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        Large-scale system codes for simulation of safety 
performance of nuclear plants may contain parameters 
whose values are not known very accurately. In order to 
be able to use the results of these simulation codes with 
confidence, it is important to learn how the uncertainty on 
the values of these parameters affects the output of the 
codes. New information from tests or operating 
experience is incorporated into safety codes by a process 
known as calibration, which reduces uncertainty in the 
output of the safety code, and thereby improves its 
support for decision-making.  Modern analysis 
capabilities afford very significant improvements on 
classical ways of doing calibration, and the work 
reported here implements some of those improvements. 
The key innovation has come from development of safety 
code surrogate model (code emulator) construction and 
prediction algorithms.  A surrogate is needed for 
calibration of plant-scale simulation codes because the 
multivariate nature of the problem (i.e., the need to adjust 
multiple uncertain parameters at once to fit multiple 
pieces of new information) calls for multiple evaluations 
of performance, which, for a computation-intensive 
model, makes calibration very computation-intensive.  
Use of a fast surrogate makes the calibration processes 
used here with Markov Chain Monte Carlo (MCMC) 
sampling feasible.  Moreover, most traditional surrogates 
do not provide uncertainty information along with their 
predictions, but the Gaussian Process (GP) based code 
surrogates used here do.  This improves the soundness of 
the code calibration process.  Results are demonstrated 
on a simplified scenario with data from Separate and 
Integral Effect Tests.  

 
I. INTRODUCTION 

Bayesian inference provides a mathematically and 
statistically rigorous framework for solving inverse 
problems, which would otherwise be ill-posed or 
analytically intractable.  Observational data can be used to 
calibrate computer model predictions and infer the 
numerous parameters within the computer model.  The 
resulting posterior distributions combine data with the 
expert judgment encoded within the prior distributions, 
thereby accounting for as much information as possible. 
However, implementing Bayesian calibration for safety 
analysis codes is very challenging.  Because the posterior 

distribution cannot be obtained analytically, approximate 
Bayesian inference with sampling is required.  Markov 
Chain Monte Carlo (MCMC) sampling algorithms are 
very powerful and have become increasingly widespread 
over the last decade1.  However, for even relatively “fast” 
computer models practical implementation of Bayesian 
inference with MCMC would simply take too long. A 
computer model that takes 1 second to run but needs 105 

MCMC samples would take over 27 hours to complete. 
Surrogate models (or emulators) that emulate the 
behavior of the input/output relationship of the computer 
model but are very computationally cheap allow MCMC 
sampling to be possible. An emulator that is 1000x faster 
than the computer model would need only 100 seconds to 
perform the same number of MCMC samples. As the 
computer model run time increases, the surrogate model 
becomes even more attractive because MCMC sampling 
would become impractically lengthy. 

Ultimately, the goal is not to simply update the state 
of knowledge about some parameter values, but to use the 
updated parameters to better inform predictions on some 
system response.  Observational data at various “levels” 
are therefore required.  The lowest level or Separate 
Effect Tests (SETs) deals with a specific type of physical 
phenomena, or physical process.  Calibrating a computer 
model with SET data calibrates the parameters associated 
with that specific physical process.  Higher levels or 
Integral Effect Tests (IETs), have multiple phenomena 
interacting together and are usually larger in scale.  
Calibrating a computer model with IET data alone may be 
quite difficult for many reasons, especially if the total 
number of parameters is very high.  Incorporating the 
information from the SET data into the IET calibration 
would be able to improve the overall IET calibration 
process.  The SET data should act to constrain the 
parameter distributions2.  The SET model could be 
calibrated first with the resulting posterior parameter 
distribution used to construct the prior for the IET model 
calibration. This work, however, calibrates the SET and 
IET models simultaneously.  The benefit of the 
simultaneous approach is that a simple prior distribution 
can be used. 

This work uses emulators to perform the 
simultaneous calibration of SET and IET models to their 
respective data.  The methodology is demonstrated on a 
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simple channel pressure drop scenario.  The SET deals 
with the specific pressure drop through one portion of the 
channel, namely the driver fuel bundle within the 
Experimental Breeder Reactor-II (EBR-II).  The EBR-II 
was a sodium cooled fast reactor that operated for 30 
years, performing a large number of important operational 
and safety analysis tests, before being shut down in 
199411,15.  The IET is the pressure drop over the entire 
channel including the form loss at the inlet nozzle.  
Therefore, even though this demonstration requires only 
simple computer models, it still maintains the ingredients 
of the SET/IET calibration process.  The IET model may 
not “know” the specific physics within the driver fuel 
bundle.  The SET data will provide that information 
during the simultaneous calibration. 

The rest of the paper is organized as follows: Section 
II discusses the specific type of emulator used in this 
work and how it is incorporated into the MCMC 
sampling, and the simultaneous calibration formulation.  
Section III describes the specific channel pressure drop 
SET and IET data and computer models, and Section IV 
provides the results.   
 
II. EMULATOR-BASED BAYESIAN MODEL 
CALIBRATION 

 
II.A Overview 

Surrogate models can be used to approximate long-
running computer codes to accomplish a variety of tasks.  
They are common in many engineering fields usually in 
the form of response surfaces and look-up tables5.  An 
emulator is a specific type of surrogate model that 
provides an estimate of its own uncertainty when making 
a prediction3.  An emulator is therefore a probabilistic 
response surface which is a very convenient approach 
because the emulator’s contribution to the total 
uncertainty can be included in the Bayesian calibration 
process.  An uncertain (noisy) emulator would therefore 
limit the parameter posterior precision, relative to 
calibrating the parameters using the long-running 
computer code itself.  

A commonly-used emulator is the Gaussian Process 
(GP) model3,4,5.  The GP model is a Bayesian non-
parametric, non-linear model, and has been used 
successfully as an emulator in many engineering fields5,6.  
Non-parametric refers to the fact that the GP model 
makes use of the training set in order to make a 
prediction.  The training set is the set of computer code 
runs used to build, or, as the name implies, train the 
emulator.  Parametric models, such as a best-fit line, 
never require the training set once the parameters within 
the model have been determined.  Although 
computationally easier to manage, parametric models are 
not as flexible, and require the analyst to pre-specify the 
input/output relationship.  Non-parametric statistical 
models, such as the GP, learn the input/output relationship 

from the training data directly.  The analyst must still pre-
specify certain aspects of the GP, such as if the output is 
expected to be smooth or not, but in general the training 
data dictates the functional form rather than the analyst.  
For a comprehensive review of GP models see Ref. 4 and 
References 3, 5, and 6 for applying GP models to 
Bayesian model calibration of long-running computer 
codes. 

However, the GP model has certain limitations. First, 
the GP does not scale very well to large amounts of data.  
The GP requires inversions of matrices that grow with 
increasing amounts of training data, which can be 
prohibitively slow for large amounts of data.  Predicting 
multiple outputs is also challenging for the same reason, 
since the size of the matrices grows very quickly.  
Determining the training points is also not a trivial task.  
Training points that are too close together in the 
parameter space may cause the matrix which is required 
to be inverted to be singular or at least ill-conditioned.   
Naively using as many training points as possible may not 
help the GP, which may view some or many of the 
training points as effectively providing no new 
information relative to other points.  This, too, can lead to 
the ill-conditioning issues.   

Many different approaches have been adopted to 
overcome these issues.  This work chose to adopt the 
Function Factorization with Gaussian Process (FFGP) 
Priors approach, a pattern-recognition style framework 
where the GP model is a piece of the overall statistical 
model7.  In the FFGP model, the training set is factored 
into simpler functions.  Each of the simpler functions is 
trained only by a fraction of the total training set.  The 
pattern-recognition setup is therefore a dimensionality 
reduction technique since several smaller GP models are 
faster to work with than one very large GP.  FFGP is a 
generalization of probabilistic Principal Component 
Analysis (PPCA) and Non-Negative Matrix Factorization 
(NMF)7.  FFGP is also referred to as Gaussian Process 
Factor Analysis (GPFA) by other authors in other fields8.        

 
II.B Function Factorization with Gaussian Process 
(FFGP) Priors Model 

 
II.B.1 Model Formulation 

The main idea of function factorization (FF) is to 
approximate a complicated function, 𝑦(𝐱), on a high-
dimensional space, 𝒳 , by the sum of products of a 
number of simpler functions, 𝑓!,!(𝐱!) , on lower 
dimensional subspaces, 𝒳 !.  The FF model is: 

( ) ( ),
1 1

K I

i k i
k i

y f
= =

≈ ∑∏x x 	
   (1) 

In Eq. (1), I is the number of factors – patterns – and K is 
the number of different components within each factor.  
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The terminology used here is consistent with Schmidt’s in 
Ref. 7.  The input, 𝐱 , is a vector with D-elements 
corresponding to the D-inputs to the problem.  Each 
factor’s input, 𝐱!, is a subset of the total input. 

The difference between factor and component is 
easier to see when Eq. (1) is rewritten in matrix form.  
The training output data, 𝐘, is a matrix of size 𝑀×𝑁, 
where 𝑁 is the number of cases run and 𝑀 is the number 
of points taken per case.  A case or case run denotes an 
evaluation of the computer model (the code) at a 
particular set of uncertain input parameter values.  If the 
problem of interest was the analysis of a transient in a 
nuclear reactor, 𝑀 could be the number of points taken in 
time per case run.  Factor 1 would be the time factor with 
𝐱! being a column vector of the 𝑀 points in time taken 
per case run.  If there was only 1 uncertain input 
parameter, 𝐱! would be a vector of the 𝑁 different values 
used to run the code 𝑁 times.  In general, either factor’s 
input could be a matrix; the vectors were used here to 
describe the format.  The entire set of training input 
values will be denoted as 𝐗 = {𝐱!, 𝐱!}, and the entire 
training dataset will be denoted as { },= X YD .  With 
only 1-component the FF-model becomes a matrix 
product of two vectors 𝐟!  and 𝐟! : T

1 2≈Y f f .  The 
superscript T denotes the transpose of the vector.  For 
more than one component, each factor is represented as a 
matrix instead of a vector.  The columns within each 
factor’s matrix correspond to the individual components 
within that factor.  For the 2-factor 2-component FF-
model the factor matrices are 𝐅! = 𝐟!,!! , 𝐟!,!!

!
 and 

𝐅! = 𝐟!,!! , 𝐟!,!!
!

.  The FF-model is then: 

T
1 2≈Y FF 	
   (2) 

The elements within each of the factor matrices are 
latent or hidden variables that must be learned from the 
training dataset.  Performing Bayesian inference on the 
FF-model requires specification of a likelihood function 
between the training output data and the FF-model as well 
as the prior specification on each factor matrix.  The 
likelihood function is assumed to a be a simple Gaussian 
likelihood with likelihood noise (variance) 𝜎!! and mean 
equal to the FF-model, 𝐅!𝐅!!.   

The prior on each component within each factor is 
specified as a GP prior.  Each GP prior is assumed to be a 
zero-mean GP with a squared-exponential (SE) 
covariance function.  The SE covariance function is 
widely used in standard GP models because it is 
mathmetically convenient (it is a Gaussian expression) 
and provides meaningful interpretation of the input/output 
relationship through a length scale hyperparameter.  Each 
input has its own unique length scale which represents 
how far the values need to move (along a particular axis) 

in each input space for the function values to become 
uncorrelated4. This formulation implements what is 
known as automatic relevance determination (ARD) due 
to the fact that the inverse length scale determines how 
relevant the particular input is.  If the length scale has a 
very large value, the covariance will become almost 
independent of that input.   

Each factor’s covariance matrix requires evaluating 
the covariance function for all of that factor’s input pair 
combinations.  The covariance matrix for factor 1 is 
therefore size 𝑀×𝑀  while the covariance matrix for 
factor 2 is size 𝑁×𝑁.  This immediately shows how the 
FFGP is a dimensionality reduction technique compared 
to standard GP models where the covariance matrix size 
for all training points would be size 𝑁𝑀×𝑁𝑀.  Each 
factor’s covariance matrix will be denoted as iK and the 
set of all covariance function hyperparameters for that 
factor are denoted as 𝜙! .  The hyperparameters are 
unknown and must be learned from the training data. 

The individual factors and components are all 
assumed independent a priori, therefore any covariance 
between components and factors results in the joint-
posterior due to the contribution of their interaction within 
the likelihood function.  All hyperparameters were also 
assumed to be independent and for simplicity were 
assumed to have improper “flat” hyperpriors.  If the set of 
the hyperparameters is denoted as Ξ , the improper  
hyperprior is ( ) 1p Ξ ∝ .  The probability model defining 
the joint-posterior distribution on all latent variables and 
hyperparameters is given in detail in Appendix A. 

 
II.B.2 Emulator Training 

As shown in Ref. 4, building standard GP models 
requires learning the various hyperparameters within the 
statistical model.  The FFGP emulator adds an additional 
layer to the training because hyperparameters as well as 
latent variables must be learned simultaneously to fully 
specify the emulator.   

Following Schmidt in Ref. 7, the Hamiltonian Monte 
Carlo (HMC) MCMC scheme was used to build the FFGP 
emulator.  The HMC is a very powerful MCMC algorithm 
that accounts for gradient information to suppress the 
randomness of a proposal.  See References 7, 9, and 16 
for detailed discussions on HMC.  The HMC algorithm is 
ideal for situations with a very large number of highly 
correlated variables, as is the case with sampling the 
latent variables presently.   

This work has several key differences from 
Schmidt’s training algorithm in Ref. 7, to simplify the 
implementation and increase the execution speed.  
Following Ch. 5 in Ref. 16, the latent variables and 
hyperparameter sampling were split into a “Gibbs-like” 
procedure.  A single iteration of the MCMC scheme first 
samples the latent variables given the hyperparameters, 
then samples the hyperparameters given the latent 
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variables.  The latent variables were sampled with HMC, 
but the hyperparameters can now be sampled from a 
simpler MCMC algorithm such as the Random-Walk-
Metropolis (RWM) sampler.  Although less efficient 
compared to the HMC scheme, the RWM performed 
adequately for this work.   

The next key difference relative to Schmidt’s training 
algorithm was to use an empirical Bayes approach and fix 
the hyperparameters as point estimates.  Fixing the 
hyperparameters as point estimates neglects their impact 
on the emulator uncertainty, however the empirical Bayes 
approach is far less computationally expensive and is 
commonly used with GP models4.  The empirical Bayes 
approach used here is slightly different than most because 
the hyperparameters are fixed at the end of MCMC 
sampling rather than determined by an optimization 
scheme.  The hyperparameter point estimates are denoted 
as Ξ.  Once fixed, the HMC algorithm is restarted, but 
now the hyperparameters are considered known. 

The end result of the HMC algorithm is a potentially 
very large number of samples of all of the latent variables.  
One last simplification relative to Schmidt’s setup was to 
summarize the latent variable posteriors as Gaussians.  
Their posterior means and covariance matrices were 
empirically estimated from the posterior samples.  All of 
the latent variables are denoted in stacked vector notation 
as f$ and the empirically estimated means of the latent 
variables are 𝔼 𝐟|𝒟, Ξ .   The empirically estimated 
covariance matrix of all the latent variables is cov 𝐟|𝒟, Ξ . 
As will be shown in the next section, this assumption 
greatly simplified making predictions with the FFGP 
emulator and ultimately provided a very useful 
approximation that aided the overall goal of emulator-
based Bayesian model calibration. 

  
II.B.3 Posterior Predictions 

Once the FFGP emulator is built, it can be used to 
make predictions at new input values, not used in the 
training set.  A prediction consists of two steps: first, 
make a prediction in the latent factor space then, combine 
the factor predictions together to make a prediction on the 
output directly.  A latent space posterior prediction is very 
straightforward following MVN theory7,8.  Predictions on 
the output space is made by assuming the FF-model 
predictive distribution is a Gaussian.  The FF-model 
predictive mean and variance are estimated using the laws 
of total expectation and variance with details given in 
Appendix B.  Due to the assumptions made to evaluate 
the posterior predictions analytically, the FF-model 
predictions are labeled as approximate posterior 
predictions.  

 
II.C Emulator-Modified Likelihood Function 

The FF-model approximate posterior predictive 
distribution is used to modify the likelihood function 

between the observational data and the uncertain input 
parameters.  The observational data will be assumed to in 
vector form labeled as oy .  The computer code prediction 
will also be labeled in vector form as ( ),cv θy x , with cvx  
denoting a set of control variables controlled by the 
experimenters3 while 𝜃  is the set of uncertain input 
parameters of interest.  The control variables can also be 
the time the data was taken if the experiment of interest is 
a transient. Typically, in Bayesian calibration of computer 
models, the computer code prediction is used as a (non-
linear) mapping function within the likelihood function. 
The posterior on 𝜃 is then given as: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   ( ) ( )( ) ( ),|| ,cv op p pθ θ θ∝o oy y y x 	
   (3) 

The subscript “o” on the control variable locations 
refers to the fact that the computer predictions are made at 
the same control variable “locations” as the observational 
data.  The likelihood function in Eq. (3) could however be 
written in a “hierarchical-like” fashion with the “total” 
likelihood broken into two parts as given in Eq. (4):  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   ( ) ( ) ( )( ) ( )| ,, | | cvp p pp θ θ θ∝o oy y y y y x 	
   (4) 

The first part on the right hand side of Eq. (4) is the 
likelihood between the observational data and the 
computer prediction ( )|p oy y  while the second is the 
likelihood between the computer prediction and the inputs
( )| ,cvp θy x .  The likelihood between the observational 

data and the computer prediction is simply the assumed 
likelihood model for the experiment.  This work assumes 
a simple factorizable Gaussian likelihood function with 
known measurement error (variance) 2σÚ , which is 
common in practice due to its simplicity.  The likelihood 
between the computer prediction and the inputs is much 
more complicated to specify however and is most likely 
impossible to analytically determine for safety analyses 
codes in the nuclear industry.  However, thanks to the 
emulator framework, this likelihood can be approximated 
by the emulator posterior predictive distribution.   

The joint posterior between the FF-model prediction 
*H  and the uncertain inputs 𝜃 is: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
( )
( ) ( ) { }( )
*

* * ,

ˆ, | , ,

ˆ| | , , ,cv o

p

p p p

θ

θ θ

Ξ

∝ Ξ

o

o

H y

y H H x

D

D
	
   (5) 

By assuming the FF-model prediction is Gaussian, 
the FF-model prediction can be integrated out when 
likelihood between the observational data and computer 
prediction is also Gaussian. This leads to the emulator-
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modified calibration process where the emulator-modified 
likelihood function relates the uncertain inputs directly to 
the observational data.  The uncertain input posterior after 
the FF-model posterior prediction has been integrated out 
is: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   ( ) { }( ) ( ),
ˆ ˆ| , , | , , ,cv op p pθ θ θΞ ∝ Ξo oy y xD D 	
   (6) 

The FFGP-modified likelihood function is used in 
place of the conventional likelihood function in a MCMC 
sampling scheme.  The emulator-based Bayesian model 
calibration process is summarized by a flowchart depicted 
in Fig. 1 below.  

 
Fig. 1. Emulator-based Bayesian model calibration flow 
chart.  
II.D Emulator-Based Simultaneous Bayesian 
Calibration of Multiple Models 

In order to calibrate multiple models simultaneously, 
the emulator-modified likelihood function needs to be 
modified slightly.  In general terms, the total number of 
models will be denoted as 𝑍  with the total set of 
observational data for all 𝑍  experiments labeled as 
𝕐𝐨 = 𝐲𝐨,! !

!
 with corresponding computer model 

predictions 𝕐 = 𝐲! !
!.  These 𝑍 models could be allowed 

to be correlated, however, this work assumed that the 
models are uncorrelated.  The complete likelihood 
structure between all models simply takes a factorized 
form: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   ( ) ( ),
1

||
Z

z z
z

p p
=

=∏O oy yY Y 	
   (7) 

The convenience of this assumption is that each of 
the 𝑍  models individual likelihood functions can be 
approximated by that specific model’s own emulator-
modified likelihood function.   

 
III. CHANNEL PRESSURE DROP 
DEMONSTRATION 

 
III.A Overview 

To demonstrate simultaneous emulator-based 
calibration, a flow channel pressure calibration scenario is 
presented.  This was a piece of a larger emulator-based 
calibration of RELAP5 as discussed in Ref. 10.  There are 
two models, a SET model of a bundle-specific pressure 
drop through the driver fuel region of the core in EBR-II.  
The driver fuel region is the middle portion of the entire 
core channel which sandwiches the EBR-II driver fuel 
between the upper and lower blanket11.  The core channel 
IET model therefore includes the lower blanket, driver 
fuel, and upper blanket, as well as the core channel inlet 
nozzle form. The SET model therefore informs one 
specific portion of the IET model.   

The experimental data are values of pressure drop at 
various mass flow rates through the channel.  The control 
variable is therefore the inlet mass flow rate rather than 
time, which was the example used throughout the 
discussion of the FFGP emulator. 

Both the SET and IET models are generated using 
RELAP5.  The set of uncertain parameters involve the 
RELAP5 user-defined friction factor correlation which 
allows specifying turbulent coefficients, A and B, the 
turbulent exponent, C and the laminar flow shape factor 

SΦ
17.  The turbulent user defined friction factor 

correlation is: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (Re)T Cf A B −= + 	
   (8) 

 The leading coefficient A was pre-set to be zero and 
was considered known.  In the laminar flow regime, 
friction factor correlation is: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   64
Re

L

S

f =
Φ

	
   (9) 

  In Eqs. (8) and (9), Re is the Reynolds number and 
the friction factor is denoted as f (not to be confused with 
the emulator latent variables).  Within the transition flow 
regime, RELAP5 interpolates between the turbulent and 
laminar friction factors17.  The user defined friction factor 
inputs were specified for each region within the channel.  
The upper and lower blankets share the same set of 
inputs, while the driver fuel region has its own set of B, C, 
and SΦ values.  Including the core channel inlet nozzle 
loss coefficient, the total number of uncertain input 
parameters to the IET RELAP5 model is 7 while the SET 
RELAP5 model has only 3 uncertain inputs. 

 
III.B Experiment Descriptions 

Although a lot of EBR-II data exist, the bundle-
specific SET is a “pseudo” SET.  The observational data 
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are in fact generated from an empirical correlation rather 
than coming from a true experiment.  Therefore, the SET 
can be viewed as updating the various uncertain inputs in 
the RELAP5 user-defined friction factor correlation to 
match physical phenomena not present in the default list 
of friction factor correlations within RELAP5.  EBR-II 
had a tight light wire-wrapped bundle within the driver 
fuel region11.  An appropriate friction factor correlation 
for this design is the Cheng & Todreas wire-wrapped 
bundle average friction factor correlation12.  Once the 
Cheng & Todreas friction factor is computed for the 
desired mass flow rate, the pressure drop over the length 
of the driver fuel bundle is computed.  A total of 25 
“pseudo” data points were used. 

For the core channel IET data, the data are taken 
from Gapalakrishnan & Gillette (1973) (Ref. 13).  The 
core channel pressure drop includes the effect of the inlet 
nozzle form loss.  It is difficult to determine whether  the 
data presented in Ref. 13 are real measured experimental 
data and not simply the results of an empirical correlation 
derived from scaled water tests.  However, the present 
IET and SET model calibration demonstration is 
illustrative of the entire process, whether the core channel 
pressure drop is real or synthetic.  Fig. 2 below shows the 
data taken directly from Ref. 13.  Since the the pressure 
drop are read off of Fig. 2, only 6 data points were taken 
for the IET “pseudo” data. 

 

 
Fig. 2. Core Channel IET Pressure Drop Data from Ref. 
13. 

 
III.C RELAP5 Model Descriptions 

The SET and IET RELAP5 models are very similar.  
Both are simply channels built using 1-D pipe RELAP 
components.  The SET model consists of one pipe 
channel to represent the driver fuel bundle.  Single 
volumes are connected at the inlet and outlet of the driver 
fuel channel which are connected to the inlet mass flow 
and outlet pressure boundary conditions (BCs).  Those 
single volumes have wall friction turned off and are used 
to calculate the total pressure drop across the pipe 
component of interest.  Fig. 3 provides an illustration of 
the RELAP5 SET model. 

 
Fig. 3. RELAP5 SET Model Illustration. 

The core channel IET RELAP5 model is very similar 
to the SET model in Fig. 3.  Two additional 1-D pipe 
components were attached to the driver fuel pipe 
component, one to represent the lower blanket and the 
other to represent the upper blanket.  Additionally, the 
inlet nozzle loss coefficient is added to the junction that 
connects volume 200 in Fig. 3 to the lower blanket pipe 
component.  Both the SET and IET RELAP5 models are 
steady-state models. 

 
IV. RESULTS 

All of the uncertain parameters are given uniform 
prior distributions between their assumed minimum and 
maximum values.  In general, the choice of prior for 
epistemically-uncertain variables is controversial, but in 
the present application, it will be seen that some of the 
variables are determined extremely well by the data alone. 
The min/max values were assumed to be multiples of the 
McAdams friction factor correlation coefficient and 
exponent for B and C and a multiple of 1 for the laminar 
shape factor.  The core channel inlet nozzle loss 
coefficient bounding values were determined by varying 
its value from a set of trial runs. 

All of the posterior input parameter results will be 
shown on a scaled basis.  The scaled value of 0 
corresponds to the prior minimum bound while the scaled 
value of 1 is the prior maximum bound.  In the scaled 
values the priors were all uniform between 0 and 1.   

The uniform prior bounding values were used as the 
bounding values to generate the training sets.  Therefore it 
was necessary to prevent the MCMC sampling scheme 
from jumping outside of the training set bounding values. 
Future work will improve on the treatment of cases where 
the search “wants” to go outside the prior assessed 
variable ranges. 

 
IV.A Bundle-Specific SET Calibration Results 

The SET RELAP5 model has 3 uncertain input 
parameters.  Along with the control variable – the inlet 
mass flow rate - a total of 4 inputs exist to the SET 
RELAP5 model.  A general rule of thumb in building a 
standard GP model is to use 10 training points per input3.  
Even though the FFGP emulator is being used and not the 
standard GP emulator, an additional 10 case runs were 
conservatively added giving a total of 50 case runs.  The 
specific uncertain input parameter values were chosen 
using Latin Hypercube Sampling (LHS).  Fifteen control 
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variable locations were used for each case.  Thus, with 50 
cases and 15 control variable locations a total of 750 
RELAP runs were made.  The training dataset is shown in 
grey along with the Cheng & Todreas “pseudo” data as 
red error bars in Fig. 4.  The “pseudo” data was assumed 
to have a measurement error such that 95% of the 
probability was covered by +33% around the mean data 
value of the first data point.  This error (variance) was 
then assumed constant for each of the 25 data points.  The 
error bars are very small in Fig. 4.  The pressure drop 
across the bundle is plotted against the scaled inlet mass 
flow rate, where 1 corresponds to the max inlet mass flow 
rate.  Each RELAP5 run took roughly 2 seconds to 
complete, thus it took about 25 minutes to build the entire 
FFGP training set. However, all of the RELAP5 runs 
were made in series for simplicity.  The training set could 
be run in parallel, which and would significantly shorten 
the training set build time.  

 
Fig. 4. SET RELAP5 Model Training Set. 

A total of 3 types of FFGP emulators were built, the 
2-factor 1-component, 2-component and 3-component 
emulators.  The FFGP training algorithm used a total of 

53 10×  samples, but as described in Sect. II.B.2 the 
Gibbs-like portion of the sampling was discarded after the 
hyperparameters were fixed.  The Gibbs-like portion used 

510 samples; then, after restarting, the next 510 samples 
were treated as “burn-in” on the training latent variable 
samples.  Therefore, only 510 samples were stored as the 
final posterior training latent variable samples used to 
estimate the empirical mean and covariance matrix.  The 
three FFGP emulator types were trained on the same 
personal computer.  The 1-component FFGP emulator 
took roughly 1.5 minutes to train while the 3-component 
FFGP emulator took 2.3 minutes to train.  Building the 
emulators therefore adds very little computational 
overhead compared to simply generating the training set.  

Only the 2-factor, 2-component FFGP emulator 
calibrated results will be shown.  The FFGP-modified 
likelihood function was incorporated into an Adaptive 
Metropolis (AM) MCMC algorithm14 and a total of 510
samples were drawn.  The calibrated posterior predictions 
are shown in Fig. 5 while the calibrated scaled uncertain 
input histograms are shown in Fig. 6.  Because the 

“pseudo” data were so precise, the calibrated posterior 
predictions have very little uncertainty.  The scaled 
parameter histograms show the prior histograms in green 
and the posterior histograms in blue.  It is interesting that 
the posterior on C, the exponent acting on the friction 
factor correlation, has its uncertainty shrunk around the 
prior mean (the McAdams value), while the posterior on 
B, the coefficient on the Reynolds number is shifted 
closer to the prior maximum bounding value. This is the 
situation to be dealt with in the future work previously 
mentioned. 

Table 1 shows the computational times for all 3 
FFGP-based Bayesian calibration schemes.  It is very 
clear that the emulator is much faster to evaluate 
compared to the RELAP5 model.  However the effective 
number of RELAP5 runs shown in the last column of 
Table 1 assumes the 2 second run time per case.  A single 
MCMC run that compares all 25 “pseudo” data points 
would therefore require 25 separate RELAP5 runs.  If 
those could be run in parallel, then the slowest FFGP 
emulator is over 3000x faster than if RELAP5 was used 
directly for MCMC sampling.  However, if the RELAP5 
calculations had to be made in series a single MCMC 
iteration would take roughly 50 seconds to complete.  The 
slowest FFGP emulator would be over 75000x faster than 
this in-series RELAP5-based approach. 
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Fig. 5. SET calibrated posterior predictions relative to the 
“pseudo” data. 

 
Fig. 6. SET only calibrated posterior histograms 

Table 1. SET emulator computational times. 

FFGP type 

Total emulator-based 
calibration time 

(including time to 
generate training set) 

[min] 

Effective 
number of 

RELAP5 runs 
in the same 
amount of 

time 
1-component 2.22 (27.22) 66 (816) 
2-component 2.89 (27.89) 86 (836) 
3-component 3.36 (28.36) 100 (850) 
 
IV.B Core Channel IET Calibration Results 

The same process was followed for the core channel 
IET RELAP5 calibration.  However, since the IET model 
has 7 uncertain inputs, a total of 100 case runs were used.  
Fifteen control variable locations (number of inlet mass 
flow rate values per case run) were maintained.  A single 
case run now took roughly 3 seconds, so it took roughly 
75 minutes to generate the entire training set, which is 
shown in Fig. 7.   

 
Fig. 7. IET RELAP5 Model Training Set 

Four emulator types were trained for the IET model, 
2-factor, 1-component through 4-components.  Each was 
built following the same process as the SET FFGP 
emulators.   Training took between 2.2 and 3.6 minutes 
for the 4 FFGP emulators.  The 2-factor, 3-component 
FFGP based calibration results are shown in Fig. 8 and 
Fig. 9.  The effect of the emulator uncertainty is easier to 
see in Fig. 8 than Fig. 5.  The blue lines are the 5th, 25th, 
50th, 75th and 95th quantile lines of the calibrated posterior 
predictive mean.  The green band is the total calibrated 
predictive uncertainty band, accounting for the emulator’s 
contribution to the predictive variance.  The edge of the 
green band is +2 standard deviations around the mean of 
the predictive means.  The blue lines therefore represent 
what the emulator thinks the computer model (RELAP5) 
would predict.  The further the edge of the green band 
gets from the last of the blue lines represents the emulator 
contributing a large amount of uncertainty to the 
calibration process.  

Just as in the SET calibration process, the FFGP 
emulators added very little computational overhead 
compared to simply generating the training set.  The total 
emulator-based calibration time excluding generating the 
training set was between 1.5 minutes and 4 minutes for 
the IET FFGP emulators.  Generating the training set 
(running RELAP5) therefore took roughly 95% of the 
total computational run time for the slowest FFGP 
emulator.  

The important part of the IET FFGP-based 
calibration results, however, is that top row of posterior 
histograms in Fig. 9 are different from the three posterior 
histograms shown in Fig. 6.  These are the same three 
uncertain input parameters but they have vastly different 
posterior distributions.  The IET model by itself has no 
other piece of information to suggest that any of the 
posterior values are unphysical.  The SET data must 
therefore be included in the calibration process to provide 
that information.   
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Fig. 8. IET calibrated posterior predictions relative to the 
“pseudo” data. 

 

 
Fig. 9. IET only calibrated scaled posterior histograms. 

IV.C Simultaneous Calibration Results 
The 2-factor, 2-component FFGP SET emulator and 

the 2-factor, 3-component FFGP IET emulator were used 
together to simultaneously calibrate the 7 uncertain 
parameters.  A total of 52 10× MCMC samples were 
drawn with the first half discarded as burn-in.  The 
simultaneous calibration posterior histograms are shown 
in Fig. 10.  The results are just as expected: the two 
dominant parameters from the SET model, the Reynolds 
number coefficient and exponent in the friction factor 
correlation are nearly identical to their corresponding 
SET-only calibration results.  The inlet nozzle loss 
posterior is likewise similar to the IET-only calibration 
result.  The blanket friction parameters (the middle row of 
histograms in Fig. 10 are also similar to the IET-only 
calibration results in Fig. 9.  Those input parameters do 
not influence the SET model so it makes sense that 
including the SET model has minimal impact on their 
posterior, since the inlet nozzle loss coefficient 
completely dominates the core channel pressure drop. 

A single MCMC iteration was only slightly slower 
than the sum of the individual MCMC iterations giving 
the calibration time to be roughly 4.67 minutes.  The 
computational expense is dominated by the generation of 
the training sets.  This work for simplicity generated the 

training sets in series, which took 25 minutes and 75 
minutes for the SET and IET RELAP5 models, 
respectively.  Even if all of the RELAP5 models could be 
run in parallel, the computational time is limited by the 
time to run a single IET RELAP5 model case, which is 
roughly 3 seconds.  Simultaneous calibration with 52 10×
MCMC samples would have then taken roughly 7 days to 
complete.  The emulator-based simultaneous calibration 
with both training sets generated in series took less than 3 
hours to complete.      
 

 
Fig. 10. Simultaneous calibration scaled posterior 
histograms. 

 
V. SUMMARY AND CONCLUSIONS 

Although conceptually simple, this channel pressure 
drop scenario illustrated the steps involved in performing 
emulator-based model calibration in a practical situation.  
Multiple computer models were synthesized with multiple 
experimental data to calibrate the uncertain input 
parameters within the computer models.  Without the 
emulators, MCMC would simply not be a 
computationally feasible option, as seen in the execution 
time differences between the emulator and the RELAP5 
models.  

It is difficult to display the joint posterior distribution 
of the variables, but it is important to remember that it is 
this joint posterior that needs to be used to compare the 
calibration results with the input data, as done in Figs. 5 
and 8. Flat priors were used for the uncertain variables, 
but even so, some of the variables were very well 
determined by the data. If it is necessary to reduce 
uncertainty in the other variables, it must be done in some 
other way.  

 
APPENDIX A: FFGP Probability Model 

The complete joint posterior between all latent 
variables and hyperparameters for a 2-factor 1-component 
FFGP emulator is: 
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The joint posterior in Eq. (10) is specifically for the 
2-factor 1-component FFGP emulator.  The  1-component 
case was shown to simplify the notation, but the joint 
posterior for cases with more components is 
straightforward to write out.   

 
The log-likelihood function (up to a normalizing 

constant) between the training output data and the FF-
model is: 

( )21 2

2T 2
1 22

log |

1 l g

, ,

o
22

n

nF
n

p

NM

σ

σ
σ

∝ − − −

Y F F

Y FF
	
   (11) 

In Eq. (11) 
2

F
⋅  denotes the Frobenius norm.  The i-th 

factor’s k-th component vector log prior is therefore 
written (up to a normalizing constant) as: 
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The covariance matrix requires evaluating covariance 
function at each input pair. The SE covariance function 
used in this work is written below in terms of the p-th 
input vector compared to the q-th input vector within the 
same factor: 
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The hyperparameters in Eq. (13) are the signal variance 
𝜎!!, the nugget term 𝜎!!, and the matrix 𝑀, which is a 
diagonal matrix of inverse length scales.  Each input has 
its own unique length scale, ℓ𝓁, which gives the diagonal 
matrix to be 𝑀 = 𝑑𝑖𝑎𝑔 𝓵 !!.  The nugget term in Eq. 
(13) was included to help prevent the covariance matrix 
from becoming ill-conditioned where 1pqδ =  only if p=q.  
All of the hyperparameters for the covariance function are 
grouped together for the i-th factor as 𝜙! = 𝜎!!,𝜎!!, 𝓵 .  

 
APPENDIX B: FF-model Predictions 

 The FF-model predictive distribution is 
approximated as a Gaussian.  The latent space posterior 
predictions are denoted in matrix form as 𝐅!,∗  and  𝐅!,∗, 
which potentially correlated multivariate Gaussian 
distributions.  The mean of the FF-model prediction, *H , 

at the ( )* *,m n -th prediction point requires computing the 
expectation of the product of two latent variable factors: 
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Which for the k-th component is the product of two 
correlated random variables: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

( ) ( )
( ) ( )

( ) ( )( )
1* * 2* *

1* * 2* *
1* * 2* *

, ,
, ,

cov , , ,

m k n k
m k n k

m k n k

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
=⎡ ⎤⎣ ⎦

+

F F
F F

F F

E E
E 	
  

(15) 

The FF-model approximate predictive variance is 
more complex because it is also the variance of the 
product of correlated random variables: 
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