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In this note, the angular distribution of rays launched by the 3D
LZR ray trace package is derived for Gaussian beams (npower==2) with
bm model=±3. Beams with bm model=+3 have a nearly flat distribution,
and beams with bm model=-3 have a nearly linear distribution when the
spot size is large compared to the wavelength.

To model a laser beam in the 3D laser ray trace package, HYDRA chooses points on the lens — based
on whether rays have equal power or power proportional to solid angle — and then samples points in the
focal plane toward which the rays propagate. For the analytic beam models — bm model ±3 and ±4 — the
probability density function sampled is the parametrized super Gaussian.

Note that two options are available for the distribution of the rays within the bundle and the allocation
of the laser power among the rays when using the analytical models 3 and 4. As already alluded to, these
are controlled by the sign of the parameter bm model. The sine weighting model (bm model > 0) corresponds
to equal power from each element of the surface of a spherical lens. This results in high power assigned to
the rays originating from the outer portion of the lens. The equal power (bm model < 0) option corresponds
to equal power from each element of the surface of a flat lens, which also results in equal power in each ray.

Consider a round Gaussian beam with spotx=spoty=σ and npower=2 that comes from a lens with a
radius defined in terms of the focal length f and beam angle a2 as rlens = f tan(a2). The probability that a
ray at a radius r0 on the lens is launched at an angle between φ and φ+ dφ with respect to the beam axis is

p (φ) dφ ∝ exp

(
−
[
r0 + f tanφ

σ

]2)
dφ

where f is the lens focal length.
When bm model is positive, rays are spaced linearly on the lens. The total probability of a ray being

launched between φ and φ+ dφ is then simply the normalized integral over the lens radius, r ∈ [0, f tan(a2)]

f+ (φ) = f+0
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 ,
where f+0 sets the normalization of this distribution. Below f+0 is defined such that the integral of the
distribution is 1.

When bm model is negative and each ray has the same power, rays are distributed following a square root
law. Using this fact, the negative beam model angular distribution function may be computed as

f− (φ) = f−0
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Figure 1: The total angular distributions of rays for bm model = +3 (blue) and bm model=-3 (red). In both
cases, the spot sizes spotx=spoty=64 µm, the focal length f = 177 cm, and the F number is 178.4 giving a
beam angle a2 = 0.00280268461943753 radians.

where f−0 again sets the normalization defined below such that the integral of the distribution is 1.
These integrals may be carried out in closed form in terms of well known functions to give
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These functions are plotted for a loosely focused beam in Figure 1. The equal solid angle model f+ has
a nearly flat angular distribution, while the equal power model has a nearly linear — actually, a tanφ —
angular distribution.

The normalization factors f+0 and f−0 are not, in general, expressible in terms of standard functions. In
many laser configurations, the normalization factors may be well approximated as,
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where f+(φ) and f−(φ) have been approximated as flat and linear distributions, respectively, for the purposes
of computing this normalization. For many sets of reasonable parameters, this is a very good approximation
in part because these simple models capture the essence of the majority of the distribution and also in part
because of compensating errors made by making these assumptions.

Finally, using the approximate results for f+0 and f−0, the round Gaussian bm model=±3 angular dis-
tributions of rays may be expressed as
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where σ=spotx=spoty, f=flen, and a2=a2 as specified by the user on the superg3d card.


