

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-677786

Measurements and Modeling of Contemporary Radiocarbon in the Stratosphere

A. Kanu, L. Comfort, T. Guilderson, P. Cameron-Smith,
D. Bergmann, E. Atlas, S. Schauffler, K. Boering

October 2, 2015

Journal of Geophysical Research

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Measurements and Modeling of Contemporary Radiocarbon in the Stratosphere

A.M. Kanu^{1,2}, L.L. Comfort¹, T.P. Guilderson³, P.J. Cameron-Smith², D.J. Bergmann²,
E.L. Atlas⁴, S. Schauffler⁵, K.A. Boering^{1,6}

¹ Department of Chemistry, University of California, Berkeley, Berkeley, California, USA

² Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California, USA

³ Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA

⁴ Department of Atmospheric Sciences, University of Miami, Miami, Florida, USA

⁵ Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA

⁶ Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA.

Corresponding author: K.A. Boering, University of California, Berkeley, Berkeley, CA 94720-1460 USA. (boering@berkeley.edu)

KEY POINTS:

Stratospheric C-14 is governed by cosmogenic production, transport, and stratosphere-troposphere exchange.

Global annual mean C-14 production rate and net flux to the troposphere are determined empirically.

C-14 is a sensitive tracer of stratospheric transport and residence times.

30 **Abstract:**

31 Measurements of the ^{14}C content of carbon dioxide in air collected by high-altitude balloon
32 flights in 2003, 2004, and 2005 reveal the contemporary radiocarbon distribution in the northern
33 midlatitude stratosphere, four decades after the Limited Test Ban Treaty restricted atmospheric
34 testing of nuclear weapons. Comparisons with results from a 3D chemical-transport model show
35 that the $^{14}\text{CO}_2$ distribution is now largely governed by the altitude/latitude dependence of the
36 natural cosmogenic production rate, stratospheric transport, and propagation into the stratosphere
37 of the decreasing radiocarbon trend in tropospheric CO_2 due to fossil fuel combustion. From the
38 observed correlation of $^{14}\text{CO}_2$ with N_2O mixing ratios, an annual global mean net flux of $^{14}\text{CO}_2$
39 to the troposphere of $1.6(\pm 0.4)\times 10^{17}\text{‰}$ mol CO_2 yr^{-1} and a global production rate of
40 $2.2(\pm 0.6)\times 10^{26}$ atoms ^{14}C yr^{-1} are empirically derived. The results also indicate that
41 contemporary $^{14}\text{CO}_2$ observations provide highly sensitive diagnostics for stratospheric transport
42 and residence times in models.

43

44 **1. Introduction**

45 Carbon-14 is produced in the stratosphere and upper troposphere by nuclear reactions of
46 atmospheric nitrogen with thermal neutrons produced naturally by cosmic rays and by
47 atmospheric nuclear weapons testing primarily in the 1950s and 60s. The radiocarbon atoms are
48 then rapidly (<3 months) oxidized to CO and then CO_2 , an inert gas which circulates throughout
49 the stratosphere and troposphere; at Earth's surface $^{14}\text{CO}_2$ can enter the oceanic and terrestrial
50 carbon reservoirs. Because its production and redistribution in the Earth system are unlike any
51 other gas, $^{14}\text{CO}_2$ is a unique geophysical and biogeochemical tracer. For example, measurements
52 of the decay of the bomb radiocarbon signal yielded insight into the stratospheric circulation that
53 is independent of chemistry occurring there [e.g., *Hall and Waugh, 2000; Jackman et al., 1991;*
54 *Johnston, 1989; Kinnison et al., 1994; Park et al., 1999; Prather and Remsberg, 1993*], unlike
55 most other tracers. Likewise, its partitioning between the atmosphere, oceans, soils, plants and
56 other carbon reservoirs, as well as its absence in fossil fuel-derived CO_2 [Suess, 1955], has been
57 used to quantify the inventories, residence times, and gross fluxes of carbon in and between these
58 reservoirs [e.g., *Braziunas et al., 1995; Broecker and Peng, 1994; Caldeira et al., 1998;*

59 *Guilderson et al., 2000; Levin et al., 2003; Randerson et al., 2002; Trumbore, 2000*]. However,
60 only 14 measurements of stratospheric $^{14}\text{CO}_2$ [Nakamura et al., 1994] have been made since
61 1974 – that is, since the atmospheric circulation has purged the stratosphere of the large amounts
62 of ^{14}C originally deposited there by nuclear weapons testing. Moreover, no stratospheric
63 radiocarbon datasets have yet included simultaneous measurements of other long-lived tracers,
64 which has hampered interpretation and comparison with global-scale models by exploiting the
65 correlations between long-lived tracers [e.g., Boering et al., 1996; Plumb, 2007; Plumb and Ko,
66 1992]. Despite the promise outlined by, e.g., Johnston [1989] and Levin and Hesshaimer [2000],
67 this lack of data (and unwarranted lack of confidence in the stratospheric bomb era $^{14}\text{CO}_2$ data
68 [Hesshaimer and Levin, 2000]) has limited the use of $^{14}\text{CO}_2$ as a stratospheric tracer, as well as
69 for assessment of models of the cosmogenic ^{14}C production rate and transport to the troposphere
70 needed for carbon cycle studies. The latter assessments are particularly needed now that the
71 natural cosmogenic production rate, and the rates and details of radiocarbon transport to the
72 troposphere, are playing an increasingly important role relative to the bomb radiocarbon input in
73 studies of surface radiocarbon and its redistribution there [e.g., Graven et al., 2012a; Levin et al.,
74 2010; Randerson et al., 2002] and the use of atmospheric observations to infer regional
75 anthropogenic emissions [e.g., Graven et al., 2012b; Levin et al., 2010; Randerson et al., 2002;
76 Riley et al., 2008].

77 Here, we present measurements of stratospheric $^{14}\text{CO}_2$ from whole air samples collected by
78 high-altitude balloon flights in 2003, 2004, and 2005 for which measurements of other long-lived
79 tracers were also made, including nitrous oxide (N_2O). We use these new measurements and
80 comparisons with a 3D global chemical transport model to (1) show current levels of $^{14}\text{CO}_2$ in
81 the middle and lower stratosphere and the dominant processes controlling its distribution and
82 variations, (2) empirically estimate the annual global mean net flux of stratospheric radiocarbon
83 to the troposphere and the global radiocarbon production rate, and (3) demonstrate that $^{14}\text{CO}_2$
84 observations can be used as a sensitive diagnostic for stratospheric transport and residence times
85 in models.

86 **2. Methods**

87 A cryogenic whole air sampler (CWAS) [Froidevaux et al., 2006; Lueb et al., 1975] was
88 flown by high altitude balloons launched from Ft. Sumner, New Mexico (34.47°N, 104.24°W) on

89 5 October 2003, 29 September 2004, and 1 October 2005. The CWAS consists of a manifold of
90 26 electropolished, 800mL stainless steel canisters, which are immersed in liquid neon to serve
91 as a cryopump when each motor-driven canister valve is actuated. Airflow into the canisters was
92 monitored by pressure changes in the manifold, and the canisters were filled to pressures of 245-
93 310 psi. Samples were collected between 15.3 and 33.3 km altitude. The mixing ratios (mole
94 fractions) of a number of trace gases in the canisters were then measured at the University of
95 Miami or NCAR, including N₂O and CH₄ using an HP5890 II+ series GC and NIST-traceable
96 standards to precisions of 0.1% and 0.3%, respectively. Aliquots of a total of 59 samples from
97 these 3 flights were transferred to 1.6L electropolished stainless steel canisters and shipped to
98 UC Berkeley, where the CO₂ in the samples was cryogenically collected and purified using a
99 series of 5 traps immersed in LN₂ and/or LN₂/ethanol slushes at -95°C, and then flame-sealed in
100 glass ampoules. Samples were subsequently split into 2 or 3 aliquots of 20 to 30 micromoles of
101 CO₂ each for separate analyses of radiocarbon and, for some samples, δ¹³C, δ¹⁷O, and δ¹⁸O. For
102 the ¹⁴C analyses, using methods similar to Graven *et al.* [2012a], the CO₂ samples were
103 graphitized and then analyzed by accelerator mass spectrometry. Measurements are reported as
104 Δ¹⁴C for geochemical samples [Stuiver and Polach, 1977] (corrected assuming δ¹³C of -8‰ V-
105 PBD) with a precision of 2‰ (1σ) or better.

106 To gain a global perspective on the measurements, ¹⁴CO₂ and N₂O were simulated using the
107 Lawrence Livermore National Laboratory's (LLNL) 3D global chemical-transport model
108 IMPACT (Integrated Massively Parallel Atmospheric Chemical Transport). IMPACT is based
109 on an operator-split method of emissions, advection, diffusion, deposition, convection,
110 gravitational settling, photolysis, and chemistry, and can be run using either input meteorological
111 fields from a general circulation model (GCM) or assimilated data [Rotman *et al.*, 2004]. Unless
112 otherwise noted, all the model results reported here were generated using (1) meteorological data
113 from the MACCM3 climate model at 4x5 degree latitude-longitude horizontal resolution, with
114 52 levels in the vertical from the ground to 0.006 mbar; meteorological data for the period 1
115 January to 31 December 1997 were used for every model year [Rotman *et al.*, 2004]; (2)
116 cosmogenic radiocarbon production rates as a function of latitude, longitude, and altitude from
117 the formulation of Koch and Rind [1998], based in turn on Lal and Peters [1967] and
118 Lingenfelter [1963], interpolated bilinearly onto the IMPACT grid; and (3) prescribed surface
119 boundary conditions for Δ¹⁴C of CO₂ from a linear fit to observations at La Jolla, CA (32.87°N,

117.25°W) from June 1992 to February 2007 [Graven *et al.*, 2012a], for CO₂ mixing ratios from an average [Boering *et al.*, 1996] of observations at Mauna Loa and American Samoa from July 1976 to March 2010 from the Global Monitoring Division of NOAA's Earth System Research Laboratory (<http://www.esrl.noaa.gov/gmd/ccgg/>) and for N₂O mixing ratios from mean surface observations from 20°S to 20°N from 1977 to 2007 from the World Data Center for Greenhouse Gases (<http://ds.data.jma.go.jp/gmd/wdcgg/>). For simulating stratospheric N₂O, three reactions were included: N₂O+hv→N₂+O(¹D), N₂O+O(¹D)→N₂+O₂, and N₂O+O(¹D)→2NO. The model was run from 1962 to 2012, which includes 20 years of spinup needed for the model atmosphere to lose memory of the initial model conditions chosen.

To test the sensitivity of modeled $\Delta^{14}\text{C}$ of CO₂ to solar cycle variations in the ^{14}C production rate, an upper limit was estimated here by assuming that the largest local variation in the solar-cycle-dependent ^{14}C production rate of 10% [Jockel *et al.*, 1999] is applicable globally and then modulating the 3D production rates with a sinusoid of amplitude 10% and periodicity of 11 years. Finally, to test the sensitivity of $\Delta^{14}\text{C}$ of CO₂ to meteorology, we also used meteorological fields from the FVCCM (Finite Volume Community Climate Model) and FVDAS (Finite Volume Data Assimilation System) at 4x5 horizontal resolution with 28 levels in the vertical from the ground to 0.656 mbar for 1 July 1999-30 June 2000 [e.g., Schoeberl *et al.*, 2003] in separate model runs. The MACCM3, FVCCM, and FVDAS meteorologies used here are known to have significant differences in their residual circulations and, hence, result in significant differences in stratospheric mean ages of air [e.g., Schoeberl *et al.*, 2003].

3. Results and Discussion

Vertical profiles of $\Delta^{14}\text{C}$ of CO₂ and of N₂O are shown in Figure 1a and b. In general, values for $\Delta^{14}\text{C}$ increase with altitude, as expected for a long-lived tracer with a stratospheric source and tropospheric sink, with a leveling off at ~ 24 km and above. The main excursions away from this trend with altitude observed at 34°N for any given balloon flight are consistent with filaments of air from higher or lower latitudes moving into the balloon flight path. For example, in 2003, older, photochemically-aged air from higher latitudes with much lower values of N₂O was sampled between 19 and 22 km, with correspondingly higher values of $\Delta^{14}\text{C}$. This interpretation is consistent with the model results, which show large variations in $\Delta^{14}\text{C}$ with latitude for a given altitude, with older air at higher latitudes having significantly larger $\Delta^{14}\text{C}$ values (Fig. 1a).

150 Similarly, in 2004, the profiles are influenced by higher latitude air with higher $\Delta^{14}\text{C}$ /lower N_2O
151 values up to ~ 22 km and then again above 28 km; and in 2005, higher $\Delta^{14}\text{C}$ /lower N_2O air from
152 higher latitudes is apparent at ~ 24 km, while lower $\Delta^{14}\text{C}$ /higher N_2O air from lower latitudes is
153 apparent above ~ 28 km. Indeed, the variability due to these filaments is largely smoothed out by
154 plotting $\Delta^{14}\text{C}$ versus N_2O (Figure 1c) in which the data follow a tighter relationship, as expected
155 when two tracers that are long-lived with respect to quasi-horizontal transport and mixing are
156 plotted against each other [e.g., *Plumb*, 2007; *Plumb and Ko*, 1992]. In these $\Delta^{14}\text{C}:\text{N}_2\text{O}$
157 scatterplots, $\Delta^{14}\text{C}$ increases as N_2O decreases down to ~ 200 ppb (nmol/mol) and then levels off
158 for $\text{N}_2\text{O} < 200$ ppb. In other words, $\Delta^{14}\text{C}$ increases with increasing mean age up to a mean age of
159 roughly 4 years [*Boering et al.*, 1996] and then levels off. The model results predict a small
160 decrease in $\Delta^{14}\text{C}$ ($< 5\text{\textperthousand}$) for this higher altitude extratropical air, although the filaments of air
161 influencing the balloon profiles make it difficult to test this particular model prediction.

162 After considering the impact of filaments of air from higher or lower latitudes, the next
163 identifiable influence on the stratospheric $^{14}\text{CO}_2$ profiles and their correlation with N_2O from
164 year to year is the propagation of the trend in $\Delta^{14}\text{C}$ of tropospheric CO_2 into the stratosphere.
165 $\Delta^{14}\text{C}$ of tropospheric CO_2 is decreasing by 7 to $12\text{\textperthousand yr}^{-1}$ [e.g., *Graven et al.*, 2012a; *Levin et al.*,
166 2010], due solely since 1990 to the burning of fossil fuel [*Levin et al.*, 2010], which, because of
167 its age, has no ^{14}C [*Suess*, 1955]. Thus, in general, $\Delta^{14}\text{C}$ of stratospheric CO_2 is lower in 2004
168 than 2003 and lower in 2005 than 2004. Although the filaments of older or younger air from
169 higher or lower latitudes, respectively, make a precise determination of the difference from year
170 to year due to the tropospheric trend difficult, the decreases of $\sim 10\text{\textperthousand}$ and 7\textperthousand between 2003 and
171 2004 and between 2004 and 2005, respectively (calculated as the differences between linear fits
172 to the 2003, 2004, and 2005 data for N_2O between 120 and 200 ppb) are consistent with
173 observed tropospheric trends and with model predictions of a 5\textperthousand decrease at 34°N . Decreases of
174 ~ 5 to 7\textperthousand between 2004 and 2005 are also apparent in Figure 2, which shows $\Delta^{14}\text{C}$ versus N_2O
175 for $250 < \text{N}_2\text{O} < 320$ ppb, and are similar to IMPACT model predictions of 5\textperthousand decreases at these
176 lower altitudes. Comparison of these measurements with $^{14}\text{CO}_2$ measured on 14 samples
177 collected by balloon over Japan in September 1989 and July 1990 [*Nakamura et al.*, 1994; 1992]
178 show that these trends also extend to longer timescales, with average decreases of ~ 8 to $10\text{\textperthousand}$
179 yr^{-1} between 1989/90 and 2003, 2004, and 2005 for all samples collected above 21 km.

180 In addition to the propagation of the decreasing tropospheric trend and to differences due
181 to regional and relatively small-scale filaments of air encountered in the balloon flights, it is also
182 possible that variations in $\Delta^{14}\text{C}$ for the 2003, 2004, and 2005 datasets could arise from the time-
183 dependence of the radiocarbon production rates due to modulation of the cosmic ray flux by the
184 11-year cycle in solar activity [e.g., *Jockel et al.*, 2000]. Inputting an estimated upper limit to the
185 solar cycle modulation (see Methods) into the model, however, resulted in much smaller
186 variations in $\Delta^{14}\text{C}$ than either of the other two effects above – less than 2‰ for $250 < \text{N}_2\text{O} < 320$
187 ppb (not shown). While more realistic variations can be input into global models [e.g., *Jockel et*
188 *al.*, 2000], we expect the year-to-year variation due to the solar cycle between 2003 and 2005 to
189 be only a small fraction of that due to propagation of the tropospheric trend and, to first order,
190 can be neglected.

191 Importantly, the correlation of $\Delta^{14}\text{C}$ with N_2O also allows empirical estimates of (1) the
192 global net isoflux between the stratosphere and troposphere and (2) the global $\Delta^{14}\text{C}$ production
193 rate to be made. *Plumb & Ko* [1992] showed that the slope of the compact relationship between
194 two tracers that are in slope-equilibrium (that is, are long-lived with respect to vertical and quasi-
195 horizontal transport) is equal to the ratio of their net vertical fluxes. Since N_2O is destroyed only
196 in the stratosphere, the global net vertical flux of N_2O is simply the global N_2O loss rate, known
197 independently to be $4.50 \times 10^{11} (\pm 25\%) \text{ mol N}_2\text{O yr}^{-1}$ [*Minschwaner et al.*, 1993; *Prather and*
198 *Ehhalt*, 2001]. Thus, the global net vertical flux for other species of interest can be estimated
199 from the value of the slope of their correlations with N_2O , an approach used previously to
200 estimate global cross-tropopause fluxes of O_3 [*McLinden et al.*, 2000; *Murphy and Fahey*, 1994],
201 nitrogen oxides [*Murphy and Fahey*, 1994; *Olsen et al.*, 2001], meteoritic material [*Cziczo et al.*,
202 2001], and N_2O and CO_2 isotopologues [*Luz et al.*, 1999; *Park et al.*, 2004]; since air is returning
203 to the troposphere from the lower stratosphere, observations for N_2O mixing ratios > 250 ppb are
204 generally used. Indeed, model results in Fig 1c show that we expect that the $\Delta^{14}\text{C}:\text{N}_2\text{O}$
205 relationship is quite compact and nearly global for $\text{N}_2\text{O} > 250$ ppb (except for the deep tropics)
206 and hence that the *Plumb and Ko* approach for $\text{N}_2\text{O} > 250$ ppb is likely to provide a reasonable
207 approximation for the stratospheric radiocarbon production rate. From the data in Figure 2, we
208 can estimate a global net vertical $\Delta^{14}\text{C}$ flux between the stratosphere and troposphere using
209 Equation (1), based on *Luz et al.* [1999] and *Park et al.* [2004]:

210
$$\text{Global Net } \Delta^{14}\text{C flux} = MF_{air} [\text{CO}_2]_{strat} \left[m \cdot \left(-\frac{(L + G_{strat})}{MF_{air}} \right) + \Delta^{14}\text{C}_{trop} \right] - MF_{air} [\text{CO}_2]_{trop} [\Delta^{14}\text{C}_{trop}] \quad (1)$$

211 where MF_{air} is the air mass flux between the stratosphere and troposphere in mol air yr^{-1} ;
 212 $[\text{CO}_2]_{trop}$ and $[\text{CO}_2]_{strat}$ are the CO_2 mixing ratios for air entering and leaving the stratosphere,
 213 respectively; m is the slope of the stratospheric $\Delta^{14}\text{C}$: N_2O correlation for $\text{N}_2\text{O} > 250$ ppb, L is
 214 the global loss and G_{strat} is the net stratospheric growth rate of N_2O (4.5×10^{11} and 1.10×10^{10} mol
 215 N_2O yr^{-1} , respectively), and $\Delta^{14}\text{C}_{trop}$ is the tropospheric $\Delta^{14}\text{C}$ value in ‰. Furthermore, since
 216 $[\text{CO}_2]_{strat} = [\text{CO}_2]_{trop}$ to within 1%, Equation 1 simplifies to Equation (2).

217
$$\text{Global Net } \Delta^{14}\text{C flux} = [\text{CO}_2](m[-(L+G_{strat})]) \quad (2)$$

218 Using air mass fluxes from Appenzeller [1996] or Holton [1990] and corresponding CO_2 mixing
 219 ratios in Equation (1) or simply using Equation (2) yields a global net $\Delta^{14}\text{C}$ flux of 1.6×10^{17} ‰
 220 mol CO_2 yr^{-1} ($\pm 30\%$, 1σ); see Table S1 in supporting information. (Note that large differences in
 221 assumed air mass fluxes largely cancel out in isotope flux calculations [e.g., *Luz et al.*, 1999].)

222 Next, we note that the annually-averaged global net vertical $\Delta^{14}\text{C}$ flux from Equations (1) or
 223 (2) is equivalent to the annually-averaged stratospheric ^{14}C production rate. Assuming a
 224 stratospheric-to-total ^{14}C production ratio of 0.5 [Masarik and Beer, 1999] and multiplying by
 225 Avogadro's number, the Modern Standard ratio of mass-14 to mass-12 abundances of carbon
 226 (1.176×10^{-12}), and 0.001 to convert from ‰ to ^{14}C atoms yields a global ^{14}C production rate of
 227 $2.2 \pm 0.6 \times 10^{26}$ atoms ^{14}C yr^{-1} . This is the first completely empirical estimate of the global annual
 228 mean ^{14}C production rate that does not rely on estimates of reservoir sizes and exchange rates. It
 229 falls at the low end of the range in estimates from previous studies (Table 1), independently
 230 continuing the general downward trend of all the estimates. It is also lower than recent
 231 calculations by Kovaltsov *et al.* [2012] using updated galactic cosmic ray energy spectra for α -
 232 particles and heavier nuclei which they assert explains the reduction relative to the many earlier
 233 calculations. Our stated 1σ uncertainty of 30% includes summing the uncertainties in the N_2O
 234 loss rate (25%) and the Williamson-York iterative bivariate fit [Cantrell, 2008] to the $^{14}\text{CO}_2$: N_2O
 235 correlation (~5%), as well as considering small differences between using the 2004, 2005, or the
 236 combined dataset (Table S1), or using a lower cut-off of 250 vs. 280 ppb N_2O . Not included are
 237 possible systematic errors that could result from assuming that (1) the *Plumb and Ko* method is

238 globally applicable based on midlatitude measurements, (2) the stratospheric-to-total ^{14}C
239 production ratio is 0.5, and (3) the loss of stratospheric ^{14}CO to the troposphere before oxidation
240 to $^{14}\text{CO}_2$ is small. For (1), we believe that the *Plumb and Ko* method is reasonably sound since
241 the global production rate in the IMPACT model can be retrieved using the modeled $^{14}\text{CO}_2:\text{N}_2\text{O}$
242 correlations (but with some uncertainty due to sparse model points for $\text{N}_2\text{O} > 250$ ppb); see Table
243 1. For (2), if the true stratospheric-to-total production ratio is as high as 0.65 [*Masarik and Beer*,
244 1999], our estimated global ^{14}C production rate would be even lower by 20%. For (3), we used
245 ^{14}CO observations from 1993 [*Brenninkmeijer et al.*, 1995] to estimate a conservative upper
246 bound for a low bias in our global ^{14}C production rate due to ^{14}CO loss to the troposphere of
247 <5%. In addition, we note that sunspot number was a maximum in 2001 and a minimum in 2008
248 [*Gray et al.*, 2010]; thus the 2004 and 2005 data likely represent mid-solar cycle ^{14}C production
249 rates, integrated over the midlatitude stratospheric age spectrum for $\text{N}_2\text{O} > 250$ ppb (with a mean
250 age ≤ 2 years [*Andrews et al.*, 2001]). Our simplified solar cycle model results suggest an upper
251 limit less than $\sim 10\%$ higher and a lower limit $\sim 5\%$ lower than the production rate estimated from
252 the 2004/2005 observations (Table 1). Given that the uncertainty in the N_2O loss rate is a
253 constant systematic rather than random error, such a solar cycle variation may be detectable from
254 additional ^{14}C and N_2O measurements that span a solar cycle, while reduction in the N_2O loss
255 rate uncertainty could narrow the overall uncertainty in the absolute global ^{14}C production rate.

256 Finally, Figure 1d shows that using different meteorological inputs in the same model yields
257 very large differences in predicted $^{14}\text{CO}_2$ levels. The model results using MACCM3 meteorology
258 simulate the $\Delta^{14}\text{C}$ observations well, and this meteorology is known to produce mean ages that
259 are in generally good agreement with observations [e.g., *Strahan et al.*, 2011]. In contrast, the
260 FVCCM and FVDAS meteorologies used here are known [*Schoeberl et al.*, 2003] to produce
261 larger and smaller mean ages, respectively. The predicted $^{14}\text{CO}_2$ levels using these met fields
262 also follow this order: too high for a residual circulation that is likely too slow and too low for a
263 residual circulation that is too fast. These results demonstrate that contemporary radiocarbon
264 measurements and their modeling provide important new constraints on stratospheric transport
265 into, within, and out of the stratosphere and can serve as a sensitive new model diagnostic. Such
266 constraints are greatly needed to accurately predict the timing of the recovery of the ozone layer
267 as climate changes and to determine whether the stratospheric circulation is speeding up as the
268 climate is warming. For example, a combination of mean age estimates from earlier tracer

269 observations [Engel *et al.*, 2009; Stiller *et al.*, 2012] suggests that there has been no change in
270 mean age over the past 30 years (at least at altitudes of 25-30 km at midlatitudes and to within
271 the uncertainties), while models suggest it should have decreased significantly due to both ozone
272 depletion and radiative forcing [e.g., Butchart *et al.*, 2010; Li *et al.*, 2012] and there appear to
273 have been significant increases in tropical upwelling [Kawatani and Hamilton, 2013; Randel *et*
274 *al.*, 2006]. If tropical upwelling has increased but mean ages have not, then to reconcile both
275 there must be a faster circulation in the lower stratosphere than in the middle stratosphere (and/or
276 more air recirculating back into the tropics via the lower stratosphere or the upper troposphere)
277 [e.g., Bonisch *et al.*, 2011]. Stratospheric radiocarbon, which is expected to be a tracer of
278 stratospheric residence times [e.g., Hall and Waugh, 2000], may best test these features of the
279 stratospheric circulation and how they may be changing over time and whether models are
280 capturing the most important circulation features (and their sensitivity to climate) or not.
281 Validation of stratospheric $\Delta^{14}\text{C}$ levels and reliable fluxes of $\Delta^{14}\text{C}$ to the troposphere in models
282 will also reduce uncertainties in carbon cycle studies that aim to partition radiocarbon signals at
283 the surface between the atmosphere, oceans, terrestrial biosphere and human influences such as
284 fossil fuel burning for which a higher time and spatial resolution of flux to the troposphere is
285 needed beyond the annual mean estimate we provide here.

286

287 **4. Conclusions**

288 Measurements of radiocarbon ($\Delta^{14}\text{C}$ of CO_2) and N_2O mixing ratios from 59 whole air samples
289 collected in 2003, 2004, and 2005 between 15 and 33 km at $\sim 34^\circ\text{N}$, and their comparison with
290 model simulations using a 3D CTM, show that contemporary stratospheric radiocarbon levels are
291 governed by cosmogenic production and stratospheric transport, as well as by propagation of the
292 decreasing $\Delta^{14}\text{C}$ trend in tropospheric CO_2 . From the correlation of $\Delta^{14}\text{C}$ of CO_2 with N_2O ,
293 coupled with independent knowledge of the N_2O loss rate, the global net vertical ^{14}C isoflux to
294 the troposphere and the global production rate were empirically estimated for 2004-2005, with
295 the global production rate falling at the low end of estimates and calculations from previous
296 studies. In addition to the entirely empirical net isoflux and global production rate for ^{14}C useful
297 for carbon cycle studies, our work indicates that stratospheric $^{14}\text{CO}_2$ can provide new diagnostics
298 for mean ages and residence times in stratospheric models.

299 **Acknowledgements**

300 We thank Rich Lueb and Roger Hendershot for development and deployment of the
301 Cryosampler and X. Zhu and L. Pope for laboratory assistance. We gratefully acknowledge
302 support from NASA UARP (NNX13AH10G and NNX09AJ95G to KAB and NNX13AH20G
303 and NNX12AH02G to ELA); UC Lab Fees LF-09-118804 to KAB and PCS; UC IGPP/LLNL
304 07-GS-019 to KAB and TG; NOAA Climate Program Office (NA05OAR4311166 to TG), and
305 to the Lawrence Scholar's Program for AK; portions of this work were performed under the
306 auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (W-
307 7405-Eng-48 and DE-AC52-07NA27344 by AK, TG, PC, and DB). All measurements are
308 available online in supporting information.

309

References

311 Andrews, A. E., et al. (2001), Mean ages of stratospheric air derived from in situ observations of CO₂,
 312 CH₄, and N₂O, *Journal of Geophysical Research-Atmospheres*, 106(D23), 32295-32314. doi:
 313 10.1029/2001JD000465.

314 Appenzeller, C., J. R. Holton, and K. H. Rosenlof (1996), Seasonal variation of mass transport across the
 315 tropopause, *Journal of Geophysical Research-Atmospheres*, 101(D10), 15071-15078. doi:
 316 10.1029/96JD00821.

317 Boering, K. A., S. C. Wofsy, B. C. Daube, H. R. Schneider, M. Loewenstein, and J. R. Podolske (1996),
 318 Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous
 319 oxide, *Science*, 274(5291), 1340-1343. doi: 10.1126/science.274.5291.1340.

320 Bonisch, H., A. Engel, T. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray (2011), On the structural changes in
 321 the Brewer-Dobson circulation after 2000, *Atmospheric Chemistry and Physics*, 11(8), 3937-
 322 3948. doi: 10.5194/acp-11-3937-2011.

323 Braziunas, T. F., I. Y. Fung, and M. Stuiver (1995), The preindustrial atmospheric ¹⁴CO₂ latitudinal
 324 gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs, *Global
 325 Biogeochemical Cycles*, 9, 565-584. doi: 10.1029/95GB01725.

326 Brenninkmeijer, C. A. M., D. C. Lowe, M. R. Manning, R. J. Sparks, and P. F. J. van Velthoven (1995), The
 327 ¹³C, ¹⁴C, and ¹⁸O isotopic composition of CO, CH₄, and CO₂ in the higher southern latitudes
 328 lower stratosphere, *Journal Geophysical Research*, 100(D12), 26163-26172. doi:
 329 10.1029/95JD02528.

330 Broecker, W. S., and T. H. Peng (1994), Stratospheric contribution to the global bomb radiocarbon
 331 inventory: Model versus observation, *Global Biogeochemical Cycles*, 8(3), 377-384. doi:
 332 10.1029/94GB00680.

333 Butchart, N., et al. (2010), Chemistry-Climate Model Simulations of Twenty-First Century Stratospheric
 334 Climate and Circulation Changes, *Journal of Climate*, 23(20), 5349-5374. doi:
 335 10.1175/2010JCLI3404.1.

336 Caldeira, K., G. H. Rau, and P. B. Duffy (1998), Predicted net efflux of radiocarbon from the ocean and
 337 increase in atmospheric radiocarbon content, *Geophysical Research Letters*, 25(20), 3811-3814.
 338 doi: 10.1029/1998GL900010.

339 Cantrell, C. A. (2008), Technical Note: Review of methods for linear least-squares fitting of data and
 340 application to atmospheric chemistry problems, *Atmospheric Chemistry and Physics*, 8(17),
 341 5477-5487. doi: 10.5194/acp-8-5477-2008.

342 Cziczo, D. J., D. S. Thomson, and D. M. Murphy (2001), Ablation, flux, and atmospheric implications of
 343 meteors inferred from stratospheric aerosol, *Science*, 291(5509), 1772-1775. doi:
 344 10.1126/science.1057737.

345 Damon, P. E., J. C. Lerman, and A. Long (1978), Temporal Fluctuations of Atmospheric ¹⁴C: Causal
 346 Factors and Implications, *Annual Review of Earth and Planetary Sciences*, 6(1), 457-494. doi:
 347 10.1146/annurev.ea.06.050178.002325.

348 Engel, A., et al. (2009), Age of stratospheric air unchanged within uncertainties over the past 30 years,
 349 *Nat. Geosci.*, 2(1), 28-31. doi: 10.1038/ngeo388.

350 Froidevaux, L., et al. (2006), Early validation analyses of atmospheric profiles from EOS MLS on the Aura
 351 satellite, *IEEE Transactions on Geoscience and Remote Sensing*, 44(5), 1106-1121. doi:
 352 10.1109/TGRS.2006.864366.

353 Graven, H. D., T. P. Guilderson, and R. F. Keeling (2012a), Observations of radiocarbon in CO₂ at La Jolla,
 354 California, USA 1992-2007: Analysis of the long-term trend, *Journal of Geophysical Research-
 355 Atmospheres*, 117, D02302. doi: 10.1029/2011jd016533.

356 Graven, H. D., T. P. Guilderson, and R. F. Keeling (2012b), Observations of radiocarbon in CO₂ at seven
357 global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal
358 cycles, *Journal of Geophysical Research-Atmospheres*, 117, D0203. doi: 10.1029/2011jd016535.

359 Gray, L. J., et al. (2010), Solar Influences on climate, *Reviews of Geophysics*, 48, 53. doi:
360 10.1029/2009rg000282.

361 Guilderson, T. P., K. Caldeira, and P. B. Duffy (2000), Radiocarbon as a diagnostic tracer in ocean and
362 carbon cycle modeling, *Global Biogeochemical Cycles*, 14(3), 887-902. doi:
363 10.1029/1999GB001192.

364 Hall, T. M., and D. W. Waugh (2000), Stratospheric residence time and its relationship to mean age,
365 *Journal of Geophysical Research-Atmospheres*, 105(D5), 6773-6782. doi:
366 10.1029/1999JD901096.

367 Hesshaimer, V., and I. Levin (2000), Revision of the stratospheric bomb (CO₂)-C-14 inventory, *Journal of*
368 *Geophysical Research-Atmospheres*, 105(D9), 11641-11658. doi: 10.1029/1999JD901134.

369 Holton, J. R. (1990), On the global exchange of mass between the stratosphere and the troposphere,
370 *Journal of Atmospheric Science*, 47, 392-395. doi: 10.1175/1520-
371 0469(1990)047<0392:OTGEOM>2.0.CO;2.

372 Jackman, C. H., A. R. Douglass, K. F. Brueske, and S. A. Klein (1991), The influence of dynamics on two-
373 dimensional model results: Simulations of ¹⁴C and stratospheric aircraft NO_x injections, *Journal of*
374 *Geophysical Research*, 96, 22559-22572. doi: 10.1029/91JD02510.

375 Jockel, P., M. G. Lawrence, and C. A. M. Brenninkmeijer (1999), Simulations of cosmogenic (CO)-C-14
376 using the three-dimensional atmospheric model MATCH: Effects of C-14 production distribution
377 and the solar cycle, *Journal of Geophysical Research-Atmospheres*, 104(D9), 11733-11743. doi:
378 10.1029/1999jd900061.

379 Jockel, P., C. A. M. Brenninkmeijer, and M. G. Lawrence (2000), Atmospheric response time of
380 cosmogenic (CO)-C-14 to changes in solar activity, *Journal of Geophysical Research-
381 Atmospheres*, 105(D5), 6737-6744. doi: 10.1029/1999JD901140.

382 Johnston, H. S. (1989), Evaluation of excess C-14 and Sr-90 data for suitability to test two-dimensional
383 stratospheric models, *Journal of Geophysical Research*, 94(D15), 18485-18493. doi:
384 10.1029/JD094iD15p18485.

385 Kawatani, Y., and K. Hamilton (2013), Weakened stratospheric quasi-biennial oscillation driven by
386 increased tropical mean upwelling, *Nature*, 497(7450), 478-. doi: 10.1038/nature12140.

387 Kinnison, D. E., H. S. Johnston, and D. J. Wuebbles (1994), Model study of atmospheric transport using
388 carbon 14 and strontium 90 as inert tracers, *Journal of Geophysical Research*, 99(D10), 20647-
389 20664. doi: 10.1029/94JD01822.

390 Koch, D., and D. Rind (1998), Beryllium-10/beryllium-7 as a tracer of stratospheric transport, *Journal of*
391 *Geophysical Research*, 103(D4), 3907-3917. doi: 10.1029/97JD03117.

392 Kovaltsov, G. A., A. Mishev, and I. G. Usoskin (2012), A new model of cosmogenic production of
393 radiocarbon C-14 in the atmosphere, *Earth Planet. Sci. Lett.*, 337, 114-120. doi:
394 10.1016/j.epsl.2012.05.036.

395 Lal, D., and B. Peters (1967), Cosmic Ray Produced Radioactivity on the Earth, in *Kosmische Strahlung II /*
396 *Cosmic Rays II*, edited by K. Sitte, pp. 551-612, Springer Berlin Heidelberg.

397 Levin, I., and V. Hesshaimer (2000), Radiocarbon - A unique tracer of global carbon cycle dynamics,
398 *Radiocarbon*, 42(1), 69-80.

399 Levin, I., B. Kromer, M. Schmidt, and H. Sartorius (2003), A novel approach for independent budgeting of
400 fossil fuel CO₂ over Europe by ¹⁴CO₂ observations, *Geophysical Research Letters*, 30(23),
401 doi:10.1029/2003GL018477.

402 Levin, I., T. Naegler, B. Kromer, M. Diehl, R. J. Francey, A. J. Gomez-Pelaez, L. P. Steele, D. Wagenbach, R.
403 Weller, and D. E. Worthy (2010), Observations and modelling of the global distribution and long-

404 term trend of atmospheric $^{14}\text{CO}(2)$, *Tellus Series B-Chemical and Physical Meteorology*, 62(1),
405 26-46. doi: 10.1111/j.1600-0889.2009.00446.x.

406 Li, F., D. W. Waugh, A. R. Douglass, P. A. Newman, S. E. Strahan, J. Ma, J. E. Nielsen, and Q. Liang (2012),
407 Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth
408 Observing System Chemistry-Climate Model (GEOSCCM), *Journal of Geophysical Research-
409 Atmospheres*, 117, D20119. doi: 10.1029/2012jd017905.

410 Light, E. S., M. Merker, H. J. Verschell, R. B. Mendell, and S. A. Korff (1973), Time dependent worldwide
411 distribution of atmospheric neutrons and of their products: 2. Calculation, *Journal of
412 Geophysical Research*, 78(16), 2741-2762. doi: 10.1029/JA078i016p02741.

413 Lingenfelter, R. E. (1963), Production of Carbon-14 by cosmic-ray neutrons, *Reviews of Geophysics*, 1(1),
414 35-55. doi: 10.1029/RG001i001p00035.

415 Lowe, D. C., and W. Allan (2002), A simple procedure for evaluating global cosmogenic C-14 production
416 in the atmosphere using neutron monitor data, *Radiocarbon*, 44(1), 149-157.

417 Lueb, R. A., D. H. Ehhalt, and L. E. Heidt (1975), Balloon-borne low temperature air sampler, *Reviews of
418 Scientific Instruments*, 46(6), 702-705. doi: 10.1063/1.1134292.

419 Luz, B., E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering (1999), Triple-isotope composition of
420 atmospheric oxygen as a tracer of biosphere productivity, *Nature*, 400(6744), 547-550. doi:
421 doi:10.1038/22987.

422 Masarik, J., and J. Beer (1999), Simulation of particle fluxes and cosmogenic nuclide production in the
423 Earth's atmosphere, *Journal of Geophysical Research*, 104(D10), 12099-12111. doi:
424 10.1029/1998JD200091.

425 McLinden, C. A., S. C. Olsen, B. Hannegan, O. Wild, M. J. Prather, and J. Sundet (2000), Stratospheric
426 ozone in 3-D models: A simple chemistry and the cross-tropopause flux, *Journal of Geophysical
427 Research-Atmospheres*, 105(D11), 14653-14665. doi: 10.1029/2000JD900124.

428 Minschwaner, K., R. J. Salawitch, and M. B. McElroy (1993), Absorption of solar radiation by O₂:
429 Implications for O₃ and lifetimes of N₂O, CFC13, and CF₂Cl₂, *Journal of Geophysical Research*,
430 98(D6), 10,543-10,561. doi: 10.1029/93JD00223.

431 Murphy, D. M., and D. W. Fahey (1994), An estimate of the flux of stratospheric reactive nitrogen and
432 ozone into the troposphere, *Journal of Geophysical Research*, 99(D3), 5325-5332. doi:
433 10.1029/93JD03558.

434 Nakamura, T., T. Nakazawa, H. Honda, H. Kitagawa, T. Machida, A. Ikeda, and E. Matsumoto (1994),
435 Seasonal variation in C-14 concentrations of stratospheric CO₂ measured with accelerator mass
436 spectrometry, *Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions
437 with Materials and Atoms*, 92(1-4), 413-416. doi: 10.1016/0168-583x(94)96045-3.

438 Nakamura, T., T. Nakazawa, N. Nakai, H. Kitagawa, H. Honda, T. Itoh, T. Machida, and E. Matsumoto
439 (1992), Measurement of C-14 concentration of stratospheric CO₂ by accelerator mass
440 spectrometry, *Radiocarbon*, 34(3), 745-752.

441 O'Brien, K. (1979), Secular variations in the production of cosmogenic isotopes in the Earth's
442 atmosphere, *Journal of Geophysical Research: Space Physics*, 84(A2), 423-431. doi:
443 10.1029/JA084iA02p00423.

444 Olsen, S. C., C. A. McLinden, and M. J. Prather (2001), Stratospheric N₂O-NO_y system: Testing
445 uncertainties in a 3-dimensional framework, *Journal of Geophysical Research*, 106(D23), 28771-
446 28784. doi: 10.1029/2001JD000559.

447 Park, J., M. K. W. Ko, C. H. Jackman, R. A. Plumb, and K. H. Sage (1999), Report of the 1998 Models and
448 Measurements II Workshop, *NASA Reference Publication*, NASA/TM-1999-209554.

449 Park, S., E. L. Atlas, and K. A. Boering (2004), Measurements of N₂O isotopologues in the stratosphere:
450 Influence of transport on the apparent enrichment factors and the isotopologue fluxes to the

451 troposphere, *Journal of Geophysical Research-Atmospheres*, 109(D1), D01305. doi:
 452 10.1029/2003JD003731.

453 Plumb, R. A. (2007), Tracer interrelationships in the stratosphere, *Reviews of Geophysics*, 45(4), RG4005.
 454 doi: 10.1029/2005RG000179.

455 Plumb, R. A., and M. K. W. Ko (1992), Interrelationships between mixing ratios of long-lived
 456 stratospheric constituents, *Journal of Geophysical Research*, 97, 10145-10156. doi:
 457 10.1029/92JD00450.

458 Prather, M. J., and E. Remsberg (1993), The atmospheric effects of stratospheric aircraft: Report of the
 459 1992 Models and Measurements Workshop, *NASA Reference Publication* 1291.

460 Prather, M. J., and D. H. Ehhalt (2001), Atmospheric chemistry and greenhouse gases, in *Climate Change
 461 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the
 462 Intergovernmental Panel on Climate Change* edited by J. T. Houghton, Cambridge University
 463 Press, Cambridge, United Kingdom, and New York, NY.

464 Randel, W. J., F. Wu, H. Vomel, G. E. Nedoluha, and P. Forster (2006), Decreases in stratospheric water
 465 vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson
 466 circulation, *Journal of Geophysical Research-Atmospheres*, 111(D12), D12312. doi:
 467 10.1029/2005jd006744.

468 Randerson, J. T., I. G. Enting, E. A. G. Schuur, K. Caldeira, and I. Y. Fung (2002), Seasonal and latitudinal
 469 variability of troposphere Delta(CO₂)-C-14: Post bomb contributions from fossil fuels, oceans,
 470 the stratosphere, and the terrestrial biosphere, *Global Biogeochemical Cycles*, 16(4), 1112. doi:
 471 10.1029/2002gb001876.

472 Riley, W. J., D. Y. Hsueh, J. T. Randerson, M. L. Fischer, J. G. Hatch, D. E. Pataki, W. Wang, and M. L.
 473 Goulden (2008), Where do fossil fuel carbon dioxide emissions from California go? An analysis
 474 based on radiocarbon observations and an atmospheric transport model, *Journal of Geophysical
 475 Research-Biogeosciences*, 113(G4), G04002. doi: 10.1029/2007jg000625.

476 Rotman, D. A., et al. (2004), IMPACT, the LLNL 3-D global atmospheric chemical transport model for the
 477 combined troposphere and stratosphere: Model description and analysis of ozone and other
 478 trace gases, *Journal of Geophysical Research-Atmospheres*, 109(D4), D04303. doi:
 479 10.1029/2002jd003155.

480 Schoeberl, M. R., A. R. Douglass, Z. X. Zhu, and S. Pawson (2003), A comparison of the lower
 481 stratospheric age spectra derived from a general circulation model and two data assimilation
 482 systems, *Journal of Geophysical Research-Atmospheres*, 108(D3), 4113. doi:
 483 10.1029/2002jd002652.

484 Stiller, G. P., et al. (2012), Observed temporal evolution of global mean age of stratospheric air for the
 485 2002 to 2010 period, *Atmospheric Chemistry and Physics*, 12(7), 3311-3331. doi: 10.5194/acp-
 486 12-3311-2012.

487 Strahan, S. E., et al. (2011), Using transport diagnostics to understand chemistry climate model ozone
 488 simulations, *Journal of Geophysical Research-Atmospheres*, 116, D17302. doi:
 489 10.1029/2010jd015360.

490 Stuiver, M., and H. A. Polach (1977), Reporting of C-14 data - Discussion, *Radiocarbon*, 19(3), 355-363.

491 Suess, H. E. (1955), Radiocarbon concentration in modern wood, *Science*, 122, 415-417. doi:
 492 10.1126/science.122.3166.415-a.

493 Suess, H. E. (1965), Secular variations of cosmic-ray-produced Carbon-14 in atmosphere and their
 494 interpretations *Journal of Geophysical Research*, 70(23), 5937. doi: 10.1029/JZ070i023p05937.

495 Trumbore, S. (2000), Age of soil organic matter and soil respiration: Radiocarbon constraints on
 496 belowground C dynamics, *Ecological Applications*, 10(2), 399-411. doi: 10.1890/1051-
 497 0761(2000)010[0399:AOSOMA]2.0.CO;2.

Table 1: Comparison of Global ^{14}C Production Rates

Global Mean ^{14}C Production Rate (10^{26} atoms ^{14}C yr^{-1})	Time Period	Solar Max, Solar Min Production Rate (10^{26} atoms ^{14}C yr^{-1})	Study
2.2 (± 0.6)	~ 2002 -2005 (mid-Solar Cycle 23)	--	This work (Empirically-derived from ^{14}C : N_2O observations) ^a
1.8-2.4 ^b	--	2.1, 2.4 ^c	This work (Derived from IMPACT model results for ^{14}C and N_2O) ^a
2.33	--	--	This work (Global mean production rate in the IMPACT model) ^d
4.0(± 0.8)	1867-1963	3.3, 4.2	Lingenfelter [1963] (calculated)
2.9			Suess [1965] (^{14}C inventory)
3.7(± 0.4)	1964-1976	3.1, 4.2	Light <i>et al.</i> [1973] (calculated)
3.2			Damon <i>et al.</i> [1978] (^{14}C inventory)
2.9		2.6, 3.1	O' Brien [1979] (calculated)
3.3(± 0.3)	1953-1995	2.7-3.9	Masarik and Beer [1999] (calculated)
2.96 or 3.68 ^e	1989-2001	~ 2.2 , 3.5 or 2.4, 4.3	Lowe and Allen [2002] (calculated)
2.1			Levin <i>et al.</i> [2010] (^{14}C inventory)
2.64	1951-2010	1.8, 3.5	Kovaltsov <i>et al.</i> [2012] (calculated)

^a Using the relationship between ^{14}C and N_2O in the lower stratosphere (see text).

^b Including model results for 34° and 50°N .

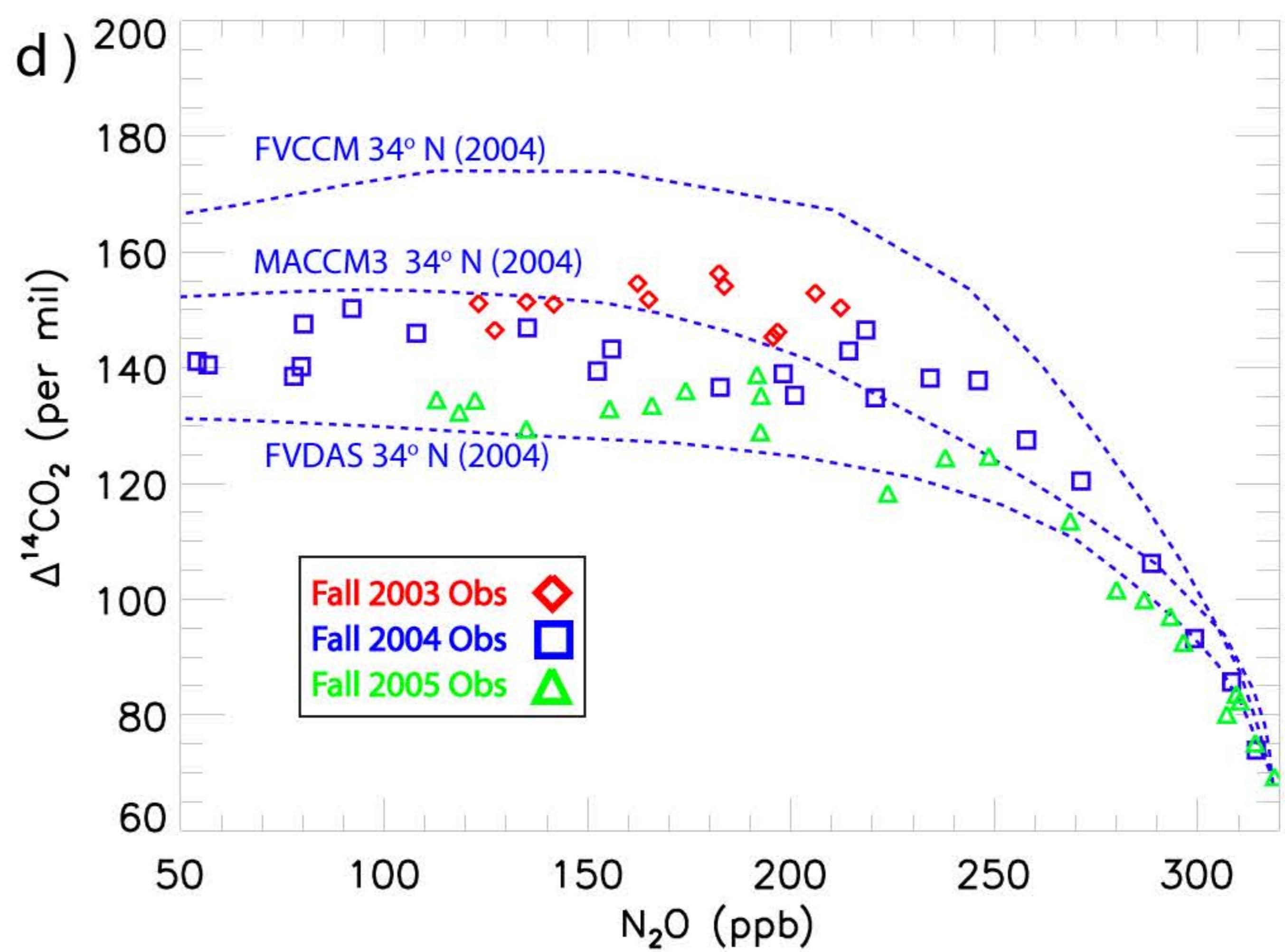
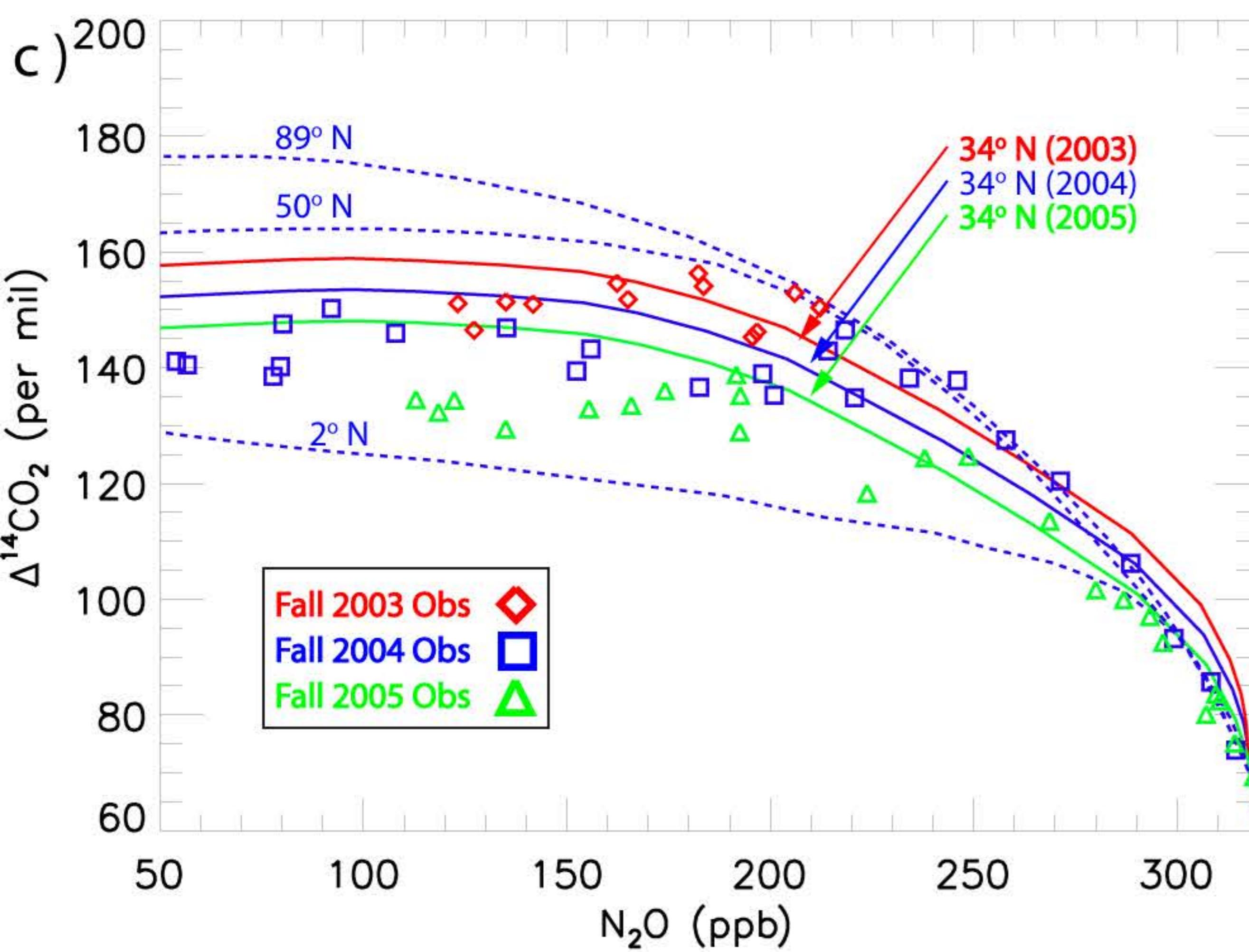
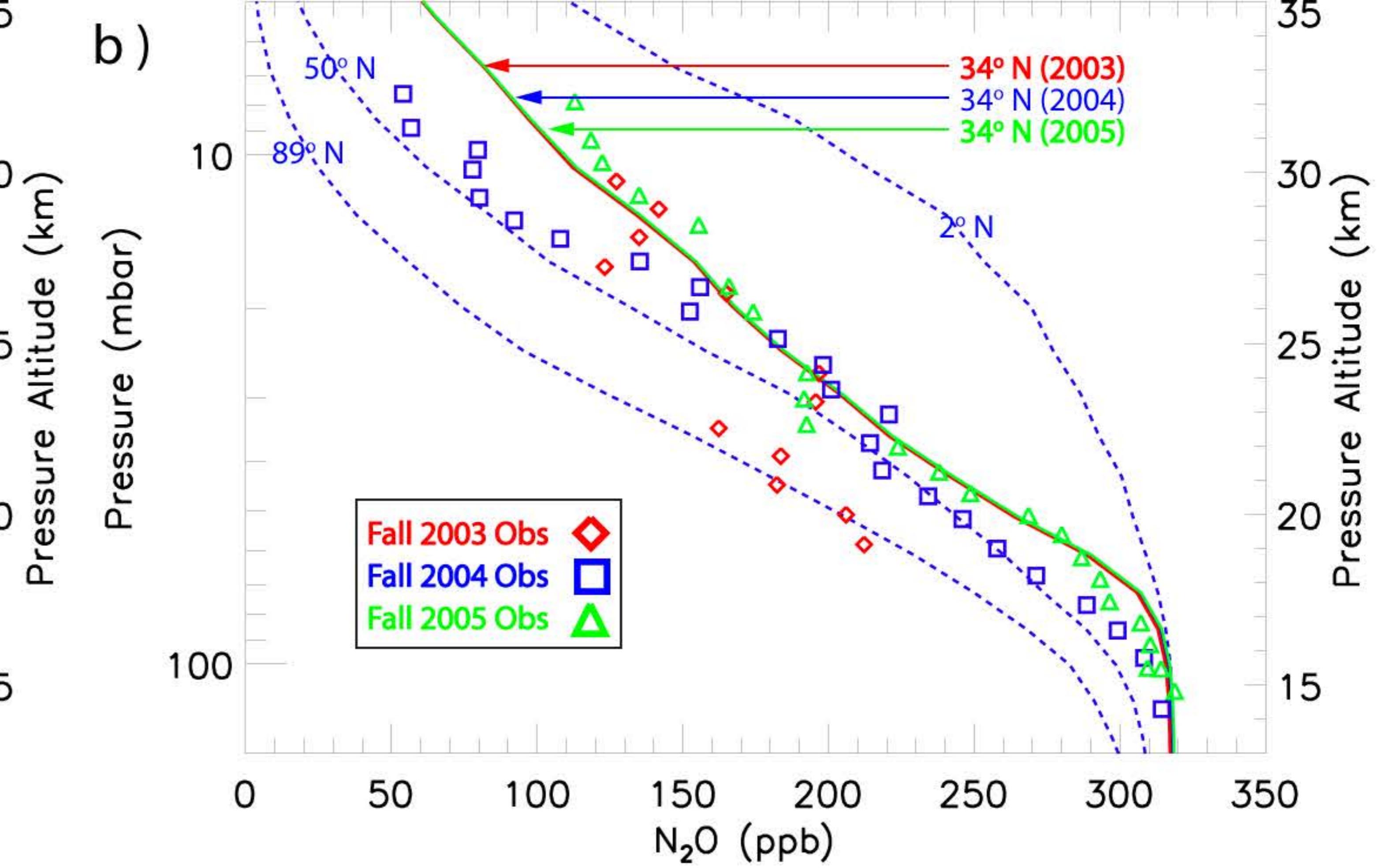
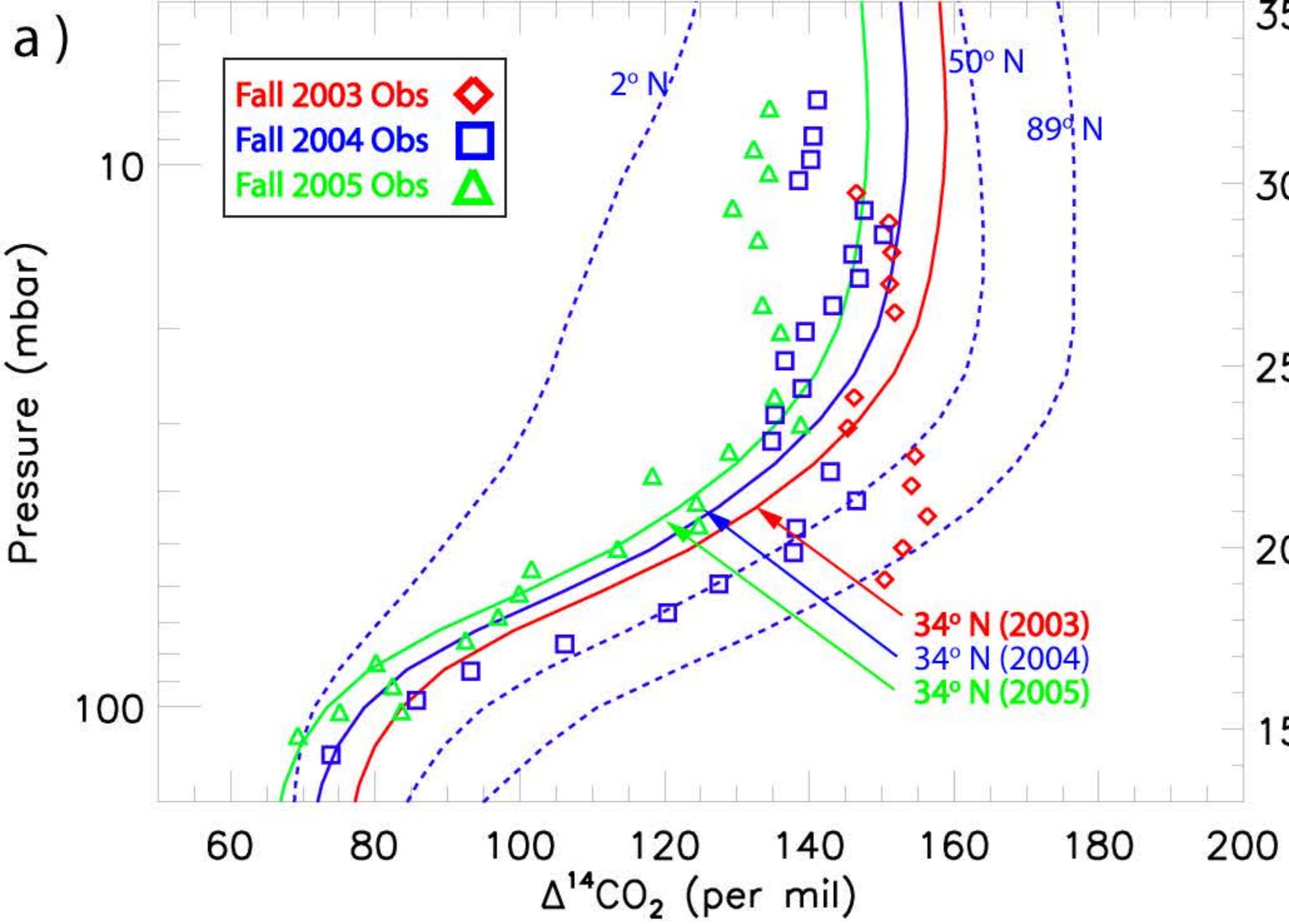
^c Estimate of upper ($2.2+10\%$) and lower limit ($2.2-5\%$) to Plumb & Ko-based method using IMPACT model results with a 10% solar cycle variation in ^{14}C production rate everywhere extrapolating from the empirical production rate from 2004/2005.

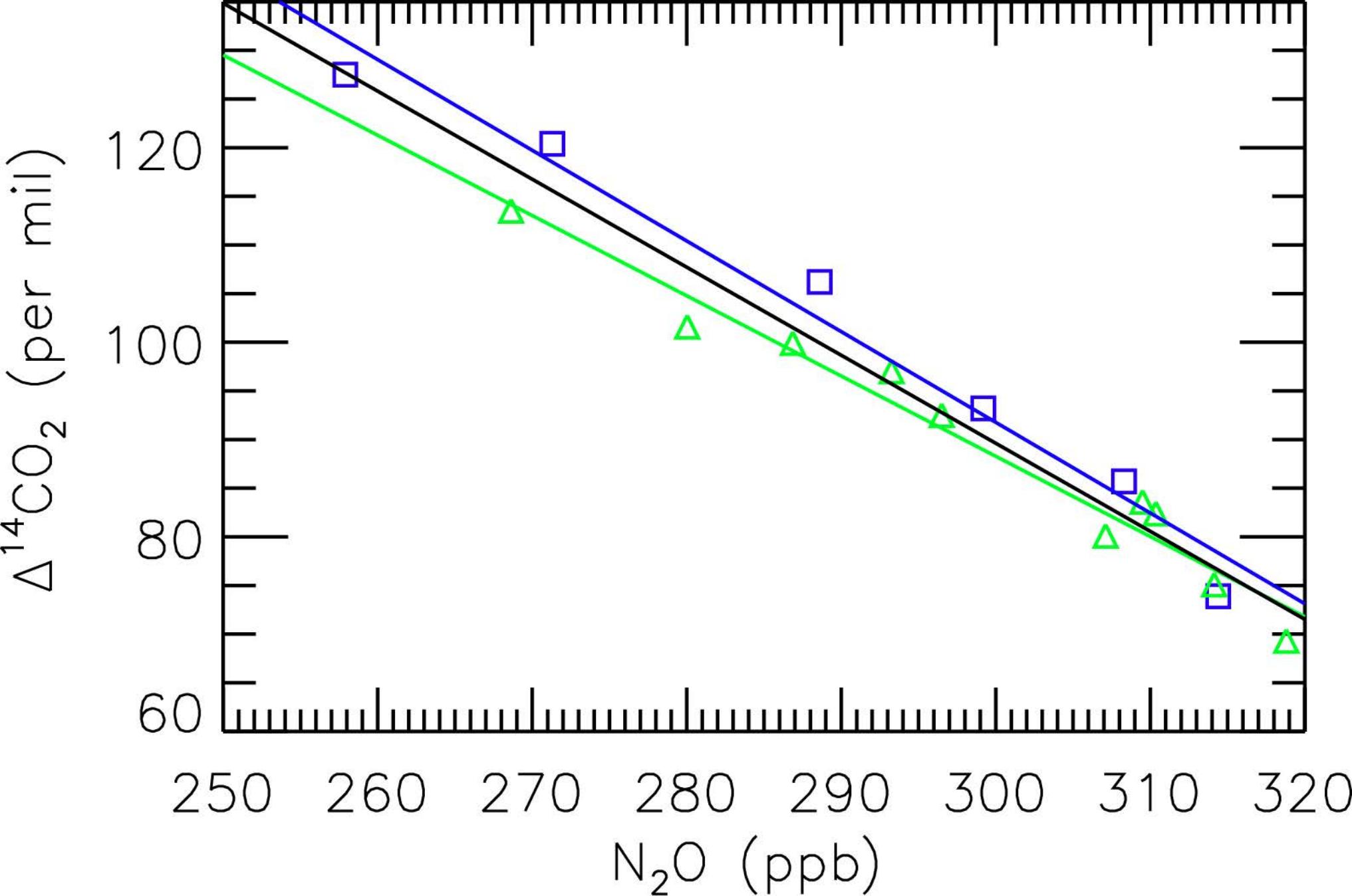
^d Total ^{14}C content in the atmosphere in the IMPACT model after one year with the planetary boundary layer sink turned off, using the Koch and Rind [1998] implementation of ^{14}C rates from Lal and Peters [1967].

^e Value depends on the functional form of the relationship between the solar modulation parameter, Φ , and the ^{14}C yield.

512

Figure Captions





513


514 **Figure 1:** (a) $\Delta^{14}\text{C}$ of CO_2 and (b) N_2O versus pressure (mbar) and pressure altitude (km) for
515 samples collected from the Cryogenic Whole Air Sampler (CWAS) at 34°N over Fort Sumner,
516 NM (symbols) for single flights in 2003, 2004, and 2005, along with IMPACT model results
517 using meteorological fields from MACCM3 for 34°N (solid lines, color-coded by year) and at the
518 additional latitudes indicated for 2004 (dashed lines). (c) and (d): $\Delta^{14}\text{C}$ of CO_2 versus N_2O from the
519 CWAS samples (symbols) along with model results for different latitudes using MACCM3 (in c)
520 and using the FVDAS, MACCM3, FVCCM meteorologies at 34°N (in d).

521

522 **Figure 2:** $\Delta^{14}\text{C}$ vs N_2O for $\text{N}_2\text{O} > 250$ ppb (nmol/mol) for the data in Fig. 1; also shown are the
523 Williamson-York bivariate fits [Cantrell, 2008] for 2004 (blue line; $m = -0.93 \pm 0.07$), 2005 (green
524 line; $m = -0.82 \pm 0.06$), and the combined 2004/2005 dataset (black line; $m = -0.90 \pm 0.05$), yielding
525 a global ^{14}C production rate of 2.30, 2.04, and 2.24×10^{26} atoms yr^{-1} , respectively, with
526 uncertainties of $\pm 30\%$ (1σ), using Equation 2.

527

Geophysical Research Letters

Supporting Information for

Measurements and Modeling of Contemporary Radiocarbon in the Stratosphere

A.M. Kanu^{1,2}, L.L. Comfort¹, T.P. Guilderson³, P.J. Cameron-Smith², D.J. Bergmann², E.L. Atlas⁴, S. Schauffler⁵, K.A. Boering^{1,6}

¹Department of Chemistry, University of California, Berkeley, Berkeley, California, USA, ²Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, California, USA, ³Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA,

⁴Department of Atmospheric Sciences, University of Miami, Miami, Florida, USA, ⁵Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA, ⁶Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA.

Contents of this file

Tables S1 to S2

Table S1: Empirically Derived Global Net Isoflux and Global Mean Production Rate of ^{14}C

Net Isoflux (% mol $\text{CO}_2 \text{ yr}^{-1}$)	2004 ^a	2005 ^a	2004 & 2005 ^a
Equation (1) with the Appenzeller <i>et al.</i> [1996] Air Mass Flux 2.35×10^{19} mol air yr^{-1} (across the 380 K surface)	1.61×10^{17} $\text{CO}_2 \text{ strat} = 376.9$ $\text{CO}_2 \text{ trop} = 377.7$	1.43×10^{17} $\text{CO}_2 \text{ strat} = 378.8$ $\text{CO}_2 \text{ trop} = 379.6$	1.56×10^{17} $\text{CO}_2 \text{ strat} = 377.9$ $\text{CO}_2 \text{ trop} = 378.6$
Equation (1) with the Holton [1990] Air Mass Flux 6.91×10^{18} mol air yr^{-1} (across the 100 mbar surface)	1.58×10^{17} $\text{CO}_2 \text{ strat} = 373.3$ $\text{CO}_2 \text{ trop} = 377.7$	1.41×10^{17} $\text{CO}_2 \text{ strat} = 375.2$ $\text{CO}_2 \text{ trop} = 379.6$	1.54×10^{17} $\text{CO}_2 \text{ strat} = 374.2$ $\text{CO}_2 \text{ trop} = 378.6$
Equation (2) assuming $[\text{CO}_2]_{\text{strat}} = [\text{CO}_2]_{\text{trop}}$ (independent of air mass flux)	1.62×10^{17} $[\text{CO}_2] = 377.7$	1.44×10^{17} $[\text{CO}_2] = 379.6$	1.58×10^{17} $[\text{CO}_2] = 378.6$

Best Estimate: $1.6(\pm 0.4) \times 10^{17}$ % mol $\text{CO}_2 \text{ yr}^{-1}$

Global Mean Production Rate (atoms $^{14}\text{C} \text{ yr}^{-1}$) ^b			
Appenzeller Flux	2.28×10^{26}	2.02×10^{26}	2.22×10^{26}
Holton Flux	2.24×10^{26}	1.99×10^{26}	2.18×10^{26}
$\text{CO}_2(\text{strat}) = \text{CO}_2(\text{trop})$	2.30×10^{26}	2.04×10^{26}	2.24×10^{26}

Best Estimate: $2.2(\pm 0.6) \times 10^{26}$ atoms $^{14}\text{C} \text{ yr}^{-1}$

^a Results are shown for $\text{N}_2\text{O} > 250$ ppbv. The 1σ uncertainties from summing errors in N_2O global loss rate (25%, 1σ) and the Williamson-York bivariate fit to the $\Delta^{14}\text{C}:\text{N}_2\text{O}$ relationship (5%, 1σ) are $\pm 30\%$.

^b $[\text{CO}_2]_{\text{strat}}$ in air returning to the troposphere was estimated from the time-dependent deseasonalized boundary condition for $[\text{CO}_2]_{\text{trop}}$ used in the model (see text) using the stratospheric turnover time for the Appenzeller or the Holton air mass fluxes as the time delay

between the current tropospheric boundary condition at time, t , so that $[\text{CO}_2]_{\text{trop}} = [\text{CO}_2]_{\text{trop},t}$ and $[\text{CO}_2]_{\text{strat},t} = [\text{CO}_2]_{\text{trop},(t-\text{stratospheric turnover time})}$.

^c Assuming a ratio of stratospheric-to-total ^{14}C production of 0.50.

Table S2. Measurements on whole air samples collected over Ft. Sumner, New Mexico in 2003, 2004, and 2005.

CAMS #	Flight Date	Altitude (km)	Latitude	Longitude	Pressure (mbar)	Temp (K)	$\Delta^{14}\text{C}$ (‰)	CH ₄ (ppbv)	N ₂ O (ppbv)	F-11 (pptv)	F-12 (pptv)
136737	20031005	30.206	34.72	-127.02	11.27	235	146.5	1121	127.2	0.79	134.3
136746	20031005	29.352	34.71	-129.92	12.78	229	151.0	1146	141.7	1.47	163.0
136738	20031005	28.529	34.71	-131.44	14.51	229	151.4	1111	135.0	1.58	156.7
136751	20031005	27.706	34.71	-132.15	16.60	227	151.1	1044	123.2	1.73	139.0
136739	20031005	26.883	34.71	-132.20	18.72	224	151.8	1161	165.0	7.82	218.6
136742	20031005	24.536	34.77	-130.60	26.86	225	146.2	1283	196.7	37.79	293.8
136747	20031005	23.713	34.78	-129.10	30.57	219	145.3	1312	195.6	49.6	312.5
136743	20031005	22.951	34.80	-127.77	34.44	219	154.6	1193	162.3	26.16	238.3
136749	20031005	22.128	34.83	-125.33	39.05	217	154.1	1259	183.6	43.89	277.2
136744	20031005	21.306	34.84	-124.50	44.48	215	156.3	1253	182.3	52.02	281.1
136750	20031005	20.483	34.82	-123.30	50.92	211	152.9	1349	206.0	84.09	332.4
136745	20031005	19.660	34.82	-120.83	58.25	212	150.4	1345	212.2	89.85	336.5
125202	20040925	33.343	34.55	-103.68	7.59	231	141.1	835	54.0	0.13	46.0
125203	20040925	32.224	34.56	-103.64	8.85	232	140.5	843	56.7	0.23	51.2
125204	20040925	31.502	34.56	-103.62	9.78	235	140.2	935	79.6	0.19	77.3
125205	20040925	30.778	34.58	-103.62	10.69	235	138.5	913	77.8	0.15	78.2
136757	20040925	29.954	34.59	-103.62	12.14	225	147.6	907	80.2	0.47	84.1
125207	20040925	29.26	34.59	-103.62	13.46	227	150.2	957	92.1	0.63	100.5
125208	20040925	28.734	34.59	-103.63	14.62	226	146.0	1014	107.9	1.1	123.6
125210	20040925	28.047	34.59	-103.64	16.2	239	146.9	1102	135.2	3.2	172.4
125209	20040925	27.275	34.59	-103.67	18.2	226	143.2	1176	155.9	5.9	208.6
125214	20040925	26.545	34.58	-103.7	20.32	226	139.4	1146	152.4	8.7	206.2
125212	20040925	25.766	34.56	-103.72	22.99	226	136.6	1244	182.6	22.4	265.7
125215	20040925	24.987	34.57	-103.74	25.86	220	139.0	1294	198.1	35.9	296.4
136754	20040925	24.265	34.58	-103.77	28.92	219	135.3	1290	200.9	49.8	304.9

136755	20040925	23.545	34.57	-103.82	32.36	218	134.8	1371	220.7	78.1	347.9
136737	20040925	22.713	34.56	-103.83	36.84	217	142.9	1342	214.2	79.7	334.0
136758	20040925	21.931	34.58	-103.85	41.7	216	146.5	1350	218.4	90.4	353.1
136759	20040925	21.195	34.57	-103.85	46.86	214	138.2	1418	234.2	117.0	374.0
136760	20040925	20.551	34.58	-103.87	51.94	214	137.8	1463	246.0	138.5	413.0
136761	20040925	19.741	34.60	-103.88	59.35	212	127.5	1513	257.9	156.5	417.5
136762	20040925	18.977	34.60	-103.88	67.08	212	120.4	1566	271.3	178.9	445.2
136763	20040925	18.15	34.62	-103.85	76.61	210	106.2	1636	288.6	205.0	478.5
136764	20040925	17.431	34.64	-103.82	85.98	211	93.2	1685	299.2	220.7	500.2
125213	20040925	16.664	34.65	-103.78	97.38	210	85.7	1735	308.3	236.4	520.3
125202	20040925	15.324	34.69	-103.65	122.66	210	73.9	1760	314.4	248.3	534.2
136765	20051001	32.89	34.85	-118.10	7.86		134.5	1102	112.9	1.3	105.8
136768	20051001	31.77	34.89	-118.50	9.35		132.3	1098	118.4	1.5	120.3
136769	20051001	30.85	34.93	-119.80	10.35		134.4	1109	122.3	1.5	127.1
136771	20051001	29.92	34.95	-119.60	12		129.4	1127	134.9	2.0	150.8
136772	20051001	29.06	34.97	-120.20	13.73		132.9	1187	155.4	3.8	208.2
136773	20051001	27.29	34.98	-122.55	18.1		133.5	1182	165.8	8.8	220.4
136774	20051001	26.55	34.99	-123.70	20.34		136.0	1199	174.1	15.8	250.9
136776	20051001	24.8	35.03	-125.25	26.78		135.2	1255	192.6	39.3	285.0
136777	20051001	24.04	35.05	-126.70	30.12		138.8	1252	191.6	43.3	286.3
136778	20051001	23.3	35.06	-127.65	33.83		128.9	1246	192.5	48.3	289.7
136780	20051001	22.66	35.08	-127.95	37.47		118.3	1371	223.8	92.7	351.9
136781	20051001	21.95	35.10	-127.95	41.97		124.4	1420	238.0	112.3	383.2
136783	20051001	21.34	35.11	-128.60	46.22		124.7	1469	248.7	131.8	402.4
136784	20051001	20.72	35.12	-129.25	51.06		113.5	1543	268.6	160.1	434.2
136785	20051001	20.19	35.13	-129.70	55.69		101.6	1591	280.0	184.2	467.7
136786	20051001	19.56	35.12	-129.45	61.79		99.9	1625	286.9	195.9	474.8
136787	20051001	18.96	35.13	-128.30	68.15		97.0	1638	293.3	207.6	490.4
136788	20051001	18.35	35.14	-128.00	75.4		92.5	1655	296.5	216.6	494.6

136790	20051001	17.78	35.15	-126.60	82.97	80.1	1707	307.1	233.6	522.8
136791	20051001	17.18	35.17	-125.90	91.55	82.4	1725	310.4	238.7	525.5
136792	20051001	16.54	35.18	-124.90	101.87	83.6	1723	309.5	238.6	528.0
136793	20051001	15.9	35.19	-121.60	102.19	75.1	1755	314.1	249.3	540.7
136794	20051001	15.34	35.20	-118.50	113.02	69.3	1780	318.8	250.2	543.1