
LLNL-TR-699797

Cretin Memory Flow on Sierra

S. H. Langer, H. A. Scott

August 5, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Cretin	Memory	Flow	on	Sierra	
Steven	Langer	and	Howard	Scott	
LLNL	
July	21,	2016	
	
Introduction	
	
The	Cretin	iCOE	project	has	a	goal	of	enabling	the	efficient	generation	of	Non-LTE	opacities	
for	use	in	radiation-hydrodynamic	simulation	codes	using	the	Nvidia	boards	on	LLNL’s	
upcoming	Sierra	system.	Achieving	the	desired	level	of	accuracy	for	some	simulations	
require	the	use	of	a	vary	large	number	of	atomic	configurations	(a	configuration	includes	
the	atomic	level	for	all	electrons	and	how	they	are	coupled	together).	The	NLTE	rate	matrix	
needs	to	be	solved	separately	in	each	zone.	Calculating	NLTE	opacities	can	consume	more	
time	than	all	other	physics	packages	used	in	a	simulation.	
	
Atomic	database	
	
Information	about	the	atomic	configurations	and	the	transitions	between	them	is	stored	in	
a	“database”.	The	database	might	be	as	large	as	16	GB.	We	hope	that	careful	choices	for	the	
set	of	atomic	configurations	will	reduce	it	down	to	8	GB	or	less.	The	size	of	the	database	
should	scale	somewhat	more	slowly	than	quadratically	with	the	number	of	configurations	
in	the	database.	The	reason	is	that	larger	databases	have	a	higher	percentage	of	
configurations	with	more	than	one	excited	electron.	The	database	only	includes	single	
electron	transitions,	so	the	percentage	of	states	that	are	coupled	drops	as	the	fraction	of	
multiply	excited	configurations	increases.		
	
The	collision	rates	in	a	database	are	all	computed	using	the	same	functional	form	(for	
current	databases).	The	form	can	vary	between	databases.	The	most	popular	current	form	
stores	8	numbers	per	transition.		
	
Photo-excitation	rates	may	involve	an	integral	over	the	line	shape	for	a	transition	and	the	
amount	of	work	varies	from	one	transition	to	the	next.		
	
All	rates	of	a	given	type	(e.g.	collisional	excitation)	are	adjacent	in	the	database.	Rates	for	
different	physical	processes	are	stored	back-to-back	in	the	database.	The	simplest	
approach	is	to	load	the	entire	database	into	the	memory	of	each	GPU	board.	All	transitions	
have	an	inverse	transition	(i.e.	going	the	opposite	direction	between	the	two	
configurations).	It	is	easy	to	program	as	if	there	are	separate	databases	for	collisional	
excitation/de-excitation,	collisional	ionization/recombination,	radiative	excitation/de-
excitation,	radiative	ionization/recombination,	and	auto-ionization/di-electronic	
recombination.		
	
	
Transition	Rates	
	



Cretin	takes	the	current	populations	of	the	configurations	and	the	radiation	field	in	a	zone	
as	input.	New	populations	(and	some	equation	of	state,	EOS,	related	values)	are	outputs.		
	
Cretin	runs	through	the	entire	set	of	transitions	generating	a	“transition	descriptor”	for	
each	one.	A	descriptor	has	configuration	numbers	for	the	initial	and	final	state,	a	transition	
rate,	and	other	information.	Cretin	puts	14	numbers	in	a	descriptor,	but	HYDRA	(the	
biggest	current	customer	for	NLTE	opacities)	probably	only	needs	6	or	8	of	them.	
	
Collision	rates	might	be	computed	in	groups	of	4	so	that	a	warp	can	fetch	32	coefficients	(4	
groups	of	8).	It	would	also	be	possible	to	give	each	thread	in	a	warp	its	own	collision.	As	it	
stands,	that	would	lead	to	stride	8	accesses.	If	each	thread	has	8	registers	free,	a	warp	could	
do	8	aligned	fetches	and	then	perform	a	transpose	so	that	each	thread	has	its	8	coefficients.	
It	would	also	be	possible	do	the	transpose	on	the	Power	9	host.	Before	transfer	to	the	GPU.	
That	is	fine	if	a	warp	always	starts	processing	transitions	on	a	“warp-aligned”	transition.	
	
Electron	densities	can	be	high	enough	that	continuum	lowering	causes	some	configurations	
to	disappear	(the	configuration	is	no	longer	bound).	Transitions	for	those	configurations	
will	still	be	present	in	the	transition	database.	Cretin	currently	uses	an	indirection	array	so	
that	it	only	processes	transitions	between	bound	configurations.	That	approach	minimizes	
the	work,	but	indirection	usually	has	a	negative	impact	on	memory	performance.		
	
As	an	alternative,	a	thread	could	use	a	predicate	to	disable	storage	of	rates	when	it	notices	
that	it	is	working	on	a	transition	involving	a	configuration	that	is	not	bound	at	the	current	
density.	It	might	also	be	possible	to	compute	the	rate	and	ignore	it	later	on.		We	need	to	be	
sure	it	is	safe	to	calculate	rates	for	an	unbound	state	before	trying	the	later	approach.		
	
Photo-excitation	rates	can	be	computed	at	line	center	(good	for	optically	thin	lines),	in	
which	case	a	warp	should	compute	multiple	rates	at	a	time.	Rates	might	also	be	computed	
using	a	quadrature	(required	for	strong	or	optically	thick	lines),	in	which	case	a	warp	might	
compute	one	rate	at	a	time.	The	number	of	energies	may	not	be	an	integral	multiple	of	the	
number	of	threads	in	a	warp	so	zero	padding	or	predication	might	be	required.	If	the	
number	of	photon	energies	in	an	integral	is	small	compared	to	the	size	of	a	warp,	it	might	
be	better	to	have	each	thread	do	the	integral	for	a	different	transition.	That	choice	would	
change	the	optimal	layout	of	data	in	memory.	Having	each	thread	handle	a	full	transition	
would	be	more	like	the	planned	approach	for	collisions	and	would	suggest	a	similar	
transpose	of	database	values.		
	
Loop	Order	
	
The	outermost	loop	currently	runs	over	zones.	Nested	inside	that	(in	mixed	zones)	is	a	loop	
over	elements.	The	worker	loop	calls	a	function	that	in	turn	calls	a	function	to	compute	
collision	rates.		
	
Given	limited	amounts	of	high	bandwidth	memory,	we	probably	want	the	outermost	loop	
to	be	over	elements	when	using	an	Nvidia	board.	That	allows	us	to	load	the	transition	
database	for	an	element	to	HBM	at	the	start	of	an	element	and	process	all	zones	before	



loading	the	next	database.	If	we	keep	the	current	loop	order,	the	databases	for	all	elements	
need	to	fit	in	HBM	or	we	will	need	to	do	a	lot	more	data	loading.		
	
Solving	the	rate	equations	for	a	single	zone	might	utilize	an	entire	Nvidia	board	for	a	large	
database.	We	will	also	need	an	option	to	process	several	zones	simultaneously	on	a	single	
Nvidia	board.	A	simple	database	will	not	have	enough	transitions	to	occupy	an	entire	board	
and	some	ionization	states	will	have	so	few	active	configurations	that	they	can’t	occupy	an	
entire	board	even	if	the	database	is	large.	When	using	a	large	database	there	may	be	cases	
where	only	a	single	zone	can	fit	on	a	board.		
	
We	will	either	use	a	separate	kernel	call	for	each	zone	or	modify	the	way	Cretin	works	so	
that	we	can	batch	multiple	zones	into	a	single	kernel	invocation.	If	we	launch	multiple	
kernels	at	the	same	time,	we	will	(probably)	wait	for	all	of	them	to	finish	before	launching	
another	kernel.	The	zones	that	are	launched	together	must	be	chosen	so	as	not	to	overflow	
the	memory	of	the	Nvidia	board.	Launching	new	zones	as	old	ones	finish	would	make	it	
more	complicated	to	avoid	running	out	of	memory.		
	
Outputs	from	Rate	Evaluation	
	
The	result	of	the	rate	calculation	is	a	long	list	of	transition	descriptors.	A	transition	
between	a	pair	of	configurations	may	occur	multiple	times	(e.g.	both	collisional	and	
radiative	excitation).	The	rates	are	used	to	populate	a	dense	matrix	that	is	then	solved	
using	LAPACK	functions	or	as	inputs	to	a	sparse	matrix	solver.	The	rate	list	is	comparable	
in	size	to	the	atomic	database.	The	rate	list	is	populated	in	“stride	one”	order	(modulo	the	
fine	details	of	when	individual	warps	tack	new	data	onto	it).		
	
A	Possible	Strategy	for	Kernel	Launching	
	
Our	goal	is	for	the	database,	rate	list,	and	final	rate	matrix	to	all	fit	in	fast	memory.	The	
database	is	used	by	many	zones	and	the	rate	list	never	needs	to	be	copied	back	to	the	host	
if	the	rate	equations	for	a	zone	are	completed	before	moving	on	to	the	next	zone.		
	
The	zonal	populations	and	radiation	field	will	probably	remain	in	DDR	and	be	read	directly	
by	the	Nvidia	board.	They	should	be	accessed	in	stride	one	order.	Their	size	is	small	enough	
that	DDR	bandwidth	should	be	fast	enough	that	is	not	a	bottleneck.		
	
We	would	like	to	move	the	atomic	database	to	the	Nvidia	board	once	at	the	start	of	the	pass	
over	an	element	in	each	time	step.	If	there	isn’t	enough	memory	to	do	that,	it	will	be	moved	
at	the	start	of	each	zone.	
	
The	rates	will	be	allocated	using	in-package	(fast)	memory.	At	the	end	of	the	rate	
calculation	phase,	the	rate	table	will	be	comparable	in	size	to	the	atomic	database	because	
there	is	one	descriptor	for	each	active	transition	in	the	database.		
	



The	solver	can	free	the	atomic	database	if	memory	is	needed	to	make	room	for	the	rate	
matrix.	The	solver	can	run	using	the	rates	that	are	already	in	fast	memory.	The	rates	should	
never	need	to	be	stored	back	to	DDR.		
	
The	memory	access	pattern	is	reasonably	hardware	friendly.	The	loop	over	elements	
should	not	be	a	problem.	The	loop	over	zones	is	stride	one	in	host	memory	and	will	
probably	be	fast	enough	without	an	explicit	copy	of	the	population	array	to	the	Nvidia	
board.	The	transition	rates	will	probably	include	a	separate	kernel	launch	(at	least	initially)	
for	each	type	of	transition.	The	transition	rates	of	a	given	type	are	accessed	in	memory	
order	and	the	transition	descriptor	table	is	written	in	memory	order.	
	
We	need	to	work	on	different	transitions	simultaneously	on	different	warps	to	get	enough	
parallelism.	Transition	descriptors	are	of	a	fixed	size,	so	it	should	be	easy	for	each	warp	to	
figure	out	where	in	the	list	to	put	its	rates.		
	
If	transition	rates	are	never	copied	back	to	DDR	and	there	is	enough	fast	memory	that	the	
atomic	database	never	needs	to	be	“unloaded”,	the	traffic	between	host	and	accelerator	is	
just	the	atomic	configuration	population	and	radiation	field	for	each	zone.	This	is	small	
enough	to	pass	in	each	kernel	call.		
	
If	the	atomic	database	must	be	removed	before	the	rate	equations	are	solved,	moving	it	to	
the	Nvidia	board	at	the	start	of	each	kernel	launch	could	consume	significant	time.	It	can’t	
be	pre-staged	because	space	was	required	for	the	rate	matrix.	Squeezing	a	database	down	
until	it	fits	will	be	a	popular	option.		
	
A	kernel	will	compute	all	transitions	with	a	single	call	even	if	there	are	more	transitions	
than	“cores”.	The	Nvidia	board	will	schedule	warps	as	it	sees	fit.	That	means	there	is	no	
guarantee	that	transition	rates	will	be	pasted	into	the	output	list	in	memory	order.	That	
shouldn’t	be	an	issue	because	each	warp	will	write	something	like	8*32	numbers	into	the	
output	array	and	Nvidia	boards	are	tolerant	of	memory	latency	due	to	the	large	number	of	
warps.	
	
Questions	that	need	to	be	answered	soon		
	

1) Do	we	need	to	transpose	rate	coefficients?	
2) Can	we	fit	the	atomic	database,	a	full	list	of	transitions,	and	solve	the	rate	matrix	

without	kicking	the	database	out	of	HBM?		
3) Can	a	single	MPI	process	have	kernels	for	several	zones	running	simultaneously?	
4) Is	the	time	for	a	kernel	launch	large	enough	that	we	will	need	to	batch	multiple	

zones	into	a	single	kernel	launch?	
5) Is	it	practical	for	several	MPI	processes	to	share	an	Nvidia	board	(via	time	slicing	

given	the	constraints	on	memory	footprint)?	If	not,	we	will	idle	some	MPI	processes	
and	have	the	remaining	processes	compute	all	the	rates.	Moving	work	to	a	subset	of	
processes	would	be	easy	to	add	to	the	global	load	balancer	that	will	be	written	by	
this	project.			

	 	



This	document	was	released	as	LLNL-TR-699797.	This	work	was	performed	under	the	
auspices	of	the	U.S.	Department	of	Energy	by	Lawrence	Livermore	National	Laboratory	
under	contract	DE-AC52-07NA27344.	Lawrence	Livermore	National	Security,	LLC.	

	
	


