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OBJECTIVES 

• To calibrate Advanced Experimental Fuel Counter 

(AEFC) 

 252Cf in instead of traditional AmLi source 

• To benchmark MCNP simulations using experimental 

results   

• To investigate the effects of change in fuel assembly 

geometry to the count rates 

• Finally, to show the boost in doubles count rates 

(coincidence rates) with 252Cf active source due to the 

time correlated induced fission (TCIF) effect 
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MOTIVATION 

• MTRs around the world  

– With both highly enriched uranium (HEU) and low enriched 

uranium (LEU) fuel 

– 235U can be separated directly from HEU fuel and diverted to the 

weapons program 

– Countries where MTRs are installed were committed to non-

proliferation and their commitment needed verification 

• Difficulties to obtain AmLi source in the US 

• Better doubles rates obtained with 252Cf compared to 

AmLi in the past field trail in Uzbekistan in 2012 and 

2014 
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INTRODUCTION 

• The effective application of international safeguards to 

research reactors requires verification of spent fuel as 

well as fresh fuel.  

• To accomplish this goal various nondestructive and 

destructive assay techniques have been developed in 

the US and around the world.  

• The Advanced Experimental Fuel Counter (AEFC) is a 

nondestructive assay (NDA) system developed at Los 

Alamos National Laboratory (LANL). [1] 
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INTRODUCTION (CONTINUED) 

• Both neutron and gamma measurement capabilities  

• Spent fuel assemblies are stored in water 

– The system designed to be watertight to facilitate underwater 

measurements by inspectors. [1] 

 

 

 

 

 

 

 

Figure 1: Mechanical design of the AEFC [1] 
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INTRODUCTION (CONTINUED) 

• Six 3He neutron detectors and one ion chamber for gross 

gamma measurement 

• Detectors are shielded with lead for high gamma doses 

• Collimator for ion chamber 

• Neutrons are moderated by HDPE and water 

• Both active and passive neutron interrogation capabilities 

• Active neutron measurement provides information about 

residual fissile mass 

• Passive neutron measurement provides BU, IE, and CT [1] 
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INTRODUCTION (CONTINUED) 

• Passive gross gamma results provide information about 

BU, IE, and CT. 

• In the past, active interrogation mostly used AmLi. 

• In 2014 during the Uzbekistan field trail, AEFC was 

calibrated by 252Cf. 

• Results showed better doubles count rates with 252Cf 

than AmLi. [2] 

• Why would 252Cf give better coincidence results?  

• 252Cf was supposed to be complex due to its time 

correlated SF neutrons. 
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INTRODUCTION (CONTINUED) 

Neutron Coincidence Counting 

• In the AEFC, two or more neutrons are coincident if they 

are detected by any of the six 3He detectors within the 

specified gate window. 

– In this case, the gate window is 128 μsec . 

 

 

 

• The coincidences measured can come from accidentals 

from background and active source. [6] 

 

 

 

 

 

No. of Neutrons 1 2 3 4 n 

No. of Coincidences 0 1 3 6 n(n-1)/2 



Slide 11 U N C L A S S I F I E D  

INTRODUCTION (CONTINUED) 

• Accidentals can be separated from the real coincidences 

from fuel. 

• The process of separation is explained by the Rossi-

Alpha distribution. 

 

 

 

 

 

 Figure 2: Rossi-Alpha distribution [5] 
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INTRODUCTION (CONTINUED) 

• P is a pre-delay, G is a gate length, and D is a long delay 

gate[5] 

• First neutron detected inside any of six 3He detectors 

acts as a trigger and opens a time window. 

• All neutrons detected within that specified time window 

are time correlated coincidences to the initial triggering 

neutron. [6] 

• Subsequently, each neutron after the first triggering, 

neutron triggers its own window of equal time length and 

thus a distribution is produced. [6] 
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INTRODUCTION (CONTINUED) 

• If a random source (AmLi) is measured, a flat distribution 

will be obtained. 

• If a source that emits time correlated neutron (252Cf) is 

measured, the distribution obtained will look like an 

exponential function given by 

S(t) = A + Re
−t

τ  

• Where A  is accidental coincidence and R is real 

coincidence [5] 
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INTRODUCTION (CONTINUED) 

• Initially, coincidence counting concept was  

– source would produce random neutron  

– fuel would produce correlated neutron 

– net correlated neutrons from fuel itself 

• However in the asymmetric system such as AEFC, 252Cf 

gives better results. [2] 

– Very small source-detector efficiency 

– Negligible contribution from the background (active source)  

• Experimental - The source-detector is over moderated 

and efficiency is less than 1% 

– Fuel gets in the source-detector line of sight  

– The efficiency reduces even more 
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INTRODUCTION (CONTINUED) 

• MCNP - Fuel-detector efficiency is approximately 5%  

• Effect of time correlated SF neutron background from 
252Cf is negligible. 

• Average energy of Amli neutron 0.3 MeV is much lower 

than average energy of 252Cf of 2.3 MeV. 

• AmLi neutrons are thermalized much faster than 252Cf 

neutrons. 

• Probability of inducing fission in the fuel is much higher 

with AmLi. 

• Once again, AmLi seems to be favorable to produce 

better coincidence results. 
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INTRODUCTION (CONTINUED) 

• The reason why 252Cf gives better coincidence results is 
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INTRODUCTION (CONTINUED) 

 

 

 

 

                Time Correlated Induced Fission (TCIF) Effect 
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INTRODUCTION (CONTINUED) 

• Term was brought up by Dr. Howard Menlove at the 

LANL. 

• Related to the neutrons emitted in IF event from the fuel 

assembly coupled to the neutrons produced in a 

precursor fission event in an active interrogation source 

• SF neutron from active source are time correlated with 

the IF neutron from the fuel.  

• Combined multiplicity is higher with 252Cf. 

• Only one IF event is possible per random (α,n)reaction 

with AmLi. 
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INTRODUCTION (CONTINUED) 

• More than one IF per SF event with 252Cf 

• Boost in doubles rate is due to the boost in combined 

multiplicity due to the TCIF effect of 252Cf. 

 

 

 

Figure 3: Possible neutron detection scenarios with 252Cf active sources 

 

a b c d 
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MATERIALS USED 

– Clean AEFC system 

– Water tank 

– Crane to move AEFC and fuel assembly 

– JSR-15 Shift Register 

 HV: 1680 V 

 Pre-delay: 4.5 µsec 

 R+A or A Gate: 128 µsec 

– Laptop with INCC 

– L-108 and O-187R, MTR type fresh fuel assemblies 

– 252Cf (A7866)- 45,670 n/s 

– 252Cf (A7869)- 170,695 n/s 

– AmLi (N-165) – 37,940 n/s 
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MATERIALS USED (CONTINUED) 

• Key Dimensions 

– Full Assembly (FA) L-108:108 cm long , while 60 cm active fuel 

meat 

– Partial Assembly (PA) O-187R: 90 cm long, while 60 cm active fuel 

meat 

– AEFC  

 Height: 112 cm 

 Axial center of 3He detectors at 67.67 cm above the base of the tank  

 Fuel through hole diameter: 12 cm 

 Length of 3He detectors: 25 cm 

 
 

 

 

 

  

 

 

Figure 4: MTR fuel assembly  
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MATERIALS USED (CONTINUED) 

• Water Tank Dimensions 
 

 

  

 

 

Figure 5: AEFC inside poly water tank 
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MATERIALS USED (CONTINUED) 

 
 

 

 

 

  
 

 

Figure 6: AEFC outside 

the water tank 

 

 

 

Figure 7: AEFC + MTR 

inside water [4] 

 

 

 

Figure 8: O-187R MTR 

fuel assembly  

 



Slide 24 U N C L A S S I F I E D  

METHODOLOGY  

Experimental Measurement Procedure 

•  FA-252Cf measurements : 

– Completely lowered to the base of the water tank 

– 23 point measurements:3 cm increment axially upward each time  

– Mid point measurement  (13.67 cm above the base of the water 

tank) 

– Mid point measurement: fuel assembly rotated 90 degree  

– Bottom point measurement: 18 cm below the mid point 

measurement configuration  

• FA-AmLi Measurements: 

– Mid point measurement: AmLi  
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METHODOLOGY (CONTINUED) 

• PA-252Cf measurements : 

– Mid point measurement  (31.32 cm above the base of the water 

tank) 

– Mid point measurement: fuel assembly rotated 90 degree  

– Top and Bottom point measurement: 18 cm above and below the 

mid point measurement configuration 

• PA-AmLi Measurements: 

– Mid point measurement: AmLi  
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METHODOLOGY (CONTINUED) 

• MTR fuel plates in fabricated fuel holder: 

– Mid point measurement: varying fuel plates with 252Cf(A7869) 

– With 1, 8, and 9 plates 

 

 

 

  

 

Figure 9: Varying Fuel plates in a fuel holder 
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METHODOLOGY (CONTINUED) 

MCNP Simulation Procedure 

• Replicated experiments 

• Additional simulations 

- Varying fuel plates: 4, 6, 8,10,….18, 19 plates 

- Varying enrichment: 20% to 93.5% 

 

 

 
 

 

 

 

  



Slide 28 U N C L A S S I F I E D  

RESULTS AND ANALYSIS 

• Count rates normalized to 252Cf(A7866) 

• FA Benchmarking 
– Singles (S): within 5% up to 30 cm 

– Doubles (D): within 4% up to 30 cm 

– S and D diverging after 30 cm 

– 3 ∗ 𝜎 error bars 

 

 

Figure 10: L-108 scan with 252Cf SF source 

Figure 11: L-108 net doubles count rates 
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RESULTS AND ANALYSIS (CONTINUED) 

• PA Benchmarking 

 Singles within 25% 

 Doubles within 3% 

 3 ∗ 𝜎 error bars 

 

 

 

 

 

 
 

 

 

 

  

Figure 12: Three-point scan singles count rates 

Figure 13: Three-point scan doubles count rates 
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RESULTS AND ANALYSIS (CONTINUED) 

• AECF Calibration 

– S and D count rates vs residual 

fissile mass 

– Linear fit: Exp. varying plates singles 

and MCNP varying plate singles 

– 2nd degree poly – concave down: 

MCNP varying enrichment singles 

– Linear fit: Exp. varying plate doubles 

and MCNP varying plates doubles 

– 2nd degree poly – concave down: 

MCNP varying enrichment doubles 

 

 

Figure 14: Singles count rate calibration 

Figure 15: Doubles count rates calibration 
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RESULTS AND ANALYSIS (CONTINUED) 

• AECF Calibration 

– Singles, varying fuel plates Exp. and MCNP results, agree within 

5% 

– Doubles within 20%  

– Higher count rates with varying enrichment in the middle 

 Higher 238U content 


235U self shielding higher than 238U 
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RESULTS AND ANALYSIS (CONTINUED) 

 

 

 

 

• AECF singles calibration with 252Cf 

vs AmLi- MCNP Results  

– Comparison of top, middle, bottom, 

and average singles 

– All agree within 5% with average 

– Homogenous distribution of 235U in 

fresh fuel 

– In burned fuel, 235U content is lowest in 

the middle compared to top and 

bottom 

– Helps distinguish fresh and used fuel 

– Normalized net singles: 31% higher 

with AmLi 

 

 
      Figure 17: Singles calibration with 252Cf source 

Figure 16: Singles calibration with AmLi source 
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RESULTS AND ANALYSIS (CONTINUED) 

 

 

 

 

• AECF doubles calibration with 
252Cf vs AmLi- MCNP Results  

– Comparison of top, middle, bottom, 

and average doubles 

– All agree within 4% with average 

– Normalized net doubles: 22 higher 

with 252Cf 

      Figure 19: Doubles calibration with 252Cf source 

      Figure 18: Doubles calibration with 252Cf source 
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RESULTS AND ANALYSIS (CONTINUED) 

 

 

 

 

 

 

 

• Comparison of count rates when geometry of fuel assembly 

is changed 
– FA: 5.18% fewer singles and 3.52% fewer doubles when rotated 

– Approximately 7 ∗ 𝜎  for singles and 2 ∗ 𝜎 for doubles 

– PA: 9.7% fewer singles and 1.96% fewer doubles when rotated 

– Approximately 16 ∗ 𝜎  for singles and 1 ∗ 𝜎 for doubles 

– More data is needed for confirmation 

– Bigger change in singles rate, while marginal change in doubles 

– The change needs to be accounted in verification measurements 

  Singles Doubles 

Exp Original Configuration (FA) 450.71±3.41 39.78±1.34 

Exp 90 deg rotated Configuration (FA) 427.35±1.95 38.38±0.69 

Exp Original Configuration (PA) 170.54±1.025 11.21±0.334 

Exp 90 deg rotated Configuration (PA) 154.07±1.621 10.99±0.424 
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RESULTS AND ANALYSIS (CONTINUED) 

 

 

 

 

 • Experimental 

 

 

 

• MCNP 
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CONCLUSION 

 The singles and doubles rates in MCNP benchmarking agreed 

mostly within 5% and 4% respectively 

 Calibration showed experimental and MCNP varying fuel plate 

singles agreed within 5% and doubles agree within 20% 

 The varying enrichment curve showed higher count rates due to 

the lower self shielding of 238U compared to 235U and larges effects 

of water 

 Singles and doubles of top, middle, and bottom measurements 

agree within 5% and 4% respectively with the average 

 Measurements with 90 deg rotated assembly showed singles count 

rates as a function of geometry  

 Normalized AmLi singles 1.23 times higher than singles from 252Cf 

 Normalized AmLi doubles 1.18 times lower than doubles from 252Cf 
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CONCLUSION (CONTINUED) 

 

 

 

 

 Although 252Cf produced roughly 20% less singles than AmLi, there 

were more correlated neutrons within those single to result 17% higher 

doubles rates. 

 The boost in the doubles count rates with 252Cf due to the boost in 

induced fission event due to the TCIF effect 

 For future work, an experimental calibration of the AEFC with the fresh 

fuel containing higher percentage of 238U on average and varying 235U 

enrichment could be performed.  

 The AEFC could be calibrated with fresh fuel rods containing various 

concentrations of GdO3 poison rods to simulate fission product 

absorption.  
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