IMPROVING THE NUMERICAL STABILITY OF FAST MATRIX
MULTIPLICATION ALGORITHMS*

GREY BALLARD't, AUSTIN R. BENSON#, ALEX DRUINSKY$%, BENJAMIN LIPSHITZY,
AND ODED SCHWARTZI

Abstract. Fast algorithms for matrix multiplication, or those that perform asymptotically fewer
scalar operations than the classical algorithm, have been considered primarily of theoretical interest.
Aside from Strassen’s original algorithm, few fast algorithms have been efficiently implemented or
used in practical applications. However, there exist many practical alternatives to Strassen’s algo-
rithm with varying performance and numerical properties. While fast algorithms are known to be
numerically stable, their error bounds are slightly weaker than the classical algorithm.

We argue in this paper that the numerical sacrifice of fast algorithms, particularly for the typical
use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy
both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on
properties of the algorithm and of the input matrices, and we consider both contributions indepen-
dently. We generalize and tighten previous error analyses of fast algorithms, compare the properties
among the class of known practical fast algorithms, and discuss algorithmic techniques for improv-
ing the error guarantees. We also present means for reducing the numerical inaccuracies generated
by anomalous input matrices using various forms of diagonal scaling. Finally, we include empirical
results that test the various improvement techniques, in terms of both their numerical accuracy and
their performance.

1. Introduction. After Strassen’s discovery of an algorithm for dense matrix-
matrix multiplication in 1969 [24] that reduced the computational complexity from
the classical O(N3) (for multiplying two N x N matrices) to O(N'827), there has
been extensive effort to understand fast matrix multiplication, based on algorithms
with computational complexity exponent less than 3. From a theoretical perspective,
there remains a gap between the best known lower bound [20] and best known upper
bound [13] on the exponent. From a practical perspective, it is unlikely that the
techniques for obtaining the best upper bounds on the exponent can be translated
to practical algorithms that will execute faster than the classical one for reasonably
sized matrices. In this paper, we are interested in the numerical stability of practical
algorithms that have been demonstrated to outperform the classical algorithm (as
well as Strassen’s in some instances) on modern hardware [3].

Nearly all fast matrix multiplication algorithms are based on recursion, using a re-
cursive rule that defines a method for multiplying matrices of fixed dimension My x K
by Ko x Ny (we use the notation (My, Ko, Ng)) with fewer than MyKyNy scalar mul-
tiplications. For practical algorithms, these fixed dimensions need to be very small,
typically My, Ky, Ng < 10, as they define the factors by which the dimensions of sub-

*This research used resources of the National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

tSandia National Laboratories, Livermore, California. (gmballa@sandia.gov). This author’s work
was supported by an appointment to the Sandia National Laboratories Truman Fellowship in Na-
tional Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned sub-
sidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S.
Department of Energy Contract No. DE-AC04-94AL85000.

Hnstitute for Computational and Mathematical Engineering, Stanford University, Stanford, Cal-
ifornia. (arbenson@stanford.edu). This author’s work was supported by an Office of Technology
Licensing Stanford Graduate Fellowship.

8Lawrence Berkeley National Laboratory, Berkeley, California. (adruinsky@Ibl.gov)

TGoogle (benjamin.lipshitz@gmail.com)

IThe Hebrew University odedsc@cs.huji.ac.il

SAND2015- 5246J


mailto:gmballa@sandia.gov
mailto:arbenson@stanford.edu
mailto:adruinsky@lbl.gov
mailto:benjamin.lipshitz@gmail.com
mailto:odedsc@cs.huji.ac.il

problems are reduced within the recursion. Many such algorithms have been recently
discovered [3, 23]. Most fast algorithms share a common bilinear structure and can
be compactly represented by three matrices that we denote by [U, V, W], following
the notation of [4]. Many key properties of the practicality of an algorithm, including
its numerical stability, can be derived quickly from its [U, V, W] representation. We
also note that, because recursive subproblems are again matrix multiplications, dif-
ferent recursive rules can be combined arbitrarily. Following the terminology of [2],
we refer to algorithms that vary recursive rules across different recursive levels and
within each level as non-uniform, non-stationary algorithms. If an algorithm uses
the same rule for every subproblem in a each recursive level but varies the rule across
levels, we call it a uniform, non-stationary algorithm; those defined by only one rule
are called uniform, stationary algorithms.

Fast matrix multiplication is known to yield larger numerical errors than the clas-
sical algorithm. The forward error guarantee for the classical algorithm is component-
wise: the error bound for each entry in the output matrix depends only on the dot
product between the corresponding row and column of the input matrices. Fast algo-
rithms perform computations involving other input matrix entries that do not appear
in a given dot product (their contributions eventually cancel out), and therefore the
error bounds for these algorithms depend on more global properties of the input
matrices. Thus, fast algorithms with no modification are known to exhibit “norm-
wise stability” [4] while the classical algorithm exhibits the stronger “component-wise
stability”, which is unattainable for fast algorithms [22]. (Often this distinction is mis-
understood as a conclusion that Strassen’s and other fast algorithms are completely
unstable, which is not true.)

Our main goals in this paper are to explore means for improving the theoretical
error bounds of fast matrix multiplication algorithms as well as to test the improve-
ments with numerical experiments, focusing particularly on those algorithms that
yield performance benefits in practice. For computing C = A - B, where A is M x K
and B is K x N, norm-wise stability bounds for full recursion take the following form:

(1) IC —Cl < fug(K)|All[Ble + O(*),

where || - || is the max-norm, € is the machine precision, and fug is a polynomial
function that depends on the algorithm [4, 11, 15]. For example, fao(K) = K? for the
classical algorithm, with no assumption on the ordering of dot product computations.
We note that fas is independent of the input matrices, and ||Al|||/B]| is independent
of the algorithm. In this paper, we explore ways of improving each factor separately.
Our main contributions include:
1. generalizing and tightening previous error analysis of uniform, stationary fast
algorithms to bound fai, in terms of the number of recursive steps used and
two principal quantities derived from [U, V, W];
2. presenting and comparing the stability quantities of recently discovered prac-
tical algorithms;
3. exploring means of improving algorithmic stability through algorithm selec-
tion and non-uniform, non-stationary combination of algorithms;
4. presenting diagonal scaling techniques to improve accuracy for inputs with
entries of widely varying magnitudes; and
5. showing empirical results of the effects of the various improvement techniques
on both error and performance.
The structure of the remainder of the paper is as follows. We describe related
work in Section 2 and introduce our notation for fast matrix multiplication algorithms
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in Section 3. Section 4 presents the error analysis for bounding fais for general fast
algorithms, and Section 5 discusses the implications of the bounds on known practical
algorithms. We present diagonal scaling techniques in Section 6, showing how to
reduce the contribution of the input matrices to the error bound.

2. Related Work. Bini and Lotti [4] provide the first general error bound for
fast matrix multiplication algorithms, and their analysis provides the basis for our
results. Demmel et al. [11] generalize Bini and Lotti’s results and show that all fast
algorithms are stable. A more complete summary of the numerical stability of fast
algorithms, with a detailed discussion of Strassen’s algorithm along with Winograd’s
variant, appears in [15, Chapter 23]. We discuss these previous works in more detail
and compare them to our error bounds in Section 4.

Castrapel and Gustafson [7] and D’Alberto [8] discuss means of improving the nu-
merical stability of Strassen’s algorithm (and Winograd’s variant) using the flexibility
of non-uniform, non-stationary algorithms. Castrapel and Gustafson propose general
approaches to such algorithms, and D’Alberto provides a particular improvement in
the case of two levels of recursion.

Smirnov [23] describes strategies for discovering practical fast algorithms and
presents several new algorithms, including a rank-23 algorithm for (3,3, 3) with the
fewest known nonzeros and an algorithm for (6,3, 3) that yields a better exponent than
Strassen’s. Similar techniques are used by Benson and Ballard [3], and they demon-
strate performance improvements over the classical and Strassen’s algorithm for both
single-threaded and shared-memory multi-threaded implementations. Laderman et
al. [19] and later Kaporin [17, 18] consider another form of practical algorithms, ones
that can achieve fewer floating point operations than the Strassen-Winograd vari-
ant for certain matrix dimensions. Kaporin demonstrates better numerical stability
than Strassen-Winograd and shows comparable performance. However, because the
base case dimensions proposed are relatively large (e.g., 13 or 20), we suspect that
the performance will not be competitive on today’s hardware. Further, because the
[U, V, W] representations are not readily available, we do not consider these types
of algorithms in this work.

Dumitrescu [12] proposes a form of diagonal scaling to improve the error bounds
for Strassen’s algorithm. We refer to his approach as outside scaling and discuss it in
more detail in Section 6. Higham [15] points out that inside scaling can also affect
the error bound but does not propose a technique for improving it. Demmel et al. [10]
and Ballard et al. [1] state (without proof) improved error bounds using either inside
or outside diagonal scaling, and similar techniques are referenced in [21].

3. Fast Matrix Multiplication Algorithms.

3.1. Base Case Algorithms. A bilinear non-commutative algorithm that com-
putes a product of an My x Ky matrix and a Ky x Ny matrix (C = AB) using R
non-scalar (active) multiplications is determined by a MoKy x R matrix U, a KoNgx R
matrix V, and a MyNy x R matrix W such that

R Mo Ko KoNo

(2) = g wg,m,, where m, =8, -t,., &, := E UirQy, tp = g vjrbj,
r=1 i=1 j=1

for k =1,..., MyNy. Here, the single indices of entries of A and B assume column-

major order, the single indices of entries of C assume row-major order, and (-) signifies
an active multiplication. We will refer to the dimensions of such an algorithm with
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the notation (My, Ko, No), the rank of the algorithm by R, and the set of coefficients
that determine the algorithm with the notation [U, V, W].

3.2. Stationary Algorithms. Now we consider multiplying an M x K matrix
A by a K x N matrix B. We will assume that M, K, and N are powers of My,
Ky, and Ny; otherwise, we can always pad the matrices with zeros and the same
analysis will hold. The fast algorithm proceeds recursively by first partitioning A
into My x K submatrices of size (M/My) x (K/Ky) and B into Ky x Ny submatrices
of size (K/Ky) x (N/Ny) and then following (2) by matrix blocks, i.e.,

R Mo Ko KoNo
(3) Cr = Zwk)era where M,. := S, - T,, S, = Z uirAi7 T, := Z UjTBj
r=1 i=1 j=1
for k =1,..., MoNy, where (-) signifies a recursive call to the algorithm. Here, we are

using single subscripts on matrices as an index for the column- or row-major ordering
of the matrix blocks. The algorithms in this class of fast matrix multiplication are
called stationary algorithms because they use the same algorithm at each recursive
step. However, we do not assume that stationary algorithms recurse all the way to a
base case of dimension 1; we assume only that the base case computation (of whatever
dimension) is performed using the classical algorithm. Thus, a stationary algorithm
is defined by the triplet of matrices [U, V, W] along with a number of recursive levels
L used before switching to the classical algorithm.

3.3. Uniform, Non-Stationary Algorithms. In contrast to the stationary al-
gorithms discussed above, uniform, non-stationary algorithms employ a different fast
algorithm, in the sense of (2) and (3), at each recursive level. The fast algorithm is the
same at a given recursive level. Specifically, we will consider uniform, non-stationary
algorithms with L steps of recursion, so the algorithm is specified by matrices U[l],
v W of dimensions MUK x RU, KNI« RU, MUINTT S R for1=1,... L.

Uniform, non-stationary algorithms are of particular interest for maximizing per-
formance. The fastest algorithm for a particular triplet of dimensions M, K, and N
may depend on many factors; the same algorithm may not be optimal for the recur-
sive subproblems of smaller dimensions. Assuming performance is fixed for a given
triplet of dimensions, the flexibility of non-stationary algorithms allows for perfor-
mance optimization over a given set of fast algorithms. However, in parallel and more
heterogeneous settings, better performance may be obtained by the greater generality
of non-uniform, non-stationary algorithms, described in the next section.

3.4. Non-Uniform, Non-Stationary Algorithms. The final class of matrix
multiplication algorithms we consider are non-uniform, non-stationary algorithms.
In contrast to the previous case, non-uniform, non-stationary algorithms use different
algorithms within a single recursive level as well across recursive levels, though we
restrict the dimension of the partition by the fast algorithms at a given recursive level
to be the same. To define such algorithms, we must specify [U, V, W] for every node
in the recursion tree, a total of 1+ R + RURE ... 4 T[X5" R recursive rules.
We use superscript notation [I,71,72,...,7,—1] to denote a recursive node at level [,
in the top-level subtree r1, second level subtree r9, and so on.

We demonstrate in Subsection 4.5 that the flexibility of these algorithms allows
for an improvement in the numerical stability of multi-level recursive algorithms.
We suspect that they also provide a performance benefit over uniform, stationary
algorithm, though this has never been demonstrated empirically.



4. Error Analysis. The work by Bini and Lotti [4] provides the basic framework
for the forward error analysis of fast matrix multiplication algorithms. They provide
general bounds for any square, stationary bilinear algorithm with power-of-two coeffi-
cients (so that there is no error in scalar multiplications), assuming that full recursion
is used (a base case of dimension 1). Demmel et al. [11] extend the work of Bini and
Lotti by (1) accounting for errors induced by the scalar multiplications in bilinear
algorithms, (2) analyzing uniform, non-stationary bilinear fast matrix multiplication
algorithms (algorithms that use different fast matrix multiplication routines at differ-
ent levels of recursion), and (3) analyzing group-theoretic fast matrix multiplication
algorithms. The bounds provided by Demmel et al. also assume square algorithms
and that full recursion is used. Higham [15] provides bounds for Strassen’s original
algorithm as well as Winograd’s variant in terms of the base case dimension ng, where
the recursion switches to the classical algorithm. Higham’s bounds are also slightly
tighter (in the case of Strassen’s and Winograd’s algorithms) than the general bounds
previously mentioned. We note that any matrix multiplication algorithm satisfying
the component-wise error bound must perform at least n® arithmetic operations [22].
This work also shows that we cannot get the same component-wise error bounds even
when using just one step of recursion.

The goal of the error analysis provided in this section is to generalize the previous
work in two main directions and to tighten the analysis particularly in the case that
nonzeros of U, V, and W are not all +1. First, we will consider rectangular fast
algorithms; that is, instead of considering recursive rules for multiplying two k x k
matrices, we consider the more general set of rules for multiplying an m x k matrix by a
k xn matrix. Second, we will state our general bounds in terms of the number of levels
of recursion used. Motivated by the results of recently discovered practical algorithms
[3, 23], we would like to understand the theoretical error guarantees of an algorithm
in terms of its [U, V, W] representation. The recent performance results show that
rectangular algorithms have practical value (even for multiplying square matrices) and
that, for performance reasons, typically only a small number of recursive steps are
used in practice. Several recently discovered practical algorithms include fractional
power-of-two coefficients (e.g., 1/2, 1/4, 1/8), and we expect that other currently
undiscovered useful algorithms will include fractional coefficients that are not powers
of two. Therefore, we make no assumptions on the entries of U, V, and W, and we
derive principal quantities below that can be tighter than the analogous quantities in
the previous works by Bini and Lotti [4] and Demmel et al. [11], particularly in the
case of fractional coefficients. This sometimes leads to much sharper error bounds (see
Example 4). We warn the reader that there are notational similarities and (sometimes
subtle) inconsistencies with previous work, as a result of our tightening of the analysis.

4.1. Principal quantities. Following the approach of Bini and Lotti [4], we
identify two principal quantities associated with a fast algorithm that, along with
the dimensions of the algorithm and the number of levels of recursion, determine
its theoretical error bounds. These two quantities can be easily computed from the
[U,V, W] representation, and we define them in terms of the following vectors:

MOKO KDNO

R
@) =Y T(ui #0)  Bri= > Tvjr #0) =Y I(wg #0)

i=1 =1



MOKO KONO
(5) ar = > i be= Y vl
i=1 j=1
forr=1,...,Rand k=1,..., MyNy, where I is the Boolean-valued indicator func-

tion with value 1 for true and O for false. That is, « is the vector of numbers of
nonzeros in the columns of U, 3 is the vector of numbers of nonzeros in the columns
of V, ~ is the vector of numbers of nonzeros in the rows of W, a is the vector of
column 1-norms of U, and b is the vector of column 1-norms of V. When U and V
have +1 entries, « = a and 3 = b.

DEFINITION 1. The prefactor vector q is defined entry-wise by
(6) a = v + max(ey + By)L(wyy # 0)
fork=1,..., MyNy, and the prefactor Q) is defined as
Q= ml?x Q-

DEFINITION 2. The stability vector e is defined entry-wise by

R
(7) €L = zar : br . |wkr|
r=1

for k=1,..., MyNy, and the stability factor E is defined as

FE = m}iixek.

The principal quantities for several fast algorithms are listed in Table 1.

Bini and Lotti [4] provide a definition of q for two different summation algo-
rithms: sequential summation and serialized divide-and-conquer (see Subsection 4.2).
We choose the looser of these two bounds (sequential summation) for generality and
simpler notation. However, our results are easily converted to the tighter case. Dem-
mel et al. use the serialized divide-and-conquer algorithm in their analysis. Bini and
Lotti’s analysis does not account for “non-active” multiplication by elements of U,
V., and W, so their F parameter depends only on the non-zero structure, rather than
the magnitude of the elements in these matrices (cf. (5) and Definition 2). Demmel
et al. do account for the multiplication by elements of U, V, and W. However,
their E' parameter is identical to that of Bini and Lotti, and their bound includes an
additional factor of (||[U]||V||W])¥, where L is the number of recursive levels and
I || is the max-norm.

4.2. Model of arithmetic and notation. We follow the notation of Demmel et
al. [11]. Let © = {0 | 10| < €} be the set of all errors bounded by € (machine precision)
and let A={1+4+6 | 6 € ©}. We assume the standard model of rounded arithmetic
where the computed value of op(a, b) is op(a, b)(1+ 6) for some 6 € ©. We use the set
operation notation: A+ B :={a+b|a€ A, be B}, A—B:={a—-bla€ A, be B},
and A-B:={a-bla€ A, be B}.

We define A7 = A-A-...-A and note that A7 C A7t as 1 € A. Furthermore, we
will not distinguish between singleton sets and an element when using this notation,
e.g., op(a,b)(1+0) € op(a,b)A. Finally, we will use the standard hat or fI(-) notation
to denote a computed value, e.g., C or fl(op(a,b)) € op(a,b)A.
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Under this arithmetic, the following fact for summation will be useful in our
analysis

N N
(8) fl (Z fl(ei - ai)) € <Z c; - ai) AN,

where the algorithm for summation is simply to accumulate the terms a; one at a
time, in sequential order. By using a serialized divide-and-conquer summation, we
can also achieve

N N
(9) fl (Z Fl(c; - ai)) c (Z ¢ - ai> Al+logy NT
i=1 i=1

For generality, we will assume the more pessimistic bound in (8). Our results can
easily be modified for the error bounds in (9).
We will also use the following property:

N N
(10) fl (Z ciA%) € (Z ci> ANFmax o,
=1

=1

4.3. Forward error analysis of stationary algorithms. The following theo-
rem states the forward error bound for a stationary algorithm in terms of the principal
quantities @ and F defined in Subsection 4.1, which can be readily determined from its
[U, V, W] representation. The sources of error are floating point error accumulation
and possible growth in magnitude of intermediate quantities. The floating point error
accumulation depends in part on @) and grows at worst linearly in L. The growth of
intermediate quantities depends on E and grows exponentially in L, which typically
dominates the bound.

THEOREM 3. Suppose that C = A - B, where A € RMXK gnd B € REXN s
computed by using L recursive steps of the fast matriz multiplication in (3), with the
classical O(n®) algorithm used to multiply the (M/ME) x (K/KE) matrices by the
(K/KE) x (N/NE) matrices at the base cases of the recursion. Then the computed

matriz C satisfies
IC —Cll < (K/K§ +Q- L) (K/Kg) - EX||A]|Blle + O(?),

where || - || is the maz-norm.

Proof. We begin by analyzing how relative errors propagate as we form the S
and T matrices. Let a superscript index in brackets denote a matrix formed at the
specified level of recursion. Following (8), we have the following error at the first
recursive level:

(1 Mo Ko (1 KoNp
S?" S Z ’Uq'rAiAar, TT S Z UjTBjABT7
i=1 =1

where o and 3 are defined in (4).

This error propagates as we recurse. At the Ith level of recursion, the inputs to
the fast algorithm are given as sums of matrices Ay and B, each with a possible
error of A® and A®, respectively, for some index sets ¢ and 3 and some integers a
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and b. Following (3) and (8), the algorithm simply accumulates an additional factor
of A% and APr before the matrices are passed to the subsequent level of recursion.
Thus, at the Lth level of recursion, we have

L]

(11) st -

e SlAan+tar, Pl LI ABr + 4By

with r =7y + (ro — )R+ --- + (r, — 1)RY~1. Note that in exact arithmetic,

Mg Ky K Ny
L] _ ) ) ) (L] _ , , ,
(12) Sr - WUiyry " UZLTLAH Tr - Ujyry =0 v]LTLB]7
i=1 j=1

where i = i1 + (i — 1) Mo Ko+ -+ -+ (i, — 1)(M0K0)L_1 and j =141 + (o — 1) KoNo +
-+ (jr — 1)(KoNy)¥~! represent recursive orderings of the subblocks of A and B.

We now use the classical algorithm to multiply the computed S and T ma-
trices at the leaves of the recursion. Because the inner dimension of each leaf-level
matrix multiplication is K/KE, from (8) and (11) we accumulate another factor of
AK/KG 4o obtain

e[ L]

M, " € ST Ax-+E/Kg

-
where x, = ap, 4 Br, + -+, + B, for 1 <r < RE

Next, the computed matrices M are added to form C following(3). At the Ith
level of recursion, sums of matrices M([bL], for appropriate index sets ¢ and including
accumulated error A® for some integers a, are added together to form the intermediate
computed quantities M. In the final step at the top of the recursion tree, we have

R
Ck S Z wkrl\A/[[Tl]A%,
r=1

where 4 is as defined in (4). Following (10), if M[Tl] e MWA? for some integers .,

then

R
C.c Zwkqu[}]Avk-&-maxr @ I(wper #0)

r=1

Likewise, a factor of A" is accumulated at every recursive step, and the con-
tributed error from the M*! matrices comes from the leaf (that is involved in the
summation) with maximum error. Leaf matrix M[TL] is involved in the summation
for Cy if wp,py -+ Whyr, # 0, where 7 = 7y + (rg — DR+ -+ (rp — 1)RE™! and
k=Fk + (kg — I)M()NO + -4 (k’L — 1)(M0N0)L71. Thus, we have

RL
~ i L
C € E Wiy, - -+ Wy M AR X0 W(0hey 7y gy #0)+K/ K
r=1

where e = g, + 0+ Vi, -
Let 0k = pg + max, X - l(wk,ry -+ Wi, rp, # 0) + K/KE. In order to determine
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the largest accumulated error, we compute the maximum over all output blocks Cg:

T1y.+sTL

m]?dX(Sk = K/Kél + kma% {Nk + max Xy 'H(wklm CWgprp 7é 0)}
1yee0kL
= K/Ké + H}PX {’Yk‘l + ma‘X(ah + B"'l )]I(wkﬂ"l 7é O)} +ee
C1 T1
s { o, max(ar, + )Mo, #0)
L r

= K/KOL + niax {'ykl + max(ay, + B ) L(wi,r, # 0)} L= K/KOL +Q-L,
01 T1

where @ is given in Definition 1.
We now compute the forward error bound for each block of the output matrix.
We have E, = C, — Cp € > Wiyry -+ Wiyry, M[TL}G‘S’“, which implies (using (12))

RL
|Ek‘ < Z ‘wlﬁn C Whyrg S[TL]TLL] ’ o€+ 0(62)
r=1

R" My Ky Ky Ny
< Z|wk17“1 "'wle’L| Z |ui1T1 "'uiL?”LHAi| Z ‘Il}jlrl "’UjLTL||Bj|5k€
r=1 i=1 j=1
+O0(e?)
RE MEKE KENE
< Z |wk17“1 T wkl""L| Z |ui17“1 T uiLTL| Z ‘vjl"'l e ijTL| ’
r=1 i=1 j=1

(K/K) | AlIBdke + O(e?).

Let & = Zr |wk1r1 C Whyrg | Zz |ui17”1 T uiLT'L| Ej ‘Uj17“1 Uiy | In order to de-
termine the largest intermediate quantity, we compute the maximum over all output

blocks Cy:

ml?X&c =  max Z |wk17'1 T wk‘LTL| Z |U'i17'1 T uiLTL| Z ‘Uj17‘1 T UjL7'L|

ky,....kL
T1,y..3TL 2154520 J1s--5JL

I’IlkaXZ |wk1T1 ‘ Z |ui17“1 | Z |vj1?”1|
Yo iy Ji
H;aXZ |kaTL| Z ‘uiLTL | Z |ij7'L|
Eorr ir Jr

L

= H}EXZ|wk1T1|Z|ui1T1|Z|’0j1T1‘ :ELv
Yo i1 J1

where F is given in Definition 2.

Computing maxy, |Ex| by maximizing over 0 and & separately, we obtain our
result. We note that the two quantities may not achieve their maxima for the same k,
but we ignore the possible looseness as the overall bound will typically be dominated
by the value of F. 0
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Note that if L = logy, K (full recursion), the bound in Theorem 3 becomes

IC—Cll < (1+Q- L) E°5% X[ All|Blle + O(*)

which is the bound provided by Demmel et al. [11], assuming My = Ko = N,
M = K = N, all nonzeros of U have the same value, all nonzeros of V have the same
value, and all nonzeros of W have the same value. If L = 0 (no recursion), we get the
familiar bound

IC —Cll < K2 All|Ble + O(?).

EXAMPLE 4. Because our definition of E (Definition 2) accounts for the magni-
tude of the entries U, V | and W in situ, the bound from Theorem 3 can be tighter
than previous analyses [4, 11] when U, V, or W has entries outside of {—1,0,1}.
As an example, we consider a (4,4, 2) algorithm, where the U and W matrices have
entries in {—0.5,0.5} [3] (see Appendix C). For this algorithm, E according to Defi-
nition 2 is 89, while F according to previous work is 125.

4.4. Forward error analysis of uniform, non-stationary algorithms. Re-
call that uniform, non-stationary algorithms use a single algorithm at each recursive
level. We denote the prefactor vector, stability vector, and partition dimensions of

algorithm [[U vl Wm]] at level I by ql, el and M(El], K([)l], and N(El]. Using a
similar analysis to Subsection 4.3, we get the following stability bound for this class
of algorithms:

THEOREM 5. Suppose that C = A - B is computed by a uniform, non-stationary
algorithm with L recursive steps of fast matriz multiplication, with the fast algorithm

[[UM,VM,WM]] used at level I and the classical algorithm used to multiply the ma-

trices at the base case of the recursion. Then the computed matrix C satisfies

A 1 e+ O(e?).
[C—-C| < (Hz Ll ;Q )(Hl 1K$”> (HE )IAIIIIBII + O(€)

Proof. The proof is similar to the proof of Theorem 3. The largest accumulation
error 6 now satisfies

K (1 1 DT
max 0k = m + max {%cl + mr?x(a[n] + Br[’l])]l(wkln #0) ¢+

(L] L L (L]
o o+ ol 4 AL, 0= prxe

and the largest intermediate growth quantity £ satisfies

R[l] M(gl]K([)ll K[] (gl]
max &, = ma |w |u (1] | \vm |
kX k= X k17”1 L Jiri
ri1=1 i1=1 Jj1=1
Rzl M R KL N L
(L] (L] _ 1
max D7 fwpl, | Y0 fuin, L Yo || = [TEY.
TL= 1 ’iLzl jLZl =1

d
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4.5. Forward error analysis of non-uniform, non-stationary algorithms.
We now consider non-stationary algorithms where the algorithm may be non-uniform
at every given recursive level of fast matrix multiplication. That is, at any node in the
recursion tree, we may choose a different fast algorithm. For simplicity, we assume
that at level [ in the recursion tree, all algorithms have the same partitioning scheme

and rank (so that the [[U[l’”"“’”“], V[l’“"'”’””],W[l’“"”’””]ﬂ representations have

the same dimensions across all values 71, ...,7;_1) and that after L levels of recursion,
all leaf nodes use the classical algorithm.
In the case of stationary algorithms, one [U, V, W] defines the entire algorithm;

in the case of uniform non-stationary algorithms, L choices of |[U[l], vl , W[l]]] define

the entire algorithm; in this case, we have much more flexibility and can choose
1+ RM + RMRE ... 4 HlL:_llR[l] different fast algorithms (the number of internal
nodes of the recursion tree). Recall that we use the notation [l,r1,7r2,...,7_1] as a
superscript to refer to the algorithm used at level [ in the recursion tree, where r;
defines subtree membership at level 1, ro defines subtree membership at level 2, and
so on, and 7;_; defines the subtree node at the [th level.

Our analysis of these algorithms is fundamentally the same—we bound the ac-
cumulated error (§) and then bound the number of terms (£). However, maximizing
over all output blocks is not as straightforward and cannot be simplified as cleanly
as in the previous cases. In particular, we define the largest accumulation error 0
recursively as maxy 5L1], where

5,[61] = + 'y[l] + max 62" ]I(wm #0)
L 1 k1 " k kyir ’
I Ky ' 1
o) = A mae o 1w #.0),

[Lryyeri—a] _ [ra,enri—a] [I+1,71,..,m1) [l,r1,emi—1]
i =V, + max s Iwy),, #0),

5][CL,T17~~,TL—1] _ ,yl[f;Tl,anL—l] + max y; - H(wl[f;:iwwm—l] + 0)7 and
rr

1 1 2,7 2,71 Lri,...,rp—1 L,ry,...,r—
X = o) 4 B ey 4 RN g alfre el gl e,

This expression does not simplify as before. Note that for block k£ of the output
matrix, node (r1,...,7-1) at level [ of the recursion tree accumulates error for the
additions/subtractions required by matrix Wlbromi-al gt that node plus the max-
imum accumulated error from any of the combined terms. The expression for x,
reflects the number of additions and subtractions required to produce the factor ma-
trices S[TL] and T[TL] at the leaf nodes, and the error accumulated during the classical
matrix multiplications is included in the definition of 6,[3].
Likewise, the largest intermediate growth quantity £ is maxy, &, where

_ (1] [2,71] Ly, —1]
&k = Z ‘wkﬂ“l Whory " Whpry
T15---,TL
(1] [2,71] . u[L,rl,...,rL_l] . U[l] [2,71] . U[L,rl,...,rL_l]
E : G171 VigTo iLTL z : Jiri “jare JLTL )

i1,e00iL J1sJL
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which we can simplify to

1 2,r
&= [kl [ allol) Z\w 58
T1

a[2 T1 [2 7‘1]

§ : [Lyriseero—1]| [Lyri,eeorn—1] plLy71yeesrn—1]
’kaT’L a”I“L b’r‘L ?

where a and b vectors are defined as in (5). Note that we cannot simplify further as
in the uniform case.

EXAMPLE 6. D’Alberto [8] describes a non-uniform, non-stationary approach us-
ing Strassen’s algorithm that obtains a smaller stability factor than the original uni-
form, stationary algorithm (for L > 2). Strassen’s algorithm, with [U, V, W] as given
in (43) of Appendix A, has stability vector e = [12 4 4 12] two levels of recur-
sion with a uniform, stationary approach yields a two-level stability vector of e ® e
with maximum entry 122 = 144. D’Alberto shows that, for L = 2, a stability factor
of 96 can be obtained with a non-uniform approach using one variant of Strassen’s
algorithm. One way to achieve this stability factor is to use the alternative algorithm

[orvw]= [ ([ o o A (b S o o) v

for nodes [2, 1], [2, 3], and [2, 4] of the recursion tree, while using the original algorithm
at nodes [1], [2,2], [2,5], [2,6], and [2,7]. Similar improvements can be made based
on the Strassen-Winograd algorithm, which has a slightly larger stability factor.

A more generic non-uniform approach is described in a patent by Castrapel and
Gustafson [7]. They consider eight variants of the Strassen-Winograd algorithm, de-
fined by

(B3] e ol yo i o el o] ) v (B ol e o] )]

with z,y,z € {1,2}. The correctness of these variants can be derived from [16, Equa-
tion (6)]. Castrapel and Gustafson suggest using random, round-robin, or matrix-
dependent selections of algorithms to more evenly distribute the error, but they do
not prove that any particular techniques will reduce the stability factor.

ExXAMPLE 7. We can improve the two-level stability factor for the (3,2,3) case
in a similar manner. The smallest stability factor we have discovered for this case
is E = 20, given by the [U,V, W] in Appendix B, which has stability vector e =
[20 20 2 12 4 20 4 12 20]. Compared to a uniform two-level stability fac-
tor of 202 = 400, we can achieve a stability factor of 352 using 3 variants of the
algorithm. We use the original algorithm at nodes [1], [2,2], [2,6], [2,8], [2,14], and
[2,15], the variant

1 0 0 1 0 0 1 0 0 1 0 0
Lelo o 1l |ullo o 1tlen|v,[]lo o 1lelo o 1||W
_ 0 1 0 0 1 0 010 |01 0
at nodes [2,1], [2,3], [2,10], and [2,11], and the variant

s}
o
—_
s}
o
[t
s}

=~
®
= o O
O O =
o = O
c
= O O
O O =
O =
&
fon.
<
= O
o O
S =
&
[
o o
O =
=



13

at nodes [2,4], [2,5], [2,7], [2,9], [2,12], and [2,13]. We suspect that better two-level
stability factors are achievable.

5. Algorithm selection. Theorem 3 immediately provides several options for
improving the numerical stability of fast matrix multiplication:
1. We can look for algorithms with a smaller ) and E. Since prior work on
finding fast algorithms focuses on performance, this provides a new dimension
for algorithm design. This is the focus of Subsection 5.1.
2. We can reduce the number of recursive levels before using standard matrix
multiplication at the base case. The tradeoff is that fewer recursive levels
means an asymptotically slower algorithm. We examine this in Subsection 5.2.
3. We can reduce ||A|| and || B]| by pre-processing and post-processing the data.
We provide several such strategies in Section 6.

5.1. Searching for better algorithms. Typically, the only quantity of interest
for finding fast matrix multiplication algorithms is the rank of the solution. However,
we can also search for algorithms to minimize the @ and £ quantities while maintain-
ing the same rank. This will improve the numerical stability of the algorithm without
sacrificing (asymptotic) performance. We will also consider the number of non-zeros
(nnz) in the solution, i.e., the sum of the number of non-zero entries in U, V, and W,
as this affects the constant in the asymptotic complexity and has noticeable impact
on empirical performance [3]. Thus, the parameters of interest for these algorithms
is a performance-stability 3-tuple (nnz, @, F). In general, the number of non-zeros
is positively correlated with @ and E, since these quantities directly depend on the
non-zero patterns of U, V, and W (see (6) and (7)).

We first looked at the base case (4,2,3), which has out-performed Strassen’s
algorithm in practice [3]. We found 479 algorithms with rank R = 20 using nu-
merical low-rank tensor decomposition search techniques [3]. Of these, there were
208 performance-stability tuples. The smallest nnz, @, and F quantities over all
algorithms were 130, 12, and 32, and the corresponding algorithms had performance-
stability tuples (130, 14, 34), (138, 12, 34), and (134, 13, 32) (no algorithm has
parameters that achieved more than one of these minima). Subsequently, there is
a theoretical trade-off between performance and stability. We note that although
this list of algorithms is not exhaustive, they are the only publicly available (4,2, 3)
algorithms.'

We tested the stability of these algorithms by computing the product of samples
of random matrices A € R1096x2048 3pq B € R2048%3645 The distributions were a;;,
b;; ~ Uniform(0, 1) and a;;, b;; ~ Uniform(-1, 1). In addition to the three “good”
algorithms described above, we also compared against an algorithm with a much worse
performance-stability tuple of (156, 26, 132). For each pair of matrices, we ran the
four algorithms with number of recursive levels L =1,2,...,6. To estimate ||C - CJ,
we computed C using the classical algorithm in quadruple precision arithmetic. All
other computations used double precision arithmetic. Figure 1 summarizes the results
and includes the upper bound on the error from Theorem 3. We see the following
results:

1. The error bounds are still pessimistic, even with the improved analysis from
Theorem 3. Furthermore, the error bounds for the three good (4,2, 3) algo-
rithms are quite similar.

LAll of our algorithms, as well as the software for finding them, is publicly available at https:
//github.com/arbenson/fast-matmul.


https://github.com/arbenson/fast-matmul
https://github.com/arbenson/fast-matmul
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Uniform(0, 1) Uniform(-1, 1)

(130,14,34) (130,14,34

X X )
O (134,1332) O (134,13,32) >
O (138,12,34) O (188,12,34)
156,26,132] 156,26,132)
a% (classical ) > a% (classwcal ) >
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o > ] > L
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Fig. 1: Error for four (4,2,3) fast matrix multiplication algorithms with different
stability parameters and the classical algorithm as a function of the number of re-
cursive levels, L. Three algorithms are “good” in the sense that they minimize the
number of non-zeros, (), or E. The dashed curves are the experimental error, and
the corresponding markers are the upper bounds from Theorem 3. The experimental
error increases with L, as modeled by Theorem 3. The good algorithms with mini-
mal nnz, ), and E all have similar performance, but the fast algorithm with a worse
performance-stability tuple is noticeably less stable.

2. The true error increases with the number of recursive levels, as predicted by
Theorem 3 and modeled by the error bound.

3. The difference between the “good” algorithms depends on the matrices, but
the other (4,2, 3) algorithm is noticeably worse in both cases.

We also considered the (2,3,2) base case, which has optimal rank R = 11 [5].
One known algorithm that achieves the optimal rank uses Strassen’s algorithm on a
2 x 2 sub-block and classical matrix multiplication on the remaining sub-blocks. The
base case of the algorithm is small enough so that we could use a SAT solver [9] to
find over 10,000 rank 11 (2,3, 2) algorithms (ignoring symmetries). We found that the
combination of Strassen’s algorithm with the classical algorithm had a strictly smaller
performance-stability triple than all of the other rank 11 solutions. We conclude that
this algorithm is likely optimal in a performance and stability sense for the class of
(2,3,2) algorithms where the scalar multiplications are +1.

5.2. Performance and stability trade-offs with a small number of recur-
sive levels. We now consider the performance and stability of fast matrix multiplica-
tion algorithms across several base cases and several values of L. Table 1 summarizes
the best known (to us) stability factors (E) for several practical base case dimensions.
The columns of the table represent the relevant performance and stability parameters
for each algorithm, all of which can be computed from the [U, V, W] representation.

The rank R and the number of nonzeros (nnz), along with the number of recursive
levels used, determine the number of floating point operations performed by the uni-
form, stationary version of the algorithm. The rank can be compared to the product
MyKyNy, the rank of the classical algorithm for that base case. The quantities Q
and F are computed using Definitions 1 and 2, respectively; for a given base case we
report the algorithm with the best known F along with that algorithm’s @. We do
not report both (My, Koy, Ng) and (Ny, Ko, Mp) because the best algorithms for each
have identical nnz, F, and ) parameters, due to transformations corresponding to
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Fig. 2: Distribution of relative stability factor and percentage of classical flops for
the algorithms in Table 1 with L = 1 (blue ¢.’), 2 (red ‘0’), 3 (black triangle), and 4
(magenta ‘x’). There is a general log-linear trade-off between stability and number of
floating point operations.

transposition of the matrix multiplication.

Although we stress that these algorithms will be used with only a few levels of
recursion, we also report the asymptotic stability exponent (stab. exp.) in order
to compare algorithms across different base case dimensions. If an algorithm for a
square base case (Ny, Ny, Np) is used on square matrices of dimension N down to
subproblems of constant dimension, the bound of Theorem 3 can be simplified to

IC —CJ| < - N'5%0 Plog N||A|[[Ble + O(€?),

where ¢ is a constant that depends in part on Q. In this case, the stability exponent is
logy, E. We note that the first two rows of Table 1 match the results of [4, Table 2].
The most stable rank-23 (3, 3, 3) algorithm of which we are aware is a cyclic rotation of
the one given in [23]. In the case of rectangular base cases (Mg, Ko, Np), we assume a
uniform, non-stationary algorithm based on cyclic use of algorithms for (Mg, Ky, No),
(No, My, Ko), and (Ky, Ng, My), where the three recursive rules are transformations of
each other, either by cyclic rotations or transposition (for more details, see Appendix
B and Appendix C).

Figure 2 shows the distribution of relative stability and percentage of classical
flops for the algorithms in Table 1, for L = 1,2, 3,4. We measure both terms asymp-
totically. Ignoring the quadratic cost of additions, the percentage of classical flops is
(R/(MoKoNy))*. For large matrix dimension and L small, we can ignore ) by The-
orem 3, and the relative stability factor is (E/K2)L (the division by two is relative
to the smallest possible Kj). In general, most algorithms follows a narrow log-linear
trade-off between these two parameters. However, there is still room to select algo-
rithms for a fixed number of recursion levels. For example, with L = 1, the (3,3, 3)
algorithm has roughly the same stability and does fewer floating point operations than
Strassen’s algorithm.

6. Scaling. We now turn our attention to strategies for pre- and post-processing
matrices in order to improve numerical stability. The error bounds from Section 4
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Table 1: Principal quantities for a variety of fast matrix multiplication algorithms.
The rank of the algorithm (R) drives the asymptotic complexity, and the total number
of non-zeroes in the U, V, and W (nnz) affects the constant in the complexity.
Likewise, the F parameter drives the asymptotic behavior of the stability bound and
the @ parameter affects the constant. The stability exponent (stab. exp.) denotes
the asymptotic stability of the algorithm assuming square matrix multiplication.

(Mo, Ko, No) ref. MyKoNy R mnnz Q@ E stab. exp.
(2,2,2) (classical) 8 8§ 24 4 2 1
(2,2,2) [24] 8 7 36 8 12 3.58
(3,2,2) [24] 12 11 48 8 12 3.03
(2,3,2) [24] 12 11 48 9 13 3.03
(4,2,2) [24] 16 14 72 8 12 2.94
(2,4,2) [24] 16 14 72 12 24 2.94
(3,2,3) Appendix B 18 15 94 10 20 3.21
(3,3,2) Appendix B 18 15 94 11 23 3.21
(3,3,3) [23] 97 23 139 15 29 3.07
(4,2,3) [3] 24 20 130 14 34 3.38
(3,4,2) [3] 24 20 130 14 30 3.38
(2,3,4) (3] 24 20 130 14 35 3.38
(4,4,2) Appendix C 32 26 257 22 89 3.90
(4,2,4) Appendix C 32 26 257 23 92 3.93
(3,4,3) 3] 36 20 234 23 100 3.66
(3,3,4) [3] 36 29 234 18 71 3.66
(3,3,6) [23] 54 40 960 39 428 4.69
(3,6,3) [23] 54 40 960 48 7285 4.69

can be summarized by the following relative error bound

All|lB
LAIIBI

|cij ]

|cij — &yl

|cig]

(13) < falg(K) + O(é%).

Recall that fag is the (at worst) polynomial function of the inner dimension that
depends on the particular algorithm used. Unfortunately, these bounds can often be
quite large when |c;;| is small relative to || A||||B||. For the remainder of this section,

we will ignore fa; and consider it a fixed quantity, so that fas(K)e = O(e).

ExAMPLE 8. Consider the matrices

1 1 z 1 2z 2
" a<[t omof Joooanofr 2

for small z > 0. By (13), we have the following relative error bound

(15) |11 — é11] <0 <|A||||B||5> —0(¢/2),

|11 |c11

which can be quite large for small z. Furthermore, this bound is actually achieved
with Strassen’s algorithm (see Appendix A for the definition of Strassen’s algorithm).
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Specifically, Strassen’s algorithm computes

(16a) my = (a11 + age)(biy +b22) = (1+1)- (2 +1)
(16b) mg = azz (b1 — b)) =1- (2 —1)

(16¢) ms = (a11 +ara)bee = (1+1) -1

(16d) my = (a12 — a22)(ba1 +b22) = (1 —1)- (2 +1)
(16e) €11 = mq + my — ms + my.

There are terms of size O(1) in computing mq, my4, ms, and my, so the absolute error
|c11 — é11] is O(€). Since ¢11 = z, the relative error is O(e/z).

We now demonstrate several methods for improving numerical stability issues by
pre-processing A and B and post-processing C. The idea underlying these methods
is the following straightforward observation

(17) C=D,D,'ADD 'BD;'Dg,

for any nonsingular scaling matrices D4, Dp, and D. By taking advantage of the
associativity of matrix multiplication (in exact arithmetic) and scaling matrices D 4,
Dpg, and D that are easy to apply, we can improve the norm-wise bound in Theorem 3
without significantly affecting the performance of the algorithm.

For the algorithms and analysis in this section, we will consider diagonal scaling
matrices with positive diagonal entries. In order to simplify the analysis, we will
assume that there is no numerical error in applying the scaling matrices. This could
be achieved, for example, by rounding the scaling matrix entries to the nearest power
of two. Regardless, the error introduced by the fast matrix multiplication algorithm
has the larger impact on the stability, and the scaling matrices can curb numerical
inaccuracies.

6.1. Outside scaling. In light of (17), Dumistrescu proposed the following “out-
side scaling” matrices [12]:

(18) D4 = diag <max |aij|), D = diag(max |b”\)
J 7

The resulting procedure is Algorithm 1.

Algorithm 1 Outside scaling for fast matrix multiplication
Require: matrices A and B
Ensure: C=A-B

: Dy « diag(max; |a;;])

1

2 A« D'A

3: Dp « diag(maxi |b”‘)

4 B+ BD}!

5. C' + A - B with fast matrix multiplication.
6: C DAC/DB

Clearly, the algorithm correctly computes C = A -B in exact arithmetic, provided
there are no all-zero rows in A or all-zero columns in B. Importantly, the norm-wise
bound in Theorem 3 applies to the scaled matrices A’ and B’. In particular, we get
the following improved bound [12].
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ProrosiTION 9. Using Algorithm 1,

(19) |cij — €ijl < O(e)l|a.|[[|b-;

Proof. Scaling ensures that ||A’|,||B’|| < 1, so by (13), ||C" — C/H < O(e). Since

c-¢' =D 4(C —C)Dp, the result follows from the fact that the ith diagonal entry
of D4 is [|a;,| and jth diagonal entry of Dp is ||b. ;]| 0

For the matrices in Example 8, the bound from Proposition 9 improves upon (15):

(20) len —enf _ (”a1|||bl|6> —0(
e

|c11]

This indeed improves the numerical stability of Strassen’s algorithm. For the
matrices in (14), the outside scaling is

1] o U1 s o (202
wel e Jooam-] 2

And when computing C’ with Strassen’s algorithm,

my = (a'11+a'22) (011 +b2) = (1+1) (1+1)
my = a'92(b'21 —b'11) =1-(1-1)
ms = (a'11 +a'12)b'2 = (141)-1
my7 = (a'12 — a'92)(b'21 +'22) = (1 —1)- (1 +1)

’
c11 =m1 +my —ms+ mry.

[\V]

—_

o
=

~ o~~~ —
N DN
—_ =
o o

[\

—_

[©)
~

Now, all sub-terms are on the order of unity, so the relative error in computing
CI11 is O(e)

6.2. Inside scaling. There are several pairs of matrices where outside scaling
is not sufficient for numerical stability.

ExAaMPLE 10. Consider the matrices

(22) A:[1 Z},B:{Z ﬂ’C:A'B:[

2z 2z
1 =z 1 ’

2z 2z

Using outside scaling on these matrices does nothing since D4 = D = 1. How-
ever, using a fast algorithm can still have severe numerical stability issues. Computing
c12 with Strassen’s algorithm uses the following computations:

(23a) mg = ai1(biz —ba2) =1- (2 —1)
(23b) mg = (a11 + alg)bgg =(1+ Z) -1
(23¢) C12 = m3 + ms.

The computation of mg and ms has terms of unit size, so |c12 — ¢12] is O(€) and the
relative error is O(e/z). This is reflected in the bound from (13):

(24) [A[[[BIl/]ci2] = 1/(22).
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We now propose a new scaling technique called inside scaling to augment the
outside scaling:

(25) D = diag (, Jma b ’“')
max; |am|

The resulting procedure is in Algorithm 2. The idea is to scale the columns of A and
the corresponding rows of B to have the same norm. In general, we get an improved
error bound, as detailed in Proposition 11.

Algorithm 2 Inside scaling for fast matrix multiplication

Require: matrices A and B
Ensure: C=A-B
1 D+ diag( 8% Phil lb’fjl)
max; |aik|
2: A+ AD
3 B+ D 'B
4: C + A’ - B’ with fast matrix multiplication.

ProroSITION 11. Using Algorithm 2,

(26) |C — Cl < O(e) max|ai b -
Proof. By (13),
IC —Cll < O(e)|AD|[[D™'B|| = O(¢) (mkax ||a:,kdkk> (mgxdﬁlllbz,J) :

By the definition of D,

la: illdik = dige 1w 1l = /Nl e 1.

so the two maxima are attained at the same index. The result then follows from the
fact that ||a. k||| bk, @ik Dk - O

= maxi,k)j

For the A and B in Example 10, max; j ; |aix||brj| = 2z, and we get an O(e)
relative error bound for computing each entry in C. The inside scaling updates to
the matrices in (22) are

[vE oo
e[
Strassen’s algorithm now computes
(28a) mz = ayy (Vs —byy) = V2 - (Vz = Vz)
(28Db) ms = (ay; + ajo)byy = (V2 +Vz) V2

(28c) o = mg + ms.

A [\/E ﬁ}

VNI R VA

vz vz

This time, the computation of mg and ms involves terms on the order of z instead of
on the order of unity, and we get O(¢) relative error in the computation.
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Algorithm 3 Outside-inside scaling for fast matrix multiplication

D4 + diag(max; |a;;])

A« DA

Dp « diag(max; |b;;|)

B’ + BD}!

5D e diag( mavy V| l'j;g{)

A"+ A'D

B"+ D 'B

C"” «+ A" .B” with fast matrix multiplication
: C DAC”DB

6.3. Outside-inside and inside-outside scaling. We can naturally combine
outside and inside scaling by performing one algorithm after the other. Interestingly,
the results and improved error bounds depend on the application order of the scaling.
We call Algorithm 3, which does outside scaling first, “outside-inside” scaling.

ProPOSITION 12. Using Algorithm 3,

(29) leij = &i5] < O laii[ll1bs 1| max g |by; .

]froof. By Proposition 11, |cf; — &5| < O(e) max; x. j |aj, ||b),;]. Since C' — ¢
D,4(C — C)Dp, the result follows from the fact that the ith diagonal entry of D4 is
|la;,.|| and jth diagonal entry of Dp is ||b. ;]|. 0

COROLLARY 13. The outside-inside scaling error bound from Proposition 12 is
stronger than the outside scaling bound from Proposition 9.

Proof. Outside scaling ensures the rows of A’ and the columns of B’ have unit
norm, so max; j j |a2k|\b§€j| <1. 0

We can also do the inside scaling first, resulting in the “inside-outside” scaling
described in Algorithm 4.

Algorithm 4 Inside-outside scaling for fast matrix multiplication

—_

D« aiag( /1)

A+ AD

B <~ D 'B

D4 «+ diag(max; |a];|)

A"+ DA

Dp + diag(max; |b;J|)

B” + B'D}'

C"” < A" .B” with fast matrix multiplication
C + DAC”DB

PrOPOSITION 14. Using Algorithm 4,
(30) leij — &1 < O(e)lai [P 51
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Proof. We apply outside scaling to the matrices A’ and B’, so the result follows
from Proposition 9. O

COROLLARY 15. The inside-outside scaling error bound from Proposition 14 is
stronger than the inside scaling bound from Proposition 11.

Proof.

/

[0 Ll

Il < max la; [I[16
ij

= max |a; k|, max by ;|d;; "
ik lj

/2 1/2
ol i)
= max ||a. || < J max ||by.. || :

k Ha:,k” l ||bl,:||

= max ||a. k|[|bk,: || = max |a;x|[b;]. 0
k ikj

We now provide an example that shows that these two methods can achieve vastly
different numerical results.

EXAMPLE 16. Consider the matrices

|1 271 |z 1 _ _|1+z 14271
(31) A‘[1 1}’]3_[,2 1:|’C_A.B_{QZ 2 |-

For this matrix, outside-inside scaling computes

, z 1 , 1 1 ” 2 1 9 12 ,—-1/2
(32) A<—[1 1],B<—[1 1],A<—[1 1],B<—{1 e

and inside-outside scaling computes

1 271/2 z 1
(33) Al L 21/2} ) B’ |:Zl/2 2—1/2} )
1/2 1
" z " z Z
A <—{ 1 21/2}, B <—[1 1].

Consider the computation of entry ca; = 2z. By Proposition 12, outside-inside
scaling guarantees a relative error of O(e). However, by Proposition 14, inside-outside
scaling only guarantees a relative error of O(zl/ 2). Indeed, if we use inside-outside
scaling with Strassen’s algorithm to compute ca1,

(34a) my = (ay) + ah,)bfy = (1+2'2) - 2
(34b) mq = a’2'2( /2/1 - /1/1) =212, (1-2)
(34c) cyy = mao + my,

and we have a sub-term on the order of 2/2.

6.4. Repeated inside-outside scaling. Next, we consider repeatedly apply-
ing inside and outside scaling in alternating order, as shown in Algorithm 5. We
start by analyzing the effect of the algorithm on the accuracy of the computed prod-
uct. Theorem 18 shows that the elementwise error bound of the computed product is
monotonically nonincreasing, meaning that accuracy is increased with each step. We
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then analyze how rapidly the error bound converges to its limit. In Theorem 21 we
show that convergence is initially quadratic and ultimately linear. Lemma 22 demon-
strates an example in which convergence is exactly as guaranteed by Theorem 21,
showing that our convergence analysis is sharp in the worst case. Finally, in Theo-
rem 23 we provide a stopping criterion for the iteration. We allow the user to specify
a relative-tolerance parameter 7, so that whenever our stopping criterion is satisfied,
the error bound is within a relative distance 7 from its limit. In particular, choosing
7 = 1 implies quadratic convergence throughout the iteration, and it achieves an error
bound within a factor of 2 of the optimal bound that alternating scaling can achieve.
Testing the stopping criterion in each iteration contributes only a lower-order term to
the work and communication costs, and it is easy to implement.

We start with our accuracy analysis. In our analysis, we use AY and B to
denote the values of A’ and B’, respectively, after ¢ steps of Algorithm 5. We also
use rz(t) and sg-t) to denote the diagonal elements of D4 and D g, respectively, after ¢
steps. The initial values of these variables correspond to ¢ = 0 in our notation.

Algorithm 5 Alternating scaling

1L A—A B B Dy« I Dg+1I
2: alternate

3: step O

4: D/, + diag(maxy|a’;x|)

5: Dy + DAD;‘

6: A’ — (D)) tA’

7 D93 — diag(maxk|b’kj|)

8: Dp « D/BDB

9: B + B'(D3)!
10: end
11: step I
12: D « diag (, / 722’5"2*;“ )
13: A’ A'D
14: B « D 'B’
15: end
16: until converged
17: C' + A’ . B’ with fast matrix multiplication
18: C+— D,C'Dpg

PROPOSITION 17. Let t be the number of steps of Algorithm 5 that we complete.
The computed product satisfies

~ t t
lei; — &3] < O(e) s\ | AD|IBD.

Proof. The analysis is the same as in the proofs of Propositions 12 and 14. ]

THEOREM 18. The sequence
rOsOIAYBOY fort=0,1,...

is monotonically nonincreasing.
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Proof. 1If step t is an O step, then
t t—1 t—1 t t—1 t—1
IAD = BO =1, =60 s = sl

b

and therefore

1 1)
s 1A IBO | = s o

U
t—1 t—1
_ri ’s§- a- 1||||B<f Yl

Next, assume that step ¢ is an I step. Column k of A’ is transformed so that
(t=1) 1\ 2
40— b I\ -1y
@ik -0, | %k
lla: e |l
and therefore

BTV o )
(35) )| = (n ) a1 = 3/ llal Ve L
:,k

and similarly

-1 -1
(36) 1671 = 1/ llal V16V
Hence,

A = B = max /llal Vol r? =T s = s

) J j )
and therefore

2
t) (t t—1) (t—1 t—1 t—1
s AT BO ] = Y5 (/a8 )
t—1) (t—1 (t=1) 7. (t—1
= Vs ([l 16 )
< TUSTATB 0
<r s
Next, we show that the algorithm converges. We use the following notation. The
index of the first O step of the iteration is denoted by t;. Whenever step t is an
(®) ") to denote the diagonal elements of the matrices D', and

(t)

O step, we use r; * and s;

D', respectively, that we compute in step t. Similarly, if step ¢ is an I step, p
denotes the diagonal elements of D.

LEMMA 19. The sequences r( ) ;t), |AD | and |BY| fort =0,1,... converge.
Proof. As we show in the proof of Theorem 18,

1AV = BY| =1,

AT = B | = max laR B2 fort = tosto+ 2.

Therefore

|ACHD) = max /a2 < /A BO) =1,
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and hence
(37) i = (oY) < A <1

The sequence rz(t) satisfies
Tz(ta) — Tz(to+1) — r;(t‘))
T,z(t0+2) _ T.z(t0+3) _ r;(to)r;(tow)

© > 0, it is monotonically nonincreasing by (37), and

. . t
hence it must converge. The same is true for 35 ),

Consider the effect of the first ¢ steps of the iteration on A’ and B’. The cumu-

lative effect of the O steps is to divide the rows of A’ by 7‘2@
®

j 9
norm to the corresponding row of B’. Therefore

. . /
It is nonnegative because r;

and the columns of B’

by s:”, and that of the I steps is to make sure that every column of A’ is equal in

1
by (‘t—l) 2
aEZ) = QL L Hlan| k]/sgt71)| for t = to + 1,t0 + 2, ey
maxi|aik/ri ‘

(®

%

(®)

which shows that the convergence of r;’ and s§t) guarantees the convergence of a;;’,

and hence also the convergence of ||A)||. The same is true for |[B®]. O

The following lemma shows that the intermediate scaling factors that we compute
in each step rapidly converge to 1. We use this lemma in our subsequent analysis.
We use the notation

wt) = max(max|log r;(t) |, max|log s;(t) ) ,
i j

w() = max|log pi" " for t =to,tg +2,...

LEMMA 20. The following bounds hold:
w®) < =1
w1 < 0,500 fort=ty+2,tg+4,....

Proof. Assume that ¢t =ty + 2,ty +4,... . Because step t — 2 is an O step, there
is a column g so that |al(;_2)| =1, and therefore

(t—2)

r;(t) (t—2) /(tfl)} > ’aig p;(t_1)| —p

= ml?x|a5271)’ = mkax|aik Dy ’g(t_l) .

Taking logarithms yields
log r;(t) > logp’g(t_l) .
Both sides of this inequality are nonpositive because r;(t) <1 by (37), and so

|log r;(t)| = —log r;(t) < 710gp;(t—1) - logp/g(t—1)| '
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A similar analysis shows that

t t—1
oz ] < [logz ")
for a suitably defined row f, and these two inequalities imply the first bound in the
statement of the lemma.
Next, let us prove the secound bound. We have that

presye - ] maxg | /0] mag ] may (155
' max; |az('tk) maXi‘GEZ_l)/T;(t)| B max; |a§2_1)/r;(t)|

Inequality (37) states that rg(t) < 1, and therefore

max‘angl)/r;(t) ’ > max‘al(-,tgl)
3 K2

which we substitute into the previous inequality, obtaining

(p/(t+1))2 < maxj|b§€3—1)| man(l/s;(t))

¥ maxi|al(.z_l)
By (35) and (36)
-1 -1 -1 -1
maxaf™| = laf V]| = 67| = maxp)].

which implies
()" < max; (1/571).
A similar analysis shows that

M(t+1\2 1 .
(pk ) = maxi(l/T;(t))

Taking the logarithm of these two bounds and interchanging the positions of the
logarithms with those of the max operators yields

—max(log(1/7") ) < 2logp ™) < max(log(1/5)")) .
¢ J

Because r;(t) < 1 we have that log(l/r;(t)) = |10g r;(t)|, and similarly for s;(t). Apply-
ing this to the previous inequality yields

/(

— max‘log rg(t)‘ <2 logpkHl) < max‘log 5;-(t)
@ J

)

and therefore
2 logp;(t+1)| < max(maxHog rg(t)|, max}log s;(t)‘) ,
i J

which implies the second bound in the statement of the lemma. 0
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The following theorem is our characterization of the algorithm’s convergence. We
provide an interpretation of the result after we prove it. Our notation is as follows.
Lemma 19 states that the sequences 7", s;t), |A®|| and [|[B®|| converge. We use a

%

superscript * to denote their limits, so that
t t * * *
i = s s A S AN, BO > BY,
and we let

o _ ISP IAO B — s A BOY) s AT BY)
E *) gL* * - *) (%
[t s A B OO [ AD B

be the relative distance of rgt)sg-t) |AD|||IB®]| from the limit.

THEOREM 21. There is a sequence vY) so that

<0, e
and
V(tJ,»l) — V(t) , I/(t+2) < # (t) fo’]‘ t = tO’ to —+ 27 e

=97

Proof. Assume that t = tg,tp + 2,.... We have that

Tit) _ r;(to)ré(to-i-Q) . ,,T;(t) ’ sgt) _ S;(to)s;(to-i-?) o s;(t) , IIA(t)H — HB(t)” =1,
and therefore
TE*) — ,r;(to),r;(to—i‘Q) e SE*) _ S;(tO)S;(tO+2) e ||.A(*)|| _ ||B(*)|| 1.

Substituting this into the above yields

* * *) )L
iy = (s IACIIBO) (s AP NIBE) T 1

- (r;(to)Sg(to)r;(to-i-Q)S;(to—i-Q) o T;(t)s;(t)) (rg(t‘))s;(t‘))rg(t()“)s;(t()“) N .),1 .
— (T;(t+2)8;(t+2),r;(t+4)S;(t+4) - _)—1 1

Applying the definition of w® to this, we obtain

Mz(';) _ (T;(t+2) S;(t+2)r;(t+4) S;‘(t+4) . .)*1 _1
(t+2) 1(t+2)
J

1(t+4)

i

r(t+4)

=exp(—logr; —logs —logr —1ogsj ) —1

%

< eXp(Qw(t+2) + ot 4 ) 1

= exp(|log r/(Hz)’ + |log s;-(t”)‘ + |log r;(tH)‘ + |log s;.(t+4)] +-) =1

We define

VO = exp(2wH?) 4 200D 1) — 1, D) =0

thereby guaranteeing that ug) < v as the theorem states. Because ’yi(;)

tonically nonincreasing, so is its relative distance to its limit, meaning that

t+1 t
Ngj = Ngj)

1S mono-
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and hence
pit < pl) <0 ® = D).

This proves another condition in the statement of the theorem, leaving us only with
the condition v(#+2) < (1/(2 + u(t+2))) v® to prove.
By Lemma 20,

wtt3) < 0.5w*+2) wttd) < wt+3) < 0.5w(2)

w5 < 05wt < 02502 6 < 4y (145) < () 25 (t+2)

Therefore
w2 = (0.5 +0.25 + - - Y
= 0.50"*? + 0250w+ ...
> ) (6 1L
and thus

exp(2w(t+2)) > eXp(Qw(t+4) +2uwtH0) 4 .. Y.
Applying this bound to the definition of v¥), we obtain

(&) — exp(2w(t+2) 4ot .. ) —1
= exp (Qw(t“)) exp (2w(t+4) + 200 4 .. ) -1

2
> (exp(2w(t+4) 4 2w(t+0) . )) 1.

We define z = exp (2w**+*) + 2w+ +...) 5o that the above expression has the form
22 — 1 and v**2) =z — 1. The rest of the proof is:

V> 1=0242—1)(z—-1)= (2+ Z/(t+2)) p(+2)

which implies that v(**+2) < (1/(2 + 1/(“'2))) v as the theorem states. O

Let us explain the significance of the above theorem. It shows that the relative
distance of the error from its limit is bounded by a sequence v®*) that satisfies the
condition

1
(t+2) < (t)
v S ST, v

We have that v(**2) > 0, and so

1
(t+2) « (1) <« Z,(t)
v = 2pp” ="

and therefore we are guaranteed linear convergence. We are making progress at least at
a convergence rate 0.5 with every two steps of the algorithm. Furthermore, multiplying
the bound by v(**2) on both sides yields

V(t+2)

(V(t+2>)2 < (t)

=9 Y
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This tells us that convergence is quadratic so long as our relative distance from the
limit is greater than 1. The prefactor that corresponds to quadratic convergence is
1/(”2)/(2 + 1/(”2)), which is at most 1, and it monotonically decreases towards 1/3
as v(1t2) — 1.

The following lemma shows that our convergence analysis is sharp.

LEMMA 22. There are matrices A and B and indices i and j so that

(t+1) _ (1) (t+2) 1 ()
Hij = MKy Hij = gy Mij Jort=to,to+2,....
J J J 2+ HE;_+2) J
Proof. Let
1 0 1 0
A_[l 2—2“} ’ B_[o 1}
for some integer v, let us start the iteration with an O step, and assume that ¢ =
to,to + 2, ... . A straightforward calculation, which we omit for brevity, shows that
1 0 P01
_A(t) = v—(t—t 1 =
_1 2_2 (t=tg)/2 | » Tét) 1 )
- t 7 B
O _[1 0 s
_0 1] Sgt) 2,2“(1,2-@-‘0)/2) )
r t4+1)] [ (t
.A(t+1) = 1 v—(to—t y/2—1 7’5 ) Tﬁ)
1 22 ’ Sl I PN
r t4+1)] (¢
B(t+1) = 1 1;—(?,0—’5 )/2—1:| Sg ) Sg)
o R WS Rl KT

and therefore

(*)_1 0
=

and

A = B = ATV = B = A7) = [BY] = 1.

Substituting the above into the definition of ,uz(-;-) yields

() _ e _ [ A NIBY | — s A B |

Moz = Hag
. 22v7(t—t0)/2
Letting « = 22° """
ugt;rz) =z — 1, we have that

(®)

Moo =

|2721)(172—(t—t0)/2) 92"

557 A

e

—-1.

1B

, so that the above expression has the form z? — 1 and

2 —1=2+z-1)(z—1)= 2+ p5 ) uss™,
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which proves the lemma. ad

Next, we derive a stopping criterion for the iteration. We explain how it works
after the proof.

THEOREM 23. Let 7 > 0 be a user-specified tolerance parameter. We have that
fOTt=t07t0—|—2,...,

ma_xugﬂ) <7 if mljnp;(t+1) >(1+ 7')_% and m]?xp;(t"’l) <( +7—)i7

i,J
and

masuy <7 e 2 (1)

Nl
N

and  min s;(t+2) >(1+7)7=.
J

Proof. In the proof of Theorem 21, we show that for all 4, j and ¢t = tg,to+2,. ..

pit <l
/%(‘;) < exp(2w(t+2) + 2w 4. ) -1,

eXp<2w(t+4) 4+ 2ptH6) | ) < eXp(Qw(t+2)) _
Putting these three statements together yields
’ugﬂ) < uﬁ;) < exp(2w(t+2) + ot 4. ) 1
= exp (Qw(t+2)) eXp(2w(t+4) +2p(tF6) 4 .. ) 1
< exp (Qw(”z)) exp(gw(tJr?)) 1
= exp (4w(t+2)) —1.

Lemma 20 guarantees that w®+2) < w1 and substituting this into the above yields

(38) ,ug;ﬂ) < exp(4w(t+1)) —1.
Similarly,
(39) u§§+2) < exp(?w(t+4) + 200 4 . J-1< exp(2w(t+2)) —1.

Next, let us prove the first statement of the theorem. Assume that
(1+ 7')_i < p;C(tJrl) <1+ 7')i
for all k. Taking logarithms yields
—0.25log(1+7) < logp;(tﬂ) < 0.25log(l +7),
or equivalently
|10gp;€(t+1)| <0.25log(1+7),
and therefore

wY = max|log pi" V| < 0.25log(1 + 7).
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Substituting this into (38), we find that

ui ™ < exp(aw™D) — 1 < exp(4-0.25log(1+ 7)) 1 =1,

for all , j, which proves the first statement of the theorem.
Let us prove the second statement of the theorem. Assume that

(147)"2 <o (1+7)°% < S;-(t+2)
for all ¢ and j. Taking logarithms yields
—0.51og(1 +7) < log r;(t”) 7 —0.5log(1 +7) < log 8;(t+2) )

/(t+2)

We show in the proof of Lemma 19 that r; < 1, and therefore log r;(tH) < 0 and

similarly for 5;(t+2). Hence
1(t+2) 1(t42)
llogri ‘ <0.5log(l+17), ylogsj ] <0.5log(1+7),
and hence

1(t+2)

i

wtt?) , max|log s;(t”)‘) < 0.5log(1+ 7).
J

= max (max‘log r
Substituting this into (39) yields

ME;H) <exp(2w™) —1 <exp(2-05log(l+7)) — 1=,

for all 4, j, which proves the second statement of the theorem. 0

The stopping criterion works as follows. We start testing the intermediate scaling

factors p;C(t), r® and s;(t)

g in each iteration starting with iteration ¢; = ¢y + 1, the
iteration that immediately follows the first O step. In the I steps, we test whether
all of the p;c(t) fall within the interval [(1 + )75, (1 + T)i], and in the O steps,

we test whether all of the r;(t) and s;(t) are greater than the threshold (1 + 7)~1/2,

Whenever one of these conditions is true, Theorem 23 states that we are within a
relative distance 7 from the limit, and so we stop iterating.

6.5. Scaling is not always enough. We conclude this section with an example
where Strassen’s algorithm computes a result with large relative error, using any of
the scaling algorithms presented in this section.

EXAMPLE 24. Consider the matrices

1oz 1oz AT 1+ =z 2z
(40) A_L' 1}’B_[z 1}’C_A B_{2z 1—|—z]

In this case, both outside and inside scaling leave the matrix unchanged. When
computing cy9,

(41a) mg = ai1(bi2 — ba2) = 1(z — 1)
(41b) ms = (a11 + a12)b22 = (1 + Z)].
(41C) C12 = M3 + ms,

There are subterms on the order of unity, so the relative error is O(1/z).
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Fig. 3: Relative error of Strassen’s algorithm as a function of the number of recursive
steps, L, for several scaling techniques. The results in each plot are for matrices
A and B sampled from different probability distributions. (Top) Stability is well-
behaved, and no scaling is necessary for small relative errors. (Middle) The matrices
are adversarial and inside-outside or 2-times repeated outside-inside scaling have the
smallest relative errors. (Right) The matrices are adversarial and outside, outside-
inside, or 2-times repeated outside-inside scaling have the smallest relative errors.

6.6. Numerical experiments. We tested the scaling algorithms on samples of
random matrices whose entries were not as contrived as those in the prior sections.
We used a sample of A € RV*N and BN *¥ from the following distributions:

1. Qij, bij ~ UIlifOI‘IIl(O7 1)
2. a;j ~ Uniform(0,1/N?) if j > N/2, otherwise, a;; ~ Uniform(0,1); b;; ~
Uniform(0,1/N?) if i < N/2, otherwise b;; ~ Uniform(0, 1)
3. a;j ~ Uniform(0, N?) ifi < N/2 and j > N/2, otherwise, a;; ~ Uniform(0, 1);
bi; ~ Uniform(0,1/N?) if j < N/2, otherwise b;; ~ Uniform(0, 1)
Samples from the first distribution are well-behaved for fast matrix multiplication
algorithms. On the other hand, samples from the second and third distributions are
“adversarial” and model the matrices in Examples 10 and 16, respectively.

We sampled one pair of matrices (N = 3500) from each distribution and com-
puted the error with Strassen’s algorithm for L = 1,2,...,6. Figure 3 summarizes the
results, showing the largest relative error made by the fast algorithm with different
scaling techniques. We estimated the largest relative error |é;; — ¢;;|/|cij|, where C is
actually a computed product with quadruple precision. For the first probability distri-
bution, the relative errors are all roughly the same. With the second distribution, only
inside-outside scaling or 2-times repeated outside-inside scaling compute relatively ac-
curate solutions. In this case, inside and outside-inside scaling are moderately more
accurate than no scaling or outside scaling, but they still produce relative errors sev-
eral orders of magnitude larger than the best case. Finally, for the third distribution,
inside scaling and no scaling result in much larger relative errors, and inside-outside
scaling is slightly worse than outside, outside-inside, or 10-times repeated outside-
inside scaling. These experiments demonstrate that with no prior knowledge of the
distribution, repeated outside-inside scaling is the safe choice for fast matrix multipli-
cation. Corollaries 13 and 15 provide the theoretical underpinning for this empirical
observation.

Each iteration of outside or inside scaling is O(N?) flops, so scaling does not
affect the asymptotic performance. However, quadratic costs do affect the practical
implementation of fast matrix multiplication [3]. Subsequently we tested the perfor-
mance impact of scaling. We use effective gflops [3, 21] to measure the performance
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Performance for N x N X N multiplication
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Fig. 4: Performance of Strassen’s algorithm (L = 1), with and without two iterations

of inside-outside scaling, and the classical algorithm. Each data point is the median

of five trials.

of multiplying an M x K matrix by a K x N matrix:
2-MKN - MN

time in seconds

(42) le-9.

This lets us compare fast matrix multiplication algorithms to the classical algorithm
on a familiar inverse-time scale. All experiments were conducted on a single compute
node on NERSC’s Edison machine. Each node has two 12-core Intel 2.4 GHz Ivy
Bridge processors and 64 GB of memory. Our experiments were single-threaded.

Figure 4 summarizes the performance results for Strassen’s algorithm (L = 1),
with and without 2x repeated outside-inside scaling, for multiplying square matrices
of dimension N. There is a noticeable impact on performance. Strassen’s without
scaling out-performs the classical algorithm for N > 2500 while scaling pushes this
threshold to N > 3500. As N grows, the performance impact of scaling gets smaller.
This follows from the asymptotic analysis—as N grows, the impact from quadratic
terms shrinks.

7. Discussion. One of the central components of our error analysis is that two
data-independent quantities drive the error bounds. First, Q) captures the accumula-
tion error from adding matrices. Second, E measures the growth in the number of
terms. Our results in Section 5 show that having a small E is important, but this
does not fully characterize stability in practice. The same result has been observed
when comparing Strassen’s algorithm and the Winograd variant [15]. A positive re-
sult from our experiments is that the number of non-zeroes in the U, V, and W
matrices, which determines the constant for the asymptotic complexity, is positively
correlated with E. In other words, by minimizing the number of matrix additions, we
also improve stability. Another lesson from our analysis is that we should not think
of using fast algorithms asymptotically but rather as having a fixed number of recur-
sive levels. This leads to better performance in practice [3] and also to the improved
error bounds and numerical stability presented in Sections 4 and 5. Finally, because
the principal quantities for understanding algorithmic error (E and @) are indepen-
dent of the asymptotic complexity, we have new metrics over which to optimize when
searching for fast matrix multiplication algorithms.
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For performance reasons, the best choice of fast algorithm depends on the shape
of the matrices being multiplied [3]. In general, a choice of algorithm is made at each
recursive level. Subsequently, uniform non-stationary algorithms are the right choice
in practice for achieving the best performance. Theorem 5 provides the appropriate
error bounds for this case.

The analysis in Subsection 4.5 formalizes the error analysis for existing tech-
niques to improve stability of Strassen’s algorithm and the Winograd variant [8, 7]
and also generalizes the approach for all fast matrix multiplication algorithms. The
analysis provides the formula over which to optimize when considering non-uniform,
non-stationary algorithms. However, finding the best algorithm is a combinatorial
optimization problem that grows exponentially in the number of recursive levels. Al-
gorithm design in this space is an interesting avenue for future research.

Using the above techniques improves the normwise accuracy of the computed
product. However, because the errors are normwise, small elements of the product
can be computed less accurately than warranted by their condition numbers. By
pre- and post-processing the data, we can improve componentwise accuracy as well.
Specifically, we analyzed a hierarchy of diagonal scaling techniques that reduce the
number of cases where fast matrix multiplication yields inaccurate small components
of the product. Nevertheless, there are cases that cannot be solved by our diagonal
scaling algorithms (e.g., Example 24). When scaling helps, a couple of iterations
are sufficient, and this is backed up by Theorem 21. In our experiments, we found
that scaling incurs a performance penalty in practice. Our implementation did not
take advantage of overlapping inside and outside scaling, which would reduce the
overhead. The asymptotic cost of scaling is O(n?) operations. This is a low-order
term compared to the cost of current fast multipication algorithms, and therefore the
overhead of scaling becomes less significant as the matrices that we multiply become
larger.
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Appendix A. Strassen’s Algorithm. Strassen’s algorithm [24] is a (2,2, 2)

algorithm specified by the following U, V, and W matrices:

1 0 1 0 1 -1 0

o 0 o0 o0 1 0 1

U= 0O 1 0 0O 0 1 o0
11 0 1 0 0 -1 |
1 1 0 -1 0 1 0]

o 0 1 0 0 1 o0

V= o 0 0 1 0 0 1
1 0 -1 0 1 0 1 |
1 0 o0 1 -1 0 1

0o 1 o0 1 0 0 o0

W= o 0 1 0 1 0 o0
1 -1 1 0 0 1 0 |

Note that the rows of U and V correspond to a column-major ordering of the entries
of the input matrices and the rows of W correspond to a row-major ordering of the
output matrix, following the convention of previous work [6, 16]. We point out that
this algorithm is cyclic-invariant, so that [U, V, W] = [W,U, V] = [V, W, U] (up
to permutations on the columns of the matrices), which implies that all three rotations
have the same () and E values.
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Appendix B. (3,2,3) fast matrix multiplication algorithm. The following
algorithm for base case (3,2, 3) has 94 nonzeros with E = 20 and @ = 10.

o 1 0 0 -1 1 1 0 0 0 -1 0 0 0 -1

o 1 0o o0 O O 0 -1 0 -1 0 0 1 -1 0

y—-|©0© 0o o 1 0 0 0-1 0-1 1 0 0-1 0

-1 o 1 0 1 0 O O O O 1 0 0 0 1

-1 0 0 O O 1 o0 1 o0 1 0 1 -1 0 o0
0 0-1 0 0O O O 1 1 0 -1 0 0 0 -1 |
o o 1 1 o o0 o0 O O O 1 o0 0 1 11

o o 1 o0 O O 0 -1 1 -1 0 0 0 1 o0

V= o -1 o0 0o o0 1 o0 O O 1 0 1 1 -1 0

-1 0 0 O O O O 1 o0 1 0 1 0 -1 o0

o 1 1 o0 0 O 1 0 0 0 1 o0 0 0 1
10 1 o0 1 1 1 0 O O 0O O 0 0 1 |
o o 1 o o 0O -1 0 1 0 0 0O 0 0 —11

i 0o o o 1 1 o0 O O O O -1 0 0 O

o 0 0 O 1 o0 1 0 0O 0O 0O 0 0 0 o0

o 0 0 -1 0 O O O 0 -1 0 1 0 -1 0

W=|0 0 0 O O O O O O O O 1 1 0 o0

o 1 0 o0 O 1 -1 0 0O 0 0 0 1 0 o0

o 0o 0 1 o0 O O O 1 0 0O 0 0 0 O

o o o0 o O O O 1 1 -1 0 0 -1 0 o0
0o 0 0-1 1 0 0 0 O O 1 0 0 0 -1 |

Note that the rows of U and V correspond to a column-major ordering of the entries
of the input matrices and the rows of W correspond to a row-major ordering of
the output matrix, which implies that [W,U, V] is an algorithm for (3,3,2) and
[V, W, U] is an algorithm for (2,3, 3).

Appendix C. (4,4,2) fast matrix multiplication algorithm. The following
algorithm specifies a rank 26 fast matrix multiplication algorithm with base case
(4,4,2).
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Note that the rows of U and V correspond to a column-major ordering of the
entries of the input matrices and the rows of W correspond to a row-major ordering
of the output matrix, which implies that [W, U, V] is an algorithm for (4,2,4) and

[V,W,U] is an algorithm for (2,4,4).

102,

However, [V, W, U] yields an F

which is greater than [U,V, W]’s 89. The E value can be maintained for base case

(2,4, 4) by using a different transformation that corresponds to transposing the matrix
multiplication: [P42V,PsaU, PsaW], where P,, ,, is the vec permutation matrix
[14], exchanging column-ordering for row-ordering for a vectorized m x n matrix
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