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Abstract

The precise and accurate determination of isotopic composition in nuclear
forensic samples is vital for assessing origin, intended use and process history.
Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold
standard for high performance isotopic measurements and has long served as
the workhorse in the isotopic ratio determination of nuclear materials. Nuclear
forensic and safeguard specialists have relied heavily on such methods for
both routine and atypical efforts. Despite widespread use, TIMS methods
for the assay of actinide systems continue to be hindered by poor ionization
efficiency, often less than tenths of a percent; the majority of a sample
is not measured. This represents a growing challenge in addressing next-
generation nuclear detection needs by limiting the ability to analyze ultra-
trace quantities of high priority elements that could potentially provide critical
nuclear forensic signatures. Porous ion emitter (PIE) thermal ion sources

were developed in response to the growing need for new TIMS ion source

vi



technologies. By simultaneously incorporating multiple, previously developed
strategies for improved ionization efficiency, PIEs have proven to be simple to
implement, straightforward approach to boosting ion yield.

This work serves to expand the use of PIE techniques for the analysis
of trace quantities of plutonium and americium. PIEs exhibited superior
plutonium and americium ion yields when compared to direct filament loading
and the resin bead technique, one of the most efficient methods for actinide
analysis, at similar mass loading levels. Initial attempts at altering PIE
composition for the analysis of plutonium proved to enhance sample utilization
even further. Preliminary investigations of the instrumental fractionation
behavior of plutonium and uranium analyzed via PIE methods were conducted.
Data collected during these initial trial indicate that PIEs fractionate in
a consistent, reproducible manner; a necessity for high precision isotope
ratio measurements. Ultimately, PIEs methods were applied for the age
determination of various uranium isotopic standards. PIEs did not exhibit
significant advantages for the determination of model ages when compared to
traditional filaments; however, this trial was able to provide valuable insight

for guiding future investigations.
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Chapter 1

Introduction



1.1 Background

Thermal ionization mass spectrometry (TIMS) is internationally accepted
as a benchmark technique for obtaining highly precise and accurate data
on isotope amount ratios and concentrations of samples containing actinides
present in levels ranging from ultra-trace to bulk. In addition to excellent
accuracy and precision, TIMS offers advantages such as mass spectra that
are essentially free from background interferences and relatively minimal
fractionation effects when compared to other isotope ratio techniques; despite
these advantages TIMS methodologies are hampered by inadequate sample
utilization. This represents a growing challenge in addressing next-generation
nuclear detection needs, namely, measuring trace and ultra-trace forensic
signatures and characterizing the age of young materials with minute progeny
in-growth. lonization efficiencies for high priority elements like uranium
and thorium, for example, are below a few tenths of a percent, leaving
the vast majority of a tediously prepared sample completely unmeasured
[1, 2].  Unfortunately, efforts aimed at addressing this need through ion
source redesign have yet to match the spectacular progress made in electronic,

vacuum, and ion detection technologies.



1.2 Objective and impacts of this work

This research was conducted to address the need for state-of-the-art mass spec-
trometry approaches that exhibit improved sample utilization during isotope
ratio measurements. During this work several advancements were pursued
through systematically augmenting the current design and application of
porous ion emitters (PIEs) as TIMS sources. The capabilities developed herein
have expanded the set of mass spectrometry techniques employed to detect
useful nuclear forensic signatures, ensure international treaty compliance, and
monitor environmental presence of actinides. Additionally, this work includes
a comprehensive review of features associated commonly employed TIMS ion
source technologies, the basis for thermal ionization, and various efforts that
have sought to improve sample utilization during TIMS analyses. Throughout
this work, the terms sample utilization, ionization efficiency, and ion yield will
be used interchangeably to describe the ratio of the number of neutral atoms
of an isotope loaded on the filament to the number of ions counted by the
detection system.

This work is intended to expand the use of PIEs to the analysis of trace
quantities of actinides, capitalize on the enhanced sample utilization associated
with PIEs to address current challenges in uranium chronometry, and refine

existing TIMS source preparation methods to improve ionization for a range



of actinides. Key deliverables form this work include developing novel TIMS
methods capable of detecting critical materials signatures while utilizing lower
sample quantities than previously possible and improved chronometric analysis
capabilities for furthering investigations of nuclear material provenance and
interrogation samples containing only trace levels of uranium progeny. These
enhanced capabilities offer the potential to greatly facilitate investigations of
actinide systems in the field of nuclear forensics. Though nuclear forensic
applications are the central focus of this dissertation, the majority of the
concepts presented herein are undoubtedly of high value in an array of fields

employing TIMS isotopic measurement strategies.

1.3 Summary

This dissertation is comprised of a series of stand-alone manuscripts sum-
marizing the work performed to satisfy the tasks specified in a proposal
funded in by the United States Department of Energy (DOE) National
Nuclear Security Administration (NNSA) Office of Proliferation Detection
Research & Development (NA-22) entitled “Improved sample utilization in
TIMS isotopic ratio measurements via refined development and application of
porous ion emitters”. While each chapter is presented as an individual work,

the knowledge gleaned from the ionization efficiency and fractionation effects



experiments served as crucial building blocks for the age-dating work. A brief

introduction to the concepts of this dissertation are presented below.

1.3.1 Literature review

This work begins with a comprehensive review of TIMS ion source technologies.
To the extent of our knowledge, a review of this magnitude has never been
undertaken and was completed at the request of the sponsor. Topics covered
in this evaluation include the history and basis for thermal ionization, features
associated with commonly employed ion sources, and various efforts that
have sought to improve sample utilization during TIMS analyses. Filament
materials, geometry, and additives used in TIMS sources are discussed in
detail; sample utilization numbers and sample sizes are presented when
available in order for comparison of source technologies. This review
culminates in section outlining PIEs, a new ion source technology designed
to boost ion yield by combining previously employed strategies that have been
proven to enhance ionization. Throughout this work, the terms ionization
efficiency, sample utilization, utilization efficiency, and ion yield will be used
interchangeably to describe the ratio of the number of neutral atoms of an
isotope loaded on the filament to the number of ions counted by the detection

system.



1.3.2 Enhanced ionization efficiency

Traditional filament loading techniques are associated with ionization efficien-
cies in the tenths-of-a-percent range for actinide-bearing samples; actinides
are not easily thermally ionized due to their relatively high ionization
potentials and refractory nature. Such low sample utilization considerably
limits the ability to make accurate and precise measurements of such high
priority elements as americium, plutonium, uranium, and thorium that could
potentially provide critical nuclear forensic signatures. Over the past several
decades, numerous TIMS strategies for enhancing ionization efficiency have
been proposed and tested; the majority of which involve the sample being
chemically reduced via the addition of carbon. Carbon can be introduced in
the form of collodium, water-based colloidal graphite, ion exchange resin beads,
or filament carburization for example. Indeed, the resin bead technique has
proven to be one of the most effective methods for the analysis of actinides
via TIMS. Drawbacks of the resin bead approach include long preparation
time and tediousness of securing a pre-loaded bead atop the filament. More
recently, thermal ion cavity (TIC) sources have been proposed as a method to
improve sample utilization in TIMS. While enhanced sample utilization has
been demonstrated using TIC, costly modifications to the sample turret, or

to the source housing, or to both are often necessary [3]. PIEs have been



proposed as an alternative approach to boosting ion yields without the need
for modifications to the mass spectrometer’s ion source. Increased ionization
surface contact area, superior ion optical properties, and ion bombardment by
the PIE material itself have been proposed as mechanisms of improved sample
utilization. Neutral atoms incur multiple interactions with the ionizing surface
as they diffuse through the PIE structure thus limiting their rapid escape and

increasing the probability of ionization.

1.3.3 Mass fractionation effects

Instrumental fractionation represents a significant source of error in isotope
ratio mass spectrometry (IRMS). Fractionation is the term used to describe
the combination of effects in a mass spectrometer that lead to a difference
between the measured and the true isotope ratio(s) of a sample. In TIMS, the
rate at which each isotope evaporates from the hot metal filament depends
on its abundance, mass, and on the the temperature of the filament. As
analysis proceeds, a sample tends to become enriched in heavier isotopes; the
result is a time-dependent variation in measured isotope ratios. The time
dependence of measured isotope ratios precludes the accurate determination

of a sample’s true isotope ratios via direct measurement. Additionally, the



accuracy of measured isotope ratios is limited because the effect of mass bias
cannot be totally controlled and reproduced.

Correcting for instrumental mass fractionation can be accomplished by
normalizing a measured isotope ratio to a known or accepted reference ratio.
Measured isotope ratios are commonly corrected by applying one of the well
known mass fractionation correction laws that appear in the literature [4-8].
All fractionation correction laws assume that evaporation and ionization of a
sample occurs in a single, homogeneous point on a filament. In reality, a sample
is not well represented as a point source and the temperature gradient across
the filament compounds the effects of fractionation. Previous studies have
demonstrated that PIEs fully contain the sample and do not permit sample
migration across the filament [9, 10]. The ability of PIEs to more accurately
represent a point source suggests that they may potentially reduce the effects
of mass bias associated with the thermal gradient across the filament when
compared to other single filament techniques.

The objective of this study is to evaluate the fractionation effects of
uranium and plutonium isotopic reference standards using PIEs. Fractionation
effects will be analyzed, then corrected for, using the commonly employed

empirical mass bias correction laws. This portion of the project focuses on the



efficacy of existing empirical laws to adequately correct fractionation exhibited

using PIE sources.

1.3.4 Nuclear forensic age-dating

Determining the age of a nuclear sample can provide valuable information
about a material such as origin, process history, and intended use [11, 12]. In
the context of nuclear forensics a material’s age refers to the time elapsed since
a parent radionuclide of interest was chemically or physically separated from
its decay products. The 23°Th /231U daughter-parent isotope pair provides one
of the most valued and widely used chronometers in modern nuclear forensic
and nuclear safeguards research [11, 13]. These two isotopes represent the
longest-lived intermediate decay products of the radium (4n + 2) decay series.
The relatively rapid ingrowth of 2*Th has enabled this chronometer to be
successfully applied for the determination of sample with ages ranging from a
few years to several hundred thousand years old [2, 14, 15]. The accuracy
of model-ages determined using the #*°Th/#U chronometer rely heavily
on the following assumptions: 1) the parent isotope has been completely
separated form daughter products and any residual impurities, 2) the system
remains closed after purification, and 3) the measured isotope ratios values are

accurate.



The focus of this study is to capitalize on the enhanced thorium sam-
ple utilization associated with PIE thermal ion sources demonstrated by
Stanley et al. [10] in an effort to improve precision and accuracy of model-
age determination of uranium materials using the 23°Th/?3*U chronometer
containing trace quantities of thorium. Stanley et al. reported that in addition
to exhibiting a trend of increased sample utilization as sample size decreases,
a relative enhancement in sample utilization was observed as analyte loading
levels were reduced [10]. These findings indicate that PIE filaments should
significantly outperform traditional filaments in their ability to produce ions
at femtogram mass loading levels of thorium. This boost in ion yield should
translate to a more stable ion beam at higher target intensity yielding more

precise and accurate isotope ratios.

1.3.5 Lead analyses

Knowing the origin of an unknown nuclear material is crucial for purposes of
nuclear security, such information can be derived from the isotopic signatures
of radiogenic lead. The isotopic composition of radiogenic lead in samples
have long been used by geologists for the age determination of geological
structures and by mining companies to assess the commercial viability of a

mine from sample. Lead is composed of four stable isotopes; 2°4Pb, 29Pb,
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207ph, and 2°®Pb; only 2°“Pb is entirely primordial and nonradiogenic. The
remaining three isotopes are the end products of the 233U, 23°U, and ?*?Th
decay chains, respectively. Natural variations of uranium and thorium isotopic
composition, based on global position, coupled with large differences in their
half-lives, have resulted in ore deposits with distinct lead signatures based on
geolocation. Determination of geographic origin of uranium samples based on
lead signatures have previously been demonstrated [16-22]. Signatures from
anthropogenic lead produced from fossil fuel combustion such as industrial
processes and automobile exhaust can provide additional information about
geographic origin as the isotopic composition will differ from that of naturally
occurring deposits. Due to the relevance of lead isotopic signatures in the field
of nuclear forensics, preliminary experiments were conducted to investigate
the ability of a PIE to improve ionization efficiency for the analysis of lead

samples via TIMS.
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This chapter, entitled “Evolution of the thermal ionization mass spectrometer

source”, has been reviewed and approved for release under institutional number

LA-UR-15-27578

Abstract

TIMS has served as the workhorse in the isotopic ratio determination of
nuclear materials for decades and is widely regarded as the benchmark for
such analyses; however, TIMS methods for the assay of actinide systems are
hindered by poor ionization efficiencies (i.e., the ratio of ions detected to the
total number of atoms loaded on the filament). Most of the sample remains
unmeasured. For example, traditional direct filament loading techniques
in TIMS are associated with analyte ionization efficiencies less than 0.1 %
for actinide bearing systems [1]. The use of resin bead techniques, one of
the most efficient methods for such analyses, has been shown to improve
upon these values, but still yield only efficiencies, ranging from 0.5-2%.
Such low efficiencies significantly limit the ability to detect highly refractory
elements (e.g., uranium and thorium) that could potentially provide critical
signatures in nuclear forensic, non-proliferation and safeguards efforts. This
limitation, coupled with the desire to analyze progressively smaller samples,

will drive development of state-of-the-art TIMS approaches that exhibit
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improved sample utilization and expand the current set of mass spectrometry
techniques. This will require the development of ion sources that maximize
analyte-to-filament interaction while minimizing sample spreading and ion
energy distribution for enhanced abundance sensitivity.

In response to the growing need for new TIMS ion source technologies, this
work provides a review of the basis for thermal ionization, features associated
with commonly employed sources, and various efforts that have sought
to improve sample utilization during TIMS analyses. Particular emphasis
has been placed on nuclear-related applications, though most concepts are
applicable to numerous other fields employing TIMS isotopic measurement
strategies. Additionally, this work highlights rising developments exhibiting
improved sample utilization and the attributes associated with successful

approaches.

2.1 Introduction

Thermal ionization, also referred to as surface ionization, is the general
process through which ions are produced by subjecting a material to elevated
temperatures. TIMS exploits this process as a sample introduction method
for purified solids undergoing isotopic analysis. This technique, in conjunction

with relevant detection [23, 24] and sample preparation strategies [25], offers

14



excellent precision and accuracy, relatively minimal fractionation effects, and
mass spectra that are essentially free from background interferences.

Since its inception, TIMS has been used for isotopic investigations in such
fields as geochemistry, archeology, and cosmochemistry. Additionally, nuclear
forensics, safeguards, and fuel cycle specialists have relied heavily on such
methods for both routine (e.g., nuclear fuel characterization) and atypical (e.g.,
illicit trafficking response) efforts. In fact, this nuclear connection has existed
for decades, as demonstrated by Alfred Nier’s early uranium studies [26]. TIMS
is now an accepted standard for high-performance isotopic measurements and
is the method of choice in establishing many material reference values [27]. For
example, most International Union of Pure and Applied Chemistry (IUPAC)
standard atomic weights are based on TIMS isotopic measurements [28], as are
the certificate values for commonly used nuclear material standards produced
by the National Institute of Standards and Technology (NIST) and the New
Brunswick Laboratory (NBL).

Despite the rich history associated with TIMS methodologies, inadequate
sample utilization (i.e., low analyte ion yield) represents a growing challenge in
addressing next-generation nuclear detection needs, such as measuring ultra-
trace (sub ngg ! levels) forensic or proliferation signatures, and characterizing

the age of young materials with minute progeny in-growth. Ionization
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efficiencies for high priority species like uranium and thorium, for example,
continue to fall below even the few tenths of a percent mark, leaving the
vast majority of a tediously prepared sample completely unmeasured [1, 2].
Unfortunately, efforts aimed at addressing this need through source redesign
have yet to match the successes observed in upgrades to other instrument

components, such as detectors, vacuum pumps and controlling electronics.

2.1.1 A brief history of TIMS

The discovery of positive thermal ion emission from a heated metal surface was
first documented in 1873 by Frederick Guthrie, who observed the emission of
positive ions from a two inch diameter cast iron ball heated to a dull red glow
at atmospheric pressure in air [29, 30]. It wasn’t until 1918 that the utility of
a thermal ion source was applied in the emerging field of mass spectroscopy by
A.J. Dempster [31]. He successfully developed the first TIMS, establishing the
fundamental theory and design used in modern-day TIMS instrumentation.
His machine was a 180-degree, single-focusing magnetic sector thermal ion
mass spectrograph illustrated in Figure 2.1. Samples were loaded as salts
atop single platinum filaments. Positive ions were produced thermally by
resistively heating the filament (A); the platinum filament ion source is still

routinely employed in present-day TIMS analyses of selected elements. The
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Figure 2.1: An illustration of the first thermal ionization mass spectrograph
developed by A. J. Dempster, adapted from Dempster [31]. Components
of Dempster’s mass spectrograph relevant to contemporary TIMS are: The

platinum filament upon which the sample was loaded is labeled (A), the
entrance and exit slits are labeled (B) and (C), respectively.
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ion beam was extracted from the source housing via high voltage and passed
through an adjustable slit (B) in to the mass analyzer, also referred to as the
magnetic sector. In the mass analyzer, the beam was directed around a 180-
degree path resulting in separation of ions according to ions mass-to-charge
ratio (m/z). Finally, ions were passed through a second adjustable exit slit (C)
for detection. Unlike contemporary TIMS instrumentation, isotopic separation
was achieved by varying the acceleration potential; the magnetic field was held
constant. Dempster’s rudimentary TIMS was capable of measuring isotopic
compositions and abundances with a mass resolving power of 100. Resolving
power is defined as m/Am, where the mass is denoted by m and Am is the
width of the peak, measured at full width at half maximum (FWHM) for this
specific case, required for separation at mass m.

Since its inception, TIMS has played an integral role in the discovery
of isotopes and the determination of isotopic abundances. However, due
to advancements in isotopic separation technology made during World War
IT, the mass spectrometer was no longer a tool just for physicists; its
application was extended to other fields such as chemistry, biology, and the
petroleum industry. Commercial applications of TIMS sparked the need
for increased sample throughput. In 1954, Frederick A. White was the

first to patent a device for rapid sample changes titled, “Multiple Cartridge
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Source for Mass Spectrometer” [32]. His design consisted of six cartridges,
allowing for the analysis of up to six samples before opening the source
housing [33] and breaking vacuum; source evacuation proved to be very
time-consuming. The first commercially available multi-sample TIMS, the
model MM30VG manufactured by VG Micromass (Now IsotopX: Middlewich,
Cheshire; UK), was introduced in 1973. The next major milestone in
instrument development came in the early 1980s with the debut of the
Finnegan-MAT 261 (Now Thermo Scientific: Waltham, MA: USA); the first
commercial multi-collector TIMS (MC-TIMS). Multiple detectors permitted
the simultaneous measurement of several isotopes, as well as for oligo-element
analysis. The advent of multi-isotope collection allowed for improvements in
the speed, precision, and accuracy of mass spectrometer analyses.

In the late 1950s and early 1960s several techniques were pioneered to
enhance sample utilization and reduce required sample size. Filament additives
such as silica gel for the analysis of lead and carbon for uranium and plutonium
analyses were established. The use of multiple filaments for the analysis
of a single sample was also developed around this time. Further ionization
enhancements were demonstrated in the 1970s with the introduction of the
canoe filament and the resin bead method for the analysis of actinides. A

steady rise in the number of events involving illicit trafficking of nuclear
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materials, began in the mid-1990s. In response to increasing concerns,
substantial efforts have been put forth in developing analytic methods
relevant to international safeguard and nuclear forensic investigations. Such
investigations require TIMS strategies that could further reduce the sample
size of uranium and plutonium required for analysis while simultaneously
improving analytic precision. The thermal ion cavity source was adapted to
address this need in support of International Atomic Energy Agency (IAEA)
safeguards and nonproliferation efforts [34, 35]. The most recent development
in ion source technology is the PIE. This method is still new, but has exhibited
promise for enhancing ionization efficiencies of uranium and thorium.
Notwithstanding considerable efforts, enhancements in thermal ion sources
have been unable to keep pace with improvements associated with ad-
vancements in vacuum, detector, and instrument electronics technologies.
The current generation of TIMS offers state-of-the-art electronics and the
convenience of full-computer automation, resulting in a significantly improved
ease of use while making high-precision measurements. These improvements
have established TIMS as the gold standard for the isotopic analysis of many
high priority elements such as uranium, plutonium, thorium, americium,
strontium, neodymium, and lead as well as high precision isotope dilution

analysis of parent-daughter systems.
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2.1.2 Instrument operating principles

Much like the initial design by Dempster, a modern TIMS, illustrated in
Figure 2.2, consists of three main components: 1) the ion source, 2) the
mass analyzer, and 3) an ion collector. Samples, often in the form of nitrate
or chloride salts, are loaded onto a refractory metallic filament, mounted
onto a sample turret and placed into the ion source housing. The entire
system is then evacuated to high vacuum, approximately 10~®mbar. Ions
are produced in the source housing, by resistively heating the sample loaded
metallic filament, accelerated with an applied electric potential up to 10kV
and focused into a narrow rectangular beam by the collimator (i.e., a series
of slits and electrostatically charged plates), also known as an ion lens. The
collimated beam is directed down the flight tube and into the mass analyzer,
where the ion beam is separated according to the mass-to-charge ratio governed
by Equation 2.1;

m R2B?

z 2V

(2.1)

where m and z are the mass and charge of the ion, respectively (in the case of
TIMS, z is almost always equal to one as thermal ionization is a soft ionization
method); B and R are the magnitude and radius of the magnetic field; and

V' is the ion accelerating voltage. See Appendix A for a detailed derivation of
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Figure 2.2: An exploded view illustration of a modern TIMS instrument.
Much like Dempster’s design, contemporary TIMS instruments are composed
of three main components: the ion source, mass analyzer, and the ion
collector(s). The sample turret is labeled (A) and the ion optic lenses are
labeled (B) are contained in the source housing. This figure was adapted from
Thermo Fisher Scientific [36]

Equation 2.1. The mass-resolved beam is then directed to the ion collection
system where the ion beam(s) will be measured, either sequentially (i.e.,
single collector) or simultaneously (i.e., multi-collector), and isotope ratios

are calculated.

2.1.3 Theory of surface ionization

The majority of the groundwork for surface ionization theory was developed
in the early 1920s by Langmuir and Kingdon [37]. This phenomenon was
ultimately explained through the thermodynamic derivation of the Saha-

Langmuir equation, which was based on the work of Meghnad Saha [38, 39].
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The Saha-Langmuir equation calculates the ion emission ratio, the number of
ions (n) to the number of neutrals (n°), vaporizing from a hot metal surface,
with which the analyte atoms are in thermal equilibrium. In its simplest
form, the Saha-Langmuir equation for positive ion emission can be expressed
as Equation 2.2;

, (2.2)

where ¢ is the work function (in eV) of the ionizing surface, AE; is the
ionization energy (in eV) of the element to be analyzed, k is the Boltzmann
constant, 8.6173303(50) x 10 °eVK™! [40], and T is the temperature (in K)
of the metal ionizing surface. The ratio of the statistical weight of the ionic and
atomic states, g*/¢°, is generally not known for electronically complex atoms
(e.g., plutonium) and commonly assigned a value of one. Upon inspection of
Equation 2.2, it is evident that the degree to which a material can be ionized
is strongly dependent on the work function and temperature of the filament,
as well as the ionization potential of the element of interest; therefore, it is
desirable to select a filament material with a high work function and high
melting temperature in order maximize the probability of ion formation.

A caveat of the Saha-Langmuir equation is that it was originally derived
to describe the behavior of neutral atoms impinging on a hot metal surface.

It doesn’t account for the lack of thermal equilibrium or chemical changes
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that occur in a sample when loaded directly on a filament. Therefore, it
is much less useful for describing the ionization behavior associated with
a traditional TIMS single filament arrangement in which evaporation and
ionization duties are carried out atop the same surface [41]. Furthermore,
for many applications, the agreement between theory and experiment is more
qualitative than quantitative. Equation 2.2 is generally useful for order-of-
magnitude actinide ionization efficiency estimates and for comparing ionization

efficiencies of various elements.

2.2 Sources and applications

2.2.1 Filament material selection

Popular filaments materials include rhenium, platinum, tungsten and, to a
lesser extent, tantalum. In addition to being highly refractory and possessing
desirable work functions, these materials are chemically inert. Electron work
functions, and melting points of these metals are summarized in Table 2.1.
The work function values listed in Table 2.1 are averages; a material’s work
function can vary significantly depending on factors such as crystal orientation,

temperature and surface conditions (e.g., oxidized or carburized filament
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Table 2.1: Melting points and average work functions [42] of metals
commonly used for TIMS filaments.

Filament material Work function (eV) Melting point (K)
Platinum (Pt) 5.61 £0.13 2041
Rhenium (Re) 5.37 £0.10 3455
Tungsten (W) 5.15 4+ 0.05 3695
Tantalum (Ta) 4.96 +0.22 3293

surface). For a comprehensive list of work functions associated with the
numerous crystal orientations of the metals in Table 2.1 see reference [43].
Due to its favorable work function and melting temperature, the most
common filament material used for modern TIMS analyses is zone-refined
rhenium. Rhenium has the added advantage that it retains its ductility at
high temperatures and, due to advancements in zone-refining techniques, is
now commercially available in exceptionally high purity (99.999 %); this is es-
pecially important when analyzing small samples because it limits background
interferences (e.g., hydrocarbons, uranium and thorium contamination). In
addition, zone-refined rhenium has been shown to exhibit a higher work
function than polycrystalline rhenium, a characteristic likely attributed to the
preferential formation of the basal plane (i.e., the 0001 crystal orientation)
during the refining process [43-45], illustrated in Figure 2.3. Platinum has a
higher work function than rhenium, but its utility is limited in applications

involving highly refractory elements such as uranium or thorium, which
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Figure 2.3: (a) An image of a standard, untreated polycrystalline rhenium
filament. (b) An image of a zone-refined rhenium filament; this illustrates
that zone refining rhenium promotes the formation of a desirable, high work
function monocrystalline surface. The figures were adapted from reference [44]

generally require temperatures above the melting point of platinum for
adequate evaporation and ionization. Tungsten has a similar work function
to rhenium and a higher melting point but becomes brittle at elevated
temperatures, rendering it inferior to rhenium. Tantalum exhibits the lowest
work function of all the metals listed in Table 2.1 and has a lower melting
temperature than rhenium or tungsten; as a result its most common use is as
an evaporation filament in multi-filament setup where these parameters are
less critical.

In the early 1970s Sasaki et al. proposed an alternative to the traditional
metal single filament. In an effort to capitalize on the enhanced emission of

ions associated with the use of carbon additives, Sasaki and his colleagues
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investigated the use of a graphite filament in lieu of a standard metal one [46].
When loaded with uranium this filament was reported to produce an intense,
stable beam of ions. This can be explained by the high permeability of
graphite; the uranium sample is incorporated into the filament where it can
readily form a refractory uranium carbide. Though not addressed in this paper,
it’s worth considering the porous nature of graphite may promote sample
spreading uniformly throughout the filament which could potentially destroy
good abundance sensitivity. While Sasaki reported no quantitative results, the
claim was made that the uranium metal ion (i.e., UT) beam was much greater
than that of uranium oxide ions (i.e., UO, ") generated from the samples loaded
in oxide form atop a tungsten filament. While interesting, this method has not
appeared in subsequent literature and seems to have been abandoned. The
high cost of filament fabrication and lack of commercial availability are likely

reasons this technology have been abandoned.

2.2.2 Filament configuration

Modern TIMS sources typically employ single, double or triple, flat ribbon
filaments to vaporize and ionize a sample; ionization efficiencies associated
with a variety of thermal ion sources and configurations are summarized in

Table 2.2. The single filament is the simplest and oldest form of TIMS
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Table 2.2: Actinide and lead ionization efficiencies associated with a variety
of commonly used filament configurations, materials and additives.

Element Filament Filament/  Sample size Median Ref.
config. additives (pg) IE (%)
Am Single Re/C 10-100 0.07 3.3.1
Resin bead/C 0.174-0.29 0.16 [1]
Re cavity/bead/C 0.29 0.63 [1]
PIE 10-100 0.81 3.3.1
Pu Single Re/C 1-2690 0.05 1]
Re/Pt SID 1000 0.34 [47]
Resin bead/C 0.05-10 0.54 [1]
. 0.82 - 330 8.00 35
Re cavity /bead/C 0.93-10 133 [ [1%
PIE 10-100 0.83 77
Pt PIE 10 1.03 ?7?
Triple Re ~30000 0.22 [48]
U Single Re/C 10 0.08 [48]
Resin bead/C 7-605 0.58 [1]
Re + Pt SID 10000 0.02 [49]
Re “V”  1000-100000 0.003 [50]
Re “V”/H 1000100000 0.45 [50]
Re “V” /CgHg 1000 0.66 [50]
Dimpled Re/C 0.04-400 0.6-1.2 [51]
Re cavity /bead/C 100-500 5.8 [35]
Re cavity /C 50-75 0.021 [1]
PIE,C,H, 0.2-10 1.7 [9]
Triple Re ~200000 0.1 [48]
Th Single Re/C 1000 0.05 2]
100 0.12 2]
30 0.13 2]
PIE,C,H, 1000 0.022 [10]
100 0.13 [10]
30 0.31 [10]
PIE 1000 0.017 [10]
100 0.11 [10]
30 0.26 [10]
. 200000~
Triple Re 1000000 0.02-0.04 [52, 53]
Pb Single  Re/Silica gel/H;PO, 300 6.10 [54]
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ion source currently in use, dating back nearly 100 years to the first TIMS
developed by Dempster. Sample evaporation and ionization rates are not
mutually exclusive and, therefore not easily controlled when using a single
filament. The temperature of the filament must be carefully monitored; a
compromise between ionization efficiency and sample analysis time must be
reached. This issue prompted the conception of the triple filament ion source
as a means of improving sample utilization by separating the evaporation and
ionization duties. Because double and triple filament configurations operate

on the same principle they will therefore be addressed as a single category.

Single filament ion source

Using a single filament configuration, illustrated in Figure 2.4, sample material
is loaded directly onto the ionizing surface (i.e., the filament) where it is
heated and volatilized into a cloud composed of ions and neutral atoms.
A single filament source produces ions only when the analyte is in direct
contact with the filament surface. Because the filament must be analyzed
under high vacuum, it is unlikely that evaporated neutral atoms will interact
with the filament upon leaving the immediate proximity of the filament
surface; they are therefore permanently. As a result, the primary sample

loss mechanism associated with the single filament is the direct evaporation
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Figure 2.4: (a) Schematic of a single filament thermal ion source, (b)
photograph of a filament assembly with liquid sample loaded atop the filament
ribbon adapted from reference [55]; the filament will be gently heated to dry
the sample to a thin, solid film prior to being placed in the mass spectrometer.

of neutral atoms prior to ionization. In order to prevent sample blow-off,
resulting in the complete loss of sample, single filament analyses are started
at relatively low temperatures where ionization is less probable. During the
course of an analysis the filament temperature is slowly raised in an effort
to maintain a stable ion beam. The use of a bare single filament (i.e., no
activator or additive) limits the elements and quantities of sample that can be
analyzed by TIMS. Special sample loading techniques, or the incorporation of
ionization enhancers added during sample loading, or both have been shown
to improve ionization efficiencies and ion beam stability during single filament

analyses. The use of ionization enhancers in conjunction with a single filament
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source has expanded their use to a variety of difficult-to-ionize elements
as well as significantly reduced the required sample sizes for such analysis.
These techniques will be discussed in detail in subsequent sections. Well-
devised single filament strategies offer several advantages when compared to a
multi-filament alternative. Such advantages include simplicity, a more stable
ion beam when analyzing small samples, a significantly lower baseline, and
increased ion transmission due to superior ion optical and geometric (i.e., less

issues due to filament warping) properties.

Multi-filament ion source

In an effort to combat difficulties encountered with single filament analysis, an
alternative configuration was proposed in 1953 by Inghram and Chupka [56].
They incorporated three separate filaments into a single ion source design
instead of one filament. In a multi-filament arrangement, analyte is loaded
onto the outer filament(s) and evaporated as a neutral gas onto the nearby
center filament, where it is then ionized; this process is illustrated in Figure 2.5.
The process of ion formation can be divided into four basic steps: 1) A
neutral atom approaches a hot metal surface; its electrons and the nuclei
of the filament metal are attracted to one another, resulting in the formation

of a electric dipole in each, 2) The neutral atom is adsorbed on the metal
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Figure 2.5: (a) Illustration of a double filament assembly; the sample is
loaded on the side (i.e., evaporation) filament where it is heated and evaporated

onto the neighboring ionization filament. (b) Photograph of a double filament
assembly mounted on the sample turret, adapted from reference [57].

surface and held in place by the dipole field, 3) The adsorbed atom and metal
are quickly brought into thermal equilibrium, broadening the valence shell of
the sample atom. If broadened to the point where the Fermi levels of the
atom and metal overlap, there is an intense electron exchange between the
atom and the metal 4) If the surface of the metal is hot enough the atom
will desorb as an ion with some probability. The current to each filament
can be adjusted independently; separating evaporation and ionization duties
allows for more precise control over the sample evaporation rate. Additionally,
the ionizing filament in a multi-filament array can be held at much higher

temperatures than possible during single filament analysis, typically improving
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the ionization efficiency. Disadvantages to the multi-filament setup include an
expected sample loss—known as the geometric loss—that occurs during the
transfer of sample between filaments. The geometric loss was reported to be
approximately 20 % Wilson and Daly [58]. Furthermore, ion emission occurs
across the entire length and width of a filament, voltage drop across a filament
can be several volts [59], resulting in an ion energy spread greater than 1eV.
The spread in ion energy results in additional ion losses and a reduction in
abundance sensitivity. A recent study reports the triple filament arrangements
exhibits an approximate tenfold reduction in abundance sensitivity when
compared to the porous ion emitter single filament technique discussed in
a following section [9]. The losses associated with multi-filament limit the
applications to relatively large sample sizes. Despite these drawbacks, the
multi-filament arrangement exhibits an increase in ionization efficiency when
compared to traditional, bare single filament analyses. Typical ionization
efficiency numbers of actinides analyzed by a multi-filament arrangement
are; approximately 0.22 % for plutonium, 0.10% for uranium, and 0.04 % for
thorium [52] in the nanogram mass loading range. Details regarding sample,
ionization efficiency, and filament additives for multi- and single filament

configurations are listed in Table 2.2.
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In the early 1960s, prior to the widespread availability of a multi-sample
turret, an interesting variation of the standard triple filament arrangement
was developed and implemented by Patterson and Wilson [60]. They designed
a parallel triple filament arrangement, thus enabling the analysis of two
consecutive samples from the same bead by loading a different sample onto
each of the outer filaments. The outer filaments could be heated independently,
allowing for a direct comparison of two different samples under the same
source conditions. Patterson and Wilson reported a threefold improvement
in accuracy as well as an increase in sample utilization due to the larger cross
section of the ionization filament when compared to a standard triple filament

setup.

2.2.3 Variation of filament geometry

Varying the geometry of the standard flat single filament as a method to
increase ionization efficiency was first suggested by White et al. in 1955 [61].
A V-shaped filament was devised to boost ion yield in an effort to find new,
naturally occurring trace isotopes. The design consisted of a standard tungsten
filament ribbon folded in half lengthwise, along the long axis, prior to being
welded to supporting posts; the sample is deposited at the center of the “V”.

This type of source, illustrated in Figure 2.6, is also known as a canoe or
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Figure 2.6: (a) A schematic of a V-type filament. The sample is loaded at
the bottom of the trough, as the filament is heated, evaporated neutral atoms
have multiple chances to interact with the filament surface; this increases the
probability that a neutral atom will be ionized. (b) A photograph of a filament
with V-shaped indentation, adapted from reference [62].
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boat-type filament. The theory for improved ionization efficiency associated
with the use of the canoe filament is that the V-shaped indentation gives
evaporated neutral atoms additional opportunities for interaction with the hot
filament surface thereby increasing the probability of ionization before being
lost. Unlike a standard flat single filament, ionization efficiency associated
with the canoe shaped filament can, in theory, be more closely approximated
as a Saha-Langmuir interaction (i.e. the beam of evaporated neutral atoms
will strike the hot walls of the filament). Additionally, the “V” geometry has
been shown to exhibit superior ion beam focusing properties when compared
to the standard flat filament promoting greater ion transmission through the
collimator [63]. Despite the potential advantages associated with the V-
shaped, early filament fabrication was difficult, time consuming, and filament
uniformity was an issue. An average ionization efficiency of approximately
0.003 % for 1-100 ng mass loading levels of uranium on bare, untreated “V”
filaments was reported by Fenner [50]. The unexpectedly low efficiency was
investigated and findings indicated that roughly 90 % of the sample migrated to
the filament support posts at the ends of the canoe. McHugh reported sample
utilization efficiencies raging from 0.0035-1.1% for an approximate 80 fg
sample mass loading of uranium; his results were highly contingent on filament

geometry (i.e., height and angle of the sides) [44]. Filament uniformity and
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sample migration issues were eventually circumvented with the development
of a filament fabrication fixture [64]. This jig was capable fabricating filaments
with consistent geometry; sample spreading was mitigated by pressing a V-
shaped trough in the center (i.e., the center of the long and short axes) of
the filament. Boat-type filaments are now commercially available. In modern
TIMS analyses the V-type filament is most commonly used in conjunction with
additives to elicit further enhancements in ionization efficiency. These will be
discussed in detail in subsequent sections of this review.

Esat et al. introduced the dimpled filament in 1979 as an improvement to
the canoe filament [65]. The dimple serves to contain the sample, preventing
spreading, as well as increase the analyte-filament contact area. The design
was fabricated from a standard flat rhenium filament ribbon with a 200-
micron hemispherical dimple stamped in the center of the ribbon. This
style of filament was initially developed for reducing required sample size and
improving ionization efficiency for magnesium analyses. Chen and Wasserburg
adopted the dimpled filament for uranium analyses; ionization efficiencies
of 0.6-1.2% for 0.04-400 pg mass loadings were reported [51]. Esat used
a dimpled filament for thorium analysis using a charge collection thermal
ion mass spectrometer, an ionization efficiency of 4% for 15pg loads was

reported [66]. Dimpled rhenium filaments were employed by Biirger et al. as a
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base for the resin bead analyses of uranium, plutonium, and americium with

reported ionization efficiencies ranging from 0.16-0.54 % [1].

2.2.4 Additives/activators/ionization enhancers

It is widely known that conventional flat filaments suffer from low sample
utilization especially during the analysis of difficult to ionize elements, namely
actinides (e.g., uranium, plutonium, and thorium). During the analysis of
such samples, ionization enhancers can be employed to boost ion production
through three primary mechanisms: 1) concentrating the analyte at the center
of a filament so a point source can be more closely approximated for improved
ion focusing, 2) promoting the formation of elemental ions and impeding
the formation of less desirable species that may complicate analyses, and 3)
boosting the effective work function of the ionizing surface thus increasing the
probability of ion formation. The combination of these mechanisms promotes
the emission of a more stable and intense ion beam resulting in improved
precision and accuracy, translating to lower detection limits.

In addition to promoting improved sample utilization, an effective emitter
must provide reproducible running conditions and mass fractionation patterns
as well as a low analytical blank. Commonly used ionization enhancers in

modern TIMS analyses are carbon, ion exchange resin beads and molten glass.

38



Surface ion diffusion techniques are used to a much lesser extent, however the
underlying principles are relevant in the development of more contemporary

sources and will therefore be discussed.

Carbon-based additives

The addition of carbon has been shown to boost ionization efficiency in two
main ways: 1) by reducing an oxide sample to metal ions and 2) increasing the
work function of the filament surface. Carbon additives have also been shown
to counteract analyte diffusion across the filament surface [67, 68]. Carbon
can be introduced in several forms such as colloidal graphite, collodion, sugar
or sucrose, benzene or hexane vapor saturation, and ion exchange resin beads
(discussed in a subsequent section). Most carbon additives are added to the
filament surface in liquid form and evaporated to dryness; however, benzene
and hexane are introduced in gas form, detailed methods for carburizing
filaments can be found in previous literature [68-72]. Despite the fact that the
ion formation mechanisms are not fully understood, it has long been known
that the addition of carbon to a single filament source increases the ion yield
of plutonium, uranium, and a variety of other elements [70, 73, 74]. Typical
ionization efficiencies of actinides in the picogram to nanogram range using

carbon additives and flat rhenium filament are as follows: thorium, uranium,
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plutonium, and americium efficiencies are approximately 0.02% [2, 53, 75],
0.08 % [48], 0.05% [1], and 0.07 % [3.3.1], respectively.

The first account of the use of carbon additives to improve ion yield
occured in a 1962 [70]. Studier et al. investigated the effects of reducing and
oxidizing agents on the filament and in the surrounding atmosphere during
the isotopic analysis of uranium from a single filament ion source. Prior
to the introduction of carbon, single filament uranium analyses exhibited
a high degree of variability in ion beam stability and intensity as well as
inconsistencies in which species were emitted from the filament. The addition
of carbon, in the form of sucrose or benzene vapor, to a sample loaded on
rhenium or tungsten filaments was found to greatly increase the thermal
emission of uranium metal ions [70]. Studier and his colleagues observed that
in the presence of carbon, uranium ions didn’t appear until temperatures in
excess of 1800°C, well above normal volatilization temperature of uranium
metal. This observation suggests the formation of a uranium metal-carbide as
an intermediate species prior to decomposition to uranium metal; a theory that
has since been confirmed [76, 77]. The formation of refractory metal carbides
delays sample volatilization allowing for analysis at higher temperatures than

would normally be achievable lending to increased ion yield [68, 73, 74, 76, 77].
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Following the work of Studier, Fenner used atomic hydrogen gas mixed
with oxygen, as a reducing agent in lieu of benzene, in an effort to reduce
the hydrocarbon background [50]. He found that treatment with hydrogen
unexpectedly boosted the production of oxides as well as metal ions; benzene
on the other hand produced no oxide. An average ionization efficiency (N = 10
for each mass loading) of 0.42 %, 0.53 %, and 0.40 % was reported for 100 ng,
10ng and 1ng samples of uranium loaded on canoe type filaments treated
with hydrogen. This translates to an approximate 150-fold improvement over
the untreated boat filaments and a tenfold boost over the triple filament
arrangement. The hydrogen treatment technique has been abandoned by the
TIMS community due to superior ion yields associated with benzene treated
filaments at smaller loading levels; an approximate 200 % increase at the 1ng
loading level.

Since the discovery of carbon’s utility for increasing ion production, there
have been several studies devoted to gaining a more thorough understanding
of the complex mechanisms of ion formation in the presence of a carbon
activator [67—-69, 74, 76-79]. In 1971, Smith investigated the desorption
parameters of uranium ions and neutrals from carburized rhenium and
compared them to bare polycrystalline rhenium. Smith concluded that

carburized rhenium is a much more efficient ionizer of uranium than bare metal
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rhenium [69, 78-80] due to the formation of an electric double-layer [81]—the
creation of an induced electrical dipole field, illustrated in Figure 2.7—at the
metal-carbon interface resulting in a boost to the effective work function of
the filament surface [78]. The positive charge residing on or near the surface of
the filament increases the difficulty of removing an electron from the filament
metal (i.e., the work function) making it more likely to remove an electron
from the sample atoms (i.e., more likely to form an ion). Due to its success as

ionization enhancer, the use of carbon additives is in widespread use today.

The resin bead method

The resin bead loading method for mass spectrometry analysis was first
suggested in 1970 by Freeman [82], and was first used implemented by Walker
et al. for the simultaneous determination of plutonium and uranium isotopic
composition of spent nuclear reactor fuel samples [83]. By far, the largest
application of the resin bead method is in the analyses of actinides (i.e.,
uranium and plutonium), but has found use in the analyses of other elements
relevant to the nuclear field such as zirconium [84] and technetium [85].
Unfortunately, no ionization efficiency numbers were reported in either paper.

Typically, the resin bead method involves placing a single bead pre-loaded

with analyte at the center of the trough of a V-type filament and securing
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Figure 2.7: Tllustration of the dipole formation at the carbon/filament
interface.

it with a gluing agent (usually a collodion solution). However, Buesseler and
Halverson [86] report using two beads to help insure against sample loss after
being loaded into the source housing. Resin bead sample preparation methods
have been widely reported in the literature [1, 83, 87-89]. The resin bead
acts as a reservoir, concentrating the analyte at the center of the filament,
effectively creating a point source vital for ion transmission. As the filament
is heated, the resin bead is pyrolysed leaving behind a carbon “skeleton”. The
carburized bead acts as a reducing agent promoting the emission of metallic
ions in lieu of less desirable oxide ions; however, the amount of carbon produced
by the bead is too small to have much effect on filament work function so a

supplementary source of carbon is required.
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In the early 1980s, Smith and Carter investigated the effectiveness of adding
pure rhenium powder, and later a slurry of rhenium powder and carbon, in
the form of a sucrose solution, over the top of a resin bead in an effort to
further enhance ionization [80]. Smith and Carter adopted this idea from
the surface ion diffusion-type source described in references [47, 90], however
chose to use a slurry of rhenium powder, water and sucrose due to technical
challenges encountered with the original source. They found that the addition
of rhenium significantly boosted ion yields to 0.5% (N=3) for 0.3-0.5ng
uranium loadings, a four to five-fold improvement over the uncoated bead.
A three-fold improvement over the uncoated bead was reported in the analysis
of 1ng samples of uranium. A more recent study conducted by Smith et
al. circa 1994, reports ionization efficiencies of 4-9 % for plutonium samples
ranging in sized from 5-16 fg, loaded on resin beads coated with the rhenium
carbon slurry previously described.

The resin bead method offers superior ionization efficiency, reduced effects
of isotopic fractionation, and increased precision when compared to direct,
single and multi-filament loading techniques. Disadvantages of this method
include long preparation time, the tediousness of placing and securing a bead
atop the filament, and a relatively high chance of losing a valuable sample

prior to analysis [71].
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Molten glass ion emitters: the silica gel method

Use of the silica gel method as an ionization enhancer for TIMS isotopic
analysis of lead can be traced back to 1957 [91]. This technique has since
been extended to the analyses of several other elements that have relatively
high ionization energies but are quite volatile [92-94] and are readily reduced
to elemental form by the molten glass [93, 94]. Prior to the advent of silica
gel activators, mass spectrometry isotopic analyses of lead required large
sample sizes and suffered from excessive effects of thermally induced mass
fractionation. The enhanced efficiency associated with use of silica gel emitters
has permitted lead based chronometric investigations of samples contain trace
amounts of lead. Additionally, lead isotopic information can provide valuable
insight into geographical origin of a sample useful in nuclear forensic and
nuclear safeguard applications [95].

Akishin et al. successfully demonstrated that lead ions could be readily
produced when a sample was deposited on silica-zirconia gel washed with
phosphoric acid (H;PO,4) and distilled water. The gel developed by Akishin
proved difficult to prepare in sufficiently pure form and excessive lead and
hydrocarbon background were observed during the analysis of nanogram
samples of lead. This prompted Cameron et al. to develop an improved method

of silica gel production [96]. During this study Cameron and his colleagues
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concluded that silica gel in the absence of zirconium was much easier to prepare
in sufficiently pure form and worked just as well as the silica-zirconia ion source.
Cameron initially omitted the addition of H3PO, to the emitter; however, it
was quickly discovered that the addition of H3PO, was necessary for lead ion
formation. The only rationale cited for the requisite addition of H3PO, was the
possible formation of lead phosphate. A new silica gel emitter was developed
by Gerstenberger and Haase using a commercially available colloidal silicic
acid solution manufactured by Merck (article no: 12475) mixed with dilute
H3PO,4 [97]. An ionization efficiency range of 8.5-11.6 % was reported for
10ng mass loading levels of National Bureau of Standards (NBS) NBS-981
lead isotopic standard; a significant improvement over the traditional silica
gel activator [98, 99] which was reported to have an ion yield of 1.2-1.8% at
the same sample mass loading level. The silica gel produced by Gerstenberger
and Haase is regarded as the most effective and widely used activator for lead
isotopic measurements [54]. Because the Merck colloidal silicic acid solution
is no longer produced, focus has shifted to find a suitable replacement. Kani
and Nohda proposed a method using fused silica gel [100], however, they noted
that this activator did not produce a sufficiently stable ion beam to measure
low abundance samples. Miyazaki et al. focused on methods of producing a

silica gel with a small particle size proposed to increase ionization efficiency
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and reduced fractionation effects [97, 101-103]. Nohda et al. proposed doping
standard colloidal silica with germanium and rhenium as a means of improving
ion yield [103]. Despite the germanium-rhenium ratio not being optimized,
ionization efficiencies of 1.46 %, 1.32%, 4.79% and 4.28 % were reported for
lead loadings of 10 pg, 5 pg, 5 pg and 2.5 pg, respectively. None of the emitters,
developed during the above investigation, were able to match the performance
of that developed by Gerstenberger and Haase. Most recently, Huyskens et
al. investigated the suitability of several commercially available silica gels for
lead isotopic analysis to replace the Merck gel [54]. The Sigma-Aldrich silica
gel (article no: 701491) was found to be a suitable replacement for the Merck
silica gel, with an average ionization efficiency (N=21) of 6.1 %.

The fundamental mechanisms by which these processes produce ions
are only partially understood. Some ionization mechanisms have been
suggested [54, 92-94], the most likely being that increased ion emission is
due to the extent in which the rhenium filament is dissolved and oxidized by
the molten glass. The resulting rhenium-oxide migrates to the surface of the
glass creating a high work function surface, as high as 7.2eV [45, 104], atop

the molten glass from which ions are emitted [92-94].
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Diffusion-based thermal ion sources

The concept of encapsulating a sample in a high work function material as a
means to improve ionization efficiency of a single filament ion source was first
presented in 1969 by Myers and White [105]. This method serves to contain the
thermally volatilized sample, limiting the prompt loss of sample as a neutral
gas until a sufficient temperature is reached for the analyte atoms to diffuse
through the ionizing material. The time required for atoms to diffuse through
the ionizing surface allows for elevated analysis temperature where essentially
all molecular species are dissociated and the emission of elemental ions is
exclusively observed.

Myers and White attempted three sample encapsulation methods for
analyzing nanogram quantities of uranium. These included: 1) sandwiching
sample between rhenium filaments, 2) depositing the sample in a tubular
rhenium filament, and 3) vapor depositing rhenium over the top of the sample
loaded atop a standard rhenium filament. The most successful technique in the
study was a vapor distillation method; however, problems were encountered in
controlling the thickness of the rhenium coating, a critical parameter. Rec et
al. sought to improve on the method by radio frequency (RF) diode sputtering
a high work function coating over a sample loaded filament [106]. Rhenium,

nickel, and tungsten coatings were evaluated; rhenium was deemed to be
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the only suitable material. The RF sputtering technique proved superior to
vapor deposition for controlling the plating thickness. Reported utilization
efficiencies for coated plutonium samples loaded onto zone-refined rhenium
filaments were 0.16 %, 0.10 %, 0.13 %, and 0.4 % for mass loadings of 1.2 pg,
0.12pg, 12fg, and 1.2fg, respectively. Efficiencies for uncoated samples for
the same sample sizes were reported to be 0.05%, 0.02%, and 0.01%; the
signal from the 1.2 fg sample was indistinguishable from background. Perrin et
al. did not find the sputtering technique capable of producing a sufficiently pure
coating and devised a method of electroplating a thin rhenium coating over the
top of samples that were electrodeposited on rhenium filaments dubbed the
surface ionization-diffusion (SID)-type source. Electrodeposition served as an
additional purification step for the sample and the coating. In their first study
Perrin et al. analyzed nanogram quantities of plutonium [90]. During this
study two significant complications were encountered: 1) optimal overplating
conditions varied from filament to filament resulting in an excessive failure rate
and 2) the maximum count rate was reached prior to the ion beam reaching
maximum stability. For a follow-up study they decided to switch to a platinum
SID source [47]; the use of platinum corrected the deficiencies encountered with
rhenium. Perrin reported mean ionization efficiency of 0.34 % (N=36) for 1ng

loadings of various plutonium isotopic standards. The platinum SID was also
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adapted for the analysis of nanogram quantities of uranium [49]. A mean
ionization efficiency of 0.015% (N=17) for a 10ng load of uranium isotopic
standard (NBS U-500) spiked with approximately 1ng of 23*U was reported.
This technique has also been used to measure neptunium, americium and
ruthenium [47, 107]. Efurd et al. report an ionization efficiency of 1 % for 0.1 ng
neptunium samples [107], no ionization efficiency numbers were reported for
americium or ruthenium.

Advantages of the SID technique include enhanced ionization efficiency
and improved precision when compared to direct filament loading as well as
predictable isotope fractionation patterns [47, 49]. Despite the advantages, the
SID source is hindered by the need for extremely clean samples. This technique
is very sensitive to impurities that might co-plate with the sample or over-plate
the sample, significantly depressing ion beam intensity. The requisite for a
special apparatus for sample and coating electrodepsition on the filament and
the need for clean rooms and clean benches render this technique impractical

to implement in many labs.

2.2.5 Thermal ion cavity sources

Pioneering research on hot cavity ion sources as a means of isotope separation

first began in the early 1970s [108, 109]. It was quickly discovered that ion
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formation in a hot cavity was very efficient, considerably higher than the values
predicted by the Saha-Langmuir equation (2.2) for surface ionization [110], sug-
gesting that there are multiple ion production mechanisms at work. Enhanced
ionization efficiencies are theoretically achieved with an increased surface
area-to-volume ratio and confined geometry increasing sample retention time
allowing for higher operating temperatures and promoting multiple neutral
interactions between neutral atoms and the ionizing surface [3, 108, 109, 111
113].

Cesario et al. were the first to adapt a TIC as the ion source for a magnetic
sector mass spectrometer [114]. Their TIC source consisted of sharpened rod
(samples were electrodeposited on the tip) that was inserted into the end of a
rhenium tube. The rod-tube assembly was heated via electron bombardment;
electrons were emitted from a heated tantalum wire surrounding the cavity.
Ion current was adjusted by increasing or decreasing the distance between
the tip of the sample rod and heated end of the rhenium tube. Ionization
efficiencies of 0.143%, 0.02%, and 0.05% were reported for 40ng, 200ng,
and 300 ng loadings of uranium on a tantalum rod, a 4-28-fold enhancement
in ion yield relative to uranium atop conventional rhenium filaments. Duan
et al. sought to make a simpler TIC source designed specifically for use in

mass spectrometry [113, 115]. This source could be coupled with an isotope
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separator or a quadrupole mass spectrometer with no modifications. The
“crucibles” were made from tungsten rods with a cavity drilled in one end and
heated by electron impact from a tantalum wire. Initial ionization studies were
conducted using the TIC-isotope separator on “tens of milligrams” samples
of uranium and thorium; utilization efficiencies of 8 % for uranium and 2%
for thorium were reported [115]. A follow-up study using the TIC-quadrupole
mass filter combination achieved efficiencies of 8.5 % and 3.6 % for 1 ng loadings
of uranium with and without graphite respectively. Plutonium utilization
efficiencies were reported to be 8% for 100 pg plutonium loads. Wayne et
al. adapted the TIC source developed by Duan to a time of flight (TOF) mass
spectrometer, obtaining total efficiencies of 1-3 % for 0.075-25ng loadings of
thorium [3, 116].

In the early 2000s, Riciputi et al. developed a completely new high efficiency
cavity source (HECS) and coupled it with a Finnigan MAT 262 single-collector
TIMS [35]; this new HECS is illustrated in Figure 2.8, A standard multi-
sample turret was modified to accommodate thirteen HECS. Unlike previous
TIC sources, this design was completely interchangeable with a standard
TIMS source. The HECS consists of a rhenium rod with a cavity drilled
in one end; the sample is loaded on a resin bead, placed in the cavity and

covered with graphite prior to analysis. Sample heating is achieved by electron
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Figure 2.8: (a) An illustration of an HECS, the cavity is heated via electron
bombardment; electrons are generated from restively heated standard rhenium
filament ribbons. (b) Photograph of an HECS mounted on a standard sample
turret. Figures were adapted from reference [34].

bombardment. Riciputi et al. report that this combination produced an
average ionization efficiency of 5% for 100 pg and 500 pg uranium loads and
9% for 20 pg and 165 pg plutonium loads. More recently, Biirger et al. [1, 117]
assembled an identical HECS on the sample turret of a ThermoFisher ‘Triton’
MC-TIMS (successor to the MAT 262), but were unable to reproduce the
results reported by Riciputi [35]. A total median efficiency of 1.33 % (N = 30)
was achieved for 0.093-10 pg resin bead loadings of plutonium using a rhenium
cavity and a supplemental carbon additive. Uranium resin bead loads coated
with graphite in rhenium cavities were also studied but no quantitative results
were given, citing that this method “yielded significantly lower ionization
efficiencies than expected” due to tungsten heating filament failure prior to

achieving adequate temperature for analyses. Trials using uranium liquid

93



loads with a carbon additive in a rhenium cavity were conducted successfully;
however, they were only able to achieve a median efficiency of 0.021 % (N = 4)
for 50-70 pg mass loadings. Reasons for the discrepancy in the uranium and
plutonium ionization efficiencies reported by Biirger [1] and Riciputi [35] were
not documented in this paper. During this study, repeat trials were carried
out to determine ionization efficiencies in TICs using the same sample loading
method previously described. An average efficiency of 0.63% (N = 6) was
reported for 0.29 pg samples, this compared to 0.16 % efficiency achieved for
of 0.17-0.29 pg samples of americium loaded on resin bead atop a dimpled
filament and covered with carbon.

In an effort to reduce background and eliminate the formation of multiply
charged ions [113, 116] during trace element analysis, Li-Hua et al. developed
a Joule heated TIC ion source coupled with a magnetic sector mass spectrome-
ter [118]. In contrast to previous designs that employed electron bombardment
as the heating method, Li-Hua’s design is resistively heated much like a
traditional TIMS filament. His system consists of a rhenium “ionizer” tube
inserted into a tantalum “evaporator” tube. The ionizer and evaporator could
be independently allowing for sample retention while the ionizer was being
preheated. Li-Hua et al. reported total efficiencies of 4-9% for 0.1-30 pg

loadings of plutonium and 0.5-2% for 12-50ng loadings of uranium. This
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source requires a new sample wheel to be designed and manufactured prior to
implementation. Furthermore, this TIC design exhibited a lack of durability
when compared to the electron bombardment heating method.

Despite reports of the potential for significant improvements in ionization
efficiency associated with the TIC type source, there are significant disadvan-
tages that deter its widespread use. Arguably the most notable drawback is the
need for source modifications—sometimes quite extensive and costly—makes
this technology impractical for many users/laboratories. Another concern is
the lack of reproducibility in isotopic fractionation patterns, rendering this
method ineffective for applications requiring high precision isotope ratios.
In addition, inconsistencies in reported ionization efficiencies for the HECS

requires further investigation.

2.2.6 Porous ion emitters

Recently developed PIE techniques simultaneously take advantage of multiple
strategies discussed in previous sections of this review to boost ion production.
These include the use of high work function rhenium and platinum metal
powders, carbon additives, increased surface area for greater interaction
between the analyte and ionizing surface. Additionally, the small footprint

of the PIE serves to concentrate the analyte at the center of the filament for
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enhanced ion transmission. Currently, PIEs are constructed from a 50/50 mix,
by mass, of rhenium and platinum powders, and, depending on application,
carburized; prior to the sample introduction a few drops of dilute liquid ion
exchange resin is added to the PIE for enhanced actinide incorporation. A
detailed description of PIE construction can be found in [71]. The PIE is a
hemispherical metal “bead” illustrated in Figure 2.9. The small footprint of the
PIE, approximately 700-microns in diameter and roughly 75-microns in height,
serves to localize the analyte loading area at the center of the filament such
that the instrument optics will behave as if each sample were a point source for
greater ion transmission through the ion lens. Localized loading also leads to
a reduced ion energy spread as a function of voltage drop across the filament
surface, leading to enhanced abundance sensitivity when compared other
techniques [9]. A study conducted by Watrous et al. revealed that ions are most
frequently emitted from the center (i.e., the thickest part) of the PIE and no
ions were emitted from the surrounding filament [9]; the resin bead technique
allows for analyte diffusion across the filament surface. Additionally, scanning
electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS)
analysis of PIE filaments loaded with analyte have indicated that no sample
is present on the surface of the emitter; the analyte is fully contained within

the highly porous microstructure [10]. As a result, neutral analyte atoms are
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Figure 2.9: An SEM image of a PIE mounted atop a standard zone-refined
rhenium filament.

forced to interact with the hot Pt/Re “alloy” as they migrate through the PIE
structure increasing the likelihood that evaporated neutrals be ionized prior
to escaping. Thus far PIE techniques have been applied to the analysis of
picogram quantities of uranium and thorium with great success.

Preliminary investigations have demonstrated that, despite a lack of
refinement in PIE construction, PIEs consistently exhibit superior sensitivity
and increased reliability during uranium analyses at the low picogram
level when compared to the well-established direct loading and resin bead
methods. For initial uranium trials carburized PIEs constructed from 325-
mesh (0.044 mm nominal sieve opening) rhenium and platinum powders
provided the best overall average efficiency; 1.7% (N = 4) for 10 pg loads

of uranium. This translates to as much as a 2200 % improvement in ionization
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efficiency over direct filament loading and an approximate 200 % increase over
resin beads for similar mass loadings [71]. PIEs made with the larger 200-
mesh (0.074 mm nominal sieve opening) rhenium powder were only capable
of achieving sample utilization efficiencies of 0.2-0.6 % at the same uranium
mass loading level. These findings indicate that smaller pore size, a function of
rhenium powder mesh size, and increased surface area are significant factors
in the increased ionization efficiency associated with the use of PIEs. All
PIE equipped filaments used in this study were carburized; therefore, the full
impact of carburization and PIEs is unknown at this time. It was stated
that PIE filaments subjected to higher temperatures during carburization
outperformed those subjected to lower pre-treatment temperatures.

A recent investigation conducted by Stanley et al. focused the application
PIE of techniques to thorium analyses [10]. Thorium is notoriously difficult to
ionize via thermal mechanisms and is arguably the worst-case scenario with
regard to TIMS analysis. Repeat ionization efficiency trials (N = 8-10) were
conducted for various loadings of thorium; utilization efficiencies of 0.022 %,
0.13% and 0.31 % were reported for 1000 pg, 100 pg and 30 pg thorium loads on
carburized PIEs. All loading levels were reported to show a clear improvement
in ionization efficiency ranging from 220-410% when compared to values

for similar mass loading levels using traditional single filaments previously
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reported in literature. Upon review, however, it was discovered that Stanley
et al. [10] and Wayne et al. [3] erroneously interpreted the plot presented
by Edwards et al. [2] and reported thorium ionization efficiencies that were
significantly lower than the actual values. At the 1000pg loading level
traditional filaments exhibited ionization efficiency of approximately 0.05 %, a
two-fold enhancement in ionization efficiency when compared to PIEs. PIE and
standard filaments performed equally well at the 100 pg loading level with an
ionization efficiency of approximately 0.12%. The only marked improvement
in ionization efficiency was during the analysis of the 30pg samples; PIE
equipped filaments outperformed the standard filaments (ionization efficiency
of 0.13%) by roughly 240 %. This finding suggests that additional thorium
trials should be extended to mass loadings less than 30 pg in order to explore
the utility of PIE analyses of samples containing trace quantities of thorium.
The impact of filament carburization was also investigated during this study;
a small (0.005-0.05 %), consistent, yet statistically insignificant improvement
in ionization efficiency was demonstrated at every mass loading when using
carburized filaments. No attempts were made to optimize carburization
conditions or PIE composition for thorium analyses during this investigation.

Scanning electron microscope (SEM) investigations of PIE filaments during

this study have shown that the PIE composition is vastly altered throughout
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the course of analysis. Platinum currents were measured to be in the tens
of millivolts level during the early stages of thorium analysis; the platinum
supply from the PIE structure was entirely consumed within the first fifteen
minutes of thorium analysis. This observation supports the theory of increased
sample utilization due to platinum ions impacting the cloud of evaporated
neutral analyte atoms surrounding the filament. Due to the refractory nature
of thorium and the fact that most of the platinum is consumed during the early
stages of analysis, it can be inferred that platinum ion impact is probably not
as significant in thorium analyses as it would for more volatile actinides (i.e.,
americium and plutonium). However, rhenium ions may perform a similar
function at elevated temperatures required during the analysis of thorium
samples.

Due to the relative nascence of PIE techniques, additional investigations
are necessary to further elucidate the exact functioning of PIE sources for
enhanced sample utilization. Initial investigations have demonstrated the
utility of employing PIE techniques for the analyses of trace quantities of
uranium and thorium. Additionally, the use of PIEs requires no special source
modifications, allowing PIE filaments to be run in conjunction with traditional
filaments. Efforts to alter PIE composition, dimension and carburization

conditions to target specific analytes should be conducted in order to maximize
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ionization efficiencies for a variety of actinides that require different analysis

conditions.

2.3 Conclusions

Since its inception, TIMS has been used in isotopic investigations in a variety
of fields. TIMS is now an accepted “gold standard” for high-performance
isotopic measurements and is the method of choice in establishing many
material reference values. TIMS, coupled with relevant detection [23, 24]
and sample preparation strategies [119], offers several advantages such as
exceptional precision and accuracy, relatively minimal effects from isotopic
fractionation, and mass spectra that are essentially free from background
interferences. Despite instrumental advantages, low sample utilization as-
sociated TIMS analysis of actinide-bearing samples continues to hinder the
application of TIMS. This is especially important in applications such as
nuclear forensics and safeguards where samples might contain ultra-trace
quantities of high priority analytes. It’s important to mention that the vast
majority of improvements associated with TIMS based analyses have stemmed
from advancements in vacuum system, detector and instrument electronics
technologies. Improvements to source ion production have evolved much more

slowly, often stagnating for decades at a time. Techniques employing the use
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of ionization enhancers such as silica gel and carbon have been around for
nearly sixty years with little to no enhancement. This body of work serves
not only as a comprehensive summary of commonly employed ion sources and
various efforts to improve sample utilization, but also highlights significant

shortcomings of contemporary thermal ion sources.
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Chapter 3

Enhanced plutonium and
americium ionization efficiency
using porous ion emitters
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This chapter is based on a published manuscript [120]:
Matthew L. Baruzzini, Howard L. Hall, Matthew G. Watrous, Khalil J. Spencer,
and Floyd E. Stanley, “Enhanced ionization efficiency in TIMS analyses of
plutonium and americium ionization efficiency using porous ion emitters”,
International Journal of Mass Spectrometry 412 (2017) 8-13, DOI: http:
//dx.doi.org/10.1016/j.1ijms.2016.11.013

My contributions to this work include: Preparation of PIE stock materials;
traditional and PIE filament preparation; sample preparation and loading;
conception and development of platinum PIEs; mass spectrometric analyses;
processing, analyzing, and interpretation of experimental data; and the writing
of the manuscript.

The institutional number for this chapter, entitled “Enhanced plutonium
and americium ionization efficiency using porous ion emitters”, is LA-UR-15-

27578

Abstract

Investigations of enhanced sample utilization in TIMS using PIE techniques for
the analyses of trace quantities of americium and plutonium were performed.
Repeat ionization efficiency (defined as the ratio of the number of ions detected

to atoms loaded on the filament) measurements were conducted on sample
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sizes ranging 1-100 pg for plutonium and 10-100 pg for americium using PIE
and traditional (i.e., a single, zone-refined rhenium, flat filament ribbon with
a carbon ionization enhancer) TIMS filament sources. When compared to
traditional filaments, PIEs exhibited an average boost in ionization efficiency
of ~550% for plutonium and ~1100% for americium. A maximum average
efficiency of 1.09% was observed at a 1pg plutonium sample loading using
PIEs. Supplementary trials were conducted using newly developed platinum
PIEs to analyze 10 pg mass loadings of plutonium. Platinum PIEs exhibited
an additional ~134 % boost in ion yield over standard PIEs and ~736 % over

traditional filaments at the same sample loading level.

3.1 Introduction

TIMS has long been the method of choice for the isotopic ratio determination
of nuclear materials and is widely considered the gold standard for such
analyses. However, traditional filament loading techniques are associated
with ionization efficiencies of less than 0.1% for actinides [1]; the majority
of the sample is not measured. Such low efficiencies significantly limit the
ability make accurate and precise measurements of high priority elements (e.g.,
americium, plutonium, uranium and thorium) that could potentially provide

critical signatures in nuclear forensic, non-proliferation, and safeguards efforts.
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For decades, the TIMS resin bead technique has proven to be one of the
best methods for the analysis of actinide samples. However, despite several
advantages, the resin bead approach suffers from long preparation time and
tediousness of securing a pre-loaded bead atop the filament increasing the
chance of losing a valuable sample. More recently, the use of TIC sources
have been proposed as a method to improve sample utilization. While
enhancements in ionization efficiency have been demonstrated using TIC,
there are significant drawbacks to implementing this method; namely, costly
instrument modifications and sample dedication [3].

PIEs have been proposed as an alternative approach for boosting ion yields.
Theses sources have demonstrated significant enhancements in ionization
efficiency during the analysis of trace quantities (e.g.,<30pg) of uranium
9] and thorium [10].  Unlike TIC sources, PIEs can be implemented
with no modifications to the mass spectrometer. Proposed mechanisms of
improved sample utilization associated with the use of PIE sources include
increased ionizing surface contact area, superior ion optical properties, and
bombardment by ions emitted by the PIE material itself [10]. Neutral atoms
incur multiple interactions with the ionizing surface as they traverse the
PIE structure thus limiting their rapid escape, increasing the probability

of ionization. PIEs have been shown to eliminate sample migration across
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the filament; as a result, they exhibit superior abundance sensitivity when
compared to multi-filament and resin bead techniques [9]. Concentrating the
sample at the center of a filament is essential for maximizing ion beam focusing
and transmission, as magnetic sector instruments are very sensitive to the
location of ion production on a filament. Previous research suggests that
additional ions may be generated via collisions between escaped neutral atoms
with platinum ion emitted as the PIE material is consumed during heating
[10]. The extent to which each mechanism contributes to the overall boost in

ionization efficiency is unknown at this time.

3.2 Experimental methods and equipment

3.2.1 Filament pre-treatment

Prior to the addition of any ionization enhancers, all filaments used during
this experiment were pre-treated in a GV Instruments Ltd. (now Isotopx:
Middlewich, Cheshire; UK) filament bake-out unit evacuated to approximately
10 "mbar (~10°Pa). The filaments were slowly heated to 4.5A and
held at this temperature for roughly 10 min to remove any impurities (e.g.,

hydrocarbons, environmental uranium, etc.) that may be present in or on

67



the filament ribbons. Traditional and those intended for use with PIEs were

subjected to identical heating and cooling conditions prior to sample loading.

Standard filament preparation

Traditional filaments were prepared by pipetting 1 pL of a colloidal graphite
solution (Ultra Carbon Corporation; Bay City, MI) atop each zone-refined
rhenium filament ribbon (H. Cross Co.; Moonachie, NJ). Extreme care was
taken to localize the graphite solution to the center of the filament surface
during application. The graphite solution was partially dried via resistive

heating at 1 A for approximately 15s.

PIE stock preparation

All PIE stock material used herein was prepared in-house, at Los Alamos
National Laboratory (LANL). Standard PIE stock was made by combining
equal parts, by mass, of platinum powder (325 mesh, Sigma Aldritch; St. Louis,
MO), rhenium powder (325 mesh, Sigma Aldritch; St. Louis, MO), and a hot
melt gluing agent (not well characterized). The hot glue was melted atop
a quartz glass microscope slide using a laboratory hot plate; the platinum
and rhenium powders were added to the melted hot glue and thoroughly

mixed. Stock material for platinum PIEs was fabricated by incorporating
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platinum powder (325 mesh, Sigma Aldritch; St. Louis, MO) and hot melt
glue in a two-to-one ratio, by mass. The platinum powder and glue were
amalgamated in the manner previously described for standard PIE material.
The stock mixtures were loaded into a custom built extruder specially designed
to reproducibly expel the PIE stock material into a small diameter rope. A
custom built extruder was used to reproducibly each PIE stock material into
a small, ~550 pm, diameter rope. Images of the extruder and a PIE rope atop

a quartz glass plate are illustrated in Figure 3.1.

PIE filament preparation

Sections of PIE stock material, approximately 100 pm in height, were secured
to the center of each outgassed rhenium filament ribbon via gentle heating
at 1A for approximately 5s. The filaments were then placed in the bake-
out unit were the PIE stock was sintered; the result is a three-dimensional
porous bead approximately 700 pm in diameter and ~75 pm in height. Details
of the sintering process of platinum/rhenium Pt/Re PIEs and platinum PIE

filaments are provided below.

Pt/Re PIEs. The filaments were loaded in the filament bake-out unit,
placed under vacuum, ~10~" mbar (~10° Pa), and slowly heated to ~1700 °C;

the filaments were held at for this temperature for approximately 20 min. The
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Figure 3.1: Photographs of the custom fabricated extruder, on the left, and
a PIE stock rope extruded onto a quartz glass plate, on the right. The PIE
stock material is loaded in the extruder body (A) which is warmed via heat
tape: the temperature is controlled using a Variac. The threaded plunger (B)
is slowly turned, forcing the stock material through a small conical hole in the
die (C); the die is held in place with a threaded ring (D). Photographs courtesy
of Matthew Watrous at Idaho National Laboratory.
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baking process serves two purposes; 1) to volatilize the glue and 2) sinter the
PIE to itself and to the filament surface. The pressure in the bake-out unit
was carefully monitored to ensure that there were no pressure spikes as the
glue volatilized during the sintering process. Rapid volatilization of the glue
could result in the PIE blowing-off the prior to fusing itself to the filament
or the in formation of large pores in the PIE structure. Explicit details for

preparation of Pt/Re PIEs can be found in reference [71].

Platinum PIEs. Filaments were mounted in the filament bake-out unit
which was then evacuated to ~10 " mbar (~10°Pa). Attempts at making
platinum PIEs using the heating method described in 3.2.1 resulted in failure;
either the PIE material was melted into a solid, non-porous, mass of platinum
or was completely lost due to being volatilized from the filament surface. The
most desirable results were produced by gradually heating the filaments at a
rate of 0.25 A min ! until reaching a temperature of ~1450 °C. Filaments were

held at this temperature for approximately 10 min.

Prior to sample loading, two drops of poly(4-styrenesulfonic acid) cation
exchange polymer (My=75000, 18 wt% in H,O: Sigma Aldritch; St. Louis,
MO), diluted in 18 MS2 deionized (DI) water to a concentration of approxi-

mately 3% by mass, were added to each PIE and dried by heating at 1 A for
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approximately 15s. The ion exchange resin was added in an effort to enhance
sample incorporation into the PIE.

In an effort to limit systematic errors that may be introduced by
irregularities in PIE construction, great care was taken to select a set of
filaments exhibiting similar characteristics. Each PIE filament was examined
using an optical microscope; criterion used in filament selection included
diameter, height, and consistency in pore size (i.e., no large cavities created

as the hot glue was volatilized) of the PIE.

3.2.2 Sample application

Americium sample stock for sampling was prepared from a well-characterized
243 Am spike; certified reference material (CRM) 144 (NBL; Chicago, IL), was
used to prepare the plutonium stock solution. Aliquots of each stock solution
were prepared in concentrations ranging from 2-200ngg ! using Optima™
grade nitric acid (Fisher Scientific, Pittsburgh, PA; USA ) diluted to 1 mol L !
using 18 M2 DI water to limit loading volume to 0.5 puL. The small aliquot
size allowed for precise application of the analyte on the filament as well
as minimizing sample diffusion across the filament. Samples were deposited

directly onto the PIE or atop the damp colloidal graphite solution using a
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2.5ulL capacity pipette and dried completely in preparation for subsequent

analysis.

3.2.3 TIMS instrumentation

All measurements were made using an Isoprobe-T™ from GV Instruments
Ltd. (now Isotopx: Middlewich, Cheshire; UK) at LANL. The ion collection
system consists of nine, variable-position, Faraday cup detectors equipped
with 10 Q) resistors and a static ion counting Daly detector at the axial
position mounted behind a wide aperture retarding potential (WARP) energy
filter; additional details about Faraday cup and Daly detectors can be
found in Appendix B.1 and Appendix B.2, respectively. Mass spectrometer
performance and programming were controlled via the GV Instruments
lonVantage software package installed on a Dell Optiplex PC (Rock Round,
TX; USA). To ensure maximum measurement precision, the mass spectrometer
was warmed for at least one hour under electronic conditions similar to those
employed during sample analysis. Following warm-up, primary instrument
tuning (e.g., ion optic lens, peak shape, and peak centering adjustments) was
conducted using the 'Re™ ion beam from an outgassed bare zone-refined
rhenium filament. Fine-tuning was conducted at the mass number of interest

before the analysis of each sample. Due to the long runtime of PIE equipped
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filaments, additional fine-tunings were conducted, as needed, during sample
analysis to compensate for any drift in electronics that may occur. Pressure in
the source housing was kept as low as possible, ~10 8 mbar (~10 ¢ Pa), with

the aid of the LN; added to the cold trap as needed.

3.3 Results and discussion

Side-by-side ionization efficiency measurements were conducted using Pt/Re
PIEs, platinum PIE, and standard single rhenium filament assemblies. Sample
ion beams were monitored exclusively using the Daly detector in conjunction
with the WARP filter. Integrated signals were determined off-line, post-
analysis and used to calculate ionization efficiencies. All samples were run

to signal exhaustion, approximately 500 cps.

3.3.1 Americium ionization efficiency

Repeat sample utilization measurements were conducted at 10 pg, 50 pg, and
100 pg mass loading levels of americium. An average ***Am™ ion yield of
0.81 % was achieved using Pt/Re PIE equipped filaments compared to 0.07 %
using tradition single filament assemblies; this translates to an approximate

1100 % enhancement in sample utilization at all sample loading levels tested.
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Additionally, PIEs exhibit superior ion yield when compared to published
ionization efficiency values for americium using both the resin bead and TIC
sources. Biirger et al. [1] report average efficiencies of 0.16 % for the resin bead
method and 0.63 % for resin beads with carbon additive loaded in rhenium
cavities at americium loading levels of 0.17-0.29 pg and 0.29 pg, respectively.
Data for individual trials are plotted in Figure 3.2; the shaded regions indicate
theoretical americium ionization efficiencies, predicted by the Saha-Langmuir
equation (2.2), using standard polycrystalline rhenium filaments and filaments
made from a Pt/Re alloy. A filament temperature range of 2024-2324K,
rhenium work function of 4.98eV [3], americium first ionization potential
of 5.9738(2) eV [121], and Pt/Re alloy (50at% platinum composition) work
function of 5.30 eV were used in calculation theoretical ion yields. The Pt/Re
alloy work function was theoretically determined using the method described
by Chrzanowski et al. [122]; the work function of the alloy was used to predict
performance of Pt/Re PIEs, which are a mechanical mixture of platinum and
rhenium and not a true alloy. Figure 3.2 clearly illustrates that Pt/Re PIEs
consistently produced americium ion yields exceeding that predicted by the
Saha-Langmuir equation (2.2) for thermal ionization using conventional, flat
polycrystalline rhenium filaments. Average americium ionization efficiency

data collected during the present investigation is presented in Table 3.1. A
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Figure 3.2: Americium ionization efficiency data acquired using Pt/Re
PIE and traditional single filaments. The shaded areas indicate theoretical
americium ionization efficiencies atop rhenium and Pt/Re alloy filaments as
predicted by the Saha-Langmuir equation.

Table 3.1: A summary of average americium ionization efficiency data
collected using PIE and traditional filaments as ion sources.

Am sample Tonization Efficiencies (%) Enhancement
size (pg) PIE Traditional (%)
100 0.80 0.07 ~1143
50 0.81 0.08 ~1013
10 0.83 0.07 ~1186
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tendency of increased ionization efficiency with decreasing sample size was
not observed in data acquired over the mass loading range, a commonly
observed phenomenon attributed to analyte atoms competing for filament
surface area [2, 3]. However, this trend may become evident if analyses were
conducted over a broader range of sample sizes. At 50 pg and 100 pg sample
mass loading levels both standard and PIE filaments were able to produce
stable ion beams; however, at 10 pg loading levels traditional filaments were
unable to maintain aiming intensity. Traditional filaments were run at aiming
intensities ranging from 40 000-100 000 cps, PIEs were analyzed at ion beam
aiming intensities of 120000-300000cps. Figure 3.3 shows that, for 10 pg
americium sample loadings, PIEs exhibit greater ability to generate a stable ion
beam at a much higher intensity than did their standard filament equivalents.
Inspection of Figure 3.3 also reveals that PIEs were able to generate a stable
ion beam much more quickly (i.e., at a lower temperature) than traditional
filaments; we attribute this to the higher work function of PIEs, through
the addition of platinum, as well as a substantial increase in surface area
associated with PIE sources. The larger surface area increases the probability
that evaporated neutral atoms will be ionized as they migrate through the
porous structure by promoting multiple interactions with the PIE; this proves

significant at lower temperatures where ionization is less likely to occur.
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Figure 3.3: Ton beam intensity as a function of percent runtime representative
of PIE and traditional filaments at a 10 pg americium loading level.

Intensity curves associated with PIE seem to exhibit more “noise” than the

traditional filament intensity curves for 10 pg americium sample loadings, as

illustrated in Figure 3.3. This noise was originally thought to be a result of the

changing morphology of the PIE as it disintegrates during heating; however,

analysis of ion beam intensity curves for larger americium samples reveled

that this noise is present in intensity curves of PIE and traditional filaments.

Figure 3.4 shows the signal noise in plateau region of aiming intensity curves for

100 pg americium samples acquired using PIE and traditional filament sources.
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Figure 3.4: Plateau region of ion beam intensities, as a function of percent
runtime, representative of PIE and traditional filaments at a 100 pg americium
loading level.

3.3.2 Plutonium ionization efficiency

Plutonium ionization efficiency measurements were performed on sample mass
loadings of 1pg, 10pg, 50pg, and 100pg; multiple trials (N=3-11) were
conducted at each sample size. The ?**Pu™ ion beam was monitored for these
measurements. lon yield was relatively constant for plutonium mass loadings
ranging from 10-100 pg using Pt/Re PIE sources, with an average efficiency
of 0.83%. This translates to an approximate 460 % improvement in ion yield
over traditional filaments and a roughly 154 % increase in ionization efficiencies

reported for the resin bead technique [1]. A maximum average sample
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utilization of 1.09 % was realized at a 1 pg mass loading on Pt/Re PIEs. The
ionization efficiency at the 1 pg plutonium sample loading achieved during this
study employing PIEs is a marked improvement over utilization efficiency of
0.23 % for 0.1 pg plutonium samples reported by Watrous [123]. Data for trials
at 1 pg plutonium sample loadings using traditional filaments are not presented
as each filament failed rapidly. Data presented in Figure 3.5 suggests a possible
trend of enhanced sample utilization with decreased sample size beginning at
1 pg loading levels of plutonium; however, additional trials conducted at sample
sizes less than 1 pg are required to confirm this hypothesis. The shaded areas in
Figure 3.5 indicate theoretical plutonium ionization efficiencies atop rhenium
and carburized rhenium predicted by the Saha-Langumir equation (2.2); a
first ionization energy of 6.0260 eV [124] for plutonium, work function values
of 4.98eV and 5.36eV [3] for rhenium and carburized rhenium, respectively.
and a filament temperature range of 2024-2324 K were used in calculating ion
yield. As with americium, PIEs were able to produce plutonium ion yields
that routinely exceeded those predicted by the Saha-Langumir equation (2.2)
using standard bare rhenium filaments.

Additional ionization efficiency measurements (N=3) were conducted at
10 pg loading levels of plutonium using newly developed PIE sources made

completely from platinum. Platinum PIEs demonstrated a additional 134 %

80



T T T T T T T T T T T T T T T T T T T T T
1 ¥ 1pg (Re/PtPIE) A 10pg (Re/PtPIE) ¢ 50pg (Re/PtPIE) ® 100pg (Re/Pt PIE)|
S 105 A 10pg (Re+C) ¢ 50pg (Re+C) ® 100pg (Re+C) A 10pg (PtPIE) 0
S - ]
L>; - Re+C 7
g | ' i
o 1E’ ¢ ¢ =
= ¢ ° 3
o [ . .
Re
C = A ‘ ]
N0t A : =
S E a .
- 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1
1020 20 40 60 80 100

Pu sample size (pg)

Figure 3.5: Plutonium ionization efficiency data obtained using Pt/Re
PIEs, platinum PIEs, and traditional filaments. The shaded areas indicate
theoretical plutonium ionization efficiencies atop bare rhenium and rhenium
with a carbon additive as predicted by the Saha-Langmuir equation.
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increase in sample utilization over their Pt/Re PIE counterparts. This boost
in ion yield can likely be attributed to two primary factors: 1) the work
function of platinum is higher than that of rhenium [42] and 2) increased
ionization surface contact area; the pores in the platinum PIEs, observed
using an optical microscope, appeared to be smaller and more uniform in
size than those in PIEs made from a combination of platinum and rhenium
powders. Smaller pores allow for increased contact between the analyte and
filament which has proven to be a significant contributor for increased sample
utilization associated with PTEs [71]. Figure 3.6 is a SEM image illustrating the
large pores, 50-100 pm in diameter, found in Pt/Re PIEs. The homogeneity
in micro-porous structure of platinum PIEs appears to have the added benefit
of increased measurement precision. In this study, percent relative standard
deviation (%RSD) in ionization efficiency measurement results made using
platinum PIEs were significantly lower than those made using Pt/Re PIEs or
traditional TIMS sources; platinum PIEs exhibited a measurement precision of
1%RSD whereas ionization efficiency measurements made using Pt/Re PIEs
and traditional filaments demonstrated a precision of >20 %RSD. Averaged
plutonium ionization efficiency data for each sample size analyzed is listed in

Table 3.2
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Figure 3.6: An SEM image of a Pt/Re PIE mounted atop a standard, zone-
refined rhenium filament. The larger intermittent pores range in size from
50-100 pm in diameter. This figure was adapted form reference [10].

Table 3.2: A summary of average plutonium ionization efficiency data
collected using PIE and traditional filaments as ion sources.

Pu sample Ionization Efficiencies (%) Enhancement
size (pe) PIE Traditional (%)
100 0.80 0.24 ~333
50 0.91 0.16 ~569
10 0.77 0.14 ~550
1 1.09

10@ 1.03 0.14 ~736

“sample analyzed with platinum PIE
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3.3.3 Additional considerations

The extent to which an element can be ionized is highly contingent on the work
function of the ionizing surface. This process can be described by the Saha-
Langmuir equation (2.2). Platinum has a higher mean work function than
rhenium and should produce ions more easily for a given temperature and
analyte. At this point, the work function of platinum-rhenium mechanical
mixture has not been studied; however, SEM/EDS analyses have shown that
platinum-rhenium composition and, as a result, Pt/Re PIE work function
are dynamic. During thorium trials the PIEs platinum supply was nearly
exhausted within the first fifteen minutes of analyses [10]. Due to the highly
refractory nature of thorium, TIMS analyses of thorium are conducted at much
higher temperatures than those for plutonium. As such, the rate of platinum
consumption at lower analysis temperatures is unknown at this time. The
increased work function does not seem to be a significant driver in thorium
analyses; however, it may prove significant in the analysis of actinides with

lower ionization potentials (e.g., americium and plutonium).

3.3.4 Recommendations for future work

Filament carburization is a proven method of effectively boosting ionization

efficiency of actinides. Uranium analyses using carburized PIEs have been
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conducted: however, the effects of carburization were not tested. Side-by-
side thorium trials using carburized and non-carburized PIEs showed a small
but consistent boost in ionization efficiency when using carburized PIEs; no
attempts at optimizing carburization conditions were attempted. No attempts
at analyzing americium or plutonium using carburized PIE filaments were
made during this study. It is likely that, given the proper carburization con-
ditions, analyses of more volatile actinides such as americium and plutonium
using PIEs would benefit from filament carburization. Currently, all PIEs
incorporate a liquid cation exchanger that does provides a small source of
carbon; however, like the resin bead, the amount of carbon is so small that its
effects, if any, are limited.

Further investigations should be conducted to optimize platinum PIE
construction. A 2-to-1 ratio of platinum-to-glue was used in this study, but
due to issues with the PIE spreading across the filament a higher concentration
of metal might be preferred; this may help to concentrate the PIE in an
even smaller footprint as its heated. Side-by-side studies should be conducted
comparing flat platinum filament ribbons, rhenium filaments and PIEs (i.e.,
platinum and Pt/Re) to aid in elucidating PIE functioning. Such trials may
give an indication of the extent to which platinum ion bombardment, work

function and ionization surface area plays in enhanced ionization efficiency.
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A variety of actinides should be investigated, as the contribution of each

mechanism is undoubtedly different depending on the element.

3.4 Conclusions

This work represents an initial investigation into enhanced ionization efficiency
of americium and plutonium using PIEs as TIMS sources. PIE techniques
consistently demonstrated substantial improvements in sample utilization
during the analyses of americium and plutonium in the 1-100 pg mass loading
range when compared to traditional TIMS ion sources. Initial trials, conducted
using 10 pg samples of plutonium, suggest that PIEs constructed of 100 %
platinum can further enhance ion yield, with greater precision, when compared
to Pt/Re PIEs. Subsequent investigations of enhanced sample utilization using
platinum PIEs, carried out over a broader range of sample sizes and elements,
are required to fully explore the efficacy of these sources. Americium ionization
efficiency measurements using platinum PIE sources were not investigated

during this work.
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Chapter 4

Isotopic mass fractionation
behavior of uranium and
plutonium using porous ion
emitters as TIMS sources
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This chapter is based on a manuscript that is in preparation for submission to,
Analytical Chemistry, to be considered for publication: Matthew L. Baruzzini,
Howard L. Hall, Khalil J. Spencer, and Floyd E. Stanley, “Isotopic fraction-
ation studies of uranium and plutonium using Pt/Re porous ion emitters as
TIMS sources”.

My contributions to this work include: Preparation of PIE stock materials;
PIE filament preparation; sample preparation and loading; mass spectrometric
analyses; processing, analyzing, and interpretation of experimental data; and
the writing of the manuscript.

The institutional number for this chapter, entitled “Isotopic mass fraction-
ation behavior of uranium and plutonium using porous ion emitters as TIMS

sources”, is LA-UR-16-23969

Abstract

An investigation of the isotope fractionation behaviors of plutonium and
uranium reference standards was conducted employing Pt/Re PIEs sources,
a relatively new TIMS ion source strategy. The suitability of commonly
employed mass bias correction laws (i.e., the Power, Exponential, and Linear
laws) for correcting such isotope ratio data was determined. Plutonium

trials were conducted using 5ng and 10 ng; the data indicate an approximate
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25 % reduction in fractionation factor per atomic mass unit (%oamu!) when
sample size was halved. Corrected plutonium isotope ratio data, regardless
of mass bias correction scheme, were statistically identical to that of the
certificate value once expanded uncertainty was accounted for; however, the
process of isotope fractionation behavior of plutonium using the adopted
experimental conditions was determined to most accurately described by the
Power law. Uranium trials were limited to 50 ng samples. Analysis of the data
indicate that the fraction behavior of uranium, under the current analytical
conditions, is also most suitably modeled using the Power law, though the
Linear and Exponential laws for mass bias correction rendered uranium isotope
ratio results that were identical, within uncertainty, to the certificate value.
Uncertainties for experimentally determined isotope ratios are reported at the

1o level, where o is the standard deviation of the population.

4.1 Introduction

Instrumental bias represents a significant source of error in IRMS; the ability
to make precise and accurate isotopic ratio measurements is critical for nuclear
forensic efforts. In the context of mass spectrometry, the term bias is used to
describe a combination of effects, that occur in a mass spectrometer, leading

to a difference between the measured and true isotope ratio(s) of a sample.

89



Such effects may occur during the formation, transmission, and detection of
ions. In TIMS, mass fractionation occurs as the sample is heated by the
metal filament. The rate at which each isotope evaporates from the hot
metal filament depends on its abundance in the sample and on its mass.
Lighter isotopes are preferentially evaporated relative to heavier isotopes in
the thermal ion source; this is a result of the higher translational velocities of
lighter isotopes, for a given kinetic energy, and the tendency of heavier isotope
to form stronger chemical bonds [125]. The result is a time-dependent variation
in measured isotope ratios; the sample reservoir (i.e., the sample remaining on
the filament at a given time) tends to become relatively enriched in heavier
isotopes as the analysis proceeds. Another significant factor influencing mass
bias is the size of the sample. As sample size increases, competition between
analyte atoms for filament surface area also increases [2, 3]. This effect
is magnified in traditional single filament analysis where analyte atoms are
evaporated and ionized by the same filament. The result is a substantial loss
of analyte as evaporated neutral atoms, biased in favor of lighter isotopes, at
relatively low filament temperatures where ionization is less likely to occur.
This time-dependent behavior of measured isotope ratios hinders the
accurate determination of the true isotope ratio of a sample through individual

direct measurement because the effects of mass bias cannot be totally

90



controlled and reproduced. In TIMS, typical mass bias is on the order
of ~1%oamu ! for high mass elements (i.e. >180amu), whereas mass bias
associated with multi-collector ICP-MS (MC-ICP-MS) can be expected to be
approximately an order of magnitude larger for the same mass range [126].
However, correcting for instrumental mass fractionation can be accomplished
by normalizing the measured ratio of interest to a known or accepted reference
ratio. Measured isotope ratios are commonly corrected for fractionation by
applying one of the well known mass bias correction laws that appear in
the literature. These include the Linear law [4, 5], the Power law [4-6], the
Exponential law [4-7] and Rayleigh’s distillation law[5-8]. Several studies of
isotopic fractionation behavior during TIMS analysis have centered around
creating source specific models for correcting mass bias [127-130]. Andreasen
and Sharma have concluded that isotope ratios corrected for mass fractionation
using the Exponential law are fully satisfactory given the current level of
precision obtainable in TIMS analyses [130]. As precision of isotope ratio
measurements continues to improve, it may become advantageous to apply or
develop fractionation models that are source specific.

All fractionation laws assume that evaporation and ionization of a sample
occurs in a single, homogeneous domain atop a filament. In reality, this

assumption isn’t well justified as a sample loaded atop a filament, either
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single or multi-filament geometries, is not a point source and a temperature
gradient exists across the filament; mass fractionation behavior is temperature
dependent. Recently introduced PIE techniques have been shown to address
such issues. Watrous et al. have demonstrated that PIEs are very effective
at containing a sample within the porous structure and do not permit sample
migration across the filament [9] The small footprint of the PIE serves to
localize the analyte at the center of the filament such that the instrument
optics behave as if each sample were a point source. Localized loading
leads to a reduction in ion energy spread as a function of voltage drop and
temperature gradient across the filament surface resulting in ion transmission
through the ion optics and enhanced abundance sensitivity when compared
to other techniques [9]. The PIE’s ability to more accurately represent a
point source suggests that they may potentially reduce the effects of mass
bias associated with the thermal gradient across the filament when compared
to other single filament techniques. The objective of this investigation is to
evaluate the fractionation effects arising from the use of PIEs as TIMS sources
in the measurement of uranium and plutonium isotopic systems. Fractionation
effects were evaluated according to each of the mass correction strategies
introduced above (Linear, Power, and Exponential mass bias correction laws)

and distinctions in applicability are discussed.
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4.2 Experimental

4.2.1 Isotopic standards and reagents

Samples were prepared from CRM 144 (NBL: Argonne, IL; USA) plutonium
isotopic standard and isotopic reference material (IRM) 199 (Institute for
Reference Materials and Measurements (IRMM): Joint Research Centre; Geel,
Belgium) uranium isotopic reference standard. Platinum and rhenium metal
powders, both 325-mesh, as well as the water soluble poly(4-styrene-sulfonic
acid) ion exchange solution (M,,=75000, 8 wt% in H,O) were procured from
Sigma Aldrich (St. Louis, MO). High-purity, zone-refined rhenium filament
ribbons were acquired form H. Cross Co. (Moonachie, NJ; USA). Optima™
grade nitric acid (HNOj3) was purchased from Fisher Scientific (Pittsburgh,

PA; USA).

4.2.2 PIE stock material and filament preparation

PIE stock material was prepared by incorporating equal parts, by mass, of
platinum powder, rhenium powder, and melted hot glue. Once throughly
integrated, the stock mixture loaded into a specially designed extruder and
expelled as a small diameter rope onto a quartz glass plate. After cooling,

sections approximately 100 pm in height were cut from the stock material
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rope, as needed, and affixed to standard, high-purity, zone-refined rhenium
single TIMS filament assemblies via gentle heating at 1 A for ~5s. The PIE
stock was sintered to the filament using a GV Instruments Ltd. (now Isotopix:
Middlewich) filament bake-out unit evacuated to ~10~ 7" mbar (~10 5 Pa); the
temperature was slowly increased, ~0.25 Amin !, to 1700°C and held for
20min. A detailed description of PIE filament fabrication has been described

by Watrous et al. [71].

4.2.3 Sample loading

Two drops, ~1ulL each, of poly(4-styrenesulfonic acid) water soluble cation
exchange resin, diluted to a concentration of approximately 3 % by mass using
18 MS2 DI water, were added to eachPIE. The ion exchange resin was dried by
heating at 1 A for ~15s. The water soluble cation exchange resin was added
to promote sample incorporation into the PIE. Samples were loaded directly
to the PIE in nitrate form using a 2.5 uL. capacity pipette and dried via gentle

heating at 1 A for ~15s.

4.2.4 TIMS instrumentation

Mass spectrometric analyses were carried out using a GV Instruments

Ltd. (now Isotopx: Middlewich, Cheshire; UK) IsoProbe T™ multi-collector

94



TIMS at LANL. This mass spectrometer is equipped with a 20-position sample
turret, a single-focusing magnetic sector fitted with a 54 cm magnet, nine
fully adjustable Faraday cup collectors, a Daly detector ion-counting system,
and a WARP filter positioned between the main collector array and rear
ion counting Daly detector. Programming and performance of the mass
spectrometer was controlled via the GV Instruments IonVantage software
package installed on a Dell Optiplex PC (Round Rock, TX; USA). Amplifier
gains cross-calibrations are conducted on a weekly basis; automated corrections
are built into the software. To ensure maximum measurement precision, the
instrument was warmed for at least an hour under electronic conditions similar
to those employed during sample analysis. Preliminary instrument tuning was
conducted each day, prior to sample analyses, using the "®'Re™ beam from
a bare rhenium filament. Fine tuning of the mass spectrometer was carried
out using a low intensity beam of the major isotope present in each sample
immediately preceding analysis. The liquid nitrogen (LNj) cold trap was
filled, as needed, to improve vacuum in the ion source housing maximizing

ion transmission and reducing abundance sensitivity.

Mass spectrometric analysis. Uranium and plutonium isotope ratio

measurements were conducted using a total evaporation (TE) technique similar
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to the method described by Callis and Abernathey [23] and Fiedler et al. [131].
The TE method was developed for multi-filament TIMS analysis where the
sample is deposited on the evaporation filament which is placed in close
proximity (an ~lmm gap) to the ionizing filament. The temperature of
the evaporation and ionizing filaments are controlled independently of one
another. During analysis the ionizing filament and, as a result, the ionization
efficiency (defined as the ratio of analyte ions detected to initial atoms
loaded on a filament) remain relatively constant. In standard single filament
analysis the sample is deposited on the filament surface where it will be
evaporated and ionized. Surface conditions of the filament (e.g., temperature,
crystalline structure, and work function) change as the analysis progresses;
these parameters have a profound effect on ionization efficiency and mass bias.
The TE method, while not optimal for traditional single filament analysis, was
selected to ensure the entire sample was exhausted.

Static, multi-collector measurements were employed to simultaneously
monitor the sample ion beams using the Faraday cup detectors, exclusively.
The collector array configuration used for uranium and plutonium analyses
are listed in Table 4.1. Individual isotope ratios were calculated for each five
second integration period (i.e., one cycle). Final isotope ratio values were

determined by taking the ratio of the summed signal intensities at the end of
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Table 4.1: Faraday cup position/nuclide assignments used in the analysis of
uranium and plutonium isotopic standards

Collector position (isotope)

Element

L3 L2 — Axial H1 H2 H3 H4 H5
U 233 234 — 235 236 — 238 —
Pu — 238 — 239 240 241 242 — 244

analysis. Isotope ratio measurements were conducted over a period ranging
from March 2014 to July 2014. Measured isotope ratios and certificate values
were decay corrected to 1 May, 2015, the data analysis date, for comparison.
Half-life values used for decay corrections were obtained from the Decay Data

Evaluation Project (DDEP) recommended data [132]

4.2.5 Mass bias correction

Raw data were corrected for mass fractionation via internal normalization
(i.e., corrections were made on a case-by-case comparison with a known value)
using the empirically determined mass bias correction laws presented in the

literature [4, 7]. Theses include the Linear law;

ol = —5 (4.1)

U
aL —
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the Power law;

RS = RM[1+ap]™™

(4.2)
ap = (Rm/R%)l/Amuv -1
and the Exponential law.
A\ B
(2
m;

N /pM

In[m, /m,]
B
ap — —
m;

Here, Am,; is the difference in masses m; and m; of isotopes i and j; Amy,
represents the difference in masses m, and m, of isotopes u and v; Rf\f and
Rg- are the measured and corrected isotope ratio of isotopes ¢ and j with
masses m; and m;, respectively; RY is the measured isotope ratio of isotopes
u and v with masses m,, and m, and RY is the accepted or known ratio (e.g.,
the certified isotope ratio) of isotopes u and v. Isotopic mass values used for

calculations are from the Atomic Mass Data Center (AMDC) files [133].
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Fractionation factors, F' (in units of %oamu '), were determined using
standard delta (0) notation divided by the difference in isotopic masses;

0= [( AP A 1] x 1000

(AfA)x (44

o
F=—
Am
The subscripts, M and N represent the measured and certified isotope ratio

values; Am is the difference in isotopic masses; the superscripts i and j

represent isotopes of an element, A.

4.3 Results and discussion

Prior to mass bias corrections, raw data were corrected for abundance
sensitivity. Data were then plotted in three-isotope space, the resulting
distributions were examined for linearity. Data plotted in this manner
resulting in a linear distribution, within the limits of experimental error, can
be interpreted as isotopic fractionation resulting from a Rayleigh distillation
process [5]. Uranium, #**U/?*®U, and plutonium, ***Pu/***Pu, isotopic ratios
were corrected for mass bias using Equations 4.1, 4.2, and 4.3 in conjunction

with the measured and certified 2°U / 2381 and **?Pu / 24Py ratios, respectively.
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4.3.1 Plutonium

Multiple trials (N=13) were conducted using CRM 144 plutonium isotopic
reference standard; three trials at 5ng mass loading levels of plutonium and
ten trials at 10ng. Plutonium isotope ratio data, corrected for abundance
sensitivity, are presented numerically in Table 4.2. Figure 4.1 illustrates the
data plotted in three-isotope space. Plutonium sample mass loading level
has a significant effect on the degree of mass bias; 240Pu/ 24Py isotope ratios

Land

exhibited average instrumental mass fractionation factors of 0.94 %o amu—
1.25 %o amu ! for 5ng and 10ng sample sizes, respectively. Despite a 25 %
reduction in fractionation factor exhibited by 5ng samples relative to 10 ng
samples, the data, when plotted on a three-isotope diagram, fractionates in a
highly linear fashion. Least squares regression analysis of the data yielded a
trend line that extends through the ratio of certified isotope ratio values, within
the stated uncertainty, reported at the 95 % confidence level, with a correlation
coefficient, R?, of 0.99877. Data, plotted in three-isotope space, that falls
on a fractionation line extending through the certificate value indicates that
the major source of error in plutonium isotope ratios measured using PIEs
is a result of mass fractionation effects. Isotope ratio data corrected for

fractionation using each of the aforementioned mass-bias correction laws are

plotted in Figure 4.2. The decay corrected certified **°Pu/?**°Pu isotope ratio
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Table 4.2: Plutonium isotope ratio data obtained from replicate analyses of
CRM 144 using PIEs.

Analysis 240py; 242py,

244 244
number date sample mass Pu Pu
1 2014-03-07 5ng 1.8825601 2.626 9894
2 — — 1.8823786 2.626 9302
3 — — 1.880883 2 2.6258635
mean 1.8819406 2.626 594 4
%RSD 0.0399261 0.019698 2
4 2014-03-20 10ng 1.877946 6 2.623 7486
5 — — 1.8797532 2.625059 3
6 — — 1.8799178 2.625074 3
7 — — 1.8784558 2.6241599
8 — — 1.880243 6 2.6253936
mean 1.879263 4 2.624 6871
%RSD 0.0476845 0.0237716
9 2014-07-02 10ng 1.8793285 2.624 8152
10 — — 1.8793570 2.6247555
11 — — 1.8823587 2.626 808 8
12 — — 1.8793545 2.624 664 2
13 — — 1.8792706 2.6246399
mean 1.879933 8 2.6251367
%RSD 0.0645141 0.0319370
mean 1.8801391 2.625 300 2
SD 0.0014370 0.0010115
%RSD 0.076 4314 0.0385300
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Figure 4.1: Raw plutonium isotope ratio data plotted in three-isotope space.
Also plotted is the ratio of certified values along with associated uncertainties.
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Figure 4.2: High precision data, obtained using PIE sources, corrected for
mass bias. The solid line represents the certified isotope ratio; uncertainty in
the certified ratio is shown by the dashed line.
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value, 1.88904(85), is represented by the solid line; the dashed lines represent
the upper and lower bounds of the uncertainty in the certificate value. Each of
the mass-bias correction laws used herein generated isotope ratio data that, on
average, were statically identical to one another as well as the certified value.
Average **°Pu/**°Pu ratio values of 1.8890199(728), 1.8890569(741), and
1.8890092(722) were determined using the Power, Exponential, and Linear
laws, respectively. The data indicate that the Power law most accurately
describes the fractionation behavior of CRM 144 plutonium isotopic standard
loaded atop PIE equipped filaments with a deviation from the certificate value
of —0.008 78 %o. Deviations from the certificate value were determined to be
0.010 81 %o and —0.014 47 %o for the Exponential and Linear laws, respectively.
Assuming that the true instrumental fractionation does follow the Power law,
the error that would be introduced by correcting raw isotope ratio data
using the Linear or Exponential laws would be approximately 0.0014 %o amu *
and 0.0050 %o amu !, respectively. Average mass bias corrected isotope ratio
values along with associated uncertainties are listed in Table 4.3. Due to
the concordance between isotope ratio data corrected for mass bias using the
Power, Exponential, and Linear laws further investigation into fractionation

law selection was conducted. This was accomplished by fitting a straight line

to the natural logarithms of the ratio data, plotted against one another, on a
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Table 4.3: Mean values for ?*°Pu/?**Pu isotope ratio data corrected for mass
bias using the Power, Exponential, and Linear laws of fractionation.

240py Mass bias correction law Certificate
244Pu Linear Power Exponential value
mean 1.8890092 1.8890199 1.8890569 1.88904
SD 0.0000722 0.0000728 0.000074 1
%RSD 0.0038229 0.0038518 0.003924 2

Deviation from

cert. value (%o) —0.01447 —0.00878 0.01081

three-isotope diagram, as shown in Figure 4.3. The slope, 0.503 543(7528), of
the resultant trend line was then compared to the slopes of lines predicted
by the Exponential law and the Power and Linear laws. Slope values of
0.497996 and 0.500067 were determined by the Exponential law and the
Power and Linear laws, respectively. This analysis confirms that the data
are best described by the Power law which provides a better fit than the
Exponential law, however, both values fall within the uncertainty in the slope

value determined for the the line of best fit to the data.

4.3.2 Uranium

Repeat fractionation trials (N=7) were conducted using 50 ng sample mass
loadings of IRM 199 uranium isotopic reference material. Analytic conditions
for uranium trials were similar to those employed during plutonium analyses;

a key difference being the larger sample size used during uranium analysis.
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Figure 4.3: Plutonium three-isotope diagram. Plotted are the natural
logarithms of the raw plutonium isotope ratio data.

As expected, the relatively larger samples exhibited a significant degree of
fraction. An average fractionation factor of 1.67 %o amu ! was determined for
the #**U/?**U isotopic ratio using Equation 4.4. Raw isotope ratio data is
listed in Table 4.4. Despite the samples being relatively heavily fractionated,
the data plotted on a three-isotope diagram are fit well by a straight line,
R?=0.99563. The line fit to the data does not, however, project through the
certified value within the stated uncertainty, reported at the 95% confidence
level, indicating significant residual bias. Data was corrected for residual bias
after mass bias correction. Figure 4.4 shows the uranium data, corrected for

abundance sensitivity and decay, plotted in three-isotope space along with
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Table 4.4:

measurements of IRM 199 using PIEs.

Raw uranium isotope ratio data acquired from repeat

Analysis 2337y 23577
238 238
number date sample mass U U
1 2014-03-19 50 ng 0.9913719 0.9951148
2 — — 0.9911128 0.9949721
3 — — 0.9917260 0.9953397
4 — — 0.9912360 0.9951379
5 — — 0.9919483 0.9955640
mean 0.9914790 0.9952217
%RSD 0.0314427 0.020659 3
6 2014-06-10 50ng 0.9916025 0.995 2887
7 — — 0.9916364 0.9953027
mean 0.9916194 0.995 295
%RSD 0.0017109 0.000703 2
mean 0.9915191 0.9952428
SD 0.0002712 0.0001770
%RSD 0.027 3477 0.0177842
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Figure 4.4: Raw uranium isotope ratio data plotted in three-isotope space.
Also plotted is the ratio of certified values along with associated uncertainties.

the fractionation line and pertinent fitting parameters. As with plutonium
isotope ratio data, uranium isotope ratios, measured using PIEs, indicate
that mass-dependent fractionation is a significant source of measurement error.
Because sample runs exhibited a relatively high degree of fractionation, the
Exponential law was expected to most satisfactorily account for uranium
fractionation behavior. Analysis of the data, however, revealed that all mass
bias correction laws investigated herein rendered average ***U/*®U isotope
ratio values that were statistically identical to that of the decay corrected
certificate value of U /?**U=0.999 88(30). Mean isotope ratio data corrected

for fractionation is presented in Table 4.5. Data corrected for fractionation
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Table 4.5: Mean 233U /?3U isotope ratio values corrected for mass bias using
the Linear, Power, and Exponential laws of fractionation.

233y Mass bias correction law Certificate
235U Linear Power Exponential value
mean 0.9998515 0.999864 9 0.9999000 0.999 88
SD 0.000 065 4 0.000065 8 0.000 066 4
%RSD 0.006 536 8 0.006 5784 0.006 6359

Deviation from

cert. value (%o) —0.03007 —0.016 67 0.01840

using the Power law exhibited the smallest deviation for the certificate value
followed by the Exponential and Linear laws. Deviations of —0.016 67 %o,
0.018 40 %o, —0.030 07 %o and —0.03007 %o were calculated, using ¢ notation,
for the Power, Exponential, and Linear laws, respectively, indicating that the
Power law most accurately describes uranium fractionation behavior under
the current set of analytical conditions. Fractionation corrected data are
illustrated in Figure 4.5.

Fractionation law selection was further tested in the same manner described
for plutonium in section 4.3.1 of this work. The natural logarithms of
uranium isotope ratio data, plotted on a three-isotope diagram is illustrated
in Figure 4.6. Slopes of the trend lines predicted by the Exponential and the
Power and Linear laws were found to be 0.59748 and 0.600 03, respectfully.
The slope of the regression line fit to the natural logarithms of the measured

isotope ratio data was determined to be 0.63504(7881). Slopes predicted
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Figure 4.5: High precision uranium isotope ratio data corrected for mass and
residual bias. The solid line represents the certified isotope ratio; uncertainty
in the certified ratio is shown by the dashed line.
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Figure 4.6: The natural logarithms of uranium isotope ratio data plotted in
three-isotope space.
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by each of the empirical laws were statistically identical to the slope of the
fractionation line of the data, yielding no definitive conclusion on the selection

of fractionation law.

4.4 Future work

An alternative strategy for mass bias correction that makes it possible to avoid
the normalization procedure has been demonstrated by Cavazzini [134]. This
approach is contingent on the line linear hypothesis of instrumental isotopic
fractionation being satisfied and the sample is composed of a minimum of three
isotopes. The linear hypothesis requires that raw isotope ratio data follow a
linear distribution when plotted on an z,, vs. x,,/y,, diagram, where x,, and
Ym Tepresent two measured isotope ratios; data presented herein satisfies this

requirement.

4.5 Conclusions

We have determined that the commonly employed empirical mass bias
correction laws presented in the literature have proven adequate for correcting
mass-induced fractionation behavior of uranium and plutonium samples

associated with the use of PIEs as TIMS sources. Analysis of CRM 144
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plutonium and IRM 199 uranium isotopic standards using PIE sources have
yielded isotope ratio values are in excellent agreement with the certificate
values, once corrected for mass fractionation using each of the mass-bias
correction laws presented herein. The suite of plutonium and uranium samples,
analyzed under the set of analytic conditions described herein, are most
accurately described by the Power law of isotopic fractionation. Additional
efforts are required to fully understand the effects that sample size and
isotopic composition have on mass bias associated with PIEs. Furthermore,
efforts to optimize the analytical procedure should be put forth to minimize
instrumentally induced mass bias in order to maximize the accuracy and

precision of isotope ratio data measured using PIEs.
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Chapter 5

Comparison of porous ion
emitter and traditional TIMS
ion sources for determining the
model-ages of four uranium
standard reference materials
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A manuscript entitled “Determining the model-ages of uranium reference
materials using PIEs as TIMS sources” by Matthew L. Baruzzini, Howard
L. Hall, Khalil J. Spencer, and Floyd E. Stanley, based on the work presented
in this chapter is in preparation for submission to the International Journal
of Mass Spectrometry to be considered for publication.

My contributions to this work include: Preparation of PIE stock materials;
traditional and PIE filament preparation; sample preparation and loading;
mass spectrometric analyses; processing, analyzing, and interpretation of
experimental data; and the writing of the manuscript.

The institutional number for this manuscript, “Comparison of porous ion
emitter and traditional TIMS ion sources for determining the model-ages of

four uranium standard reference materials”, is LA-UR-15-29427

Abstract

This paper describes a preliminary investigation into the use of PIE thermal
ion sources for the model-age determination of uranium-bearing materials
employing the ***Th/?**U chronometer. All uranium measurements were
carried out using standard rhenium triple filament assemblies. PIE equipped
filaments were used for thorium isotope ratio measurements; for comparison,

thorium analyses were also conducted using traditional (i.e., a zone-refined
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rhenium filament ribbon plus carbon additive) single filaments. The obtained
ratios were used to calculate the model-ages of four distinct uranium standard
reference materials of varying enrichments ranging from 2.038-20.013 at% 23U
(0.0125-0.1246 at% ***U) containing ultra-trace quantities, approximately 85—
300fg), of **°Th to simulate very young material. All age data are decay
corrected to a reference date of 31 August, 2014. Calculated model-ages were
then compared to an assumed known purification date. In cases where the
purification date was not known, the date the material was retrieved from the

K-25 enrichment cascade in Oak Ridge, TN was used for age comparison.

5.1 Introduction

Radiochronometric dating of nuclear material, either interdicted or collected,
is a fundamental tool in the portfolio of techniques available for nuclear
forensic investigations. Determining the “age” of a sample can provide valuable
information about a material such as origin, process history, and intended use
[11, 12]. In this context a material’s age refers to the time elapsed since a
radionuclide of interest was chemically and/or physically separated from its
decay products. The #*°Th / 2341 daughter-parent isotope pair provides one of
the most valued and widely used chronometers in modern nuclear forensic and

safeguards research [11, 13]. These two isotopes, ***U and **"Th, represent the
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longest-lived intermediate decay products of the 4n + 2 decay series of ***U,
illustrated in Figure 5.1, also known as the radium series. Due to the relatively
rapid ingrowth of #*°Th, this chronometer has been successfully applied for
the determination of sample ages ranging from a few years to several hundred
thousand years old [2, 14, 15].

The accuracy of model-ages determined using the ***Th/?*U chronometer
rely heavily on the assumptions that the parent has been completely purified
from residual impurities or decay products, the system remains closed post-
purification (i.e., no parent-daughter fractionation following purification), and
daughter-parent isotope ratio measurements are precise and accurate. Pre-
vious studies have demonstrated that closed system behavior is a reasonable
assumption for reference materials; however, complete initial purification, even
for uranium certified reference materials, is not [135]. Any residual **Th
in a uranium-bearing sample will result in a positive age bias; the material
will appear to be older than its true age. This effect is greatly magnified in
young materials. A complementary uranium age-dating strategy employing
inductively coupled plasma mass spectrometry (ICP-MS), gamma and alpha
spectroscopy has been demonstrated by Varga et al. that circumvents the chal-
lenge of incomplete zeroing when interrogating uranium ore concentrates [136],

this method, however, was not employed in during this work.
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Figure 5.1: The 4n + 2 decay series with half-life and decay mode mode
information. After uranium purification, **Th slowly grows in and can be
used to determine time elapsed since purification.
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Thorium has proven to be incredibly difficult to thermally ionize and is
arguably the most difficult element to analyze via TIMS. Previous studies
using PIE thermal ion sources have demonstrated significant enhancement
in ionization efficiency relative to traditional filaments at the picogram mass
loading level of thorium [2, 10]. The objective of this study is to capitalize
on the enhanced thorium sample utilization associated with PIE thermal
ion sources demonstrated by Stanley et al. [10] in an effort to improve
precision and accuracy of model-age determination of uranium materials
using the #*Th/?**U chronometer containing trace quantities of thorium.
Stanley et al. reported that in addition to exhibiting a trend of increased
sample utilization as sample size decreases, a relative enhancement in sample
utilization was also boosted as analyte loading levels were reduced [10]. These
findings indicate that PIE filaments should significantly outperform traditional
filaments in their ability to produce ions at femtogram mass loading levels of
thorium. This boost in ion yield should translate to a more stable ion beam

at higher target intensity yielding more precise and accurate isotope ratios.

117



5.2 Materials and experimental methods

5.2.1 Reagents, spikes, and uranium isotopic standards

The ?*3U spike was prepared in-house at LANL and calibrated against a solu-
tion prepared from NBS-U960 uranium metal assay standard. The #?°Th spike
used for 2*°Th measurements was obtained from NBL, and cross-calibrated
against a natural thorium standard (Spex Certipriep Inc., Metuchen, NJ;
USA). Lewatit anion exchange resin (MP5080, 60-120 mesh) was used for ion
chromatography. All acids used were Optima™ grade purchased from Fisher
Scientific (Pittsburgh, PA; USA). Platinum powder (325 mesh), rhenium
powder (325 mesh), and water soluble Poly(4-styrenesulfonic acid) solution
cation exchange resin (M,=75000, 18 wt% in H,0O) were all acquired from
Sigma Aldritch (St. Louis, MO; USA). High-purity zone-refined rhenium
filament ribbons were purchased from H. Cross Co. (Moonachie, NJ; USA).
Graphite for the colloidal carbon solution was obtained from Ultra Carbon
Corporation (Bay City, MI; USA). All dilutions were made using 18 M) DI
water. Four distinct uranium standard reference materials (SRMs), obtained
from the United States NBS (now distributed by NBL as CRMs) were used in
this study; U020, U050, U100 and U200. Certificates for each of these uranium

isotopic standards can be found in Appendices D.2, D.3, D.4, and D.5.
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5.2.2 Sample preparation for 23U analysis

Three aliquots from each of the four uranium standard solutions were
partitioned to contain microgram levels of uranium. Each sample fraction
was transferred to an individual spike vial containing a known quantity of
2331 tracer for thermal ionization isotope dilution mass spectrometry (IDMS)
analyses. The spiked samples were weighed, equilibrated, evaporated to
dryness, reconstituted in concentrated HNOj3 to ensure conversion to nitrate
form and dried down a second time. The fractions were then dissolved in 1 M
HNO3 and brought to a final concentration of approximately 200 nguL—* for
subsequent filament loading. Because each aliquot contained only ultra-trace
amounts of thorium (i.e., Ny > Nry,) uranium-thorium separations were not

carried out on uranium sample cuts prior to TIMS analysis.

Filament preparation, sample loading, and TIMS analysis

Uranium analyses were conducted using triple filament assemblies constructed
using high-purity zone-refined rhenium filament ribbons. Prior to sample
loading, filament ribbons and support posts were submerged in acetone and
sonicated for approximately ten minutes. Once cleaned, the filament assem-
blies were thoroughly dried in a laboratory convection oven. The assemblies

were then placed in a GV Instruments Ltd (now IsotopX Ltd: Middlewich,
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Cheshire; UK) filament bake-out unit, brought under high vacuum, and
degassed at 4.5 A for approximately 20 minutes to minimize uranium blank.
After filament pretreatment, 1L of uranium solution was carefully pipetted
directly onto a side filament, dried via gentle heating at a current of 1 A, and
mounted on the sample turret in preparation for TIMS analysis.

Mass spectrometric analyses were carried out using a VG Sector 54
single-focusing magnetic sector TIMS from VG Micromass (now IsotopX Ltd:
Middlewich, Cheshire; UK) equipped with a twenty position sample turret, five
variable-position Faraday cup detectors (each equipped with a 10 Q resistor)
and a Daly detector fixed at the axial position. To ensure precision and
accuracy of isotope ratio measurements Faraday cup inter-detector amplifier
gains were calibrated each morning prior to sample analyses. The cold trap
was filled with LNy as needed to minimize hydrocarbon background that may
produce isobaric interference as well as keep source pressure to a minimum.

Each sample fraction was run in duplicate using the TE analytical
technique [23]. The TE measurement method was chosen to achieve the best
precision and accuracy by minimizing the effects of instrumental fractionation.
The measured n(*33U)/n(*3¥U) isotope ratios for each pair of samples were

averaged; the resulting ratio was used for subsequent model-age calculations.
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Static, multi-collection measurements, employing the Faraday cup collec-

28U, jon beam

tors, were used for all detection positions; the major isotope,
intensity was targeted at approximately 4 V. A standard sample bracketing
method [137] was employed, using IRM 199 (Joint Research Centre; Geel,
Belgium) uranium isotopic reference standard as a comparator, to evaluate
instrument bias resulting from isotopic fractionation as well as a quality control
standard. Mass bias was corrected using the linear mass bias correction

law [4] in conjunction with the measured and decay corrected certified IRM

199 n(*¥3U) /n(**U) ratio.

5.2.3 Sample preparation for ?3°Th analysis

Four aliquots, containing femtogram quantities of **°Th, were prepared from
each of the four uranium standard solutions for a total of sixteen thorium
sample cuts; eight were analyzed using PIEs and eight using traditional
filaments. Sample size requirements were estimated using the theoretical
predicted in-growth of °Th and certificate value for 2**U abundance in each
standard. Figure 5.2 illustrates the expected **Th in-growth, in fgpg U,
as a function of material age. In preparation for IDMS analysis, sample cuts
were spiked with known quantities of ?*Th, weighed, allowed to equilibrate

and evaporated to dryness. The fractions were then re-dissolved in 12M
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Figure 5.2: Predicted **°Th in-growth, as a function of age, of the four NBL
uranium reference materials used in this investigation.

hydrochloric acid (HCL) and dried a second time. Prior to separations, the

samples were reconstituted in approximately 1 mL of 12M HCL.

Thorium separations/purification

Thorium separations were carried out on a 2ml Lewatit anion exchange
resin bed. In-house performance evaluations of this Lewatit-based separation
scheme have demonstrated a separation factor on the order of 10° and nearly
100 % thorium recovery. Separation factor is defined as the quotient of the
thorium-uranium ratio in the initial material (Np,/Ny); and in the final

material (Np,/Ny)y, after separation. Preceding sample introduction, each
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column was preconditioned with approximately 10 mL of concentrated HCL
in order to convert the resin to chloride form as well as remove any thorium
blank that may be present on the resin. Spiked aliquots were deposited on the
columns followed by an additional two sample vial rinses. The rinsing process
was carried out using 0.5 mL of concentrated HCL and serves to remove any
residual thorium remaining in the sample vial. In chloride form, thorium is
not retained on the column and was immediately collected into a pre-cleaned,
conical bottom Savillex (Eden Prairie, MN; USA) vials. An additional 0.5 mL
of concentrated HCL was added to the column to further elute any residual
thorium.

The purified thorium fractions were evaporated to dryness and then
dissolved in a few drops of HNOj in order to convert the sample to nitrate form.
The samples were then heated and evaporated to near dryness, then treated
with a drop, approximately 1puL, of 0.3 M H3PO,. The H3PO, was added to
prevent the sample from completely drying as well as provide a visual indicator
of the sample location in the vial. Great care was taken to ensure that the
entire sample was located at the vertex of each conical vial. In preparation
for filament loading, the samples were reconstituted in 1L of 1M HNOj3 and

allowed to equilibrate overnight.
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Filament preparation and TIMS analysis

An TIsoprobe-T™ single magnetic sector TIMS from GV Instruments Ltd (now
IsotopX Ltd: Middlewich, Cheshire; UK) was employed for all thorium isotopic
measurements. The ion detection system consists of nine variable-position
Faraday cup detectors, each equipped with a 10'' ) resistor, and a single
static, axial position ion counting Daly detector mounted behind a WARP
energy filter. Instrument performance and programming were controlled via
the GV Instruments lonVantage software package installed on a Dell Optiplex
PC (Rock Round, TX; USA). Source pressure and hydrocarbon background
were kept to a minimum with the aid of LN, added to the ion source cold
trap as needed. Thermal ionization IDMS analyses of ***U and ?*Th were
conducted using ***U and **°Th spikes, respectively.

Thorium isotope ratio measurements were carried out using PIE and
standard, single filament thermal ion sources. All filaments were pre-treated
using a GV Instruments Ltd (now Isotopx: Middlewich, Cheshire; UK)
filament bake-out unit evacuated to approximately 10~ mbar (10 °Pa). The
filaments were slowly heated to 4.5 A and degassed at this temperature for
at least ten minutes. PIEs were constructed from a 50/50 mixture, by mass,
of rhenium and platinum metal powders that were mixed with a hot gluing

agent and sintered atop a standard zone-refined rhenium filament. Two drops

124



of a polystyrene sulfonic acid cation exchanger, diluted with DI water to a
concentration of roughly 3% by mass, were wicked into the PIEs and dried;
the ion exchange resin is added to enhance thorium sample incorporation into
the PIE. Explicit details of PIE filament preparation have been described
previously [10, 71]. Samples were carefully loaded directly to the PIE structure
and dried by gentle heating at 1 A. Traditional single filament assemblies were
constructed from zone-refined rhenium filament ribbons; thorium samples were
loaded with colloidal graphite and dried with a current of 1 A applied to the
filament. Due to the trace quantities of thorium present in each sample,
isotopic measurements were carried out exclusively using the Daly detector
in conjunction with the WARP filter to maximized abundance sensitivity. A
three step peak-jumping technique was employed for isotope detection; the
Daly detector was sequentially exposed to 2**Th, *°Th and #*°Th ion beams.
A five second integration time was used for **Th and **Th ion beams, the
230Th beam signal was integrated for ten seconds. Baseline and peak centering
steps were included in this method preceding each block of ten, three-cycle
isotopic measurements.

Due to the lack of a suitable certified thorium isotopic standard, no mass
fractionation corrections were applied to the measured thorium isotope ratios.

As a result, the largest contributor to the combined standard uncertainty in
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model-ages was the n(?*°Th)/n(***Th) ratio measurement, which accounted

for approximately 90 % of the total model-age uncertainty budget.

5.3 Results and discussion

The highest precision (i.e., the lowest %RSD) n(**°Th)/n(***Th) isotope ratio
measurements using PIE filaments were obtained at a ***Th™ beam aiming
intensities of approximately 3000 cps. Attempts at increasing aiming intensity
resulted in ion beam instability leading to unacceptably poor measurement
precision. Traditional filaments, on the other hand, exhibited the highest
precision ratio results at 10 000 cps; this was the highest count rate attempted
using traditional filaments during this investigation. The inability of PIE
filaments to maintain stable ion beams at higher aiming intensities relative
to traditional filaments was unexpected as previous ionization efficiency
studies conducted using PIE sources at picogram mass loading levels of
uranium [9], americium and plutonium [3], and, most notably, thorium [10]
have demonstrated a substantial increase in sample utilization when compared
to standard single rhenium filaments. Ionization efficiency studies presented
in Chapter 3 of this Dissertation show that PIEs were not only capable
of significantly boosting ion yield, but generating stable ion beams with

several times the intensity of those emitted from standard filaments at mass
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loading levels of less than 10 pg as well. The addition of H3PO, to thorium
samples during this investigation is likely the culprit causing the substandard
performance of PIE filaments as this is the primary difference between this

and the aforementioned studies.

5.3.1 Model-age calculation

The expected ingrowth of ?*Th over time in a uranium sample can be

expressed as;

t 0
N230Th . )\234U (1 . e()‘234U_)‘230Th)t) + N230Th e_/\230Tht (5 1)
t - t ) :
N234U )\230Th - )\234U N234U

where A2sopy, and Aasay are the decay constants of 2*°Th and 231U, respectively.
The concentrations of ***Th and ?**U in the sample are denoted by Nisory, and
N§34U, respectively. N2030Th is the residual *°Th remaining in a sample post-
purification. Assuming complete initial separation (i.e., N&yp, = 0), Equation

5.1 can be solved for the time elapsed since purification, ¢;

. 1 A2s07y, — A2sags
b= A23ay7 — A2sopy, In (1 Az3ag; R) (5'2)

The sample model-age is calculated by substituting the measured daughter-

parent ratio, R, decay corrected to the reference date, and the appropriate
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decay constant values into into Equation 5.2. A samples model-date can be
obtained by subtracting ¢ from the reference date. Model ages determined
using Equation 5.2 should be thought of as a maximum possible material age,
as residual thorium is not accounted for. Half-life values of 245620(260) yr for
234U and 75584(110) yr for **°Th [138] were used for model-age calculations;
reported half-life uncertainties are at the 2o level.

Elemental concentrations of uranium in each sample was determined using

the standard IDMS equation;

cymy Ry — Ry YR
- 5.3
“= "m. Ry—R,%R, (5:3)

where ¢, is the concentration of element in the spike, m, is the mass of the
sample in the blend, m,, is the mass of the spike in the blend, R, R, and R; are
the isotope ratios in the sample, spike, and blend, respectively, ¥ R;, is the sum
of isotope ratios in the sample and X R;, is the sum of the isotope ratios in the
spike. The 231U isotopic concentration, Nisiyy, was determined by multiplying
the total concentration of uranium (in gg '), obtained using Equation 5.3,
with the isotopic abundance (in wt%) of ***U in each sample. Uranium
isotopic abundances were obtained from the decay corrected certificate values;

certificates for the uranium isotopic standards are located in Appendix D,

128



section D.2. Thorium concentrations were determined using Equation 5.4;

Msmy Ry - Rb
Mxmsas,z Rb - Rs’

Ws = Wy, s

(5.4)

here w, , is the mass fraction of isotope x in the spike; M, and M, are the
standard atomic weights of the element in the sample and spike; m, and m,,
mass of the sample and mass of the spike solution; a,, is the abundance of
isotope x in the sample; Ry, R,, and R, are the isotope ratios in the sample,
spike, and blend, respectively.

Uncertainties in isotope-amount ratios and sample model-ages uncer-
tainties were calculated according to the Joint Committee for Guides in
Metrology (JCGM) 100:2008, “evaluation of measurement data — guide to the
expression of uncertainty in measurement (GUM)” [139] using commercially
available software, GUM Workbench by Metrodata® [140]. Model-age results
are summarized in Tables D.1-D.8 and plotted in Figure D.1 located in
Appendix D. The paper age, in years, of each uranium standard was calculated

using a reference date of 31 August, 2014.
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5.3.2 U020

Records indicate that the material used to make NBL U020 was removed from
the K-25 enrichment cascade on 21 January, 1958 [141]; the purification date
was not reported. Because the purification date was not known, the date the
material was removed from the enrichment cascade was used to determine the
“age”; the paper age of U020 was calculated to be 56.6 years older than the
reference date. The range of model dates calculated using thorium isotope
ratio data obtained employing PIE sources extended from 01 March, 1958 to
18 June, 1962, yielding an average model-age of 54.2 + 4.3 years old. This
model-age is approximately two years younger than, but concordant with, the
paper age of the stock material within expanded uncertainty. The reported
uncertainty in the model-age is twice the standard deviation (20) of the
population (N = 6). Sample UD Th1-U020 yielded a ***Th concentration,
thus model-age, that was lower than expected; careful examination of the
measured n(?Th)/n(*?Th) raw isotope ratio data revealed that this sample
was unable to maintain a stable *°Th" ion beam at the set ***Th" aiming
intensity of 10000 cps. Thorium sample ID Th3-U020 was analyzed using a
29Th* aiming intensity of 2000 cps; this filament generated a more stable ion
beam and rendered a model-age much closer to the U020 paper age and the

model-age determined using standard filaments. Thorium samples analyzed
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using traditional filaments resulted in an average model-age of 57.1 & 2.2 years
old, slightly older than, but statistically identical to, the know sample age once
expanded standard uncertainty was accounted for; model-dates ranged from
12 May, 1956 to 8 October, 1958. Model-age results for individual trials,
average model-ages, and paper age of NBL U020 are plotted in Figure 5.3
along with associated uncertainties. Data used to calculate the model-ages
are summarized in Table D.1 and Table D.2 for PIE and standard filaments,

respectively.

5.3.3 U050

Stock material used for the production of NBL U050 was reported to have been
removed from the enrichment cascade on 4 October, 1957 [141] and purified
between 7 October, 1957 and 7 November, 1957 [142] making the paper age of
this material approximately 56.6 years older than the reference date. Previous
age determinations of U050 conducted using MC-ICP-MS have reported
model-dates spanning from 9 March, 1956 to 19 October, 1957 [142, 143]; The
slight, positive age bias reported in [142, 143] were attributed to incomplete
initial separation resulting in trace amounts of residual **°Th being present
in the stock material. The model-ages determined for U050 samples analyzed

during the present investigation were found to be substantially older than both
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Figure 5.3: U020 Model-age results obtained using PIE and standard
filaments with associated uncertainties. Reported uncertainty in model-ages
are two standard deviations of the population.

the known age and previously reported age values; an approximately fifteen
years positive age bias, on average, was observed. Standard and PIE filaments
rendered model-dates spanning 21 January, 1941 to 15 March, 1942 and
11 November, 1941 to 12 May, 1944, respectively. Despite the significant bias,
PIE and standard filaments rendered average model-ages that were statistically
identical as illustrated in Figure 5.4. Also shown in Figure 5.4 are the results of
individual trials and the paper age of U050. Reported uncertainties in model-
are are at the 20 level, where o is the standard deviation of the population.
Due to the large discrepancy of model-ages obtained during this work and

those reported previously by multiple independent laboratories, we conclude
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Figure 5.4: Model-age results of U050 using PIE and traditional filaments.
Reported uncertainty in model-ages are two standard deviations of the
population.

that this significant positive bias can be attributed to error(s) in thorium
sample preparation. Possible sources of the significant positive bias include
transcription errors (e.g., misweighing or mislabeling of the thorium stock) or
the introduction of #°Th to the stock solution; the source of “contamination”
is not known at this time. Contamination from natural thorium is an unlikely
culprit as the concentration of ***Th in this sample is not systematically
higher than any other sample analyzed during this study. Measurement data
acquire for the age determination of U050 using PIEs and standard single
filament assemblies can be found in Tables D.3 and D.4, respectively, located

in Appendix D.
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5.3.4 U100

Purification of the stock material used to make NBL U100 was reported to
have been completed on 8 January, 1959 [135]. In previous work, Williams
and Gaffney investigated the model-age of U100 using using the **Th/**U
chronometer, samples were analyzed via high resolution MC-ICP-MS. Model-
dates were reported to be 16 February, 1959 and 6 March, 1959 [135]. These
results are in excellent agreement with the reported purification date of
8 January, 1959, within analytical uncertainty. In the present investigation
model-dates were determined to be 18 October, 1955 and 26 January, 1957
using PIE and standard filaments, respectively. The determined model-
dates translate to material model-ages of 58.9 £ 1.2 and 57.59 + 0.64 years;
older than the reported age of U100, 55.6 years, by amounts greater than
the expanded uncertainty, reported at the 20, where o is the standard
deviation of the population. On average, a two-and-a-half years year
positive bias in material age was observed. Model-ages of U100 obtained
during this study using PIE and traditional TIMS filaments were statistically
identical. Figure 5.5 shows the reported material age, model-age results
for individual trials, and average model-ages determined using PIEs and

standard filaments along with associated uncertainties. The relatively large

uncertainties associate with PIE trials are a result of poor counting statistics;
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Figure 5.5: U100 model-ages determined using PIE and standard single
filaments. Reported uncertainty in model-ages are two standard deviations of

the population.

PIE sources were analyzed at an ion, **Th™, count rate of 3000 cps whereas
traditional filaments trials were conducted at a count rate of 10000 cps.
Because of ion beam stability issues encountered in U020 and U050 trials
using PIE sources no attempts at increasing ion beam intensity above 3000 cps
were made during the investigation of U100. Model-age data and results

for individual trials determined using PIE traditional filaments are listed in

Tables D.5 and D.6, respectively, located in Appendix D.
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5.3.5 U200

The data that purification of the stock material used to make NBL U200
was completed was not reported; therefore, the age of the material was
calculated using 4 November, 1957, the date the stock was retrieved from
the enrichment cascade at K-25 [141]. Assuming that the purification was
completed near the date the material was retrieved from the K-25 enrichment
cascade, we can estimate that the stock material is 56.8 years older than the
31 August, 2014 reference data. On average, samples analyzed using PIEs
rendered model-ages of 56.3 £ 1.8 years, which corresponds to a model-date
of 7 May, 1958. Thorium samples analyzed using traditional filaments yielded
an average model-age of 57.1 4= 2.8 years old, this translates to a model-date
of 12 July, 1957. After accounting for uncertainty, both standard and PIE
filament analysis rendered average model-age results that were concordant with
the paper age of U200. Individual trial results with associated uncertainties
are plotted in Figure 5.6. Despite being in excellent agreement with the known
material age, it is impossible to guarantee the accuracy of these results without
knowing the actual purification date of the material used to make U200. Data
used to calculate model-dates can be found in Appendix D. Data obtained
using PIE and standard filaments are summarized in Table D.7 and Table D.8§,

respectively.
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Figure 5.6: Model-age results of U200 determined using PIEs and traditional
filaments. Reported uncertainty in model-ages are two standard deviations of
the population.

5.4 Future work

The addition of H3PO, appears to have a profound effect on a PIEs ability
to generate and maintain a stable ion beam at higher count rates, >3000 cps
for the thorium mass loading levels investigated during this study. To date,
thorium analyses have never been conducted at such small quantities using
PIEs; 30pg mass loadings atop PIE filaments are the smallest quantity
of thorium tested [10]. This is approximately one hundred times the size
of thorium samples samples tested in this study. Ionization efficiency

measurements described by Stanley et al. need to be extended to include
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femtogram mass loading levels to test the viability of PIE techniques at such
low thorium mass loading levels.

The initial trials detailed in this paper were conducted using uranium
isotopic standards; chronometric investigations are not the intended purpose
of such samples. The **Th/?**U chronometer is highly sensitive to initial
purification /purity of material, a decontamination factor of greater than
107 is required to eliminate positive bias caused by residual **°Th in the
material [14]. Future trials would greatly benefit from the implementation
of certified uranium chronometric standards, which are highly purified and
have precise, well-documented purification dates. Chronometric standards are
necessary to truly determine the robustness of an age dating strategy. The
development of such uranium standards have been described [13, 144] and
preliminary trials have been conducted [14].

The ability to correct isotopic ratios for thermally induced fractionation,
detailed in Chapter 4 of this work, is vital to attain high precision isotope
ratios; this is especially important for ion counting methods. The fractionation
behavior of thorium atop PIEs has yet to be investigated and is not known at
this time. Unfortunately, such an investigation requires a well-characterized
thorium isotopic standard for instrumental mass bias corrections suitable for

TIMS that is not currently available.
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5.5 Conclusions

The model-ages of four NBL certified uranium isotopic standards were
determined using the #*Th/?**U radiochronometer. Thorium isotope ratio
measurements were conducted using standard single filaments and PIEs as
TIMS sources.

The only samples to yield model-ages that were concordant, within
analytical uncertainty, with the reported material ages were NBL U020,
analyzed using traditional filaments, and NBL U200 analyzed using PIEs.
Despite PIEs exhibiting enhanced ionization efficiencies relative to traditional
filaments during the analyses of trace levels of thorium [10], findings herein
suggest that, under the analytic conditions employed during this study, PIEs
were unable to provide the anticipated improvements in thorium isotope
measurements. Based on the results we can conclude that the thorium sample
preparation method outlined in this paper is not suitable for analysis with

PIEs and requires modification.
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Chapter 6

Lead analysis using PIEs

140



6.1 Introduction

Lead isotopic signatures, commonly referred to as “fingerprints”, using the
stable isotopes of lead can provide useful information for nuclear forensic
analyses. Lead is composed of four stable isotopes; 2°4Pb, 2°6Ph, 207Pb, and
208Ph. Only 29Pb is entirely primordial and nonradiogenic, being produced
exclusively by s-process nucleosynthesis in stars. The remaining three isotopes
are the end products of the ?**U (4n + 2; the Uranium or Radium Series),
235U (4n + 3; the Actinium Series) and 2**Th (4n; the Thorium Series)
decay chains, respectively. Large differences in half-lives coupled with natural
variations of uranium and thorium isotopic composition based on global
position have resulted in ore deposits with distinct lead signatures based on
geolocation. Determination of geographic origin of uranium samples based
on lead signatures have previously been demonstrated [16-22]. Signatures
from anthropogenic lead (i.e., lead produced from fossil fuel combustion such
as industrial processes and automobile exhaust) can also provide additional
information about geographic origin as the isotopic composition will be
different from that of naturally occurring deposits. Due to the relevance of lead
isotopic signatures to the field of nuclear forensics, preliminary experiments
were conducted to investigate the efficacy of PIE techniques for enhanced

analysis of lead via TIMS.
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6.2 Materials, methods, and insturmentation

A detailed description of PIE stock preparation can be found in 3.2.1.
Standard and PIE filaments were pretreated and prepared by the methods
described in 3.2.1 of this work. All isotopic measurements were conducted
using an Isoprobe-T™ from GV Instruments Ltd. (now Isotopx: Middlewich,
Cheshire; UK); specifications and tuning of this mass spectrometer are located

in 3.2.3.

6.2.1 Preparation of silica gel

Silica gel was prepared by the hydrolysis of silicon tetrachloride SiCly (Sigma
Aldritch; St. Louis, MO) with 18 MQ2 DI water. This reaction was carried out
in a clean teflon vessel equipped with pressure relief valve; a 3-to-1 ratio of
water to SiCly; was found to produce the most desirable results. A hot plate
was used to gently heat the vessel in order to expedite the reaction, limiting
the possibility of the silica get being contaminated. The resulting colloidal
silica gel solution was sonicated for approximately ten minutes to break down
larger particles and then allowed to settle overnight prior to use. Silica gel
for sample loading was decanted from the top of the bulk solution; this was
done to ensure that only the smallest silica gel particles were used in order to

maximize the analyte-to-silica gel interaction.
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6.2.2 Sample loading

Samples were loaded atop PIE and traditional filaments as an aqueous solution
of 1M HNOj containing 5ng of SRM-981 common lead isotopic standard.
The certificate for SRM-981 can be found in Appendix E. The samples were
evaporated to dryness by running 1 A current through the filament. Silica gel
(approximately 1pL) was carefully pipetted over the top of each dried sample
followed by a drop of 0.3M H3PO,. The current applied to the filament was
then slowly raised to 2 A in order to fume off the H3PO, and dry the silica
gel to roughly the color of bone china. All filaments were affixed to a sample

turret which, in turn, was mounted in the mass spectrometer source housing.

6.3 Results

Traditional and PIE filaments were run side-by-side for direct comparison of
performance. Traditional filaments performed as expected, generating steady
ion beams for thirty minutes or longer; samples were not run to exhaustion.
Filaments equipped with PIEs, on the other hand, were unable to reach the
set ion beam aiming intensity and consistently failed within the first minute
of analysis. After careful consideration, it is believed that, despite painstaking

efforts to minimize the size of the particles in the silica gel, the addition of
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silica gel over the top of the PIE clogged the pores, trapping the majority
of the sample within the porous structure of the PIEs. This theory could be
tested by dissolving the filament, isolating the remaining lead and reanalyzing
via the standard TIMS filamnts; however, due to time restrictions, we were
unable to perform such analyses. We can conclude from this investigation that
thebso-called silica gel technique used in conjunction with PIE filaments in the

manner described herein is not a suitable the analysis of lead samples
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Chapter 7

Conclusions
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This work, project number LA13-FY13-123-PDO08 entitled “Improved
sample utilization in TIMS isotopic ratio measurements via refined devel-
opment and application of porous ion emitters”, was conducted under the
auspices of the DOEs NNSA Office of Proliferation Detection Research &
Development (NA-22). The overarching theme of the research presented in
this dissertation is the development of capabilities to bolster the current set
of mass spectrometric techniques employed to detect useful nuclear forensic
signatures using PIEs as TIMS ionization sources. Moreover, this work
was designed to address the need for state-of-the-art mass spectrometric
techniques that exhibit enhanced ionization efficiency during isotope ratio
measurements. Specific objectives of this work included: 1) expanding the
use of PIEs as TIMS sources for the isotopic analysis of samples contain trace
quantities of actinides (see Chapter 3), 2) refine composition and preparation
procedures for manufacturing PIEs to further enhance actinide ionization
efficiency, thus reducing the sample quantity necessary to successfully obtain
isotopic information (see Chapter 3), and 3) capitalize on the improved
ionization efficiency associated with PIEs use for improved chronometric
capabilities to address current challenges in uranium chronometry (detailed
in Chapters 4 and 5). The series of investigations described herein were

carefully designed to determine the viability of PIE sources for enhancing
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chronometric investigations of young materials with extreme parent/daughter
ratios. In order to accomplish this, enhanced sample utilization and isotopic
fractionation behavior of actinides associated with PIEs were studied in depth.

A brief summary of each research component performed is presented below.

Americium and plutonium ionization efficiency. PIE techniques con-
sistently demonstrated substantial improvements in sample utilization during
the analyses of americium and plutonium in the 1-100 pg mass loading range
when compared to traditional TIMS ion sources. The list of actinides
successfully analyzed via PIE techniques include americium, plutonium,
uranium, and thorium. Additional enhancements in ionization efficiency were
observed during the analysis of 10 pg plutonium samples using a new type of
PIE constricted completely from platinum. These preliminary trials suggest
PIEs constructed of 100 % platinum may prove superior to Pt/Re PIEs for
analyses of lower vapor pressure actinides (e.g., plutonium and americium).
Further investigations using platinum PIEs should be conducted that include
a wider range of plutonium sample mass loadings as well as applying them to

americium analyses.

Fractionation of uranium and plutonium. The ability to make precise

and accurate isotope ratio measurements (e.g., sample age-dating) is highly
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contingent on the ability to correct for the effects of mass fractionation. The
extent of fractionation effects using PIEs as thermal ion sources was evaluated
using plutonium and uranium isotope reference standard. Once corrected
for mass fractionation using the appropriate law, the measured isotope ratio
values are in excellent agreement with the certificate values. The Linear and
Exponential laws were determined to provide the most accurate description of

the isotopic fractionation behavior of plutonium and uranium, respectively.

Model-age determination of uranium isotopic standards. The deter-
mination of the model-ages of four distinct uranium isotopic standards, of
varying enrichment, were determined using the 23°Th/#U radiochronometer.
Uranium isotope ratio measurements were carried out using triple filament
assemblies. PIEs were used for thorium isotope ratio measurements; thorium
measurements were also conducted using traditional filaments for a side-by-
side comparison. Under the experimental conditions used in this study, the
anticipated enhancement in thorium isotopic ratio measurements using PIEs
were not realized. Theses results, while unexpected, lead to the conclusion
that the methods for thorium sample preparation employed during this

investigation requires modification for use with PIE techniques.
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Appendix A

Magnetic mass filtering

Ions accelerated through a potential difference (V') leaving the mass spec-

trometer source housing will have a kinetic energy described by Equation A.1;
Ey=2V=—— (A.1)

where m, v and z are the ion mass, velocity and charge, respectively. As the

moving charges enter the magnetic sector they experience a force;
F B — 2U X B (AQ)

with magnitude;

Fg=2z2vB (A.3)
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where B is the strength of the magnetic field, v is the ion velocity and z is the
ion charge. Because the magnetic field is uniform and perpendicular to the
direction of travel, ion are deflected to a circular path of radius (R), similar to
a ball at the end of swinging string; as a result, an expression for centripetal

force (F,) can be used,;

Fo=—"— = (A.4)

Ion trajectory is determined by equilibrium of the magnetic and centripetal

forces. By setting Equations A.3 and A.4 equal to one another,

)

? = z2vB (A5)

an expression for ion velocity (v) is obtained;

(A.6)

Substituting A.6 into Equation A.1 and rearranging yields the result presented

in Chapter 2, Equation 2.1
m R?B?

z 2V

(A7)

In TIMS, ion charge is almost exclusively equal to 1, therefore, the radius

followed by an ion in a constant magnetic field is determined by its momentum.

167



This can be shown by solving Equation A.5 for R;

rR=" (A.8)

Upon Inspection of Equation A.8, its apparent that ions with less momentum
(i.e., lighter isotopes) will follow a path with smaller radius than heavier

isotopes. This is illustrated in Figure A.1
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Magnetic field

Ion source NN ) foi
mono-energetic ions . P, .

of isotopes a, 3, & v . A ,,,,,,,

Collector array

Figure A.1: Separation of a hypothetical sample composed of isotopes «, 3, and 7y wqith masses m,, mg, and
m.,, respectively, where m, < mg < m,. Ions follow a circular path of radius R in the magnetic field B; ions with
the same mass-to-charge ratio m/z are focussed to the same collector. This Figure adapted was adapted from
reference [145]
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Appendix B

Ion detection

B.1 Faraday cup detector

A Faraday cup detector, illustrated in Figure B.1, is a remarkably simple,
robust and relatively inexpensive device that can be used for the detection
of positive or negative ions. They consist of a metal or carbon cup with a
small entrance opening designed to prevent secondary electrons from escaping
the detector. Ions entering the Faraday cup and are neutralized by either
accepting electrons from or donating electrons to the detector wall. The
current generated by the detector is related to the number of incident ions;

this relationship is shown in Equation B.1;

v (B.1)
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where N is the number of ions detected, ¢ is the ion collection time in seconds, I
is the induced current in amperes, and e is the elementary charge in coulombs.
Because ion detection is based solely on charge, there is no mass, velocity, or

energy discrimination, allowing for very precise measurements.
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Figure B.1: A simple schematic diagram of a Faraday cup detector and
associated electronics
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B.2 Ion counting Daly detector

A Daly detector is a simple device used for the detection of positive ions.
It consists of a negatively charged highly polished door knob shaped metal
conversion dynode, an organic scintillator, and a photomultiplier tube (PMT).
Positive ions from the mass spectrometer enter the detector and are accelerated
via a high potential, striking the Daly knob, resulting in the release of
secondary electrons. These secondary electrons are accelerated by the same
potential and impinge on a scintillator which generates a light signal that is
detected/amplified by the PMT; the output signal from the PMT is counted
via pulse counting electronics. Figure B.2 illustrates the operation of Daly
detector.

Advantages of using Daly detector include minimal mass discrimination,
a high conversion efficiency scintillator, and high sensitivity allowing for
precise measurements of very small samples of low abundance isotopes within
a sample. Additionally, the PMT is mounted outside the vacuum system
allowing for access/repairs without breaking system vacuum. With respect to
electron multipliers, Daly detectors generate a pulse height distribution more

suitable for discrimination between ion currents and dark currents.

173



Incoming
ion beam

WARP

Secondary
electron beam

Window, =

N

PMT

Scintillator

Figure B.2: An illustration of an ion counting Daly detector adapted from
reference [146].
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B.2.1 WARP filter

The WARP is mounted in front of the Daly detector array and provides
a potential barrier that allows only a specific, narrow range of ion energy
to pass. Low energy ions produced from collisions with the sides of flight
tube or residual gas molecules in the analyzer are skimmed off the beam
and not detected. This type of filter significantly improves abundance
sensitivity, approximately two orders of magnitude, without compromising ion

transmission.
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Appendix C

Certificates of isotopic
standards used in fractionation
studies

C.1 IRMM-199
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Commission of the European Communities

JOINT
RESEARCH
CENTRE

The IRM is supplied with

€

CERTIFICATE

Central Bureau for Nuclear Measurements
Steenweg op Retie, 2440 Geel, Belgium

Tel. (014) 571.211 ~ Telex 33589 EURAT B

ISOTOPIC REFERENCE MATERIAL EC NRM 199

233238y = 1.000 01
B4y,238y _ 9,002 05
235y/2385 = 1,000 15
236y,2385 _ 0,000 25

+/- 0.000 30
+/- 0.000 01
+/- 0.000 20
+/- 0.000 01

This corresponds to the isotopic composition:

233y
234U/ U
By
B6yy
B8y,

Isotopic Atom %

33.306 4
0.068 3
33,311 0
0.008 2
33.306 1

Isotopic Mass %

32.975 6
0.067 9
33.263 9
0.008 2
33.684 4

atomic isotope ratios certified as:

uncertainties

+/-
+/-
+/-
+/-
+/~

0.005 9
0.000 3
0.004 0
0.000 3
0.004 9

The atomic weight of the uranium is 235.377 23 +/- 0.000 24

The concentration is specified as: 1.899 +/- 0.002 . 1073 kg U/kg solution

The IRM is intended for:

‘ a) calibration of isotope dilution measurements
| b) verification of the dependence of mass discrimination upon mass.
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Notes
l,1 All uncertainties indicated are accuracies, computed on a 2s basis.

2. The relative atamic masses, used in the calculations , are:

233
234
235
236
238

U : 233.039 628 0 +/- 0.000 006 O
U : 234.040 946 8 +/- 0.000 004 8
U : 235.043 924 2 +/- 0.000 004 8
U : 236.045 562 7 +/- 0.000 004 6
U : 238.050 784 7 +/- 0.000 004 6

3. The Reference Material consists of a uranylnitrate solution. The amount
}ofUper unit is 10 mg.

4. The IRM solution has a molality of 6 m HNO; (i.e. 6 mol HNO, . kg  of
| solvent) or a molarity of 5 M HNO, (i.e. 5 mol HNO, . 171 of solution).

Chemical purification of the 233U308’ 235U308 and 2380308 starting materials
was performed by Willy Lycke. Preparation of the mixture was performed by
Frans Hendrickx and Willy Lycke. Isotopic measurements of the starting
materials were performed by Kevin Rosman and René Damen. Verification
measurements on the IRM were done by René Damen.

The overall technical coordination of the establishment of this IRM, was
peFforned by Willy Lycke.

B + 2440 Geel Paul De Bidvre
1 November 1985 Head
CBNM Mass Spectrametry
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C.2 CRM-144
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This Certificd Reference Material (CRM) is an assay and isotopic standard for usc as a spike in the,analysis of plutonium
materials by isotope dilution mass spectrometry (IDMS). Additionally, the certificd 3Pu/*Pu CRM ratio may be measured and
used as an internal standard to caleulat ‘mass discrimination correction factor. for.cach:individual analysis. Each unit of CRM
> 144 consists of approximatelf 2 mg of plutonium: rated plutonium nitrate in a 30-mL Teflon vial. Each vial contains a
unique quantity of plutoni i i a-serial numbgr, for.identification and reference. NOTE: The bottle and its outer
Plastic containment should be handled under proper radiologically-controiled conditions at all 7m¢.r.
S e Lo el s Re 523X /0 "8 meoles

The indicated uncertainties for the certified values are95% confidence. intervals for the mean, The uncertainty for the plutonium
assay includes components duc to analytical variation and weighing-uncertaintics of individual units;. -

The plutonium material used to produce:this; CRM was obtained from the Oak Ridge National Laboratory (ORNL) Isotope Sales
Group -with the approval of the DOE Research Materials/Transplutonium : Program-:Committee’ chaired by J. L. Burnett.
Preparation and assay measurements of the CRM were performed by U. 1. Narayanan, M. L. Spaletto, and M. A. Legel, NBL;
isotopic analyses were performed by F. E. Jones, NBL;:impiurity. measureménts were’ performed by J. A, Carter and associates,
ORNL. Statistical evaluation of the data for certification” was performed by M: ‘D. Soriano, NBL." Initial project technical
direction was provided by D. W. Crawford, DOE NN-512:4; N7 M. Tratiéy, NIST;'and P: M 'Santoliquido, NBL. The project was
completed under the technical direction of M. A. Legel with the overall direction of C. G. Gradle and W. G. Mitchell, NBL.

The master solution, from whichk CRM 144 was produced, was chemically purified by anion exchange on 11/24/92 before being

apportioned and dried into units. The plutonium content was determined by the NBL controlled-potential coulometric method
verified with NBL CRM 126. The plutonium content was independently verified using an isotope dilution mass spectrometric
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technique traccable to NBL CRM 126. The isotopic distribution was measured using thermal ionization mass spectrometry, NBL
CRM 137 was used to monitor instrument performance and mass fractionation was corrected for based upon concurrent analyses
of NBL CRM 128 for all mass spectrometric ts. Total el tal impurity content was dctex_'mine‘d by. spmf'k sou{;c
mass spectrometry on selected subsamples and is estimated to be 1,500 pg/g plutonium. Impuritics consist primarily of fluoride
§’> 500 I:zcg/g Pu) and chloride (300 pg/g Pu) from the anion exchange ands a.ﬁo thorium (500 pg/g Pl;) and neptunium (100 pg/g

u). The calculated *'Am content from the decay of *'Pu present in the CRM is 3 pg/unit as of September 1, 1994,

CRM 144 had a radioactivity of 1.44 x 10* Bq (3.9 mCi) per ‘unit as of Sepfc'mber’,'l,_‘vll.”;i,’ which is dominated by *'Pu.
I v At PR SRR EEREY RIS SN HIY 3 S I . CE SE A

Table I provides the dccay-pdjustcd,yaluc.ls for the isotopic content of the CRM 144 for a five-year ;laen'od. Thc’l‘xlalf-lifc values
(i years) used for thedecay calculafions'af‘as follows: ¥3Puz §1.7; TPy -24,115; 2%Pu -16,563; Pu - 1435 *2Pu - 373300
and **Pu - 8.26 x 10", ) o

A I3
A (1A A IR

AL
L. ren
’ " "TABLE I
CRM 144 Decay-Adjusted Isotopic Distribution (At.%)

N T
Date Pu Content **Pu mPlk.l io4epy.t Upy 2py Wpy

153 217388 puh i 32.86476:¢ 1 45.68843 1736153

'R 4]

TT235T569 115 3288954

September 1,195 99.9107% gy 020427 .

{1:45772763 17.37646

September 1, 1996 99.&51%' 1650283
September 1, 1997 99.7436% 0.20140 217741 32.91303.. 4 .45.76504 1739070

3293536

September 1, 1998 99.6656% 45.80084 17.40434

September 1, 1999 99.5911% | 3205650, .. 141172 T 4583511 17.41740

$0.00795  +0.00061 1o~ £0.00262  £0.00657

VO bR et it -
RECOMMENDED PROCEDURE FOR USING CRM 144

sy \

The package is designed to prepare a solution having a known concentration of plutonium on a wéight basis. Once prepared, it

is suggested that all the solution be immediately distributed as subportions for later use as individual spikes. Chemical separation

of plutonium from its uranium or to use may be performed to remove isobaric impurities, however
2 1 PEEEEE e T

-

this step is not critical i

R K N 'r"l'“v‘,"‘-'i'/ i
Locate the plutonium nitrate niate‘ﬁkl'withih the bottlé and astifre that the bulk is not in'the cap area. Wipe the Teflon vial with
a damp cloth to dissipate any static charge or alternativély remave static’by ussing 2°Po sources at close range. This step assures
that the sample will not be expelled from the-vial on ‘Opening. “Weighing the Teflon Vial is not recommended, as static charge can
give the false appearance of stable balance readings; * Transfer of the solution to another tared- container is recommended for
dilution. Initially, add 5-10 mL of 8 M HNO, and carefully warm the bottle to insure total dissolution. DO NOT HEAT THE

BOTTLE ABOVE 150*'C TO AVOID ‘BOTTLE DEFORMATION!'Quantitatively traiisfér the solution to a tared container

and make a final dilution by weight to-calculate the plutonium’concentration,

Shake vigorously to h'omogeniz? the ‘contents and distributerall the solution’as weighed-portions into suitable containers for use
as spikes. Calculate the plutonium’ c_'oncc‘dtration of the solution-as follows: s~ “.v. 0 0 i

St o

(Certified Pu content of unit, pmoles)

Plutonium, gmoles/g = -= o . .
.+, (mass of bottle and 'solutic_m,[g]) -.(tare of bottle,[g] - 0.0048)
in which 0.0048 is the nominal weight of the cvaporated pl‘uto’m m hitrate residue. o
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Appendix D

2301 /234U chronometry study
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D.1 Results
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Figure D.1: Average model-age results using PIEs and standard filaments.
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Table D.1: 2°Th and #*4U concentrations and model ages of NBL U020 determined using PIEs. Expanded

uncertainties (k = 2) are given in parentheses.

Sample 1D B4y 20Th 20T /234U model age model
Uranium Thorium (atoms/g) (atoms/g) (measured) (years before date
fraction fraction 2014-08-31)

U020-1-5155 Th1-U020  3.111(50) x 10'"  4.57(26) x 107 1.470(87)x 107*  52.0£3.1 1962-08-31
Th3-U020 4.95(23) x 107 1.591(78)x 107*  56.3+2.8 1958-05-13

U020-2-5156 Th1-U020  3.102(50) x 101t 4.57(26) x 107  1.474(87)x 107*  52.2+3.1 1962-06-18
Th3-U020 4.95(23) x 107 1.595(78)x 107*  56.5+2.8 1958-03-01

U020-3-5157 Th1-U020  3.113(50) x 101 4.57(26) x 107 1.469(87)x 107*  52.0+3.1 1962-08-31
Th3-U020 4.95(23)x 107 1.590(78)x 104 56.3 £2.8 1958-05-13

average 54.24+4.3 1960-06-18
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Table D.2: 23°Th and #**U concentrations and model ages of NBL U020 determined using standard filaments.
Expanded uncertainties (k = 2) are given in parentheses.

Sample 1D B4y 20Th 20T /234U model age model
Uranium Thorium (atoms/g) (atoms/g) (measured) (years before date
fraction fraction 2014-08-31)

U020-1-5155 Th2-U020 3.111(50) x 10" 4.91(20) x 107 1.577(68) x 107*  55.94+2.4 1958-10-06
Th4-U020 5.10(14) x 107 1.641(51)x 107% 581+ 1.8 1956-07-24

U020-2-5156 Th2-U020  3.102(50) x 10'*  4.91(20) x 107 1.582(68) x 107%  56.14+2.4 1958-07-35
Th4-U020 5.10(14) x 10" 1.645(51)x 107* 583+ 1.8 1956-05-12

U020-3-5157 Th2-U020  3.113(50) x 10'"  4.91(20) x 107 1.576(68) x 107*  55.9+2.4 1958-10-06
Th4-U020 5.10(14) x 107 1.640(51)x 107*  58.14+1.8 1956-07-24

average 97.14+2.2 1957-08-06
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Table D.3: 2°Th and #*4U concentrations and model ages of NBL U050 determined using PIEs. Expanded
uncertainties (k = 2) are given in parentheses.

Sample 1D B4y 230Th 20T /234U model age model
Uranium Thorium (atoms/g) (atoms/g) (measured) (years before date
fraction fraction 2014-08-31)

U050-1-5154 Th1-U050 1.3294(96) x 1012 2.72(11) x 10®  2.044(85)x 107*  72.4+3.0 1942-04-06
Th3-U050 2.638(54) x 108 1.984(42)x 1074 703+ 1.5 1944-05-12

U050-2-5153 Th1-U050 1.3232(96) x 10'2 2.72(11) x 10®  2.054(85)x 107*  72.8+3.0 1941-11-11
Th3-U050 2.638(54) x 10%  1.994(43)x 1074 70.7+£1.5 1943-12-18

U050-3-5152 Th1-U050 1.3258(96) x 10'2 2.72(11) x 10%  2.049(85)x 10~*  72.6 +3.1 1942-01-23
Th3-U050 2.638(54) x 10®  1.990(43)x 107* 705+ 1.5 1944-02-29

average 71.6 £2.1 1943-02-11
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Table D.4:

Z0Th and 2**U concentrations and model ages of NBL U050 determined using standard
filaments.Expanded uncertainties (k = 2) are given in parentheses.

Sample 1D B4y 230Th 2B0Th /234U model age model
Uranium Thorium (atoms/g) (atoms/g) (measured) (years before date
fraction fraction 2014-08-31)

U050-1-5154 Th2-U050 1.3294(96) x 1012 2.718(29) x 10®  2.044(27)x 10~*  72.46 £ 0.97 1942-03-15
Th4-U050 2.747(76) x 10%  2.066(59) x 107*  72.3 +2.1 1941-06-18

U050-2-5153 Th2-U050 1.3232(96) x 1012 2.718(29) x 10  2.054(26) x 10~*  72.79 + 0.94 1941-11-15
Th4-U050 2.747(76) x 10%  2.076(60) x 107*  73.6 +2.1 1941-01-23

U050-3-5152 Th2-U050 1.3258(96) x 1012 2.718(29) x 10  2.050(26) x 10~*  72.65 + 0.94 1942-01-05
Th4-U050 2.747(76) x 10%  2.072(59)x 104 734 £2.1 1941-04-06

average 729 £1.0 1941-08-24
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Table D.5: 23°Th and 24U concentrations and model ages of NBL U100 determined using PIEs. Expanded

uncertainties (k = 2) are given in parentheses.

Sample 1D B4y 20Th 20T /234U model age model
Uranium Thorium (atoms/g) (atoms/g) (measured) (years before date
fraction fraction 2014-08-31)

U100-1-5163 Th1-U100  3.433(21) x 102 5.65(21) x 10®  1.645(61) x 10~*  58.3 4+2.2 1956-05-12
Th3-U100 5.77(15)x 108 1.680(45)x 107*  59.5+ 1.6 1955-03-01

U100-2-5166 Th1-U100  3.442(21) x 1012 5.65(21) x 108 1.641(61)x 107*  58.24+2.2 1956-06-18
Th3-U100 5.77(15)x 108 1.675(45)x 107*  59.4+ 1.6 1955-04-07

U100-3-5159 Th1-U100  3.432(21) x 102 5.65(21) x 108 1.645(61)x 1074  58.3+2.2 1956-05-12
Th3-U100 5.77(15)x 108 1.680(45)x 10°*  59.5+ 1.6 1955-03-01

average 58.94+1.2 1955-10-18
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Table D.6: 23°Th and ***U concentrations and model ages of NBL U100 determined using standard filaments.
Expanded uncertainties (k = 2) are given in parentheses.

Sample 1D B4y 20Th 20T /234U model age model
Uranium Thorium (atoms/g) (atoms/g) (measured) (years before date
fraction fraction 2014-08-31)

U100-1-5163 Th2-U100  3.433(21) x 10'2  5.613(60) x 108  1.635(20) x 10~*  57.95+0.71 1956-09-17
Th4-U100 5.552(68) x 108 1.617(22) x 107*  57.32+0.78 1957-05-05
U100-2-5166 Th2-U100  3.442(21) x 10'2  5.613(60) x 10  1.631(20) x 10°*  57.81 +0.71 1956-11-07
Th4-U100 5.552(68) x 108 1.613(22) x 10°*  57.18 +0.78 1957-06-26
U100-3-5159 Th2-U100  3.432(21) x 10'2  5.613(60) x 108 1.635(20) x 10~*  57.96 +0.71 1956-09-14
Th4-U100 5.552(68) x 108 1.618(22) x 1074  57.3340.78 1957-05-02

average 57.59 £+ 0.64 1957-01-26
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Table D.7: 2°Th and #*4U concentrations and model ages of NBL U200 determined using PIEs. Expanded

uncertainties (k = 2) are given in parentheses.

Sample 1D B4y 20Th 20T /234U model age model
Uranium Thorium (atoms/g) (atoms/g) (measured) (years before date
fraction fraction 2014-08-31)

U200-1-5160 Th1-U200 4.606(22) x 1012 7.21(16) x 10%  1.565(38)x 107 5554 1.3 1959-03-01
Th3-U200 7.44(13)x 108 1.616(29)x 107*  57.3+£1.0 1957-05-13

U200-2-5164 Th1-U200 4.604(23) x 1012 7.21(16) x 108  1.565(38)x 107*  55.5+1.3 1959-03-01
Th3-U200 7.44(13)x 108 1.617(29)x 107*  57.3+£1.0 1957-05-13

U200-3-5167 Th1-U200  4.624(26) x 10'2  7.21(16) x 108 1.558(38)x 1004  55.2+1.3 1959-06-19
Th3-U200 7.44(13)x 108 1.610(29)x 107*  57.1+ 1.0 1957-07-25

average 56.3 £ 1.8 1958-05-07
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Table D.8: 23°Th and ***U concentrations and model ages of NBL U200 determined using standard filaments.
Expanded uncertainties (k = 2) are given in parentheses.

Sample 1D B4y 230Th 20T /234U model age model
Uranium Thorium (atoms/g) (atoms/g) (measured) (years before date
fraction fraction 2014-08-31)

U200-1-5160 Th2-U200 4.606(22) x 102  7.61(17)x 108  1.652(37)x 107* 58.6 +1.3 1956-01-24
Th4-U200 7.252(88% 10®  1.575(21)x 107*  55.80 +0.73 1958-11-12

U200-2-5164 Th2-U200 4.604(23) x 102  7.61(17)x 108  1.653(37)x 107* 58.6 +1.3 1956-01-24
Th4-U200 7.252(88% 108 1.575(21)x 107*  55.83+0.74 1958-11-01

U200-3-5167 Th2-U200 4.624(26) x 102 7.61(17)x 108  1.645(37)x 10 % 583 +1.3 1956-05-12
Th4-U200 7.252(88% 10®  1.568(21)x 107%  55.58 £ 0.75 1959-01-31

average 57.1 £2.8 1957-07-18
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D.2 Certificates
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U. S. Dep: ent’ of Commerce
Maurice H. Stans

National

A V.

0} Standards
irector

@ertificate
Standard Reference Material U-020
Uranium Isotopic Standard

234y 235y 236y 238y
Atom percent 0.0125 2.038 0.0165 97.933

+.0001 +.002 +.0001 +.002
Weight percent 0.0123 2.013 0.0164 97.959

The material consists of highly purified oxide, U3 Oq. The atomic weight of the material
is calculated to be 237.989 using the nuclidic masses 234.0409; 235.0439; 236.0457 and
238.0508.

The values for 234U and 2*¢U were calculated from measurements at the National
Bureau of Standards. The samples were spiked with high-purity 233U to approximate the
2347 concentration, the ratios 233U to 234U and 233U to ? were measured on a
triple-filament equipped surface ionization mass spectromgterjRth ultiplier amplifier
circuits.

The values for 225U and 233U were calcula easurements of the 235U to 238U
riple-filament, surface ionization mass

ratio made at the National Bureau of St

spectrometer equipped with dc amplifier_ci —The observed ratios were corrected for
mass discrimination effects by ifftexkompayisefi with synthetic mixtures prepared at the 2
percent 225U level from hig] $ B4nd 238 1.

The limits indj e isotopic concentrations are at least as large as the 95-percent
1S a\inglé

confidence lim determination, and include terms for inhomogeneities in the
material as @ Agnafptical error. The 235U to 232U ratio for this standard, 0.02081. is
known to at 18&st 0 percent.

13

Mass spectrometry measurements at NBS were made by E.L. Garner on solutions
prepared by L. A. Machlan.

The overall direction and coordination of the technical measurements leading to
certification were performed under the chairmanship of W. R. Shields.

The technical and support aspects in the preparation, cerufication. and issuance of this
Standard Reference Material were coordinated through the Ufitice of Standard Reference

Materials by J. L. Hague.

Washington, D. C. 20234 W. Ravne Meinke. Chief
April 21, 1969 Office i Standard Reference Materials

(This certificate supersedes certificate of October 1. 1933)
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U. S. Departinent/ of Commerce
Maurice'H. Stans

National
AV

ety |
- of Standards
irector

A ertificate

Standard Reference Material U-050
Uranium Isotopic Standard

234y 235y 236 2387y

Atom percent 0.0279 5.010 0.0480 94915
+.0001 +.005 +.0002 +.005

Weight percent 0.0275 4.949 0.0476 94.975

The material consists of highly purified oxide, U;O4. The atomic weight of the
material is calculated to be 237.898 using the nuclidic masses 234.0409; 235.0439;

236.0457 and 238.0508. .
The values for 234U and 236U were calculated from gne Mt the National
Bureau of Standards. The samples were spiked with hi ) 0 approximate the
U

2341 concentration, the ratios 233U to 234U apd.? were measured on a
triple-filament equipped surface ionization mass sfectry
circuits. %

er with ion-multiplier amplifier
The values for 235U and 23

2337 ratio made at the Natiol
mass spectrometer equippg dw
for mass discriminatjon e

5 percent 235U Jové

»

re ited from measurements of the 235U to

u ndards on a triple-filament, surface ionization

amplifier circuits. The observed ratios were corrected

intercomparison with synthetic mixtures prepared at the
2357 and 2387,

The limits \lndicated for the isotopic concentrations are at least as large as the
95.percent confidehce limits for a single determination, and include terms for inhomogene-
ities in the material as well as analytical error. The 235U to 222U ratio for this standard,
0.05278, is known to at least 0.1 percent.

Mass spectrometry measurements at NBS were made by E. L. Gamer on solutions
prepared by L. A. Machlan.

The overall direction and coordination of the technical m ts leading to
certification were performed under the chairmanship of W. R. Shields.

The technical and support aspects in the preparation, certification, and issuance of this
Standard Reference Material were coordinated through the Office of Standard Reference
Materials by J. L. Hague.

Washington, D. C. 20234 W. Wayne Meinke, Chief
April 21, 1969 Office of Standard Reference Materials

(This certificate supersedes certificate of October 1,1958)
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e
U. S. Departmsgt of Commerce
John T. §onpar; Secretary
National BiYwsn-wf Standards
A. V.]Asphig Director

Certificate of Analysis
-Standard Reference Material U-100

Uranium Isotopic Standard

4] w35 2387J 28]
Atom percent 0.0676 10.190 0.0379 89.704
+.0002 =0.010 +.0001 +0.010
Weight percent 0666 10.075 .0376 89.821

The material consists of highly purified oxide, U,0,. The atomic weight of the mate-
rial is calculated to be 287.741 using the nuclidic masses 234.0409; 235.0439; 236.0457;
and 238.0508.

<

N\

The values for **U and ***U are calculated from measyre: ts\;f:j:ﬁ}e National Bureau
of Standards. The samples were spiked with high-purity *QU ahroximate the #+U con-
centration, the ratios #'U to **U and **U to 22& measured on a triple-filament
equipped surface ionization mass spectrometey -§,a.mpliﬁer circuits.

\
The values for »*U and =°¥} &(e ca)tulated from measurements made at the Na-
tional Bureau of Standards ef\the mNy % ratio. The observed ratios were corrected
for mass discriminati intercomparison with five synthetic mixtures at the

ol
10-percent U Ieiar from high-purity ***U and **U.

/,

%l

The limf‘s\f\)ndi \'ted for the isotopic concentrations are at least as large as the 95-
percent confidenice level for a single determination. The **U to 238(J ratio for this stand-
ard, 0.11360, is known to at least 0.1 percent.

Mass spectrometry measurements at NBS were made by Ernest L. Garner and Wil-
liam R. Shields on solutions prepared by Lawrence A. Machlan and Martha S. Richmond.

WaASHINGTON, D.C. 20234 W. Wayne Meinke, Chief

June 23, 1966 Office of Standard Reference Materials

(This certificate supercedes certificate of 7-1-59)
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u. S Deparm@ of Commerce
T. €onpar; Secretary

\Iauonal BM Standards

MEERTT Certificate of @nalpsis
Standard Reference Material U-200

Uranium Isotopic Standard

:uU 23577 2367J 2387
Atom percent 0.1246 20.013 0.2116 79.651

+.0003 +0.020 +.0006 +0.021
Weight percent 1229 19.811 2103 79.856

The material consists of highly pﬁriﬁed oxide, U;0;. The atomic weight of the mate-
rial is calculated to be 237.440 using the nuclidic masses 234.0409; 235.0439; 236.0457;
and 238.0508.

The vaiues for **U and #¢U are calculated from measurements at the National Bureau
of Standards. The samples were spiked with high-purity »*3U to approximate the ***U con-
centration, the ratios U to U and 23U to **U were measured on a triple-filament
equipped surface ionization mass spectrometer with d-c ampl§' er circuits.

The values for ***U and *¢U are derived from measurpentf\made at the National
Bureau of Standards, at Union Carbide Nuclear Co., Ggk

Atomic Corp., Portsmouth, Ohio, each ]aborato
Values obtained at NBS are the result of dxr nt of the **sU to *sU ratio
using triple filament thermal ionization. edratios were corrected for mass dis-
crimination effects by determining 1 ; s from measurements on standards

n., and at Goodyear
udl belng given equal weight.

U-500 and U-100. Experience at vm through intercomparison of the stand-
ards, and synthetic mlxtures at the 50 and 90-percent U level prepared from high-
purity *sU and 2¢U 1sotop ant bias for a given procedure can be maintained
over the range of 5- 9 ent 235J, Values from Union Carbide and Goodyear

eterminations of the ***U concentration by oxide dilution and
he/ratio calculated using the NBS values for **U and ***U, and
difference.

'ndxcated for the isotopic concentrations are at least as large as the 95-
percent confidence level for a single determination. The **U to ***U ratio for this stand-
ard, 0.25126, is known to at least 0.1 percent; at the same time the pooled variance for
the calibration system is significantly smaller.

Mass spectrometry measurements at NBS were made by Ernest L. Garner and Wil-
liam R. Shields on solutions prepared by Lawrence A, Machian and Martha S. Richmond.

WASHINGTON, D.C. 20234 W. Wayne Meinke, Chief

June 1, 1966 Office of Standard Reference Materials

(This certificare supersedes certificate of 10-1-58)
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Appendix E

Certificate for SRM-981 lead
isotopic standard
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National Institute of Standards & Technology

@ertificate of Analysis
Standard Reference Material 981

Common Lead Isotopic Standard
This Standard Reference Material (SRM) is intended primarily for use as an isotopic standard. SRM 981 consists of 1 gram
of a commercially available, high purity lead metal, of 99.9 + percent purity, that was extruded into wire form. The atomic
weight of the material is calculated to be 207.215 using the nuclidic masses 203.973044, 205.974468, 206.975903, and
207.976650. The certified isotopic compositions are given below.
Atomic Abundance Ratio, Lead-204/Lead-206 . .. 0.059042 + 0.000037
Atomic Abundance Ratio, Lead-207/Lead-206 . .. 0.91464 + 0.00033

Atomic Abundance Ratio, Lead-208/Lead-206 . .. 2.1681 + 0.0008

Lead-204, atom percent ............. 1.4255 + 0.0012
Lead-206, atom percent ............. 24.1442 + 0.0057
Lead-207, atom percent ............. 22.0833 + 0.0027
Lead-208, atom percent ............. 52.3470 + 0.0086

Overall limits of error are based on 95 percent confidence limits for the mean of the ratio measurements and on allowances
for the known sources of possible systematic error.

Measurements for certification were by triple filament solid-sample mass spectrometry. Mixtures with known 208pp,206py,
ratio, prepared from high-purity separated isotope solutions, were used as comparison standards. Details of the preparation
and measurements were published by E.J. Catanzaro, T.J. Murphy, W.R. Shields, and E.L. Garner, J. Research NBS 72A,
No. 3,261 (1968).

The analytical measurements leading to the certification of this material were performed in the NIST Inorganic Analytical
Research Division.

The overall coordination of efforts leading to the update and revision of this certificate was coordinated through the
Standard Reference Materials Program by T. E. Gills.

Gaithersburg, MD 20899 William P. Reed, Chief

March 25, 1991 Standard Reference Materials Program
(Revision of certificate dated 4-10-73)
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Ranken Technical College in St. Louis, MO, earning an Associates degree
in Automotive Maintenance Technology in June, 2000. During the following
four years, he was employed as an automotive technician. In the fall of 2004,
Matthew decided to continue his education and enrolled in the University
of Missouri — St. Louis/Washington University Joint Engineering Program
focusing on electrical engineering. Matthew decided to change his major to
nuclear engineering and transferred to the University of Wisconsin — Madison
in the fall semester of 2006. While at Wisconsin Matthew earned a Bachelor
of Science with a major in Nuclear Engineering and a Master of Science
with a major in Nuclear Engineering & Engineering Physics; both degrees

were awarded concurrently in August of 2011. Upon completion of his
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Bachelor and Master degrees, Matthew moved to Oak Ridge, Tennessee and
enrolled at University of Tennessee — Knoxville to pursue a PhD in nuclear
engineering. Matthew lives in Los Alamos, New Mexico and is employed in the
Advanced Nuclear Technology group (NEN-2) within the Nuclear Engineering

& Nonproliferation division at Los Alamos National Laboratory.
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