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Abstract19

In this work, we implemented the key metadata management components of a scalable seismic 20

data ingestion framework to address limitations in our existing system, and to position it for 21

anticipated growth in volume and complexity. We began the effort with an assessment of open 22

source data flow tools from the Hadoop ecosystem. We then began the construction of a23

layered architecture that is specifically designed to address many of the scalability and data 24

quality issues we experience with our current pipeline. This included implementing basic 25

functionality in each of the layers, such as establishing a data lake, designing a unified metadata 26

schema, tracking provenance, and calculating data quality metrics.27

Our original intent was to test and validate the new ingestion framework with data from a 28

large-scale field deployment in a temporary network. This delivered somewhat unsatisfying 29

results, since the new system immediately identified fatal flaws in the data relatively early in 30

the pipeline. Although this is a correct result it did not allow us to sufficiently exercise the31

whole framework. We then widened our scope to process all available metadata from over a 32

dozen online seismic data sources to further test the implementation and validate the design. 33

This experiment also uncovered a higher than expected frequency of certain types of metadata 34

issues that challenged us to further tune our data management strategy to handle them.35

Our result from this project is a greatly improved understanding of real world data issues, a 36

validated design, and prototype implementations of major components of an eventual37

production framework. This successfully forms the basis of future development for the 38

Geophysical Monitoring Program data pipeline, which is a critical asset supporting multiple 39

programs. It also positions us very well to deliver valuable metadata management expertise to 40

our sponsors, and has already resulted in an NNSA Office of Defense Nuclear Nonproliferation 41

commitment to a multi-year project for follow-on work.42
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Introduction79

The Lawrence Livermore National Laboratory (LLNL) Geophysical Monitoring Program (GMP) 80

has long maintained a database of seismic waveforms and supporting metadata. In the early 81

1990’s we had only hundreds of stations in our waveform database and fewer than a million 82

segments. But, as of late 2016 we have more than 9600 stations with waveforms and hundreds 83

of millions of segments in our archive (Figure 1).  84

85
Figure 1 Incremental and cumulative waveform segments ingested into the GMP archive by year86

Having large amounts of seismic data is both an opportunity and a challenge. It allows analyses 87

that were impossible a few years ago, but at the cost of introducing significant data 88

management complexities. In current large-scale data analysis efforts, scientists must spend 89

considerable time resolving metadata issues before starting scientific analysis. The GMP data 90

repository and associated suite of customized Java data ingestion tools helps insulate this 91

responsibility from the scientists, but it is becoming increasingly difficult to manage as the 92

number of included stations and sources grows.93

As with other sensor data, seismic data is only useful when there is an accurate understanding 94

of the physical channel that produced it, including information about the channel’s location, 95

hardware, operation, and epoch of operation. This critical information can be missing, in 96

unexpected physical units (e.g. m/s vs nanometers/sec), recorded with too little precision, 97

inconsistent with other data from the same source, indeterminate for a specific point in time, 98

wholly in error, or subject to any number of other problems. 99

Integrating data from multiple sources poses additional challenges.  Naming conventions are 100

not standardized and there are no universal identifiers for seismic stations. Null and infinite 101

values are often ad hoc. Formats and units of measure are often inconsistent between data 102

providers. Time can be recorded in different units (e.g. days, seconds, or fractional seconds), 103

formats, and time zones. Other unit and precision differences between sources introduce 104

further uncertainty.105

We have developed a suite of Java data ingestion tools to mitigate these issues through 106

complex transformations as data are ingested.  Over time, however, the tools have become 107

unwieldy and brittle after decades of enhancements to accommodate increasing data drift and 108
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variation. We are also realizing that our current metadata schema is insufficient for provenance 109

tracking and inflexible to new data sources and formats. We too often resort to handling 110

metadata issues with manual intervention, which limits scalability, reduces repeatability, and 111

introduces additional data uncertainty. In short, our data pipeline is becoming significantly less 112

effective as our data reach increases.113

Commercial industries now routinely depend on customer analytics derived from massive 114

quantities of diverse and unstructured data. Over the last decade technologies like Hadoop and 115

sophisticated analytics engines have been developed to help process data, but there is still the 116

complexity of moving data into the data warehouse and organizing it for analysis. This has 117

created a new market, for which dozens of proprietary and open source data flow tools have 118

been developed. However, adapting them for processing seismic sensor data is complex since 119

they were developed around commercial domains and mostly textual data. Also, the120

technologies are rapidly emerging and evolving with little coordination, proprietary tools are 121

expensive, and there is very little documentation or support for open source tools.122

Our goal in this project was to overcome these complexities and leverage available technologies 123

to design and prototype a more flexible, scalable, and maintainable seismic data ingestion 124

system for GMP.  We started by surveying leading open source data flow tools and assessing125

them for the seismic domain and our workloads. Next, we developed a unified schema for 126

multi-source seismic metadata to overcome limitations of existing schemas.  We then produced 127

a conceptual four layered design for the overall system, defined interfaces between the layers, 128

and developed initial implementations of key components in each layer. A variety of seismic 129

source data ranging from large temporary field networks to openly available web services was 130

used to test functionality. Finally, quality metrics were developed to evaluate incoming 131

metadata, advise metadata transformations, and describe the final metadata results for use.132

For this report, we will often refer to seismic parametric metadata as simply “data”.133

Tool	Survey134

Our focus for this project was metadata ingestion, but we wanted to ensure the resulting 135

framework would also eventually accommodate waveform ingestion and data management.136

For metadata, the challenge is variety and veracity. For waveform data, the challenge is 137

primarily volume.138

Ideally, we would replace all our existing ingestion codes with one tool that would handle our 139

metadata ingestion pipeline from the data source to both a Hadoop (Vance, 2009) data store 140

for analytics and the Oracle database used by our users and applications. This ideal tool would 141

ease maintenance overhead and limit the need for custom code by abstracting away as much of 142
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the nuts and bolts of the infrastructure as possible, and provide configurable interfaces for all 143

our intended data sources and sinks out of the box. A full-featured and intuitive Application 144

Programming Interface (API) for easy set-up and operation with our existing technology stack 145

would also facilitate a rapid start. 146

A survey of Big Data conference presentations showed an emerging standard set of utilities 147

from the open source Hadoop ecosystem for ingesting Big Data into a data warehouse. Apache 148

Kafka (Primack, 2015) is the ubiquitous choice for getting data into the cluster, Apachie Oozie149

(Islam and Srinivasan, 2015) is a common data workflow manager, Apache Storm (Anderson, 150

2013) and Apache Spark (Zaharia, 2016) are used for onboarding streaming data, and Apache 151

Sqoop (Jain, 2013) is the primary interface to external databases. We have experience with 152

Spark and Sqoop, and enlisted a summer student to research Kafka and Oozie. Although each of 153

these tools provides necessary functionality for data ingestion, none of them appeared to be 154

the holistic solution we need. 155

Many companies with mature Big Data warehouses operate data ingestion pipelines built from 156

these low-level utilities, but we (and many others) have found this to be a non-trivial approach157

with substantial complexity and maintenance overhead. This reality has led to a growing market 158

for end-to-end data management products that abstract away as much of the lower level 159

complexity of constructing a data pipeline as possible. We started this project by surveying this 160

space to borrow proven code and simplify our overall process as much as possible. 161

We eliminated proprietary tools to avoid prohibitive license fees and their more prescribed 162

designs, which are too often specifically aimed at commercial applications. In the open source 163

space, we sought out stable, proven, enterprise grade technologies with stable releases, and 164

ignored emerging options or those with smaller or less active user or developer communities. 165

This logic quickly eliminated all candidates except Apache NiFi (Bridgwater,2015), a data 166

ingestion management tool. 167

Apache NiFi168

NiFi is a Java framework and web interface developed by the NSA for managing data movement 169

between systems (NSA, 2014). NiFi was open-sourced under the Apache license in 2014 and 170

quickly became a top-level project. It provides end-to-end data pipeline automation and a flow-171

based programming model. It was designed to fill the gaps between lower level data movement 172

utilities, and more specifically to improve security, interactivity, scalability, and traceability. It 173

includes a library of over ninety pre-built modules for specific data movements and 174

transformations, and is easily extended and customized with Java code.  Data ingestion paths 175

are built as directed graphs using drag-and-drop components in a web interface, or with an 176
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XML configuration file. Once a pipeline has been set up and started, the graphical interface can 177

also be used to display and manage the pipeline during operation. The GUI display includes data 178

flow rates, the state of data buffers between processing points, and the status of error streams. 179

A particularly valuable feature of NiFi is its built-in provenance tracking system, which 180

generates and stores metadata about each processing step for each data file or record that 181

goes through the system. NiFi is deployed on one or more edge nodes of a Hadoop or other 182

storage cluster.183

NiFi	Experiment	with	Seg-Y	Data184

Initial tests of NiFi functionality for our most straight forward data ingestion cases were 185

promising, so we decided to test it further by developing a flow for a more problematic dataset. 186

We had recently received data files from a large temporary network deployed for a Source 187

Physics Experiment shot. The files were in Seg-Y format (Norris, and Faichney, 2002), a 188

commonly used but loosely specified binary format for exchanging seismic trace data. The 189

format and size of the files were challenging, and gave us a practical use case for defining a 190

more complex workflow in NiFi. It also gave us an opportunity to establish a team development 191

process for NiFi using containers (discussed in the Appendix), and better understand the level of 192

effort required to create an operational data processing system within the NiFi framework. We 193

used the Seg-Y exercise to determine the flexibility of NiFi for handling problem data, assess its 194

usefulness for processing binary formats, and study the practicality of integrating existing data 195

ingestion tools into a NiFi workflow. 196

Initially we attempted to use as many of the built-in processing tools provided by NiFi as 197

possible. This worked well for some of our data flows but quickly proved problematic for 198

others. Like many Big Data frameworks, NiFi was originally targeted for processing textual data,199

and thus has very few built-in components for interacting with binary data. Standard Seg-Y files 200

have many waveform and survey related metadata fields but the payload is entirely binary, so 201

we were forced to extend the pre-built library with custom components for this application. 202

Fortunately, NiFi can treat communicating with and running existing tools as just another 203

“processor” directive in a flow. Additionally, NiFi has a relatively robust framework for writing 204

plugins that can be installed directly into the NiFi server natively to operate with the DataFlow 205

graph interface. By using these two capabilities in concert with the existing NiFi processors we 206

developed some proof of concept data flows for handling Seg-Y files under a variety of 207

circumstances.208

Custom NiFi processors can be written for specialized processing while retaining the benefits of 209

the NiFi ecosystem like complex flow routing, automatic backpressure, etc. We took advantage 210
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of this extensibility to extract metadata contained in our binary files and record structured 211

JSON representations automatically with the custom processor flow shown in Figure 2. 212

213

Figure 2 A simple data flow using built-in NiFi processors and a custom NiFiSegyProcessor plugin214

This exercise confirmed that NiFi offers many valuable advantages for complex data flows, but 215

it eventually exposed some drawbacks. Computations with exceptionally complex, long 216

running, or blocking operations can introduce bottlenecks in the ingestion pipeline. In addition, 217

NiFi is not designed to handle cases where additional information is needed to process the 218

incoming data, or where something about a previous data object must be known to process the 219

current one. 220

In general, NiFi follows a highly scalable “stateless” paradigm where ingestion flows are 221

processed in isolation from other data sources.  It is geared towards extracting information 222

from objects rather than processing that requires operations such as Structured Query 223

Language (SQL) “join” statements that merge two datasets together. The NiFi community has 224
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started to discuss including functionality for more stateful workloads in future development to 225

allow these data flows to integrate more tightly into the NiFi ecosystem. 226

Integrating	External	Tools227

A current solution to the isolated flow problem is to use NiFi as a flow controller to and from 228

external processing pipelines and tools (Figure 3). In this case, the stateful processing code is 229

handled in external applications which are called and tracked by an end-to-end NiFi flow. Using 230

an external tool as a NiFi processor is also a useful mechanism for integrating existing data 231

processing tools into a NiFi flow. However, when designing such a flow extra attention must be 232

given to scaling, and how NiFi communicates with and manages processes. 233

234

Figure 3 Calling an external program (ParseSEGYFile) and accepting its output as part of a flow235

The ability to manage data flow to and from external processes also allows for long running or 236

asynchronous operations to exist as terminal input and output sub-flows in the overall NiFi 237

flow. This can resolve many more complicated data processing problems but is architecturally 238

more complex, and can result in sacrificing some of NiFi’s built in flow control and data 239

provenance capabilities.240

Our conclusion from this exercise was that even though the built-in NiFi processors fell short for 241

parsing binary data or handling stateful tasks, NiFi was flexible and extensible enough for us to 242

create a viable solution despite this. Our data rates are not excessive, our ingestion is not 243
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expected to be real-time, and the added overhead of the work-arounds described previously is244

acceptable. For our use cases NiFi’s efficiencies easily made up for the added complexities of 245

our stateful and binary ingestion workloads with useful data management and monitoring 246

features such as a centralized interface for flow control and automated data provenance.247

Overall, we found NiFi to be a very capable platform for automating and managing our data 248

ingestion pipeline.249

Unified Schema250

With the flow framework selected and validated, we turned our attention to specifying the 251

minimum required set of data elements needed to represent all the metadata types we 252

process. The schema for our existing seismic data archive is based on the Center for Seismic 253

Studies version 3 (CSS3.0) database schema (Anderson et al. 1990). This format has been a 254

standard in the monitoring community for years, and it has served us well. Many other seismic 255

data formats exist, however, and we must integrate such data into our schema to support our 256

research objectives. Often the results are less than one would hope for. 257

Many of our data sources adhere to the newer Standard for the Exchange of Earthquake Data 258

(SEED) data standard (IRIS, 2012). This schema does not reconcile well with our CSS schema, 259

and critical pieces of information may lose fidelity or be lost completely when we force SEED260

source data into our database. Addressing this problem is a major goal of this project, and it 261

requires that we adopt a new data schema that preserves and reconciles the necessary data 262

elements from the CSS and SEED standards, as well as any others that we have processed in the 263

past or may need to process in the future.264

Our approach in designing a new schema was to start by preserving the necessary elements in 265

both CSS and SEED at the highest fidelity available. We then augmented this super set with 266

additional provenance tracking fields and other data elements we found to be missing in both 267

standards. We refer to the result as the “unified schema”.268

Schema Description269

The unified schema is a hierarchical data structure that gives primary importance to the source 270

of the data. Within each source the network, station, and channel names are assumed to be 271

unique and consistent with physical locations. No attempt is made to reconcile naming 272

conventions between sources. This allows a major data processing simplification compared to 273

CSS, which falsely assumes consistent naming across all data sources, and SEED, which assumes 274

consistent naming within networks. The primary keys for our tables include all the parent table 275

codes starting with the source code and both the begin-time and end-time of the epoch. A 276



LLNL-TR-729885

12
Lawrence Livermore National Laboratory

surrogate key identifier is added to each row after ingestion is complete to support efficient 277

joins in downstream applications. Joins on these integers are much more efficient than the joins 278

on composite text keys that would otherwise be necessary. The basic schema is depicted in 279

Figure 4 below.280

281
Figure 4 The Unified Schema282

In this schema, a stream is a new construct intended to represent the lowest level of metadata 283

available for a specific data channel.  A stream record represents a sensor epoch whenever 284

sensor level data is available, otherwise it represents the channel epoch. We did this because 285

the details of the channel epoch are frequently a source of date errors, and are not as 286

important as sensor epochs for determining the correct response and interpreting waveform 287

data. Channel codes are broken into their individual band, instrument, orientation, and location 288



LLNL-TR-729885

13
Lawrence Livermore National Laboratory

components. Streams may have zero, one, or more associated response files depending on289

what is supplied by the data source. 290

The columns of the unified schema are drawn from The International Federation of Digital 291

Seismograph Networks (FDSN) (Romanowicz, 1990) SEED version 2.4 reference manual and 292

from the CSS version 3.0 database schema specification. In SEED, stations are identified by 293

network code, station code, and time of operation. Those keys are retained here and 294

augmented by a source code that identifies the organization from which the data were 295

obtained. In CSS, although stations may be associated with a network, they are not required to 296

be. 297

We also adopted the SEED convention of representing all date-times as precisely as the data 298

allow. In CSS, date-time data is sometimes represented as epoch times and sometimes as an 299

ordinal date (YYYYDDD). Although the ordinal date representation is often convenient, mixing 300

the two representations can result in temporal database inconsistencies, e.g. sensor epochs 301

that straddle channel epoch boundaries in CSS.302

We included the CSS columns (STATYPE, REFSTA, DEAST, and DNORTH) in the station table to303

retain the array information present in data from the US NDC SITE files. Even though SEED 304

blockette 35 provides information about beams, station XML apparently does not. And, while 305

the CSS representation of arrays is problematic, we needed a place for this information in our 306

input tables. Our unified schema includes a new representation for array data that removes the 307

limitations in the CSS representation.308

The STREAM table in the unified schema is based on SEED blockette 52. As with the STATION 309

table, we have added a source code as part of the key. Another important deviation from both 310

SEED and CSS practice is that in addition to the provided channel code, STREAM has columns 311

for BAND, INSTRUMENT, and ORIENTATION. We introduced these columns to allow the final 312

(integrated) STREAM table to be in first normal form (1NF). Channel code is often treated as 313

atomic, and therefore suitable as a database column.  But in SEED usage it is the concatenation 314

(BAND-INSTRUMENT-ORIENTATION) and is thus expressing 3 facts. Some programming logic is 315

complicated if the only access to those facts is through channel code. 316

Unfortunately, some legacy data does not follow the SEED channel naming convention and 317

cannot be easily decomposed. For example, data with the channel code “sz” can be used to set 318

BAND and ORIENTATION, but what about channel “uu23”? To accommodate these, we rely on 319

the provided channel code (CHAN_CODE_CONTRIB) with the expectation that it will be used to 320

support queries where only the name matters.321

Responses are, in a sense, additional information about a STREAM. However, Streams can have 322

0 to N responses. Therefore, we broke RESPONSE out as a separate table. It has the same keys 323
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as STREAM (although the times are specific to the response epochs). The fact columns 324

(RSPTYPE, DIR, DFILE, CALPER, CALRATIO, NCALIB, and NCALPER) are from CSS.325

Inserting New Data326

In the unified schema, every new epoch specification received from each source is kept 327

indefinitely, along with additional metadata about the version, create date, and date last 328

updated. New data updates can only overwrite identically keyed epochs. This updates the non-329

key attributes, the version number, and the last updated date, but does not affect any other 330

rows. This is to ensure that newer data persists, but without eliminating previous versions of 331

epochs which may still be valid. If exact key matches are not found, a new row is inserted with 332

the current timestamp and version number one. The result is a cumulative set of data by source 333

where newer data is merged into existing data based on matching keys.334

Layered	Architecture335

Our current database could conceivably be modified to accommodate this new unified schema 336

design except that our current architecture is fundamentally inflexible to significant change. 337

This is primarily because we ingest data directly into the same schema that is used by our 338

analysis code and users, so a single field change means every access path that uses the field 339

must be upgraded concurrently. In addition, critical key values such as source codes and 340

network codes would need to be inferred from the other data or filled with a default value341

since no provenance records from ingestion exist.342

Another primary goal of this project was to remove this inflexibility to change. All indications 343

point to continued volatility in incoming seismic data formats as new technology makes 344

exponentially more deployments a reality and as we increase our data appetite accordingly. The 345

layered architecture depicted in Figure 5 is specifically designed to support data drift by 346

decoupling the environments used for raw storage, ingestion, transformations, and 347

presentation from end users and applications. This allows each major pipeline function to 348

evolve independently as necessary. Changes in any layer will not impact any other or 349

downstream data consumers, if the data interfaces between layers are maintained.350
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351
Figure 5 An early conceptual diagram of the layered architecture for the data pipeline352

Data enters the pipeline through one or more fetching tools in the storage layer. Next, the 353

ingestion layer normalizes the units for each field among the various data sources, performs354

minimal quality checks, and presents a unified schema to the transformation layer. In the 355

transformation layer, more rigorous quality checks screen out problematic records resulting in a 356

“Data Mart” ready for presentation. The presentation layer may include anything from a simple 357

database schema or data service to complex analytic tools.358

Layer 1: Storage359

The storage layer is the first stop in the data pipeline and it provides the initial landing area for 360

all new data coming into the system. The incoming data is stored in its original raw form361

without any transformations or other processing. This type of repository is referred to as a 362

“data lake”, and differs significantly from the “data mart” landing archive currently used by us 363

and many others. 364

A data mart stores curated data which is assumed to be consistent.  Unfortunately, the data we 365

receive is not necessarily consistent internally or with respect to equivalent data from other 366

sources, so the data stored in the mart may be a significantly modified or trimmed version of 367

what was originally received. Our data needs change over time, and once the data has been368

processed into the mart we are often no longer able to infer the original data accurately369

enough to reprocess it correctly. This leads to inflexibility in the system and stale or unreliable 370

data in our curated set.371
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Another source of inconsistency occurs when a data source changes, deletes, or updates values 372

and relationships in their metadata after we have ingested it.  Since we modified the data once 373

already in a previous ingestion run based on the original version of the data, in the subsequent 374

ingestion run we may not be able to accurately match up the new version with the rows already 375

in our database. After the ingestion of the new data we quite possibly end up with multiple 376

inconsistent versions of the same data in our data mart. A related type of inconsistency can 377

occur if the processing logic in our ingestion code has changed between processing runs. 378

These problems are common and they should be expected. They are not due to a lack of 379

discipline at the data source or unstable ingestion software at our end.  A main cause of the 380

problems is that as the number of data providers has grown, so has the number of different 381

formats for providing data, as well as the duplication or overlap of data between sources.  This 382

leads to significant ambiguity in units of measure, points of reference, labels, naming 383

conventions, time conventions, precision, and more. When we first built our models for 384

ingestion, we had a limited number of data providers who in turn had a limited data set.  Not 385

only has the number of data providers grown, so have their holdings. We have tried to 386

organically grow our monolithic data ingestion process to meet this and our expanding needs, 387

but it is starting to show significant cracks and limitations and is becoming increasingly difficult 388

to maintain.389

Data	Lake	Configuration390

For our initial prototype data lake we implemented a simple directory structure on a Network 391

File System (NFS) mount.  The template for the directory structure is:392

…/dataLake/<data provider>/[metadata|waveforms]/<Data format_ batch timestamp>/…./<file>393

Three data source providers were used in 394

the sample set:395

• US National Data Center (USNDC)396

• IRIS397

• UNR398

As the examples show, data ingestion from 399

each data source can be scheduled 400

separately and with a different frequency.401

A transaction log was kept for each data 402

source.  The purpose of the transaction log 403

was to identify when and where files from data sources were introduced into the data lake.404

405

Examples of the meta-data directories:

./USNDC/metadata/CSS3.0_17Mar2016T04.30.00-0700

./IRIS/metadata/StationXML_22Jun2016T15.29.13-0700

./IRIS/metadata/StationXML_22Jun2016T15.29.19-0700

./IRIS/metadata/StationXML_24May2016T11.00.00-0700

./UNR/metadata/SEED_01Apr2016T23.59.59-0700

./UNR/metadata/CSS3.0_06May2016T23.59.59-0700

./UNR/metadata/CSS3.0_18Apr2016T23.59.59-0700

./UNR/metadata/SEED_18May2016T23.59.59-0700

./UNR/metadata/SEED_02May2016T23.59.59-0700

./UNR/metadata/CSS3.0_02May2016T23.59.59-0700
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An example of the UNR transaction.log:406

===============================================================================407

06/28/16408

Copied the following from /SPE34/SPE/2016/.  These were originally rsynced from UNR by Terri.409

css3.0_31May2016:410

nnss nnss.lastid nnss.sensor nnss.sitechan nom_response411

nnss.calibrationnnss.network nnss.sensormodel nnss.snetsta response412

nnss.instrument nnss.schanloc nnss.site nnss.stage413

414

seed_31May2016:415

basement nnss_dataless_seed_fullres rdseed.stations resp416

417

418

For our prototype implementation, we used two different methods for acquiring data.  For USNDC and 419

UNR, we utilized the existing tools such as ftp and robo-copy. For IRIS, we utilized a tool that could be 420

used in the pipeline in an automated manner, Apache Nifi, to perform the data fetching and data 421

routing tasks (Figure 6).422

423
Figure 6 NiFi IRIS metadata workflow424
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Discussion425

The automated NiFi solution has several advantages over the manual method.  NiFi can be scheduled 426

to run at times that take advantage of under-utilized computational and network resources without427

human intervention.  Logging for the runs is also fully automated. By automating these tasks, the data 428

curator is freed up from these mundane ingestion tasks and can focus on the more difficult challenges 429

of data management.430

The system just described is only a start, and there is more work to be done. We plan to reduce the 431

rigidity of our data collection processes with a framework that allows the directory structure to be self-432

descriptive.  For example, XML or JSON configuration files for each data source would allow a wider 433

range of tools to interact with the source data, and provide flexibility in how the data is stored in our 434

archive.  Managing data from different source providers would be configurable and extensible instead 435

of hard-wired and uniform.436

The storage layer provides the directory structure to subsequent processing steps for locating data 437

elements.  Instead, we could use a “query service” style interface to provide this and other 438

information.  For example, the service could be asked for only the new elements added after a certain 439

time, or only the elements that meet other provenance criteria not encoded in the directory name.  As 440

the data lake grows and becomes more complex these types of features will become necessary.441

Until it becomes standard for data sources to provide a change log for their data, the storage layer will 442

need to request all data.  This will often result in data that is already in the archive being returned by443

the data source.  The storage layer must have capabilities to de-duplicate identical data (especially 444

waveforms) so only one copy of each version is stored in the data lake.  At the same time, the de-445

duplication process must not alter the original form of the data.446

We have not yet determined where to put the data lake to provide the most scalability, economy, and 447

efficiency. The system is designed to keep all versions of data ever received from each source to 448

support reproducibility for publications, data forensics, and data recovery. Currently, the incoming 449

data are stored in both the Hadoop Distributed File System (HDFS) for scalability and our NFS for ease 450

of access. This means four copies of each raw file are retained since HDFS keeps three by default for 451

redundancy and performance. Before we add significant waveform data to this solution, we will need 452

to develop a more efficient storage plan.453

Our ingestion system issues requests to get new data from data providers.  A future opportunity to 454

consider is enabling the storage layer to support requests initiated by a data provider as well.455
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Future	Plans456

In the future, we will put access to the data lake behind an API to abstract out the concrete 457

implementation underlying our storage. Notionally whenever a file is placed into the lake a unique 458

identifier is generated that associates it with all data products created using that file in the processing 459

pipeline. This allows for downstream processes to be traced back to the source material, and provides 460

a means to re-process the raw data if necessary. 461

At least two additional components beyond the basic file storage system are necessary to serve this 462

API: a metadata repository to hold the identifier for storage location mapping and some stable service 463

to act as the communication mechanism. 464

The unique identifiers should be ‘stable’ in that they are re-creatable should the metadata storage fail 465

or otherwise become corrupted. The metadata storage and communication mechanisms also need to 466

be inherently scalable to the same order as the underlying storage mechanism used to hold the actual 467

files. Both topics are subjects of ongoing research and will require experimentation but a simple 468

prototype we are presently working on is diagramed in Figure 7.469

470

Figure 7 - Simple diagram of one possible implementation for the data lake471

Layer 2: Ingestion472

Design	Goals473

The ingestion layer is responsible for taking the items in the data lake, packaging them into a 474

format that is easily consumable by Big Data tools, performing schema validations as a first pass 475
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at quality checks, and outputting the results in a unified format. An important part of creating 476

the unified schema is organizing data from multiple ingestion runs and sources into one set 477

which can include multiple versions of data from each source. As different data providers use 478

different units for their measurements, these must also be unified as part of the ingestion 479

process. Data from this layer is exported to the transformation layer for further cleaning and 480

analysis.481

Work	Done482

Choice	of	Intermediary Formats483

The choice of file format to hold intermediary data in the ingestion layer depends on many 484

factors including technical limitations of processing software and intended use-cases for the 485

data. It can have significant ramifications for storage hardware, the software stack, and 486

application performance. We tested a variety of file formats to assess their efficiency with data 487

processing tools implemented in Spark (Zaharia, 2016) for performance and scalability.488

Raw/Native	File	Format489

The simplest and most efficient choice from a storage perspective is to process the files from490

the data lake without any conversion in between. Although our cluster compute nodes can491

access raw files in the data lake via the network we find pre-packaging multiple raw files into an 492

intermediary aggregate format provides many advantages.493

Going from thousands of files whose size is on the order of kilobytes to a few files whose size is 494

on the order of gigabytes or larger provides an immediate efficiency boost to input and output 495

(I/O) rates. Additionally, by storing these large consolidated files in HDFS, we can leverage data 496

locality for scalable subsequent processing instead of hitting a centralized file server on every497

request, such as with NFS.498

Apache	HBase499

Apache HBase (George, 2011) is a Hadoop distributed NoSQL store. NoSQL is a class of relaxed 500

or limited SQL data stores that promise scalability and extensibility. HBase is intended to host 501

very large tables e.g. billions of rows by millions of columns) using Hadoop and HDFS. Unlike 502

pure HDFS, which is append only, it supports record level inserts, updates, and deletes. Like 503

many other technologies in the Hadoop ecosystem, HBase is optimized for certain types of use 504

cases and workloads. We found it to be prohibitively burdensome and non-performant for this 505

application but suitably flexible and extensible for others. 506

HBase abstracts records as key-value pairs, storing both key and value as an ordered list of byte 507

arrays. We quickly learned that the key choice is critical to the functionality and performance of 508

the store. One approach is to create a composite key that includes the fields and conditions509

most commonly used for querying. Querying on fields not in the key results in each record 510
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being de-serialized to check the query condition, which can erode performance to the point of 511

making nodes unresponsive. Care must also be taken to ensure composite keys are always 512

unique. Another strategy is to use a hash or other numeric unique identifier as the key. This is 513

easy to manage and is performant if the key is easily known in advance for data requests.514

Our initial HBase implementation combined the waveform into the HBase record with a 515

composite key. In this case, HBase was far slower in I/O throughput compared to reading 516

directly from HDFS for our data sets.  In addition, the keys were complex, difficult to choose 517

effectively, and hard to manage. This approach for storing waveform segments was abandoned 518

in favor of HDFS file formats like Avro.519

In our current implementation, we use HBase to store metadata only records with unique 520

numeric keys in a query-able data catalog. This is looking to be a very suitable application for 521

HBase and illustrates some of its advantages. One is the column family format, which allows 522

different fields to be defined for different records. This lets us store multiple data formats in 523

one table and a highly flexible schema without trimming or transposing the original fields and 524

values. Another useful feature of HBase is the automatic versioning of records. This preserves a 525

configurable number of the most recent values for each cell over time for point in time queries. 526

More work is needed to test the performance of this implementation at scale with complex527

data formats, multiple data versions, and our full range of query workloads. This approach only 528

manages the metadata and a pointer to the waveform payload, which is stored separately. 529

Apache	Avro530

Avro (Russell and Cohn, 2012) is a serialization framework used in the Hadoop project. Part of 531

the Avro specification is the Object Container File container file format in which you can bundle 532

data from what would otherwise be too many small files for HDFS to handle. We use the term 533

“Avro” in this report to refer to the container file format.534

Avro is not bound to a key-value scheme, but Avro files can still be queried using SQL directly in 535

Spark. This does not use Region Servers and some other daemons HBase requires, and 536

therefore eliminates a category of problems that affected job success and performance for our 537

waveform storage workloads. Avro also provides row level compression and has support for 538

schema evolution. 539

Ultimately, however, Avro turned out to be much less efficient than other solutions for data 540

exploration use-cases and other queries that care only about a subset of columns. Its row-based 541

format means the entire row is always retrieved, even if only certain fields are needed. We542

switched to a columnar store to avoid this performance bottleneck and to maintain 543

compatibility with current direction of Spark development.544
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Apache	Parquet545

Apache Parquet (White, 2015) is a relatively new format to the Hadoop ecosystem, but its 546

adoption as a standard has been rapid. Parquet evolved from collaborations between Cloudera, 547

Twitter and other companies to provide a “columnar storage” container file format. This means 548

data is stored on disk per column rather than per row like with Avro. 549

Storing data per column has many immediate efficiency benefits. The size of data on disk is 550

greatly reducing by encoding and compressing data on columns. The data in columns typically 551

have less variance than the data in rows, and therefore have a higher compression ratio. Data552

analysis is more efficient since data scans can be limited to just the columns of interest. For 553

example, in the Avro scheme, to perform exploratory analysis on the channels ingested, our 554

data analysis scripts had to read in the entire ingested row for each record including all 555

metadata and the waveform blob. With Parquet, that same analysis is much faster since it only 556

loads the columns under immediate consideration.557

The initial release of Parquet was limited to Hadoop I/O classes and query tools. Since then558

Spark and other projects have significantly increased support for Parquet, making it the current 559

leader in specialized Big Data file formats. 560

JavaScript Object	Notation	(JSON)561

JSON (Crockford, 2009) is a widely adopted human-readable format originally developed as a 562

communication mechanism between web servers and browsers. The format consists of key-563

value pairs and has support for encoding strings, numbers, arrays, and objects. Where JSON 564

truly stands out compared to the more specialized formats discussed above is in the breadth of 565

its adoption. Many APIs and applications include built-in support for JSON, and all major 566

programming languages include JSON parsing libraries. Apache Spark can read and perform 567

queries on JSON documents just as easily as it can with Parquet and AVRO files. Using JSON as a 568

destination format makes it easy to export the metadata catalog to Oracle and use the data in569

other presentation layer technologies. For on-disk space considerations, easy integrations, and 570

Spark compatibility, our ingestion and transformation layers will use JSON as the intermediate 571

data format during processing and to store metadata details.572

Code Written573

A Spark job was created to take files in the data lake and package them for use in the 574

transformation layer. The packing process consists of parsing the raw files, adding ingestion 575

metadata, combining like objects (such as CSS site and StationXML files), and writing these 576

model objects out to the JSON file format for further processing in the transformation layer.577

The main runner is the PackageRawData class, as shown in 8 below. This class first gets all the 578

file paths under the input directory provided by the user, a necessary step because the Spark 579
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Context wholeTextFiles method will not do this file tree recursion itself. Once we have the file 580

paths, the contents of the files are read as a String and a JavaPairRDD is returned, where the 581

absolute file path is the key and the file contents are the value. This paired RDD is the data lake 582

RDD. The file processors repeatedly use the data lake RDD so it is cached/persisted to memory 583

and disk in serialized form.584

585

Figure 8 Program flow for turning raw files into JSON documents586

Next, each of the file processors is called and they all follow similar steps. The first step is to 587

filter the data lake RDD to only include the files that the executing class is responsible for 588

processing. We have file processors for all the CSS and SEED types needed as input to create the 589

unified schema. Once filtered, the RDD is put through a flat map transformation. The flat map 590

takes each line from the file and creates an instance of one of the model classes. These model 591

instances are then transformed by the map operation to be Row instances. This conversion to 592

Row instances will go away in the future when the DataFrame or Dataset can be created 593

directly from the Java object instances. Once we have the data represented as Row instances 594

we can combine the data with a schema provided by the model class to create a DataFrame 595

instance (Dataset<Row> in Spark 2+). Now that the Rows are a DataFrame, the DataFrame’s 596

write method is called to output the data in JSON format to HDFS. The written JSON file is now 597
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ready to undergo the post-processing in the Transformation later required to create the unified 598

schema.599

Discussion600

Many different file formats and storage solutions exist. We considered a subset of available 601

technologies which would provide the best support for our use case. In evaluating different 602

technologies, we looked at the ability to store the objects on different file systems (HDFS, NFS, 603

Blob/document store), the ability to query the data, the ability to compress the data, and most 604

importantly, the level of adoption and tooling around the standard.605

We first evaluated keeping the files in their raw format, but this did not provide good I/O 606

throughput and was incompatible with the design of HDFS which prefers a few large files over 607

thousands of small files. Next, we evaluated the key-value NoSQL database HBase. HBase is 608

good for storing schema-less rows that can grow to millions of columns, but we found the use 609

of heavy Region Servers, I/O throughput, and size limitations for rows to not support our overall 610

data storage needs, although it may be a good solution for our metadata catalog. We looked at 611

Avro and Parquet file formats which provide self-documenting schemas inside of the output 612

files, row and column level compression, and the ability to quickly query data. We decided 613

against both formats as their adoption outside of big data tools is still limited. We ultimately 614

decided that JSON provided the most flexibility and compatibility with our storage use-cases.615

A Spark program was written that processes the raw seismic metadata and waveforms into a 616

JSON representation. These JSON output documents are then consumed by the transformation, 617

integration, and presentation layers. Additional work needs to be done to apply basic quality 618

checks to the data before propagating to the transformation layer which will do the more 619

extensive quality checks.620

Layer 3: Transformation621

The transformation layer is where incoming parsed and standardized data from the ingestion 622

layer is transformed into curated data for the new data mart. The majority of data quality 623

assessments and data integrations are performed in this layer. The input data for this layer is 624

the cumulative ingested data in the unified schema format, and the output is cleaned and 625

analyzed data for the presentation layer.626

Quality	Metrics627

Data coming into the transformation layer has already been checked and validated against the 628

unified schema definition in the ingestion layer, and unit conversions and other data 629

transformations have been made as necessary. However, there are numerous metadata errors 630
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that can survive these kinds of checks. The initial work in the transformation layer is to perform 631

quality checks on the data in the unified schema and document the results. These metrics are 632

valuable for an accurate understanding of the data, and they can subsequently be used by 633

integration logic, analysis applications, and end users as appropriate.634

For this project, we developed a set of metadata quality metrics to identify and document 635

problematic data. As we worked with the data during the project we added checks for each of 636

the metadata issues we came across. The list of 38 quality checks we developed is in Table 1. 637

This list is by no means comprehensive, but includes many of the problems that commonly 638

plague us in our existing archive. The checks were implemented as a series of procedures that 639

generate an error log for each table, row, and error found. Results of the checks are discussed 640

in the section on the presentation layer.641

Table 1 Quality checks performed on the data in the unified schema642

Table Check Procedure Error Description

network check_parent(network,source) parent does not exist

network check_parent(network,source) parent epoch does not exist

network check_dates(network) epoch start > end

network check_dates(network) epoch start = end

network check_dates(network) epoch overlap

network check_dates(network) epoch duplicate

response check_parent(response,stream) parent does not exist

response check_parent(response,stream) parent epoch does not exist

response check_dates(response) epoch start > end

response check_dates(response) epoch start = end

response check_dates(response) epoch overlap

response check_dates(response) epoch duplicate

station check_parent(station,network) parent does not exist

station check_parent(station,network) parent epoch does not exist

station check_dates(station) epoch start > end

station check_dates(station) epoch start = end

station check_dates(station) epoch overlap

station check_values(station) LAT out of range

station check_values(station) LON out of range

station check_values(station) ELEV out of range

station check_dates(station) epoch duplicate

station check_values(station) missing LAT/LON

stream check_parent(stream,station) parent does not exist

stream check_parent(stream,station) parent epoch does not exist

stream check_dates(stream) epoch start > end

stream check_dates(stream) epoch start = end
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stream check_dates(stream) epoch overlap

stream check_values(stream) LAT out of range

stream check_values(stream) LON out of range

stream check_values(stream) ELEV out of range

stream check_values(stream) DEPTH <0

stream check_values(stream) DIP <> ORIENTATION_CODE

stream check_values(stream) SAMPRATE <=0

stream check_values(stream) SAMPRATE out of SEED bounds

stream check_values(stream) missing LAT/LON

stream check_distance(stream) distance to parent > .1km

stream check_distance(stream) elevation >1km from parent

stream check_dates(stream) epoch duplicate

waveform check_parent(waveform,stream) parent does not exist

waveform check_parent(waveform,stream) parent epoch does not exist

waveform check_dates(waveform) epoch start > end

waveform check_dates(waveform) epoch start = end

waveform check_dates(waveform) epoch overlap

waveform check_values(waveform) SAMPRATE <=0

waveform check_values(waveform) SAMPRATE out of SEED bounds

waveform check_dates(waveform) epoch duplicate

Data	Integration643

Our legacy data mart stores a version of the data that is independent of the original source of 644

the data. In reality, there are often multiple sources for the same data, and we may extract data 645

from each to get the most comprehensive set. Unfortunately, all sources do not always provide 646

mutually consistent versions of the same data, and significant inaccuracy may be introduced 647

into our curated data while trying to sort this out. The unified schema avoids this problem by 648

keeping data by source, but our vision going into this design effort was that application code 649

and end users would still expect source independent data.650

Our original plan for the transformation layer was to integrate multi-source data wherever we 651

could do so accurately. Data that could not be integrated with a high confidence of accuracy 652

would be routed off to an error pool. The pool would be kept from growing though continuous 653

oversight, periodic analysis, and improvement of the pipeline. This system would forward only 654

integrated data to the data mart, and allow us to transition to this new pipeline without 655

immediately breaking or changing any downstream code. 656

The following sections describe our progress on the implementation of this design. Because of657

this work, however, our plans for the scope of the transformations done in this layer have 658
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changed. We may consider a new name (such as “Analysis”) for this layer going forward that659

better describes its modified function.660

Input	Data	Preparation661

To develop and test our ingestion and integration codes we used data from 13 different 662

sources. Two of the sources provided data in CSS format and the remainder were retrieved as 663

Station XML from data centers that support the FDSN Station web services. A summary of the 664

input data is shown in Table 2.665

Table 2 Summary of input data used for the integration test by source666

SOURCE FORMAT NETWORKS STATIONS STREAMS RESPONSES

IRISDMC SEED 198 11,234 242,018 241,868

NCEDC SEED 21 3,561 49,525 49,440

USNDC CSS 2 2,038 4,939 4,822

INGV SEED 27 718 7,928 7,928

GEOFON SEED 30 718 8,752 8,750

RESIF SEED 11 484 7,493 0

SED SEED 16 474 3,691 8

UNR CSS 3 375 5,886 5,892

ORFEUS SEED 29 222 3,280 3,259

USPSC SEED 2 139 1,054 1,053

IPGP SEED 5 122 2,064 1,568

LMU SEED 1 120 414 414

NIEP SEED 4 102 874 874

667

Prior to integrating the station data, we performed several checks for internal (within source) 668

consistency. This resulted in the removal of 514 STATION rows as shown in Table 3. Because of 669

referential integrity constraints, removing those rows also resulted in the removal of 1,587 670

STREAM and 1,448 RESPONSE rows.671

Table 3 Counts of STATION rows removed due to inconsistencies672

Reason Removed Rows

End time <= begin time 1

Inconsistent station positions 26

Overlapped station epochs 332

Station epoch not contained in network epoch 155

673

STREAM data were also subjected to some consistency checks prior to integration. In total 674

8,371 rows were removed, with the results summarized in Table 4. Of the rows removed for 675

overlapped epochs, 2524 were from a single station (H20) in the H2 network and most of the 676
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rest were from just two other networks. The bulk of the STREAM rows removed for sample rate 677

problems were from stations of the PB (Plate Boundary Observatory) network and were for 678

band ‘Q’. The SEED manual specifies that ‘Q’ should have a sample rate of < 10^-6, and these 679

channels had a claimed rate of 0.05. However, the SEED manual also says that these are 680

approximate values, so our procedure may have been too aggressive.681

682

Table 4 Counts of STREAM rows removed for various inconsistencies683

Reason Removed Rows

Stream end time <= begin time 12

Stream sample rate outside range for band code 3387

Overlapped epochs 4764

Orientation code inconsistent with dip 208

684

Responses were tested for internal consistency (non-overlapped epochs and response epochs 685

fully contained in STREAM epochs). We found 2272 that failed the second of these conditions. 686

We also tested the usability of the response files. The first check was a simple existence check: 687

Does the path specified by “dir/dfile” exist? There were 3573 failures. These failures were due 688

to the fact that integration testing was on a snapshot that referenced files in the data lake. 689

Because more work was done in the ingestion layer after the snapshot was taken, changes were690

made that invalidated some database content.691

We also tested response file usability by attempting to de-convolve each response from 692

synthetic data, and found nearly 78,000 responses that failed. This is a surprisingly large 693

number of failures. Based on examination of the exceptions and the set of channels involved, 694

we think the root cause is that the JEvalresp code is brittle with respect to “exotic” channels 695

and RESP files produced by certain organizations. Table 5 lists the top 12 networks with failed 696

responses. The transportable array is the hands-down winner with almost 27,000 failures.697

Table 5 The top 12 networks by total count of failed responses698

CODE Network Failures

TA USArray Transportable Array                                                                         26997

PB Plate Boundary Observatory Borehole Network                                                         8919

EM Electromagnetic Studies of the Continents                                                           6309

CI Southern California Seismic Network                                                                 4458

BK Berkeley Digital Seismic Network (BDSN)                                3958

IV Italian National Seismic Network                                                                    3083

N4 Central and Eastern US Network                                                                      2584

SN UNR NSL Southern Great Basin                                                                        1641

GE GEOFON Program, GFZ Potsdam, Germany                                                                1502

IU Global Seismograph Network (GSN - IRIS/USGS)                                                        1202
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RO Romanian Seismic Network                                                                            1055

UL USGS Low Frequency Geophysical Data Network                                                         1015

699

Of the nearly 27,000 failures for TA, almost 23,000 are from the channels (LCQ, VEA, VPB, VEC, 700

VKI, OCF, ACE, LOG, LKM, LDM, LIM, BDF, LDF, LDO, and BDO). None of these are conventional 701

seismic channels. Nearly all the exceptions were in some way related to input unit specification, 702

decimation specifications, or epoch end date specification.703

Response	Filtering704

Although being readable and parse-able is a minimum requirement for response usability, if a 705

response does not have the correct amplitude and phase characteristics it is worse than not 706

being available at all. Much of the processing done by GMP seismologists requires that 707

waveforms be corrected from raw counts to ground motion (e.g. velocity in m/s). Such 708

corrections are generally accomplished by de-convolving the instrument response from the 709

seismograms.  If the de-convolution succeeds, but gives the wrong answer it leads to incorrect, 710

and potentially hard to trace, research results.711

As part of this integration effort we attempt to identify problematic instrument responses and 712

exclude them from the results. For vertical-channel data available by FDSN Station Service, we 713

can compute P-wave amplitudes for large teleseismic events and compare to the amplitudes 714

expected based on the mb magnitude estimates from global catalogs. For each vertical-715

component FDSN channel with a sample rate of at least 10 Hz and for which we can retrieve 716

waveforms via FDSN Station Service we:717

 Identify up to 15 events with 5.2 <= mb <= 6.2 at distances from 15 to 40 degrees that 718

occurred during the response epoch.719

 For each of these events, we retrieve waveform data from 100s before P to 140s after P.720

 We remove the response and filter using a 2-pole Butterworth filter with corners at 1 721

and 3 Hz.722

 We then measure the zero-peak amplitude (�����) of the mean-removed absolute 723

value of the signal from 10s before P to 40s after.724

Next, we use the reported mb magnitude to predict the amplitude that should have been 725

observed:726

����� = � ∗ 10�����(∆,�)�727

Q(∆,h) is computed using a table of Q values retrieved from 728

(http://www.jclahr.com/science/software/magnitude/mb/qtab.txt). We then record the ratio:729
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� .730

We evaluated 15,829 responses in this manner. The histogram of log10 amplitude ratios and a 731

fit to a t location scale distribution are shown in Figure . The distribution parameters are 732

(μ=.4655, σ=.3799, and ν=1.777).733

734
Figure 9 A histogram of 〖log〗_10 R (blue) with a t location scale distribution fit to the data (red)735

Using the distribution parameters, we can identify responses that are statistical outliers using a 736

T test. In this experiment, we eliminated 385 such responses at the 0.95 level. We also used 737

these results to select from among multiple candidates during a multiple-source merge.738

Although this experiment demonstrates the possibility of empirically evaluating response 739

correctness, we were only able to test about 7% of the integrated responses using the mb 740

amplitude comparison approach. Only a subset of channels can be processed this way, and we 741

didn’t have access to the necessary waveform data to support all of those. 742
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Preliminary	Integration743

The tables in Figure 10 have the same structure as the input tables, except that the former 744

alternate keys are now surrogate primary keys. Also, derivable columns have been removed 745

from the natural keys. For example, STATION_P does not include either NETWORK_CODE or 746

SOURCE_CODE since both are derivable through joins with NETWORK_P and SOURCE_P 747

respectively. Finally, array-specific columns have been removed from STATION_P. Their 748

functionality has been moved to a new set of tables dedicated to arrays.749

750

Figure 10 The tables for “cleaned” metadata into which the prepared input data was ingested751
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A sample of the results of this first stage of integration are shown in Table 6. Note that these 752

data are only integrated in the sense that multiple sources have been combined into a single 753

set of tables and the data within sources has been “cleaned” to improve usability and 754

consistency. Table 6 shows how sources fared in producing integrated STATION_P, STREAM_P, 755

and RESPONSE_P data. At the STATION_P level, all sources did well. On average 97% of the 756

input data were retained overall. At the STREAM_P level the average was about 93% of rows 757

retained. Integration of response data was disappointing for all sources. The average retention 758

was 56%, not counting one particularly troublesome case where all responses were dropped 759

because of epoch conflicts. 760

Table 6 Sample summary of the integration results for stations, streams, and responses761

Stations Streams Responses

SOURCE In Final Percent In Final Percent In Final Percent

IRISDMC 11234 11199 99.7 242018 236527 97.7 241868 186058 76.9

NCEDC 3561 3461 97.2 49525 47684 96.3 49440 36135 73.1

GEOFON 718 711 99.0 8752 8605 98.3 8750 3234 37

INGV 718 678 94.4 7928 7568 95.5 7928 3314 41.8

ORFEUS 222 220 99.1 3280 3248 99.0 3259 1996 61.3

IPGP 122 122 100 2064 2059 99.8 1568 1093 69.7

USPSC 139 137 98.6 1054 990 93.9 1053 849 80.6

NIEP 102 102 100 874 868 99.3 874 240 27.5

LMU 120 120 100 414 414 100 414 246 59.4

SED 474 453 95.6 3691 3183 86.2 8 3 37.5

RESIF 484 484 100 7493 7486 99.9 0 0

Integration	Between	Sources762

The tables shown in Figure 0 provide a means of storing data from multiple sources in a way 763

that maintains consistency. By including network code as a key and by maintaining a consistent 764

time representation across tables, two major sources of inconsistency are removed. If the 765

presentation layer incorporated just those two changes then the main change to application 766

queries would be the inclusion of NETWORK_CODE. Adding SOURCE as part of the key 767

complicates logic a little more, and our original hope was that we could avoid this by combining 768

data provided by multiple sources. In this section, we present some findings.769
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770
Figure 41 The schema for the source-integrated data. Tables are shown in white and views in gray. The 771

tables with the “COMBINED” prefix hold the combined data, and the tables with the “P” suffix hold 772
the potentially multiple rows which have been used to create a single row in the corresponding 773

“COMBINED” table.774

Figure 41 shows the schema into which the data were combined. Our strategy for combining 775

rows was simple. Station epochs were merged if they matched to the nearest day. Merged 776

station rows hold the averages of latitude, longitude, elevation. The begin time was set to the 777

earliest of the epochs being merged and the end time was set to the latest end time. Any 778

remaining input rows that overlapped merged rows were dropped. STREAM data were handled 779

in an analogous manner except that begin times and end times were set to the average of the 780
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input times. Responses were handled a little differently. The time resolution used was one 781

second and instead of averaging fact columns, we chose a single response. If each response had 782

an entry in the amplitude ratio table, we chose the one with the smallest deviation from the 783

mean. Otherwise, we chose the first response.784

A summary of the merged data is shown in Table 7. The counts shown are for distinct rows 785

disregarding time. Time-sensitive row counts differ by less than 3%. Some data loss has 786

occurred in merging between sources, but overall, the results seem encouraging.787

Table 7 The results of the two merge strategies.788

Data Type Attributed Data Retained Combined Data Retained

Raw Totals Surviving Percent Surviving Percent

Station: Distinct NET-STA 17,344 17,121 99% 17,121 99%

Stream: Distinct NET-STA-

CHAN-LOCID

185,576 181,537 98% 180,534 97%

Response: Distinct NET-STA-

CHAN-LOCID

181,997 125,499 68% 124,526 68%

789

Although we have shown that large fractions of the metadata may be combined successfully, it 790

is still not clear that this is the right thing to do. Combining the data is a lossy operation.  Once 791

combined, whether by the algorithms discussed above, or by some alternative; unless the 792

inputs are identical, the data appear to be more certain than they really are. Perhaps more 793

importantly, when we combine waveform data based on keys like SOURCE or NETWORK, we 794

don’t really know without checking the counts whether the data are identical or not. The 795

following examples illustrate some of the issues.796

First, we consider integrating data having the same station code and position, but with differing 797

network codes. After preliminary integration, we found 376 station codes that are associated 798

with more than one network code. We identified 620 pairings where a single station code had 799

two or more rows with identical positions, overlapped epochs, and with two different network 800

codes. The optimistic assumption (with respect to merging waveforms) is that in these cases 801

the same physical station has been reported by different networks, so that in processing 802

seismograms we can ignore the source.803

We have not retrieved waveform data for these pairings, so we don’t know whether 804

seismograms would match count-for-count, but we do have the responses. If the responses are 805

identical then it is reasonable to expect that waveforms would match as well, assuming sample 806

rates are the same. There are 5694 response pairings associated with the station pairings. For 807

each pairing, we de-convolved each instrument response from an impulse function. The results 808

are shown in Figure 52(a) and (b).809
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810
Figure 52 A comparison of 5694 instrument responses in terms of the cross correlation of de-811

convolved impulse functions (a) and ratios of peak amplitudes of the de-convolved signals. In each 812
case the responses being compared have the same station code, channel name, location code, and 813

time period. They differ in network code.814

Panel (a) shows binned correlation values of de-convolved impulse functions and (b) shows the 815

ratios of peak amplitudes of the de-convolved signals. In the great majority of cases, the de-816

convolved signals match. However, there are hundreds of instances where the signals are 817

poorly correlated, the amplitudes don’t match, or both. Clearly the responses are different in 818

these cases, but without further investigation we cannot be sure whether this is strictly a 819

response problem, or whether the responses differ because the data streams differ. Either way, 820

it does not seem advisable to merge these streams until the issues are better understood.821

What about merging data when all keys match except for source? We already know that data 822

from the US NDC may be inconsistent when merged with data from IRIS because the NDC data 823

has scaling information held with the waveforms while IRIS holds that information in the 824

response files.  But can we merge FDSN data from different sources? In our test data set, there 825

are 1116 instances of the same (FDSN) net-station-epoch provided by more than one source. 826
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There are 35,848 corresponding response pairs, and their binned comparisons are shown in 827

parts (c) and (d) of Figure 52. Although most responses appear to be identical, there are 828

hundreds that do not match. It is unclear if the mismatches are due to errors, or because the 829

data have been treated differently.830

Discussion831

We experimented with two approaches to integrating metadata (network-station-stream-832

response) from 13 different sources. In the first approach, we kept the data separated by 833

source and removed data found to be unusable, or that violated one of several checks for 834

correctness. Using this approach, about 99% of station data, 98% of stream data, and 68% of 835

response data were successfully integrated. The second approach built on those results by 836

merging data from different sources where other keys matched.  Nearly all data survived the 837

final merge step, so that the final percentages changed little from those of the first merge 838

(Table 6).839

In discussing those results, we noted that the final merge step introduced ambiguity because 840

we could not be sure that stream data from different sources would be identical even if the 841

keys matched. We showed that response data provided by different sources does not always 842

match.  This could imply differences in waveforms as well, and suggests that at least until we 843

understand the differences in responses, it may not be advisable to merge data from different 844

sources.845

Although our integration strategies succeeded in producing a self-consistent metadata 846

collection that retained a large fraction of the input metadata, metadata important to 847

researchers was screened out. For example, all UNR responses were removed because of epoch 848

inconsistencies. Thousands of stream rows (and hence responses) were removed for epoch 849

inconsistencies and other rule violations. 850

The problem we are facing is that these schemas reflect an idealized world in which perfect 851

records are always kept. In that world, you can depend on response epochs being subsets of 852

stream epochs, which are themselves subsets of station epochs, and so on. Data that conform 853

to those expectations can be successfully integrated and are usable without any anomalies. The 854

remainder either must be dropped or somehow modified to be consistent.855

Any modifications to the data to make them consistent are necessarily arbitrary and merely 856

provide the illusion of consistent and certain information. Instead, if we want to use all the 857

metadata that comes our way, the only practical approach is to employ a schema that allows 858

the inconsistencies and to accept that some queries will produce ambiguous, multi-valued 859

results.860
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861
Figure 63 A possible schema that allows for inconsistent epochs.862

One approach that maintains the source-network-station-stream hierarchy is to simply pull the 863

epoch-sensitive information from station, and stream (Figure 63).  In this design, it is still true, 864

for example, that a stream belongs to a station. But, there is no requirement that any stream 865

epoch will belong to a given station epoch866

As an example, suppose we need the instrument response for a waveform. To satisfy this, we 867

join WAVEFORM to RESPONSE on STREAM_ID subject to the WAVEFORM times being 868

contained in the RESPONSE times. This will return 0 to N rows. Of course, we would like a single 869

row, so an algorithm will be required to down select. Similar strategies apply for STREAM 870

information and STATION information. With a design like this, we can load all the metadata we 871

ingest. We can still check for rule violations, e.g. invalid STREAM sample rates, etc. But instead 872

of dropping the rows, we can flag them.  Of course, there is a cost. Making this work would 873

require a major reworking of our data processing infrastructure. It will also become more 874

difficult for researchers to perform ad hoc queries, since they will need to accommodate multi-875

valued results.876

877
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Layer 4: Presentation878

The presentation layer is where fully processed data is made available to end users. It is the 879

external interface to the data mart and may include multiple views of the curated data tailored 880

to different use cases. Ultimately it will replace our current production schema for our 881

downstream analysis applications and researchers.882

Our initial implementation plan for this layer was to create views of the processed and 883

integrated data from the new pipeline that closely emulated the structure of the existing data 884

mart. This strategy promised big benefits. First, it would allow us to do a direct comparison of 885

the results with the existing system to validate the new pipeline. We could run the two systems 886

side by side and compare results over time until the new system was proven. Once that was887

accomplished, it would provide a mechanism for seamlessly moving users and applications to 888

the new system with very little interruption. Unfortunately, the issues described in the last 889

section show that we cannot reliably integrate multi-source data into a source independent 890

schema like the one in our existing system. 891

Confidence	Measures892

The presentation layer can also include any reports, dashboards, or summaries of the data that 893

could be useful to data consumers. In the new data mart users and applications might have to 894

select the best option from multiple rows, where they used to always get one. A measure of 895

confidence in each row could be particularly valuable in helping them decide. Ideally it would 896

be a single comparison metric that incorporated the quality, verifiability, and stability aspects of 897

the data.898

As a first pass at this idea we created a summary quality metric based on a penalty value 899

associated with each error logged during the quality checks in the transformation layer. The 900

total penalty of errors not found is divided by the total possible penalty to give a measure of 901

“goodness” of the metadata row. The design allows penalties to be weighted to show relative 902

importance, but for this exercise we accrued the same penalty for each error.903

Even this overly simplistic algorithm provided some insights into the data, and supported quick 904

quality comparisons between similar data from different sources. It also identified problem 905

areas and error trends in the data that require further probing and analysis. One of the 906

summary quality reports we developed for the presentation layer is shown in Table 8.907

908

909
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Table 8 Sample summary of data quality by data source910

SOURCE TABLE ROW 
COUNT

GOOD
ROWS

GOOD% PROB
ROWS

PROB% ERROR 
COUNT

AVG
CONF

MIN 
CONF

GEOFON network 30 30 100% 0 0% 1 1

GEOFON station 718 718 100% 0 0% 1 1

GEOFON stream 8752 8737 100% 15 0% 15 1 0.94

GEOFON response 8750 8750 100% 0 0% 1 1

GEOFON TOTAL 18250 18235 100% 15 0% 15 1.00 0.94

INGV network 27 27 100% 0 0% 1 1

INGV station 718 680 95% 38 5% 38 0.99 0.9

INGV stream 7928 7339 93% 589 7% 610 1 0.88

INGV response 7928 7924 100% 4 0% 4 1 0.83

INGV TOTAL 16601 15970 96% 631 4% 652 1.00 0.83

IPGP network 5 5 100% 0 0% 1 1

IPGP station 122 122 100% 0 0% 1 1

IPGP stream 2064 1936 94% 128 6% 128 1 0.94

IPGP response 1568 1568 100% 0 0% 1 1

IPGP TOTAL 3759 3631 97% 128 3% 128 1.00 0.94

IRISDMC network 198 198 100% 0 0% 1 1

IRISDMC station 11234 11196 100% 38 0% 38 1 0.9

IRISDMC stream 242018 222305 92% 19713 8% 20412 0.99 0.81

IRISDMC response 241868 238807 99% 3061 1% 3061 1 0.83

IRISDMC TOTAL 495318 472506 95% 22812 5% 23511 1.00 0.81

NCEDC network 21 21 100% 0 0% 1 1

NCEDC station 3561 3462 97% 99 3% 99 1 0.9

NCEDC stream 49525 43920 89% 5605 11% 6498 0.99 0.75

NCEDC response 49440 49440 100% 0 0% 1 1

NCEDC TOTAL 102547 96843 94% 5704 6% 6597 1.00 0.75

NIEP network 4 4 100% 0 0% 1 1

NIEP station 102 102 100% 0 0% 1 1

NIEP stream 874 868 99% 6 1% 6 1 0.94

NIEP response 874 874 100% 0 0% 1 1

NIEP TOTAL 1854 1848 100% 6 0% 6 1.00 0.94

ORFEUS network 29 29 100% 0 0% 1 1

ORFEUS station 222 220 99% 2 1% 2 1 0.9

ORFEUS stream 3280 3148 96% 132 4% 138 1 0.88

ORFEUS response 3259 3259 100% 0 0% 1 1

ORFEUS TOTAL 6790 6656 98% 134 2% 140 1.00 0.88

RESIF network 11 11 100% 0 0% 1 1

RESIF station 484 484 100% 0 0% 1 1

RESIF stream 7493 7007 94% 486 6% 492 1 0.88
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RESIF TOTAL 7988 7502 94% 486 6% 492 1.00 0.88

SED network 16 16 100% 0 0% 1 1

SED station 474 451 95% 23 5% 23 1 0.9

SED stream 3691 2960 80% 731 20% 783 0.99 0.81

SED response 8 8 100% 0 0% 1 1

SED TOTAL 4189 3435 82% 754 18% 806 0.99 0.81

USPSC network 2 2 100% 0 0% 1 1

USPSC station 139 139 100% 0 0% 1 1

USPSC stream 1054 1021 97% 33 3% 33 1 0.94

USPSC response 1053 1053 100% 0 0% 1 1

USPSC TOTAL 2248 2215 99% 33 1% 33 1.00 0.94

Arrays911

As mentioned in the unified schema description, the STATION table has the columns STATYPE, 912

REFSTA, DNORTH, and DEAST which are taken from the CSS SITE table. These columns are 913

populated for the subset of stations that are part of an array. For most stations, the columns 914

are unset. The inclusion of these columns in STATION is problematic for several reasons. The 915

first is that nearly all station rows have these four columns which carry no information about 916

the station. STATION is being used to describe three different kinds of entity, (seismic station, 917

array element, seismic array). As such, it violates the 1NF requirement of having a separate 918

table for each set of related data. 919

920

921
Figure 14 The tables used to describe arrays and array beams922
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A more flexible way to describe seismic arrays and beams is shown in Figure 14. In this schema,923

the ARRAY table contains a row for every array epoch. Every STATION row with STATYPE value 924

of ‘ar’ that survived integration is referenced in this table by its STATION_ID. The ARRAY_ID is a 925

surrogate key generated from a sequence. The ARRAY_MEMBER table was populated from 926

surviving STATION rows with STATYPE = ‘ss’ and REFSTA matching an array row on 927

STATION_CODE and epoch. 928

Station	Clusters929

Unlike our existing system, the new pipeline makes no attempt to map data for the same 930

physical station to the same station code. Not only do different data sources use different 931

identifiers for the same station or channels, but sometimes even the same source changes the 932

codes due to input error, changes in naming conventions, data corrections, etc. A significant 933

problem is also created if the same identifier is used for different physical stations.934

Matching location coordinates often cannot be used to sort out these issues. For example,935

stations may be physically moved over time, and array members may be very close together. 936

We know from our current system that changing station identifiers to make a global naming 937

standard where one doesn’t exist just creates error and uncertainty. The new pipeline does not 938

try to correct or assign names, but this is far from perfect because the end user is left to identify 939

and fix any naming problems in the data they use.940

Stations clusters are an attempt to provide the end user with information about other stations 941

that may be the same as the one they are interested in. It is implemented as a procedure that 942

walks through the station table and makes location based clusters of stations based on 943

proximity. If the current station being considered is within 0.1 KM of any station already in a 944

group, the station is added to the group. Once all stations are processed any groups containing 945

a common member are coalesced, and a unique integer is assigned to each group for 946

identification. Array members are disregarded. 947

Using this logic 15,845 distinct station codes are grouped into 14,810 clusters, indicating that 948

there are possibly 1,035 superfluous station codes in the data. The maximum distance between 949

any two stations in the same cluster is less than .33 km. Table 17 is a summary of the top950

clusters with the most members, and it illustrates some of the additional insight station clusters 951

give into the data.952

The first row of Table 17 shows a cluster with 70 different station codes, all from the same 953

source and at identical locations. All 70 stations are in the GY network from the IRISDMC 954

source. None have a station name or description. Most likely this is a data error of a new type 955

that would not be caught by the quality checks in the ingestion or transformation layers.956
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Table 9 Top station clusters with the most members957

SCLUSTER_ID SOURCE_CNT NET_CNT STA_CNT MIN_DIST AVG_DIST MAX_DIST

16258 1 1 70 0 0 0

15901 2 2 37 0 0.01 0.088

15728 2 2 23 0 0 0

17003 1 1 14 0 0 0

19213 1 1 12 0 0.098 0.319

16039 1 1 12 0 0.007 0.024

16150 2 2 11 0 0 0

19177 2 3 11 0 0.033 0.162

16607 1 2 11 0 0.034 0.08

16117 1 1 10 0 0.037 0.104

16124 2 3 9 0 0.044 0.107

18130 2 1 9 0 0.041 0.089

16811 1 1 9 0 0.03 0.075

18290 1 3 8 0 0.056 0.125

19204 2 5 7 0 0.081 0.205

16101 1 1 7 0 0.107 0.322

15935 1 1 6 0 0.016 0.039

16203 2 2 6 0 0.053 0.149

16247 1 1 6 0 0 0

16643 1 2 6 0 0.058 0.157

24014 1 1 6 0 0.021 0.057

17190 1 2 6 0 0.032 0.084

18281 2 2 6 0 0.009 0.049

22162 2 2 6 0 0 0

17100 1 1 6 0 0 0

15940 2 2 5 0 0.002 0.007

16710 1 1 5 0 0.063 0.149

18111 2 3 5 0 0.026 0.06

18193 2 2 5 0 0.001 0.011

18243 2 3 5 0 0.033 0.082

25616 1 1 5 0 0.046 0.11

18286 1 1 5 0 0.011 0.044

18375 1 1 5 0 0.026 0.093

19885 2 2 5 0 0.002 0.008

22896 2 1 5 0 0 0

22936 2 6 5 0 0.054 0.141

18253 1 1 5 0 0.033 0.069

16051 2 2 4 0 0.01 0.035

16516 1 1 4 0 0 0
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A search of the data for all clusters from one source and network with multiple stations at the 958

exact same location shows that there are 162 similar clusters. The great majority of these (152) 959

have only two stations, and except for the 70-station cluster already mentioned, the rest have 960

less than fifteen members each. A legitimate reason for this phenomenon is multiple stations at 961

the same site but with different elevations or different types of sensors (hydro-acoustic, 962

infrasound, etc.). Other examples appear to be array members that are not identified on the 963

array list, and are mistakenly identified by the same coordinates. In fact, many of the clusters 964

on the list in Table 17 appear to be array members that are not on the array list. This is likely 965

because they are from SEED sources, and the array list is constructed solely from CSS sources.966

Station clusters appear to be a useful way to identify related stations, arrays, and some new 967

types of data errors. The distance of 0.1 km was somewhat arbitrary, and further analysis may 968

indicate a more useful value. A conservative distance limit risks eliminating related stations that 969

are just outside of the limit, but a generous limit may return false positives. A different970

clustering technique, such as machine learning, may give better results by using all the station 971

metadata to group related stations instead of only the location coordinates. Station codes, 972

descriptions, and elevations provide valuable insight and could be used to form and then 973

classify clusters as data errors, arrays, legitimate location changes, naming differences between 974

sources, etc.975

Conclusion	and	Future	Work976

There is significant work left to do before GMP has an operational data pipeline with the new 977

design. Many ideas for follow-on and remaining work are discussed in the previous sections of 978

this report. All our implementations were prototypes, which allowed us to avoid some critical 979

decisions to meet scope and funding constraints. For example, no final hardware or 980

environment decisions were made. Multiple copies of data were kept at every processing stage 981

for convenience, with no regard to storage limitations. A complete data lifecycle and archiving 982

policy needs to be established. Applications will need to be modified, and users will need to be 983

trained to use the new data mart. New user interfaces and applications should be developed to 984

expose and use the quality metrics, data provenance, and other new data elements we created.985

Despite these limitations this project was an important start toward the development of a next 986

generation ingestion pipeline for GMP. We validated NiFi as an overall flow manager, created a 987

unified schema to store data from all anticipated formats, implemented basic functionality in 988

each layer of the new architecture, verified that it solved many of our existing ingestion issues, 989

and uncovered and quantified many of the errors and deficiencies in seismic data. We also 990

greatly increased our understanding of the issues and our expertise in scalable data 991

management, which has already led to other funded projects.992
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Appendix1032

A Short Word on Waveforms1033

Most this paper has been focused on parametric data, the primary focus of our efforts to date 1034

and the main source of our ingestion problems historically. Presently our seismic data is largely 1035

made up of segmented files of varying length stored in simple file structures on a large NFS file 1036

storage array indexed by SQL tables. This has historically proven adequate but looking at the 1037

problems we are facing with our parametric data, the increasing rate of ingestion overall, and 1038

increased demand from our research staff, we have been thinking about potential alternative 1039

solutions.1040

1041

1042

Figure 7 An abstraction of a waveform ingestion pipeline1043

Figure 15 is a potential solution. In this diagram, the data ingestion system stores a raw copy of 1044

the waveform as a file object in its original format in the data lake. It also passes a copy of the 1045

data to a file processing sub-system that transforms the raw waveform into a series of key-1046

value metadata tuples that are stored in a time-series database. 1047

The time-series database can then act as a hot cache for the data in the data lake. The time-1048

series API abstracts both the database and the storage infrastructure from client applications. 1049

The API service is responsible for queueing and processing “cold” data from the data lake into 1050

the hot cache as needed to satisfy incoming requests. This allows the most used data to remain 1051

resident in a fast and consistent format that client applications can easily query. It also allows 1052



LLNL-TR-729885

47
Lawrence Livermore National Laboratory

for some level of abstraction around segmentation since client applications can simply ask for 1053

ranges of time and the time-series service is responsible for assembling the segment on the 1054

back end.1055

Considerable thought will need to be put into how the data is organized and keyed in the data 1056

lake to avoid access contention (“hot-spotting”) and to leverage distributed storage as 1057

efficiently as possible. Likewise, the metadata tagging and keying in the time-series database 1058

needs careful consideration to avoid negative performance and scaling impacts from over-1059

duplication of data, skewed keys, and poor partitioning. Metadata storage will also need to be 1060

altered based on the selected database implementation to ensure that any queries on the 1061

metadata itself can be served efficiently. Our time-series database needs to support differing 1062

time scales per series and potentially within the series; something many of the current offerings 1063

are not designed to handle. Work has only just begun on this and there are already many issues 1064

to be resolved.1065

An Aside on Software Infrastructure1066

As part of our effort to redesign and re-implement our ingestion pipeline we evaluated our 1067

software development and deployment methods to look for process improvement1068

opportunities. Our legacy ingestion tools typically tend to make very specific assumptions about 1069

the configuration and existence of infrastructure such as databases, libraries, and other 1070

dependencies. 1071

Virtually all our software and infrastructure above the basic operating system level is also hand 1072

installed and configured. This is acceptable while we only have a handful of servers to maintain 1073

but it makes the system brittle to change and limits our ability to scale or make other 1074

meaningful upgrades very quickly.1075

With the goals of increasing our flexibility, facilitating software deployments, and improving 1076

scalability moving forward, we have started to rethink our development and deployment tool 1077

chains. To achieve our stated goals our software environments must be both portable and 1078

reproducible. Given those requirements we are starting to migrate our software infrastructure 1079

to container based deployment schemes and are beginning work on implementing 1080

orchestration tooling at every layer of the stack. 1081

The ingestion pipeline provides an example of this strategy. A software developer should be 1082

able to run a single script (Figure 16) on his local machine and get a single node version of the 1083

complete software environment for the pipeline running locally in a virtual machine. This allows 1084

for the entire system to be deployed or re-deployed simply by running orchestration tools1085

against existing physical or virtual hosts with the container runtime installed.1086
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1087

Figure 8 Orchestration stack1088

The fully contained developer environment is configured and running exactly as it would be on1089

test and production servers, just at a greatly reduced scale. Once the developer is confident in 1090

their changes they need only move the container with their components to the test server and 1091

then on to deployment. Migration in this way is a simple scaling operation and allows for 1092

tighter integration of automated tools for deployments and testing.1093

1094

Figure 9 A single node deployment1095

Figure 17 shows a single node Spark cluster with eight containers running on the node: three 1096

Spark worker containers, one Spark master, three HDFS data-nodes, and a HDFS name-node. 1097

While this is a greatly simplified version of a software stack, it allows a developer to test their 1098

algorithms on their local machine while still exercising all the same code execution behaviors 1099

that will be seen on a production cluster. For a developer to move their code to a real cluster 1100

they only need to change the location pointer for the Spark master.1101


