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SUBJECT: (U) Analytic First and Second Derivatives of the Uncollided Leakage for a
Homogeneous Sphere

|. Introduction

The second-order adjoint sensitivity analysis methodology (2"-ASAM), developed by Cacuci,' has
been applied by Cacuci’ to derive second derivatives of a response with respect to input parameters for
uncollided particles in an inhomogeneous transport problem. In this memo, we present an analytic
benchmark for verifying the derivatives of the 2"“-~ASAM. The problem is a homogeneous sphere, and
the response is the uncollided total leakage.>* This memo does not repeat the formulas given in Ref. 2.
We are preparing a journal article that will include the derivation of Ref. 2 and the benchmark of this
memo.

The forward and adjoint transport equations required by the 2"-ASAM, called the 1-- and 2"-level
adjoint sensitivity system (1%- and 2"-LASS), have been solved using the PARTISN multigroup
discrete-ordinates code.’ In this paper, the PARTISN results are compared with the analytic results.

In Sec. II, the benchmark problem is presented and the various derivatives, up to second order, are
derived analytically. In Sec. III, the problem is specified with quantified parameters, numerical results
are given, and results from the PARTISN implementation are compared with the analytic results. A
summary and discussion of future work is in Sec. I'V.

I1. Problem Setup and Derivatives

Consider a homogeneous sphere of radius a. The material consists of two isotopes with number
densities N1 and N2. The microscopic cross sections for the two isotopes are g1 and 2. Isotope 1 is a
decay gamma-ray source; the line emission rate (per atom of isotope 1) is g1. Isotope 2 may emit gamma
rays, but not in the same line as isotope 1; g2 is zero. Gamma rays are emitted isotropically.

The macroscopic cross section X of the material is
X=0,N,+0o,N,. (1)
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The line source rate density ¢ is
q=q,N,. 2)

The isotopic number densities are related to the material mass density p via

N
N, =’”2+A, i=12, 3)

where wi and A; are the weight fraction and atomic weight of isotope i and N is Avogadro’s number.
The weight fractions satisfy the normalization w, + w, =1. Whenever the mass density is perturbed in
this problem, both number densities are perturbed, according to Eq. (3). Weight fraction perturbations
are not considered in this problem.

The uncollided escape probability P is
3
" 8(Za)’
The uncollided leakage from the sphere is the escape probability multiplied by the total source rate.* The
total source rate Q is the source rate density g of Eq. (2) multiplied by the volume of the sphere, V-
O=qV =q,NV. (5)

2(za) —1+ 1+ 25a)e 2] @)

The uncollided leakage L is
L=0QP. (6)

We will need derivatives of P with respect to . The first derivative is

P _ 3 hsay -1+ 1+ 25a)e = |+ —>_[45a® + 2a¢  ~2a(1+ 25a)e ]
0 8(Ta)’z 8(Za)
_ _i _ L _ " 2%a
> {P 2%a (- )} (7)

The second derivative of P with respect to  is
2
oP 3 P 30P 3 (l—e‘zz")+ie‘22“

oxr ¥ 2or Ya

3 30P 3

¥ 20T Ya

3 oP 1 s
=—{P-T———|I-(1+Z “b. 8
Zz{ 5 g1+ Za)e ]} ®)

1. A. Derivatives with Respect to Atom Densities

The first derivative of the leakage with respect to NV is

oL _0, o
oN, oN,  “aN
oP &%
—q VP10
WO N
oP
=q,VP+ —.
g, Oo, r 9)
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The first derivative of the leakage with respect to V2 is

oL _ oQ P40 oP
ON, ON, ON,
OP 0X
0% ON,
6P
=Qo %55 (10)
The second derivative of the leakage with respect to N1 is
o°L aQ o (0P
= V -
ON; 7 aN aN az too 7% [azj
OP 0Z oP 0 (OP) 0Z
:%V__+Q1VO-1_+Q61_(_)_
ox 6N1 0x\ 0% ) ON,
P
~2470, % 007 " (i
The second derivative of the leakage w1th respect to Nz is
0L _ 00 400, 0 (6_Pj
ON? aN az ik oN, \ o2
0 (0OP) oX
~00, 2 %)
0X JON,
0’ P
=0 22 : (12)

The mixed partial derivative of the leakage with respect to N1 and N2, by differentiating Eq. (10)
with respect to N1, is

oL _0Q 00,0 [6_P]
ONON, N, az v, \ oz
oP 0%
V _-=
=q, 0-2 +0Qo0, (@Zj@Nl

oP 0P
=qVo, o5 +00,0, 52 (13)

Differentiating Eq. (9) with respect to Nz also gives Eq. (13).
The density derivatives here and everywhere in this paper are constant-volume partial derivatives.®
11.B. Derivatives with Respect to Cross Sections

The first derivative of the leakage with respect to o1 is
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oL _ o0 P+0 OP
do, 0o, oo,
P
0% 0o,
oP
=0ON, —.
ON, — (14)
The first derivative of the leakage with respect to o2 is
oL _ oQ P+O oP
do, 0o, oo,
P
0x 0o,
oP
=QON, —. 15
2 55 (15)

The second derivative of the leakage with respect to o1 is

BTl
oo} 80‘1 az "0, \ 6T
OP) 0Z
= 0N, ( j
0x\ 0% ) 0o,
o’P
Nfa?. (16)
The second derivative of the leakage with respect to o2 1s
0L _ 00 L ON [8_PJ
ool 802 az 00,02
OP) 0%
=ON, ( j
o0x\ 0% ) oo,
o’P
=ON; —.
ON; = (17)

The mixed partial derivative of the leakage with respect to o1 and o2, by differentiating Eq. (15) with
respect to a1, 1s

L _0Q L ON [8_PJ
do,00, 80‘1 az * 00, \ o2
oP o
=ON. 2 ( j
02\ 0% ) 0o,
O'P
= ON,N, —
=0 2 5 (18)

Differentiating Eq. (14) with respect to o2 also gives Eq. (18).
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1I.C. Derivatives with Respect to Source Emission Rates

The first derivative of the leakage with respect to g1 is
oL _2Q,, op
dq, 0q, aq,
= N,VP. (19)

The first derivative of the leakage with respect to g2 is 0.

The second derivative of the leakage with respect to g1 is

8 L OP
=N}V —=0.
ﬁql 0q, (20)

The second derivative of the leakage with respect to g2 is 0.
The mixed partial derivative of the leakage with respect to g1 and g2 is zero.

11.D. Derivatives with Respect to Material Mass Density

The material mass density p is also a quantity of interest. Using Eq. (3) in Egs. (1) and (5), the cross
section and total source rate can be written

P
=2
po (21)
and
P
Q:_Q s
Py (22)

respectively, where subscript 0 represents the initial, unperturbed configuration.

The first derivative of the leakage with respect to p is

oL 6Q

6,0 8,0 8,0
6Q Qa—Pa—z (23)
8,0 o0x Op

Using Eqgs. (21) and (22) yields
oL_0p, %P

dp py P 0T (24)
Rearranging Egs. (21) and (22), Eq. (24) can be written in the notation of the rest of this paper:
i _0fp,52F) y
op p ox (25)

From Eq. (24), the second derivative of the leakage with respect to p is
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PL_0.0P 05T L b (3)
op® pyOp Fp py 0T p, Op\ O
_Qy OPOE 092, OP &i(a_f’ja_z
p, O 0p 0Op p, O P, 02\ 0X ) Op

2
Po Py OZ oz (26)
Again rearranging Eqgs. (21) and (22), Eq. (26) can be written in the notation of the rest of this paper:

O’L_,0%0P (ET o°P

op® p P o p) o%°
Q 226—1D 32 o |
T e 27)

These density derivatives are constant-volume partial derivatives.®
ILE. Mixed Derivatives: Atom Densities and Cross Sections

The mixed partial derivative of the leakage with respect to N1 and o1, by differentiating Eq. (14) with
respect to Vi, is

o’L _90 oP Q_ ON (G_Pj
ONdo, ON, 'o% AGS
oP 0P oP) 0%

=qV/N,—+Q0—
h laz RS [azjazvl

o0°P

=20—+0N,
Q +0 101 57 (28)

The mixed partial derivative of the leakage with respect to N1 and a2, by differentiating Eq. (15) with
respect to Vi, is
o°L aQ LON ( 8_Pj
oN 0o, aNl az 20N, \ oz

OP\ 0%
%VN +ON, ( j_

0% ) oN,
oP o°P
= VN, —+ON.0 29)

Differentiating Eq. (9) with respect to g1 and (separately) o2 also gives Egs. (28) and (29).

The mixed partial derivative of the leakage with respect to N2 and o1, by differentiating Eq. (14) with
respect to V2, is
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o’L aQ oP
82 Ql ( j

ON,dc, N, oz
o (0P 0%
o4l
0% )N,
P
= ON
=0ONo,— Pl (30)

The mixed partial derivative of the leakage with respect to N2 and o2, by differentiating Eq. (15) with
respect to V2, is

o’L aQ P opP
=< Q_ Q 2 —
ON,0o, aN2 ) ON, \ 0%
OP oP) 0%
=05 TN [azjazvz
OP o'p P
:Qa_ Q 20,5 52 (31)

Differentiating Eq. (10) with respect to o1 and (separately) o2 also gives Egs. (30) and (31).
These density derivatives are constant-volume partial derivatives.®
IL.F. Mixed Derivatives: Atom Densities and Source Emission Rates

The mixed partial derivative of the leakage with respect to N1 and q1, by differentiating Eq. (19) with
respect to Vi, is

2
oL =VP+ NVa—P
ON,0q, ON,
=VP+ NVa—Pa—Z
0Z ON,
oP
:VP+N1VO'18—Z. (32)

The mixed partial derivative of the leakage with respect to N1 and g2 is zero. Differentiating Eq. (9) with
respect to g1 also gives Eq. (32).

The mixed partial derivative of the leakage with respect to N2 and g1, by differentiating Eq. (19) with
respect to V2, is
°L P
0 Ny 0
ON,0q, ON,
oP ox
0% ON,
OP
=NJVo, = (33)
The mixed partial derivative of the leakage with respect to N2 and ¢z is zero. Differentiating Eq. (10)
with respect to g1 also gives Eq. (33).

1
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These density derivatives are constant-volume partial derivatives.®
1I.G. Mixed Derivatives: Cross Sections and Source Emission Rates

The mixed partial derivative of the leakage with respect to o1 and ¢q1, by differentiating Eq. (19) with
respect to a1, is

2
oL _Np oP
00,0q, oo,

op &
0Z 0o,
oP

2
=NV - (34)

The mixed partial derivative of the leakage with respect to o1 and g2 is zero. Differentiating Eq. (14)
with respect to g1 also gives Eq. (34).

1

The mixed partial derivative of the leakage with respect to o2 and q1, by differentiating Eq. (19) with
respect to a2, is

2
oL _Np oP
00,04, oo,
-yl
" 6% oo,
oP
=N/N,JV —.
S (35)

The mixed partial derivative of the leakage with respect to o2 and g2 is zero. Differentiating Eq. (15)
with respect to g1 also gives Eq. (35).

II.H. Mixed Derivatives: Atom Densities and Material Density

The mixed partial derivative of the leakage with respect to N1 and p, by differentiating Eq. (9) with
respect to p, 1s

0°L oP 0 aP OP
=qV ——+_- Q +00, (_j
0pON, op 8,0

o5
_ 0Pz % 100 (apj 0z
s p, az “iozlox )op
0 %P
(qle+p +Q0,— o (36)

The mixed partial derivative of the leakage with respect to Nz and p, by differentiating Eq. (10) with
respect to p, is
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OL_2Q P i(a_PJ
dpON, dp PR
Q0 + 00 0 (apj oz
po “ sl s op
_Q I o°P
» +Q0, — P (37)

Differentiating Eq. (24) or (25) with respect to N1 and (separately) N2 also yields Egs. (36) and (37).

Another way to do this that recognizes that atom densities and material density are not independent

is to apply the chain rule:
ZZ ( ] ON,
' ON, op (38)

The atom density of Eq. (3) can be ertten
N,
N, =L2 i (39)

Using Eq. (39) and a = N1 yields
0’L _ 9’L ON, . 0°L 0N,
OpoN, ON; 0p ON,ON, Op
_ N &L Ny 'L

py ON{  p, ONON, (40)
Using Eq. (39) and a = N> yields
0’L _ 9’L 0N, . 0°L ON,
O0poN, ON,ON, dp ON; op
N, &L N o°L
— 1,0 2,0 (41)

£ aNlaN p, ON;
Rearranging Eq. (39) and using Eqgs. (11) through (13), it can be shown that Egs. (40) and (41) are equal
to Egs. (36) and (37), respectively.

These density derivatives are constant-volume partial derivatives.®

11.1. Mixed Derivatives: Cross Sections and Material Density

Using Eq. (39), the mixed partial derivative of the leakage with respect to a1 and p, by differentiating
Eq. (14) with respect to p, is

0L a_Q 8P+ oN, oP LON (G_P)
opoc, op 'ox ~ dp o= Yopl oz

=%N18—P+Q Ny, 6P von 2 (apjaz
p, O , O oL\ 0% )op
_ON, (P aP
p oz ol (42)
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The mixed partial derivative of the leakage with respect to o2 and p, by differentiating Eq. (15) with
respect to p, 1s

2
OL QNP oN:P oy i(ﬁ_l’j
opdc, Op 0%~ dp 0% opl oz

QON Lo Ny opP +ON, (GPJOZ

Lo o)) o B o0x )op
2

QN ,or oP by 0 fz’ .
o, ox ox

Differentiating Eq. (24) or (25) with respect to o1 and (separately) o2 also yields Eqs. (42) and (43).

(43)

These density derivatives are constant-volume partial derivatives.®
11.J. Mixed Derivatives: Source Emission Rates and Material Density

Using Eq. (39), the mixed partial derivative of the leakage with respect to g1 and p, by differentiating
Eq. (19) with respect to p, is

2

O’L _ON\ NVa_P
opoq,  Op op

N

=10 VP+NV8—P8—2
Po 0% 0p
_NYV oP
P+%
p ( 62) (44)

The mixed partial derivative of the leakage with respect to g2 and p is zero. Differentiating Eq. (24) or
(25) with respect to g1 also yields Eq. (44).

These density derivatives are constant-volume partial derivatives.®
I11. Numerical Results

The material in the sphere has the parameters shown in Table 1. Isotope 1 is *’Pu and isotope 2 is
240py. The total macroscopic cross section and source rate density from Egs. (1) and (2), respectively, for
the material are also shown in Table I. The cross sections and source rate correspond to the 646-keV
gamma-ray line from >*’Pu. The cross sections were obtained from the MCPLIB04 ACE-formatted
photon cross-section library, which is distributed with MCNP, and do not contain coherent scattering.

The source emission rate g1 is from Gunnick.’

The sphere radius is a = 3.794 cm.
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Table I. Sphere and Material Parameters.

Parameter Value
a 3.794 cm
p 15.8 g/em’®
wi 0.94
w2 0.06
Ni 3.74142E-02 atoms/(b-cm)
N2 2.37817E-03 atoms/(b-cm)
ol 5.27263E+01 b
02 5.27263E+01 b
q 1.341E+05 v/(10** atoms-s)
q2 0 y/(atom-s)
)y 2.09810E+00 /cm
q 5.01724E+03 y/(cm’-s)

April 25, 2017

Analytic values computed using the equations of Sec. II are presented in Sec. III.A. Results

computed using PARTISN are compared with the analytic values in Sec. II11.B.

111.A. Analytic Results

The escape probability, its derivatives, and the leakage are shown in Table II.

Table II. Escape Probability, Its Derivatives, and the Leakage.

Parameter Value
P 9.34752E-02
oP/% —4.38435E-02 cm
&> P/ox? 4.07803E-02 cm?
L 1.07286E+05 v/s

Derivatives of the leakage with respect to atom densities, cross sections, source emission rates, and

the material density are shown in Table III, Table IV, Table V, and Table VI, respectively.

Table II1. Derivatives of the Leakage with Respect to Atom Densities.

Parameter

Value

OL/oN,
&°L/oN}?
oL/oN,
d*L/oN?

82L/6N,0N,

2.14263E+05 y/s/[atoms/(b-cm)]
—1.17096E+07 y/s/[atoms/(b-cm)]?
—2.65325E+06 y/s/[atoms/(b-cm)]
1.30122E+08 y/s/[atoms/(b-cm)]?

5.92062E+07 y/s/[atoms/(b-cm)]?
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Table IV. Derivatives of the Leakage with Respect to Cross Sections.

Parameter Value
L]0, —1.88273E+03 y/s/b
0’L/do} 6.55191E+01 y/s/b?
dL/dc, ~1.19673E+02 y/s/b
0*’L/oc? 2.64718E-01 vy/s/b?
d*L/oo0o, 4.16462E+00 y/s/b>

Table V. Derivatives of the Leakage with Respect to Source Emission Rates.

Parameter Value
0L/ dgq, 8.00043E-01 y/s/[y/(10** atomss)]
&’L/oq} 0 v/s/[y/(10* atomss)]?
oL/oq, 0 y/s/[y/(10** atoms-s)]
’L/0q} 0 v/s/[y/(10* atomss)]?
8’L/dq,0q, 0 v/s/[y/(10* atoms-s)]?

Table VI. Derivatives of the Leakage with Respect to Material Density.

Parameter Value
oL/op 1.08011E+02 v/s/(g/cm?)
d°L/6p* —2.05068E+01 y/s/(g/cm?)?

The mixed derivatives are shown in Table VII.

Table VII. Mixed Derivatives of the Leakage.®

Parameter Value

&*L/oN b, ~8.30901E+03 y/s/cm™
0*’L/oN oo, 2.67044E+03 y/s/cm’™’
8*L/oN, b0, 9.23334E+04 y/s/cm’!
&*L/oN, oo, —4.44522E+04 y/s/cm™!

&*L/oN bq, 1.59779E+00 y/s/[y/(cm®-s)]
8*L/oN,dq, ~1.97856E+01 y/s/[y/(cm’s)]
&*L/do,0q, ~1.40397E-02 v/s/[b-y/(10?* atoms-s)]?
0*L/do,0q, ~8.92413E-04 v/s/[b-y/(10** atoms-s)]?
62L/8,06N1 —1.88165E+04 v/s/[(g/cm*)(atoms/ {b-cm})]
82L/8,08N2 1.59785E+05 v/s/[(g/cm®)(atoms/ {b-cm})]
02 L/6poo, —5.77782E+00 v/s/[g/(cm>b)]

0’ L/opoo, —3.67258E-01 v/s/[g/(cm*b)]

02 L/6pog, 8.05453E-04 y/s/[gy/cm®/(10** atoms-s)]

(a) All derivatives with respect to g2 are zero.
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The equations of Sec. II and the results presented in this section were verified using numerical
differences.

III.B. PARTISN Results Compared to Analytic Results

The equations of the 2"%-LASS have sources that are the angular flux solutions of the 1%-LASS (the
usual forward and adjoint transport equations).? PARTISN is unable to accept angular fluxes as
volumetric sources—only moments expansions are accepted.” However, when anisotropic source
moments are input, an anisotropic scattering expansion of the order of the source expansion (at least) is
required. Thus, to use PARTISN on this problem requires inputting anisotropic scattering cross sections
where no scattering is desired.

To solve this problem, we used an L"-order scattering expansion and set the isotropic (0"-order)
scattering cross section and the L"-order scattering cross section to 10724 times the total cross section.
We set all other scattering cross section moments to zero.

The cross sections were entered in the PARTISN input file using the ODNINP format. A mesh
spacing of 0.005 cm was used (759 meshes in 3.794 cm).

The results presented in this section used a P31 scattering expansion and S204g angular quadrature.
With this quadrature order, the ratio of the leakage computed in the forward and adjoint calculations in
the 1-LASS was 1.00000093.

The difference between PARTISN results and analytic results for the leakage and derivatives of the
mass density are shown in Table VIII. Density derivatives are obtained from the PARTISN results using
the chain rule:

AL _ oL,
op ‘I ON, op
Mmook N, oL (45)
p ON, p ON,
a%_ii &L ON, ON,
op® “FSONON, op op
2 2 2 2
(M) OL G NN, 0L [N, | L (46)
p) ON;  p pONON, \ p ) ON,

These density derivatives are constant-volume partial derivatives.®

Table VIII. Difference Between PARTISN and Analytic Results for the Leakage and Mass
Density Derivatives.

L 0.000%
oL/op ~0.012%
*LIop* | —0.009%

The difference between PARTISN results and analytic results for isotopic first derivatives are shown
in Table IX.
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Table IX. Difference Between PARTISN and Analytic Results for Isotopic First Derivatives.

The difference between PARTISN results and analytic results for isotopic second derivatives

_14-

i OL/ON,
1 (3Pu) | -0.002%
2 (**Pu) 0.000%

i oL/oo,
1 (*°Pu) 0.000%
2 (**Pu) 0.000%

i OL/0g,
1 (*°Pu) 0.000%
2 (>*%Py) N/A®

(a) All derivatives with
respect to g2 are zero.

(including mixed derivatives) are shown in Table X.

Table X. Difference Between PARTISN and Analytic Results for Isotopic Second Derivatives.

i j O’L/ON,ON; | &’L/oNdo; | 8°L/oN,0q,
1(¥Pu) | 1(®Pu) | -0.002% | -0.003% | -0.004%
2(*Pu) | 0.001% 0.001% N/A@
2(%Pu) | 1(**Pu) | 0.001% 0.001% 0.001%
2(*Pu) | 0.001% 0.000% N/A@
i j 0’Lldc,dN, | 8°Ljdc,dc; | 0°Ljdo,dq,
1(¥Pu) | 1(**Pu) | -0.002% 0.001% 0.001%
2 (*Pu) | 0.001% 0.001% N/A®
2(*%Pu) | 1(**Pu) | 0.001% 0.001% 0.001%
2 (*Pu) |  0.000% 0.001% N/A@
i j 0°L/0géN, | 0°Llégdo, | 9°L/ogdq,
1(¥Pu) | 1(**Pu) | -0.002% 0.000% N/A®
2 (*Pu) |  0.000% 0.000% N/A®
2 (*Pu) | 1(**Pu) N/A@ N/A@ N/A®@
2 (**Pu) N/A@ N/A@ N/A®

April 25, 2017

(a) All derivatives with respect to g2 are zero.

The difference between PARTISN results and analytic results for isotopic mixed second derivatives
that include the mass density are shown in Table XI. Again, these are obtained from the PARTISN
results using the chain rule, Eq. (38), where a represents the isotopic density, cross section, or source
emission rate for either isotope.
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Table XI. Difference Between PARTISN and Analytic Results for Mixed Second Derivatives
that Include Mass Density.

j 0’L/opoN, | &’L/opoo, | 8°L/opog,
1(¥Pu) | -0.003% | -0.012% | -0.022%
2(%Pu) | 0.001% -0.012% N/A@

(a) All derivatives with respect to g2 are zero.

When a P; scattering expansion was used (with an S48 angular quadrature), errors in the isotopic
second derivatives were up to 3%, except for 82L/ 0q,0N ; and 62L/ 0q,00 ; , which were still basically

zero because the 2"-LASS equations for those derivatives use only the physical source emission rate
density, which is isotropic. Errors in the derivatives that include the mass density were larger, up to
12%.

Using many scattering moments was crucial to having PARTISN solve this problem correctly, but
the choice of the scattering cross section is not important as long as it is very small. The first-order
relative sensitivities of the leakage to the 0"~ and L™-order *°Pu scattering cross sections is 7E-25%/%
and 5E-31%/%, respectively, and the sensitivities to the 23°Pu scattering cross sections are an order of
magnitude smaller.

IV. Summary and Future Work

This memo provides analytic benchmark results for the derivatives derived in the 2"“-~ASAM for
uncollided particles,? but it does not provide a benchmark for the 2"-LASS. The computed results match
the analytic results extremely well. This memo does not provide results for derivatives of the detector
response function.

In the future, we will extend the 2"-ASAM to include derivatives with respect to interface
locations.®® We will also apply the 2"-~ASAM to transport problems with scattering, including
eigenvalue problems.

An off-the-shelf discrete-ordinates code, PARTISN, was used for the transport calculations,
indicating the general applicability of the 2"-~ASAM. In the future, we will solve the 2"-LASS
equations in the context of ray-tracing.!”
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