calibration flow
chart.

IL.D Emulator-Based Simultaneous Bayesian
Calibration of Multiple Models

In order to calibrate multiple models simultaneously,
the emulator-modified likelihood function needs to be
modified slightly. In general terms, the total number of
models will be denoted as Z with the total set of
observational data for all Z experiments labeled as

Y, = {Yo,z}j
predictions Y = {y,}%. These Z models could be allowed
to be correlated, however, this work assumed that the
models are uncorrelated.  The complete likelihood
structure between all models simply takes a factorized
form:

with corresponding computer model

p(Yo IY)=]jp(yo,; y.) (7)

The convenience of this assumption is that each of
the Z models individual likelihood functions can be
approximated by that specific model’s own emulator-
modified likelihood function.

ITII. CHANNEL PRESSURE DROP
DEMONSTRATION

IIL.A Overview

To demonstrate simultaneous emulator-based
calibration, a flow channel pressure calibration scenario is
presented. This was a piece of a larger emulator-based
calibration of RELAPS as discussed in Ref. 10. There are
two models, a SET model of a bundle-specific pressure
drop through the driver fuel region of the core in EBR-II.
The driver fuel region is the middle portion of the entire
core channel which sandwiches the EBR-II driver fuel
between the upper and lower blanket''. The core channel
IET model therefore includes the lower blanket, driver
fuel, and upper blanket, as well as the core channel inlet
nozzle form. The SET model therefore informs one
specific portion of the IET model.

The experimental data are values of pressure drop at
various mass flow rates through the channel. The control
variable is therefore the inlet mass flow rate rather than
time, which was the example used throughout the
discussion of the FFGP emulator.

Both the SET and IET models are generated using
RELAPS. The set of uncertain parameters involve the
RELAPS5 user-defined friction factor correlation which
allows specifying turbulent coefficients, 4 and B, the
turbulent exponent, C and the laminar flow shape factor

(O 17, The turbulent user defined friction factor

correlation is:
" =A4+BRe)® (8)

The leading coefficient A was pre-set to be zero and
was considered known. In the laminar flow regime,
friction factor correlation is:

_ 64
Re®,

f! ©)

In Egs. (8) and (9), Re is the Reynolds number and
the friction factor is denoted as f'(not to be confused with
the emulator latent variables). Within the transition flow
regime, RELAPS interpolates between the turbulent and
laminar friction factors'’. The user defined friction factor
inputs were specified for each region within the channel.
The upper and lower blankets share the same set of
inputs, while the driver fuel region has its own set of B, C,
and @, values. Including the core channel inlet nozzle

loss coefficient, the total number of uncertain input
parameters to the IET RELAPS model is 7 while the SET
RELAPS model has only 3 uncertain inputs.

II1.B Experiment Descriptions
Although a lot of EBR-II data exist, the bundle-
specific SET is a “pseudo” SET. The observational data



are in fact generated from an empirical correlation rather
than coming from a true experiment. Therefore, the SET
can be viewed as updating the various uncertain inputs in
the RELAPS5 user-defined friction factor correlation to
match physical phenomena not present in the default list
of friction factor correlations within RELAPS5. EBR-II
had a tight light wire-wrapped bundle within the driver
fuel region''. An appropriate friction factor correlation
for this design is the Cheng & Todreas wire-wrapped
bundle average friction factor correlation'>. Once the
Cheng & Todreas friction factor is computed for the
desired mass flow rate, the pressure drop over the length
of the driver fuel bundle is computed. A total of 25
“pseudo” data points were used.

For the core channel IET data, the data are taken
from Gapalakrishnan & Gillette (1973) (Ref. 13). The
core channel pressure drop includes the effect of the inlet
nozzle form loss. It is difficult to determine whether the
data presented in Ref. 13 are real measured experimental
data and not simply the results of an empirical correlation
derived from scaled water tests. However, the present
IET and SET model calibration demonstration is
illustrative of the entire process, whether the core channel
pressure drop is real or synthetic. Fig. 2 below shows the
data taken directly from Ref. 13. Since the the pressure
drop are read off of Fig. 2, only 6 data points were taken
for the IET “pseudo” data.
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Fig. 2. Core Channel IET Pressure Drop Data from Ref.
13.

II1.C RELAPS Model Descriptions

The SET and IET RELAPS5 models are very similar.
Both are simply channels built using 1-D pipe RELAP
components. The SET model consists of one pipe
channel to represent the driver fuel bundle. Single
volumes are connected at the inlet and outlet of the driver
fuel channel which are connected to the inlet mass flow
and outlet pressure boundary conditions (BCs). Those
single volumes have wall friction turned off and are used
to calculate the total pressure drop across the pipe
component of interest. Fig. 3 provides an illustration of
the RELAP5 SET model.

201 (101 [103 ‘
900 {901 WZOU q{ 400 100 F 500
N Bundle/channel
component RELAP outlet
................................ pressure Boundary
RELAP inlet mass flow Condition

Boundary Condition

Fig. 3. RELAPS5 SET Model Illustration.

The core channel IET RELAPS model is very similar
to the SET model in Fig. 3. Two additional 1-D pipe
components were attached to the driver fuel pipe
component, one to represent the lower blanket and the
other to represent the upper blanket. Additionally, the
inlet nozzle loss coefficient is added to the junction that
connects volume 200 in Fig. 3 to the lower blanket pipe
component. Both the SET and IET RELAPS5 models are
steady-state models.

IV. RESULTS

All of the uncertain parameters are given uniform
prior distributions between their assumed minimum and
maximum values. In general, the choice of prior for
epistemically-uncertain variables is controversial, but in
the present application, it will be seen that some of the
variables are determined extremely well by the data alone.
The min/max values were assumed to be multiples of the
McAdams friction factor correlation coefficient and
exponent for B and C and a multiple of 1 for the laminar
shape factor. The core channel inlet nozzle loss
coefficient bounding values were determined by varying
its value from a set of trial runs.

All of the posterior input parameter results will be
shown on a scaled basis. The scaled value of 0
corresponds to the prior minimum bound while the scaled
value of 1 is the prior maximum bound. In the scaled
values the priors were all uniform between 0 and 1.

The uniform prior bounding values were used as the
bounding values to generate the training sets. Therefore it
was necessary to prevent the MCMC sampling scheme
from jumping outside of the training set bounding values.
Future work will improve on the treatment of cases where
the search “wants” to go outside the prior assessed
variable ranges.

IV.A Bundle-Specific SET Calibration Results

The SET RELAPS5 model has 3 uncertain input
parameters. Along with the control variable — the inlet
mass flow rate - a total of 4 inputs exist to the SET
RELAPS model. A general rule of thumb in building a
standard GP model is to use 10 training points per input’.
Even though the FFGP emulator is being used and not the
standard GP emulator, an additional 10 case runs were
conservatively added giving a total of 50 case runs. The
specific uncertain input parameter values were chosen
using Latin Hypercube Sampling (LHS). Fifteen control



variable locations were used for each case. Thus, with 50
cases and 15 control variable locations a total of 750
RELAP runs were made. The training dataset is shown in
grey along with the Cheng & Todreas “pseudo” data as
red error bars in Fig. 4. The “pseudo” data was assumed
to have a measurement error such that 95% of the
probability was covered by +33% around the mean data
value of the first data point. This error (variance) was
then assumed constant for each of the 25 data points. The
error bars are very small in Fig. 4. The pressure drop
across the bundle is plotted against the scaled inlet mass
flow rate, where 1 corresponds to the max inlet mass flow
rate. Each RELAPS5 run took roughly 2 seconds to
complete, thus it took about 25 minutes to build the entire
FFGP training set. However, all of the RELAPS runs
were made in series for simplicity. The training set could
be run in parallel, which and would significantly shorten
the training set build time.

«10° SET FFGP Training Set and Observational Data

02 o 02 04 06 08 1 12
scaled inlet mass flow rate

Fig. 4. SET RELAPS5 Model Training Set.

A total of 3 types of FFGP emulators were built, the
2-factor 1-component, 2-component and 3-component
emulators. The FFGP training algorithm used a total of

3x10° samples, but as described in Sect. I1.B.2 the
Gibbs-like portion of the sampling was discarded after the
hyperparameters were fixed. The Gibbs-like portion used

10° samples; then, after restarting, the next 10° samples
were treated as “burn-in” on the training latent variable

samples. Therefore, only 10° samples were stored as the
final posterior training latent variable samples used to
estimate the empirical mean and covariance matrix. The
three FFGP emulator types were trained on the same
personal computer. The 1-component FFGP emulator
took roughly 1.5 minutes to train while the 3-component
FFGP emulator took 2.3 minutes to train. Building the
emulators therefore adds very little computational
overhead compared to simply generating the training set.
Only the 2-factor, 2-component FFGP emulator
calibrated results will be shown. The FFGP-modified
likelihood function was incorporated into an Adaptive

Metropolis (AM) MCMC algorithm'* and a total of 10’
samples were drawn. The calibrated posterior predictions
are shown in Fig. 5 while the calibrated scaled uncertain
input histograms are shown in Fig. 6. Because the

“pseudo” data were so precise, the calibrated posterior
predictions have very little uncertainty. The scaled
parameter histograms show the prior histograms in green
and the posterior histograms in blue. It is interesting that
the posterior on C, the exponent acting on the friction
factor correlation, has its uncertainty shrunk around the
prior mean (the McAdams value), while the posterior on
B, the coefficient on the Reynolds number is shifted
closer to the prior maximum bounding value. This is the
situation to be dealt with in the future work previously
mentioned.

Table 1 shows the computational times for all 3
FFGP-based Bayesian calibration schemes. It is very
clear that the emulator is much faster to evaluate
compared to the RELAP5 model. However the effective
number of RELAPS runs shown in the last column of
Table 1 assumes the 2 second run time per case. A single
MCMC run that compares all 25 “pseudo” data points
would therefore require 25 separate RELAPS runs. If
those could be run in parallel, then the slowest FFGP
emulator is over 3000x faster than if RELAP5 was used
directly for MCMC sampling. However, if the RELAPS
calculations had to be made in series a single MCMC
iteration would take roughly 50 seconds to complete. The
slowest FFGP emulator would be over 75000x faster than
this in-series RELAP5-based approach.



Fig. 5. SET calibrated posterior predictions relative to the
“pseudo” data.
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Fig. 6. SET only calibrated posterior histograms

Table 1. SET emulator computational times.

Total emulator-based Effective
calibration time number of
FFGP type (including time to R.ELAP5 runs
. in the same
generate training set)
. amount of
[min] .
time
1-component | 2.22 (27.22) 66 (816)
2-component | 2.89 (27.89) 86 (836)
3-component | 3.36 (28.36) 100 (850)

IV.B Core Channel IET Calibration Results

The same process was followed for the core channel
IET RELAPS5 calibration. However, since the IET model
has 7 uncertain inputs, a total of 100 case runs were used.
Fifteen control variable locations (number of inlet mass
flow rate values per case run) were maintained. A single
case run now took roughly 3 seconds, so it took roughly
75 minutes to generate the entire training set, which is
shown in Fig. 7.

T IET FFGP Training Set and Observational Data

0 . S L L L L
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scaled inlet massflow rate

Fig. 7. IET RELAPS5 Model Training Set

Four emulator types were trained for the IET model,
2-factor, 1-component through 4-components. Each was
built following the same process as the SET FFGP
emulators. Training took between 2.2 and 3.6 minutes
for the 4 FFGP emulators. The 2-factor, 3-component
FFGP based calibration results are shown in Fig. 8 and
Fig. 9. The effect of the emulator uncertainty is easier to
see in Fig. 8 than Fig. 5. The blue lines are the 5™, 25",
50™, 75" and 95™ quantile lines of the calibrated posterior
predictive mean. The green band is the total calibrated
predictive uncertainty band, accounting for the emulator’s
contribution to the predictive variance. The edge of the
green band is +2 standard deviations around the mean of
the predictive means. The blue lines therefore represent
what the emulator thinks the computer model (RELAPS)
would predict. The further the edge of the green band
gets from the last of the blue lines represents the emulator
contributing a large amount of uncertainty to the
calibration process.

Just as in the SET calibration process, the FFGP
emulators added very little computational overhead
compared to simply generating the training set. The total
emulator-based calibration time excluding generating the
training set was between 1.5 minutes and 4 minutes for
the IET FFGP emulators. Generating the training set
(running RELAPS) therefore took roughly 95% of the
total computational run time for the slowest FFGP
emulator.

The important part of the IET FFGP-based
calibration results, however, is that top row of posterior
histograms in Fig. 9 are different from the three posterior
histograms shown in Fig. 6. These are the same three
uncertain input parameters but they have vastly different
posterior distributions. The IET model by itself has no
other piece of information to suggest that any of the
posterior values are unphysical. The SET data must
therefore be included in the calibration process to provide
that information.
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Fig. 8. IET calibrated posterior predictions relative to the
“pseudo” data.
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Fig. 9. IET only calibrated scaled posterior histograms.

IV.C Simultaneous Calibration Results

The 2-factor, 2-component FFGP SET emulator and
the 2-factor, 3-component FFGP IET emulator were used
together to simultaneously calibrate the 7 uncertain

parameters. A total of 2x10° MCMC samples were
drawn with the first half discarded as burn-in. The
simultaneous calibration posterior histograms are shown
in Fig. 10. The results are just as expected: the two
dominant parameters from the SET model, the Reynolds
number coefficient and exponent in the friction factor
correlation are nearly identical to their corresponding
SET-only calibration results. The inlet nozzle loss
posterior is likewise similar to the IET-only calibration
result. The blanket friction parameters (the middle row of
histograms in Fig. 10 are also similar to the IET-only
calibration results in Fig. 9. Those input parameters do
not influence the SET model so it makes sense that
including the SET model has minimal impact on their
posterior, since the inlet nozzle loss coefficient
completely dominates the core channel pressure drop.

A single MCMC iteration was only slightly slower
than the sum of the individual MCMC iterations giving
the calibration time to be roughly 4.67 minutes. The
computational expense is dominated by the generation of
the training sets. This work for simplicity generated the

training sets in series, which took 25 minutes and 75
minutes for the SET and IET RELAP5 models,
respectively. Even if all of the RELAPS models could be
run in parallel, the computational time is limited by the
time to run a single IET RELAPS5 model case, which is

roughly 3 seconds. Simultaneous calibration with 2x10’
MCMC samples would have then taken roughly 7 days to
complete. The emulator-based simultaneous calibration
with both training sets generated in series took less than 3
hours to complete.
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Fig. 10. Simultaneous calibration scaled posterior
histograms.

V.SUMMARY AND CONCLUSIONS

Although conceptually simple, this channel pressure
drop scenario illustrated the steps involved in performing
emulator-based model calibration in a practical situation.
Multiple computer models were synthesized with multiple
experimental data to calibrate the uncertain input
parameters within the computer models. Without the
emulators, MCMC would simply not be a
computationally feasible option, as seen in the execution
time differences between the emulator and the RELAPS
models.

It is difficult to display the joint posterior distribution
of the variables, but it is important to remember that it is
this joint posterior that needs to be used to compare the
calibration results with the input data, as done in Figs. 5
and 8. Flat priors were used for the uncertain variables,
but even so, some of the variables were very well
determined by the data. If it is necessary to reduce
uncertainty in the other variables, it must be done in some
other way.

APPENDIX A: FFGP Probability Model
The complete joint posterior between all latent
variables and hyperparameters for a 2-factor 1-component
FFGP emulator is:



p(fl,f, D )OCP(Y‘fpfz’U) (f1‘¢1)p(f2‘¢2) (10)

The joint posterior in Eq. (10) is specifically for the
2-factor 1-component FFGP emulator. The 1-component
case was shown to simplify the notation, but the joint
posterior for cases with more components is

straightforward to write out.

The log-likelihood function (up to a normalizing
constant) between the training output data and the FF-
model is:

log p(Y |F,.F,,07)
(11)
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In Eq. (11) "" » denotes the Frobenius norm. The i-th

factor’s k-th component vector log prior is therefore
written (up to a normalizing constant) as:

T
logp(f, |¢)°<——10g|K| f K (12)
The covariance matrix requires evaluating covariance
function at each input pair. The SE covariance function
used in this work is written below in terms of the p-th
input vector compared to the g-th input vector within the

same factor:
k ( Xp ’ Xq )

= sz’eXp(_%(xp X )T A%(XP X )) + (quaj

(13)

The hyperparameters in Eq. (13) are the signal variance
afz, the nugget term ¢?, and the matrix M, which is a
diagonal matrix of inverse length scales. Each input has
its own unique length scale, £, which gives the diagonal
matrix to be M = diag(£)™?. The nugget term in Eq.
(13) was included to help prevent the covariance matrix
from becoming ill-conditioned where s, =1 only if p=g.

All of the hyperparameters for the covariance function are
grouped together for the i-¢h factor as ¢; = {afz, ajz, t’}.

APPENDIX B: FF-model Predictions
The  FF-model predictive  distribution is
approximated as a Gaussian. The latent space posterior
predictions are denoted in matrix form as f1,* and fz,*,
which potentially correlated multivariate Gaussian
distributions. The mean of the FF-model prediction, H,,
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at the (m.,n. )—th prediction point requires computing the

expectation of the product of two latent variable factors:
K

E[H. (m.,n.)] = ZE [ (m k), (n k)] (14)
=l

Which for the k-th component is the product of two
correlated random variables:

E [F. (m..k)]E[Fy (n.k)]
+cov(F1,, (m*,k),Fz* (n*,k))

E[F,. (m. k)E. (n.,k)]= (15)

The FF-model approximate predictive variance is
more complex because it is also the variance of the
product of correlated random variables:

K
Var( m*n* =0§+2var s m*, 2*(m,k))

+22<Z COV " m*, )Fz*(”x k) 1*(’”* k) 2*(”*’]‘,))
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