

LA-UR-17-23549

Approved for public release; distribution is unlimited.

Title: COMPARISON OF 252CF TIME CORRELATED INDUCED FISSION WITH AmLi INDUCED FISSION ON FRESH MTR RESEARCH REACTOR FUEL

Author(s): Joshi, Jay Prakash

Intended for: MS thesis presentation at Missouri S&T

Issued: 2017-05-01

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

COMPARISON OF ^{252}CF TIME CORRELATED INDUCED FISSION WITH AmLi INDUCED FISSION ON FRESH MTR RESEARCH REACTOR FUEL

Presented by Jay P Joshi

MS in Nuclear Engineering

Committee Members: Dr. Shoaib Usman, Advisor

Dr. Alexis C Trahan, LANL Mentor

Dr. Ayodeji Babatunde Alajo

May 10, 2017

OUTLINE

- Acknowledgement
- Objectives
- Motivation
- Introduction
- Materials used
- Methodology
- Results and Analysis
- Conclusion
- References

ACKNOWLEDGEMENT

- ❖ I would like to thank my family, especially my wife for the continuous support and encouragement throughout my time in graduate school. I would like to thank my advisor Dr. Shoaib Usman, mentor Dr. Alexis C Trahan, and Dr. Ayodeji B. Alajo for supervising me during my MS thesis. I would also like to thank Dr. Howard Menlove, Dr. Martin Swinhoe, Carlos Rael, Johnna Marlow, Margaret Root, Dr. John Hendricks, and NEN-1 group at LANL for the continuous help and support. I would like to thank faculties and staffs at Missouri S&T NE department.
- ❖ Finally, I would like to acknowledge the support from the Nuclear Noncompliance Verification (NNV) program of the U.S. National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Security (NIS) for supporting my MS thesis project.

OBJECTIVES

- To calibrate Advanced Experimental Fuel Counter (AEFC)
 - ^{252}Cf in instead of traditional AmLi source
- To benchmark MCNP simulations using experimental results
- To investigate the effects of change in fuel assembly geometry to the count rates
- Finally, to show the boost in doubles count rates (coincidence rates) with ^{252}Cf active source due to the time correlated induced fission (TCIF) effect

MOTIVATION

- MTRs around the world
 - With both highly enriched uranium (HEU) and low enriched uranium (LEU) fuel
 - ^{235}U can be separated directly from HEU fuel and diverted to the weapons program
 - Countries where MTRs are installed were committed to non-proliferation and their commitment needed verification
- Difficulties to obtain AmLi source in the US
- Better doubles rates obtained with ^{252}Cf compared to AmLi in the past field trial in Uzbekistan in 2012 and 2014

INTRODUCTION

- The effective application of international safeguards to research reactors requires verification of spent fuel as well as fresh fuel.
- To accomplish this goal various nondestructive and destructive assay techniques have been developed in the US and around the world.
- The Advanced Experimental Fuel Counter (AEFC) is a nondestructive assay (NDA) system developed at Los Alamos National Laboratory (LANL). [1]

INTRODUCTION (CONTINUED)

- Both neutron and gamma measurement capabilities
- Spent fuel assemblies are stored in water
 - The system designed to be watertight to facilitate underwater measurements by inspectors. [1]

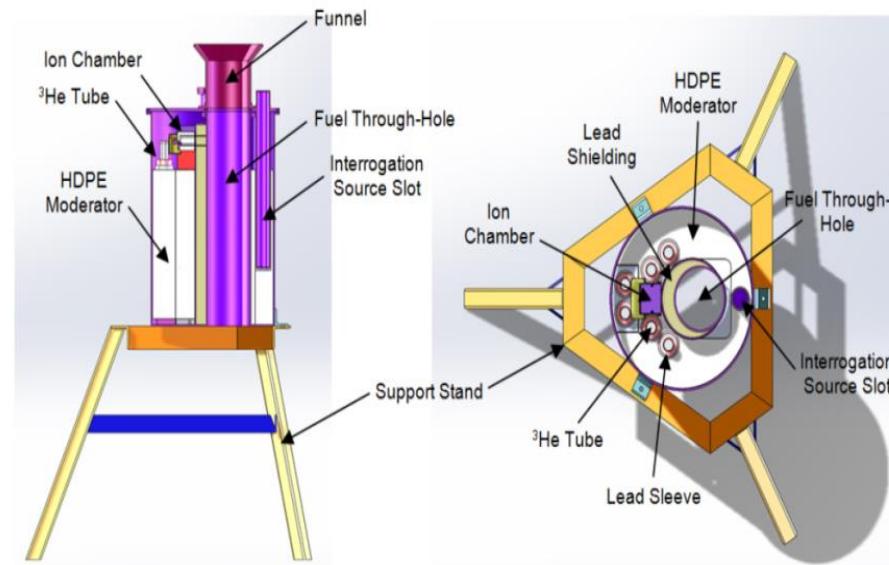


Figure 1: Mechanical design of the AEFC [1]

UNCLASSIFIED

Slide 7

INTRODUCTION (CONTINUED)

- Six ${}^3\text{He}$ neutron detectors and one ion chamber for gross gamma measurement
- Detectors are shielded with lead for high gamma doses
- Collimator for ion chamber
- Neutrons are moderated by HDPE and water
- Both active and passive neutron interrogation capabilities
- Active neutron measurement provides information about residual fissile mass
- Passive neutron measurement provides BU, IE, and CT [1]

INTRODUCTION (CONTINUED)

- Passive gross gamma results provide information about BU, IE, and CT.
- In the past, active interrogation mostly used AmLi.
- In 2014 during the Uzbekistan field trial, AEFC was calibrated by ^{252}Cf .
- Results showed better doubles count rates with ^{252}Cf than AmLi. [2]
- Why would ^{252}Cf give better coincidence results?
- ^{252}Cf was supposed to be complex due to its time correlated SF neutrons.

INTRODUCTION (CONTINUED)

Neutron Coincidence Counting

- In the AEFC, two or more neutrons are coincident if they are detected by any of the six ${}^3\text{He}$ detectors within the specified gate window.
 - In this case, the gate window is 128 μsec .

No. of Neutrons	1	2	3	4	n
No. of Coincidences	0	1	3	6	$n(n-1)/2$

- The coincidences measured can come from accidentals from background and active source. [6]

INTRODUCTION (CONTINUED)

- Accidentals can be separated from the real coincidences from fuel.
- The process of separation is explained by the Rossi-Alpha distribution.

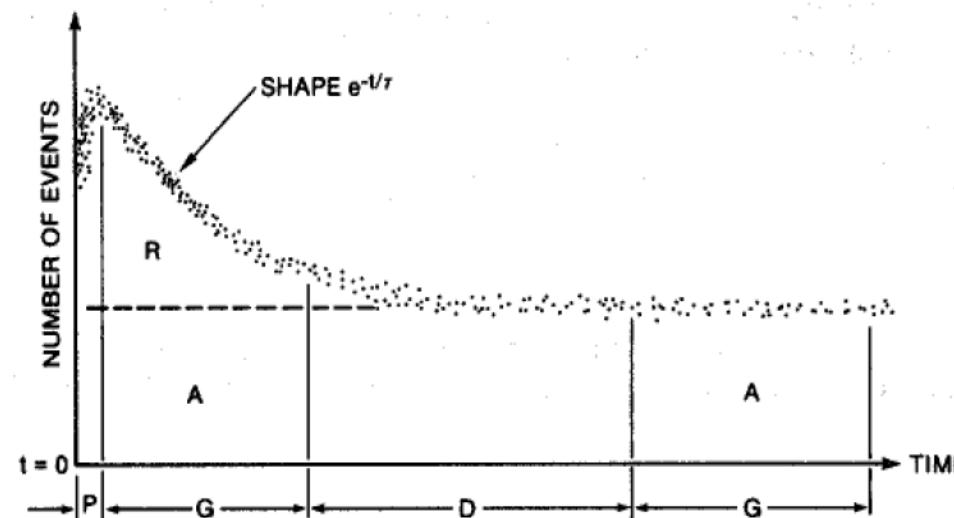


Figure 2: Rossi-Alpha distribution [5]

INTRODUCTION (CONTINUED)

- P is a pre-delay, G is a gate length, and D is a long delay gate[5]
- First neutron detected inside any of six ${}^3\text{He}$ detectors acts as a trigger and opens a time window.
- All neutrons detected within that specified time window are time correlated coincidences to the initial triggering neutron. [6]
- Subsequently, each neutron after the first triggering, neutron triggers its own window of equal time length and thus a distribution is produced. [6]

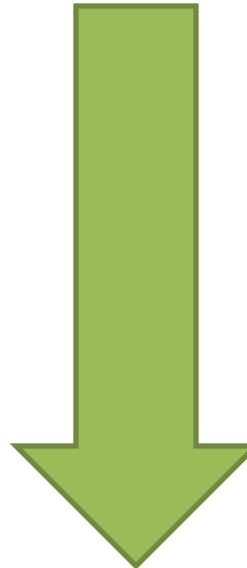
INTRODUCTION (CONTINUED)

- If a random source (AmLi) is measured, a flat distribution will be obtained.
- If a source that emits time correlated neutron (^{252}Cf) is measured, the distribution obtained will look like an exponential function given by

$$S(t) = A + R e^{-t/\tau}$$

- Where A is accidental coincidence and R is real coincidence [5]

INTRODUCTION (CONTINUED)


- Initially, coincidence counting concept was
 - source would produce random neutron
 - fuel would produce correlated neutron
 - net correlated neutrons from fuel itself
- However in the asymmetric system such as AEFC, ^{252}Cf gives better results. [2]
 - Very small source-detector efficiency
 - Negligible contribution from the background (active source)
- Experimental - The source-detector is over moderated and efficiency is less than 1%
 - Fuel gets in the source-detector line of sight
 - The efficiency reduces even more

INTRODUCTION (CONTINUED)

- MCNP - Fuel-detector efficiency is approximately 5%
- Effect of time correlated SF neutron background from ^{252}Cf is negligible.
- Average energy of AmLi neutron 0.3 MeV is much lower than average energy of ^{252}Cf of 2.3 MeV.
- AmLi neutrons are thermalized much faster than ^{252}Cf neutrons.
- Probability of inducing fission in the fuel is much higher with AmLi.
- Once again, AmLi seems to be favorable to produce better coincidence results.


INTRODUCTION (CONTINUED)

- The reason why ^{252}Cf gives better coincidence results is

INTRODUCTION (CONTINUED)

Time Correlated Induced Fission (TCIF) Effect

INTRODUCTION (CONTINUED)

- Term was brought up by Dr. Howard Menlove at the LANL.
- Related to the neutrons emitted in IF event from the fuel assembly coupled to the neutrons produced in a precursor fission event in an active interrogation source
- SF neutron from active source are time correlated with the **IF** neutron from the fuel.
- Combined multiplicity is higher with ^{252}Cf .
- Only one IF event is possible per random (α, n) reaction with AmLi.

INTRODUCTION (CONTINUED)

- More than one IF per SF event with ^{252}Cf
- Boost in doubles rate is due to the boost in combined multiplicity due to the TCIF effect of ^{252}Cf .

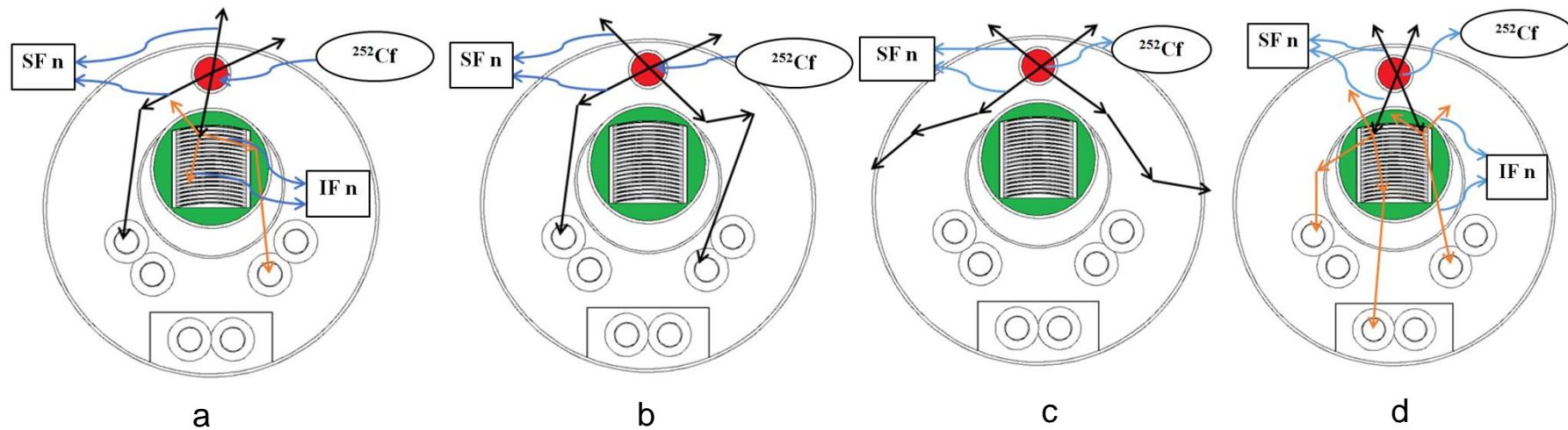


Figure 3: Possible neutron detection scenarios with ^{252}Cf active sources

MATERIALS USED

- Clean AEFC system
- Water tank
- Crane to move AEFC and fuel assembly
- JSR-15 Shift Register
 - HV: 1680 V
 - Pre-delay: 4.5 μ sec
 - R+A or A Gate: 128 μ sec
- Laptop with INCC
- L-108 and O-187R, MTR type fresh fuel assemblies
- ^{252}Cf (A7866)- 45,670 n/s
- ^{252}Cf (A7869)- 170,695 n/s
- AmLi (N-165) – 37,940 n/s

MATERIALS USED (CONTINUED)

- Key Dimensions
 - Full Assembly (FA) L-108: 108 cm long, while 60 cm active fuel meat
 - Partial Assembly (PA) O-187R: 90 cm long, while 60 cm active fuel meat
 - AEFC
 - Height: 112 cm
 - Axial center of ${}^3\text{He}$ detectors at 67.67 cm above the base of the tank
 - Fuel through hole diameter: 12 cm
 - Length of ${}^3\text{He}$ detectors: 25 cm

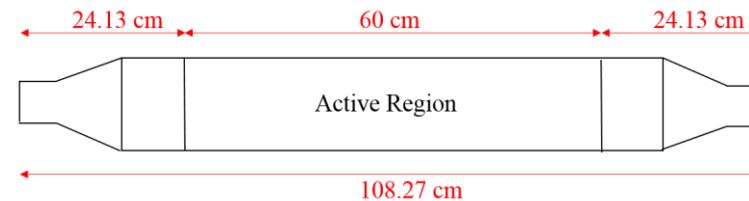


Figure 4: MTR fuel assembly

UNCLASSIFIED

Slide 21

MATERIALS USED (CONTINUED)

- Water Tank Dimensions

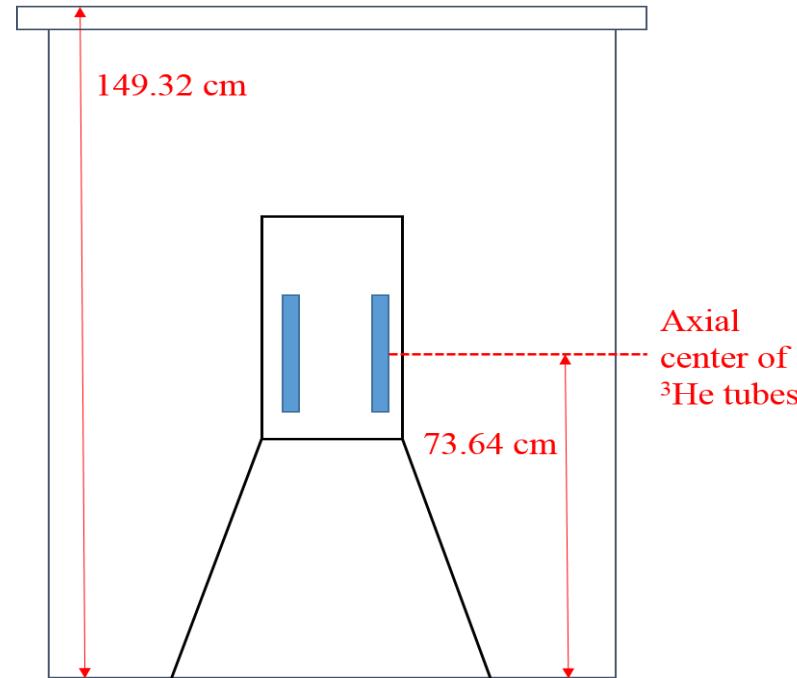


Figure 5: AEFC inside poly water tank

MATERIALS USED (CONTINUED)

Figure 6: AEFC outside the water tank

Figure 7: AEFC + MTR inside water [4]

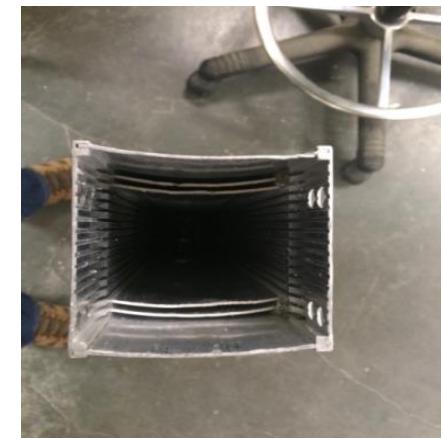


Figure 8: O-187R MTR fuel assembly

METHODOLOGY

Experimental Measurement Procedure

- FA-²⁵²Cf measurements :
 - Completely lowered to the base of the water tank
 - 23 point measurements: 3 cm increment axially upward each time
 - Mid point measurement (13.67 cm above the base of the water tank)
 - Mid point measurement: fuel assembly rotated 90 degree
 - Bottom point measurement: 18 cm below the mid point measurement configuration
- FA-AmLi Measurements:
 - Mid point measurement: AmLi

METHODOLOGY (CONTINUED)

- PA-²⁵²Cf measurements :
 - Mid point measurement (31.32 cm above the base of the water tank)
 - Mid point measurement: fuel assembly rotated 90 degree
 - Top and Bottom point measurement: 18 cm above and below the mid point measurement configuration
- PA-AmLi Measurements:
 - Mid point measurement: AmLi

METHODOLOGY (CONTINUED)

- MTR fuel plates in fabricated fuel holder:
 - Mid point measurement: varying fuel plates with $^{252}\text{Cf}(\text{A7869})$
 - With 1, 8, and 9 plates

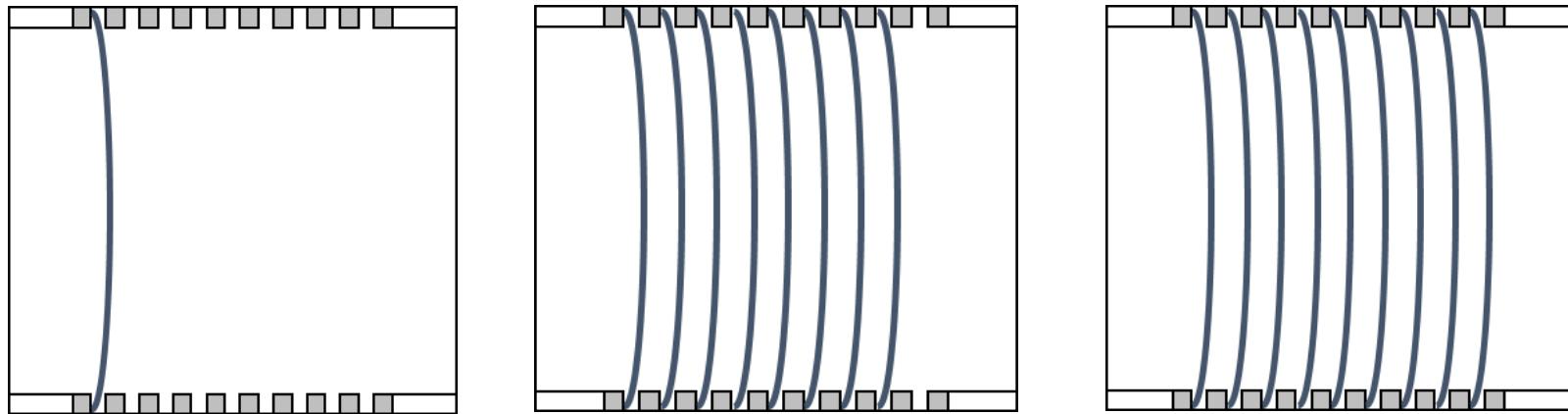


Figure 9: Varying Fuel plates in a fuel holder

METHODOLOGY (CONTINUED)

MCNP Simulation Procedure

- Replicated experiments
- Additional simulations
 - Varying fuel plates: 4, 6, 8, 10, ..., 18, 19 plates
 - Varying enrichment: 20% to 93.5%

RESULTS AND ANALYSIS

- Count rates normalized to $^{252}\text{Cf}(\text{A7866})$
- FA Benchmarking
 - Singles (S): within 5% up to 30 cm
 - Doubles (D): within 4% up to 30 cm
 - S and D diverging after 30 cm
 - $3 * \sigma$ error bars

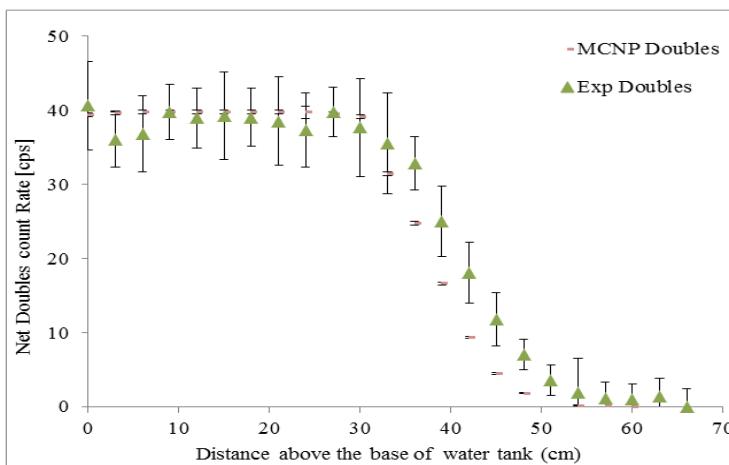


Figure 11: L-108 net doubles count rates

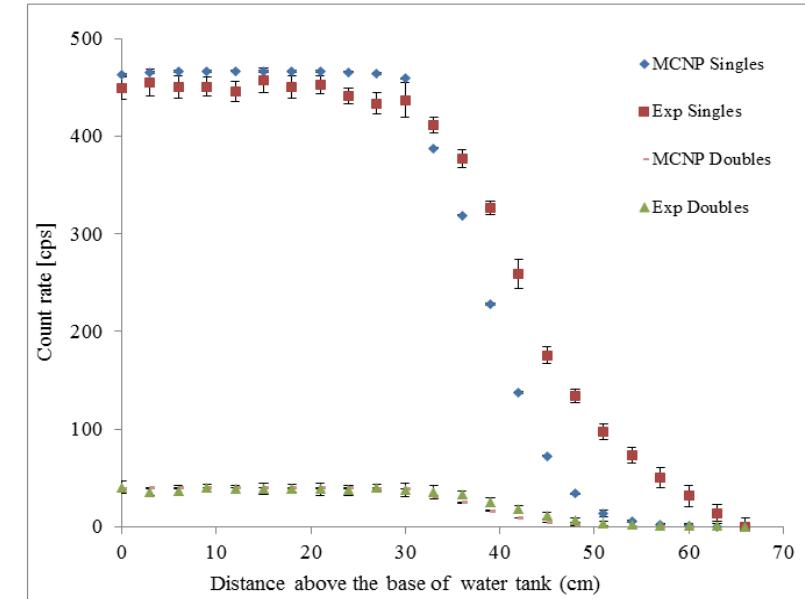


Figure 10: L-108 scan with ^{252}Cf SF source

RESULTS AND ANALYSIS (CONTINUED)

- PA Benchmarking
 - Singles within 25%
 - Doubles within 3%
 - $3 * \sigma$ error bars

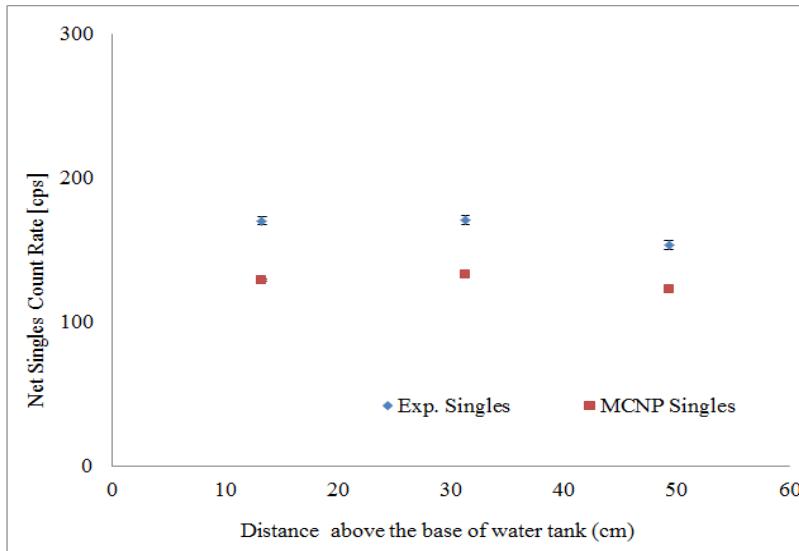


Figure 12: Three-point scan singles count rates

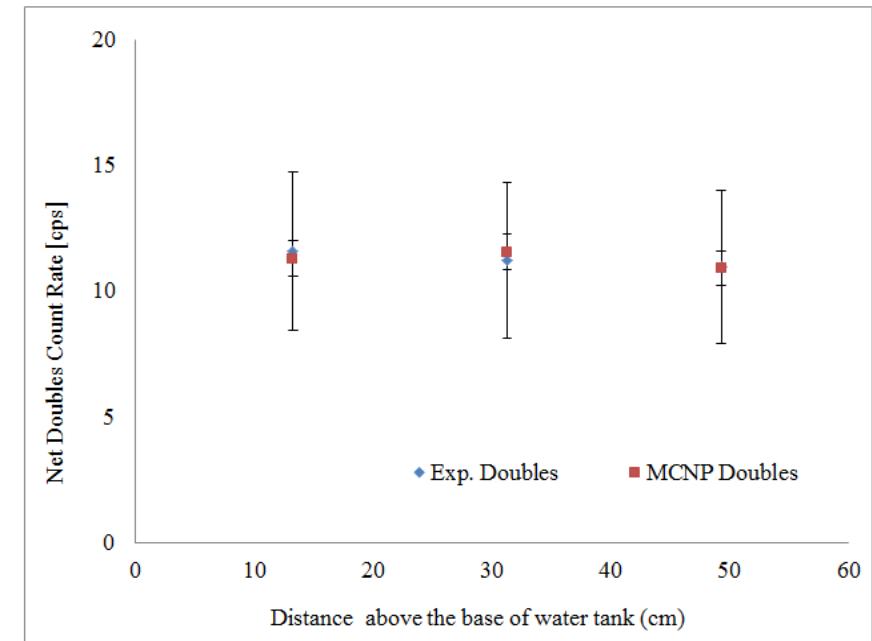


Figure 13: Three-point scan doubles count rates

RESULTS AND ANALYSIS (CONTINUED)

- AECF Calibration
 - S and D count rates vs residual fissile mass
 - Linear fit: Exp. varying plates singles and MCNP varying plate singles
 - 2nd degree poly – concave down: MCNP varying enrichment singles
 - Linear fit: Exp. varying plate doubles and MCNP varying plates doubles
 - 2nd degree poly – concave down: MCNP varying enrichment doubles

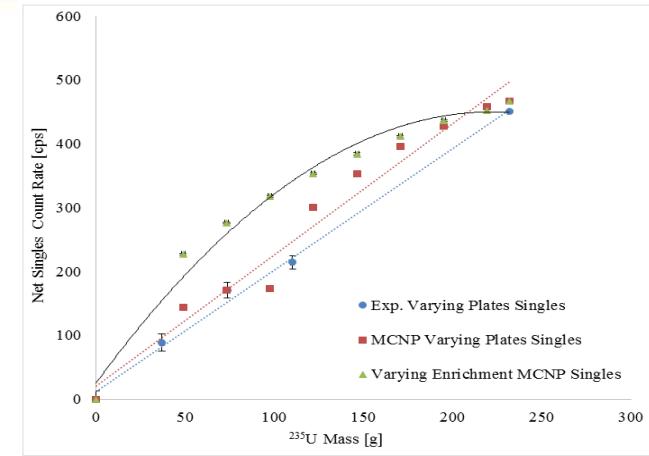


Figure 14: Singles count rate calibration

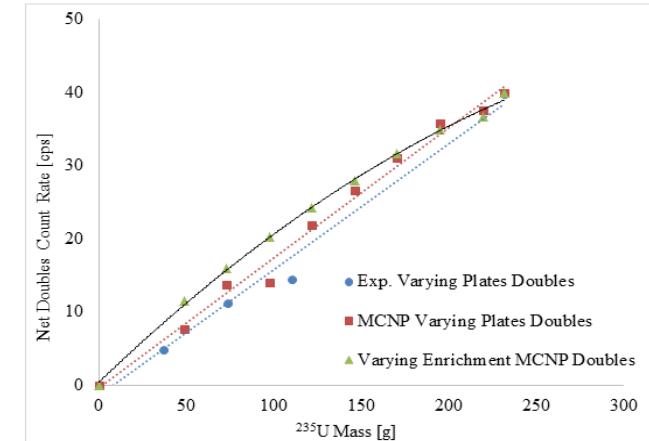


Figure 15: Doubles count rates calibration

RESULTS AND ANALYSIS (CONTINUED)

- AECF Calibration
 - Singles, varying fuel plates Exp. and MCNP results, agree within 5%
 - Doubles within 20%
 - Higher count rates with varying enrichment in the middle
 - Higher ^{238}U content
 - ^{235}U self shielding higher than ^{238}U

RESULTS AND ANALYSIS (CONTINUED)

- AECF singles calibration with ^{252}Cf vs AmLi- MCNP Results
 - Comparison of top, middle, bottom, and average singles
 - All agree within 5% with average
 - Homogenous distribution of ^{235}U in fresh fuel
 - In burned fuel, ^{235}U content is lowest in the middle compared to top and bottom
 - Helps distinguish fresh and used fuel
 - Normalized net singles: 31% higher with AmLi

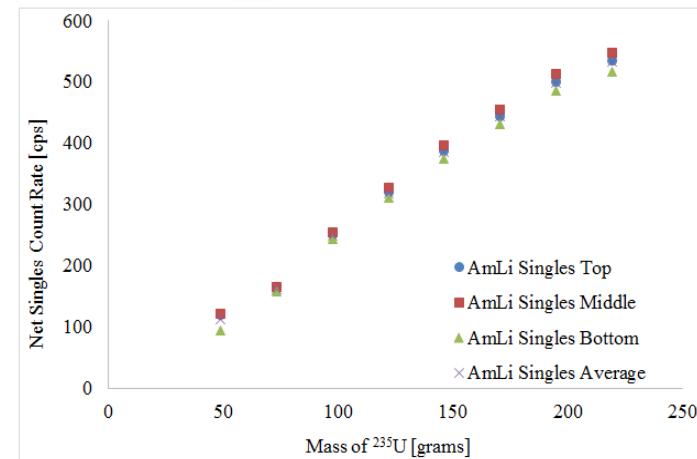


Figure 16: Singles calibration with AmLi source

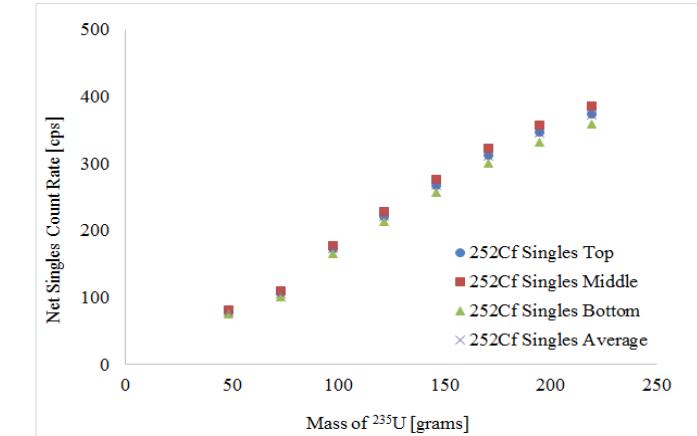


Figure 17: Singles calibration with ^{252}Cf source

RESULTS AND ANALYSIS (CONTINUED)

- AECF doubles calibration with ^{252}Cf vs AmLi- MCNP Results
 - Comparison of top, middle, bottom, and average doubles
 - All agree within 4% with average
 - Normalized net doubles: 22 higher with ^{252}Cf

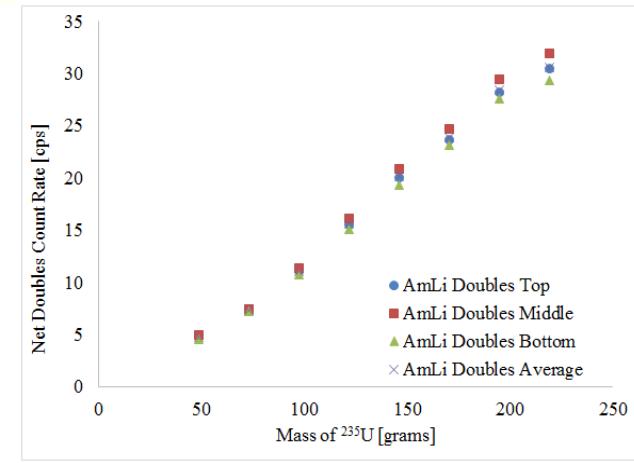


Figure 18: Doubles calibration with ^{252}Cf source

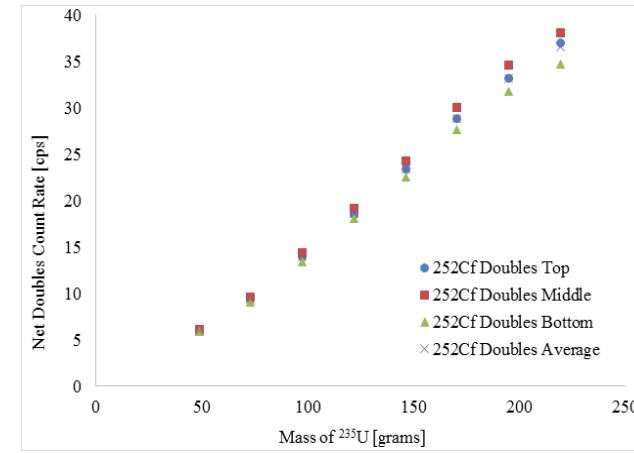


Figure 19: Doubles calibration with ^{252}Cf source

RESULTS AND ANALYSIS (CONTINUED)

	Singles	Doubles
Exp Original Configuration (FA)	450.71±3.41	39.78±1.34
Exp 90 deg rotated Configuration (FA)	427.35±1.95	38.38±0.69
Exp Original Configuration (PA)	170.54±1.025	11.21±0.334
Exp 90 deg rotated Configuration (PA)	154.07±1.621	10.99±0.424

- Comparison of count rates when geometry of fuel assembly is changed
 - FA: 5.18% fewer singles and 3.52% fewer doubles when rotated
 - Approximately $7 * \sigma$ for singles and $2 * \sigma$ for doubles
 - PA: 9.7% fewer singles and 1.96% fewer doubles when rotated
 - Approximately $16 * \sigma$ for singles and $1 * \sigma$ for doubles
 - More data is needed for confirmation
 - Bigger change in singles rate, while marginal change in doubles
 - The change needs to be accounted in verification measurements

RESULTS AND ANALYSIS (CONTINUED)

- Experimental

	AmLi, N-165	^{252}Cf , A7-866
Singles IF/Source	1.19E-02	9.70E-03
Doubles IF/Source	7.18E-04	8.36E-04

Source	Doubles IF/Singles IF
AmLi, N-165	6.03E-02
^{252}Cf , A7-866	8.62E-02

- MCNP

	AmLi, N-165	^{252}Cf , A7-866
Singles IF/Source	1.14E-02	9.88E-03
Doubles IF/Source	6.91E-04	1.01E-03

Source	Doubles IF/Singles IF
AmLi, N-165	6.02E-02
^{252}Cf , A7-866	1.01E-01

CONCLUSION

- The singles and doubles rates in MCNP benchmarking agreed mostly within 5% and 4% respectively
- Calibration showed experimental and MCNP varying fuel plate singles agreed within 5% and doubles agree within 20%
- The varying enrichment curve showed higher count rates due to the lower self shielding of ^{238}U compared to ^{235}U and larges effects of water
- Singles and doubles of top, middle, and bottom measurements agree within 5% and 4% respectively with the average
- Measurements with 90 deg rotated assembly showed singles count rates as a function of geometry
- Normalized AmLi singles 1.23 times higher than singles from ^{252}Cf
- Normalized AmLi doubles 1.18 times lower than doubles from ^{252}Cf

CONCLUSION (CONTINUED)

- Although ^{252}Cf produced roughly 20% less singles than AmLi, there were more correlated neutrons within those single to result 17% higher doubles rates.
- The boost in the doubles count rates with ^{252}Cf due to the boost in induced fission event due to the TCIF effect
- For future work, an experimental calibration of the AEFC with the fresh fuel containing higher percentage of ^{238}U on average and varying ^{235}U enrichment could be performed.
- The AEFC could be calibrated with fresh fuel rods containing various concentrations of GdO_3 poison rods to simulate fission product absorption.

REFERENCES

1. Menlove HO, et al., "Field Tests of the AEFC for Verification of Research Reactor Spent Fuel at the WWR-SM Reactor at the Institute of Nuclear Physics Uzbekistan." proc. INMM Annual Meeting; Orlando, Florida USA; 2012.
2. Menlove, Howard O, et al., "AEFC for the Verification of Research Reactor Spent Fuel – Field Experience to Date." Los Alamos National Laboratory, 16 Feb. 2017. Web. 14 Apr. 2017. <<http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-21223>>.
3. Menlove HO, et al., "The Optimization and Calibration of the AWCC Using 252Cf Interrogation and the Comparison with an AmLi Neutron Source." Los Alamos National Laboratory, USA, LA-UR-15-29620.
4. Menlove, HO, et al., "The Advanced Experimental Fuel Counter – a Portable Detector for the Verification of Research Reactor Spent Fuel." LA-UR- 11-01586, Los Alamos National Laboratory, USA, 04-05-2011.
5. Ensslin, N., "Principles of Neutron Coincidence Counting." Passive Nondestructive Assay Manual- PANDA. N.p.: Los Alamos National Laboratory, 2007, pages 457-491.
6. Trahan A C., "Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel." University of Michigan; Ann Arbor, Michigan USA; 2016.

Questions ?