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Key Points.

◦ First report of simultaneous disappearances of plasmaspheric hiss, exohiss and chorus triggered

by a solar wind negative pressure pulse

◦ Disappearance of chorus caused by the increase of dayside magnetic field inhomogeneity rather

than the change of local electron free energy

◦ Disappearances of plasmaspheric hiss and exohiss resulting from the chorus quenching rather

than the change of local plasma condition
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Magnetospheric whistler-mode waves are of great importance in the radiation belt electron dy-4

namics. Here, on the basis of the analysis of a rare event with the simultaneous disappearances5

of whistler-mode plasmaspheric hiss, exohiss and chorus triggered by a solar wind negative pres-6

sure pulse, we provide evidences for the following physical scenarios: (1) nonlinear generation of7

chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss8

from chorus, and (3) leakage of plasmaspheric hiss into exohiss. After the solar wind negative pres-9

sure pulse, the dayside geomagnetic field configuration with the enhanced inhomogeneity became10

unfavored for the generation of chorus, and the quenching of chorus directly caused the disappear-11

ances of plasmaspheric hiss and then exohiss.12
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1. Introduction

Whistler-mode emission plays an important role in the acceleration [e.g., Summers et al.,13

2002; Horne et al., 2005; Reeves et al., 2013; Thorne et al., 2013a; Su et al., 2014a, b; Yang14

et al., 2016] and loss [e.g., Lyons and Thorne, 1973; Abel and Thorne, 1998; Albert , 1994;15

Su et al., 2011a, 2016; Thorne et al., 2013b; Ni et al., 2014; Baker et al., 2014; Breneman16

et al., 2015; Zhu et al., 2015; He et al., 2016] of radiation belt electrons through cyclotron17

resonant interaction [Kennel and Engelmann, 1966; Horne and Thorne, 1998; Summers18

et al., 1998]. Whistler-mode hiss is often observed as a structureless and incoherent19

band with the frequency ranging from ∼0.1 kHz to several kHz [Russell et al., 1969;20

Thorne et al., 1973; Hayakawa and Sazhin, 1992; Summers et al., 2008]. According to the21

spatial location, whistler-mode hiss is divided into plasmaspheric hiss (inside the high-22

density plasmasphere and plasmaspheric plume) and exohiss (outside the plasmasphere)23

[Russell et al., 1969; Thorne et al., 1973]. Whistler-mode chorus is usually characterized24

as a structured and discrete emission in the frequency range from 0.1–0.8 fce eq (fce eq is25

the equatorial electron gyro-frequency) outside the plasmasphere [Tsurutani and Smith,26

1974, 1977; Meredith et al., 2001; Santoĺık et al., 2003]. Recently, the low-frequency27

plasmaspheric hiss (∼ 10 Hz) [Li et al., 2013] and chorus (< 0.1 fce eq) [Cattell et al.,28

2015; Gao et al., 2016] have been detected following the substorm injection or during the29

geomagnetic storm.30

Generation mechanisms of these whistler-mode waves are of great interest in the ra-31

diation belt community. For plasmaspheric hiss, there have been two main candidate32

mechanisms: excitation by electron cyclotron instability in the outer plasmasphere [e.g.,33
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Thorne et al., 1979; Chen et al., 2014; Summers et al., 2014] and origination from chorus34

outside the plasmasphere [Bortnik et al., 2008, 2009; Li et al., 2015]. A possible scenario35

for exohiss is that plasmaspheric hiss leaks from the plasmasphere and evolves into exohiss36

in the plasmatrough [Thorne et al., 1973; Bortnik et al., 2008; Zhu et al., 2015]. Cho-37

rus is generally believed to be excited through the cyclotron resonance with anisotropic38

suprathermal (from a few keV to tens of keV) electrons [e.g., Kennel and Engelmann,39

1966; Li et al., 2009; Su et al., 2014c] near the magnetic equator [e.g., LeDocq et al., 1998]40

in the plasmatrough. In particular, the nonlinear resonance process has been proposed41

to explain the frequency-time characteristics of chorus [e.g., Nunn et al., 1997; Omura42

et al., 2008; Katoh and Omura, 2013; Nunn and Omura, 2015]. In this letter, we give the43

first report on the simultaneous disappearances of plasmaspheric hiss, exohiss and chorus44

triggered by a solar wind negative pressure pulse. This impulsive event was monitored45

by the Van Allen Probes (RBSP) mission [Mauk et al., 2013] and the Time History of46

Events and Macroscale Interactions during Substorm (THEMIS) mission [Angelopoulos ,47

2008] both inside and outside the plasmasphere, offering a rare opportunity to test the48

generation mechanisms of these whistler-mode waves.49

2. Data and Instrumentation

Geomagnetic activity indices are obtained from the World Data Center for Geomag-50

netism, Kyoto. Interplanetary parameters at 1 AU are provided by the OMNI database51

of CDAweb [King and Papitashvili , 2005]. In the OMNI database, the measured solar52

wind data sets had been time-shifted to the Earth’s bow shock nose.53
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The RBSP is a twin-satellite mission to study the Van Allen radiation belt dynam-54

ics. Background magnetic field and wave power spectral density were directly measured55

by the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS)56

suite [Kletzing et al., 2013]. Electric field was detected by the Electric Field and Waves57

(EFW) [Wygant et al., 2013] instrument. Suprathermal and energetic electron fluxes were58

observed by the Helium Oxygen Proton Electron (HOPE) Mass Spectrometer [Funsten59

et al., 2013] and the Magnetic Electron Ion Spectrometer (MagEIS) [Blake et al., 2013]60

of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite [Spence et al.,61

2013]. Background electron density can be derived from the upper hybrid resonance fre-62

quency measured by EMFISIS [Kurth et al., 2014].63

The THEMIS mission contains five satellites to study the energy releases of magne-64

tospheric substorms [Angelopoulos et al., 2008]. Background magnetic and electric fields65

were detected by the Fluxgate Magnetometer (FGM) [Auster et al., 2008] and the Electric66

Field Instrument (EFI) [Bonnell et al., 2008]. Wave power spectral density was measured67

by the Search Coil Magnetometer (SCM) [Le Contel et al., 2008]. Suprathermal and ener-68

getic electron fluxes were observed by the Electrostatic Analyzer (ESA) [McFadden et al.,69

2008] and the Solid State Telescope (SST) [Angelopoulos , 2008]. Background electron70

density can be estimated from the spacecraft potential and the electron thermal speed [Li71

et al., 2010] measured by EFI and ESA.72

3. Event overview

Figure 1 shows a schematic diagram of the magnetospheric structures and the orbits73

of RBSP and THEMIS missions on 12 February 2014. The magnetopause location is74
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estimated from the interplanetary parameters on the basis of the previous statistical model75

[Shue et al., 1998]. The plasmasphere configuration is roughly determined on the basis of76

the available density observations and the numerical simulations of Goldstein et al. [2014].77

The plasmaspheric plume formed in the time period from 18:00 UT to 24:00 UT on 1178

February 2014 with the southward interplanetary magnetic field. The apogees of RBSP-A,79

RBSP-B and TH-E satellites were located in the afternoon sector of the magnetosphere.80

Figure 2 gives an overview of the wave disappearance event observed by RBSP-A, RBSP-81

B and TH-E satellites in the time range from 03:00 UT to 08:00 UT on 12 February 2014.82

Throughout this event, the magnetosphere (with SYM-H> −25 nT and AE< 250 nT) was83

free from both magnetic storms and substorms. Around 04:00 UT, the magnetosphere84

encountered a solar wind negative pressure pulse (with a prompt decrease of SYM-H from 585

nT to−23 nT) and the subsolar magnetopause expanded from 11RE to 12 RE. In response86

to this pulse, exohiss waves detected by RBSP-A, plasmaspheric hiss waves detected87

by RBSP-B and chorus waves detected by TH-E disappeared simultaneously within the88

comparable frequency range 0.2–0.4 kHz. Note that the magnetosonic waves below 0.289

kHz were continuously observed by RBSP-A both before and after the pulse. Around90

04:30 UT, RBSP-A went into the plasmasphere and began to observe the plasmaspheric91

hiss waves. Because of the smooth variation of cold electron density measured by RBSP-92

B, the plasmapause location was hard to be determined accurately. Roughly speaking,93

RBSP-B detected plasmaspheric hiss waves during 04:30-05:00 UT, exohiss waves during94

05:00-08:00 UT and chorus waves after 06:30 UT. TH-E satellite re-observed chorus waves95

after 05:30 UT. In contrast to the wave disappearances, the recoveries of whistler-mode96
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waves observed by the three satellites had no clear correspondence to each other, primarily97

due to the highly scattered satellite locations and the absence of interplanetary triggers98

and global magnetospheric processes (e.g., substorms).99

4. Physical explanations

4.1. Disappearances of plasmaspheric hiss and exohiss

Figure 3 plots the suprathermal electron fluxes and electromagnetic fields observed by100

twin RBSP satellites around the pulse time. The local variation of magnetic field be-101

haved similarly to the SYM-H index in both shape and magnitude. The electric field102

disturbance reached ∼1 mV/m at high L-shells (RBSP-A) but became nearly invisible at103

low L-shells (RBSP-B). The compression of magnetosphere (corresponding to the peak of104

SYM-H index) increased the suprathermal electron anisotropy during a short time period105

both inside and outside the plasmasphere. After the pulse, the electron fluxes of RBSP-A106

near the loss cone were decreased to some extent, which would increase the corresponding107

electron anisotropy and then the local growth rate of whistler-mode waves. In contrast,108

for RBSP-B, there were no significant differences between electron fluxes before and after109

the SYM-H peak. These results suggest that the generations/disappearances of plasmas-110

pheric hiss and exohiss were not predominantly controlled by the local physical processes.111

Origination of plasmaspheric hiss from chorus [Bortnik et al., 2008, 2009; Li et al., 2015]112

and leakage of plasmaspheric hiss into exohiss [Thorne et al., 1973; Bortnik et al., 2008;113

Zhu et al., 2015] may be two appropriate prerequisites to explain this impulsive event. As114

shown in the previous ray-tracing simulations [Chen et al., 2009], chorus originating from115

a broad dayside region can propagate into the plasmasphere and plasmaspheric hiss can116
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propagate both azimuthally and radially over a wide spatial region. As a result, although117

the wave observations were available only at three satellite locations, the three types of118

whistler-mode waves can still be expected to disappear over a vast region of dayside mag-119

netosphere. In the last analysis, the disappearances of plasmaspheric hiss and exohiss120

may be simply attributed to the disappearance of chorus for this event.121

4.2. Disappearance of chorus

As illustrated in the previous quasilinear [e.g., Kennel and Engelmann, 1966; Li et al.,122

2009; Su et al., 2014c] and nonlinear [e.g., Nunn et al., 1997; Omura et al., 2008; Katoh123

and Omura, 2013; Nunn and Omura, 2015] simulations, the growth of chorus is largely124

controlled by the free energy of resonant electrons and the inhomogeneity of background125

magnetic field. The former is mainly determined by the ratio between plasma frequency126

and electron gyrofrequency fpe/fce and the suprathermal electron phase space density F ,127

and the latter is characterized by the magnetic field curvature Q.128

Figure 4 shows the ratio between plasma frequency and electron gyrofrequency fpe/fce129

for TH-E satellite around the pulse time. With the expansion of magnetosphere, the130

ambient magnetic field decreased from 70 nT to 45 nT while the estimated electron density131

remained a quite low value (less than 1 cm−3). Correspondingly, the parameter fpe/fce132

increased from 3.0 to 4.5 and the minimum resonant energy Emin [Summers et al., 2007]133

of chorus waves at the central frequency 0.25 kHz decreased from over 60 keV to about 30134

keV. Figure 5 presents the electron phase space densities F measured by TH-E satellite135

around the pulse time. As time went on, the electron phase space densities had some136

fluctuations. However, there were no significant differences between electron phase space137
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densities before and after the pulse. These results suggest that the observed variations138

of fpe/fce and F could increase the free energy for chorus wave growth after the pressure139

pulse and were unlikely to cause the chorus quenching.140

Figure 6 shows the evolution of geomagnetic field configuration around the pulse time.141

Before the pulse, TH-E satellite was roughly in the “dayside uniform zone” with a rel-142

atively small magnetic field line curvature Q ∼< 0.1 R−1
E . The dayside uniform zone143

[Keika et al., 2012] has been characterized as a transition region between the dipolar144

zone of the inner magnetosphere to the double minimum-B zone near the dayside mag-145

netopause [Tsurutani et al., 2009]. After the pulse, the dayside magnetosphere expanded146

outward and the geomagnetic field curvature Q for TH-E satellite increased by ∼0.1 R−1
E .147

The increase of field line curvature would enhance the magnetic mirror force on resonant148

electrons and then reduce the nonlinearity of cyclotron resonance, not conductive to the149

nonlinear growth of chorus waves [Omura et al., 2008; Katoh and Omura, 2013]. These150

results suggest that the dominant cause of chorus disappearance may be the increase of151

ambient magnetic field inhomogeneity in this event.152

5. Discussion and Conclusion

Whistler-mode waves are commonly considered to contribute significantly to the radi-153

ation belt electron dynamics [see review by Thorne, 2010]. Spatiotemporal distribution154

information of these whistler-mode waves is required to develop global radiation belt155

models [e.g., Varotsou et al., 2005, 2008; Fok et al., 2008; Shprits et al., 2009; Subbotin156

et al., 2010; Su et al., 2010, 2011b; Tu et al., 2013; Glauert et al., 2014]. Many previous157

studies focused on the statistical dependence of whistler-mode waves on geomagnetic ac-158
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tivity indices and solar wind parameters [e.g., Meredith et al., 2004, 2014; Li et al., 2011;159

Golden et al., 2012; Agapitov et al., 2013; Tsurutani et al., 2014]. In recent years, the160

prompt responses of magnetospheric whistler-mode waves to interplanetary disturbances161

have received increasing attention. Disappearance of plasmaspheric hiss [Su et al., 2015]162

and intensification of chorus [Fu et al., 2012; Zhou et al., 2015] induced by interplanetary163

shocks have been reported. In this letter, we present the first report of simultaneous164

disappearances of plasmaspheric hiss, exohiss and chorus triggered by a solar wind neg-165

ative pressure pulse. In contrast to the shock-induced disappearance of plasmaspheric166

hiss over about 5 h [Su et al., 2015], the disappearances of plasmaspheric hiss, exohiss167

and chorus reported here lasted only about 0.5 h. Such difference in time duration may168

be related to the difference in the magnetospheric disturbance intensity. However, the169

disappearances of whistler-mode waves in both events were likely to occur over a vast170

region of dayside magnetosphere. Our present report, together with the previous studies171

mentioned above, highlight the considerable and complex variability of magnetospheric172

whistler-mode waves.173

Investigation of the prompt response of whistler-mode waves to interplanetary distur-174

bances can help us to better understand the wave generation mechanisms. In this im-175

pulsive event on 12 February 2014, three satellites from RBSP and THEMIS missions176

were able to simultaneously monitor the responses of plasmas and waves both inside and177

outside the plasmasphere to the interplanetary disturbance. The disappearance of chorus178

is suggested to be mainly caused by the increase of dayside magnetic field inhomogeneity179

[Omura et al., 2008; Katoh and Omura, 2013], rather than the potential change of local180
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electron free energy. A large curvature of the background magnetic field line was not con-181

ducive to the nonlinear growth of chorus waves [Omura et al., 2008; Katoh and Omura,182

2013; Tao et al., 2014]. The underlying physical process in this negative pressure pulse183

event may be treated as an “inverse” process acting in the shock event [Zhou et al., 2015].184

As shown in the previous statistical studies [Zhou et al., 2015], interplanetary shocks185

could compress the magnetosphere, reduce the magnetic field line curvature by ∼0.1 R−1
E186

and then promote the excitation of chorus waves. The disappearances of plasmaspheric187

hiss and exohiss are found to be not a result of the local plasma changes in this specific188

event. Origination of plasmaspheric hiss from chorus [Bortnik et al., 2008, 2009; Li et al.,189

2015] and leakage of plasmaspheric hiss into exohiss [Thorne et al., 1973; Bortnik et al.,190

2008; Zhu et al., 2015] may be two appropriate prerequisites to explain this event. The191

disappearances of plasmaspheric hiss and exohiss should be ultimately attributed to the192

quenching of chorus.193
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Figure 1. Orbits (dashed lines) of RBSP-A (blue), RBSP-B (red) and TH-E (green) satellites

in the L–MLT plane on 12 February 2014. The solid lines correspond to the satellite trajectories

in the time period from 03:00 UT to 08:00 UT. The solid dots, bold thick line, and gray shadow

represent the locations of these satellites, the magnetopause and the plasmasphere around the

pulse time, respectively.
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Figure 2. (a) Geomagnetic activity indices SYM-H and AE; (b) Location of subsolar magne-

topause Lmp and solar wind dynamic pressure Psw; (c) Cold electron densities N measured by

RBSP-A, RBSP-B and TH-E satellites; (d-f) Magnetic field power spectral intensities PB ob-

served by RBSP-A, RBSP-B and TH-E satellites. In Figures 2d-f, the solid white lines represent

the SYM-H indices. In Figures 2d-e, the dashed and dotted lines represent 0.1fce eq and 0.5fce eq,

where fce eq is calculated as fce eq = fceBMe/BMo with the local electron gyrofrequency fce and

the ratio BMe/BMo between equatorial and local magnetic field strengthes in the TS04 model

[Tsyganenko and Sitnov , 2005]. In Figure 2f, the dashed and dotted lines represent 0.1fce and

0.5fce. The vertical dashed line marks the arrival time of the solar wind negative pressure pulse.
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Figure 3. (a-c, e-g) Color-coded electron omnidirectional/differential fluxes j, (d, h) magnetic

field variation ∆B (difference between the measured field and the International Geomagnetic

Reference Field) and (d, h) electromagnetic field components Ey and Ez (in the the modified

geocentric solar ecliptic coordinate system [Wygant et al., 2013]) for twin RBSP satellites around

the pulse time. In Figures 3a-c and 3e-g, the black lines represent the SYM-H indices.
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Figure 4. Temporal evolutions of (a) magnetic field strength B, (a) electron density N , (b)

ratio between plasma frequency and electron gyrofrequency fpe/fce and (c) minimum resonant

energy Emin of chorus waves at the central frequency 0.25 kHz for TH-E satellite. The vertical

dashed line represents the arrival time of the solar wind negative pressure pulse.
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Figure 5. Temporal evolution of electron phase space densities for TH-E satellite during the

time period from 03:52 UT to 04:10 UT.
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Figure 6. Comparisons of geomagnetic field configurations in the X–Z plane of the geocentric

solar magnetospheric coordinate system on 20-min (a) and 1-min (b) timescales, with the dia-

mond symbols denoting the TH-E satellite locations; (c) Temporal evolution of magnetic field

line curvature Q for TH-E satellite, with the dashed line marking the arrival time of the solar

wind negative pressure pulse.
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