



LAWRENCE  
LIVERMORE  
NATIONAL  
LABORATORY

LLNL-TR-729885

# Scalable Metadata Management for a Large Multi-Source Seismic Data Repository

J. M. Gaylord, D. A. Dodge, S. A. Magana-Zook,  
J. G. Barro, D. R. Knapp

April 24, 2017

## **Disclaimer**

---

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

# Scalable Metadata Management for a Large Multi-Source Seismic Data Repository

J. M. Gaylord, D. A. Dodge, S. Magana-Zook, J. Barro, and D. R. Knapp

April 28, 2017



## 2 **Disclaimer**

3 This document was prepared as an account of work sponsored by an agency of the United States  
4 government. Neither the United States government nor Lawrence Livermore National Security,  
5 LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any  
6 legal liability or responsibility for the accuracy, completeness, or usefulness of any information,  
7 apparatus, product, or process disclosed, or represents that its use would not infringe privately  
8 owned rights. Reference herein to any specific commercial product, process, or service by trade  
9 name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its  
10 endorsement, recommendation, or favoring by the United States government or Lawrence  
11 Livermore National Security, LLC. The views and opinions of authors expressed herein do not  
12 necessarily state or reflect those of the United States government or Lawrence Livermore  
13 National Security, LLC, and shall not be used for advertising or product endorsement purposes.

14  
15 Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security,  
16 LLC, for the U.S. Department of Energy, National Nuclear Security Administration under  
17 Contract DE-AC52-07NA27344.

18

## 19 **Abstract**

20 In this work, we implemented the key metadata management components of a scalable seismic  
21 data ingestion framework to address limitations in our existing system, and to position it for  
22 anticipated growth in volume and complexity. We began the effort with an assessment of open  
23 source data flow tools from the Hadoop ecosystem. We then began the construction of a  
24 layered architecture that is specifically designed to address many of the scalability and data  
25 quality issues we experience with our current pipeline. This included implementing basic  
26 functionality in each of the layers, such as establishing a data lake, designing a unified metadata  
27 schema, tracking provenance, and calculating data quality metrics.

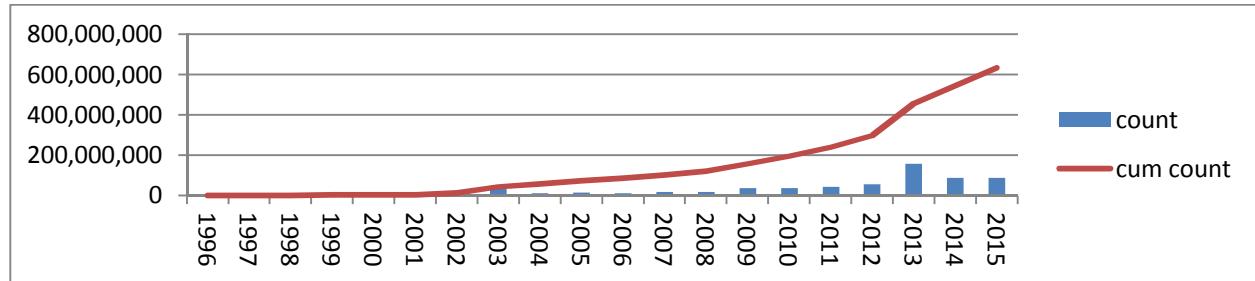
28 Our original intent was to test and validate the new ingestion framework with data from a  
29 large-scale field deployment in a temporary network. This delivered somewhat unsatisfying  
30 results, since the new system immediately identified fatal flaws in the data relatively early in  
31 the pipeline. Although this is a correct result it did not allow us to sufficiently exercise the  
32 whole framework. We then widened our scope to process all available metadata from over a  
33 dozen online seismic data sources to further test the implementation and validate the design.  
34 This experiment also uncovered a higher than expected frequency of certain types of metadata  
35 issues that challenged us to further tune our data management strategy to handle them.

36 Our result from this project is a greatly improved understanding of real world data issues, a  
37 validated design, and prototype implementations of major components of an eventual  
38 production framework. This successfully forms the basis of future development for the  
39 Geophysical Monitoring Program data pipeline, which is a critical asset supporting multiple  
40 programs. It also positions us very well to deliver valuable metadata management expertise to  
41 our sponsors, and has already resulted in an NNSA Office of Defense Nuclear Nonproliferation  
42 commitment to a multi-year project for follow-on work.

|    |                                              |    |
|----|----------------------------------------------|----|
| 43 | <b>ABSTRACT</b> .....                        | 3  |
| 44 | <b>INTRODUCTION</b> .....                    | 5  |
| 45 | <b>TOOL SURVEY</b> .....                     | 6  |
| 46 | APACHE NiFi .....                            | 7  |
| 47 | <i>NiFi Experiment with Seg-Y Data</i> ..... | 8  |
| 48 | <i>Integrating External Tools</i> .....      | 10 |
| 49 | <b>UNIFIED SCHEMA</b> .....                  | 11 |
| 50 | SCHEMA DESCRIPTION .....                     | 11 |
| 51 | INSERTING NEW DATA .....                     | 14 |
| 52 | <b>LAYERED ARCHITECTURE</b> .....            | 14 |
| 53 | LAYER 1: STORAGE .....                       | 15 |
| 54 | <i>Data Lake Configuration</i> .....         | 16 |
| 55 | <i>Discussion</i> .....                      | 18 |
| 56 | <i>Future Plans</i> .....                    | 19 |
| 57 | LAYER 2: INGESTION .....                     | 19 |
| 58 | <i>Design Goals</i> .....                    | 19 |
| 59 | <i>Work Done</i> .....                       | 20 |
| 60 | CODE WRITTEN .....                           | 22 |
| 61 | <i>Discussion</i> .....                      | 24 |
| 62 | LAYER 3: TRANSFORMATION .....                | 24 |
| 63 | <i>Quality Metrics</i> .....                 | 24 |
| 64 | <i>Data Integration</i> .....                | 26 |
| 65 | <i>Input Data Preparation</i> .....          | 27 |
| 66 | <i>Response Filtering</i> .....              | 29 |
| 67 | <i>Preliminary Integration</i> .....         | 31 |
| 68 | <i>Integration Between Sources</i> .....     | 32 |
| 69 | <i>Discussion</i> .....                      | 36 |
| 70 | LAYER 4: PRESENTATION .....                  | 38 |
| 71 | <i>Confidence Measures</i> .....             | 38 |
| 72 | <i>Arrays</i> .....                          | 40 |
| 73 | <i>Station Clusters</i> .....                | 41 |
| 74 | <b>CONCLUSION AND FUTURE WORK</b> .....      | 43 |
| 75 | <b>REFERENCES</b> .....                      | 44 |
| 76 | <b>APPENDIX</b> .....                        | 46 |
| 77 | A SHORT WORD ON WAVEFORMS .....              | 46 |
| 78 | AN ASIDE ON SOFTWARE INFRASTRUCTURE .....    | 47 |

## 79 **Introduction**

80 The Lawrence Livermore National Laboratory (LLNL) Geophysical Monitoring Program (GMP)  
 81 has long maintained a database of seismic waveforms and supporting metadata. In the early  
 82 1990's we had only hundreds of stations in our waveform database and fewer than a million  
 83 segments. But, as of late 2016 we have more than 9600 stations with waveforms and hundreds  
 84 of millions of segments in our archive (Figure 1).



85 **Figure 1 Incremental and cumulative waveform segments ingested into the GMP archive by year**

86 Having large amounts of seismic data is both an opportunity and a challenge. It allows analyses  
 87 that were impossible a few years ago, but at the cost of introducing significant data  
 88 management complexities. In current large-scale data analysis efforts, scientists must spend  
 89 considerable time resolving metadata issues before starting scientific analysis. The GMP data  
 90 repository and associated suite of customized Java data ingestion tools helps insulate this  
 91 responsibility from the scientists, but it is becoming increasingly difficult to manage as the  
 92 number of included stations and sources grows.

93 As with other sensor data, seismic data is only useful when there is an accurate understanding  
 94 of the physical channel that produced it, including information about the channel's location,  
 95 hardware, operation, and epoch of operation. This critical information can be missing, in  
 96 unexpected physical units (e.g. m/s vs nanometers/sec), recorded with too little precision,  
 97 inconsistent with other data from the same source, indeterminate for a specific point in time,  
 98 wholly in error, or subject to any number of other problems.

99 Integrating data from multiple sources poses additional challenges. Naming conventions are  
 100 not standardized and there are no universal identifiers for seismic stations. Null and infinite  
 101 values are often ad hoc. Formats and units of measure are often inconsistent between data  
 102 providers. Time can be recorded in different units (e.g. days, seconds, or fractional seconds),  
 103 formats, and time zones. Other unit and precision differences between sources introduce  
 104 further uncertainty.

105 We have developed a suite of Java data ingestion tools to mitigate these issues through  
 106 complex transformations as data are ingested. Over time, however, the tools have become  
 107 unwieldy and brittle after decades of enhancements to accommodate increasing data drift and

109 variation. We are also realizing that our current metadata schema is insufficient for provenance  
110 tracking and inflexible to new data sources and formats. We too often resort to handling  
111 metadata issues with manual intervention, which limits scalability, reduces repeatability, and  
112 introduces additional data uncertainty. In short, our data pipeline is becoming significantly less  
113 effective as our data reach increases.

114 Commercial industries now routinely depend on customer analytics derived from massive  
115 quantities of diverse and unstructured data. Over the last decade technologies like Hadoop and  
116 sophisticated analytics engines have been developed to help process data, but there is still the  
117 complexity of moving data into the data warehouse and organizing it for analysis. This has  
118 created a new market, for which dozens of proprietary and open source data flow tools have  
119 been developed. However, adapting them for processing seismic sensor data is complex since  
120 they were developed around commercial domains and mostly textual data. Also, the  
121 technologies are rapidly emerging and evolving with little coordination, proprietary tools are  
122 expensive, and there is very little documentation or support for open source tools.

123 Our goal in this project was to overcome these complexities and leverage available technologies  
124 to design and prototype a more flexible, scalable, and maintainable seismic data ingestion  
125 system for GMP. We started by surveying leading open source data flow tools and assessing  
126 them for the seismic domain and our workloads. Next, we developed a unified schema for  
127 multi-source seismic metadata to overcome limitations of existing schemas. We then produced  
128 a conceptual four layered design for the overall system, defined interfaces between the layers,  
129 and developed initial implementations of key components in each layer. A variety of seismic  
130 source data ranging from large temporary field networks to openly available web services was  
131 used to test functionality. Finally, quality metrics were developed to evaluate incoming  
132 metadata, advise metadata transformations, and describe the final metadata results for use.

133 For this report, we will often refer to seismic parametric metadata as simply “data”.

## 134 **Tool Survey**

135 Our focus for this project was metadata ingestion, but we wanted to ensure the resulting  
136 framework would also eventually accommodate waveform ingestion and data management.  
137 For metadata, the challenge is variety and veracity. For waveform data, the challenge is  
138 primarily volume.

139 Ideally, we would replace all our existing ingestion codes with one tool that would handle our  
140 metadata ingestion pipeline from the data source to both a Hadoop (Vance, 2009) data store  
141 for analytics and the Oracle database used by our users and applications. This ideal tool would  
142 ease maintenance overhead and limit the need for custom code by abstracting away as much of

143 the nuts and bolts of the infrastructure as possible, and provide configurable interfaces for all  
144 our intended data sources and sinks out of the box. A full-featured and intuitive Application  
145 Programming Interface (API) for easy set-up and operation with our existing technology stack  
146 would also facilitate a rapid start.

147 A survey of Big Data conference presentations showed an emerging standard set of utilities  
148 from the open source Hadoop ecosystem for ingesting Big Data into a data warehouse. Apache  
149 Kafka (Primack, 2015) is the ubiquitous choice for getting data into the cluster, Apache Oozie  
150 (Islam and Srinivasan, 2015) is a common data workflow manager, Apache Storm (Anderson,  
151 2013) and Apache Spark (Zaharia, 2016) are used for onboarding streaming data, and Apache  
152 Sqoop (Jain, 2013) is the primary interface to external databases. We have experience with  
153 Spark and Sqoop, and enlisted a summer student to research Kafka and Oozie. Although each of  
154 these tools provides necessary functionality for data ingestion, none of them appeared to be  
155 the holistic solution we need.

156 Many companies with mature Big Data warehouses operate data ingestion pipelines built from  
157 these low-level utilities, but we (and many others) have found this to be a non-trivial approach  
158 with substantial complexity and maintenance overhead. This reality has led to a growing market  
159 for end-to-end data management products that abstract away as much of the lower level  
160 complexity of constructing a data pipeline as possible. We started this project by surveying this  
161 space to borrow proven code and simplify our overall process as much as possible.

162 We eliminated proprietary tools to avoid prohibitive license fees and their more prescribed  
163 designs, which are too often specifically aimed at commercial applications. In the open source  
164 space, we sought out stable, proven, enterprise grade technologies with stable releases, and  
165 ignored emerging options or those with smaller or less active user or developer communities.  
166 This logic quickly eliminated all candidates except Apache NiFi (Bridgwater, 2015), a data  
167 ingestion management tool.

## 168 **Apache NiFi**

169 NiFi is a Java framework and web interface developed by the NSA for managing data movement  
170 between systems (NSA, 2014). NiFi was open-sourced under the Apache license in 2014 and  
171 quickly became a top-level project. It provides end-to-end data pipeline automation and a flow-  
172 based programming model. It was designed to fill the gaps between lower level data movement  
173 utilities, and more specifically to improve security, interactivity, scalability, and traceability. It  
174 includes a library of over ninety pre-built modules for specific data movements and  
175 transformations, and is easily extended and customized with Java code. Data ingestion paths  
176 are built as directed graphs using drag-and-drop components in a web interface, or with an

177 XML configuration file. Once a pipeline has been set up and started, the graphical interface can  
178 also be used to display and manage the pipeline during operation. The GUI display includes data  
179 flow rates, the state of data buffers between processing points, and the status of error streams.  
180 A particularly valuable feature of NiFi is its built-in provenance tracking system, which  
181 generates and stores metadata about each processing step for each data file or record that  
182 goes through the system. NiFi is deployed on one or more edge nodes of a Hadoop or other  
183 storage cluster.

#### 184 **NiFi Experiment with Seg-Y Data**

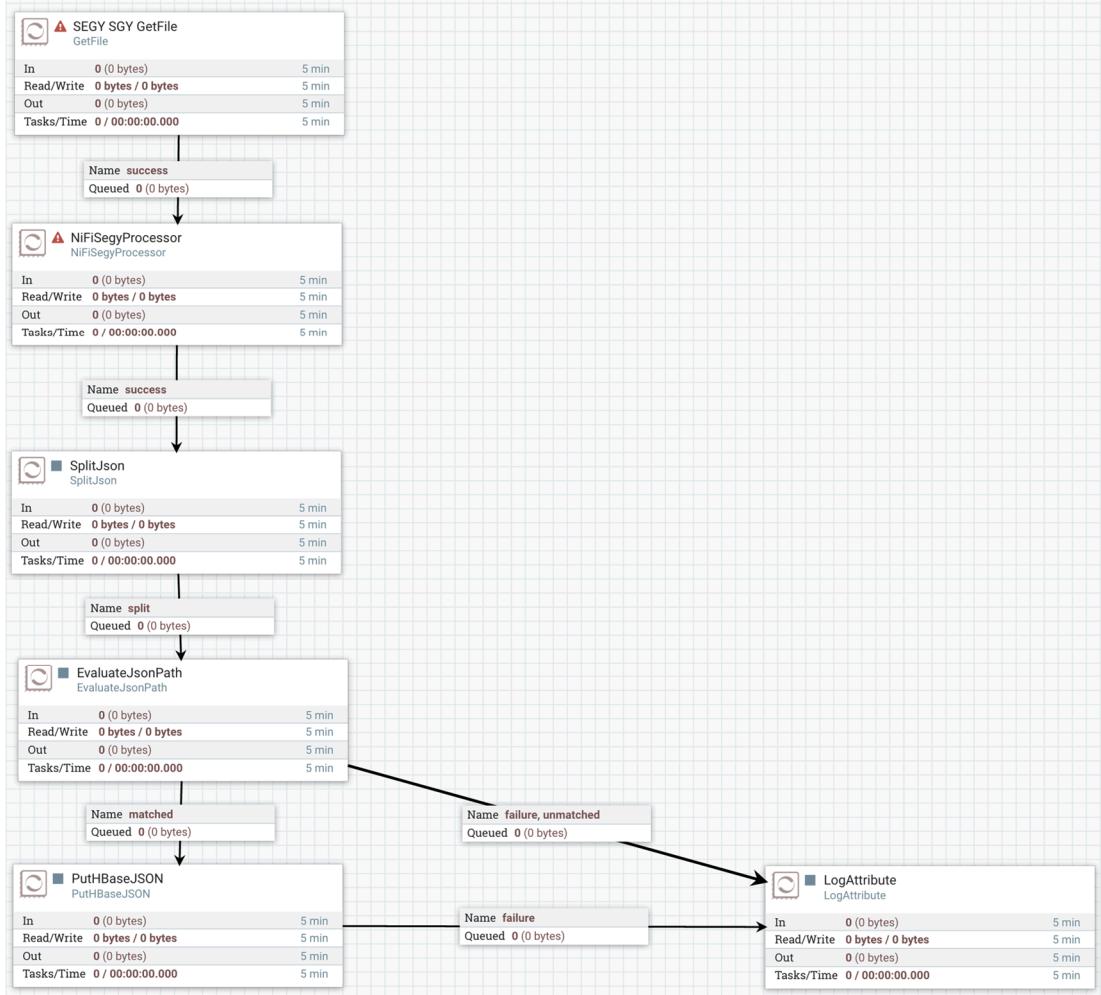
185 Initial tests of NiFi functionality for our most straight forward data ingestion cases were  
186 promising, so we decided to test it further by developing a flow for a more problematic dataset.  
187 We had recently received data files from a large temporary network deployed for a Source  
188 Physics Experiment shot. The files were in Seg-Y format (Norris, and Faichney, 2002), a  
189 commonly used but loosely specified binary format for exchanging seismic trace data. The  
190 format and size of the files were challenging, and gave us a practical use case for defining a  
191 more complex workflow in NiFi. It also gave us an opportunity to establish a team development  
192 process for NiFi using containers (discussed in the Appendix), and better understand the level of  
193 effort required to create an operational data processing system within the NiFi framework. We  
194 used the Seg-Y exercise to determine the flexibility of NiFi for handling problem data, assess its  
195 usefulness for processing binary formats, and study the practicality of integrating existing data  
196 ingestion tools into a NiFi workflow.

197 Initially we attempted to use as many of the built-in processing tools provided by NiFi as  
198 possible. This worked well for some of our data flows but quickly proved problematic for  
199 others. Like many Big Data frameworks, NiFi was originally targeted for processing textual data,  
200 and thus has very few built-in components for interacting with binary data. Standard Seg-Y files  
201 have many waveform and survey related metadata fields but the payload is entirely binary, so  
202 we were forced to extend the pre-built library with custom components for this application.

203 Fortunately, NiFi can treat communicating with and running existing tools as just another  
204 “processor” directive in a flow. Additionally, NiFi has a relatively robust framework for writing  
205 plugins that can be installed directly into the NiFi server natively to operate with the DataFlow  
206 graph interface. By using these two capabilities in concert with the existing NiFi processors we  
207 developed some proof of concept data flows for handling Seg-Y files under a variety of  
208 circumstances.

209 Custom NiFi processors can be written for specialized processing while retaining the benefits of  
210 the NiFi ecosystem like complex flow routing, automatic backpressure, etc. We took advantage

211 of this extensibility to extract metadata contained in our binary files and record structured  
 212 JSON representations automatically with the custom processor flow shown in Figure 2.



213

214 **Figure 2 A simple data flow using built-in NiFi processors and a custom NiFiSegyProcessor plugin**

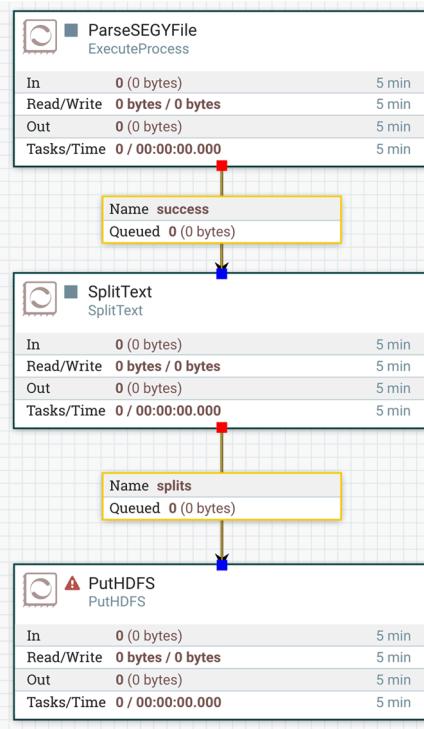
215 This exercise confirmed that NiFi offers many valuable advantages for complex data flows, but  
 216 it eventually exposed some drawbacks. Computations with exceptionally complex, long  
 217 running, or blocking operations can introduce bottlenecks in the ingestion pipeline. In addition,  
 218 NiFi is not designed to handle cases where additional information is needed to process the  
 219 incoming data, or where something about a previous data object must be known to process the  
 220 current one.

221 In general, NiFi follows a highly scalable “stateless” paradigm where ingestion flows are  
 222 processed in isolation from other data sources. It is geared towards extracting information  
 223 from objects rather than processing that requires operations such as Structured Query  
 224 Language (SQL) “join” statements that merge two datasets together. The NiFi community has

225 started to discuss including functionality for more stateful workloads in future development to  
 226 allow these data flows to integrate more tightly into the NiFi ecosystem.

227 **Integrating External Tools**

228 A current solution to the isolated flow problem is to use NiFi as a flow controller to and from  
 229 external processing pipelines and tools (Figure 3). In this case, the stateful processing code is  
 230 handled in external applications which are called and tracked by an end-to-end NiFi flow. Using  
 231 an external tool as a NiFi processor is also a useful mechanism for integrating existing data  
 232 processing tools into a NiFi flow. However, when designing such a flow extra attention must be  
 233 given to scaling, and how NiFi communicates with and manages processes.



234

235 **Figure 3 Calling an external program (ParseSEGYFile) and accepting its output as part of a flow**

236 The ability to manage data flow to and from external processes also allows for long running or  
 237 asynchronous operations to exist as terminal input and output sub-flows in the overall NiFi  
 238 flow. This can resolve many more complicated data processing problems but is architecturally  
 239 more complex, and can result in sacrificing some of NiFi's built in flow control and data  
 240 provenance capabilities.

241 Our conclusion from this exercise was that even though the built-in NiFi processors fell short for  
 242 parsing binary data or handling stateful tasks, NiFi was flexible and extensible enough for us to  
 243 create a viable solution despite this. Our data rates are not excessive, our ingestion is not

244 expected to be real-time, and the added overhead of the work-arounds described previously is  
245 acceptable. For our use cases NiFi's efficiencies easily made up for the added complexities of  
246 our stateful and binary ingestion workloads with useful data management and monitoring  
247 features such as a centralized interface for flow control and automated data provenance.  
248 Overall, we found NiFi to be a very capable platform for automating and managing our data  
249 ingestion pipeline.

## 250 **Unified Schema**

251 With the flow framework selected and validated, we turned our attention to specifying the  
252 minimum required set of data elements needed to represent all the metadata types we  
253 process. The schema for our existing seismic data archive is based on the Center for Seismic  
254 Studies version 3 (CSS3.0) database schema (Anderson et al. 1990). This format has been a  
255 standard in the monitoring community for years, and it has served us well. Many other seismic  
256 data formats exist, however, and we must integrate such data into our schema to support our  
257 research objectives. Often the results are less than one would hope for.

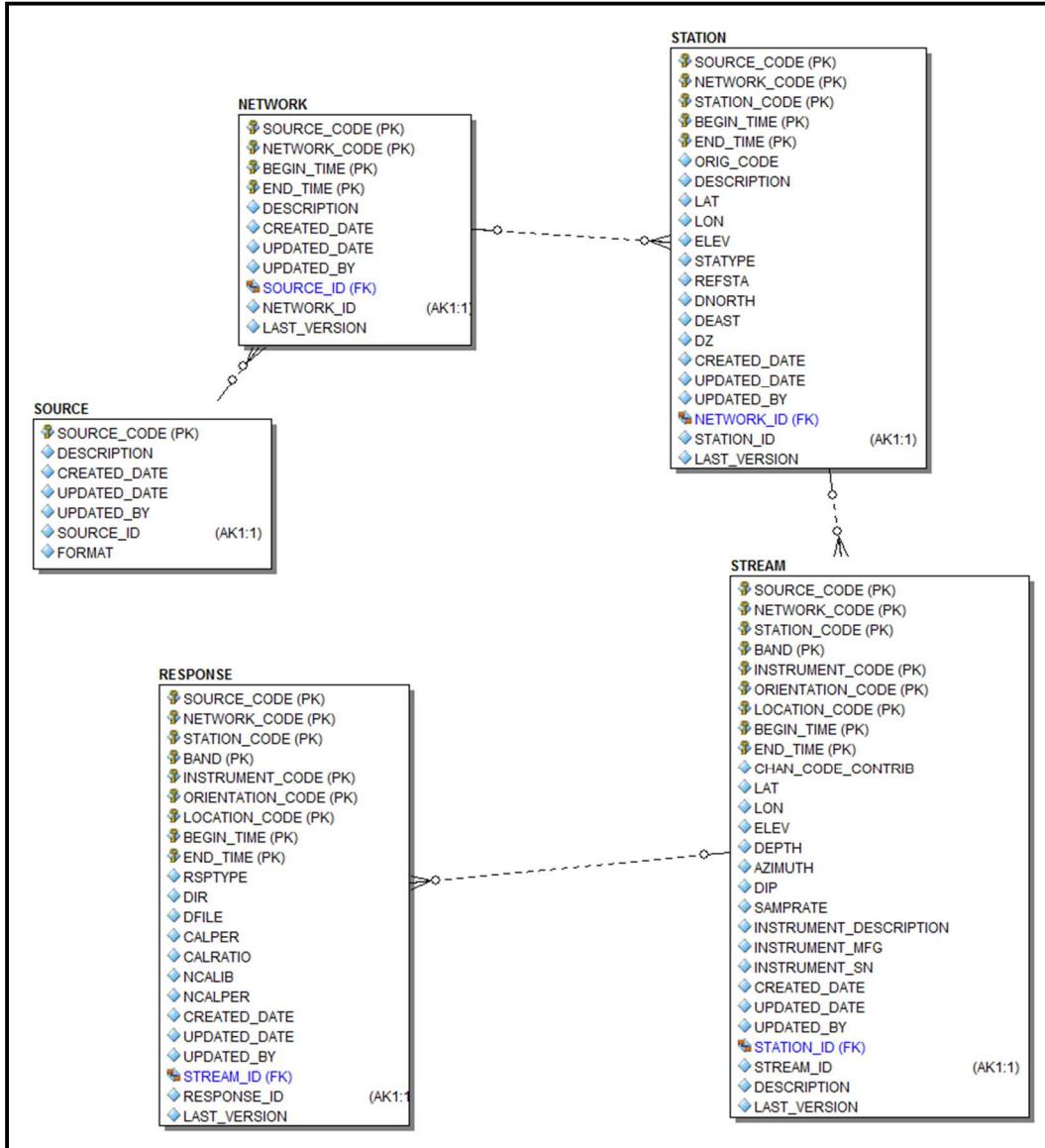
258 Many of our data sources adhere to the newer Standard for the Exchange of Earthquake Data  
259 (SEED) data standard (IRIS, 2012). This schema does not reconcile well with our CSS schema,  
260 and critical pieces of information may lose fidelity or be lost completely when we force SEED  
261 source data into our database. Addressing this problem is a major goal of this project, and it  
262 requires that we adopt a new data schema that preserves and reconciles the necessary data  
263 elements from the CSS and SEED standards, as well as any others that we have processed in the  
264 past or may need to process in the future.

265 Our approach in designing a new schema was to start by preserving the necessary elements in  
266 both CSS and SEED at the highest fidelity available. We then augmented this super set with  
267 additional provenance tracking fields and other data elements we found to be missing in both  
268 standards. We refer to the result as the “unified schema”.

## 269 **Schema Description**

270 The unified schema is a hierarchical data structure that gives primary importance to the source  
271 of the data. Within each source the network, station, and channel names are assumed to be  
272 unique and consistent with physical locations. No attempt is made to reconcile naming  
273 conventions between sources. This allows a major data processing simplification compared to  
274 CSS, which falsely assumes consistent naming across all data sources, and SEED, which assumes  
275 consistent naming within networks. The primary keys for our tables include all the parent table  
276 codes starting with the source code and both the begin-time and end-time of the epoch. A

277 surrogate key identifier is added to each row after ingestion is complete to support efficient  
 278 joins in downstream applications. Joins on these integers are much more efficient than the joins  
 279 on composite text keys that would otherwise be necessary. The basic schema is depicted in  
 280 Figure 4 below.



281  
 282

Figure 4 The Unified Schema

283 In this schema, a stream is a new construct intended to represent the lowest level of metadata  
 284 available for a specific data channel. A stream record represents a sensor epoch whenever  
 285 sensor level data is available, otherwise it represents the channel epoch. We did this because  
 286 the details of the channel epoch are frequently a source of date errors, and are not as  
 287 important as sensor epochs for determining the correct response and interpreting waveform  
 288 data. Channel codes are broken into their individual band, instrument, orientation, and location

289 components. Streams may have zero, one, or more associated response files depending on  
290 what is supplied by the data source.

291 The columns of the unified schema are drawn from The International Federation of Digital  
292 Seismograph Networks (FDSN) (Romanowicz, 1990) SEED version 2.4 reference manual and  
293 from the CSS version 3.0 database schema specification. In SEED, stations are identified by  
294 network code, station code, and time of operation. Those keys are retained here and  
295 augmented by a source code that identifies the organization from which the data were  
296 obtained. In CSS, although stations may be associated with a network, they are not required to  
297 be.

298 We also adopted the SEED convention of representing all date-times as precisely as the data  
299 allow. In CSS, date-time data is sometimes represented as epoch times and sometimes as an  
300 ordinal date (YYYYDDD). Although the ordinal date representation is often convenient, mixing  
301 the two representations can result in temporal database inconsistencies, e.g. sensor epochs  
302 that straddle channel epoch boundaries in CSS.

303 We included the CSS columns (STATYPE, REFSTA, DEAST, and DNORTH) in the station table to  
304 retain the array information present in data from the US NDC SITE files. Even though SEED  
305 blockette 35 provides information about beams, station XML apparently does not. And, while  
306 the CSS representation of arrays is problematic, we needed a place for this information in our  
307 input tables. Our unified schema includes a new representation for array data that removes the  
308 limitations in the CSS representation.

309 The STREAM table in the unified schema is based on SEED blockette 52. As with the STATION  
310 table, we have added a source code as part of the key. Another important deviation from both  
311 SEED and CSS practice is that in addition to the provided channel code, STREAM has columns  
312 for BAND, INSTRUMENT, and ORIENTATION. We introduced these columns to allow the final  
313 (integrated) STREAM table to be in first normal form (1NF). Channel code is often treated as  
314 atomic, and therefore suitable as a database column. But in SEED usage it is the concatenation  
315 (BAND-INSTRUMENT-ORIENTATION) and is thus expressing 3 facts. Some programming logic is  
316 complicated if the only access to those facts is through channel code.

317 Unfortunately, some legacy data does not follow the SEED channel naming convention and  
318 cannot be easily decomposed. For example, data with the channel code "sz" can be used to set  
319 BAND and ORIENTATION, but what about channel "uu23"? To accommodate these, we rely on  
320 the provided channel code (CHAN\_CODE\_CONTRIB) with the expectation that it will be used to  
321 support queries where only the name matters.

322 Responses are, in a sense, additional information about a STREAM. However, Streams can have  
323 0 to N responses. Therefore, we broke RESPONSE out as a separate table. It has the same keys

324 as STREAM (although the times are specific to the response epochs). The fact columns  
325 (RSPTYPE, DIR, DFILE, CALPER, CALRATIO, NCALIB, and NCALPER) are from CSS.

## 326 **Inserting New Data**

327 In the unified schema, every new epoch specification received from each source is kept  
328 indefinitely, along with additional metadata about the version, create date, and date last  
329 updated. New data updates can only overwrite identically keyed epochs. This updates the non-  
330 key attributes, the version number, and the last updated date, but does not affect any other  
331 rows. This is to ensure that newer data persists, but without eliminating previous versions of  
332 epochs which may still be valid. If exact key matches are not found, a new row is inserted with  
333 the current timestamp and version number one. The result is a cumulative set of data by source  
334 where newer data is merged into existing data based on matching keys.

## 335 **Layered Architecture**

336 Our current database could conceivably be modified to accommodate this new unified schema  
337 design except that our current architecture is fundamentally inflexible to significant change.  
338 This is primarily because we ingest data directly into the same schema that is used by our  
339 analysis code and users, so a single field change means every access path that uses the field  
340 must be upgraded concurrently. In addition, critical key values such as source codes and  
341 network codes would need to be inferred from the other data or filled with a default value  
342 since no provenance records from ingestion exist.

343 Another primary goal of this project was to remove this inflexibility to change. All indications  
344 point to continued volatility in incoming seismic data formats as new technology makes  
345 exponentially more deployments a reality and as we increase our data appetite accordingly. The  
346 layered architecture depicted in Figure 5 is specifically designed to support data drift by  
347 decoupling the environments used for raw storage, ingestion, transformations, and  
348 presentation from end users and applications. This allows each major pipeline function to  
349 evolve independently as necessary. Changes in any layer will not impact any other or  
350 downstream data consumers, if the data interfaces between layers are maintained.

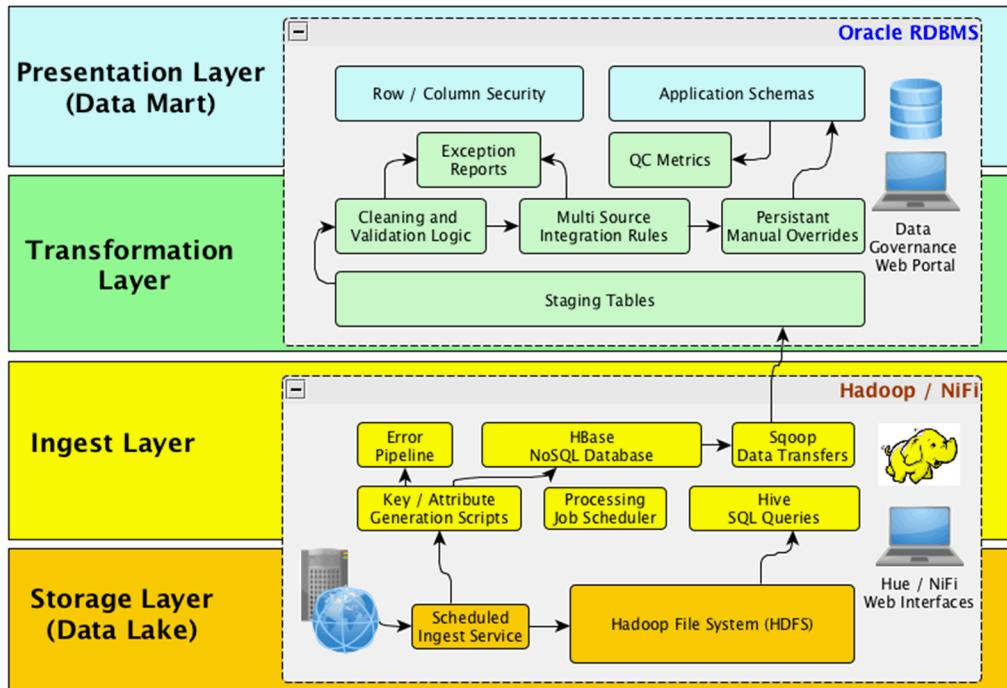


Figure 5 An early conceptual diagram of the layered architecture for the data pipeline

351  
 352 Data enters the pipeline through one or more fetching tools in the storage layer. Next, the  
 353 ingestion layer normalizes the units for each field among the various data sources, performs  
 354 minimal quality checks, and presents a unified schema to the transformation layer. In the  
 355 transformation layer, more rigorous quality checks screen out problematic records resulting in a  
 356 “Data Mart” ready for presentation. The presentation layer may include anything from a simple  
 357 database schema or data service to complex analytic tools.  
 358

## 359 Layer 1: Storage

360 The storage layer is the first stop in the data pipeline and it provides the initial landing area for  
 361 all new data coming into the system. The incoming data is stored in its original raw form  
 362 without any transformations or other processing. This type of repository is referred to as a  
 363 “data lake”, and differs significantly from the “data mart” landing archive currently used by us  
 364 and many others.

365 A data mart stores curated data which is assumed to be consistent. Unfortunately, the data we  
 366 receive is not necessarily consistent internally or with respect to equivalent data from other  
 367 sources, so the data stored in the mart may be a significantly modified or trimmed version of  
 368 what was originally received. Our data needs change over time, and once the data has been  
 369 processed into the mart we are often no longer able to infer the original data accurately  
 370 enough to reprocess it correctly. This leads to inflexibility in the system and stale or unreliable  
 371 data in our curated set.

372 Another source of inconsistency occurs when a data source changes, deletes, or updates values  
 373 and relationships in their metadata after we have ingested it. Since we modified the data once  
 374 already in a previous ingestion run based on the original version of the data, in the subsequent  
 375 ingestion run we may not be able to accurately match up the new version with the rows already  
 376 in our database. After the ingestion of the new data we quite possibly end up with multiple  
 377 inconsistent versions of the same data in our data mart. A related type of inconsistency can  
 378 occur if the processing logic in our ingestion code has changed between processing runs.

379 These problems are common and they should be expected. They are not due to a lack of  
 380 discipline at the data source or unstable ingestion software at our end. A main cause of the  
 381 problems is that as the number of data providers has grown, so has the number of different  
 382 formats for providing data, as well as the duplication or overlap of data between sources. This  
 383 leads to significant ambiguity in units of measure, points of reference, labels, naming  
 384 conventions, time conventions, precision, and more. When we first built our models for  
 385 ingestion, we had a limited number of data providers who in turn had a limited data set. Not  
 386 only has the number of data providers grown, so have their holdings. We have tried to  
 387 organically grow our monolithic data ingestion process to meet this and our expanding needs,  
 388 but it is starting to show significant cracks and limitations and is becoming increasingly difficult  
 389 to maintain.

## 390 **Data Lake Configuration**

391 For our initial prototype data lake we implemented a simple directory structure on a Network  
 392 File System (NFS) mount. The template for the directory structure is:  
 393 `.../dataLake/<data provider>/[metadata|waveforms]/<Data format_ batch timestamp>/..../<file>`

394 Three data source providers were used in  
 395 the sample set:

- 396 • US National Data Center (USNDC)
- 397 • IRIS
- 398 • UNR

399 As the examples show, data ingestion from  
 400 each data source can be scheduled  
 401 separately and with a different frequency.

402 A transaction log was kept for each data  
 403 source. The purpose of the transaction log  
 404 was to identify when and where files from data sources were introduced into the data lake.

405

### **Examples of the meta-data directories:**

```
./USNDC/metadata/CSS3.0_17Mar2016T04.30.00-0700
./IRIS/metadata/StationXML_22Jun2016T15.29.13-0700
./IRIS/metadata/StationXML_22Jun2016T15.29.19-0700
./IRIS/metadata/StationXML_24May2016T11.00.00-0700
./UNR/metadata/SEED_01Apr2016T23.59.59-0700
./UNR/metadata/CSS3.0_06May2016T23.59.59-0700
./UNR/metadata/CSS3.0_18Apr2016T23.59.59-0700
./UNR/metadata/SEED_18May2016T23.59.59-0700
./UNR/metadata/SEED_02May2016T23.59.59-0700
```

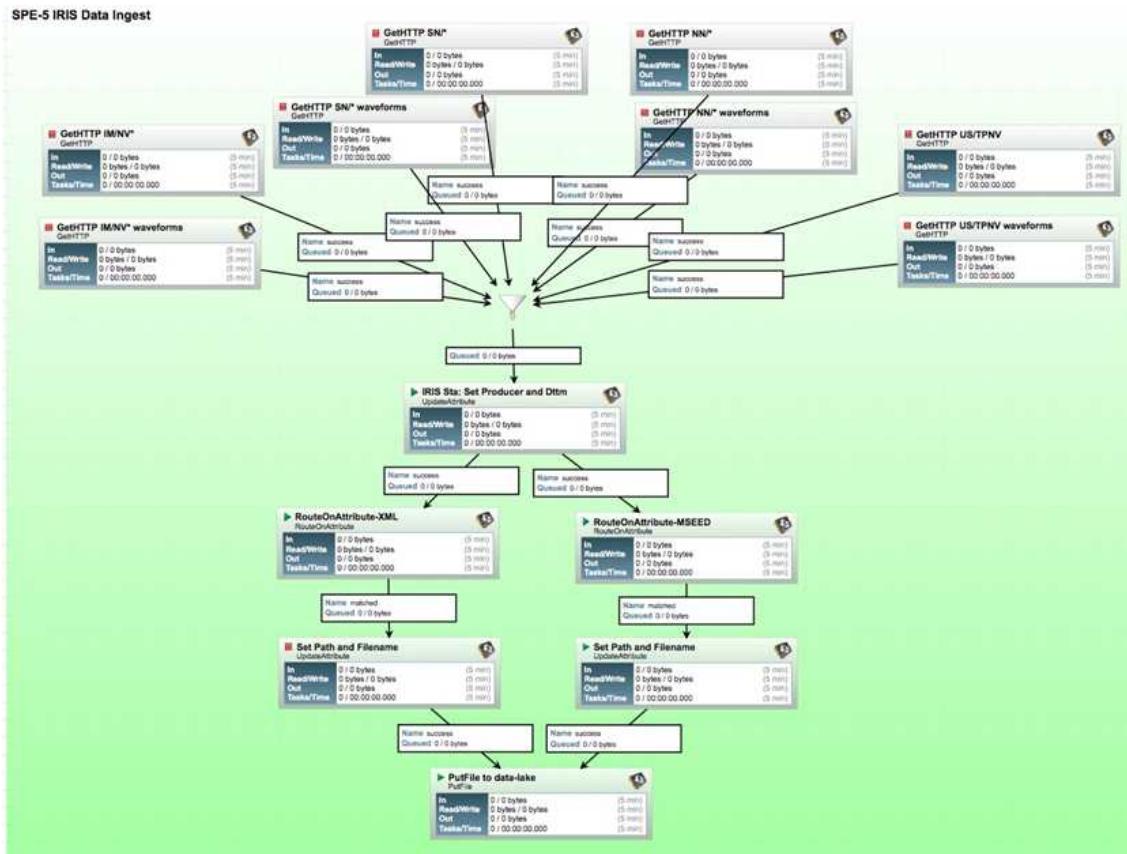
406 An example of the UNR transaction.log:

407 =====  
 408 06/28/16  
 409 Copied the following from /SPE34/SPE/2016/. These were originally rsynced from UNR by Terri.  
 410 css3.0\_31May2016:  
 411 nnss nnss.lastid nnss.sensor nnss.sitechan nom\_response  
 412 nnss.calibration nnss.network nnss.sensormodel nnss.snetsta response  
 413 nnss.instrument nnss.schanloc nnss.site nnss.stage  
 414  
 415 seed\_31May2016:  
 416 basement nnss\_dataless\_seed\_fullres rdseed.stations resp  
 417

---

418

419 For our prototype implementation, we used two different methods for acquiring data. For USNDC and  
 420 UNR, we utilized the existing tools such as ftp and robo-copy. For IRIS, we utilized a tool that could be  
 421 used in the pipeline in an automated manner, Apache Nifi, to perform the data fetching and data  
 422 routing tasks (Figure 6).



423  
 424 Figure 6 NiFi IRIS metadata workflow

425 **Discussion**

426 The automated NiFi solution has several advantages over the manual method. NiFi can be scheduled  
427 to run at times that take advantage of under-utilized computational and network resources without  
428 human intervention. Logging for the runs is also fully automated. By automating these tasks, the data  
429 curator is freed up from these mundane ingestion tasks and can focus on the more difficult challenges  
430 of data management.

431 The system just described is only a start, and there is more work to be done. We plan to reduce the  
432 rigidity of our data collection processes with a framework that allows the directory structure to be self-  
433 descriptive. For example, XML or JSON configuration files for each data source would allow a wider  
434 range of tools to interact with the source data, and provide flexibility in how the data is stored in our  
435 archive. Managing data from different source providers would be configurable and extensible instead  
436 of hard-wired and uniform.

437 The storage layer provides the directory structure to subsequent processing steps for locating data  
438 elements. Instead, we could use a “query service” style interface to provide this and other  
439 information. For example, the service could be asked for only the new elements added after a certain  
440 time, or only the elements that meet other provenance criteria not encoded in the directory name. As  
441 the data lake grows and becomes more complex these types of features will become necessary.

442 Until it becomes standard for data sources to provide a change log for their data, the storage layer will  
443 need to request all data. This will often result in data that is already in the archive being returned by  
444 the data source. The storage layer must have capabilities to de-duplicate identical data (especially  
445 waveforms) so only one copy of each version is stored in the data lake. At the same time, the de-  
446 duplication process must not alter the original form of the data.

447 We have not yet determined where to put the data lake to provide the most scalability, economy, and  
448 efficiency. The system is designed to keep all versions of data ever received from each source to  
449 support reproducibility for publications, data forensics, and data recovery. Currently, the incoming  
450 data are stored in both the Hadoop Distributed File System (HDFS) for scalability and our NFS for ease  
451 of access. This means four copies of each raw file are retained since HDFS keeps three by default for  
452 redundancy and performance. Before we add significant waveform data to this solution, we will need  
453 to develop a more efficient storage plan.

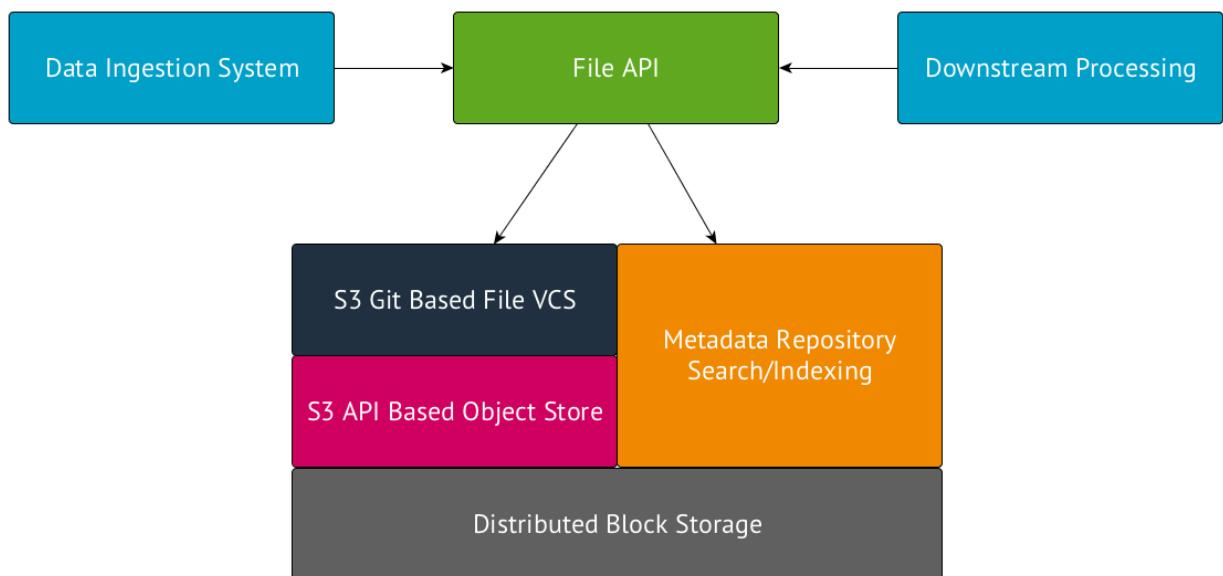
454 Our ingestion system issues requests to get new data from data providers. A future opportunity to  
455 consider is enabling the storage layer to support requests initiated by a data provider as well.

456 **Future Plans**

457 In the future, we will put access to the data lake behind an API to abstract out the concrete  
 458 implementation underlying our storage. Notionally whenever a file is placed into the lake a unique  
 459 identifier is generated that associates it with all data products created using that file in the processing  
 460 pipeline. This allows for downstream processes to be traced back to the source material, and provides  
 461 a means to re-process the raw data if necessary.

462 At least two additional components beyond the basic file storage system are necessary to serve this  
 463 API: a metadata repository to hold the identifier for storage location mapping and some stable service  
 464 to act as the communication mechanism.

465 The unique identifiers should be ‘stable’ in that they are re-creatable should the metadata storage fail  
 466 or otherwise become corrupted. The metadata storage and communication mechanisms also need to  
 467 be inherently scalable to the same order as the underlying storage mechanism used to hold the actual  
 468 files. Both topics are subjects of ongoing research and will require experimentation but a simple  
 469 prototype we are presently working on is diagrammed in Figure 7.



470

471 **Figure 7 - Simple diagram of one possible implementation for the data lake**

472 **Layer 2: Ingestion**

473 **Design Goals**

474 The ingestion layer is responsible for taking the items in the data lake, packaging them into a  
 475 format that is easily consumable by Big Data tools, performing schema validations as a first pass

476 at quality checks, and outputting the results in a unified format. An important part of creating  
 477 the unified schema is organizing data from multiple ingestion runs and sources into one set  
 478 which can include multiple versions of data from each source. As different data providers use  
 479 different units for their measurements, these must also be unified as part of the ingestion  
 480 process. Data from this layer is exported to the transformation layer for further cleaning and  
 481 analysis.

482 **Work Done**

483 ***Choice of Intermediary Formats***

484 The choice of file format to hold intermediary data in the ingestion layer depends on many  
 485 factors including technical limitations of processing software and intended use-cases for the  
 486 data. It can have significant ramifications for storage hardware, the software stack, and  
 487 application performance. We tested a variety of file formats to assess their efficiency with data  
 488 processing tools implemented in Spark (Zaharia, 2016) for performance and scalability.

489 **Raw/Native File Format**

490 The simplest and most efficient choice from a storage perspective is to process the files from  
 491 the data lake without any conversion in between. Although our cluster compute nodes can  
 492 access raw files in the data lake via the network we find pre-packaging multiple raw files into an  
 493 intermediary aggregate format provides many advantages.

494 Going from thousands of files whose size is on the order of kilobytes to a few files whose size is  
 495 on the order of gigabytes or larger provides an immediate efficiency boost to input and output  
 496 (I/O) rates. Additionally, by storing these large consolidated files in HDFS, we can leverage data  
 497 locality for scalable subsequent processing instead of hitting a centralized file server on every  
 498 request, such as with NFS.

499 **Apache HBase**

500 Apache HBase (George, 2011) is a Hadoop distributed NoSQL store. NoSQL is a class of relaxed  
 501 or limited SQL data stores that promise scalability and extensibility. HBase is intended to host  
 502 very large tables e.g. billions of rows by millions of columns) using Hadoop and HDFS. Unlike  
 503 pure HDFS, which is append only, it supports record level inserts, updates, and deletes. Like  
 504 many other technologies in the Hadoop ecosystem, HBase is optimized for certain types of use  
 505 cases and workloads. We found it to be prohibitively burdensome and non-performant for this  
 506 application but suitably flexible and extensible for others.

507 HBase abstracts records as key-value pairs, storing both key and value as an ordered list of byte  
 508 arrays. We quickly learned that the key choice is critical to the functionality and performance of  
 509 the store. One approach is to create a composite key that includes the fields and conditions  
 510 most commonly used for querying. Querying on fields not in the key results in each record

511 being de-serialized to check the query condition, which can erode performance to the point of  
512 making nodes unresponsive. Care must also be taken to ensure composite keys are always  
513 unique. Another strategy is to use a hash or other numeric unique identifier as the key. This is  
514 easy to manage and is performant if the key is easily known in advance for data requests.

515 Our initial HBase implementation combined the waveform into the HBase record with a  
516 composite key. In this case, HBase was far slower in I/O throughput compared to reading  
517 directly from HDFS for our data sets. In addition, the keys were complex, difficult to choose  
518 effectively, and hard to manage. This approach for storing waveform segments was abandoned  
519 in favor of HDFS file formats like Avro.

520 In our current implementation, we use HBase to store metadata only records with unique  
521 numeric keys in a query-able data catalog. This is looking to be a very suitable application for  
522 HBase and illustrates some of its advantages. One is the column family format, which allows  
523 different fields to be defined for different records. This lets us store multiple data formats in  
524 one table and a highly flexible schema without trimming or transposing the original fields and  
525 values. Another useful feature of HBase is the automatic versioning of records. This preserves a  
526 configurable number of the most recent values for each cell over time for point in time queries.  
527 More work is needed to test the performance of this implementation at scale with complex  
528 data formats, multiple data versions, and our full range of query workloads. This approach only  
529 manages the metadata and a pointer to the waveform payload, which is stored separately.

### 530 **Apache Avro**

531 Avro (Russell and Cohn, 2012) is a serialization framework used in the Hadoop project. Part of  
532 the Avro specification is the Object Container File container file format in which you can bundle  
533 data from what would otherwise be too many small files for HDFS to handle. We use the term  
534 “Avro” in this report to refer to the container file format.

535 Avro is not bound to a key-value scheme, but Avro files can still be queried using SQL directly in  
536 Spark. This does not use Region Servers and some other daemons HBase requires, and  
537 therefore eliminates a category of problems that affected job success and performance for our  
538 waveform storage workloads. Avro also provides row level compression and has support for  
539 schema evolution.

540 Ultimately, however, Avro turned out to be much less efficient than other solutions for data  
541 exploration use-cases and other queries that care only about a subset of columns. Its row-based  
542 format means the entire row is always retrieved, even if only certain fields are needed. We  
543 switched to a columnar store to avoid this performance bottleneck and to maintain  
544 compatibility with current direction of Spark development.

545 **Apache Parquet**

546 Apache Parquet (White, 2015) is a relatively new format to the Hadoop ecosystem, but its  
547 adoption as a standard has been rapid. Parquet evolved from collaborations between Cloudera,  
548 Twitter and other companies to provide a “columnar storage” container file format. This means  
549 data is stored on disk per column rather than per row like with Avro.

550 Storing data per column has many immediate efficiency benefits. The size of data on disk is  
551 greatly reducing by encoding and compressing data on columns. The data in columns typically  
552 have less variance than the data in rows, and therefore have a higher compression ratio. Data  
553 analysis is more efficient since data scans can be limited to just the columns of interest. For  
554 example, in the Avro schema, to perform exploratory analysis on the channels ingested, our  
555 data analysis scripts had to read in the entire ingested row for each record including all  
556 metadata and the waveform blob. With Parquet, that same analysis is much faster since it only  
557 loads the columns under immediate consideration.

558 The initial release of Parquet was limited to Hadoop I/O classes and query tools. Since then  
559 Spark and other projects have significantly increased support for Parquet, making it the current  
560 leader in specialized Big Data file formats.

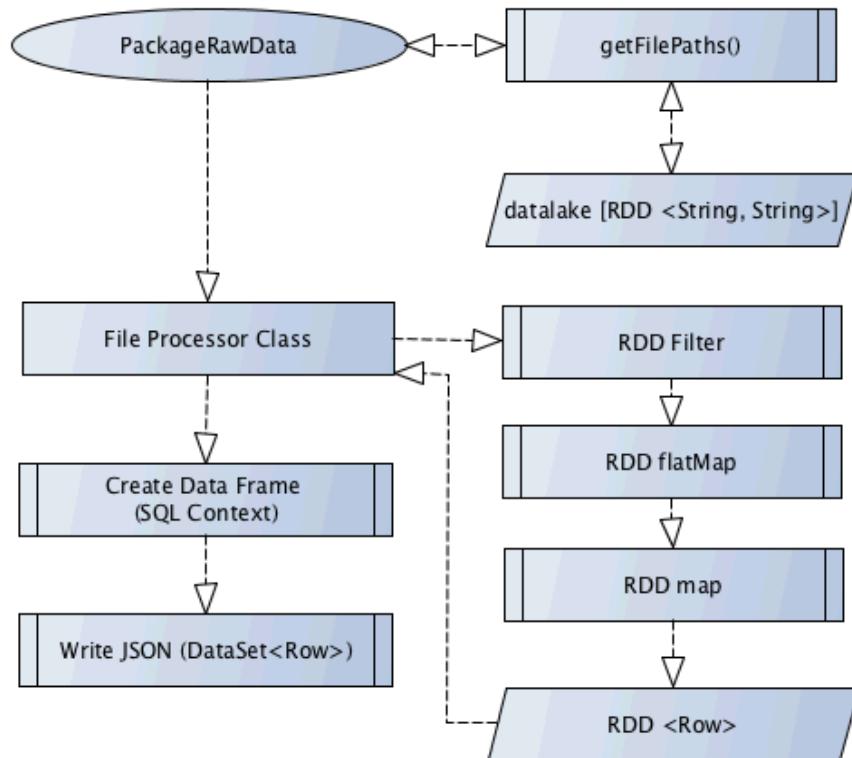
561 **JavaScript Object Notation (JSON)**

562 JSON (Crockford, 2009) is a widely adopted human-readable format originally developed as a  
563 communication mechanism between web servers and browsers. The format consists of key-  
564 value pairs and has support for encoding strings, numbers, arrays, and objects. Where JSON  
565 truly stands out compared to the more specialized formats discussed above is in the breadth of  
566 its adoption. Many APIs and applications include built-in support for JSON, and all major  
567 programming languages include JSON parsing libraries. Apache Spark can read and perform  
568 queries on JSON documents just as easily as it can with Parquet and AVRO files. Using JSON as a  
569 destination format makes it easy to export the metadata catalog to Oracle and use the data in  
570 other presentation layer technologies. For on-disk space considerations, easy integrations, and  
571 Spark compatibility, our ingestion and transformation layers will use JSON as the intermediate  
572 data format during processing and to store metadata details.

573 **Code Written**

574 A Spark job was created to take files in the data lake and package them for use in the  
575 transformation layer. The packing process consists of parsing the raw files, adding ingestion  
576 metadata, combining like objects (such as CSS site and StationXML files), and writing these  
577 model objects out to the JSON file format for further processing in the transformation layer.  
578 The main runner is the PackageRawData class, as shown in 8 below. This class first gets all the  
579 file paths under the input directory provided by the user, a necessary step because the Spark

580 Context wholeTextFiles method will not do this file tree recursion itself. Once we have the file  
 581 paths, the contents of the files are read as a String and a JavaPairRDD is returned, where the  
 582 absolute file path is the key and the file contents are the value. This paired RDD is the data lake  
 583 RDD. The file processors repeatedly use the data lake RDD so it is cached/persisted to memory  
 584 and disk in serialized form.



585

586 **Figure 8 Program flow for turning raw files into JSON documents**

587 Next, each of the file processors is called and they all follow similar steps. The first step is to  
 588 filter the data lake RDD to only include the files that the executing class is responsible for  
 589 processing. We have file processors for all the CSS and SEED types needed as input to create the  
 590 unified schema. Once filtered, the RDD is put through a flat map transformation. The flat map  
 591 takes each line from the file and creates an instance of one of the model classes. These model  
 592 instances are then transformed by the map operation to be Row instances. This conversion to  
 593 Row instances will go away in the future when the DataFrame or Dataset can be created  
 594 directly from the Java object instances. Once we have the data represented as Row instances  
 595 we can combine the data with a schema provided by the model class to create a DataFrame  
 596 instance (Dataset<Row> in Spark 2+). Now that the Rows are a DataFrame, the DataFrame's  
 597 write method is called to output the data in JSON format to HDFS. The written JSON file is now

598 ready to undergo the post-processing in the Transformation layer required to create the unified  
599 schema.

## 600 **Discussion**

601 Many different file formats and storage solutions exist. We considered a subset of available  
602 technologies which would provide the best support for our use case. In evaluating different  
603 technologies, we looked at the ability to store the objects on different file systems (HDFS, NFS,  
604 Blob/document store), the ability to query the data, the ability to compress the data, and most  
605 importantly, the level of adoption and tooling around the standard.

606 We first evaluated keeping the files in their raw format, but this did not provide good I/O  
607 throughput and was incompatible with the design of HDFS which prefers a few large files over  
608 thousands of small files. Next, we evaluated the key-value NoSQL database HBase. HBase is  
609 good for storing schema-less rows that can grow to millions of columns, but we found the use  
610 of heavy Region Servers, I/O throughput, and size limitations for rows to not support our overall  
611 data storage needs, although it may be a good solution for our metadata catalog. We looked at  
612 Avro and Parquet file formats which provide self-documenting schemas inside of the output  
613 files, row and column level compression, and the ability to quickly query data. We decided  
614 against both formats as their adoption outside of big data tools is still limited. We ultimately  
615 decided that JSON provided the most flexibility and compatibility with our storage use-cases.

616 A Spark program was written that processes the raw seismic metadata and waveforms into a  
617 JSON representation. These JSON output documents are then consumed by the transformation,  
618 integration, and presentation layers. Additional work needs to be done to apply basic quality  
619 checks to the data before propagating to the transformation layer which will do the more  
620 extensive quality checks.

## 621 **Layer 3: Transformation**

622 The transformation layer is where incoming parsed and standardized data from the ingestion  
623 layer is transformed into curated data for the new data mart. The majority of data quality  
624 assessments and data integrations are performed in this layer. The input data for this layer is  
625 the cumulative ingested data in the unified schema format, and the output is cleaned and  
626 analyzed data for the presentation layer.

### 627 **Quality Metrics**

628 Data coming into the transformation layer has already been checked and validated against the  
629 unified schema definition in the ingestion layer, and unit conversions and other data  
630 transformations have been made as necessary. However, there are numerous metadata errors

631 that can survive these kinds of checks. The initial work in the transformation layer is to perform  
 632 quality checks on the data in the unified schema and document the results. These metrics are  
 633 valuable for an accurate understanding of the data, and they can subsequently be used by  
 634 integration logic, analysis applications, and end users as appropriate.

635 For this project, we developed a set of metadata quality metrics to identify and document  
 636 problematic data. As we worked with the data during the project we added checks for each of  
 637 the metadata issues we came across. The list of 38 quality checks we developed is in Table 1.  
 638 This list is by no means comprehensive, but includes many of the problems that commonly  
 639 plague us in our existing archive. The checks were implemented as a series of procedures that  
 640 generate an error log for each table, row, and error found. Results of the checks are discussed  
 641 in the section on the presentation layer.

642 **Table 1 Quality checks performed on the data in the unified schema**

| Table    | Check Procedure                | Error Description           |
|----------|--------------------------------|-----------------------------|
| network  | check_parent(network,source)   | parent does not exist       |
| network  | check_parent(network,source)   | parent epoch does not exist |
| network  | check_dates(network)           | epoch start > end           |
| network  | check_dates(network)           | epoch start = end           |
| network  | check_dates(network)           | epoch overlap               |
| network  | check_dates(network)           | epoch duplicate             |
| response | check_parent(response,stream)  | parent does not exist       |
| response | check_parent(response,stream)  | parent epoch does not exist |
| response | check_dates(response)          | epoch start > end           |
| response | check_dates(response)          | epoch start = end           |
| response | check_dates(response)          | epoch overlap               |
| response | check_dates(response)          | epoch duplicate             |
| station  | check_parent(station, network) | parent does not exist       |
| station  | check_parent(station, network) | parent epoch does not exist |
| station  | check_dates(station)           | epoch start > end           |
| station  | check_dates(station)           | epoch start = end           |
| station  | check_dates(station)           | epoch overlap               |
| station  | check_values(station)          | LAT out of range            |
| station  | check_values(station)          | LON out of range            |
| station  | check_values(station)          | ELEV out of range           |
| station  | check_dates(station)           | epoch duplicate             |
| station  | check_values(station)          | missing LAT/LON             |
| stream   | check_parent(stream, station)  | parent does not exist       |
| stream   | check_parent(stream, station)  | parent epoch does not exist |
| stream   | check_dates(stream)            | epoch start > end           |
| stream   | check_dates(stream)            | epoch start = end           |

|          |                               |                             |
|----------|-------------------------------|-----------------------------|
| stream   | check_dates(stream)           | epoch overlap               |
| stream   | check_values(stream)          | LAT out of range            |
| stream   | check_values(stream)          | LON out of range            |
| stream   | check_values(stream)          | ELEV out of range           |
| stream   | check_values(stream)          | DEPTH <0                    |
| stream   | check_values(stream)          | DIP <> ORIENTATION_CODE     |
| stream   | check_values(stream)          | SAMPRATE <=0                |
| stream   | check_values(stream)          | SAMPRATE out of SEED bounds |
| stream   | check_values(stream)          | missing LAT/LON             |
| stream   | check_distance(stream)        | distance to parent > .1km   |
| stream   | check_distance(stream)        | elevation >1km from parent  |
| stream   | check_dates(stream)           | epoch duplicate             |
| waveform | check_parent(waveform,stream) | parent does not exist       |
| waveform | check_parent(waveform,stream) | parent epoch does not exist |
| waveform | check_dates(waveform)         | epoch start > end           |
| waveform | check_dates(waveform)         | epoch start = end           |
| waveform | check_dates(waveform)         | epoch overlap               |
| waveform | check_values(waveform)        | SAMPRATE <=0                |
| waveform | check_values(waveform)        | SAMPRATE out of SEED bounds |
| waveform | check_dates(waveform)         | epoch duplicate             |

## 643 Data Integration

644 Our legacy data mart stores a version of the data that is independent of the original source of  
 645 the data. In reality, there are often multiple sources for the same data, and we may extract data  
 646 from each to get the most comprehensive set. Unfortunately, all sources do not always provide  
 647 mutually consistent versions of the same data, and significant inaccuracy may be introduced  
 648 into our curated data while trying to sort this out. The unified schema avoids this problem by  
 649 keeping data by source, but our vision going into this design effort was that application code  
 650 and end users would still expect source independent data.

651 Our original plan for the transformation layer was to integrate multi-source data wherever we  
 652 could do so accurately. Data that could not be integrated with a high confidence of accuracy  
 653 would be routed off to an error pool. The pool would be kept from growing through continuous  
 654 oversight, periodic analysis, and improvement of the pipeline. This system would forward only  
 655 integrated data to the data mart, and allow us to transition to this new pipeline without  
 656 immediately breaking or changing any downstream code.

657 The following sections describe our progress on the implementation of this design. Because of  
 658 this work, however, our plans for the scope of the transformations done in this layer have

659 changed. We may consider a new name (such as “Analysis”) for this layer going forward that  
 660 better describes its modified function.

661 **Input Data Preparation**

662 To develop and test our ingestion and integration codes we used data from 13 different  
 663 sources. Two of the sources provided data in CSS format and the remainder were retrieved as  
 664 Station XML from data centers that support the FDSN Station web services. A summary of the  
 665 input data is shown in Table 2.

666 **Table 2 Summary of input data used for the integration test by source**

| SOURCE  | FORMAT | NETWORKS | STATIONS | STREAMS | RESPONSES |
|---------|--------|----------|----------|---------|-----------|
| IRISDMC | SEED   | 198      | 11,234   | 242,018 | 241,868   |
| NCEDC   | SEED   | 21       | 3,561    | 49,525  | 49,440    |
| USNDC   | CSS    | 2        | 2,038    | 4,939   | 4,822     |
| INGV    | SEED   | 27       | 718      | 7,928   | 7,928     |
| GEOFON  | SEED   | 30       | 718      | 8,752   | 8,750     |
| RESIF   | SEED   | 11       | 484      | 7,493   | 0         |
| SED     | SEED   | 16       | 474      | 3,691   | 8         |
| UNR     | CSS    | 3        | 375      | 5,886   | 5,892     |
| ORFEUS  | SEED   | 29       | 222      | 3,280   | 3,259     |
| USPSC   | SEED   | 2        | 139      | 1,054   | 1,053     |
| IPGP    | SEED   | 5        | 122      | 2,064   | 1,568     |
| LMU     | SEED   | 1        | 120      | 414     | 414       |
| NIEP    | SEED   | 4        | 102      | 874     | 874       |

667  
 668 Prior to integrating the station data, we performed several checks for internal (within source)  
 669 consistency. This resulted in the removal of 514 STATION rows as shown in Table 3. Because of  
 670 referential integrity constraints, removing those rows also resulted in the removal of 1,587  
 671 STREAM and 1,448 RESPONSE rows.

672 **Table 3 Counts of STATION rows removed due to inconsistencies**

| Reason                                       | Removed Rows |
|----------------------------------------------|--------------|
| End time <= begin time                       | 1            |
| Inconsistent station positions               | 26           |
| Overlapped station epochs                    | 332          |
| Station epoch not contained in network epoch | 155          |

673  
 674 STREAM data were also subjected to some consistency checks prior to integration. In total  
 675 8,371 rows were removed, with the results summarized in Table 4. Of the rows removed for  
 676 overlapped epochs, 2524 were from a single station (H20) in the H2 network and most of the

677 rest were from just two other networks. The bulk of the STREAM rows removed for sample rate  
 678 problems were from stations of the PB (Plate Boundary Observatory) network and were for  
 679 band 'Q'. The SEED manual specifies that 'Q' should have a sample rate of  $< 10^{-6}$ , and these  
 680 channels had a claimed rate of 0.05. However, the SEED manual also says that these are  
 681 approximate values, so our procedure may have been too aggressive.

682

683 **Table 4 Counts of STREAM rows removed for various inconsistencies**

| Reason                                         | Removed Rows |
|------------------------------------------------|--------------|
| Stream end time $\leq$ begin time              | 12           |
| Stream sample rate outside range for band code | 3387         |
| Overlapped epochs                              | 4764         |
| Orientation code inconsistent with dip         | 208          |

684

685 Responses were tested for internal consistency (non-overlapped epochs and response epochs  
 686 fully contained in STREAM epochs). We found 2272 that failed the second of these conditions.  
 687 We also tested the usability of the response files. The first check was a simple existence check:  
 688 Does the path specified by "dir/dfile" exist? There were 3573 failures. These failures were due  
 689 to the fact that integration testing was on a snapshot that referenced files in the data lake.  
 690 Because more work was done in the ingestion layer after the snapshot was taken, changes were  
 691 made that invalidated some database content.

692 We also tested response file usability by attempting to de-convolve each response from  
 693 synthetic data, and found nearly 78,000 responses that failed. This is a surprisingly large  
 694 number of failures. Based on examination of the exceptions and the set of channels involved,  
 695 we think the root cause is that the JEvalresp code is brittle with respect to "exotic" channels  
 696 and RESP files produced by certain organizations. Table 5 lists the top 12 networks with failed  
 697 responses. The transportable array is the hands-down winner with almost 27,000 failures.

698 **Table 5 The top 12 networks by total count of failed responses**

| CODE | Network                                      | Failures |
|------|----------------------------------------------|----------|
| TA   | USAarray Transportable Array                 | 26997    |
| PB   | Plate Boundary Observatory Borehole Network  | 8919     |
| EM   | Electromagnetic Studies of the Continents    | 6309     |
| CI   | Southern California Seismic Network          | 4458     |
| BK   | Berkeley Digital Seismic Network (BDSN)      | 3958     |
| IV   | Italian National Seismic Network             | 3083     |
| N4   | Central and Eastern US Network               | 2584     |
| SN   | UNR NSL Southern Great Basin                 | 1641     |
| GE   | GEOFON Program, GFZ Potsdam, Germany         | 1502     |
| IU   | Global Seismograph Network (GSN - IRIS/USGS) | 1202     |

|    |                                             |      |
|----|---------------------------------------------|------|
| RO | Romanian Seismic Network                    | 1055 |
| UL | USGS Low Frequency Geophysical Data Network | 1015 |

699

700 Of the nearly 27,000 failures for TA, almost 23,000 are from the channels (LCQ, VEA, VPB, VEC,  
 701 VKI, OCF, ACE, LOG, LKM, LDM, LIM, BDF, LDF, LDO, and BDO). None of these are conventional  
 702 seismic channels. Nearly all the exceptions were in some way related to input unit specification,  
 703 decimation specifications, or epoch end date specification.

#### 704 **Response Filtering**

705 Although being readable and parse-able is a minimum requirement for response usability, if a  
 706 response does not have the correct amplitude and phase characteristics it is worse than not  
 707 being available at all. Much of the processing done by GMP seismologists requires that  
 708 waveforms be corrected from raw counts to ground motion (e.g. velocity in m/s). Such  
 709 corrections are generally accomplished by de-convolving the instrument response from the  
 710 seismograms. If the de-convolution succeeds, but gives the wrong answer it leads to incorrect,  
 711 and potentially hard to trace, research results.

712 As part of this integration effort we attempt to identify problematic instrument responses and  
 713 exclude them from the results. For vertical-channel data available by FDSN Station Service, we  
 714 can compute P-wave amplitudes for large teleseismic events and compare to the amplitudes  
 715 expected based on the mb magnitude estimates from global catalogs. For each vertical-  
 716 component FDSN channel with a sample rate of at least 10 Hz and for which we can retrieve  
 717 waveforms via FDSN Station Service we:

- 718 • Identify up to 15 events with  $5.2 \leq mb \leq 6.2$  at distances from 15 to 40 degrees that  
 719 occurred during the response epoch.
- 720 • For each of these events, we retrieve waveform data from 100s before P to 140s after P.
- 721 • We remove the response and filter using a 2-pole Butterworth filter with corners at 1  
 722 and 3 Hz.
- 723 • We then measure the zero-peak amplitude ( $A_{meas}$ ) of the mean-removed absolute  
 724 value of the signal from 10s before P to 40s after.

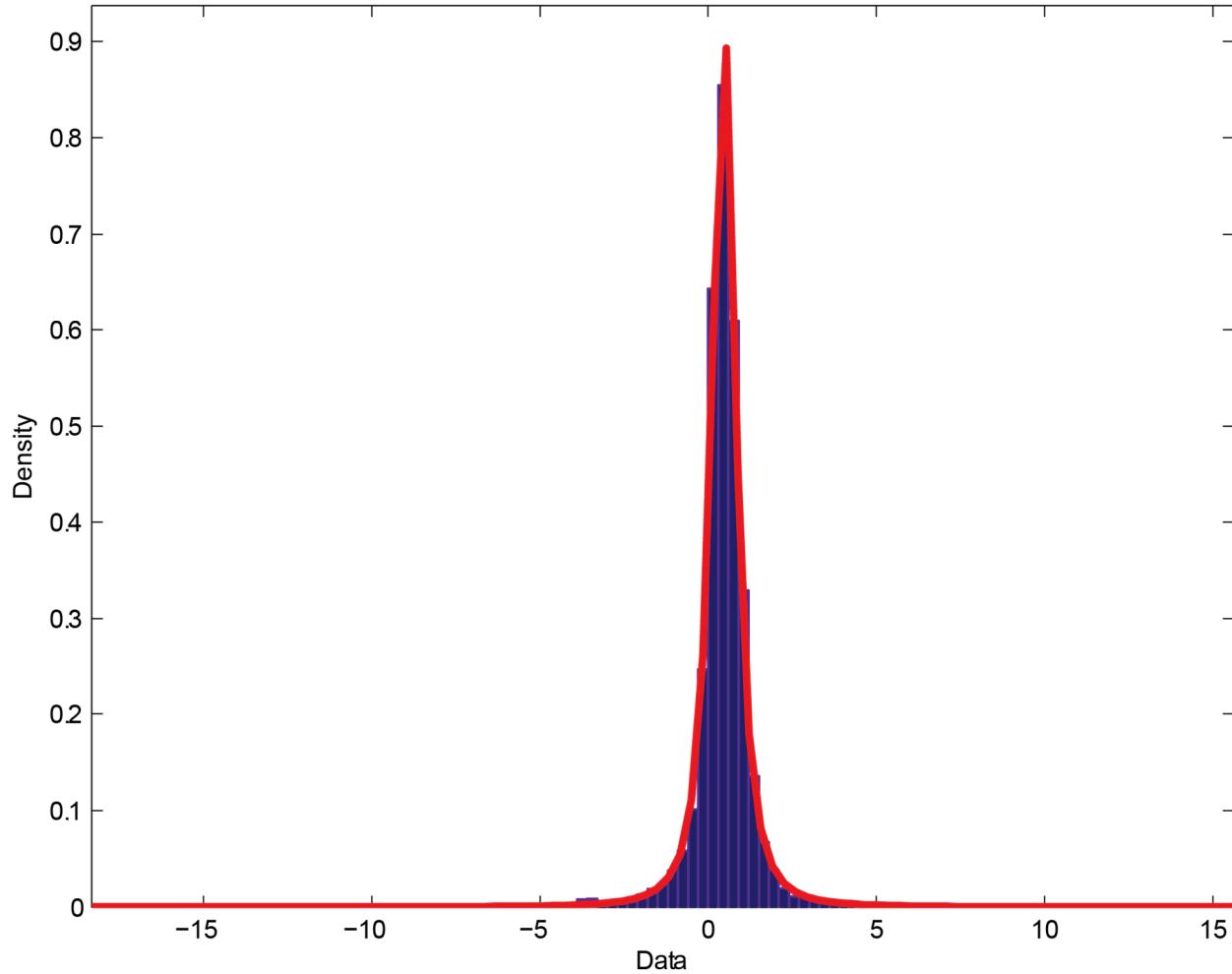
725 Next, we use the reported mb magnitude to predict the amplitude that should have been  
 726 observed:

$$727 A_{pred} = T * 10^{(mb - Q(\Delta, h))}$$

728  $Q(\Delta, h)$  is computed using a table of Q values retrieved from  
 729 (<http://www.jclahr.com/science/software/magnitude/mb/qtab.txt>). We then record the ratio:

730  $R = A_{meas}/A_{pred}$ .

731 We evaluated 15,829 responses in this manner. The histogram of  $\log_{10}$  amplitude ratios and a  
 732 fit to a t location scale distribution are shown in Figure . The distribution parameters are  
 733 ( $\mu=.4655$ ,  $\sigma=.3799$ , and  $v=1.777$ ).



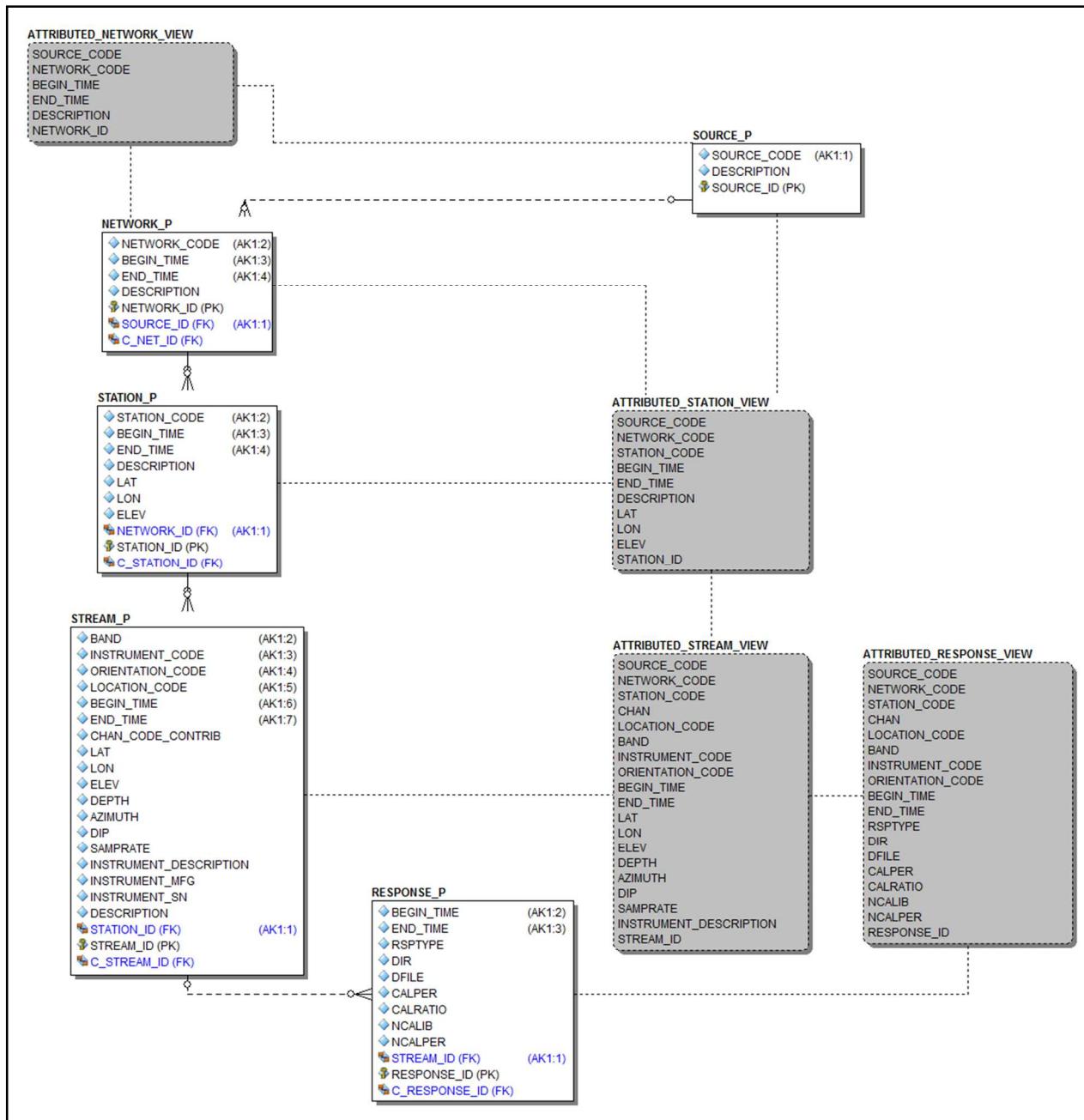
734  
 735 **Figure 9 A histogram of  $\log_{10} R$  (blue) with a t location scale distribution fit to the data (red)**

736 Using the distribution parameters, we can identify responses that are statistical outliers using a  
 737 T test. In this experiment, we eliminated 385 such responses at the 0.95 level. We also used  
 738 these results to select from among multiple candidates during a multiple-source merge.

739 Although this experiment demonstrates the possibility of empirically evaluating response  
 740 correctness, we were only able to test about 7% of the integrated responses using the mb  
 741 amplitude comparison approach. Only a subset of channels can be processed this way, and we  
 742 didn't have access to the necessary waveform data to support all of those.

743 **Preliminary Integration**

744 The tables in Figure 10 have the same structure as the input tables, except that the former  
 745 alternate keys are now surrogate primary keys. Also, derivable columns have been removed  
 746 from the natural keys. For example, STATION\_P does not include either NETWORK\_CODE or  
 747 SOURCE\_CODE since both are derivable through joins with NETWORK\_P and SOURCE\_P  
 748 respectively. Finally, array-specific columns have been removed from STATION\_P. Their  
 749 functionality has been moved to a new set of tables dedicated to arrays.



750

751 **Figure 10 The tables for “cleaned” metadata into which the prepared input data was ingested**

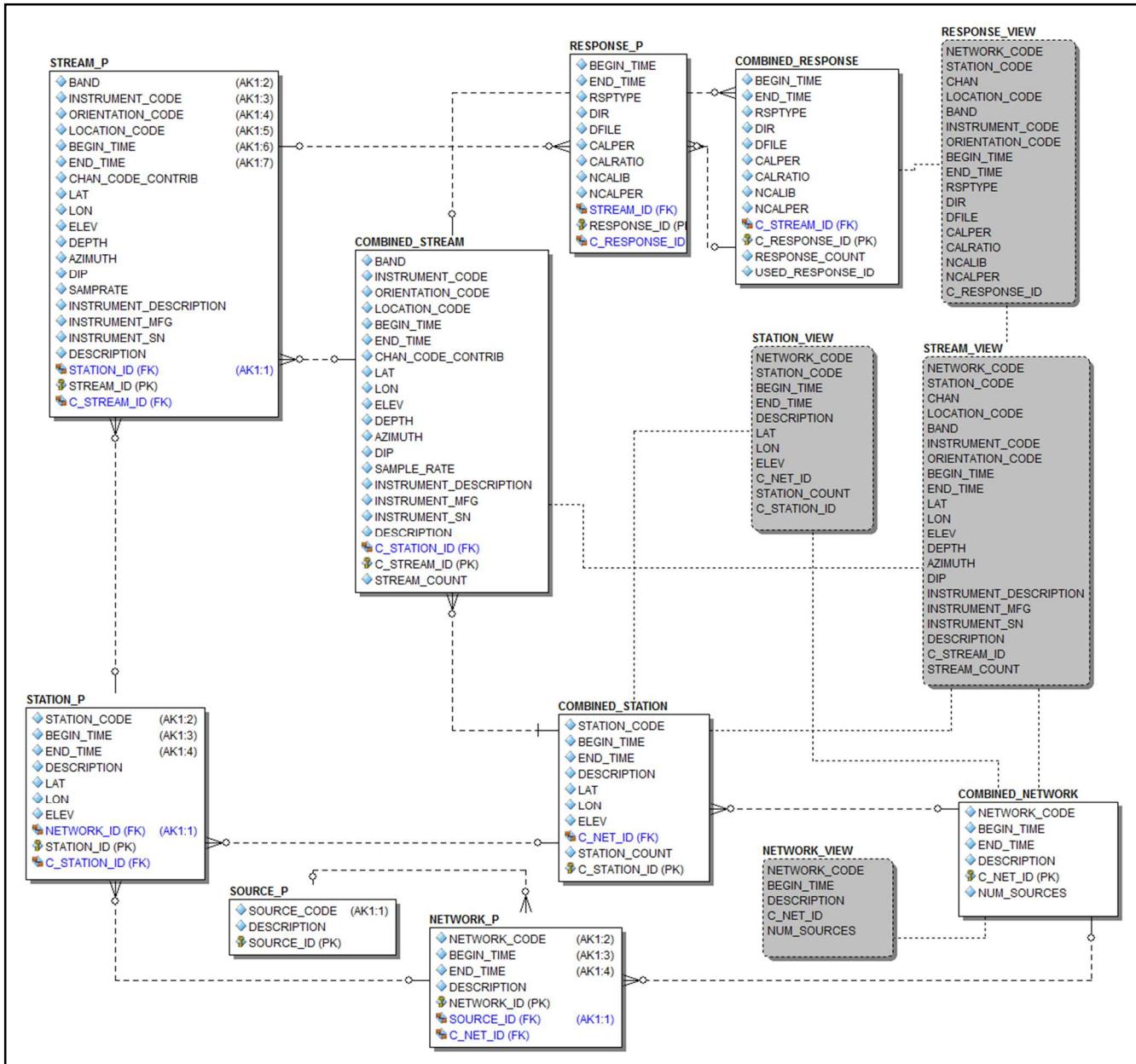
752 A sample of the results of this first stage of integration are shown in Table 6. Note that these  
 753 data are only integrated in the sense that multiple sources have been combined into a single  
 754 set of tables and the data within sources has been “cleaned” to improve usability and  
 755 consistency. Table 6 shows how sources fared in producing integrated STATION\_P, STREAM\_P,  
 756 and RESPONSE\_P data. At the STATION\_P level, all sources did well. On average 97% of the  
 757 input data were retained overall. At the STREAM\_P level the average was about 93% of rows  
 758 retained. Integration of response data was disappointing for all sources. The average retention  
 759 was 56%, not counting one particularly troublesome case where all responses were dropped  
 760 because of epoch conflicts.

761 **Table 6 Sample summary of the integration results for stations, streams, and responses**

| SOURCE  | Stations |       |         | Streams |        |         | Responses |        |         |
|---------|----------|-------|---------|---------|--------|---------|-----------|--------|---------|
|         | In       | Final | Percent | In      | Final  | Percent | In        | Final  | Percent |
| IRISDMC | 11234    | 11199 | 99.7    | 242018  | 236527 | 97.7    | 241868    | 186058 | 76.9    |
| NCEDC   | 3561     | 3461  | 97.2    | 49525   | 47684  | 96.3    | 49440     | 36135  | 73.1    |
| GEOFON  | 718      | 711   | 99.0    | 8752    | 8605   | 98.3    | 8750      | 3234   | 37      |
| INGV    | 718      | 678   | 94.4    | 7928    | 7568   | 95.5    | 7928      | 3314   | 41.8    |
| ORFEUS  | 222      | 220   | 99.1    | 3280    | 3248   | 99.0    | 3259      | 1996   | 61.3    |
| IPGP    | 122      | 122   | 100     | 2064    | 2059   | 99.8    | 1568      | 1093   | 69.7    |
| USPSC   | 139      | 137   | 98.6    | 1054    | 990    | 93.9    | 1053      | 849    | 80.6    |
| NIEP    | 102      | 102   | 100     | 874     | 868    | 99.3    | 874       | 240    | 27.5    |
| LMU     | 120      | 120   | 100     | 414     | 414    | 100     | 414       | 246    | 59.4    |
| SED     | 474      | 453   | 95.6    | 3691    | 3183   | 86.2    | 8         | 3      | 37.5    |
| RESIF   | 484      | 484   | 100     | 7493    | 7486   | 99.9    | 0         | 0      |         |

762 **Integration Between Sources**

763 The tables shown in Figure 0 provide a means of storing data from multiple sources in a way  
 764 that maintains consistency. By including network code as a key and by maintaining a consistent  
 765 time representation across tables, two major sources of inconsistency are removed. If the  
 766 presentation layer incorporated just those two changes then the main change to application  
 767 queries would be the inclusion of NETWORK\_CODE. Adding SOURCE as part of the key  
 768 complicates logic a little more, and our original hope was that we could avoid this by combining  
 769 data provided by multiple sources. In this section, we present some findings.



770  
771  
772  
773  
774

Figure 41 The schema for the source-integrated data. Tables are shown in white and views in gray. The tables with the “COMBINED” prefix hold the combined data, and the tables with the “P” suffix hold the potentially multiple rows which have been used to create a single row in the corresponding “COMBINED” table.

775 Figure 41 shows the schema into which the data were combined. Our strategy for combining  
776 rows was simple. Station epochs were merged if they matched to the nearest day. Merged  
777 station rows hold the averages of latitude, longitude, elevation. The begin time was set to the  
778 earliest of the epochs being merged and the end time was set to the latest end time. Any  
779 remaining input rows that overlapped merged rows were dropped. STREAM data were handled  
780 in an analogous manner except that begin times and end times were set to the average of the

781 input times. Responses were handled a little differently. The time resolution used was one  
 782 second and instead of averaging fact columns, we chose a single response. If each response had  
 783 an entry in the amplitude ratio table, we chose the one with the smallest deviation from the  
 784 mean. Otherwise, we chose the first response.

785 A summary of the merged data is shown in Table 7. The counts shown are for distinct rows  
 786 disregarding time. Time-sensitive row counts differ by less than 3%. Some data loss has  
 787 occurred in merging between sources, but overall, the results seem encouraging.

788 **Table 7 The results of the two merge strategies.**

| Data Type                                    | Raw Totals | Attributed Data Retained |         | Combined Data Retained |         |
|----------------------------------------------|------------|--------------------------|---------|------------------------|---------|
|                                              |            | Surviving                | Percent | Surviving              | Percent |
| <b>Station:</b> Distinct NET-STA             | 17,344     | 17,121                   | 99%     | 17,121                 | 99%     |
| <b>Stream:</b> Distinct NET-STA-CHAN-LOCID   | 185,576    | 181,537                  | 98%     | 180,534                | 97%     |
| <b>Response:</b> Distinct NET-STA-CHAN-LOCID | 181,997    | 125,499                  | 68%     | 124,526                | 68%     |

789

790 Although we have shown that large fractions of the metadata may be combined successfully, it  
 791 is still not clear that this is the right thing to do. Combining the data is a lossy operation. Once  
 792 combined, whether by the algorithms discussed above, or by some alternative; unless the  
 793 inputs are identical, the data appear to be more certain than they really are. Perhaps more  
 794 importantly, when we combine waveform data based on keys like SOURCE or NETWORK, we  
 795 don't really know without checking the counts whether the data are identical or not. The  
 796 following examples illustrate some of the issues.

797 First, we consider integrating data having the same station code and position, but with differing  
 798 network codes. After preliminary integration, we found 376 station codes that are associated  
 799 with more than one network code. We identified 620 pairings where a single station code had  
 800 two or more rows with identical positions, overlapped epochs, and with two different network  
 801 codes. The optimistic assumption (with respect to merging waveforms) is that in these cases  
 802 the same physical station has been reported by different networks, so that in processing  
 803 seismograms we can ignore the source.

804 We have not retrieved waveform data for these pairings, so we don't know whether  
 805 seismograms would match count-for-count, but we do have the responses. If the responses are  
 806 identical then it is reasonable to expect that waveforms would match as well, assuming sample  
 807 rates are the same. There are 5694 response pairings associated with the station pairings. For  
 808 each pairing, we de-convolved each instrument response from an impulse function. The results  
 809 are shown in Figure 52(a) and (b).

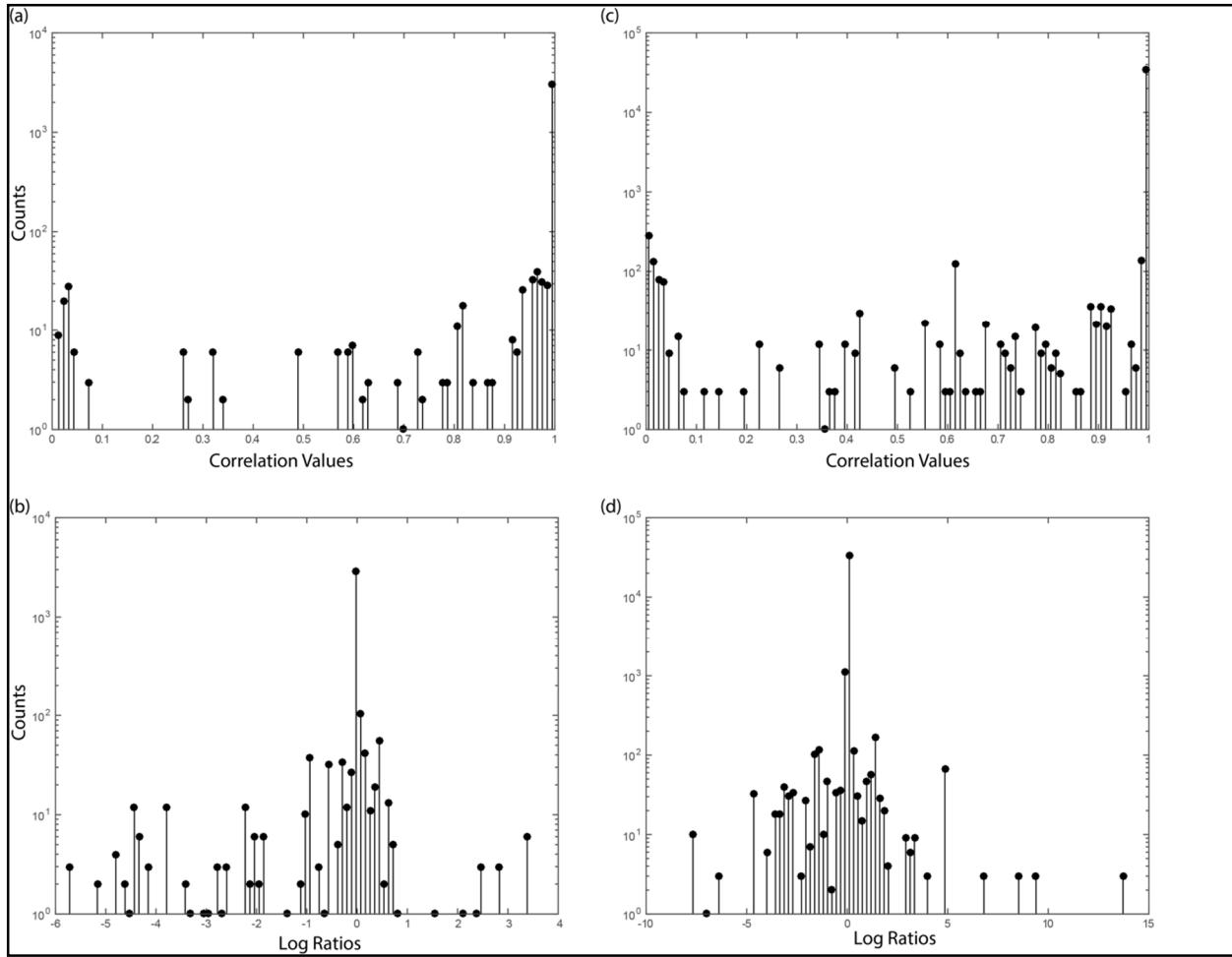


Figure 52 A comparison of 5694 instrument responses in terms of the cross correlation of de-convolved impulse functions (a) and ratios of peak amplitudes of the de-convolved signals. In each case the responses being compared have the same station code, channel name, location code, and time period. They differ in network code.

810  
811  
812  
813  
814

815 Panel (a) shows binned correlation values of de-convolved impulse functions and (b) shows the  
816 ratios of peak amplitudes of the de-convolved signals. In the great majority of cases, the de-  
817 convolved signals match. However, there are hundreds of instances where the signals are  
818 poorly correlated, the amplitudes don't match, or both. Clearly the responses are different in  
819 these cases, but without further investigation we cannot be sure whether this is strictly a  
820 response problem, or whether the responses differ because the data streams differ. Either way,  
821 it does not seem advisable to merge these streams until the issues are better understood.

822 What about merging data when all keys match except for source? We already know that data  
823 from the US NDC may be inconsistent when merged with data from IRIS because the NDC data  
824 has scaling information held with the waveforms while IRIS holds that information in the  
825 response files. But can we merge FDSN data from different sources? In our test data set, there  
826 are 1116 instances of the same (FDSN) net-station-epoch provided by more than one source.

827 There are 35,848 corresponding response pairs, and their binned comparisons are shown in  
828 parts (c) and (d) of Figure 52. Although most responses appear to be identical, there are  
829 hundreds that do not match. It is unclear if the mismatches are due to errors, or because the  
830 data have been treated differently.

831 **Discussion**

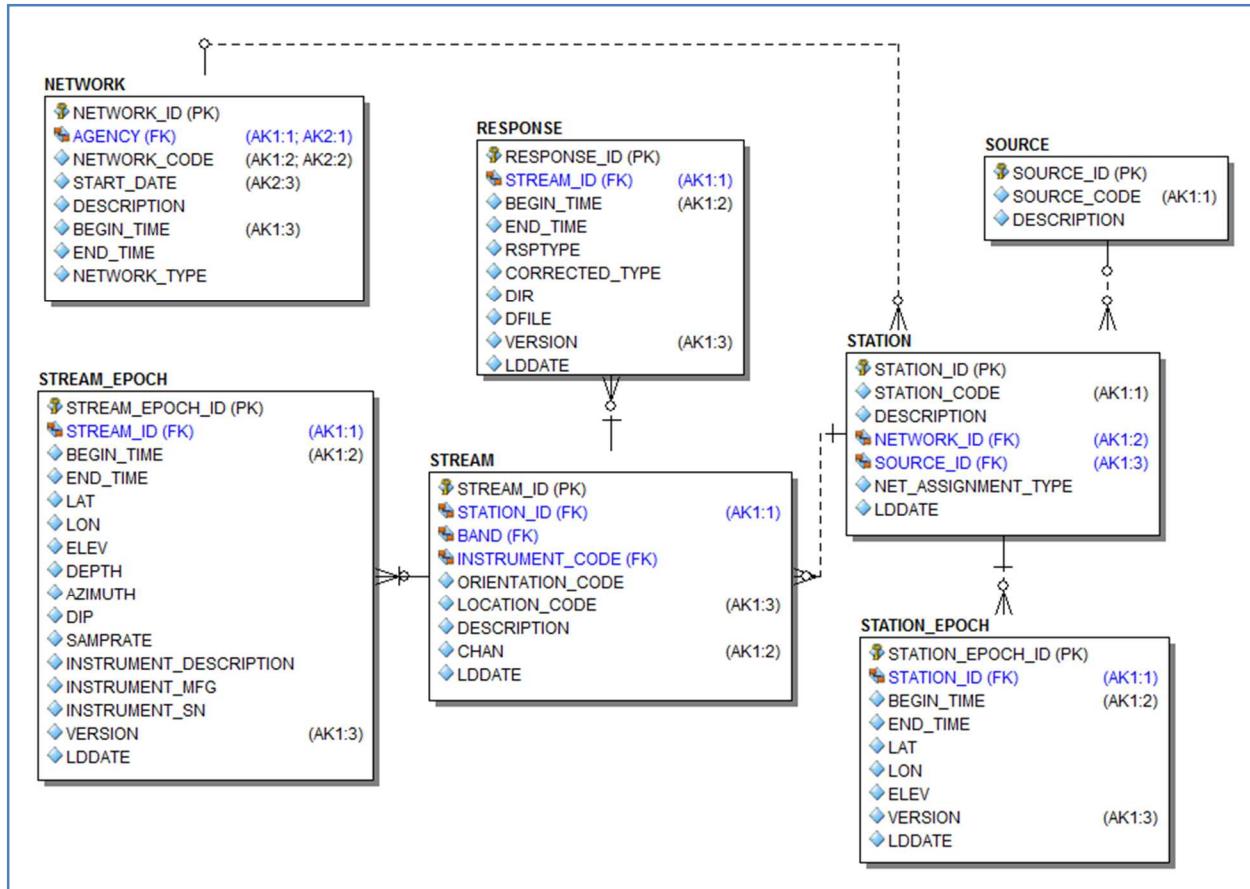
832 We experimented with two approaches to integrating metadata (network-station-stream-  
833 response) from 13 different sources. In the first approach, we kept the data separated by  
834 source and removed data found to be unusable, or that violated one of several checks for  
835 correctness. Using this approach, about 99% of station data, 98% of stream data, and 68% of  
836 response data were successfully integrated. The second approach built on those results by  
837 merging data from different sources where other keys matched. Nearly all data survived the  
838 final merge step, so that the final percentages changed little from those of the first merge  
839 (Table 6).

840 In discussing those results, we noted that the final merge step introduced ambiguity because  
841 we could not be sure that stream data from different sources would be identical even if the  
842 keys matched. We showed that response data provided by different sources does not always  
843 match. This could imply differences in waveforms as well, and suggests that at least until we  
844 understand the differences in responses, it may not be advisable to merge data from different  
845 sources.

846 Although our integration strategies succeeded in producing a self-consistent metadata  
847 collection that retained a large fraction of the input metadata, metadata important to  
848 researchers was screened out. For example, all UNR responses were removed because of epoch  
849 inconsistencies. Thousands of stream rows (and hence responses) were removed for epoch  
850 inconsistencies and other rule violations.

851 The problem we are facing is that these schemas reflect an idealized world in which perfect  
852 records are always kept. In that world, you can depend on response epochs being subsets of  
853 stream epochs, which are themselves subsets of station epochs, and so on. Data that conform  
854 to those expectations can be successfully integrated and are usable without any anomalies. The  
855 remainder either must be dropped or somehow modified to be consistent.

856 Any modifications to the data to make them consistent are necessarily arbitrary and merely  
857 provide the illusion of consistent and certain information. Instead, if we want to use all the  
858 metadata that comes our way, the only practical approach is to employ a schema that allows  
859 the inconsistencies and to accept that some queries will produce ambiguous, multi-valued  
860 results.



861  
862

**Figure 63 A possible schema that allows for inconsistent epochs.**

863 One approach that maintains the source-network-station-stream hierarchy is to simply pull the  
864 epoch-sensitive information from station, and stream (Figure 63). In this design, it is still true,  
865 for example, that a stream belongs to a station. But, there is no requirement that any stream  
866 epoch will belong to a given station epoch

867 As an example, suppose we need the instrument response for a waveform. To satisfy this, we  
868 join WAVEFORM to RESPONSE on STREAM\_ID subject to the WAVEFORM times being  
869 contained in the RESPONSE times. This will return 0 to N rows. Of course, we would like a single  
870 row, so an algorithm will be required to down select. Similar strategies apply for STREAM  
871 information and STATION information. With a design like this, we can load all the metadata we  
872 ingest. We can still check for rule violations, e.g. invalid STREAM sample rates, etc. But instead  
873 of dropping the rows, we can flag them. Of course, there is a cost. Making this work would  
874 require a major reworking of our data processing infrastructure. It will also become more  
875 difficult for researchers to perform ad hoc queries, since they will need to accommodate multi-  
876 valued results.

877

## 878 Layer 4: Presentation

879 The presentation layer is where fully processed data is made available to end users. It is the  
880 external interface to the data mart and may include multiple views of the curated data tailored  
881 to different use cases. Ultimately it will replace our current production schema for our  
882 downstream analysis applications and researchers.

883 Our initial implementation plan for this layer was to create views of the processed and  
884 integrated data from the new pipeline that closely emulated the structure of the existing data  
885 mart. This strategy promised big benefits. First, it would allow us to do a direct comparison of  
886 the results with the existing system to validate the new pipeline. We could run the two systems  
887 side by side and compare results over time until the new system was proven. Once that was  
888 accomplished, it would provide a mechanism for seamlessly moving users and applications to  
889 the new system with very little interruption. Unfortunately, the issues described in the last  
890 section show that we cannot reliably integrate multi-source data into a source independent  
891 schema like the one in our existing system.

## 892 Confidence Measures

893 The presentation layer can also include any reports, dashboards, or summaries of the data that  
894 could be useful to data consumers. In the new data mart users and applications might have to  
895 select the best option from multiple rows, where they used to always get one. A measure of  
896 confidence in each row could be particularly valuable in helping them decide. Ideally it would  
897 be a single comparison metric that incorporated the quality, verifiability, and stability aspects of  
898 the data.

899 As a first pass at this idea we created a summary quality metric based on a penalty value  
900 associated with each error logged during the quality checks in the transformation layer. The  
901 total penalty of errors not found is divided by the total possible penalty to give a measure of  
902 “goodness” of the metadata row. The design allows penalties to be weighted to show relative  
903 importance, but for this exercise we accrued the same penalty for each error.

904 Even this overly simplistic algorithm provided some insights into the data, and supported quick  
905 quality comparisons between similar data from different sources. It also identified problem  
906 areas and error trends in the data that require further probing and analysis. One of the  
907 summary quality reports we developed for the presentation layer is shown in Table 8.

908

909

**Table 8 Sample summary of data quality by data source**

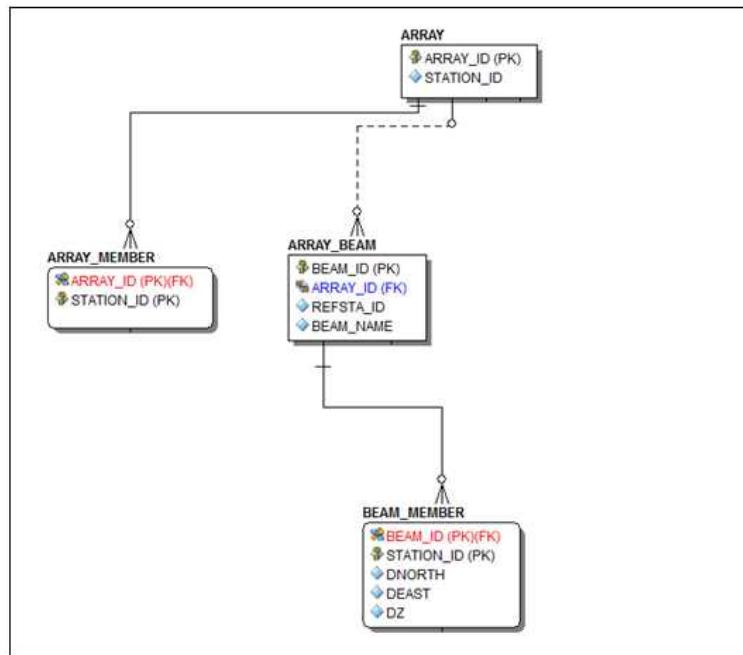
| SOURCE  | TABLE    | ROW COUNT | GOOD ROWS | GOOD% | PROB ROWS | PROB% | ERROR COUNT | Avg Conf | Min Conf |
|---------|----------|-----------|-----------|-------|-----------|-------|-------------|----------|----------|
| GEOFON  | network  | 30        | 30        | 100%  | 0         | 0%    |             | 1        | 1        |
| GEOFON  | station  | 718       | 718       | 100%  | 0         | 0%    |             | 1        | 1        |
| GEOFON  | stream   | 8752      | 8737      | 100%  | 15        | 0%    | 15          | 1        | 0.94     |
| GEOFON  | response | 8750      | 8750      | 100%  | 0         | 0%    |             | 1        | 1        |
| GEOFON  | TOTAL    | 18250     | 18235     | 100%  | 15        | 0%    | 15          | 1.00     | 0.94     |
| INGV    | network  | 27        | 27        | 100%  | 0         | 0%    |             | 1        | 1        |
| INGV    | station  | 718       | 680       | 95%   | 38        | 5%    | 38          | 0.99     | 0.9      |
| INGV    | stream   | 7928      | 7339      | 93%   | 589       | 7%    | 610         | 1        | 0.88     |
| INGV    | response | 7928      | 7924      | 100%  | 4         | 0%    | 4           | 1        | 0.83     |
| INGV    | TOTAL    | 16601     | 15970     | 96%   | 631       | 4%    | 652         | 1.00     | 0.83     |
| IPGP    | network  | 5         | 5         | 100%  | 0         | 0%    |             | 1        | 1        |
| IPGP    | station  | 122       | 122       | 100%  | 0         | 0%    |             | 1        | 1        |
| IPGP    | stream   | 2064      | 1936      | 94%   | 128       | 6%    | 128         | 1        | 0.94     |
| IPGP    | response | 1568      | 1568      | 100%  | 0         | 0%    |             | 1        | 1        |
| IPGP    | TOTAL    | 3759      | 3631      | 97%   | 128       | 3%    | 128         | 1.00     | 0.94     |
| IRISDMC | network  | 198       | 198       | 100%  | 0         | 0%    |             | 1        | 1        |
| IRISDMC | station  | 11234     | 11196     | 100%  | 38        | 0%    | 38          | 1        | 0.9      |
| IRISDMC | stream   | 242018    | 222305    | 92%   | 19713     | 8%    | 20412       | 0.99     | 0.81     |
| IRISDMC | response | 241868    | 238807    | 99%   | 3061      | 1%    | 3061        | 1        | 0.83     |
| IRISDMC | TOTAL    | 495318    | 472506    | 95%   | 22812     | 5%    | 23511       | 1.00     | 0.81     |
| NCEDC   | network  | 21        | 21        | 100%  | 0         | 0%    |             | 1        | 1        |
| NCEDC   | station  | 3561      | 3462      | 97%   | 99        | 3%    | 99          | 1        | 0.9      |
| NCEDC   | stream   | 49525     | 43920     | 89%   | 5605      | 11%   | 6498        | 0.99     | 0.75     |
| NCEDC   | response | 49440     | 49440     | 100%  | 0         | 0%    |             | 1        | 1        |
| NCEDC   | TOTAL    | 102547    | 96843     | 94%   | 5704      | 6%    | 6597        | 1.00     | 0.75     |
| NIEP    | network  | 4         | 4         | 100%  | 0         | 0%    |             | 1        | 1        |
| NIEP    | station  | 102       | 102       | 100%  | 0         | 0%    |             | 1        | 1        |
| NIEP    | stream   | 874       | 868       | 99%   | 6         | 1%    | 6           | 1        | 0.94     |
| NIEP    | response | 874       | 874       | 100%  | 0         | 0%    |             | 1        | 1        |
| NIEP    | TOTAL    | 1854      | 1848      | 100%  | 6         | 0%    | 6           | 1.00     | 0.94     |
| ORFEUS  | network  | 29        | 29        | 100%  | 0         | 0%    |             | 1        | 1        |
| ORFEUS  | station  | 222       | 220       | 99%   | 2         | 1%    | 2           | 1        | 0.9      |
| ORFEUS  | stream   | 3280      | 3148      | 96%   | 132       | 4%    | 138         | 1        | 0.88     |
| ORFEUS  | response | 3259      | 3259      | 100%  | 0         | 0%    |             | 1        | 1        |
| ORFEUS  | TOTAL    | 6790      | 6656      | 98%   | 134       | 2%    | 140         | 1.00     | 0.88     |
| RESIF   | network  | 11        | 11        | 100%  | 0         | 0%    |             | 1        | 1        |
| RESIF   | station  | 484       | 484       | 100%  | 0         | 0%    |             | 1        | 1        |
| RESIF   | stream   | 7493      | 7007      | 94%   | 486       | 6%    | 492         | 1        | 0.88     |

|       |          |      |      |      |     |     |     |      |      |
|-------|----------|------|------|------|-----|-----|-----|------|------|
| RESIF | TOTAL    | 7988 | 7502 | 94%  | 486 | 6%  | 492 | 1.00 | 0.88 |
| SED   | network  | 16   | 16   | 100% | 0   | 0%  |     | 1    | 1    |
| SED   | station  | 474  | 451  | 95%  | 23  | 5%  | 23  | 1    | 0.9  |
| SED   | stream   | 3691 | 2960 | 80%  | 731 | 20% | 783 | 0.99 | 0.81 |
| SED   | response | 8    | 8    | 100% | 0   | 0%  |     | 1    | 1    |
| SED   | TOTAL    | 4189 | 3435 | 82%  | 754 | 18% | 806 | 0.99 | 0.81 |
| USPSC | network  | 2    | 2    | 100% | 0   | 0%  |     | 1    | 1    |
| USPSC | station  | 139  | 139  | 100% | 0   | 0%  |     | 1    | 1    |
| USPSC | stream   | 1054 | 1021 | 97%  | 33  | 3%  | 33  | 1    | 0.94 |
| USPSC | response | 1053 | 1053 | 100% | 0   | 0%  |     | 1    | 1    |
| USPSC | TOTAL    | 2248 | 2215 | 99%  | 33  | 1%  | 33  | 1.00 | 0.94 |

## 911 **Arrays**

912 As mentioned in the unified schema description, the STATION table has the columns STATYPE,  
 913 REFSTA, DNORTH, and DEAST which are taken from the CSS SITE table. These columns are  
 914 populated for the subset of stations that are part of an array. For most stations, the columns  
 915 are unset. The inclusion of these columns in STATION is problematic for several reasons. The  
 916 first is that nearly all station rows have these four columns which carry no information about  
 917 the station. STATION is being used to describe three different kinds of entity, (seismic station,  
 918 array element, seismic array). As such, it violates the 1NF requirement of having a separate  
 919 table for each set of related data.

920



921 **Figure 14 The tables used to describe arrays and array beams**

923 A more flexible way to describe seismic arrays and beams is shown in Figure 14. In this schema,  
 924 the ARRAY table contains a row for every array epoch. Every STATION row with STATYPE value  
 925 of 'ar' that survived integration is referenced in this table by its STATION\_ID. The ARRAY\_ID is a  
 926 surrogate key generated from a sequence. The ARRAY\_MEMBER table was populated from  
 927 surviving STATION rows with STATYPE = 'ss' and REFSTA matching an array row on  
 928 STATION\_CODE and epoch.

929 **Station Clusters**

930 Unlike our existing system, the new pipeline makes no attempt to map data for the same  
 931 physical station to the same station code. Not only do different data sources use different  
 932 identifiers for the same station or channels, but sometimes even the same source changes the  
 933 codes due to input error, changes in naming conventions, data corrections, etc. A significant  
 934 problem is also created if the same identifier is used for different physical stations.

935 Matching location coordinates often cannot be used to sort out these issues. For example,  
 936 stations may be physically moved over time, and array members may be very close together.  
 937 We know from our current system that changing station identifiers to make a global naming  
 938 standard where one doesn't exist just creates error and uncertainty. The new pipeline does not  
 939 try to correct or assign names, but this is far from perfect because the end user is left to identify  
 940 and fix any naming problems in the data they use.

941 Stations clusters are an attempt to provide the end user with information about other stations  
 942 that may be the same as the one they are interested in. It is implemented as a procedure that  
 943 walks through the station table and makes location based clusters of stations based on  
 944 proximity. If the current station being considered is within 0.1 KM of any station already in a  
 945 group, the station is added to the group. Once all stations are processed any groups containing  
 946 a common member are coalesced, and a unique integer is assigned to each group for  
 947 identification. Array members are disregarded.

948 Using this logic 15,845 distinct station codes are grouped into 14,810 clusters, indicating that  
 949 there are possibly 1,035 superfluous station codes in the data. The maximum distance between  
 950 any two stations in the same cluster is less than .33 km. Table 17 is a summary of the top  
 951 clusters with the most members, and it illustrates some of the additional insight station clusters  
 952 give into the data.

953 The first row of Table 17 shows a cluster with 70 different station codes, all from the same  
 954 source and at identical locations. All 70 stations are in the GY network from the IRISDMC  
 955 source. None have a station name or description. Most likely this is a data error of a new type  
 956 that would not be caught by the quality checks in the ingestion or transformation layers.

**Table 9 Top station clusters with the most members**

| SCLUSTER_ID | SOURCE_CNT | NET_CNT | STA_CNT | MIN_DIST | AVG_DIST | MAX_DIST |
|-------------|------------|---------|---------|----------|----------|----------|
| 16258       | 1          | 1       | 70      | 0        | 0        | 0        |
| 15901       | 2          | 2       | 37      | 0        | 0.01     | 0.088    |
| 15728       | 2          | 2       | 23      | 0        | 0        | 0        |
| 17003       | 1          | 1       | 14      | 0        | 0        | 0        |
| 19213       | 1          | 1       | 12      | 0        | 0.098    | 0.319    |
| 16039       | 1          | 1       | 12      | 0        | 0.007    | 0.024    |
| 16150       | 2          | 2       | 11      | 0        | 0        | 0        |
| 19177       | 2          | 3       | 11      | 0        | 0.033    | 0.162    |
| 16607       | 1          | 2       | 11      | 0        | 0.034    | 0.08     |
| 16117       | 1          | 1       | 10      | 0        | 0.037    | 0.104    |
| 16124       | 2          | 3       | 9       | 0        | 0.044    | 0.107    |
| 18130       | 2          | 1       | 9       | 0        | 0.041    | 0.089    |
| 16811       | 1          | 1       | 9       | 0        | 0.03     | 0.075    |
| 18290       | 1          | 3       | 8       | 0        | 0.056    | 0.125    |
| 19204       | 2          | 5       | 7       | 0        | 0.081    | 0.205    |
| 16101       | 1          | 1       | 7       | 0        | 0.107    | 0.322    |
| 15935       | 1          | 1       | 6       | 0        | 0.016    | 0.039    |
| 16203       | 2          | 2       | 6       | 0        | 0.053    | 0.149    |
| 16247       | 1          | 1       | 6       | 0        | 0        | 0        |
| 16643       | 1          | 2       | 6       | 0        | 0.058    | 0.157    |
| 24014       | 1          | 1       | 6       | 0        | 0.021    | 0.057    |
| 17190       | 1          | 2       | 6       | 0        | 0.032    | 0.084    |
| 18281       | 2          | 2       | 6       | 0        | 0.009    | 0.049    |
| 22162       | 2          | 2       | 6       | 0        | 0        | 0        |
| 17100       | 1          | 1       | 6       | 0        | 0        | 0        |
| 15940       | 2          | 2       | 5       | 0        | 0.002    | 0.007    |
| 16710       | 1          | 1       | 5       | 0        | 0.063    | 0.149    |
| 18111       | 2          | 3       | 5       | 0        | 0.026    | 0.06     |
| 18193       | 2          | 2       | 5       | 0        | 0.001    | 0.011    |
| 18243       | 2          | 3       | 5       | 0        | 0.033    | 0.082    |
| 25616       | 1          | 1       | 5       | 0        | 0.046    | 0.11     |
| 18286       | 1          | 1       | 5       | 0        | 0.011    | 0.044    |
| 18375       | 1          | 1       | 5       | 0        | 0.026    | 0.093    |
| 19885       | 2          | 2       | 5       | 0        | 0.002    | 0.008    |
| 22896       | 2          | 1       | 5       | 0        | 0        | 0        |
| 22936       | 2          | 6       | 5       | 0        | 0.054    | 0.141    |
| 18253       | 1          | 1       | 5       | 0        | 0.033    | 0.069    |
| 16051       | 2          | 2       | 4       | 0        | 0.01     | 0.035    |
| 16516       | 1          | 1       | 4       | 0        | 0        | 0        |

958 A search of the data for all clusters from one source and network with multiple stations at the  
959 exact same location shows that there are 162 similar clusters. The great majority of these (152)  
960 have only two stations, and except for the 70-station cluster already mentioned, the rest have  
961 less than fifteen members each. A legitimate reason for this phenomenon is multiple stations at  
962 the same site but with different elevations or different types of sensors (hydro-acoustic,  
963 infrasound, etc.). Other examples appear to be array members that are not identified on the  
964 array list, and are mistakenly identified by the same coordinates. In fact, many of the clusters  
965 on the list in Table 17 appear to be array members that are not on the array list. This is likely  
966 because they are from SEED sources, and the array list is constructed solely from CSS sources.  
967 Station clusters appear to be a useful way to identify related stations, arrays, and some new  
968 types of data errors. The distance of 0.1 km was somewhat arbitrary, and further analysis may  
969 indicate a more useful value. A conservative distance limit risks eliminating related stations that  
970 are just outside of the limit, but a generous limit may return false positives. A different  
971 clustering technique, such as machine learning, may give better results by using all the station  
972 metadata to group related stations instead of only the location coordinates. Station codes,  
973 descriptions, and elevations provide valuable insight and could be used to form and then  
974 classify clusters as data errors, arrays, legitimate location changes, naming differences between  
975 sources, etc.

## 976 Conclusion and Future Work

977 There is significant work left to do before GMP has an operational data pipeline with the new  
978 design. Many ideas for follow-on and remaining work are discussed in the previous sections of  
979 this report. All our implementations were prototypes, which allowed us to avoid some critical  
980 decisions to meet scope and funding constraints. For example, no final hardware or  
981 environment decisions were made. Multiple copies of data were kept at every processing stage  
982 for convenience, with no regard to storage limitations. A complete data lifecycle and archiving  
983 policy needs to be established. Applications will need to be modified, and users will need to be  
984 trained to use the new data mart. New user interfaces and applications should be developed to  
985 expose and use the quality metrics, data provenance, and other new data elements we created.

986 Despite these limitations this project was an important start toward the development of a next  
987 generation ingestion pipeline for GMP. We validated NiFi as an overall flow manager, created a  
988 unified schema to store data from all anticipated formats, implemented basic functionality in  
989 each layer of the new architecture, verified that it solved many of our existing ingestion issues,  
990 and uncovered and quantified many of the errors and deficiencies in seismic data. We also  
991 greatly increased our understanding of the issues and our expertise in scalable data  
992 management, which has already led to other funded projects.

993 **References**

994 Anderson, J., W.E. Farrell, K. Garcia, J. Given, H. Swanger (1990). "CENTER FOR SEISMIC STUDIES  
 995 VERSION 3 DATABASE: SCHEMA REFERENCE MANUAL". Science Applications International Corp.  
 996 Center for Seismic Studies 1300 N. 17th Street, #1450 Arlington, VA 22209-3871.

997 Anderson, Q. (2013) "Storm Real-Time Processing Cookbook", Packt Publishing, Birmingham,  
 998 U.K. ISBN: 1782164421 9781782164425

999 Bridgwater, A. (2015). "NSA 'NiFi' Big Data Automation Project Out In The Open". *Forbes*  
 1000 (*magazine*). Retrieved 2016-09-21.

1001 Crockford, D. (2009). "Introducing JSON". json.org. Retrieved July 3, 2009.

1002 George, L. (2011) "HBase: The Definitive Guide: Random Access to Your Planet-Size Data",  
 1003 O'Reilly Media Inc., Sebastopol, CA. ISBN-13: 978-1449396107.

1004 Islan, M. K. and A. Srinivasan (2015) "Apache Oozie; The workflow scheduler for Hadoop",  
 1005 O'Reilly Media Inc., Sebastopol, CA. ISBN-13: 978-1449369927

1006 Norris, M.W.; Faichney, A.K., eds. (2002). SEG Y rev1 Data Exchange format (PDF). Tulsa, OK:  
 1007 Society of Exploration Geophysicists

1008 NSA (National Security Administration) press release, 2014. "NSA Releases First in Series of  
 1009 Software Products to Open Source Community". <https://www.nsa.gov/news-features/press-room/press-releases/2014/nifi-announcement.shtml>

1011

1012 About the FDSN. (n.d.). Retrieved March 22, 2017, from <http://www.fdsn.org/about/>

1013

1014 IRIS (Incorporated Research Institutions for Seismology), 2012. SEED Reference Manual  
 1015 (Standard for the Exchange of Earthquake Data), SEED Format Version 2.4, August, 2012.  
 1016 [https://www.fdsn.org/seed\\_manual/SEEDManual\\_V2.4.pdf](https://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf)

1017 Jain, A. (2013) "Instant Apache Sqoop", Packt Publishing, Birmingham, U.K. ISBN: 1782165762  
 1018 9781782165767

1019 Primack, D. "LinkedIn engineers spin out to launch 'Kafka' startup Confluent". *fortune.com*.  
 1020 Retrieved February 10, 2015.

1021 Romanowicz, B. (1990). "The Federation of Digital Broad Band Seismic Networks", Laboratoire  
 1022 de Sismologie, Institut de Physique du Globe. Retrieved from:  
 1023 [http://www.fdsn.org/media/\\_publications/historical/fdsn\\_report\\_romanowicz.pdf](http://www.fdsn.org/media/_publications/historical/fdsn_report_romanowicz.pdf).

1024 Russel, J. and R. Cohn (2012) "Apache Avro", Book on Demand, ISBN 5511968579,  
1025 9785511968575.

1026 Vance, A. (2009). "Hadoop, a Free Software Program, Finds Uses Beyond Search". *The New York*  
1027 *Times*. Archived from the original on August 30, 2011. Retrieved 2010-01-20.

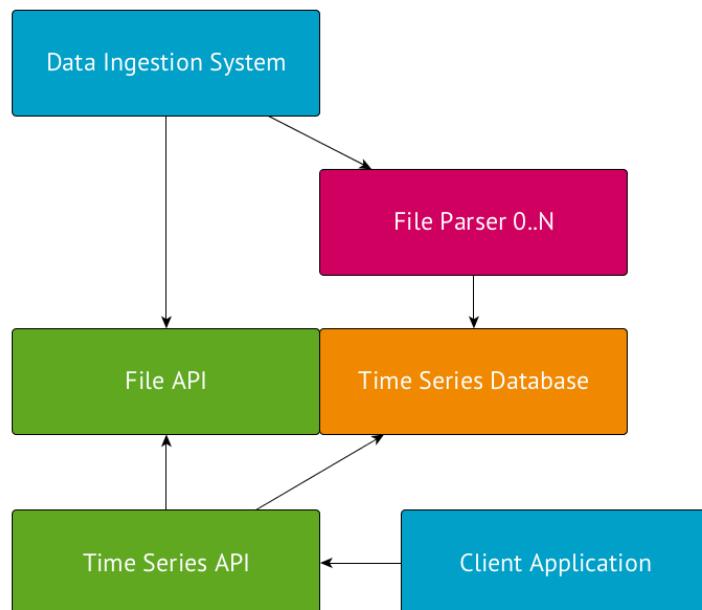
1028 White, T. (2015) "Hadoop: The Definitive Guide 4<sup>th</sup> Edition"; Chapter 13. O'Reilly Media Inc.,  
1029 Sebastopol, CA, ISBN: 9781491901687.

1030 Zaharia, M. et al (2016). [Apache Spark: A Unified Engine for Big Data Processing](#),  
1031 *Communications of the ACM*, 59(11):56-65.

1032 **Appendix**1033 **A Short Word on Waveforms**

1034 Most this paper has been focused on parametric data, the primary focus of our efforts to date  
 1035 and the main source of our ingestion problems historically. Presently our seismic data is largely  
 1036 made up of segmented files of varying length stored in simple file structures on a large NFS file  
 1037 storage array indexed by SQL tables. This has historically proven adequate but looking at the  
 1038 problems we are facing with our parametric data, the increasing rate of ingestion overall, and  
 1039 increased demand from our research staff, we have been thinking about potential alternative  
 1040 solutions.

1041



1042

1043 **Figure 7 An abstraction of a waveform ingestion pipeline**

1044 Figure 15 is a potential solution. In this diagram, the data ingestion system stores a raw copy of  
 1045 the waveform as a file object in its original format in the data lake. It also passes a copy of the  
 1046 data to a file processing sub-system that transforms the raw waveform into a series of key-  
 1047 value metadata tuples that are stored in a time-series database.

1048 The time-series database can then act as a hot cache for the data in the data lake. The time-  
 1049 series API abstracts both the database and the storage infrastructure from client applications.  
 1050 The API service is responsible for queueing and processing “cold” data from the data lake into  
 1051 the hot cache as needed to satisfy incoming requests. This allows the most used data to remain  
 1052 resident in a fast and consistent format that client applications can easily query. It also allows

1053 for some level of abstraction around segmentation since client applications can simply ask for  
1054 ranges of time and the time-series service is responsible for assembling the segment on the  
1055 back end.

1056 Considerable thought will need to be put into how the data is organized and keyed in the data  
1057 lake to avoid access contention (“hot-spotting”) and to leverage distributed storage as  
1058 efficiently as possible. Likewise, the metadata tagging and keying in the time-series database  
1059 needs careful consideration to avoid negative performance and scaling impacts from over-  
1060 duplication of data, skewed keys, and poor partitioning. Metadata storage will also need to be  
1061 altered based on the selected database implementation to ensure that any queries on the  
1062 metadata itself can be served efficiently. Our time-series database needs to support differing  
1063 time scales per series and potentially within the series; something many of the current offerings  
1064 are not designed to handle. Work has only just begun on this and there are already many issues  
1065 to be resolved.

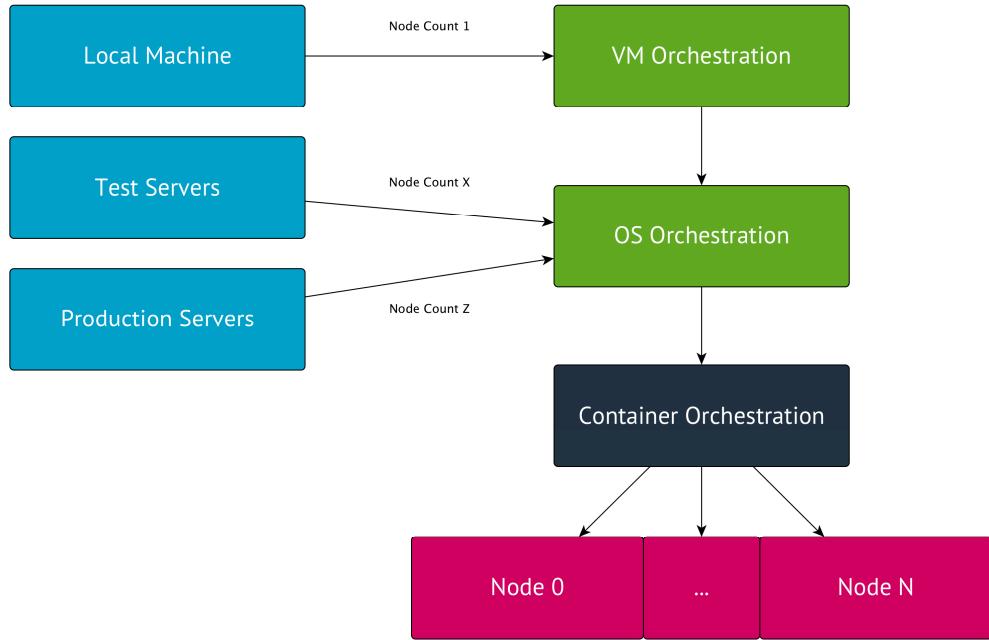
## 1066 **An Aside on Software Infrastructure**

1067 As part of our effort to redesign and re-implement our ingestion pipeline we evaluated our  
1068 software development and deployment methods to look for process improvement  
1069 opportunities. Our legacy ingestion tools typically tend to make very specific assumptions about  
1070 the configuration and existence of infrastructure such as databases, libraries, and other  
1071 dependencies.

1072 Virtually all our software and infrastructure above the basic operating system level is also hand  
1073 installed and configured. This is acceptable while we only have a handful of servers to maintain  
1074 but it makes the system brittle to change and limits our ability to scale or make other  
1075 meaningful upgrades very quickly.

1076 With the goals of increasing our flexibility, facilitating software deployments, and improving  
1077 scalability moving forward, we have started to rethink our development and deployment tool  
1078 chains. To achieve our stated goals our software environments must be both portable and  
1079 reproducible. Given those requirements we are starting to migrate our software infrastructure  
1080 to container based deployment schemes and are beginning work on implementing  
1081 orchestration tooling at every layer of the stack.

1082 The ingestion pipeline provides an example of this strategy. A software developer should be  
1083 able to run a single script (Figure 16) on his local machine and get a single node version of the  
1084 complete software environment for the pipeline running locally in a virtual machine. This allows  
1085 for the entire system to be deployed or re-deployed simply by running orchestration tools  
1086 against existing physical or virtual hosts with the container runtime installed.

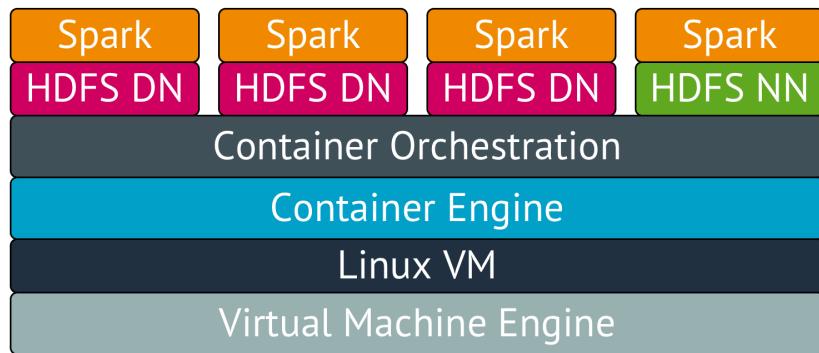


1087

1088

**Figure 8 Orchestration stack**

1089 The fully contained developer environment is configured and running exactly as it would be on  
 1090 test and production servers, just at a greatly reduced scale. Once the developer is confident in  
 1091 their changes they need only move the container with their components to the test server and  
 1092 then on to deployment. Migration in this way is a simple scaling operation and allows for  
 1093 tighter integration of automated tools for deployments and testing.



1094

1095

**Figure 9 A single node deployment**

1096 Figure 17 shows a single node Spark cluster with eight containers running on the node: three  
 1097 Spark worker containers, one Spark master, three HDFS data-nodes, and a HDFS name-node.  
 1098 While this is a greatly simplified version of a software stack, it allows a developer to test their  
 1099 algorithms on their local machine while still exercising all the same code execution behaviors  
 1100 that will be seen on a production cluster. For a developer to move their code to a real cluster  
 1101 they only need to change the location pointer for the Spark master.