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First paragraph

Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early
in embryogenesis will often be present in a substantial proportion of, but not all, cells in the post-natal
human and thus have particular characteristics and impact!. Depending upon their location in the
genome and the proportion of cells they are present in, these mosaic mutations can cause a wide
range of genetic disease syndromes? and predispose to cancer®4. They have a high chance of being
transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early
human embryonic cell lineages and their contributions to adult tissues®. Although it is known that
gross chromosomal abnormalities are remarkably common in early human embryos® our
understanding of early embryonic somatic mutations is very limited. Here, we use whole genome
sequences of adult normal blood from 241 individuals to identify 163 early embryonic mutations. We
estimate that approximately three base substitution mutations occur per cell per cell-doubling in early
human embryogenesis and these are mainly attributable to two known mutational signatures?’. We
used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two
daughter cells of many early embryonic cell doublings contribute asymmetrically to adult blood at an
approximately 2:1 ratio. This study therefore provides insights into the mutation rates, the mutational
processes and the developmental outcomes of cell dynamics operative during early human

embryogenesis.



Main text

In adult tissues, somatic mutations of early embryonic derivation can be distinguished from inherited
polymorphisms as they will generally show lower variant allele fractions (VAFs). For example, somatic
mutations arising in one of the two daughter cells of the fertilized egg will show VAFs of ~25% (Fig.
1a), compared to ~50% for inherited heterozygous polymorphisms, if the two cells have contributed
equally to the adult tissue analysed®. To identify early embryonic base substitutions, we analysed
whole-genome sequences of blood samples from 279 individuals with breast cancer (mean
sequencing coverage 32-fold; Supplementary Table 1) seeking mutations with VAFs ranging from 10%
to 35%. To remove inherited heterozygous polymorphisms which by chance fell within this range, we
phased candidate low VAF mutations to nearby germline heterozygous polymorphisms (Fig. 1b;
Supplementary Discussion 1). Substitutions present in regions with copy number variation were
also excluded (Extended Data Fig. 1). After experimental validation by ultrahigh-depth targeted
sequencing (median read-depth=22,000; Supplementary Table 2), we identified 605 somatic base
substitutions with accurate VAF estimates (Extended Data Fig. 2) that appeared to be present in only

a proportion of adult blood cells.

Mutations present in a subset of white blood cells can also reflect the presence of neoplastic clonal
expansions arising from adult haematopoietic stem cells®'". We excluded samples showing evidence
of neoplastic clones on the basis of the following features (Fig. 1c-1e; Extended Data Fig. 3;
Supplementary Discussion 2): many (n>4) low VAF mutations; absence of the mutations in breast
cancers from the same individuals; presence of known driver mutations for haematological neoplasms
(Supplementary Table 1); multiple mutations showing similar VAFs (Extended Data Fig. 4). The
median age of the 38 individuals carrying these cryptic neoplasms was 12 years higher than the other
cases (64 vs. 52 years, respectively; P=0.00003; Fig. 1f), consistent with previous reports®''. We
thus obtained 163 mosaic mutations from 241 individuals, the large majority of which are likely to
have arisen during early human embryogenesis (Fig. 1g; Supplementary Table 3; Extended Data
Fig. 5). From one individual, multiple single leukocytes were sequenced to confirm that the mutation

was only present in a subset (Fig. 1h).



Most mutations of early embryonic origin would be expected to be present in all normal tissues and
not just in white blood cells. From 13 individuals with putative early embryonic mutations (n = 21) in
blood, we sequenced normal breast (composed of cells of ectodermal and mesodermal origins) and
lymph nodes (composed of cells of mesodermal origin). Consistent with their proposed embryonic
origin, most mutations were found in the additional normal tissues, with VAFs indicative of being
mosaic and correlating with those in blood (Fig. 1i). The VAFs were generally lower in normal breast
and lymph node than in blood, suggesting that different tissues may develop from slightly different
subpopulations of early embryonic cells and/or that unequal lineage expansions occur later in

development (Supplementary Discussion 3).

In contrast to normal tissues, which are composed of multiple somatic cell clones, a breast cancer
derives from a single somatic cell. Thus an early embryonic mutation would be expected either to be
present in all cells of a breast cancer or in none (Figs. 1a, 1d-e) (although in practice the presence of
contaminating non-cancer cells in the cancer sample has to be corrected for; Methods). This was the
pattern observed, with 37 mosaic mutations shared between the blood and the breast cancer from the
same individuals, 105 non-shared and 21 uncertain, either due to a large deletion in the relevant
region of the cancer genome (n=14) or statistical ambiguity (n=7) (Figs. 2a, 2b). The proportion of
early embryonic mutations shared between the blood and the cancer is predicted to change according
to the stage of early embryonic development at which the mutation occurred, with mutations acquired
later (and thus with lower VAF) shared less often (Extended Data Fig. 3a). Consistent with this
expectation, embryonic mutations with lower VAFs in blood were shared less frequently with breast

cancers (Fig. 2c¢).

These patterns of sharing of low VAF mutations in blood (which is of mesodermal origin) with normal
and neoplastic breast tissue (which is of ectodermal origin) supports a model in which the most recent
common ancestor (MRCA) cell of adult blood cells is the fertilized egg (Extended Data Figs. 6, 7;
Supplementary Discussion 4), or is the MRCA cell of all/most somatic cells, rather than an
alternative model of a single MRCA of the blood occurring at a later stage of embryogenesis with very

restricted subsequent fate.



The VAFs of the 163 validated early embryonic mutations in blood, which ranged from 45% to 1%
provided insights into the early cellular dynamics of embryogenesis (Fig. 3a). If, in the large majority
of embryos, the first two daughter cells of the MRCA cell of blood contributed equally to adult blood
cells (symmetric cell doubling), a narrow 25% VAF peak would be expected for mutations acquired at
this stage. However, this peak was not observed indicating that asymmetric contributions are common.
To explore the basis of this asymmetrical contribution systematically, we generated a series of models
of cell genealogies in which different branches contributed unequally to adult blood (Methods). The
asymmetry that best fitted the observed VAF distribution is an average, across embryos, ~2:1
contribution of the first two daughter cells (cells 1-1 and I-2; Figs. 3b, 3c). Moreover, this ~2:1
asymmetric cell contribution appears to extend to some cells of the second cell generation (cells 11-1
and 1I-2; Figs. 3b, 3c) and possibly of the third cell generation. The model with unequal contributions
was clearly superior to a null model of strictly symmetric cell doublings (P=1x10-°, likelihood ratio test,
Figs. 3a, 3b). This frequent unequal contribution of the earliest human embryonic cells to adult

somatic tissues is consistent with previous indications from studies of mouse development®12-15,

Two classes of biological mechanism may underlie these asymmetrical contributions. One daughter
cell and its progeny may contribute more because they intrinsically have a lower death rate, a higher
proliferation rate and/or a preference for contributing to embryonic compared to extra-embryonic
tissues'-16. Indeed, studies in mice have shown that cells separated from 2-cell embryos have
different intrinsic developmental potentials'®17. Alternatively, the stochastic consequences of a
bottleneck in early embryo development could be the source of the asymmetry. In the early blastocyst
stage human embryo, composed of 50-100 cells (blastomeres), only the minority of cells (<20)
present in the inner cell mass (ICM) eventually contribute to adult somatic tissues'®. Under a model in
which a small number (<20) of ICM founder cells are selected at random from a blastocyst composed
of many (>50) blastomeres and most founder cells contribute to adult cell populations, it is likely that
the progeny of the first two embryonic cells will, in many embryos, be selected in unequal proportions,
as recently observed in mouse'. Simulations indicate that stochastic allocation of early human
embryonic cells into the ICM results in levels of asymmetric contribution similar to those observed (Fig.
3d; Extended Data Fig. 8; Methods). Assuming the stochastic hypothesis is correct, we estimate that

~10 ICM founder cells give rise to blood (Fig. 3d).



Using the asymmetric cell-doubling model, we estimated a rate of 2.8 substitution mutations per early
embryonic cell per cell-doubling (Fig. 4a; 95% confidence interval 2.4-3.3; Supplementary
Discussion 5). A similar rate was obtained under a simple model without asymmetric contributions
(Fig. 4a). This early embryonic mutation rate is comparable to, but may be slightly higher than, the
germline mutation rate (~0.2-1.4 mutations per diploid-genome per cell division)'®. However, our
mutation rate per cell-doubling may not equate to the rate per cell division because early embryonic
development may involve cell loss, perhaps due to fatal chromosomal aberrations®, and thus each
cell-doubling may entail more than a single cell division. If so, the mutation rate per cell per cell
division will be lower than the estimated rate per cell per cell-doubling. We validated the early
embryonic mutation rate using whole-genome sequences of bloods from three large families'® (Fig.
4b). We found seven substitution mutations in children that were not present in their parents that had
features described above of early embryonic mutations (Extended Data Fig. 9) and obtained a
similar early embryonic mutation rate of 2.8 per cell per cell doubling (95% Poisson confidence
interval 1.1-5.8; Fig. 4a). The mutational spectrum of early embryonic mutations was predominantly
C:G>T:A (42.9%), T:A>C:G (25.1%) and C:G>A:T substitutions (16.6%), similar to that of de novo
germline mutations'® (Figure 4c) and is likely caused by multiple endogenous mutagenic processes

(Extended Data Fig. 10; Supplementary Discussion 6).

Very few early post-zygotic mutations have been reported’®-2!. We identified 163 mosaic mutations
from 241 individuals which exhibit the characteristics of early embryonic origin (although we cannot
exclude a small residual set of other types of mutations). With the accurate VAF information and the
proportion of mutations shared with cancer, we explored developmental processes. An average ~2:1
asymmetry of early human embryonic cells in their contributions to adult tissues (at least to blood)
was revealed, providing insight into the fates of cells at early developmental stages. However, our
conclusion is based upon statistical reconstructions and requires corroboration through larger studies
particularly involving multiple tissues. The results also allowed estimation of the mutation rate and
characterization of the mutational processes underlying base substitutions in the early human embryo,
which appear comparable to those in mouse embryogenesis® and human adult somatic tissues?2-24,

The early human embryonic mutation rate estimated here indicates that, using similar methods to



those introduced in mice5, reconstruction of cell lineage trees using somatic mutations should be

possible in humans.
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Figure Legends

Figure 1. Detection of somatic mutations acquired in early human embryogenesis.

(a) Transmission of an early embryonic mutation. Embryonic cells (circles), their diploid genomes
(black bars), and an early mutation (red-square) are represented.

(b) Early embryonic mutations appear as somatic mosaicism in normal polyclonal tissue (for example,
blood).

(c) Distribution of the numbers of early embryonic mutations per individual genome. The proportion of
mutations non-shared with cancer is shown (green-line). Error bars denote 95% confidence intervals
(binomial test).

(d-e) Early embryonic mutations can appear as either absent (‘non-shared’; d) or fully clonally present
(‘shared’; e) in cancer cells depending on the embryonic cell lineage from which the cancer is derived.
(f) The median age of individuals with evidence of neoplastic expansion in blood is 12 years higher
than individuals without it. P value from t-test.

(g) A circos plot showing 163 early embryonic mutations identified from 241 individuals.

(h) A mosaic mutation validated by single-cell sequencing.

(i) Embryonic mutations (n=21) confirmed in non-blood normal tissues (breast or lymph node; n=13).

Figure 2. Features of early embryonic mutations.

(a) An example of an embryonic mutation non-shared with cancer. The minimal low VAF (2.6%)
observed in the tumor ultrahigh-depth amplicon sequencing is consistent with a contaminating
population of mutant non-neoplastic cells.

(b) An example of an embryonic mutation shared with cancer. The high VAF (42.1%) in the tumour
ultrahigh-depth amplicon sequencing is consistent with a clonal mutation in cancer cells and a
contaminating population of wild-type non-neoplastic cells.

(c) The proportion of shared mutations correlates with the VAF of mutations in blood.

Figure 3. Unequal contributions of early embryonic cells to adult somatic tissues.
(a) The VAF distribution of 163 early embryonic mutations in blood. Light green bars, VAFs from

ultrahigh-depth amplicon sequencing; gray bars, VAFs from whole-genome sequencing (when

13



ultrahigh-depth amplicon sequencing is not available). The expected distributions of VAFs (with
adjustment for sensitivity of mutation detection) from symmetric (black-line) and best-fitting
asymmetric cell doubling models (red-line).

(b) A contour plot showing the optimization of asymmetries in cell doublings. The horizontal axis and
vertical axis present the asymmetry levels for the first and the second dominant cell doublings (cell
doubling of MRCA and I-1 cells (see Fig 3c), respectively). Compared to the symmetric model (black
arrow), the maximum likelihood asymmetric model (red arrow) provides a much better fit to the data
(P=1x10-9, Likelihood Ratio Test).

(c) Maximum likelihood relative contributions of early cells to the adult blood cell pool (pie chart). The
asymmetries of each cell doubling are shown using horizontal bar graphs (blue bar, significant
asymmetry; grey bar, nonsignificant asymmetry). Error bars denote 95% confidence intervals from
non-parametric bootstrapping.

(d) Simulation study under a stochastic bottleneck model according to the number of ICM founder

cells. The relative contributions of the first four cells are shown (Methods).

Figure 4. Rates and mutational spectra of early embryonic mutations.

(a) Estimates of early embryonic mutation rates. Best-fitting asymmetric model (top), symmetric model
(middle) and family study (bottom) provide similar rate. Broken lines represent 95% confidence
intervals from bootstrapping (Methods).

(b) Early embryonic mutations obtained from 3 large families. Each mutation is shown with a number
(index) inside the white rectangles or circles in the pedigrees. Sequencing reads are shown for one of
the mutations (#5) in family 569.

(c) Similar mutational spectra (ref. 7) obtained from 163 early embryonic mutations and from 747 de

novo mutations reported previously (ref. 18).
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METHODS

Samples and sequencing data

For initial discovery of early embryonic mutations, we analyzed whole-genome sequencing data from
304 blood samples of breast cancer patients which were sequenced as normal controls for the ICGC
(International Cancer Genome Consortium) breast cancer study?>. Genomic DNA was extracted from
bulk white-blood cells collected from fresh peripheral bloods. Matched breast cancer samples for all
the individuals were also analysed in parallel. Of these, 25 samples with putative DNA contamination
were removed (see below for more details), and 279 samples were used for the detection of early
embryonic mutations (the sample information is available in Supplementary Table 1). For validating
the early embryonic mutation rates, we also used whole-genome sequencing data from 19 blood
samples from 3 families?*. For confirmation of early embryonic mutations in non-blood normal tissues,
we extracted genomic DNA from FFPE (formalin-fixed and paraffin embedded) lymph nodes and
normal breast tissue surgically resected during mastectomy procedures (sample history is available
in Supplementary Table 1). The whole-genome sequencing data analysed in this study were
generated using lllumina platforms (either Genome Analyzer or HiSeq 2000). Sequencing reads were
aligned to human reference genome build 37 (GRCh37) using the BWA alignment tool?6. All PCR

duplicate reads were removed.

DNA contamination control

We thoroughly checked for possible sources of DNA contamination: tumour-normal swap; matched
tumour DNA contamination in blood; and cross-contamination with DNA from other individuals. Cases
of tumour-normal sample swap were identified by examining the presence of genome-wide copy
number variations in the putative normal samples. Cases of matched tumour DNA contamination
were identified by examining the VAFs in the blood sequencing data for the somatic substitution
variants identified in the matched cancer using CaVEMan software?” (available at

https://github.com/cancerit/CaVEMan/). When the average VAF of cancer specific substitutions was

more than 1% in a blood sample, we regarded the blood sample to be contaminated by a matched
tumour DNA sample. Finally, for each sample, the level of DNA cross-contamination with tissue from

other individuals was estimated as described previously?8.
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Variant calling

VarScan2 software?® was used for initial early embryonic variant calling. Input vcf files were generated
from whole-genome sequencing bam files using samtools3® mpileup with three options -q 20, -Q 20
and -B. Then VarScan2 somatic was applied to blood samples with matched tumour samples as
reference. Three options were applied for the VarScan2 running, --min-reads2 4, --min-ave-qual 20,
and --strand-filter. We selected substitution variants with VAFs ranging from 0.1 to 0.35 as putative
early embryonic mutations. We removed putative mutations near germline indels (within Sbp),
because these are mostly false positives due to mismapping. Putative mutations likely to be
sequencing artifacts and/or germline polymorphisms were removed if the variants were also present
in the unmatched blood samples analysed in this study, or were known germline polymorphisms with
at least 1% population allele frequency identified from the 1000 Genomes Project (Nov.2013), or
deposited in dbSNP (v138). We removed putative variants in segmental duplications, simple repeats,
repetitive sequences (RepeatMasker) and homopolymer sequences in the human reference genome

(downloaded from UCSC genome browser, http://genome.ucsc.edu/).

Substitution phasing

We phased the putative embryonic variants to heterozygous germline substitutions using sequences
from whole-genome sequencing as described previously?®3', For more conservative phasing, we did
not use sequences at the 4bp extremes of each read, where substitutions and indels are not well
called. From blood whole-genome sequencing data, we classified the putative variants into 4 groups,
‘phasing not available’, ‘mixed pattern’, ‘no evidence of subclonality’ and ‘subclonal’ using criteria as
follows:
(1) Phasing not available: no available read covering both the mutation and the heterozygous
SNP in the vicinity
(2) Mixed pattern: the putative variant is present in both the bi-allelic haplotypes of heterozygote
SNPs
(3) No evidence of subclonality: the putative variant is completely and exclusively present on one

of the two haplotypes of heterozygote SNPs
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(4) Subclonal: the putative variant is present in a fraction of one of the two haplotypes of

heterozygote SNPs. The variant is not present on the other haplotype.

Putative mutations categorized other than subclonal were removed. For the subclonal mutations, we
estimated the probability of false subclonality due to sequencing errors. For this calculation, we
counted only informative reads, which were participating in the phasing: reads covering the putative
mutation locus and one of the alleles of the inherited heterozygous SNP in which the early mutation is

linked.
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Q1 and Q2 are sequencing error rates of the bases at the putative mutation and the heterozygote
SNP loci, respectively; i represents each of the informative reads harboring the mutant base at the
early embryonic mutation site; V is the total number of informative reads with the mutant base;
likewise, j represents each of the informative reads harboring a wild-type base at the early embryonic
mutation site and W is the total number of such reads. When there was more than one heterozygous
SNP site that was used for phasing, we calculated a string of phasing error rates (Peror) from every

SNP site and multiplied them to obtain an overall phasing error rate.

Substitutions at regions of copy number variation

We removed any putative mutation if it was located in a region with copy number higher than two. We
isolated potential copy number variation of each genome using both intra-sample and inter-sample
methods. For the intra-sample method, we calculated the standard deviation of read-depth from all
(~2 million) germline heterozygous SNP sites from every normal whole-genome sequencing dataset.
When the local coverage of an early embryonic mutation candidate was higher than the 95%
percentile (i.e. local depth is greater than genome-wide mean WGS coverage + 1.645 x stdev; for
example, the cutoff is approximately 46x in typical 30x coverage sequencing) of the sample, we
considered the site was possibly duplicated thus removed from our further analyses (Extended Data

Fig. 1a). For the inter-sample method, we clustered the normalized normal WGS read counts of a
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candidate region (from 1kb upstream of the mutation site to 1kb downstream) from all the samples
included in this study. If the normalized copy number of the target sample was either an outlier in the
clustering or was two times higher than expected from genome-wide average, the mutation candidate
was considered to locate in a germline copy number variant region and thus filtered out (Extended

Data Figs. 1b, 1c).

Mutations shared by the paired tumour tissue

Then we investigated whether the early embryonic mutation candidates were also present in cells of
the breast cancer from the same individual. This is not always straightforward because (1) whole-
genome sequencing of cancer tissue generates a mixture of sequences from cancer and
contaminating normal cells and (2) copy number changes are quite frequent in the cancer genome.
Using the ASCAT algorithm32, based on analysis of the variant allele fraction for heterozygous
germline SNPs for regions departing from diploidy in the tumour genome, we estimated the tumour
cell fraction (‘f' in the formula below), ploidy of cancer genome (‘p’) and local A (major) and B (minor)
allele copy numbers (‘a’ and ‘b’, respectively). Each mutant allele was previously phased to either A or
B allele nearby. Using these estimates, we built a model for the expected number of reads (N)

supporting the mutant allele in paired-cancer genome sequencing in three different scenarios:

I) The mutant allele is not shared (and approximate 95% binomial confidence interval),
N = Dry, (95% CI:1.96,/ D1y (1 — my) )
, D is the read-depth of the mutant site in matched cancer WGS sequencing and

py = 20—

e
/((a +b)f +2(1-1))

, p is the expected VAF of the mutant allele.

II) The mutant allele is phased to B allele (with 95% confidence interval),

N = Dmy,(95% CI: 1.96,/ D, (1 — m,))

T = (fb+2(1—f)P)/
1 ((@a+b)f +21-1))

If ns = 0 we cannot differentiate scenario | and Il (loss-of-mutant allele).

[l1) The mutant allele is phased to A allele (with 95% confidence interval),
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N = Dmy, (95% CI: 1.96,/Dm, (1 — 1,))

my = Fer20-Pp)y

((@a+b)f +2(1-1))
According to these models, we assigned our mutation to four groups: ‘non-shared’ (model I), ‘shared’
(model Il or Ill), ‘loss-of-mutant allele’ (when the mutant allele is phased to B allele and b is 0) and
‘uncertain’ (when more than 1 model could explain or no convincing ASCAT result is available for the

sample).

Visual inspection

We visually inspected all the candidate embryonic mutations using the Integrative Genomic Viewer33
and JBrowse3*. We confirmed that genomic regions with putative embryonic mutations were not in
sequences with evidence of artifacts and thus that any putative mutation was supported by high

quality sequencing reads. Two examples of early embryonic mutations are shown in Figs. 2a and 2b.

Validation by MiSeq amplicon sequencing

We tried to validate all the putative early embryonic mutation sites. We designed 959 pairs of PCR
primers (Supplementary Table 2) for 863 candidate early mutations to make amplicons for the
putative mutation sites along with the nearby heterozygote SNPs used for phasing from the blood and
paired-cancer DNA samples of the individual harboring the putative mutation. After clean-up using
ExoSAP-IT (Affymetrix Inc., Santa Clara, CA, USA), all amplicons from blood and matched cancer
tissues were separately pooled and sequenced by 2 x 250bp MiSeq sequencing (lllumina Inc., San
Diego, CA, USA) 2 runs per pool, expecting > 1000x coverage per amplicon (median read-
depth=22,000x). Because the read-depth is very high in amplicon sequencing, we could obtain a
much more precise variant allele fraction of the putative embryonic mutation along with accurate
phasing to the germline heterozygote substitution. The VAFs for germline heterozygote substitutions
in non-repetitive genome regions showed a clear peak at 0.5 (Extended Data Fig. 2a). To estimate
the extent to which the amplification process biased the VAFs, we fitted a beta-binomial distribution
with mean 0.5 and dispersion to the numbers of reads supporting both alleles in heterozygous SNPs
(which have an expected VAF=0.5). This confirmed that the additional uncertainty introduced by
amplifications was very small (6 = 223.88, overdispersion p = 1/(1+ 8) = 0.004). This estimate of the

overdispersion was used in the maximum likelihood asymmetric models. The targeted amplicon
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sequencing showed high precision in the assessment of the VAF of a mutation (Extended Data Fig.
2b). The MiSeq validation experiment confirmed that the candidate mutations were not sequencing
artifacts nor inherited mutations both from the resulting VAFs (ranged from 0.01 to < 0.5, mostly <
0.35) and from phasing to the local heterozygous SNP. From this validation study, we found that there
is a clear linear relationship between phasing error rates (as calculated above) and validation success
rate (data not shown). We could not create amplicons from some mutation candidates due to lack of
DNA samples or unsuccessful PCR reactions. Of these, we rescued 14 early embryonic mutations
because they are likely to be true on the basis of phasing error probability in whole-genome

sequencing (Supplementary Table 3).

Validation using single cells

From the blood of one individual (PD7344) we sorted 144 granulocytes. Genomic DNA of each single
cell was extracted and whole-genome amplified (WGA) using the REPLI-g Single Cell Kit (Qiagen Inc.)
using the manufacturer’s protocol. Of the 144 single cells, 131 provided substantial amounts of WGA
DNA. PCR amplicons were produced targeting the early embryonic substitutions in the sample
(chr3:187268541 C>A). PCR reactions were successful from 118 WGA DNAs. After clean-up of the
118 PCR products, capillary sequencing was performed. Of these, 41 showed allelic dropout of the
DNA haplotype on which the embryonic mutation was present (i.e. absence of the T allele of
rs17726238) and thus were not further considered. Among the 77 informative amplicon sequencing

results, 24 showed clear evidence of the embryonic substitutions as shown Fig. 1h.

Late somatic mutations due to clonal haematopoiesis

Age-related clonal haematopoiesis is quite common, and observed in more than 10% of persons older
than 65 years old®'". Like mutations that have occurred in the very early embryo, these late mutations
appear to be subclonal (mosaic) in adult blood. However, such late mutations are rarely shared with
the breast cancer sample from the same individual because the vast majority of them occurred after
formation of the three germ layers, specifically in the mesodermal lineage. In addition, late clonal
expansions in the blood invariably carry a large number of co-clonal mutations accumulated
throughout life®®, and so many subclonal mutations with similar VAFs are detected together in the

blood sample. In this study, we found that each blood sample harbors a median of 1 validated phased
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subclonal mutation. According to their distribution (Fig. 1¢), we regarded 31 samples with at least 5
validated subclonal mutations as outlier samples, defined as deviating from the median value by more
than twice the interquartile range. Consistent with the hypothetical presence of late clonal expansions
in these outlier samples, the proportion of non-shared mutations abruptly increases from this point
(Fig. 1c). Furthermore, we searched 72 cancer genes (gene list is available in Supplementary Table 1)
which have been reported to drive clonal haematopoiesis®'! for low VAF somatic mutations
(supported by at least 3 mismatches) and identified eight samples with mutations in DNMT3A, ASXL1,
JAK2, PTPN11 and CBL genes. Of these, four samples were found among the 31 outlier samples.
Conservatively, the remaining four samples were also classified as containing clonal haematopoiesis
despite the small number of mutations found in them, and therefore removed from downstream
analyses. Finally, we assessed whether mutation candidates obtained from each sample showed
significantly similar VAFs to each other compared to the other samples, indicating that those
mutations may be present in same blood clone, and thus filtered out three additional samples. Indeed,

from the 38 filtered samples, we observe that mutations have more similar VAF to the other mutations

in the same sample (calculated by VAFi/W, where | represents each mutation in the sample)

compared to the mutations in samples with 2-4 mutations (Extended Data Fig. 4). As a result, out of
the total 279 samples, we classify 241 samples as having no evidence of clonal haematopoiesis, and
therefore informative for detecting embryonic mutations (Extended Data Fig. 5).

Finally, we assessed whether matched tumour sequences showed evidence of the mutant allele with
significantly higher VAFs than background sequencing error rate levels (Extended Data Fig. 2¢). This
would be expected, because normal cells are always present in cancer samples and a fraction of the
normal cells would carry the mutant allele if a mutation is truly embryonic origin. Fifteen candidate
mutations, from which the VAFs in the matched cancer are not higher than background, were
removed through this step. After application of all filters, we identified 163 likely early embryonic

mutations from 241 samples.

Asymmetry in early cell doublings

In order to fit different lineage models to the VAF of embryonic mutations, we used a likelihood
approach. If read counts were fully independent, allelic counts from each mutation could be modelled

as being binomially distributed. However, to account for the overdispersion caused by the
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amplification process prior to library preparation, we assume allelic counts to be beta-binomially
distributed. As shown above, we estimated the overdispersion parameter 6=223.9 (Clgs%: 201-248).
Over 98.7% of heterozygous SNPs had a VAF in the range [0.4,0.6] in the re-sequencing dataset

(Extended Data Fig. 2a)

If the first cell doubling gives rise to two daughter cells that contribute equal numbers of cells to the
adult (or the adult blood population), the doubling is considered symmetrical. Otherwise, the doubling
is considered asymmetrical, with one cell contributing a fraction a1 of the cells in the adult and the
other cell 1-a1. Assuming that embryonic mutations are heterozygous, the expected VAF of a mutation
occurring in branch 1 of the lineage is 0.5*a1 and in branch 2 is 0.5*(1-a1). The same applies to any
doubling in the lineage, with the two daughter cells contributing an and 1-an, relative to the contribution
of the mother cell (n). This allows calculating the expected VAFs in the adult cell population for

mutations occurring at each branch of the model lineage tree (vs).

For each embryonic mutation, j, we observe the number of mutant reads (m;) and the total coverage
at the site (¢;). The likelihood of observing a given mutation under a particular lineage model requires
integrating the likelihood of observing the mutation under each branch of the lineage, considering also
the mutation rate at each branch and the sensitivity to mutations from each branch. In other words,
the VAFs are fitted to a mixture model as mutations could have occurred at any branch in the tree.

The total log-likelihood of the model is the sum of the log-likelihoods from all mutations.

H Z . Z BetaBin(m;, cj, vy, 0) % rp * Sp
b=1"Tb* Sb

Where N is the total number of mutations in the dataset (N=163), B is the total number of branches in
the model and r; is the (relative) mutation rate of the branch. s, is the (relative) sensitivity to mutations
from the branch, which is a function of the expected VAF of mutations from the branch (vp). Sensitivity

as a function of VAF is calculated as described in the section below.

Statistical comparison of models of increasing complexity
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In order to evaluate whether a lineage with one asymmetric doubling fits the data significantly better
than a symmetric model, we obtained the maximum likelihood estimate for an from each of the 15
doublings from the first 4 cell-generations while keeping all other doublings symmetrical. The best 1-
asymmetric-rate model is tested against the symmetric model with a likelihood ratio test with 1 degree
of freedom, and the p-value is subjected to Bonferroni multiple testing correction to account for the 15

models evaluated. This revealed that a lineage where the first doubling is asymmetric with a1=0.61 fits

the data much better than a symmetric model (LL0=-1444.4, LL1=-1366.3, P <10-1%).

In order to test models with additional asymmetric rates we used a heuristic approach. Instead of
testing all possible combinations of asymmetric rates, we tested the impact of adding an extra
asymmetric rate to the previous model (14 alternative models). The best model included asymmetry in
the cell doubling of the dominant daughter cell in the first cell doubling (LL1=-1366.3, LL2=-1349.102,
Bonferroni-corrected P=3.1e-08). The same approach was used to find a better model with three and
four asymmetric doublings. The best model with three asymmetric doublings is only marginally better
than the best model with two asymmetric doublings (LL3=-1344.784, Bonferroni-corrected P=0.021).

More complex models provided no significantly improved fits to the data.

In order to evaluate whether other asymmetric lineages with two or three asymmetric rates could
provide better fits, we exhaustively calculated the maximum-likelihood values of all possible lineages
with two or three asymmetric doublings in the first four cell-generations. No model provided a better fit
to the ones found by the heuristic approach. This analysis strongly supports a lineage with at least

two asymmetric rates (first and second branches).

The confidence intervals shown in Fig. 3¢ were calculated by non-parametric bootstrapping (i.e.

resampling the original data with replacement) followed by numerical search of the maximum

likelihood values of the top seven rates in the lineage.

Estimating the average mutation rate from asymmetric lineage models

Assuming a given lineage model, a global estimate for the average mutation rate per genome per

doubling in the early embryo can be obtained with the following equation:

23



N
S35

N is the total number of embryonic mutations detected (N=163), S is the number of samples studied
(S=241) and s, is the sensitivity to detect a mutation from a particular branch of the lineage tree.
Further, an approximate estimate of the average mutation rate at different cell generations could be
obtained using an Expectation-Maximisation (EM) algorithm. These estimates may be more robust
against possible contamination from neoplastic expansions at very low VAFs than the global estimate

above.

Assuming a particular lineage, the relative probability (expectation step) of a mutation (j) coming from
one particular branch (b) is given by:

BetaBin(my;,c;, vy, 0) 1y * sy

Zil BetaBin(my;,c;,v;, 0) * r; % s;

Poj =

In the first iteration of the EM algorithm, the mutation rate (r;) of all branches is considered identical.
The number of mutations estimated to come from each branch is then calculated as the sum of these

probabilities across all mutations:

N
Ny = Z Db
j=1

Ny is then used to update the mutation rate per branch (maximisation step). And these two steps are
iterated until convergence, obtaining an improved fit to the data and estimates of the mutation rates
per branch. To constrain the parameters of the model, the rates of all branches from the same cell-
generation are maintained identical during the EM algorithm. Confidence intervals were obtained by
bootstrapping (400 replicates). Importantly, allowing the mutation rates of the first three cell-
generations to vary freely with respect to the rest of the lineage (values shown in main text, Fig. 4a),
does not significantly improve the fit of the model (LL=-1347.0 as opposed to LL2, p-val=0.24, 3

degrees of freedom).

Simulation of sensitivity
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We estimated the sensitivity for early embryonic mutations from simulation studies. The sensitivity will
be dependent on the target VAF (p) of early mutations. First, we randomly generated 1,000 in-silico
embryonic mutations genome-wide. In-silico mutations within known gaps of the human reference
genome were removed and replaced by newly generated mutations. Note that this means that
sensitivity and so the mutation rates estimated in our study exclude mutations present in gaps, which
approximately correspond to ten percent of the human genome. Next, under 21 different theoretical
VAF (p; 0.016, 0.028, 0.031, 0.056, 0.063, 0.083, 0.111, 0.125, 0.139, 0.167, 0.194, 0.222, 0.250,
0.278, 0.306, 0.333, 0.361, 0.389, 0.417, 0.444, 0.472) we queried how many of them could be
detected on average from the whole-genome sequences of 241 samples. The same filtration steps for
real mutation candidates were applied for the in-silico mutations: if mutations are found in 1000
Genomes Project dataset, dbSNP variation, segmental duplications, simple repeats, repetitive
sequences by RepeatMasker, homopolymers, and potential copy number gain regions, we regarded
these mutations as undetectable. Then, for each potentially detectable in-silico mutation, and under
several given p, we calculated the fraction of mutations that could be successfully detected and
successfully phased to at least one heterozygous SNP nearby in each individual WGS.
P(observed|p) = P(detection|p) - P(phasing|p)

where P(detection|p) is the probability of a mutation having a sufficient number of reads supporting
the mutant allele (at least 4, or the cutoff value in this study) and a VAF within the range considered in
the discovery phase of this study (from 10% to 35%). Likewise, P(phasing|p) represents the
probability of successful phasing a mutation to the heterozygous SNP nearby. We calculated

P(detection|p) and P(phasing|p) as below:

roundoff(0.35D)

P(detction|p) = Z <l:) pT(1—p)®

r=max(4,roundup(0.1D))

max(1,N)

P(phasing|p) = 1 — 1_[ (0.5 + p)Si + (1 — p)Si — 0.5%)

where roundup () and roundoff() functions round to the higher or the closest integer number,
respectively. D is the read-depth of each detectable in-silico mutation site, N represents the total
number of heterozygous SNPs which are available for phasing, i is each of the heterozygote SNPs
and Si is number of reads spanning both a mutation locus and the heterozygous SNP. For simplicity

of simulation, we assumed all the bases have a good base quality (i.e. phred score >20). Finally, we

25



added all probabilities, P(observed|p), obtained from an individual given p. When p is fixed,
P(observed|p) correlates with read-depth of blood whole-genome sequencing, and the regression line
was obtained using loess regression. We obtained our sensitivity estimates for the 21 different p
values using this approach and a simulated coverage of 32-fold coverage (median coverage for 241
blood samples). For example, 4.41% of the 1000 in-silico mutations with p=0.25 were detectable

when whole-genome sequencing coverage was 32x (Extended Data Fig. 5e).

A stochastic model of embryoblast formation

In the maximum likelihood fitting of lineage models described above, a single lineage tree was fitted to
the data from multiple different individuals. The resulting lineage intends to be a merely descriptive
representation of the average contribution of different cells across embryos. The model implicitly
assumes that the same asymmetric lineage describes all patients and that the first divisions of the
embryo follow a largely constant pattern across individuals. It remains unclear whether early
embryonic development in viable embryos under physiological conditions follows a strict plan in
humans or whether there is extensive variation between individuals, as observed in mouse?. In the
presence of extensive variation in the early lineage across embryos, the asymmetry rates estimated

using a constant lineage should be interpreted with caution.

Interestingly, extensive asymmetry in the contribution of the first cells of the embryo to the adult cell
pool can also emerge under more stochastic models of embryo development. As a proof-of-principle,
here we show how a bottleneck in the pre-implantation embryo, in which only a randomly selected
subset of cells contributes to the final somatic tissues, can give rise to extensive asymmetry in the
contribution of the first few cells of the embryo to the adult cell pool, not dissimilar to the general

patterns observed in this study.

All final embryonic tissues are thought to derive from a fraction of cells in the blastocyst termed the
inner cell mass (ICM), while the rest of the blastocyst (the trophoblast) will form the placenta and
other extra-embryonic supporting tissues, and will not contribute to the adult cell pool. In mice this
separation is thought to involve about 12 ICM cells gravitating at the center of the blastocyst at the 32-

cell stage®. This imposes a significant bottleneck to the contribution of the first few cells in the
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embryo to the adult cell pool. Let us consider a simple bottleneck model where a completely random
subset of / cells from the n-cell stage embryo are selected to form the adult cell pool. If there were m
cells carrying an early somatic mutation out of a total of n, the probability to subselecting k in a draw
of | cells is given by the hypergeometric distribution. This is to be multiplied by the probability that m
cells are mutated due to early germline mutations. Without a bottleneck, variant alleles would only be
expected at powers of Y2, with intensities following an 1/f power law due to the increase in the number
of cells with every cell doubling. Hence the probability of selecting k mutated cells out of a total n cells

is given by:

P(k;I,n) = Zo<=i<=2" phyperg(k; |, m = 272, n=2/) x 2{/ const (1)

where const is a normalisation constant. Note that this distribution has support on VAF k/I, rather than
1/2'. The latter is approached in the limit that / = n, that is that all cells would propagate to the final
somatic tissue (Extended Data Fig. 8a). The overall probability of observing mutations at a given
VAF v is then to be multiplied by the sensitivity S(v) to detect mutation a given frequency, and the
additional dispersion arising from detecting mutations on a finite number of x sequencing reads at a
given coverage ¢, modeled by a beta-binomial sampling model, as described in the deterministic

modeling used in the previous sections.

p(x;l,n,c) = Zk P(k;/,n) x S(kil) x pbetabin(x; prob = k/l; disp =p)/ const (2)

, the dispersion p is inferred from heterozygous SNPs and taken to be 6=223.9, p = 1/(1+ 6).

We may hence fit the likelihood (2) to the observed data, knowing the number of mutated reads x and

coverage c for each patient, given the number of ICM cells / and cells n. The maximum likelihood is

obtained for /=11 ICM cells separating after 6 generations, or n=64 cells (Extended Data Fig. 8b),

although there are many solutions with similar likelihood.

From Eq. (2), an estimate of the overall histogram p(v) can be computed as the average over all data

points p(v; I, n) = & p(x;i= vci; I, n, ¢) | N, where N = 163 is the number of observations. Using a

Bayesian approach, assuming a uniform prior on the number of cell generations at which ICM
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commitment occurs ranging from 3 to 8, and similarly a uniform prior on the number of ICM cells

ranging from 5:32, allows for computing the posterior probability of the observed data as:

p(v) = 21 Zap(v;l,n) x p(/) x p(n) 3)

The result is shown in Extended Data Fig. 8c.

This model shows how a simple random selection of a subset of the cells in the early embryo can lead
to substantial asymmetries in the contribution of the first few cells in the embryo to the final adult cell
pool. We note that this represents one extreme of possible combined deterministic and stochastic
scenarios. It remains unclear to what extent viable embryos under physiological conditions follow a
tightly predetermined developmental plan or whether largely stochastic processes dominate before
the formation of the first structures in the blastocyst. The available data cannot distinguish between
these models, but we anticipate that more detailed analyses of early embryonic somatic mutations
could shed some light on this question. In particular, deterministic models predict that all individuals
will share a very similar lineage pattern while stochastic models predict largely different early lineages

among individuals.

Family analyses

Genomic DNA was extracted from peripheral blood of 19 individuals from three large families. From
the whole-genome sequences (median read-depth=25x), we detected subclonal substitutions in 13
children using identical methods for the blood tissues of 241 breast cancer patients, i.e. DNA
contamination control, variant calling, phasing to nearby heterozygous SNP, assessment of copy
number of the mutation loci, and visual inspection as described above. We detected 7 early
embryonic mutations (Extended Data Fig. 9), which were subclonal and not shared by the parents or
any siblings, therefore these are highly likely to be post-zygotic mutations which occurred at the early

embryonic stages of a specific child.

We calculated the rate of early mutations from families (Rramiy) as below:
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Where R is the overall average early mutation rate (2.8 mutations per cell per cell generation), N is
the number of mutations (n=163) and S is the total sample size (n=241). Likewise, Nrmmiy is the
number of mutations (n=7) identified from family data and Stmiy is the total number of children
analysed (n=13). a is relative sensitivity of early mutations in family data, which must be less than 1
because sequencing coverage is ~7x coverage lower in families (25x) than the unrelated 241 blood
samples (32x). The simulation of sensitivity (shown above) suggests that a is 0.796. A Poisson Exant

test was used to calculate the 95% confidence interval of Reamily.

Detecting contributions of mutational signatures

Mutational signatures were detected by refitting of previously identified and validated consensus

signatures of mutational processes (http://cancer.sanger.ac.uk/cosmic/signatures). All possible

combinations of at least seven mutational signatures were evaluated by minimizing the constrained

linear function:

N

—_—
min |[|DeNovoMutations — Z(Slgnaturel * Exposurei)||
Exposures;z0

i=1

Here, DeNovoMutations and Signature, represent vectors with 96 components corresponding to the
six types of single nucleotide variants and their immediate sequencing context and Exposure; is a
nonnegative scalar reflecting the number of mutations contributed by this signature. N reflects the
number of signatures being re-fitted and all possible combinations of consensus mutational signatures
for N between 1 and 7 were examined, resulting in 2,804,011 solutions. Model selection framework
based on Akaike information criterion was applied to these solutions to select the optimal
decomposition of mutational signatures. The analysis revealed that signature 1 and signature 5 best
describe the set of embryonic mutations (Extended Data Fig. 10a). Including any other mutational

signature did not improve the explanation of the set of embryonic mutations.

Data availability
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http://cancer.sanger.ac.uk/cosmic/signatures

Whole-genome sequence data have been deposited in the European Genome-Phenome Archive
(EGA; https://www.ebi.ac.uk/ega/home) under overarching accession number EGAS00001001178.
The data that support the findings of this study are available on request from the corresponding

author M.R.S. (mrs@sanger.ac.uk).

30


https://www.ebi.ac.uk/ega/home
mailto:mrs@sanger.ac.uk

Extended Data Figure Legends

Extended Data Figure 1. Filters to exclude mutation candidates in regions with copy number
variation.

a, For every blood sample, we assessed the distribution of coverage of ~3M inherited SNP loci. Using
this distribution, we determined a cutoff value that is used for inter-sample CNV filtering (see
Methods). In the case of PD3989b shown in the figure, candidate mutation loci with >51x coverage
were considered to be located on copy number gain thus removed.

b, An example of inter-sample CNYV filtering (see Methods). Normalized coverage for
chr11:14,446,619 region of PD4116b is located in the normal copy number (CN=2) cluster.

¢, Copy number gain was identified in a candidate mutation locus (chr6:285,671) from PD4116b by
the inter-sample CNYV filtering method. Therefore, this mutation candidate was removed from further

downstream analyses.

Extended Data Figure 2. Features of ultrahigh-depth targeted amplicon sequencing used for
validation.

a, Estimation of the impact of potential PCR allelic bias from targeted amplicon sequencing. Using
inherited heterozygous SNP sites which were PCR amplified and ultra-deep sequenced, we assessed
potential PCR bias (i.e. preferential amplification of one allele compared to the other): the distribution
of VAFs was broader than expected from a binomial distribution (theoretical maximum), but the PCR
bias was not substantial as a clear peak at VAF=0.5 was present. The estimated overdispersion level
(theta value in beta-binomial distribution) was 223.88. The estimate was used in the simulation
studies for assessment of cell doubling asymmetry in early embryogenesis (see Methods for more
details).

b, High precision of ultrahigh-depth amplicon sequencing in assessment of VAF of a mutation. For the
14 early embryonic mutations, we quantified their VAFs from the second blood samples using the
same strategy (i.e. PCR amplification and deep sequencing). The VAF estimates from the first and
the second sequencings were highly correlated.

¢, Background error rate of targeted amplicon sequencing (see Methods). The background mutation
rate showed sequence context dependency. Error bars denote 2 * interquartile range. We used these

background mutation rates in a filtering step.

31



Extended Data Figure 3. Features of a blood sample with a neoplastic clonal expansion in the blood.
a, This hypothetical scenario illustrates the expectation in a normal blood sample when there is no
obvious neoplastic clonal expansion. Each white-filled black circle represents an embryonic cell.
White-filled red and red-filled circles are adult haematopoietic stem cells and adult blood cells,
respectively. Here, for simplicity, we assumed a uniform mutation rate of 1 substitution per cell per cell
doubling. Each mutation during cell doubling is represented by a number in a black-filled rectangle.
Mutations accumulated in a specific early cell are shown with numbers next to the cell. The final
mutations acquired at an early cell of cell generation IV (16-cell stage) and their expected relative
contribution to adult blood tissues (1/16 or 6.6%) is summarized in the box below the cellular
phylogenetic tree. We assumed that breast cancer (green-filled circles) cells are descendant of the
embryonic cell of the leftmost lineage (which harbors mutations #1, #3, #7 and #15). In the
circumstances, the expected features of early embryonic mutations (VAFs, chance to be shared with
breast cancer) are summarized in the right table.

b, An alternative scenario with a neoplastic clonal expansion in the blood (here we assumed a
haematopoietic stem cell contributes 40% of all blood cells). We assumed that additional 100 somatic
mutations were further acquired during late cell doublings. The expected features are summarized in

the right table.

Extended Data Figure 4. Features of mutations in blood samples with neoplastic clonal expansions.
Mutations from samples with evidence of neoplastic clonal expansions display more similar VAFs to
(the right violin plot) each other compared to mutations from samples without neoplastic clonal

expansions (the left violin plot).

Extended Data Figure 5. Features of the early embryonic mutations identified in this study.

a, As expected for early embryonic mutations, we observe no relationship between the age of
individuals and the number of mutations found in an individual. In case of late mutations, we find more
mutations in the aged individuals (Fig. 1f).

b, Features of mutations in the samples (n=7) with four early embryonic mutations suggest that these

mutations are not likely to be related with a neoplastic clonal expansion: VAFs of mutations are
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diverse and a fraction of these mutations are shared with the matched cancer. The corresponding
VAFs in the matched tumour tissues are shown in numbers above the bars.

¢, Samples with neoplastic clonal expansions (i.e. PD9568b, PD9752b and PD9569b) show different
features: mutations show similar VAFs each other and are not shared by cancer cells.

d, Enrichment of early mutations according to ENCODE dataset. We find higher mutation frequency in
transcriptionally repressed (R) than active (T) regions, but the difference is nonsignificant in our study
(chi-square test, df=1, P value = 0.4696), presumably due to the insufficient number of early
embryonic mutations (n=163). R, repressed chromatin; T, transcribed chromatin; CTCF, CTCF-bound
regions; E, enhancer related; TSS/PF, promoter related.

e, From a simulation study using 71,000 in-silico embryonic mutations, we assessed the detection
sensitivity of early embryonic mutations from 32x whole-genome sequencing (see Methods). This
sensitivity was used in downstream analyses (for example, likelihood tests for understanding the

asymmetry of cell doublings and tests for the calculation of the early embryonic mutation rates.

Extended Data Figure 6. Expected proportion of early embryonic mutations shared by cancer
according to the cell generation gap between the MRCA cell of adult blood cells and the MRCA cell of
all somatic cells.

a, (see Supplementary Discussion 4) A scenario when there is no cell generation gap. Early
mutations are represented by asterisks in colors. A summary of the expected proportion of mutations
shared with cancer cells is shown in the table: the chance is twice the VAF of each early embryonic
mutation.

b, A scenario when the MRCA cell of adult blood cells is formed one cell generation later than the
MRCA cell of all somatic cells. The chance is identical to the VAF of each early embryonic mutation.
¢, A scenario when the MRCA cell of adult blood cells is formed two cell generations later than the

MRCA cell of all somatic cells. The chance is half the VAF of each early embryonic mutation.

Extended Data Figure 7. The MRCA cell of adult blood cells is the MRCA cell of all somatic cells (or
the fertilized egg)
(see Supplementary Discussion 4) Using the expected proportion of mutations shared with cancer

(Extended Data Fig. 6), we estimated the timing when the MRCA cell of adult blood cells is formed.
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Thr four orange boxes show the expected proportions from four scenarios, when there are 0, 1, 2, and
3 cell generation gaps between the MRCA cells. The observed proportion (26%; green horizontal line)
in this study is closest to the expectation from the model of 0 cell generation gap. Error bars by

interquartile range x 2 (from the simulation study).

Extended Data Figure 8. The simulation study to understand potential stochasticity in the
embryoblast formation. (see Methods, ‘A stochastic model of embryoblast formation’ for more details)
a, The expected distribution of VAF of early embryonic mutations in a stochastic model in which n
cells (y-axis) are randomly selected as epiblasts from the 32-cell stage embryo. The size of circle is
proportional to the relative frequency of mutations at each VAF.

b, The stochastic model estimates the number of founder epiblast cells and the timing (cell stage) of
their commitment. The maximum likelihood is selection of 11 cells in 64-cell stage.

¢, The VAF distribution of early embryonic mutations expected from the maximum likelihood
stochastic model. The maximum likelihood estimation (MLE) and the posterior probability by a
Bayesian approach are shown by green and purple curves, respectively. Our observation of the 163
early embryonic mutations is represented by the histogram.

d, Unequal contribution of the first two cells to ICM cells by direct observation of 12 mouse-embryos
using inverted light-sheet microscope by Strnad et al., Nature Methods (2016). Schematic diagram
(cell phylogeny) is shown above the bar graph. We re-analysed their observation, counting the
relative contribution to ICM (black dots indicate the observed asymmetry in each embryo). These

unequal contribution levels ranged from 0.5:0.5 to 0.74:0.26 and the average was 0.6:0.4.

Extended Data Figure 9. Early embryonic mutations (n=7) identified from 3 large families.

a-g, Sequencing reads (using IGV images) for the seven mutation loci are shown. All mutations are
subclonal to a specific allele of a heterozygous SNP in the vicinity. As expected to early embryonic
mutations, the VAFs of mutatnt alleles are lower than 0.5 and the mutant alleles are not found in the
genomes of all the parents and the siblings. Three mutations (panels b, ¢ and d) were possible to

perform ultrahigh-depth targeted amplicon sequencing (by MiSeq), and all were successfully validated.

Extended Data Figure 10. Signatures of early embryonic mutations.
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a, The mutational spectrum for 163 early embryonic mutations is displayed according to the 96
substitution classes (defined by 6 substitution classes (C>A, C>G, C>T, T>A, T>C, T>G) and 16
sequence contexts (immediate 5" and 3" bases to the mutated pyrimidine bases; see Alexandrov et
al., Nature (2013) for more details; ref. 7). The observed spectrum can be decomposed into two
known mutational signatures (signatures #5 and #1), suggesting endogenous mutational processes
are dominantly operative in early human embryogenesis (see Supplementary Discussion 6 for more
details).

b, The methylation status of 28 C>T early embryonic mutations occurred at NpCpG sequence
contexts. Methylation levels were obtained from Laurent et al., Genome Research (2010). The vast

majority of the 28 loci were methylated, which is higher than background (right).
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Figure 2
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Figure 3
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Figure 4
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