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The role of Los Alamos for the Nation 
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LANL’s Mission 

 
 

Solve national security challenges 
through scientific excellence 
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What does LANL’s Computational Physics (XCP) 
Division Do? 

•  The X Computational Physics Division (XCP) develops and uses 
multiphysics simulation codes, as well as underlying physics models 
and numerical algorithms, to support basic science and applications in 
national nuclear security.  

•  We take advantage of some of the world’s fastest and most advanced 
computing platforms running state-of-the-art simulation codes to study 
a variety of complex physics problems.  
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Groups within the XCP Division 

XCP-1  Lagrangian Codes 
XCP-2  Eulerian Codes 
XCP-3  Monte Carlo Methods,  

  Codes & Applications 
XCP-4  Methods & Algorithms 
XCP-5  Materials &  

  Physical Data 
XCP-6  Plasma Theory &  

  Applications 
XCP-8  Verification &  

  Analysis 
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Groups within the XCP Division 

XCP-1  Lagrangian Codes 
XCP-2  Eulerian Codes 
XCP-3  Monte Carlo Methods,  

  Codes & Applications 
XCP-4  Methods & Algorithms 
XCP-5  Materials &  

  Physical Data 
XCP-6  Plasma Theory &  

  Applications 
XCP-8  Verification &  

  Analysis 

Develop large-scale (~ 1M SLOC) 
production-quality, massively 
parallel, multiphysics simulation 
codes modeling one or more of the 
following: 

•  Compressible hydrodynamics  
•  High-energy density physics  
•  Radiation hydrodynamics  
•  High explosives  
•  Computational geometry and 

mesh generation  
•  Solid mechanics  
•  Turbulent mixing  
•  Thermonuclear burn physics 
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Groups within the XCP Division 

XCP-1  Lagrangian Codes 
XCP-2  Eulerian Codes 
XCP-3  Monte Carlo Methods,  

  Codes & Applications 
XCP-4  Methods & Algorithms 
XCP-5  Materials &  

  Physical Data 
XCP-6  Plasma Theory &  

  Applications 
XCP-8  Verification &  

  Analysis 

Interest in: 
•  Multiscale algorithms 
•  Multiphysics coupling methods 

for exascale computing 
•  Shock hydrodynamics 
•  Strength of materials 
•  Reactive flow 
•  Instabilities and turbulence 

mixing 
•  Interfacial dynamics with heat 

and mass transfer 
•  High-order numerical methods 

for compressible flow 
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Groups within the XCP Division 

XCP-1  Lagrangian Codes 
XCP-2  Eulerian Codes 
XCP-3  Monte Carlo Methods,  

  Codes & Applications 
XCP-4  Methods & Algorithms 
XCP-5  Materials &  

  Physical Data 
XCP-6  Plasma Theory &  

  Applications 
XCP-8  Verification &  

  Analysis 

Develops, implements and 
validates material models: 

•  Strength 
•  Damage 
•  Spall 

 
And physical datasets: 

•  Opacities 
•  Equations of state 
•  Nuclear cross sections 

 
For use in large-scale simulation 
codes 
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Groups within the XCP Division 

XCP-1  Lagrangian Codes 
XCP-2  Eulerian Codes 
XCP-3  Monte Carlo Methods,  

  Codes & Applications 
XCP-4  Methods & Algorithms 
XCP-5  Materials &  

  Physical Data 
XCP-6  Plasma Theory &  

  Applications 
XCP-8  Verification &  

  Analysis 

Applications of interest include 
low-, mid-, and high-density 
plasmas, such as those occurring 
in the following examples: 

•  Astrophysics (e.g., supernova 
light curves and 
helioseismology)  

•  Space missions (e.g., spectral 
diagnostics in support of the 
Mars Rover ChemCam 
measurements)  

•  Inertial confinement fusion (in 
support of Omega and the 
National Ignition Facility) 
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Groups within the XCP Division 

XCP-1  Lagrangian Codes 
XCP-2  Eulerian Codes 
XCP-3  Monte Carlo Methods,  

  Codes & Applications 
XCP-4  Methods & Algorithms 
XCP-5  Materials &  

  Physical Data 
XCP-6  Plasma Theory &  

  Applications 
XCP-8  Verification &  

  Analysis 

Interested in research and 
applications in: 

•  Code and solution verification 
•  Model validation using small-

scale experiments 
•  Development and application 

of methods for uncertainty 
quantification 

•  All applied to computational 
multiphysics codes  

 
Credibility for integral 
multiphysics calculations 
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Groups within the XCP Division 

XCP-1  Lagrangian Codes 
XCP-2  Eulerian Codes 
XCP-3  Monte Carlo Methods,  

  Codes & Applications 
XCP-4  Methods & Algorithms 
XCP-5  Materials &  

  Physical Data 
XCP-6  Plasma Theory &  

  Applications 
XCP-8  Verification &  

  Analysis 
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XCP-3: Monte Carlo Methods, Codes & Applications 

•  We deliver: 
•  First-principles Monte Carlo methods 
•  Production-quality codes 
•  Radiation transport-based computational and experimental assessments 

•  Our codes: 
•  MCNP 
•  MCATK 

•  Our applications: 
•  Criticality safety 
•  Non-proliferation 
•  Nuclear energy 
•  Nuclear threat reduction and response 
•  Radiation detection and measurement 
•  Radiation health protection 
•  Stockpile stewardship 
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LANL’s Long History with Monte Carlo 

•  Monte Carlo Method for Radiation Transport Originated at LANL 
•  Stanislaw Ulam, John von Neumann, Robert Richtmyer, and Nicholas Metropolis 
•  Early calculations performed on the FERMIAC11 and MANIAC  machines 

•  Monte Carlo code development and applications have been an 
important part of LANL efforts since that time 

FERMIAC11 mechanically 
traced neutron paths 

MANIAC computer performed 
early Monte Carlo calculations  
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Monte Carlo & MCNP History 

ENIAC – 1945
   30 tons

   20 ft x 40 ft room
   18,000 vacuum tubes

   0.1 MHz  
   20 word memory

   patchcords

Manhattan Project – 1945...
    Discussions on using ENIAC
    Ulam suggested using the  
         “method of statistical trials”
    Metropolis suggested the  
          name “Monte Carlo”
    Von Neumann developed the  
          first computer code



Los Alamos National Laboratory 

   |   16 

NOTE: 
This is the 
lab color 
palette. è 

MCNP Capabilities 

•  Physics: 
•  Continuous energy particle transport 
•  Neutron, photon, electron, and many 

more particle types 

•  Algorithms: 
•  k-eigenvalue calculations 
•  Fixed source calculations 

•  Recently Implemented Features: 
•  Unstructured mesh transport 
•  Electric and magnetic field transport 
•  High-energy physics models 
•  33 additional particle types 
•  Reactor fuel depletion and burnup 
•  Radiation source and detection capabilities 
•  Sensitivity and uncertainty analysis for nuclear criticality safety 

•  Extensive Variance Reduction 
•  Weight Windows 
•  DXTRAN 

ITER Neutron Flux Calculations 

Whole-core Thermal & Total Flux from MCNP5 Analysis 
(from Luka Snoj, Jozef Stefan Inst.) 
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From MCNP5 & MCNPX to MCNP6 

mcnp6 mcnpx
33 other particle types

heavy ions
CINDER depletion/burnup

delayed particles

Partisn mesh geometry
Abaqus unstructured mesh

High energy physics models
CEM, LAQGSM, LAHET,  

MARS, HETC 

New Criticality Features
Sensitivity/Uncertainty Analysis

Fission Matrix
OTF Doppler Broadening

Continuous Testing System
~10,000 test problems / day

mcnp6
protons, proton radiography
high energy physics models

magnetic fields

mcnp5
neutrons, photons, electrons
cross-section library physics

criticality features
shielding, dose

“low energy” physics
V&V history

documentation

Fission
MCNP5/X multiplicity
LLNL fission package

CGM/LLNLGAM,   CGMF (soon)

mcnp6.1     – 2013
mcnp6.1.1  – 2014
mcnp6.2     – 2017
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Monte Carlo Methods and Code Development for 
Nuclear Nonproliferation and Safeguards Applications 

 
What’s new in MCNP6.2 that can be 

used to solve these kinds of 
problems? 

 

? 
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Background 

•  Warhead Measurement Campaign (WMC) meant to passively and 
actively measure nuclear warheads for treaty verification 
•  New measurements of neutron and photon coincidence data of shielded special 

nuclear materials (SNM) 
•  At the time, the transport simulation tools available were limited in their ability to fully 

predict WMC-like measurements 
•  This was due to the type of nuclear fission data available 
•  To address these shortcomings, more detailed behavior of nuclear fission physics 

was needed 
•  Making the transport simulations more predictive in SNM detection applications 

•  Key Issues 
•  Average nuclear data quantities are insufficient 
•  Need better ways to compare to experiment 
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New Fission Multiplicity Models and Post-Processing 
Tools for MCNP6.2 

•  In the release: 
•  CGMF and FREYA fission event generators 
•  (M)ISC : MCNP / general intrinsic source constructor 
•  MCNPTools : MCNP outputs 

•  To be released at a future date: 
•  DRiFT : Detector Response Function Toolkit 

•  Presented at workshop at 2016 ANS ANNTP Conference in Santa Fe, NM 
(look on website under technical references and workshops) 
•  LA-UR-16-27559 : MCNP6 basics 
•  LA-UR-16-27301 : fission multiplicity models 
•  LA-UR-16-27265 : ISC and MCNPTools info 
•  LA-UR-16-27166 : DRiFT 
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Nuclear Fission Physics 

•  MCNP6.1 
•  Average photon production for each collision 
•  Average neutron production for each fission 
•  Average energy spectra for neutrons and gamma rays 
•  Isotropic angular emission 
•  No correlations! 

•  Applications 
•  Shielding: current, flux, energy deposition, dose 
•  Subcritical / Critical Systems: keff, flux, reaction rates 
•  Reactor Physics: keff, current, flux, power distributions, 

burnup 
•  Radiation Detection: charge and energy deposition, 

pulse-height spectra, bulk counting rates 
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Nuclear Fission Physics 

•  MCNP6.2 
•  Multiplicity distribution of gamma rays for each fission 
•  Multiplicity distribution of neutrons for each fission 
•  Multiplicity dependent energy spectra                     

(energy correlations) 
•  Angular emission from fission fragments                

(angular correlations) 
•  Full correlations! 

•  Applications 
•  In addition to MCNP6.1 … 
•  Subcritical Systems: singles, doubles, etc. counting rates, 

leakage multiplication, probability of initiation/extinction 
•  Reactor Physics: higher-order power distribution 

fluctuations 
•  Radiation Detection: n-n, n-γ, γ-γ time coincidence 
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New in MCNP6.2 

Two new correlated fission event generators (FREYA and CGMF) as well 
as post processing analysis tools are now available for event-by-event 
simulations preserving all secondary particle correlations. 
•  When a fission event occurs in MCNP, neutrons and gamma rays are generated 

through a call to FREYA or CGMF 
•  Kinematics of neutrons and gamma rays emitted returned to MCNP 
•  Normal secondary particle transport continues throughout simulation 
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How it Works 

•  Both FREYA and CGMF are Monte Carlo codes 
•  Fission fragments are sampled from yields in A, Z and KE 
•  Excited fission fragments are de-excited through particle evaporation 

FREYA (LBNL/LLNL) 
•  Monte Carlo Weisskopf 
•  Neutron emitted first… 
•  Then gamma ray emission 
•  Very fast simulation 

CGMF (LANL) 
•  Monte Carlo Hauser-Feshbach 
•  Neutrons and gamma rays compete for 

emission 
•  Computationally slow 
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What was done in FY16 
New models integrated 

•  LLNL Fission Library 2.0.1 
•  Produces same results from previous version 
•  Now includes FREYA 2.0 

•  FREYA 2.0 
•  Code and data included 
•  Spontaneous fission: 238U, 238Pu, 240Pu, 242Pu, 244Cm, and 252Cf 
•  Neutron-induced fission: 233U, 235U, 238U, 239Pu, and 241Pu 

•  CGMF 1.0.9 
•  Code and data included (also upgraded CGM) 
•  Spontaneous fission: 240Pu, 242Pu, and 252Cf 
•  Neutron-induced fission: 235U, 238U, and 239Pu 
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Fission Event Generator Behavior 

•  Neutron & gamma-ray 
multiplicity 
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Fission Event Generator Behavior 

•  Multiplicity-dependent spectra 
•  Neutron emission angular 

correlations 
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DRiFT – A Detector Response Function Toolkit 

•  Accurate detector modeling is a requirement to design systems in 
many non-proliferation scenarios (e.g. time-coincidence counting) 
•  By determining a Detector’s Response Function (DRF) to incident radiation, we can 

characterize measurements of unknown sources 

•  More efficient design processes (cost and time) 
•  Realistic radiation sources may not be available 
•  DRiFT is intended to post-process MCNP output and create realistic 

detector spectra 
•  Leverages the ability of MCNP to simulate complex radiation sources, materials and 

geometries 
•  DRiFT includes detector physics not present in many radiation transport codes 

•  Capabilities currently under development include the simulation of 
HPGe, He-3 gas, and as will be discussed in this work, scintillator 
detector physics 

•  Developers: M.T. Andrews, C.R. Bates, E.A. McKigney 
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DRiFT – A Detector Response Function Toolkit for 
MCNP Output 

•  Post-processes MCNP output (using MCNPTools), so as new features 
are added, DRiFT users can readily incorporate them into their 
simulations 

•  DRiFT detector resolution is reproduced by the variances in signal due 
to fluctuations in scintillation yields, PMT noise, and quantization error 

•  DRiFT is very fast because it does not model optical photon transport 
however this has a few drawbacks, namely: 
•  Users must input their own optical transport factors (or use default settings which 

may not be applicable to their particular setting) 
•  Effects of optical photon transport on energy resolution are not currently reproduced 

by DRiFT 

•  Scintillator simulations have been recently performed in GEANT4 
through the modeling of optical photon transport, they can create PSD 
plots, however optical photon transport simulations are 
computationally expensive 
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MCNP6.2 Simulations 

Scintillator is given a density and atomic ratio corresponding to 
manufacturer specs: 

•  MCNP Intrinsic Source Constructor (MISC, CJ Solomon) is used to 
create source photon spectra 

•  Particle TRACking (PTRAC) card used to record recoil proton’s energy, 
and time as a binary 
•  PTRAC files are post-processed with MCNPTools (CJ Solomon, C.R. Bates) 

Detector Type H:C Ratio Density / g cm-3 Scintillation Yield 

EJ-301 Liquid 1.212 0.874 12,000 γ/MeVee 

EJ-212 Plastic 1.103 1.020 10,000 γ/MeVee 
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DRiFT Simulations 

•  DRiFT reads an input file 
containing keywords  

•  DRiFT reads the PTRAC file by 
calling MCNPTools 

[global] 
Datasource = mcnp 
Datafile = ocf252p 
Modeltype = event (ptrac) 
[Scintillation] 
Detector = EJ301 
Particle0 = Proton 
Particle1 = electron 
Quenching_data = Dekempeener 
S_gate = 22e-9 
L_gate = 90e-9 
Sampling_rate = 500e6 
PMTType = 9821B 
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DRiFT Simulations – Calculating Photo-electrons 

•  DRiFT treats each particle separately to properly determine the 
amplitude and shape of the resulting pulse 

•  The PTRAC particle’s electron equivalent energy (MeVee) is determined 
for the specific particle type and original energy using quenching data 
specified in input 

•  The scintillation yield (12,000 photons/MeVee for EJ-301) is used to 
determine the mean number of photons produced 

•  The actual number is sampled from a Poisson distribution 
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DRiFT Simulations – Simulating Pulse Shape 

•  Optical photons are distributed in time using pre-defined intensity 
profiles 

 
•  Time interval sizes are matched to the sampling rate of the digitizer 

•  For histories with more than one recoil, the relative difference in time 
stamps is used to determine the initiation of their contribution to the 
overall count 

•  Optical transport factor and quantum efficiency factors are applied to 
photons. The remaining number of photons/electrons is sampled from 
a Poisson distribution 

•  Noise contributions are included in the calculation of the PMT current 
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DRiFT Output 

•  An ASCII output file with 
detected event information 
•  Most common outputs: 

•  Detector cell number 
•  Pulse height 
•  Pulse shape discrimination (PSD) value 
•  Time stamp 

•  Optional outputs: 
•  Source energy 
•  Correlated information 

•  ROOT files 
•  ROOT trees containing event 

information 
•  ROOT histograms 
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Comparison to Other Codes & 
Experimental Data 

•  University of Michigan differential 
measurements of angular 
correlations 

•  Priority is to compare against 
experimental measurements 

•  Follow-up of 2014 NSE paper by 
S.A. Pozzi et al. 

•  Submitted an abstract to IRRMA X 
meeting in Chicago, IL, July 9-13 

•  Transport and post-processing code 
comparisons 
•  MCNP6 / DRiFT 
•  MCNP6 / MPPost 
•  MCNPX-PoliMi / MPPost 
•  MCNPX-PoliMi / DRiFT 
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Putting It All Together 

ü Can simulate spontaneous fission source for 
252Cf using FREYA and CGMF fission event 
generator models in MCNP 

ü Can model the complex geometry of the 
detector array in MCNP and gather particle 
collision information inside each detector 

ü Can post-process the output to get the detector 
responses and compare directly to the 
experimental data (rather than unfolding the 
measured to data to compare with the 
simulation) 
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Preliminary MCNP6.2 & DRiFT Results (1) 

•  Still need to obtain experimental data 
•  Current comparisons between fission multiplicity models 

•  Neutron-only simulation for now 
•  FMULT input card 

•  Option in MCNP with some flexibility 
•  Can select fission emission parameters like: 

•  Multiplicity distribution and average multiplicity 
•  Energy spectrum (Watt parameters) 

•  No gamma rays 
•  No angular distributions 

•  First, we can look at the time-                                                                
stamp distribution for each model 
•  No pulse height threshold set 
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Preliminary MCNP6.2 & DRiFT Results (2) 

•  Pulse height distributions 

•  Large differences in high energy tail of pulse height distributions 
•  Likely due to differences in the fission energy spectra in the models 
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Preliminary MCNP6.2 & DRiFT Results (3) 

•  Pulse shape discrimination 

•  Not much difference here, still need to account for gamma rays 
•  PSD will be used to separate gamma rays from neutrons in the liquid scintillators 
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Preliminary MCNP6.2 & DRiFT Results (4) 

•  Correlated counts 

•  Time-stamp differences are small 
•  Angular differences are significant!  

•  Lots of cross-talk between detectors at small angles 
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Preliminary MCNP6.2 & DRiFT Results (5) 

•  Correlated counts 

•  Changing pulse height thresholds changes: 
•  Overall count rates 
•  Removes some of the cross-talk effect 

•  Time stamp differences change w.r.t angle 

2.0e-05

4.0e-05

6.0e-05

8.0e-05

1.0e-04

1.2e-04

1.4e-04

1.6e-04

1.8e-04

 20  40  60  80  100  120  140  160  180

Co
un

t p
er

 D
et

ec
to

r P
ai

r p
er

 F
iss

io
n

Neutron-Neutron Angle (degrees)

FMULT - Cutoff = 0 keVee
FREYA - Cutoff = 0 keVee
CGMF - Cutoff = 0 keVee

FMULT - Cutoff = 100 keVee
FREYA - Cutoff = 100 keVee
CGMF - Cutoff = 100 keVee

FMULT - Cutoff = 400 keVee
FREYA - Cutoff = 400 keVee
CGMF - Cutoff = 400 keVee

Time Differences (ns)

A
ngular D

ifferences (degrees)

CGMF Count per Detector Pair per Fission

 0  50  100  150  200  250
 26

 51

 77

103

129

154

180

10-9

10-8

10-7

10-6

10-5

10-4

Time Differences (ns)

A
ngular D

ifferences (degrees)

FMULT Count per Detector Pair per Fission

 0  50  100  150  200  250
 26

 51

 77

103

129

154

180

10-9

10-8

10-7

10-6

10-5

10-4

Time Differences (ns)

A
ngular D

ifferences (degrees)

FREYA Count per Detector Pair per Fission

 0  50  100  150  200  250
 26

 51

 77

103

129

154

180

10-9

10-8

10-7

10-6

10-5

10-4



Los Alamos National Laboratory 

   |   42 

NOTE: 
This is the 
lab color 
palette. è 

Conclusions 

Impact 
•  Excellent collaboration with LBNL/LLNL researchers and University of Michigan 

professors and students under NA-22 venture project 
•  Improved results when compared to experiment for some complex coincident/

multiplicity measurements 
•  New capabilities in MCNP6.2 and post-processing tools available now to users in 

many application areas 

 
Future Work 
•  Improvements to FREYA and CGMF 

•  More isotopes/energies and photofission 
•  Time-dependent gamma-ray emission 

•  MCNP6 improvements to algorithms, list-mode output and parallel computing 
capabilities 

•  Validation – more simulation vs. experiment 



Los Alamos National Laboratory 

   |   43 

 
 

Thank you! 
 

Contact Info: 
Michael E. Rising 
mrising@lanl.gov 


