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Abstract. A comparative study of two classes of third-order implicit time integration
schemes is presented for a third-order hierarchical WENO reconstructed discontin-
uous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes
equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ES-
DIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differ-
ential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme,
a remarkable feature of the ROW schemes is that, they only require one approximate
Jacobian matrix calculation every time step, thus considerably reducing the overall
computational cost. A variety of test cases, ranging from inviscid flows to DNS of
turbulent flows, are presented to assess the performance of these schemes. Numerical
experiments demonstrate that the third-order ROW scheme for the DAEs of index-2
can not only achieve the designed formal order of temporal convergence accuracy in
a benchmark test, but also require significantly less computing time than its ESDIRK3
counterpart to converge to the same level of discretization errors in all of the flow
simulations in this study, indicating that the ROW methods provide an attractive al-
ternative for the higher-order time-accurate integration of the unsteady compressible
Navier-Stokes equations.
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1 Introduction

The discontinuous Galerkin (DG) methods, originally introduced for solving the neutron
transport by Reed and Hill [1], have become popular for the solution of systems of con-
servation laws in recent decades. Nowadays, they are widely used in computational fluid
dynamics (CFD), computational acoustics, and computational magneto-hydrodynamics.
A comprehensive overview of the DG methods can be found in [2]. The DG methods
combine the attractive features of both the finite element (FE) and finite volume (FV)
methods, and thus are especially advantageous in solving the hyperbolic-type system of
equations in terms of solution accuracy [3–6], treatment of non-conforming meshes [7],
and implementation of the hp-adaptivity [8]. However, the DG methods also have a num-
ber of weaknesses that have yet to be addressed, before they can be used for problems
of practical interest. In particular, how to reduce the high computational costs and how
to develop more efficient time integration methods are two of the most long-standing
research challenges.

In order to reduce the high costs associated to the DG methods, Dumbser et al. [9–11]
introduced a new family of so-called reconstructed DG, termed PnPm schemes and re-
ferred to as rDG (PnPm) in this paper. Pn indicates that a piecewise polynomial of degree
of n is used to represent the underlying DG solution, and Pm represents a polynomial
solution of degree of m (m ≥ n) that is reconstructed from the underlying Pn polyno-
mial and used to compute the fluxes. The PnPm schemes can be constructed based
on a few different algorithms, e.g., the recovery approach [12], the reconstruction ap-
proach [13,14], and the Gauss-Green approach [15,16], all of which were proved to deliver
the designed grid convergence of O(hm+1) [17]. Indeed, implicit methods can especially
benefit from the use of rDG (PnPm) methods as the costs can be substantially reduced in
two aspects [18, 19]. Firstly, fewer spatial integration points are required for evaluating
the residual vector and Jacobian matrix. For instance, the third-order rDG (P1P2) only
needs 4 points for triangular boundary integral whereas the equivalent DG (P2) requires
7. Secondly, the Jacobian matrix of rDG (PnPm) is based on the underlying DG (Pn), and
thus requires much less storage than the equivalent DG (Pm). For example, the memory
needed for the diagonal part of the Jacobian matrix of rDG (P1P2) is 400 word versus
2500 needed by DG (P2) for the 3D Navier-Stokes equations.

The spatial discretization of the compressible Navier-Stokes equations leads to a sys-
tem of Ordinary Differential Equations (ODEs). Significant progress has also been made
in developing efficient higher-order implicit time integration methods for such system
in order to reduce the temporal discretization error incurred from the use of lower-order
time integration methods. Bijl et al. [20] introduced ESDIRK schemes for the finite vol-
ume solutions to the Navier-Stokes equations. Later on, Wang and Mavriplis [21] ex-
tended the ESDIRK schemes to solve the compressible Euler equations using a high-order
p-multigrid DG method. Xia et al. [22] also used ESDIRK for the time accurate solu-
tions of the 3D compressible Navier-Stokes equations in the context of the reconstructed
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P1P2 DG methods. They all have concluded that the higher-order ESDIRK schemes are
more efficient than those second-order time integration methods to achieve the solu-
tions for the same level of temporal accuracy. However, ESDIRK method has to solve
nonlinear systems, increasing the computational cost. Therefore, recently, a family of
Rosenbrock-type time integration schemes for the unsteady flow simulations was exten-
sively explored, replacing non-linear systems with a sequence of linear systems. Some
effective Rosenbrock-type methods were designed to solve the DAEs (Differential Alge-
braic Equations) of Index-1 and Index-2. The DAEs originate in the modeling of various
physical or chemical phenomena. They are classified by their differential index, that is,
the minimum number of times that a DAEs system must be differentiated in order to
become an ODEs system. For instance, the discrete incompressible Stokes, Oseen, and
Navier-Stokes equations belong to index-2 DAEs systems. Unlike the incompressible
Navier-Stokes equations, there is no algebraic constraint for the compressible Navier-
Stokes equations, indicating that the Rosenbrock-type methods, originally designed for
the DAEs, could also be introduced to advance the unsteady compressible Navier-Stokes
equations in time. However, a major disadvantage associated to the standard Rosenbrock
method is that it requires the use of exact Jacobians in order to achieve formal order of
temporal convergence, which is usually too demanding in practice. On the other hand,
the Rosenbrock-Wanner method, abbreviated as ROW in this paper, does not have such
prohibitive restriction, and would only need approximate Jacobians.

Bassi et al. [23] investigated the use of Rosenbrock-type schemes to integrate in time
high order DG discretizations of Navier-Stokes equations. They applied the best perform-
ing Rosenbrock schemes to the Implicit Large Eddy Simulation of the transitional flow
around SD7003 airfoil. Blom et al. [24] compared the time adaptive ESDIRK and ROW
method in the context of finite volume discretizations of the compressible Navier-Stokes
equations. They concluded that the ROW scheme, ROS34PW2 (34 stands for order 3 with
4 stages, W for W-method and 2 is an internal number), were suitable candidates for en-
gineering accuracies. Birken et al. [25] also compared the performance of the adaptive
time integration in the context of discontinuous Galerkin methods for the 3D unsteady
compressible Navier-Stokes equations.

The objective of this paper is to present a set of efficient third-order ROW schemes
for Index-2 DAEs [26, 27] to the solution of the ODEs in the context of a spatially third-
order rDG (P1P2) method. And we also make comparative study between the ROW for
index-1, ROW for index-2 and ESDIRK3 schemes in the context of rDG method through
a variety of test problems.

The outline of the rest of this paper is organized as follows. The governing equations
are described in Section 2. The developed reconstructed discontinuous Galerkin method
is presented in Section 3. The Rosenbrock temporal discretization schemes are then de-
scribed in detail in Section 4. The numerical examples are presented in Section 5. Finally,
the concluding remarks are given in Section 6.
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2 Governing equations

The Navier-Stokes equations governing unsteady compressible viscous flows can be ex-
pressed as

∂U(x,t)

∂t
+

∂Fk(U(x,t))

∂xk
=

∂Gk(U(x,t))

∂xk
, (2.1)

where the summation convention has been used. The conservative variable vector U,
advective (inviscid) flux vector F, and viscous flux vector G are defined by

U=





ρ
ρui

ρe



, Fj =





ρuj

ρuiuj+pδij

uj(ρe+p)



, Gj =





0
δij

ui(δij+qj)



. (2.2)

Here ρ, p, and e denote the density, pressure, and specific total energy of the fluid, re-
spectively, and ui is the velocity of the flow in the coordinate direction. The pressure can
be computed from the equation of state

p=(γ−1)ρ
(

e−
1

2
ujuj

)

, (2.3)

which is valid for perfect gas, where γ is the ratio of the specific heats. The components
of the viscous stress tensor σij and the heat flux qj are given by

σij =µ
(∂ui

∂xj
+

∂uj

∂xi

)

−
2

3
µ

∂uk

∂xk
δij, qj =

1

γ−1

µ

Pr

∂T

∂xj
. (2.4)

In the above equations, T is the temperature of the fluid, Pr the laminar Prandtl number,
which is taken as 0.7 for air. µ represents the molecular viscosity, which is determined
through Sutherland’s law

µ

µ0
=
( T

T0

)
3
2 T0+S

T+S
.

µ0 denotes the viscosity at the reference temperature T0, and S is a constant which for are
assumes the value S=110K. The temperature of the fluid T is given by

T=γ
p

ρ
.

3 DG formulation for Navier-Stokes equations

The governing equation (2.1) is discretized using a discontinuous Galerkin finite element
formulation. To formulate the discontinuous Galerkin method, we first introduce the fol-
lowing weak formulation, which is obtained by multiplying the above conservation law
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by a test function W, integrating over the domain Ω, and then performing an integration
by parts,

∫

Ω

∂U

∂t
WdΩ+

∫

Γ
FknkWdΓ−

∫

Ω
Fk

∂W

∂xk
dΩ=

∫

Γ
GknkdΓ−

∫

Ω
Gk

∂W

∂xk
dΩ, ∀W∈V, (3.1)

where Γ (= ∂Ω) denotes the boundary of Ω, and nj the unit outward normal vector to
the boundary. We assume that the domain Ω is subdivided into a collection of non-
overlapping elements Ωe. We introduce the following broken Sobolev space V

p
h

V
p
h ={vh ∈ [L2(Ω)]m : vh|Ωe

∈ [Vm
p ] ∀Ωe ∈Ω}, (3.2)

which consists of discontinuous vector-values polynomial functions of degree p, and
where m is the dimension of the unknown vector and

V
p
h = span

{

∏xαi
i : 0≤α≤ p, 0≤ i≤d

}

, (3.3)

where α denotes a multi-index and d is the dimension of space. Then, we can obtain the
following semi-discrete form by applying weak formulation on each element Ωe, find
Uh∈V

p
h , such as

d

dt

∫

Ωe

UhWhdΩ+
∫

Γe

Fk(Uh)nkWhdΓ−
∫

Ωe

Fk(Uh)
∂Wh

∂xk
dΩ

=
∫

Γe

Gk(Uh)nkWhdΓ−
∫

Ωe

Gk(Uh)
∂Wh

∂xk
dΩ, ∀Wh ∈V

p
h , (3.4)

where Uh and Wh represent the finite element approximations to the analytical solution
U and the test function W respectively, and they are approximated by a piecewise poly-
nomial function of degrees p, which are discontinuous at the cell interfaces. Assume that
B is the basis of polynomial function of degrees p, this is then equivalent to the following
system of N equations,

d

dt

∫

Ωe

UhBidΩ+
∫

Γe

H
(inv)
k (UL

h ,UR
h ,nk)BidΓ−

∫

Ωe

Fk(Uh)
∂Bi

∂xk
dΩ

=
∫

Γe

H
(vis)
k (UL

h ,∇UL
h ,UR

h ,∇UR
h ,nk)BidΓ−

∫

Ωe

Gk(Uh)
∂Bi

∂xk
dΩ, 1≤ i≤N, (3.5)

where N is the dimension of the polynomial space. The inviscid and viscous flux func-

tion appearing in Eq. (3.4) is replaced by numerical flux function H
(inv)
k and H

(vis)
k , re-

spectively, where UL
h and UR

h are the solution polynomial at the left and right states of the
cell interface.

This scheme is called discontinuous Galerkin method of degree p, or in short nota-
tion DG(P) method. In the DG framework, numerical polynomial solutions Uh in each
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element are expressed using either standard Lagrange finite element or hierarchical node-
based basis as below

Uh=
N

∑
i

Ui(t)Bi(x), (3.6)

where Bi are the finite element basis functions. In the present work, the piecewise polyno-
mial solutions are represented using a linear Taylor series expansion at the cell centroid,
which can be expressed as a combination of cell-averaged variables and their gradients
at the cell centers regardless of the element shapes. As a result, the very same numerical
polynomial solutions are used for arbitrary shapes of elements, which can be triangle,
quadrilateral, and polygon in 2D, and tetrahedron, pyramid, prism, and hexahedron in
3D [28]. This makes the implementation of the so-called WENO (P1P2) reconstruction
straightforward [29, 30]. In this scheme, a quadratic polynomial P2 solution is first ob-
tained via a least-squares curvature reconstruction from the underlying linear P1 solu-
tion in each cell and used for evaluating the viscous fluxes. The final P2 solution is then
obtained through a WENO reconstruction on the curvatures in each cell, and used for
evaluating the inviscid fluxes. Note that as previous investigation indicates in [29], al-
though the least-squares reconstructed P1P2 method has been successfully used to solve
the 2D compressible Euler equations on arbitrary grids [31], yet when used to solve the
3D compressible Euler equations on tetrahedral grids, it suffers from the so-called linear
instability that is also observed in the second-order cell-centered finite volume methods
[33]. Such linear instability can occur even when the 3D linear equations are being solved
for smooth problems on tetrahedral grids. Indeed, this linear instability is attributed to
the fact that the reconstruction stencils only involve von Neumann neighborhood, that
is, adjacent face-neighboring cells [32]. The linear stability can be achieved using ex-
tended stencils, which will unfortunately sacrifice the compact- ness of the underlying
DG methods. Alternatively, the non-linear ENO and WENO approaches can be used to
achieve both the linear and non-linear stability. It has been demonstrated that this WENO
(P1P2) scheme is able to deliver the designed third-order spatial accuracy for steady-state
flow problems without much extra cost in computing time and storage than the underly-
ing second-order DG (P1) method, and also eliminate linear instability on unstructured
tetrahedral grids [29]. In addition, it is necessary to point out that although the standard
P2 method is in general more accurate than the reconstruction based P2 method in terms
of spatial discretization errors, both the methods are able to achieve a third-order grid
convergence rate [33].

4 Rosenbrock-Wanner temporal discretization

The P1P2 reconstructed discontinuous Galerkin approximation to the Navier-Stokes equa-
tions will lead to the following semi-discrete system of non-linear equations:

M
dU

dt
=R(U), (4.1)
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where M denotes the mass matrix, U the global solution vector containing Ne×Nq×
NP1

d degrees of freedom (DoFs) for the underlying discontinuous Galerkin P1 solution
(Ne is the number of elements, Nq the number of equations, NP1

d the number of degrees
of freedom for DG (P1) ), and R the residual vector. In the case of rDG (P1P2) for the
3D Navier-Stokes equations on tetrahedral elements, Nq = 5, NP1

d = 4, and NP2
d = 10. As

we already stressed, one of the most advantageous features of rDG method is the low
memory needed for storing the Jacobians when using implicit time integration methods,
e.g., (5×4)2 for rDG (P1P2) versus (5×10)2 for DG (P2) for a single elemental diagonal
matrix.

Rosenbrock-type schemes are part of a class of linearly implicit Runge-Kutta (IRK)
time integration methods. In general, the formula of an s-stage Rosenbrock-type scheme
to integrate Eq. (4.1) in time can be written as

(I−∆tγiiJ)U
(i)=∆tR(Un+

i−1

∑
j=1

αijU
(j))+∆tJ

i−1

∑
j=1

γijU
(j), i=1,··· ,s. (4.2)

As shown in Eq. (4.2), the ROW methods are derived by linearizing a diagonally IRK
(DIRK) scheme, and replace the non-linear systems with a sequence of linear systems, in
which some attractive properties in terms of stability are lost. However, as a trade-off, the
computational costs per time step are reduced in Eq. (4.2): s linear equation systems with
a constant coefficient matrix and different right-hand-sides need to be solved, instead of
s non-linear systems. They can be easily used along with the variable time step sizes and
constructed to be A- and L-stable to obtain formal order of temporal accuracy [26, 27].

In Eq. (4.2), the Jacobian matrix J is approximately computed using an automatic dif-
ferentiation toolkit TAPENADE [34]. In many systems, the exact Jacobian matrix can be
both costly and difficult to obtain, e.g., due to the size of the application and the use of
complex spatial discretization schemes. The class of Rosenbrock-Wanner methods have
been derived for such situations, which is aimed to not only reduce the computational
costs within each time step, but also alleviate the impact from how the Jacobian matrix is
formulated. They have the same form in Eq. (4.2), but the coefficients are selected such
that the overall discretization order is preserved for approximate Jacobian matrix.

The solution at the next time step Un+1 is determined as below:

Un+1=Un+
s

∑
j=1

bjU
(j), (4.3)

where the coefficients αij, γij and bj are generally shown in Refs. [26, 27]. For implemen-
tation purposes, Eq. (4.2) and Eq. (4.3) can be rewritten by introducing a new variable
vector W(i):

W(i)=
i

∑
j=1

γijU
(j), i=1,··· ,s, (4.4)

in order to avoid the matrix-vector multiplication J∑γijU
(j), which could result from the

direct implementation of Eqs. (4.2) and (4.3), as it requires the solution of a linear system
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with the matrix (I−∆tγiiJ) as well as the matrix-vector multiplication J∑γijU
(j). Note

that if γij 6= 0 for j≤ i, then the matrix Γ =(γij) is invertible and U(i) can be determined

from W(i) with

U(i)=
1

γii
W(i)−

i−1

∑
j=1

cijW
(j), (4.5)

where C is given by C= diag(γ−1
11 ,··· ,γ−1

ss )−Γ
−1. Thus the following formulation of the

ROW method is found in practical implementations,

LW(i)=F

(

Un+
i−1

∑
j=1

aijW
(j)

)

+
1

∆t

i−1

∑
j=1

cijW
(j), i=1,··· ,s, (4.6)

with L=( 1
γ∆t I−J), and γ=γii, thus L is constant for consecutive stages of the Rosenbrock

scheme. The solution at the next time step Un+1 is given by

Un+1=Un+
s

∑
j=1

mjW
(j), (4.7)

where the coefficients (aij)=(αij)Γ
−1, and (m1,··· ,ms)=(b1,··· ,bs)Γ−1.

In this paper, we mainly focus on the study of three third-order ROW methods:
1)ROSI2PW method (I2 for index 2 problems, P for semi-discretized PDE problems, W for
W-method), 2) third-order ROS34PRW method (an extension of ROS34PW2 from index-1
DAEs to index-2 DAEs), and 3) ROS34PW2 method. The coefficients for these methods
can be found in [26, 27], which also have been listed at the end of the paper. An efficient
LU-SGS preconditioned GMRES solver [18], namely GMRES+LU-SGS, is then applied
for solving the linearized system of equations in Eq. (4.6).

5 Numerical examples

A number of test cases are presented in order to assess the performance of the Rosenbrock
schemes for computing the unsteady flows. In addition, comparative studies between
the third-order ROW and ESDIRK3 schemes are conducted using the fixed time step
sizes, where the related results of a four-stage, third-order ESDIRK3 scheme are referred
to Xia et al. [22]. We also make comparison between ROW for index-1 and ROW for
index-2 in case 5.2 and case 5.3. Since the relative error tolerances for the linear and non-
linear systems solution have great influence on the efficiency and accuracy of a scheme,
we investigate such influence by the case of convection of an isotropic vortex. The L2-
norm by Eq. (5.3), is used as the criterion to determine whether the relative tolerance is
sufficient enough to get the converged solution. Here, the relative error tolerance 1E-n in
the tables means that the residual of the iteration is dropped n orders of magnitude.

Based on the Tables 1 and 2, the relative error tolerances for the non-linear and linear
iterations are determined for all the test cases in this paper, shown in Table 3.



X. Liu et al. / Commun. Comput. Phys., xx (201x), pp. 1-29 9

Table 1: The investigation of relative error tolerances for the non-linear and linear iterations about the ESDIRK3.

Scheme Non-linear Linear log(L2-norm)

ESDIRK3 × GMRES+LU-SGS
1E-3 1E-2 -4.8400

1E-2 1E-2 -4.7073

Table 2: The investigation of relative error tolerances for the linear iterations about the ROW.

Scheme Non-linear Linear log(L2-norm)

ROSI2PW × GMRES+LU-SGS

– 1E-4 -4.8190

– 1E-3 -4.8182

– 1E-2 -4.7970

ROS34PRW × GMRES+LU-SGS
– 1E-4 -4.8190

– 1E-3 -4.8150

– 1E-2 -4.38631

Table 3: Relative error tolerance for the non-linear and linear iterations.

Scheme Non-linear Linear

ESDIRK × GMRES+LU-SGS 1E-3 1E-2

Rosenbrock-Wanner × GMRES+LU-SGS – 1E-3

5.1 Convection of an isentropic vortex in inviscid flows

In this test case,we consider the passive convection of a quasi-2D inviscid isentropic
vortex [9, 35] in order to assess the temporal convergence for the Rosenbrock and ES-
DIRK methods. The spatial discretization is carried out using a third-order rDG(P1P2)
method. The analytical solution to this problem at any time t is simply the passive ad-
vection of the initial solution at t = 0, which provides a valuable reference for measur-
ing the accuracy of a numerical solution. The initial condition is a linear superposition
of a mean uniform flow with some perturbations. The free stream flow conditions are
(ρ∞,u∞,v∞,p∞) = (1,1,0,1). The perturbations of the velocity components u and v, en-
tropy S, and temperature T for the vortex are given by

δT=−
(γ−1)

8γπ2
e1−γ2

,

(

δu
δv

)

=
ε

2π
e

1−r2

2

(

−(y−y0)
(x−x0)

)

, δS=0, (5.1)

where r2 =(x−x0)2+(y−y0)2, (x0,y0) is the coordinate of the vortex center, and ε is the
vortex strength. From ρ=ρ∞+δρ, u=u∞+δu, v=v∞+δv, T=T∞+δT, and the isentropic
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relation, other physical variables can be determined as follows:

ρ=T
1

(γ−1) =(T∞+δT)
1

γ−1 =
[

T∞−
(γ−1)

8γπ2
e1−γ2

]
1

γ−1
,

ρu=ρ(u∞+δu)=ρ
[

u∞−
ε

2π
e

1−r2

2 (y−y0)
]

,

ρv=ρ(v∞+δv)=ρ
[

v∞+
ε

2π
e

1−r2

2 (x−x0)
]

,

p=ργ,

e=
p

ρ(γ−1)
+

1

2
(u2+v2).

(5.2)

The vortex strength ε = 5, and the coordinate of the vortex center (x0,y0) = (5,0). The
computational domain Ω is [0,10]×[−5,5] and the periodic boundary conditions are im-
posed. The numerical solutions are obtained after one period, t=10, and compared with
the analytical solution simply given by the initial condition. The following L2-norm

‖ρ−ρr ‖L2(Ω)=

√

∫

Ω
(ρ−ρr)2

dΩ, (5.3)

is used to measure the error between the numerical and analytical solutions, where ρ is
the numerical solution for the density and ρr is the reference one. Because the overall
error is due to both spatial and temporal errors, a reference solution is obtained using
a small time-step size at ∆t = 0.001 in order to eliminate the effect of spatial error and
in order to isolate the temporal error. Fig. 1(a) shows the hexahedral grid used in the
computation, which consists of 1600 hexahedral cells. A series of successively refined
time-step sizes ∆t = 0.4, 0.2, 0.1, 0.05, and 0.025 are used in calculation for the tempo-
ral convergence study. Fig. 2(a) provides the details of the temporal convergence for
this numerical experiment. The ESDIRK3, ROSI2PW, and ROS34PRW schemes exhibit a
slope of 2.97, 2.97 and 2.96, respectively, indicating that these three methods are able to
offer the nearly third-order accuracy of temporal convergence. However, the ROSI2Pw
scheme only exhibits a slope of 2.0, which is consistent to the theory that this scheme
would require the exact Jacobians in order to achieve the formal order of temporal accu-
racy. Fig. 2(b) indicates that third order ROW consumes much less computing time than
ESDIRK3 to achieve the same level of temporal errors. For reference purpose, the results
obtained by the explicit three-stage third-order TVD Runge-Kutta (TVDRK3) time inte-
gration scheme are also presented in Figs. 2(a) and 2(b). Note that the explicit methods
are usually more efficient than their implicit counterparts for the type of problems like in
this test case, where the physical time scales would not allow the implicit methods to use
very large time step sizes while trying to retain the wave propagation accurately.
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(a) (b)

Figure 1: (a) The computational grid used for convection of an isentropic vortex in inviscid flow. (b) Density
distribution for ESDIRK3 at t=10.
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Figure 2: Temporal convergence histories of WENO (P1P2) with different time integration schemes obtained
for convection of an isentropic vortex. (a) L2 norm versus dt and (b) L2 norm versus CPU time.

5.2 von-Karman vortex street

The von-Karman vortex street is probably one of the most extensively studied cases both
experimentally and numerically in fluid dynamics. In this test case, the flow conditions
are chosen (Reynolds number of Re∞ = 200 based on the cylinder diameter of d=1.0) such
that vortex shedding is expected to occur downstream of the cylinder. This simulation
provides a geometrically simple, yet aerodynamically complex test for our solver. Fig. 3
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(a) Global view (b) Zoom-in view

Figure 3: Mesh used for computing a viscous flow past a cylinder (nelem=10204, npoin=0800, nboun=20800).

shows the grid used in the computations, which consists of 10,204 hexahedral elements,
20,800 grid points, and 20,800 boundary faces. Note that this 3D grid is extruded from
a 2D grid used in [36]. The normal grid spacing near the cylinder surface is 0.001 (nor-
malized by the cylinder diameter), as demonstrated in Fig. 3(b). The free-stream Mach
number M∞ is set as 0.2. We employ the steady-state solution obtained for Re∞ =50 (for
which vortex shedding is not expected to occur) and an angle of attack α=3◦ as the initial
solution for vortex shedding. To start the simulation of shedding, the flow conditions at
the characteristic boundaries are set to Re∞=200 and α=0◦ (the asymmetry of the initial
flow, or sudden change of the angle of attack, leads to the vortex shedding behavior). The
solutions were advanced in time with a fixed time-step size of ∆t= 0.5 for ROS34PRW
+ rDG (P1P2), ∆t= 0.1 for ROSI2PW + rDG (P1P2) and ∆t= 0.02 for ROS34PW2 + rDG
(P1P2), respectively, until 10 shedding cycles had passed to ensure that the solution was
periodic in time. Note that in this test case, a much smaller allowable time-step size has
to be used for ROSI2PW and ROS34PW2, which is determined considering the stability
rather than the accuracy. Time histories of the computed surface drag and lift coefficients
are presented in Fig. 4 obtained by ROS34PRW + rDG (P1P2), and in Fig. 5 obtained by
ROSI2PW + rDG (P1P2). The Strouhal number is 1.923. These results agree well with
experimental measurements and numerical results in the literature [36]. To assess the
efficiency of the ROW methods, the computational costs for both ROW and ESDIRK3 so-
lutions are listed in Table 4. Firstly, the comparison between ESDIRK3 and ROW methods
is presented here. In comparison with ESDIRK3, ROS34PRW requires 45% CPU time less
than ESDIRK3, using more strict criterion for GMRES. This is caused by that just linear
systems need to be solved for ROW schemes, leading to that the computational costs per
time step are reduced. Secondly, it could be observed that the ROW for index-2 DAEs
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Figure 4: Time history of the computed lift and drag coefficients by ROS34PRW + rDG(P1P2) for flow past
a cylinder at M∞ =0.2 and Re∞ =200.

Table 4: Comparison of the CPU time (evaluated by running on 256 cores) between the ROW and ESDIRK3
for computing a viscous flow past a cylinder.

Time integration method Time-step size Time steps CPU time

ESDIRK3 0.50 1000 965.1

ROSI2PW 0.10 5000 1555.8

ROS34PRW 0.50 1000 531.64

ROS34PW2 0.02 25000 4356.0
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(b) Drag coefficient

Figure 5: Time history of the computed lift and drag coefficients by ROSI2PW + rDG(P1P2) for flow past a
cylinder at M∞ =0.2 and Re∞ =200.

outperforms the one for index-1 in terms of the computation efficiency. ROS34PRW and
ROSI2PW requires 88% and 64% CPU time less than ROS34PW2, respectively. This could
be explained as follows, some ROW schemes have to use small time step to preserve their
stability. Above all, ROS34PRW demonstrated the best efficiency in this test case.

5.3 Flow past a SD7003 airfoil

In this subsection, we consider a viscous flow past an SD7003 airfoil at M∞ =0.2, α=4◦,
and Re∞ = 10,000, as an abundance of numerical results can be found about this test
case [35,37]. The computation is initialized with constant values in the entire domain with
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(a) Global view

(b) Leading edge (c) Trailing edge

Figure 6: Grid used for computing the unsteady viscous flow past a SD7003 airfoil.

no-slip, adiabatic boundary conditions on the solid wall, and terminated at t=125. Fig. 6
shows the grid used in the computation, which consists of 50, 781 prismatic elements, 52,
176 grid point, 101, 562 triangular boundary faces, and 279 quadrilateral boundary faces.

Typical computed pressure contours in the flow field are displayed in Fig. 7. The
instantaneous vorticity contours are displayed in Fig. 8, which capture the key flow fea-
tures: separation of the flow on the upper surface of the airfoil and shedding of the tailing
vortices.

Fig. 9 shows the computed velocity vectors in the flow field, where the development
of the boundary layers and flow separation on the upper surface of the airfoil are clearly
visible.

From Ref. [37],the initial transient is over by t = 75 as estimated from the forces on
the wing. Therefore, unless otherwise specified, the instantaneous forces from t=100 to
125 are presented in Fig. 10, which could be comparable to Ref. [37]. The computation
is performed using ROSI2PW, ROS34PRW, and ROS34PW2 with a fixed time-step size of
∆t=0.05, 0.05, and 0.05 respectively. This time-step size is consistent with that in the ref-
erence, so that we could make some comparison directly. The instantaneous solutions are
written every 0.25 second for time-averaging calculations, starting from t=100 when the
flow separation on the upper surface of the airfoil is considered to have fully developed.
It could be observed that, the lift and drag coefficient histories are very similar to that in
Ref. [37].
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(a) ROSI2PW + rDG(P1P2), ∆t=0.05 (b) ROS34PRW + rDG(P1P2), ∆t=0.05

Figure 7: Computed pressure contours in the flow field for flow past a SD7003 airfoil at M∞ =0.2, α=4◦, and
Re∞ =10,000.

(a) ROSI2PW+rDG(P1P2), ∆t=0.05 (b) ROS34PRW+rDG(P1P2), ∆t=0.05

Figure 8: Computed vorticity contours in the flow field for flow past a SD7003 airfoil at M∞ =0.2, α=4◦, and
Re∞ =10,000.

(a) ROSI2PW+rDG(P1P2), ∆t=0.05 (b) ROS34PRW+rDG(P1P2), ∆t=0.05

Figure 9: Computed velocity vector in the flow field for flow past a SD7003 airfoil at M∞ = 0.1, α= 4◦, and
Re∞ =10,000.

Finally, in order to demonstrate the overall effectiveness of ROW + rDG (P1P2) on
highly stretched grids, the computational costs for both the ROW and ESDIRK3 solutions
are presented in Table 5. Compared to ESDIRK3, all ROW method require roughly 33%
CPU time less; For ROW method, the CPU time for index-1 and index-2 is similar.
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Figure 10: Time variation of lift (left) and drag (right) coefficients at Re = 10,000: comparison between
ROSI2PW and ROS34PRW.

Table 5: Comparison of the CPU time (evaluated by running on 256 cores) between the ROW and ESDIRK3
for computing a viscous flow past an SD7003 airfoil.

Time integration method Time-step size Time steps CPU time

ESDIRK3 0.05 500 711.9

ROSI2PW 0.05 500 474.04

ROS34PRW 0.05 500 474.93

ROS34PW2 0.05 500 470.0
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5.4 Lid driven cavity in 3D

A transitional flow in a 3D lid driven cavity at Re∞ = 10,000 is considered in this test
problem, as the accuracy of the numerical results obtained can be assessed through com-
parison with both the experimental data by Prasad and Koseff [38] and the LES data by
Zang et al. [39].

The cavity dimensions are 1 unit in the stream-wise x direction and vertical y direc-
tion, and 0.5 unit in the span-wise z direction. A hexahedral grid consisting of 64×64×32
grid points is used in computation, as shown in Fig. 11. While being equally distributed
in the z-direction, the grid points are clustered near the walls in the x-y plane, with the
grid spacing geometrically stretched away from the wall with the first element thickness
being 0.005 (y+= 3.535). On the bottom and side walls, the no-slip, adiabatic boundary
conditions are prescribed. Along the top ”lid”, the no-slip, adiabatic boundary conditions
with a lid velocity vb =(0.2,0,0) are prescribed as to ensure an essentially incompressible
flow field. The computation is conducted in two stages. At stage I, the computation is
started with a zero-velocity field, and sufficient steps are taken to evolve the field into a
cyclically oscillating state by using BDF1 + rDG(P1P2) with CFL=500. We used the solu-
tion obtained at the end of stage I as the initial solution for stage II, and run 30,000 time
steps with a fixed ∆t=0.1, during which the instantaneous solutions are written every 300
time steps for time averaging calculations. For a comparative study, the following two
options: 1) ROSI2PW + rDG (P1P2), 2) ROS34PRW + rDG (P1P2) are used respectively
at stage II. The computed mean velocity and components of Reynolds stress along the
center-lines on the span-wise mid-plane are presented in Figs. 12-14 respectively. Those
profiles were obtained by using a linear polynomial interpolation of the elemental solu-

Figure 11: The hexahedral grid (64×64×32 points) for the LES of a lid driven cavity (x : y : z= 1 : 1 : 0.5) at
Re=10,000.
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tions at the intersected nodes cut through by the center-lines. For example, in Fig. 12,
the mean x-velocity u is plotted along the vertical center-line (vs. y-coordinate), and the
mean y-velocity v is plotted along the horizontal center-line (vs. x-coordinate). As clearly
seen from Figs. 12 to 14, these results from the ROSI2PW and ROS34PRW agree well with
experimental data and LES data. Furthermore, the high efficiency of the ROW methods
is demonstrated in Table 6, where the costs for both the ROW and ESDIRK3 solutions are
compared.

Table 6: Comparison of the CPU time (evaluated by running on 256 cores) between the ROW and ESDIRK3
for computing the LES of a lid driven cavity (x : y : z=1 :1 :0.5) at Re=10,000.

Time integration method Time-step size Time steps CPU time

ESDIRK3 0.1 30000 164988.0

ROSI2PW 0.1 30000 103478.0

ROS34PRW 0.1 30000 100998.6

Compared to ESDIRK3, ROW method require roughly 38% CPU time less. We also
could observe that, with the identical time step, the computational cost for ROW methods
ROSI2PW and ROS34PRW are not the same. This is caused by that, for different methods,
different iteration numbers are required to satisfy the tolerance criterion for GMRES.
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5.5 Direct numerical simulation of the Taylor-Green vortex

The Taylor-Green vortex flow problem, one of the benchmark cases in the 3rd Interna-
tional Workshop on high order CFD methods, is chosen in this test case to assess the
accuracy and performance of ROW for the Direct Numerical Simulation (DNS) of tur-
bulent flows. This problem was originally designed to numerically study the dynamics
of turbulence. The initial conditions are smooth, but the flow quickly transits to tur-
bulence with the creation of small scales and begins to decay, mimicking homogeneous
non-isotropic turbulence. The initial conditions are given by:
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(5.4)

where ρ0 =1, p0 =1/γ, and u1, u2, and u3 are the components of the velocity in the x-, y-
and z-directions respectively, and p is the pressure. The flow is initialized to be isother-
mal (p/ρ= p0/ρ0=RT0). To minimize the effects of compressibility, the free-stream Mach
number is set to 0.1. The Reynolds number in this case is 1,600, which corresponds to a
peak Taylor microscale Reynolds number of about 22. The flow is computed in a peri-
odic and square box, which spans [−πL,πL] in each coordinate direction. The physical
duration of the computation is 20 based on the characteristic convective time defined as
tc = L/V0, i.e., tfinal = 20tc . From the numerical experiment [35], one hexahedral mesh,
which have 2043 elements with degrees of freedom 3243, is used here, which are dis-
tributed equally in the three directions. The best way to visualize these structures is to
plot positives values of Q. Fig. 15 shows the computed vortex detection criterion Q at
t = 8tc using ROSI2PW method based on rDG(P1P2). One can observe that the vortex
structure obtained by ROSI2PW method looks very similar to the one from Ref. [40].
Fig. 16 and Fig. 17 compare the time history of the kinetic energy and the kinetic en-
ergy dissipation rate computed from the data at the space-time quadrature points, re-
spectively, with the result from an incompressible simulation using a spectral code on
a mesh of 5123 grid points [41]. Using ROW, the results from the rDG (P1P2) solution
on this mesh agree very well with those from the spectral code solution. Fig. 18 shows
the results for the enstrophy over simulated time. As the figure shows, the enstrophy is
more difficult to resolve numerically. The individual terms in the kinetic energy evolu-
tion equation can be used to assess the accuracy of the numerical solutions. The kinetic
energy dissipation rate in compressible flows is given by the sum of three contributions

ǫ=ǫ1+ǫ2+ǫ3=−
dEk

dt
,
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Figure 15: TGV solution using ROSI2PW method, showing isosurfaces of Q criterion colored by velocity
magnitude at time t=8tc.
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Figure 16: Evolution of the dimensionless kinetic energy as a function of the dimensionless time.

where

ǫ1=
1

Ω

∫

2µsijsijdΩ, ǫ2 =
1

Ω

∫

2µvukkukkdΩ, ǫ3=−
1

Ω

∫

pukkdΩ,

where sij =
1
2(uij+uji) is the strain-rate tensor. In this case, the gas is assumed to have

zero bulk viscosity. Therefore, the dissipation due to the bulk viscosity is always equal to
zero, meaning that ǫ2 =0. Since the flow is nearly incompressible, the dissipation due
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Figure 17: Evolution of the dimensionless kinetic energy dissipation rate as a function of the dimensionless time.
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Figure 18: Evolution of the dimensionless enstrophy as a function of the dimensionless time.

to the pressure-dilatation term (ǫ3) is expected to be tiny. The kinetic energy dissipation
rate is then approximately equal to ǫ = ǫ1. However, for the compressible simulation,
this does not hold exactly. The pressure-dilatation, ǫ3, has a significant bias, contributing
net positive kinetic energy dissipation. Compressibility effects are evident in oscillations
of the pressure dilatation term (ǫ3). However, the biased pressure-dilatation term de-
creases toward zero as shown in Fig. 19. Time histories of the computed ǫ, ǫ1, and ǫ3

on the this mesh are presented in Fig. 20. The high effectiveness of the ROW methods is
demonstrated in Table 7, where the costs for both the ROW and ESDIRK3 solutions are
compared.
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Figure 19: Biased pressure-dilatation term for the Taylor-Green vortex problem.

Table 7: Comparison of the CPU time (evaluated by running on 240 cores) between the ROW and ESDIRK3
for computing the Taylor-Green vortex at Re=1600.

Time integration method Time-step size Time steps CPU time

ESDIRK3 0.08 2500 360250.0

ROSI2PW 0.04 5000 269998.7

ROS34PRW 0.04 5000 274921.4

Compared to ESDIRK3, ROSI2PW and ROS34PRW require roughly 25% and 23%
CPU time less respectively, although ESDIRK3 could use larger time step.

6 Conclusion and outlook

A comparative study has been performed on a set of third-order time integration schemes
for the 3D unsteady compressible Navier-Stokes equations spatially discretized by a third-
order hierarchical WENO reconstructed discontinuous Galerkin method. A variety of test
cases have been conducted to assess the accuracy, efficiency, robustness, and versatility
of those schemes. Numerical experiments demonstrated that both the third-order ES-
DIRK3 scheme, and the Rosenbrock-Wanner schemes based on the DAEs of Index-2, are
able to achieve the designed order of temporal convergence, and the Rosenbrock-Wanner
schemes are more efficient than the ESDIRK3 scheme in terms of computational cost. Fu-
ture work will be focused on the comparative performance assessment between the ROK
schemes based on the DAEs of Index-1, and those based on the DAEs of Index-2.
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Figure 20: Kinetic energy dissipation balance for the Taylor-Green vortex problem.
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Appendix: Sets of coefficients of the Rosenbrock schemes

considered in this paper

Table 8: Set of coefficients for ROSI2PW.

γ = 4.3586652150845900e-01

α21 = 8.7173304301691801e-01 γ21 = -8.7173304301691801e-01

α31 = -7.9937335839852708e-01 γ31 = 3.0647867418622479e+00

α32 = -7.9937335839852708e-01 γ32 = 3.0647867418622479e+00

α41 = 7.0849664917601007e-01 γ41 = -1.0424832458800504e-01

α42 = 3.1746327955312481e-01 γ42 = -3.1746327955312481e-01

α43 = -2.5959928729134892e-02 γ43 = -1.4154917367329144e-02

b1 = 6.0424832458800504e-01

b2 = -3.6210810811598324e-32

b3 = -4.0114846096464034e-02

b4 = 4.3586652150845900e-01

Table 9: Set of coefficients for ROS34PRW.

γ = 4.3586652150845900e-01

α21 = 8.7173304301691801e-01 γ21 = -8.7173304301691801e-01

α31 = 1.4722022879435914e+00 γ31 = -1.2855347382089872e+00

α32 = -3.1840250568090289e-01 γ32 = 5.0507005541550687e-01

α41 = 8.1505192016694938e-01 γ41 = -4.8201449182864348e-01

α42 = 5.0000000000000000e-01 γ42 = 2.1793326075422950e-01

α43 = -3.1505192016694938e-01 γ43 = -1.7178529043404503e-01

b1 = 3.3303742833830591e-01

b2 = 7.1793326075422947e-01

b3 = -4.8683721060099439e 01

b4 = 4.3586652150845900e-01

Table 10: Set of coefficients for ROS34PW2.

γ = 4.3586652150845900e-01

α21 = 8.7173304301691801e-01 γ21 = -8.7173304301691801e-01

α31 = 8.4457060015369423e-01 γ31 = -9.0338057013044082e-01

α32 = -1.1299064236484185e-01 γ32 = 5.4180672388095326e-02

α41 = 0.0000000000000000e+00 γ41 = 2.4212380706095346e-01

α42 = 0.0000000000000000e+00 γ42 = -1.2232505839045147e+00

α43 = 1.0000000000000000e+00 γ43 = 5.4526025533510214e-01

b1 = 2.4212380706095346e-01

b2 = -1.2232505839045147e+00

b3 = 1.5452602553351020e+00

b4 = 4.3586652150845900e-01
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