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Key Points.
o First report of simultaneous disappearances of plasmaspheric hiss, exohiss and chorus triggered
by a solar wind negative pressure pulse
o Disappearance of chorus caused by the increase of dayside magnetic field inhomogeneity rather
than the change of local electron free energy
© Disappearances of plasmaspheric hiss and exohiss resulting from the chorus quenching rather

than the change of local plasma condition
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Magnetospheric whistler-mode waves are of great importance in the radiation belt electron dy-
namics. Here, on the basis of the analysis of a rare event with the simultaneous disappearances
of whistler-mode plasmaspheric hiss, exohiss and chorus triggered by a solar wind negative pres-
sure pulse, we provide evidences for the following physical scenarios: (1) nonlinear generation of
chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss
from chorus, and (3) leakage of plasmaspheric hiss into exohiss. After the solar wind negative pres-
sure pulse, the dayside geomagnetic field configuration with the enhanced inhomogeneity became
unfavored for the generation of chorus, and the quenching of chorus directly caused the disappear-

ances of plasmaspheric hiss and then exohiss.
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1. Introduction

Whistler-mode emission plays an important role in the acceleration [e.g., Summers et al.,
2002; Horne et al., 2005; Reeves et al., 2013; Thorne et al., 2013a; Su et al., 2014a, b; Yang
et al., 2016] and loss [e.g., Lyons and Thorne, 1973; Abel and Thorne, 1998; Albert, 1994;
Su et al., 2011a, 2016; Thorne et al., 2013b; Ni et al., 2014; Baker et al., 2014; Breneman
et al., 2015; Zhu et al., 2015; He et al., 2016] of radiation belt electrons through cyclotron
resonant interaction [Kennel and Engelmann, 1966; Horne and Thorne, 1998; Summers
et al., 1998]. Whistler-mode hiss is often observed as a structureless and incoherent
band with the frequency ranging from ~0.1 kHz to several kHz [Russell et al., 1969;
Thorne et al., 1973; Hayakawa and Sazhin, 1992; Summers et al., 2008]. According to the
spatial location, whistler-mode hiss is divided into plasmaspheric hiss (inside the high-
density plasmasphere and plasmaspheric plume) and exohiss (outside the plasmasphere)
[Russell et al., 1969; Thorne et al., 1973]. Whistler-mode chorus is usually characterized
as a structured and discrete emission in the frequency range from 0.1-0.8 fee oq (fee_eq 1S
the equatorial electron gyro-frequency) outside the plasmasphere [Tsurutani and Smith,
1974, 1977; Meredith et al., 2001; Santolik et al., 2003]. Recently, the low-frequency
plasmaspheric hiss (~ 10 Hz) [Li et al., 2013] and chorus (< 0.1 fee oq) [Cattell et al.,
2015; Gao et al., 2016] have been detected following the substorm injection or during the
geomagnetic storm.

Generation mechanisms of these whistler-mode waves are of great interest in the ra-
diation belt community. For plasmaspheric hiss, there have been two main candidate

mechanisms: excitation by electron cyclotron instability in the outer plasmasphere [e.g.,
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Thorne et al., 1979; Chen et al., 2014; Summers et al., 2014] and origination from chorus
outside the plasmasphere [Bortnik et al., 2008, 2009; Li et al., 2015]. A possible scenario
for exohiss is that plasmaspheric hiss leaks from the plasmasphere and evolves into exohiss
in the plasmatrough [Thorne et al., 1973; Bortnik et al., 2008; Zhu et al., 2015]. Cho-
rus is generally believed to be excited through the cyclotron resonance with anisotropic
suprathermal (from a few keV to tens of keV) electrons [e.g., Kennel and Engelmann,
1966; Li et al., 2009; Su et al., 2014c| near the magnetic equator [e.g., LeDocq et al., 1998|
in the plasmatrough. In particular, the nonlinear resonance process has been proposed
to explain the frequency-time characteristics of chorus [e.g., Nunn et al., 1997; Omura
et al., 2008; Katoh and Omura, 2013; Nunn and Omura, 2015]. In this letter, we give the
first report on the simultaneous disappearances of plasmaspheric hiss, exohiss and chorus
triggered by a solar wind negative pressure pulse. This impulsive event was monitored
by the Van Allen Probes (RBSP) mission [Mauk et al., 2013] and the Time History of
Events and Macroscale Interactions during Substorm (THEMIS) mission [Angelopoulos,
2008] both inside and outside the plasmasphere, offering a rare opportunity to test the

generation mechanisms of these whistler-mode waves.

2. Data and Instrumentation

Geomagnetic activity indices are obtained from the World Data Center for Geomag-
netism, Kyoto. Interplanetary parameters at 1 AU are provided by the OMNI database
of CDAweb [King and Papitashvili, 2005]. In the OMNI database, the measured solar

wind data sets had been time-shifted to the Earth’s bow shock nose.
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X-6 LIU ET AL.: WHISTLER-MODE WAVE DISAPPEARANCES

The RBSP is a twin-satellite mission to study the Van Allen radiation belt dynam-
ics. Background magnetic field and wave power spectral density were directly measured
by the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS)
suite [Kletzing et al., 2013]. Electric field was detected by the Electric Field and Waves
(EFW) [Wygant et al., 2013] instrument. Suprathermal and energetic electron fluxes were
observed by the Helium Oxygen Proton Electron (HOPE) Mass Spectrometer [Funsten
et al., 2013] and the Magnetic Electron Ion Spectrometer (MagEILS) [Blake et al., 2013]
of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite [Spence et al.,
2013]. Background electron density can be derived from the upper hybrid resonance fre-
quency measured by EMFISIS [Kurth et al., 2014].

The THEMIS mission contains five satellites to study the energy releases of magne-
tospheric substorms [Angelopoulos et al., 2008]. Background magnetic and electric fields
were detected by the Fluxgate Magnetometer (FGM) [Auster et al., 2008] and the Electric
Field Instrument (EFI) [Bonnell et al., 2008]. Wave power spectral density was measured
by the Search Coil Magnetometer (SCM) [Le Contel et al., 2008]. Suprathermal and ener-
getic electron fluxes were observed by the Electrostatic Analyzer (ESA) [McFadden et al.,
2008] and the Solid State Telescope (SST) [Angelopoulos, 2008]. Background electron
density can be estimated from the spacecraft potential and the electron thermal speed [Li

et al., 2010] measured by EFI and ESA.

3. Event overview
Figure 1 shows a schematic diagram of the magnetospheric structures and the orbits

of RBSP and THEMIS missions on 12 February 2014. The magnetopause location is
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estimated from the interplanetary parameters on the basis of the previous statistical model
[Shue et al., 1998]. The plasmasphere configuration is roughly determined on the basis of
the available density observations and the numerical simulations of Goldstein et al. [2014].
The plasmaspheric plume formed in the time period from 18:00 UT to 24:00 UT on 11
February 2014 with the southward interplanetary magnetic field. The apogees of RBSP-A,
RBSP-B and TH-E satellites were located in the afternoon sector of the magnetosphere.

Figure 2 gives an overview of the wave disappearance event observed by RBSP-A, RBSP-
B and TH-E satellites in the time range from 03:00 UT to 08:00 UT on 12 February 2014.
Throughout this event, the magnetosphere (with SYM-H> —25 nT and AE< 250 nT) was
free from both magnetic storms and substorms. Around 04:00 UT, the magnetosphere
encountered a solar wind negative pressure pulse (with a prompt decrease of SYM-H from 5
nT to —23 nT) and the subsolar magnetopause expanded from 11 Rg to 12 Rg. In response
to this pulse, exohiss waves detected by RBSP-A, plasmaspheric hiss waves detected
by RBSP-B and chorus waves detected by TH-E disappeared simultaneously within the
comparable frequency range 0.2-0.4 kHz. Note that the magnetosonic waves below 0.2
kHz were continuously observed by RBSP-A both before and after the pulse. Around
04:30 UT, RBSP-A went into the plasmasphere and began to observe the plasmaspheric
hiss waves. Because of the smooth variation of cold electron density measured by RBSP-
B, the plasmapause location was hard to be determined accurately. Roughly speaking,
RBSP-B detected plasmaspheric hiss waves during 04:30-05:00 UT, exohiss waves during
05:00-08:00 UT and chorus waves after 06:30 UT. TH-E satellite re-observed chorus waves

after 05:30 UT. In contrast to the wave disappearances, the recoveries of whistler-mode
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waves observed by the three satellites had no clear correspondence to each other, primarily
due to the highly scattered satellite locations and the absence of interplanetary triggers

and global magnetospheric processes (e.g., substorms).

4. Physical explanations

4.1. Disappearances of plasmaspheric hiss and exohiss

Figure 3 plots the suprathermal electron fluxes and electromagnetic fields observed by
twin RBSP satellites around the pulse time. The local variation of magnetic field be-
haved similarly to the SYM-H index in both shape and magnitude. The electric field
disturbance reached ~1 mV/m at high L-shells (RBSP-A) but became nearly invisible at
low L-shells (RBSP-B). The compression of magnetosphere (corresponding to the peak of
SYM-H index) increased the suprathermal electron anisotropy during a short time period
both inside and outside the plasmasphere. After the pulse, the electron fluxes of RBSP-A
near the loss cone were decreased to some extent, which would increase the corresponding
electron anisotropy and then the local growth rate of whistler-mode waves. In contrast,
for RBSP-B, there were no significant differences between electron fluxes before and after
the SYM-H peak. These results suggest that the generations/disappearances of plasmas-
pheric hiss and exohiss were not predominantly controlled by the local physical processes.
Origination of plasmaspheric hiss from chorus [Bortnik et al., 2008, 2009; Li et al., 2015]
and leakage of plasmaspheric hiss into exohiss [Thorne et al., 1973; Bortnik et al., 2008;
Zhu et al., 2015] may be two appropriate prerequisites to explain this impulsive event. As
shown in the previous ray-tracing simulations [Chen et al., 2009], chorus originating from

a broad dayside region can propagate into the plasmasphere and plasmaspheric hiss can
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propagate both azimuthally and radially over a wide spatial region. As a result, although
the wave observations were available only at three satellite locations, the three types of
whistler-mode waves can still be expected to disappear over a vast region of dayside mag-
netosphere. In the last analysis, the disappearances of plasmaspheric hiss and exohiss

may be simply attributed to the disappearance of chorus for this event.

4.2. Disappearance of chorus

As illustrated in the previous quasilinear [e.g., Kennel and Engelmann, 1966; Li et al.,
2009; Su et al., 2014c| and nonlinear [e.g., Nunn et al., 1997; Omura et al., 2008; Katoh
and Omura, 2013; Nunn and Omura, 2015] simulations, the growth of chorus is largely
controlled by the free energy of resonant electrons and the inhomogeneity of background
magnetic field. The former is mainly determined by the ratio between plasma frequency
and electron gyrofrequency fpe/ fee and the suprathermal electron phase space density F,
and the latter is characterized by the magnetic field curvature Q).

Figure 4 shows the ratio between plasma frequency and electron gyrofrequency fye/ fee
for TH-E satellite around the pulse time. With the expansion of magnetosphere, the
ambient magnetic field decreased from 70 n'T to 45 nT while the estimated electron density
remained a quite low value (less than 1 cm™3). Correspondingly, the parameter fuo/ fee
increased from 3.0 to 4.5 and the minimum resonant energy FE;, [Summers et al., 2007]
of chorus waves at the central frequency 0.25 kHz decreased from over 60 keV to about 30
keV. Figure 5 presents the electron phase space densities F' measured by TH-E satellite
around the pulse time. As time went on, the electron phase space densities had some

fluctuations. However, there were no significant differences between electron phase space
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densities before and after the pulse. These results suggest that the observed variations
of foe/fee and F' could increase the free energy for chorus wave growth after the pressure
pulse and were unlikely to cause the chorus quenching.

Figure 6 shows the evolution of geomagnetic field configuration around the pulse time.
Before the pulse, TH-E satellite was roughly in the “dayside uniform zone” with a rel-
atively small magnetic field line curvature Q ~< 0.1 Rg'. The dayside uniform zone
[Keika et al., 2012] has been characterized as a transition region between the dipolar
zone of the inner magnetosphere to the double minimum-B zone near the dayside mag-
netopause [ Tsurutani et al., 2009]. After the pulse, the dayside magnetosphere expanded
outward and the geomagnetic field curvature Q for TH-E satellite increased by ~0.1 Rg".
The increase of field line curvature would enhance the magnetic mirror force on resonant
electrons and then reduce the nonlinearity of cyclotron resonance, not conductive to the
nonlinear growth of chorus waves [Omura et al., 2008; Katoh and Omura, 2013]. These
results suggest that the dominant cause of chorus disappearance may be the increase of

ambient magnetic field inhomogeneity in this event.

5. Discussion and Conclusion

Whistler-mode waves are commonly considered to contribute significantly to the radi-
ation belt electron dynamics [see review by Thorne, 2010]. Spatiotemporal distribution
information of these whistler-mode waves is required to develop global radiation belt
models [e.g., Varotsou et al., 2005, 2008; Fok et al., 2008; Shprits et al., 2009; Subbotin
et al., 2010; Su et al., 2010, 2011b; Tu et al., 2013; Glauert et al., 2014]. Many previous

studies focused on the statistical dependence of whistler-mode waves on geomagnetic ac-
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tivity indices and solar wind parameters |e.g., Meredith et al., 2004, 2014; Li et al., 2011;
Golden et al., 2012; Agapitov et al., 2013; Tsurutani et al., 2014]. In recent years, the
prompt responses of magnetospheric whistler-mode waves to interplanetary disturbances
have received increasing attention. Disappearance of plasmaspheric hiss [Su et al., 2015]
and intensification of chorus [Fu et al., 2012; Zhou et al., 2015] induced by interplanetary
shocks have been reported. In this letter, we present the first report of simultaneous
disappearances of plasmaspheric hiss, exohiss and chorus triggered by a solar wind neg-
ative pressure pulse. In contrast to the shock-induced disappearance of plasmaspheric
hiss over about 5 h [Su et al., 2015], the disappearances of plasmaspheric hiss, exohiss
and chorus reported here lasted only about 0.5 h. Such difference in time duration may
be related to the difference in the magnetospheric disturbance intensity. However, the
disappearances of whistler-mode waves in both events were likely to occur over a vast
region of dayside magnetosphere. Our present report, together with the previous studies
mentioned above, highlight the considerable and complex variability of magnetospheric
whistler-mode waves.

Investigation of the prompt response of whistler-mode waves to interplanetary distur-
bances can help us to better understand the wave generation mechanisms. In this im-
pulsive event on 12 February 2014, three satellites from RBSP and THEMIS missions
were able to simultaneously monitor the responses of plasmas and waves both inside and
outside the plasmasphere to the interplanetary disturbance. The disappearance of chorus
is suggested to be mainly caused by the increase of dayside magnetic field inhomogeneity

[Omura et al., 2008; Katoh and Omura, 2013], rather than the potential change of local
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electron free energy. A large curvature of the background magnetic field line was not con-
ducive to the nonlinear growth of chorus waves [Omura et al., 2008; Katoh and Omura,
2013; Tao et al., 2014]. The underlying physical process in this negative pressure pulse
event may be treated as an “inverse” process acting in the shock event [Zhou et al., 2015].
As shown in the previous statistical studies [Zhou et al., 2015], interplanetary shocks
could compress the magnetosphere, reduce the magnetic field line curvature by ~0.1 Rj'
and then promote the excitation of chorus waves. The disappearances of plasmaspheric
hiss and exohiss are found to be not a result of the local plasma changes in this specific
event. Origination of plasmaspheric hiss from chorus [Bortnik et al., 2008, 2009; Li et al.,
2015] and leakage of plasmaspheric hiss into exohiss [Thorne et al., 1973; Bortnik et al.,
2008; Zhu et al., 2015] may be two appropriate prerequisites to explain this event. The
disappearances of plasmaspheric hiss and exohiss should be ultimately attributed to the

quenching of chorus.
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Figure 1. Orbits (dashed lines) of RBSP-A (blue), RBSP-B (red) and TH-E (green) satellites

in the L-M LT plane on 12 February 2014. The solid lines correspond to the satellite trajectories
in the time period from 03:00 UT to 08:00 UT. The solid dots, bold thick line, and gray shadow
represent the locations of these satellites, the magnetopause and the plasmasphere around the

pulse time, respectively.
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Figﬁ;e 2. (a) Geomagnetic activity indices SYM-H and AE; (b) Location of subsolar magne-
topause Ly, and solar wind dynamic pressure Psy; (¢) Cold electron densities N measured by
RBSP-A, RBSP-B and TH-E satellites; (d-f) Magnetic field power spectral intensities Pg ob-
served by RBSP-A, RBSP-B and TH-E satellites. In Figures 2d-f, the solid white lines represent
the SYM-H indices. In Figures 2d-e, the dashed and dotted lines represent 0.1 fee oq and 0.5 fee_eq,
where fee_eq 18 calculated as fee eq = feeBume/Bumo with the local electron gyrofrequency f.. and
the ratio Bye/Bwumo between equatorial and local magnetic field strengthes in the TS04 model
DRAFT November 16, 2016, 7:12pm DRAFT

[ Tsyganenko and Sitnov, 2005]. In Figure 2f, the dashed and dotted lines represent 0.1f.. and

0.5fce. The vertical dashed line marks the arrival time of the solar wind negative pressure pulse.
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Figure 3. (a-c, e-g) Color-coded electron omnidirectional/differential fluxes j, (d, h) magnetic
field variation AB (difference between the measured field and the International Geomagnetic
Reference Field) and (d, h) electromagnetic field components E, and E, (in the the modified
geocentric solar ecliptic coordinate system [ Wygant et al., 2013]) for twin RBSP satellites around

the pulse time. In Figures 3a-c and 3e-g, the black lines represent the SYM-H indices.

DRAFT November 16, 2016, 7:12pm DRAFT



LIU ET AL.: WHISTLER-MODE WAVE DISAPPEARANCES X-31

\/,\/“\/\v/*\vw,

é

=
0]
=
o |
g 40 | R R0 R0,
. S ORISR IR 055% .
kg 50 Io% S TN %‘“@o
| N N N
03:00 04:00 05:00 06:00 07:00 08:00 UT
12.19 12.54 12.85 13.14 13.39 13.62 MLT
~14.06 ~14.73 ~15.03 ~14.80 ~13.98 —12.58 MLAT
9.50 10.52 11.28 11.78 12.01 12.01 L

Figure 4. Temporal evolutions of (a) magnetic field strength B, (a) electron density N, (b)
ratio between plasma frequency and electron gyrofrequency fpe/fee and (c) minimum resonant
energy Ei, of chorus waves at the central frequency 0.25 kHz for TH-E satellite. The vertical

dashed line represents the arrival time of the solar wind negative pressure pulse.
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Figure 5. Temporal evolution of electron phase space densities for TH-E satellite during the

time period from 03:52 UT to 04:10 UT.
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Figure 6. Comparisons of geomagnetic field configurations in the X—-Z plane of the geocentric
solar magnetospheric coordinate system on 20-min (a) and 1-min (b) timescales, with the dia-
mond symbols denoting the TH-E satellite locations; (¢) Temporal evolution of magnetic field
line curvature @) for TH-E satellite, with the dashed line marking the arrival time of the solar

wind negative pressure pulse.
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