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Figure 1: Kinetic energy plotted for the entire ocean.

1 Motivation

Large simulation data requires a lot of time and computational resources to compute, store, ana-
lyze, visualize, and run user studies. Today, the largest cost of a supercomputer is not hardware
but maintenance, in particular energy consumption. Our goal is to balance energy consumption
and cognitive value of visualizations of resulting data. This requires us to go through the entire
processing pipeline, from simulation to user studies.

To reduce the amount of resources, data can be sampled or compressed. While this adds more
computation time, the computational overhead is negligible compared to the simulation time.

We built a processing pipeline at the example of regular sampling. The reasons for this choice
are two-fold: using a simple example reduces unnecessary complexity as we know what to expect
from the results. Furthermore, it provides a good baseline for future, more elaborate sampling
methods.

We measured time and energy for each test we did, and we conducted user studies in Amazon
Mechanical Turk (AMT) for a range of different results we produced through sampling.
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2 Data

As test data, we used climate simulation data from a resolution run of the Model for Prediction
Across Scales – Ocean (MPAS Ocean), a multi-resolution approach to climate modeling [RPH+13,
MM05], which is part of the Accelerated Climate Model for Energy (ACME) project []. For the
purpose of this study, we chose Kinetic Energy, a variable that is commonly used to visualize eddies
in the data. Eddies are circular currents which occur along streams, and which contribute heavily to
global climate. We applied a colormap that is optimized for good contrast [SPG+15, SA15, SPA+15].
An example can be seen in Figure 2.

Figure 2: Eddies, seen as dark green rings, originate from the Agulhas Retroflection at the southern
tip of Africa. They travel westwards across the Atlantic towards South America.

3 Sampling and Testing Setup

We use a latitude/longitude projection of the simulated data, as shown in Figure 1. The original
grid is a hex-dominant Voronoi grid on a sphere, so this projection results in very uneven cells. In
a preliminary step, we sample this grid to a regular grid which faithfully represents the original
resolution. The original simulation has cells that are 15 × 15 km in size. In the projection, cells
at the equator have the same size, whereas cells that are closer to the poles are strongly stretched.
We apply a regular sampling that oversamples the original grid by a factor of about 1.5, resulting
in 3750 × 1500 cells.

3.1 Subsampling the High-Resolution Grid

To subsample the original data, we apply the ResampleToImage filter which is part of the ParaView
[FMT+11] suite. We gradually increase the grid’s cell size, thereby gradually lowering the resolution.
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For example, the original grid resolution corresponds to 1×1 units. Doubling the cell size to 2×2
units equates cutting the resolution of both dimensions in half, and reducing the overall resolution
to a quarter of the original resolution. As the filter interpolates, one can also use decimals, like
1.5×1.5, etc. Figure 3 shows an example of the results achieved using different sampling resolutions.

(a) Unstructured grid. (b) Supersampled grid. (c) Subsampled 3x3 grid. (d) Subsampled 9x9 grid.

Figure 3: Comparison of different sampling resolutions, from the original hex-dominant Voronoi
grid, supersampled regular grid, and two different sampling densities.

3.2 Rendering

In the raw data, each grid cell has one value, resulting in a flat color when rendered directly. When
sampling the data to larger grid cells, this has the appearance of increasingly large pixels. An
advantage of this rendering approach is that it displays the data exactly as-is. However, it comes
with the drawback that color/value changes between neighboring cells can look very abrupt and
seem like feature.

4 Results

To determine the differences between various sampling rates and rendering styles, we conducted a
crowdsourced perceptual user study, and we conducted energy measurements.

4.1 Perceptual User Study

In order to assess the cognitive impact of the sampling on the visualization – and therefore the
impact on the scientist’s ability to see features of interest – we conducted a user study to determine
the discrimination threshold. The discrimination threshold is the level at which participants can
distinguish between the unsampled data image and a sampled version. A two-alternative force-
choice (2AFC) approach was used [Fec89]. Applying the 2AFC method to this work, the baseline
(unsampled) image is compared to sampled images spanning some range where one expects to find
the threshold. When comparing the baseline to itself, a participant will not be able to detect a
difference and random chance should yield a value of 50% for the percentage of participants choosing
the baseline as the clearer image. When comparing the baseline to an image well past the threshold,
one would expect 100% of the participants to rate the baseline as clearer than the sampled version.
The discrimination threshold is set at the point where 75% of participants can detect a difference
between the unsampled and sampled images.

In this 2AFC study, participants were shown a series of comparison pairs; one was always the
unsampled baseline image and the other had a sampling factor applied. Participants were asked to
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focus on the features of interest to the scientist: ocean eddies. We showed the participants images
from three regions of interest to climate scientists, allowing us to see the impact of the different
scales represented by each region: Agulhas Retroflection (mid-range view, many eddies), east coast
of Australia (very close-up view of a small number of eddies); and the North Atlantic (very far view
covering large percentage of globe).

Our study was implemented using Qualtrics survey software [Qua] and participants were re-
cruited from Amazon’s Mechanical Turk [AMT]. For the study, participants were given a brief set
of instructions that introduced the concept of eddies and were shown an unsampled and a sam-
pled image as examples of the issue under study. They were told that for each pair of comparison
images, they should choose the image that showed the eddies most clearly. Each comparison was
presented randomly as A vs. B or B vs. A (left/right presentation). As a validation check to
weed out participants who may not have understood the task or who may not have been faithfully
attempting the task, we used a comparison between the baseline image and an image that had been
heavily compressed using JPEG compression. We required participants to correctly identify the
uncompressed image as clearer. Additionally we removed any participant who only clicked on one
answer choice (always the ”A” or always the ”B” choice).

We started with a pilot study using subsamplings of 1x1 against stimuli levels of 3x3 and
9x9 subsampling. With 35 participants, this study indicated that 3x3 was already beyond the
discrimination threshold.

In a more detailed study, we used finer steps in the subsampling stimuli levels: from 1.1x1.1 to
3.4x4.4 in steps of 0.1. We collected approximately 200 participants for each sampling level across
the three regions. The 2AFC ramps can be seen in Figure 4. Note that the results depend on how
zoomed in the view of the eddies, as one would expect. The very close up view around Australia
hits the 50% threshold at 1.2x1.2 while the wider geographic views hit the 50% mark farther out.
The overall threshold is around 2.0x2.0.

More information on the evaluation techniques can be found in [TBR17, BTP+17].

4.2 Energy Measurements

We are interested in the energy consumption for the sampling itself in addition to saving as VTK
image data (i.e., .vti format) or color-mapped images (i.e., .png format). For measuring energy,
we use a WattsUp Pro power meter which measures power at one-second intervals. We use the
ParaView’s pvpython library to read, sample, and write all data. ParaView’s surface rendering
interpolates the data bi-linearly, which is not only very costly but also introduces diagonal smear
as an artifact. The slice rendering does not apply this interpolation; it shows the raw data, so one
can see the blocks clearly. A comparison of the two rendering methods can be seen in Figure 5.

Figure 6a compares the energy consumption for surface rendering against slice rendering. One
can clearly see that, particularly for high resolutions (i.e., small grid cell sizes), it is far more energy-
efficient to use slices than surfaces. Hence, we use slice rendering for our png output. However,
writing out raw data as VTK image is much more energy-efficient than rendering a color-mapped
png, as demonstrated in Figure 6b.
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Figure 4: Results of a perceptual evaluation study comparing images with different sampling grid
sizes for different ocean regions. In this study, participants were forced to choose which of two
images showed the eddies more clearly.

(a) Slice rendering: Data is not interpolated. (b) Surface rendering: Data is interpolated.

Figure 5: Comparison of rendering styles. Surface renderng appears darker due to surface shading.
One can see diagonal zigzag artifacts along the diagonal from top left to bottom right but not along
the diagonal from top right to bottom left.
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(a) Comparison between power for non-interpolated
slices and interpolated surfaces.

(b) Comparison between power for png output and
power for vti output.

Figure 6: Comparison of different sampling grids, from the original hex-dominant Voronoi grid,
supersampled regular grid, and two different sampling grid cell sizes.
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