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Abstract 27	

Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon 28	

cycle. Microbial-based decomposition models have seen much growth recently for 29	

quantifying this role, yet dormancy as a common strategy used by microorganisms has 30	

not usually been represented and tested in these models against field observations. Here 31	

we developed an explicit microbial-enzyme decomposition model and examined model 32	

performance with and without representation of microbial dormancy at six temperate 33	

forest sites of different forest types. We then extrapolated the model to global temperate 34	

forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration 35	

and microbial dormancy dynamics at different temporal-spatial scales. The dormancy 36	

model consistently produced better match with field-observed heterotrophic soil CO2 37	

efflux (RH) than the no dormancy model. Our regional modeling results further indicated 38	

that models with dormancy were able to produce more realistic magnitude of microbial 39	

biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr 1). Spatial 40	

correlation analysis showed that soil organic carbon content was the dominating factor 41	

(correlation coefficient = 0.4–0.6) in the simulated spatial pattern of soil RH with both 42	

models. In contrast to strong temporal and local controls of soil temperature and moisture 43	

on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio 44	

(C:N) was a major regulating factor at regional scales (correlation coefficient = 0.43 to 45	

0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our 46	

findings suggest that incorporating microbial dormancy could improve the realism of 47	

microbial-based decomposition models and enhance the integration of soil experiments 48	

and mechanistically based modeling.  49	
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1. Introduction 52	

Soil has always been a focus of climate change studies due to its large carbon (C) 53	

stocks – the global soil organic C (SOC) stock is at least four times greater than 54	

atmospheric C [E G Jobbágy and R B Jackson, 2000] and soil respiration is the second 55	

largest flux between the biosphere and the atmosphere following photosynthesis [J W 56	

Raich and C S Potter, 1995]. Therefore soil C dynamics play a key role in net C 57	

sequestration of terrestrial ecosystems and is essential to our understanding of 58	

biogeochemical cycles and its climate-C interactions [IPCC, 2013]. 59	

Since there are limitations of traditional first-order decomposition modeling 60	

approach in current earth system models [K E O Todd-Brown et al., 2013], microbial-61	

based soil organic matter decomposition models have been increasingly used in recent 62	

studies at both site and global scales [S D Allison et al., 2010; Y He et al., 2014a; W R 63	

Wieder et al., 2013]. The current generation of microbial-based decomposition models 64	

usually features a common framework where enzyme production and microbial 65	

physiology are associated with total microbial biomass (MIC), which has a direct 66	

coupling with SOC enzymatic decomposition. A key microbial life-history trait that is 67	

usually lacking in these models is microbial dormancy. Dormancy is a common, bet-68	

hedging strategy used by microorganisms when environmental conditions limit growth 69	

and reproduction [S E Jones and J T Lennon, 2010; J T Lennon and S E Jones, 2011]. 70	

When microorganisms are confronted with unfavorable conditions, they may enter a 71	

reversible state of low metabolic activity and resuscitate when favorable conditions 72	

occur. Microorganisms in this state of reduced metabolic activity are not able to drive 73	

biogeochemical processes such as soil CO2 production; therefore only active 74	
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microorganisms are involved in utilizing substrates in soils [E Blagodatskaya and Y 75	

Kuzyakov, 2013]. Although there are some studies which have explicitly incorporated 76	

dormancy into models [B P Ayati, 2012; S Blagodatsky and O Richter, 1998; N S Panikov 77	

and M V Sizova, 1996; G Wang et al., 2014b; K W Wirtz, 2003], they are mostly confined 78	

to incubation experiments, and applications of microbial models generally do not 79	

consider dormancy. 80	

The representation of dormancy in microbial-based decomposition models may be 81	

necessary due to several main motivations that led to the inception of this study: (1) 82	

current coupled SOC-MIC structure leads to oscillatory behavior of both pools with 83	

unrealistically large amplitudes of interannual variation [Y Wang et al., 2013; W R 84	

Wieder et al., 2013], thus incorporating dormancy may structurally improve model 85	

realism; (2) there is a scale mismatch among common measurement procedures of 86	

microbial biomass–based physiological metrics. For example, substrate induced 87	

respiration and fumigation techniques measure the total microbial biomass when 88	

conversion factor 40.04 calculated by [J Anderson and K Domsch, 1978] is used, whereas 89	

Phospholipid Fatty Acid (PLFA) and fluorescence in situ hybridization (FISH) measure 90	

the active proportion of total biomass [E Blagodatskaya and Y Kuzyakov, 2013; K Denef 91	

et al., 2009; C Kramer and G Gleixner, 2006]; (3) the aforementioned inconsistency may 92	

pose challenges in data-model integration and in microbial model comparisons and 93	

evaluation; (4) the transition between dormant and active state of microbes can be fast (in 94	

the order of hours to days) with substantial magnitude change (e.g., an order of 95	

magnitude) in the proportion of active biomass and relative abundance of different 96	

phylogenetically clustered microbial groups, but with little changes in total microbial 97	
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biomass [S A Blagodatsky et al., 2000; S B Hagerty et al., 2014; S A Placella et al., 98	

2012]. 99	

In this study, we hypothesize that: (1) a microbial model incorporated with 100	

dormancy would outperform the model without dormancy at site-level parameterization; 101	

and (2) a microbial model with dormancy would produce more realistic microbial 102	

biomass and soil RH on both site-level and regional scales. We compared two microbial 103	

models that with and without representation of dormancy for site and regional patterns of 104	

the modeled SOC and microbial related variables. We also discussed the primary controls 105	

on microbial and SOC dynamics at different tempo-spatial scales. 106	

2. Methods 107	

2.1 Model description 108	

Dormancy was incorporated into an existing microbial-enzyme conceptual 109	

framework described by Allison et al. [2010], in which an Arrhenius formulation of 110	

temperature sensitivity was replaced with a simplified Q10 function (
15

10
10

temp

Q
-

) to reduce 111	

the number of model parameters. The reversible transition between dormant and active 112	

state of microbial biomass is assumed to be controlled by environmental cues – directly 113	

accessible substrates, as demonstrated in Wang et al. [2013]. We integrate Davidson et 114	

al.’s [2012] conceptual framework of quantifying concentration of soluble C substrates 115	

that are directly accessible for microbial assimilation, thus building a direct linkage 116	

between environmental factors with microbial state transitions. Substrate quality is also 117	

reflected in the model through a generic index of soil C:N ratio [X Xu et al., 2014] and 118	

the assimilation of substrate by microorganisms is assumed to be regulated by the C:N 119	

ratio of microbial biomass and that of the soil. The model simulates the microbial and 120	
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SOC dynamics for the top 30cm of the soil column. The equations for the model with 121	

microbial dormancy are as follows: 122	

15
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temp
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m

dSOC SOCInput V Q ENZ CN
dt K SOC

-

= - -
+                                                 

123	
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 124	
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131	

(5)
 132	

where state variables are SOC, SolubleC, Ba, Bd and ENZ, corresponding to SOC 133	

content, SolubleC content, microbial biomass in active and dormant state respectively, 134	

and enzyme C (mgC cm-2); temp is soil temperature at each time step t; f  is directly 135	

accessible substrate for microbial assimilation, calculated based on Michaelis-Menten 136	

Decomposition 

Transition from 
active to dormant 

Transition from 
dormant to active 

Microbial uptake 
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kinetics formulated as
3

3
liq

s liq

SolubleC D
K +SolubleC D

q
f

q
´ ´

=
´ ´

, liqD is a diffusion coefficient of the 137	

substrate in liquid phase (determined by assuming all soluble substrate is directly 138	

accessible at the reaction site, 3

1
(1 / )liqD BD PD

=
-

, BD is bulk density and PD is soil 139	

particle density) , q is volumetric soil moisture content, sK is corresponding Michaelis 140	

constant [E A Davidson et al., 2012]. Detailed description for other parameters is 141	

summarized in Table 1. Adding up the equation 3 and 4 shown above gives the model 142	

without dormancy.  143	

Environmental factors such as substrate availability are often thought to be a 144	

direct control of the transition between active and dormant states of microorganisms [J T 145	

Lennon and S E Jones, 2011]. Therefore we adopted the formulation described in Wang 146	

et al., [2014a], where the transition between active and dormant state of microorganisms 147	

is scaled linearly with substrate availability and the direction of the net transition is 148	

determined by the balance of maintenance metabolic requirement and substrate 149	

availability.  150	

We recognize that our model only simulates C dynamics, and decomposition is 151	

effectively influenced by various nutrients through kinetic and stoichiometric constrains 152	

that are not explicitly represented in this model [S D Allison, 2005; S E Hobbie et al., 153	

2002; R L Sinsabaugh et al., 2013; K-J van Groenigen et al., 2006]. Instead of using a 154	

more sophisticated modeling framework, we introduced a temperature and population 155	

size dependent scaling factor on the potential microbial death rate, formulated as156	

15
101.5

0.025

temp
aB

SOC

-

´
´

, where a metabolic temperature sensitivity of 1.5 and a 157	
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population capacity of 2.5% of SOC is assumed for temperate forest soils [X Xu et al., 158	

2013; G Yvon-Durocher et al., 2012]. This multiplier is used to modify the parameter 159	

deathr and implicitly represents competition for nutrients and down regulates microbial 160	

growth.  161	

2.2 Model calibration and validation 162	

We calibrated the model at 6 different temperate forest sites in northeastern China 163	

(3) and conterminous USA (3) with a latitudinal span of 38 – 45°N using a global 164	

optimization algorithm known as the SCE-UA (shuffled complex evolution; [Q Duan et 165	

al., 1992; Q Duan et al., 1994] (Table 2). The 3 northeastern China sites were all 166	

trenched plots with monthly measured RH, soil temperature and gravimetric soil moisture 167	

content at 10cm from 2004 to 2007 [C Wang and J Yang, 2007; C Wang et al., 2006]. 168	

The 3 US sites are part of the AmeriFlux network. The level 2 (gap-filled) eddy 169	

covariance data with half-hourly measured soil temperature (at 10cm, °C), volumetric soil 170	

moisture content (at 10cm, %; VSM) and automated soil chamber measured soil 171	

respiration (umol m-2 s-1) were used for this study [L Gu et al., 2006; J Irvine and B E 172	

Law, 2002]. Approximately 50% of soil respiration was assumed to be RH [P J Hanson et 173	

al., 2000]. Litterfall was assumed to be a fixed proportion (0.3) of net primary production 174	

(NPP), and we assume NPP/GPP = 0.45 (gross primary production, GPP) [B E Law et al., 175	

2001; B E Law et al., 2003]. GPP at US-Me2 and US-MRf sites (see Table 2) were also 176	

obtained from level 2 data, but were not available for US-MOz site. Therefore for the RH 177	

measurement period (2004-2007), we used level 4 gap-filled net ecosystem exchange 178	

(NEE) and we calculated GPP based on NEE and meteorological data using an online 179	

flux partitioning tool (http://www.bgc-jena.mpg.de/~MDIwork/ eddyproc/upload.php) [G 180	
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Lasslop et al., 2010]. Site level state variables (e.g. SOC content) served as initial states 181	

for the model calibration. Note that we rescaled the prior used in inverse modeling for 182	

parameters on per unit of microbial biomass basis (Table 1). The first 75% of total 183	

available data at each site was used for calibration and the remaining was used for 184	

validation. Model evaluation statistics were calculated using the whole data series.  185	

2.3 Data sources for spatial extrapolation 186	

We used the above calibrated ecosystem specific parameters and extrapolated to 187	

the whole temperate forest region defined as the latitudinal band from 25°N to 50° N. We 188	

did not include the Southern Hemisphere due to limited forest coverage and lack of 189	

calibration site located in the region. The average parameters of the corresponding forest 190	

types are used for each forest type involved the latitudinal band. Forest land cover 191	

information was extracted from Moderate Resolution Imaging Spectroradiometer 192	

(MODIS) land cover product (MCD12C1) for the period 2000-2012 and annual mean 193	

land cover distribution was used. The original 0.05°×0.05° (lon×lat) resolution grid was 194	

aggregated to 0.5°×0.5° using a majority resampling approach to best preserve the spatial 195	

structure of the major classes. NPP (2000-2012, annual mean) data were extracted from 196	

MOD17A3 L4 Global 1km product (Version-55) [M Zhao and S W Running, 2010]. The 197	

original data were aggregated to 0.5°×0.5° using the areal mean. Soil physical properties 198	

and organic C and N content of the top 30cm were obtained from gridded Global Soil 199	

Dataset for use in Earth System Models (GSDE) dataset [W Shangguan et al., 2014]. 200	

Particle density was calculated based on bulk density and porosity, and porosity was 201	

estimated using VSM at -10kPa (provided in GSDE). Specifically, we assumed saturated 202	

VSM as same as VSM at -10kPa for silt loam soil and we added 10% for sand loam soil 203	
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based on the soil water retention curve [W M Cornelis et al., 2005]. Soil was classified 204	

according to soil taxonomy [Soil Survey Staff, 2003] and using sand, silt, and clay 205	

content from GSDE data set. For transient simulations, we used CMIP5 historical runs 206	

initialized in year 2006 from CCSM4 land modeling realm (r1i1p1) to retrieve soil 207	

temperature (tsl, average of top 10cm) and soil water content in the top 10cm (mrsos) 208	

(http://www.earthsystemgrid.org). Soil water content in mass was converted to soil 209	

volumetric moisture using relevant soil properties provided by GSDE dataset. Soil 210	

temperature and moisture data were interpolated from 0.9 × 1.25 to 0.5 × 0.5 using 211	

bilinear interpolation method [T Wang et al., 2006]. 212	

2.4 Statistical Analysis 213	

Because we are interested in the overall functional correlations between dormancy 214	

and related environmental factors, we choose to use simple Pearson correlation for spatial 215	

correlation analysis. The spatial extrapolation used the soil temperature and moisture 216	

profile from 2006 and ran for 3 years, and the simulation results for the last year was used 217	

for spatial grid-based and temporal correlation analysis. 218	

3. Results  219	

3.1 Site level calibration and validation 220	

Both the dormancy and no-dormancy models can reproduce the observed soil RH 221	

reasonably well. The adj-R2 of the dormancy model ranges from 0.51 to 0.76 (Table 3), 222	

and four out of the six sites had positive Nash-Sutcliffe model efficiency coefficients 223	

(0.43 to 0.75). The no-dormancy model performed slightly worse, as adj-R2 ranged from 224	

0.36 to 0.73; the Nash coefficients were also slightly lower (Table 3). The no-dormancy 225	

model did not adequately reproduce the observed soil respiration well at Missouri Ozark 226	
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AmeriFlux site (US-MOz) (adj-R2 = 0.32), likely because the high SOC content at this 227	

site makes it more difficult to find an appropriate Km due to its high sensitivity (see 228	

discussion in Section 4.3). A paired t-test on adj-R2 showed marginally significant 229	

difference between the two models (df=5, p=0.098). Simulated dynamics of various C 230	

pools (e.g., SOC, SolubleC, ENZ and MIC) of the two models exhibited similar patterns 231	

over time (Figure 1, 2). SOC at US-Me2 showed a slight decline over the course of 11 232	

years in both models (Figure 1a,e), with SolubleC content showing a seasonal fluctuation 233	

anti-phased with microbial biomass due to active substrate uptake during summer thus 234	

less substrate availability, and suppressed microbial activity during winter, which led to 235	

the accumulation of substrate (Figure 1a,e). The active proportion of microbial biomass 236	

tracked the changes in soil moisture tightly, despite the opposite moisture regimes at the 237	

two sites where US-Me2 experienced moderate drought during summer while CN-Lar 238	

featured benign moisture conditions for microbial decomposition (Figure 1b,f; Figure 2 239	

b,f). It is worth noting here that the seasonal MIC amplitude (calculated as the difference 240	

between annual maximum and minimum MIC) was always much larger (up to two times 241	

larger) in no-dormancy models than in the dormancy models (Table 3; Figure 1b,g; 242	

Figure 2b,g), and there was significant difference between the two models (df=5, 243	

p=0.033). Thus, the magnitude of the oscillations in the dormancy model is significantly 244	

smaller than in the no-dormancy model. 245	

3.2 Inversed model parameters 246	

Parameters that have biophysical meaning should reflect the patterns that 247	

characterize different ecosystem properties. Our mixed forest (CN-fixed) generally 248	

showed intermediate parameter values compared to deciduous broadleaf and evergreen 249	
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needleleaf forests (Figure 3). Some parameters exhibited distinct patterns among 250	

deciduous broadleaf and evergreen needleleaf forests. For instance, microbial 251	

maintenance respiration (mR) was overall higher in evergreen needleleaf forests than 252	

deciduous broadleaf forests (Figure 3c), but the opposite was seen for initial active 253	

fraction (Figure 3l), indicating more stressed soil environment and higher energy 254	

limitation for microorganisms in evergreen needleleaf forests due to less substrate 255	

availability and poorer substrate quality. For other parameters, especially microbial and 256	

enzyme related parameters, the differences between the two major forest types were not 257	

significant (Figure 3f-i). Km is highest in US-MOz (Figure 3e), because it has the highest 258	

SOC content and the Michaelis-Menten formulation makes high Km important for 259	

maintaining the relative substrate level in a reasonable range, which suggests the high 260	

sensitivity of the half-saturation constant to SOC in the Michaelis-Menten formulation. 261	

3.3 Spatial Extrapolation 262	

3.3.1 Spatial distribution of soil RH and microbial biomass  263	

The two models both simulated soil RH ranging between 300 and 1000 gC m-2 yr-264	

1. The spatial pattern of the soil RH of the dormancy and no-dormancy model differed in 265	

large areas of northwestern and southeastern US and in southern China, with no-266	

dormancy model simulating about 30% higher respiration than that of the dormancy 267	

model (Figure 4a,b). The soil RH of other regions was generally comparable between the 268	

two models. The total soil RH of all temperate forests from the dormancy model 269	

amounted to 6.88 PgC yr-1, and 7.99 PgC yr-1 from no-dormancy model. While there may 270	

not be significant difference in the simulated spatial soil RH between the models, the 271	

MIC/SOC ratio showed distinct patterns in both magnitude and spatial distribution of the 272	
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two models (Figure 4c,d). Here the MIC is the total microbial biomass including active 273	

and dormant microbes for dormancy model. The no-dormancy model overall simulated 274	

about two-times higher MIC/SOC ratio for temperate forests, especially in northeastern 275	

US, south Europe, and Japan, than the dormancy model. In the no-dormancy model, the 276	

MIC/SOC ratio can reach about 4% (Figure 4d) whereas in the dormancy model the ratio 277	

ranged from 0.5% to 2% (Figure 4c). Our simulated spatial soil RH of temperate forests 278	

was high at the Great lakes regions in the US where SOC content was also reported high 279	

from the GSDE dataset (Figure 4a,b). Grid cell based spatial correlation analysis showed 280	

that in both models, soil RH was negatively affected by bulk density and particle density 281	

(ρ≈-0.36 and -0.48, respectively, P<0.001), but had a significant correlation with soil C:N 282	

ratio (ρ≈0.3, P<0.001) and especially organic matter content (ρ≈0.89, P<0.001)(Table 4). 283	

Soil temperature and moisture also had significant positive effects on soil RH (ρ≈0.17 and 284	

0.14, respectively, P<0.001), but was not as strong as the SOC. 285	

3.3.2 Spatial pattern of microbial dormancy and its controlling factors 286	

Annual active proportion of microbial biomass ranged from 2% to 40% across 287	

temperate forests (Figure 5a,b). The spatial distribution of active fraction was relatively 288	

the same across seasons. Seasonal active proportion of microbial biomass in summer was 289	

generally about 10% higher than in winter for large areas of northeastern US and 290	

northeaster China, whereas northwestern US, Europe and southern China featured 291	

relatively constant active fraction across seasons (Figure 5a,b). Grid cell based spatial 292	

correlation analysis showed that the soil C:N ratio was a major controlling factor on 293	

dormancy (ρ=0.41 in summer and 0.21 in winter , respectively, P<0.001, Table 4), 294	

indicating higher substrate availability (higher C:N ratio), lower dormancy proportion 295	
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(higher active fraction). Annual temperature and moisture were weak controls on spatial 296	

dormancy pattern (ρ<0.1) except that winter active fraction had a stronger positive 297	

correlation with annual temperature (ρ=0.17, P<0.001). However, temperature and 298	

moisture had very strong local controls on dormancy on temporal scales, with moisture 299	

had mostly strong positive temporal correlations with active fraction (ρ>0.8, Figure 6a), 300	

as moisture was formulated to directly control substrate availability. Temperature showed 301	

negative temporal correlation with active fraction (ρ<-0.5, Figure 6b), primarily due to 302	

the negative covariation between temperature and moisture in the CCSM4 results (Figure 303	

6c). It is worth noting here that, although annual temperature and moisture had weak 304	

controls on spatial patterns of active fraction, the seasonal amplitude of soil temperature 305	

and moisture generally exhibited higher correlations with active fraction (ρ>0.1 and 306	

P<0.001 for summer and winter, Table 4), suggesting there is a high sensitivity of active-307	

dormancy transition to seasonal changes in moisture levels on spatial scales.  308	

4. Discussion 309	

4.1 Model performance and limitations 310	

A synthesis by Bond-Lamberty et al. [2004] documented soil RH from 311	

temperate forests to range from 300 to 800 gC m-2 yr-1. We calculated the regional total 312	

soil RH based on reported mean value of 600 gC m-2 yr-1 and the land cover map used in 313	

this study and resulted in total soil RH to be around 7.11 PgC yr-1. The dormancy model 314	

thus produced closer estimates to this synthetic estimate with 6.88 PgC yr-1, whereas the 315	

no-dormancy model overestimated soil RH of 7.99 PgC yr-1. Despite the comparable 316	

results between our simulated soil RH and synthesized observations, we used a simplified 317	

modeling framework without explicitly considering other key element cycles. Although 318	
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we used soil C:N ratio to indicate substrate quality and its effects on microbial 319	

assimilation as a representative index, the coupled dynamics of kinetics and 320	

stoichiometric constrains on microbial physiology, which also pose key controls on 321	

decomposition dynamics, are not incorporated [S D Allison, 2005; R L Sinsabaugh et al., 322	

2013; K-J van Groenigen et al., 2006]. While the simplified framework may be sufficient 323	

to serve the purpose of this study, a more complex modeling scheme that accounts for the 324	

stoichiometry of other key elements should be able to reveal more biogeochemical 325	

controls which can then be benchmarked with observations to improve model 326	

performance. 327	

4.2 Implications for informing experimental needs 328	

Rainfall induced activation of dormant biomass can generate soil CO2 pulses 329	

comparable in magnitude to the annual net C exchange of many terrestrial ecosystems, 330	

such as Mediterranean [S A Placella et al., 2012; L Xu et al., 2004]. Particularly, such 331	

drying-rewetting events can exert stress on soil microbial communities and cause 332	

decrease in soil basal respiration while total biomass increases [N Fierer and J P Schimel, 333	

2002]. In addition, changes in soil temperature and moisture conditions can induce 334	

responses in microbial basal respiration that were not explained by changes in total 335	

microbial biomass but rather changes in the physiology of soil microbial communities 336	

such as resuscitation of physiologically clustered microbial groups [S B Hagerty et al., 337	

2014; S A Placella et al., 2012; J M Steinweg et al., 2012; V Suseela et al., 2012]. In 338	

contrast to seasonal variation in soil RH driven by changes in temperature and moisture in 339	

a variety of ecosystems [V Suseela and J S Dukes, 2012; V Suseela et al., 2012], total 340	

microbial biomass is generally unaffected by seasonality [E Blume et al., 2002; N 341	
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Gunapala and K Scow, 1998]. All of these indicate that soil respiration responses to 342	

environmental conditions are more closely associated with active portion of microbial 343	

biomass than the total. Thus, the no-dormancy model that does not distinguish microbial 344	

biomass with different physiological states may not correctly represent the microbe-soil 345	

interactions. Similarly, using total biomass as an important metric in both experiments 346	

and modeling may also hinder effective data-model integration. 347	

Our modeling results demonstrate that the ecosystem level controls (substrate 348	

quality and availability) on the average dormancy level (active proportion) at large spatial 349	

scales are different from that at local transient scales (temporal effects of soil moisture). 350	

This suggests that both site-level and spatial data should be used for model validation, 351	

because it is usually easier for model to reproduce site-level, short-term observations with  352	

data assimilation techniques, but much more difficult to capture spatial patterns [K E O 353	

Todd-Brown et al., 2013] and long-term dynamics [He et al., 2014b]. In this study, we 354	

successfully reproduced soil RH at six temperature forest sites, but our extrapolated soil 355	

RH revealed the potential issues with applying Michaelis-Menten kinetics on ecosystem 356	

scales and yielded high soil RH in the northeastern US due to the high SOC content in 357	

that region. Such insufficiency in the model structure may not be disclosed at site-level 358	

examination. Therefore, spatially gridded comprehensive soil C and microbial physiology 359	

metrics would be tremendously helpful in model validation and assessment. For example, 360	

the contrasting controls of bulk density, particle density and organic C content on 361	

simulated soil RH likely reflects covariation among these variables, because with 362	

increasing particle density C concentration decreased, implying that the soil organic 363	
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matter accumulations were thinner [P Sollins et al., 2009]. Our simulated soil RH is then 364	

able to reflect the spatial controls of soil physical properties on decomposition. 365	

Uncertainty in driving data for decomposition models may also be substantial and 366	

experimental measurements on large spatial scales would also be helpful. For example, 367	

the CCSM4 simulation we used cannot reproduce the surface frozen soil in northeastern 368	

China we observed in the site level measurements (Figure 2f), which potentially could 369	

introduce inaccuracies in model results. Note that in southern China broadleaf temperate 370	

forest does not show high temporal positive correlation of active proportion with soil 371	

moisture, this is likely because soil moisture is relatively constant throughout the year [X 372	

Tang et al., 2006], thus soil moisture may not be the primary limiting factor on 373	

dormancy-active transition in that region. More experimental data in that region should 374	

help benchmark both simulated soil moisture and temperature.  375	

4.3 Implications for informing future model development  376	

The high correlation between soil RH and the organic C content in the top 30cm 377	

(Table 4) in our analysis may be attributable to the Michaelis-Menten kinetics we used in 378	

the SOC enzymatic decay process (Eqn 1), where SOC content directly controls 379	

saturation level of the organic matter.  Such high positive correlation between soil RH and 380	

the organic C content were not reported for other formulations (e.g., first-order kinetics in 381	

CMIP5 simulations where turnover time and net primary production are both positively 382	

correlated with SOC content across different earth system models) where decomposition 383	

rate is also associated with SOC content [K E O Todd-Brown et al., 2013]. Thus we argue 384	

that Michaelis-Menten kinetics may not be suitable for characterizing SOC enzymatic 385	

decay process when different soil layers are treated as one unified substrate. This is 386	
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because that Michaelis-Menten kinetics has an implicit assumption that all substrate are 387	

accessible to enzymes under a homogeneous spatial distribution, and that a solution 388	

environment where Michaelis-Menten kinetics was usually applied to is a good example 389	

that demonstrates the homogeneity requirement [L Michaelis and M L Menten, 1913], 390	

thus Michaelis-Menten kinetics has a spatial constrain on relatively local scales. In 391	

addition, Michaelis-Menten formulation is derived under the assumption that enzymatic 392	

kinetics can cause a significant change on substrate levels [L Michaelis and M L Menten, 393	

1913], which is unrealistic for the microbial extracellular hydrolysis of SOC due to soil 394	

mineral-organic matter interaction and occlusion of SOC in soil aggregates which forms 395	

physical barriers [B P Ayati, 2012; N S Panikov and M V Sizova, 1996]. These limitations 396	

may explain the under-performance of the no-dormancy model at US-MOz site which has 397	

the highest SOC content among 6 sites. Although this issue is less notable in dormancy 398	

model, its unrealistic spatial distribution of high soil RH in high SOC regions still 399	

suggests some issues of using Michaelis-Menten kinetics when treating a large SOC as 400	

homogeneous (Table 4). We propose that a better representation of soil vertical 401	

heterogeneity (e.g., [C Koven et al., 2013]) would be essential to using Michaelis-Menten 402	

kinetics in microbial-based decomposition models . Large SOC content likely induced 403	

mismatch of the temporal scale of SOC change with that of microbial activity. To 404	

reconcile the homogeneity assumption of Michaelis-Menten dynamics and the 405	

localization of actual SOC enzymatic decay, vertical heterogeneity can be implemented 406	

using multi-layer soil model structure or depth-resolved SOC profile thus ensuring 407	

certain degree of homogeneity of SOC and enzyme distribution at each depth increment 408	

[Y He et al., 2014b]. Stabilization of organic matter by interaction with poorly crystalline 409	
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minerals is also a key mechanisms missing in current models [B P Ayati, 2012; N S 410	

Panikov and M V Sizova, 1996] and should be incorporated in future model development. 411	

In both models, soil temperature and moisture exhibited similar levels of controls 412	

on soil RH (Table 4), this is likely attributed to the way soil moisture effect is defined in 413	

the model where it directly controls substrate availability. Such formulation with direct 414	

coupling with microbial activity can shed light on improving soil moisture representation 415	

in decomposition models as current first-order formulation in decomposition models only 416	

yield in marginal effects of soil moisture [K E O Todd-Brown et al., 2013]. 417	

5. Conclusion 418	

Microbial life-history traits such as dormancy play an important role in 419	

biogeochemical cycles. It has been widely observed that the active portion of microbial 420	

biomass, rather than the total biomass, explains the changes in microbial basal respiration 421	

rates. This study examines whether including dormancy in microbial-based soil 422	

decomposition model can improve the estimates of SOC dynamics and other microbial 423	

related metrics. Our results showed that although both dormancy and no-dormancy 424	

models can capture the field observed soil RH, the no-dormancy model exhibited larger 425	

seasonal oscillation and overestimation in microbial biomass. Our regional modeling 426	

results also indicated that models with dormancy were able to produce more realistic 427	

magnitude in microbial biomass and soil RH, and that Michaelis-Menten kinetics may not 428	

be appropriate for models that do not vertically resolve decomposition dynamics in the 429	

soil profile. This study also identified the scale-dependent biogeochemical controls on 430	

microbial dynamics. Overall, our findings suggest future microbial model development 431	

should consider the representation of microbial dormancy, which will both improve the 432	
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realism of microbial-based decomposition models and enhance the avenues for 433	

integration of empirical soil experiments and modeling.434	
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Table 1. Description of parameters used in the model and the prior used in inverse modeling. The value is given if parameter is 656	

predefined to be a constant and is not used in inverse modeling. Parameters that are per microbial biomass based have different 657	

priors for dormancy and no-dormancy model. Note that the model simulates top 30 cm of soil. 658	

Parameter Description Prior / value 
(Dormancy 
model) 

Prior / 
value 
(No-
Dormancy 
model) 

Notes and citations 

α Maintenance respiration weight, 
mR/(µG+mR), where µG is specific 
growth rate (h-1) 

[0.01, 0.5] [0.005, 
0.05] 

[G Wang et al., 2014b] 

β Ratio of dormant microbial 
maintenance rate to mR 

[0.0005, 
0.005] 

- [G Wang et al., 2014b]; [E Blagodatskaya 
and Y Kuzyakov, 2013] 

mR Specific maintenance rate for 
active biomass (h-1) 

[0.001,0.08] [0.0001, 
0.008] 

[G Wang et al., 2014b]; [J P Schimel and 
M N Weintraub, 2003]; [E Blagodatskaya 
and Y Kuzyakov, 2013] 

Ks Half-saturation constant for 
directly accessible substrate (mgC 
cm-2) 
 

[0.01, 10] Same Calculated based on approximate range of 
SolubleC/SOC ratio of 1e-4~1e-3 [E A 
Davidson et al., 2012] and reported Ks for 
substrate breakdown of 72mg kg-1 soil [X 
Xu et al., 2014] 

Km Half-saturation constant for 
enzymatic decay of SOC (mgC cm-

2) 

[200, 1000]* Same Assuming SOC is not at saturation for 
enzymatic decay [J P Schimel and M N 
Weintraub, 2003] 

Vmax Maximum SOC decay rate [1e-4, 5e-3] Same Calculated based on the magnitude of 
litter input C 

r_prod Enzyme production rate of active 
microorganism (h-1)   

[1e-4, 8e-4] [1e-5, 8e-5] [J P Schimel and M N Weintraub, 2003] 
assumes 5% of the C uptake by 
microorganism is allocated to exoenzymes 
production (d-1). This is equivalent to an 
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hourly rate of 2e-3 h-1; the typical hourly 
uptake rate in our model is ~0.3 per 
microbial biomass 

r_loss Enzyme loss rate (h-1) [0.0005,0.002] Same [S D Allison et al., 2010]; [J P Schimel 
and M N Weintraub, 2003] 

r_death Potential rate of microbial death (h-

1) 
[2e-4, 2e-3] [2e-5, 2e-4] [S D Allison et al., 2010]; [X Xu et al., 

2014];  
Q10_enz Temperature effects on enzyme 

activity (rate change per 10°C 
increase in temperature). Based on 
6% rate increase per °C. 

1.79 Same [D L Purich, 2009] 

Q10_mic Temperature effects on microbial 
metabolic activity (rate change per 
10°C increase in temperature). 
Based on 0.65eV activation energy 
for soils. 

[1.5, 3.5] Same [G Yvon-Durocher et al., 2012] 

Yg True growth yield, or carbon use 
efficiency 

[0.3, 0.7] Same [R L Sinsabaugh et al., 2013] 

Yg_slope Temperature sensitivity of Yg 
per °C increase 

-0.012 Same [D P German et al., 2012] 

Initial 
active 
fraction 
(r0) 

Active proportion of microbial 
biomass 

[0.05, 0.3] - [J T Lennon and S E Jones, 2011] 

* Upper bound of 2500 is used for US-MOz due to its high SOC content.659	
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Table 2. Calibration sites that are used in this study, including 3 sites from northeastern China and 3 AmeriFlux sites from the 660	

coterminous USA. Soil properties are based on the total element content or measurements in the top 30 cm of soil. 661	

 Mixed 
deciduous 
forest 
(CN-Mixed) 

Oak forest 
(CN-Oak) 

Larch 
plantation  
(CN-Lar) 

Marys River Fir 
(US-MRf) 

Metolius 
Intermediate 
Pine (US-Me2) 

Missouri Ozark  
(US-MOz) 

Latitude, 
longitude 1 

45.33-45.42N, 
127.50-127.56E 

45.33-45.42N, 
127.50-127.56E 

45.33-45.42N, 
127.50-127.56E 

44.65N, 
123.55W 

44.45N,  
121.56W 

38.74N,  
92.20W 

Elevation 
(masl)1 

400 400 400 263 1253 219 

MAT, MAP1 2.8°C,  
700cm 

2.8°C,  
700cm 

2.8°C,  
700cm 

9.0°C,  
1350mm 

10°C,  
480mm 

12.8°C, 
940mm 

Vegetation 
(IGBP) 

Mixed forest  Deciduous 
broadleaf forest 

Deciduous 
needleleaf 
forest 

Evergreen 
needleleaf 
forest  

Evergreen 
needleleaf 
forest  

Deciduous 
broadleaf forest 

Dominant 
species in 
overstory1 

Tilia amurensis 
Rupr.; Juglans 
mandshurica 
Maxim. 

Quercus 
mongolica 
Fisch; 

Larix gmelinii 
Rupr. 

Pseudotsuga 
menziesii 
(Mirb.) Franco 
(Douglas fir) 

Pinus 
ponderosa  
(ponderosa 
pine) 

Quercus alba L. 
(white oak), Q. 
velutina Lam. 
(black oak) 

Soil type2 Sandy loam Sandy loam Sandy loam Sandy loam* Sandy loam Silt loam 
Clay2 - - - - 7 - 
Sand2 - - - - 67 - 
Silt2 - - - - 26 - 
Soil C:N3 13.6 20.6  15.8 23.86 * 23.86 16 * 
SOC 
fraction (%)4 

9.7 7.6 4.8 1.2 * 1.2 8 * 

Bulk density 
(g cm-3)5 

0.63 0.58 1.01 1.15 * 1.15  1.37 

Microbial 
biomass C 
(mg kg-1)6 

1950 1050 900 - - - 
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Microbial 
biomass N 
(mg kg-1)6 

210 110 90 - - - 

Microbial 
C:N6 

9.3 9.6 10 - - - 

MIC/SOC6 0.013 0.011 0.009 0.016 0.016 0.99 
Citations 1.[C Wang et 

al., 2006] 
2-3.[M Fu et 
al., 2009] 
4-5.[J Yang and 
C Wang, 2005] 
6.[S Liu and C 
Wang, 2010] 
 

1.[C Wang et 
al., 2006] 
2-3.[M Fu et 
al., 2009] 
4-5.[J Yang and 
C Wang, 2005] 
6.[S Liu and C 
Wang, 2010] 
 

1.[C Wang et 
al., 2006] 
2-3.[M Fu et 
al., 2009] 
4-5.[J Yang and 
C Wang, 2005] 
6.[S Liu and C 
Wang, 2010] 
 

1. [C K Thomas 
et al., 2009] 
6.[X Xu et al., 
2013] 

1. [J Irvine and 
B E Law, 2002] 
2-5. DOI: 
10.3334/CDIA
C 
/amf.US-Me2.b 
6. Xu et al., 
2013 

1-2. [L Gu et 
al., 2006] 
5. DOI: 
10.3334/ 
CDIAC/amf.US
-Moz.b 
6. Xu et al., 
2013 

* Values are not reported in literature, average of the same ecosystem type are used for substitution 662	
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Table 3. Model evaluation statistics from ensemble inverse parameter estimation for 663	

dormancy and no-dormancy model at the 6 temperate forest sites. NS is the Nash-664	

Sutcliffe model efficiency coefficient. The significance of the difference of metrics 665	

between the two models is tested using paired t-test. 666	

Model 
RMSE (S.D.) 

(mg C cm-2 h-1) 

Adjusted-R2 

(S.D.)* 
NS coefficient 

Seasonal MIC 

amplitude (mg 

C cm-2)** 

Dormancy model: 

CN-Mixed 0.0062 0.55 -0.25 2.8 

CN-Oak 0.0021 0.51 -0.02 2.5 

CN-Lar 0.0016 0.54 0.53 1.3 

US-MRf 0.0011 0.76 0.75 1.7 

US-Me2 0.0012 0.63 0.55 3.2 

US-MOz 0.0018 0.56 0.43 2.3 

No-dormancy model: 

CN-Mixed 0.0065 0.36 -0.29 5.3 

CN-Oak 0.0056 0.48 -0.02 5.2 

CN-Lar 0 .002 0.52 0.48 4.5 

US-MRf 0.0009 0.73 0.71 1.3 

US-Me2 0.0015 0.63 0.48 3.9 

US-MOz 0.0093 0.32 -0.68 3.5 

*: Metrics are significantly different between the two models at p<0.1  667	

**: Metrics are significantly different between the two models at p<0.05 668	
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Table 4. Pearson correlation coefficient by grid cell between active proportion of microbial 669	

biomass (r) and soil heterotrophic respiration (RH), and soil properties, soil temperature, and soil 670	

volumetric moisture content for temperate forest. 671	

Soil physical and 
environmental factors 

Dormancy Model 
No-

dormancy 
Model 

r 
(summer) 

r 
(winter) 

r (annual 
mean) RH RH 

Bulk density (g cm-3) - - - -
0.36*** 

-0.37*** 

Particle density (g cm-3) - - - -
0.48*** 

-0.49*** 

Organic C content (mg cm-2) in 
the top 30 cm 

0.04* 0.14*** 0.11*** 0.89*** 0.90*** 

Soil C:N ratio 0.41*** 0.21*** 0.34*** 0.32*** 0.27*** 
Lillterfall C input (gC m-2 yr-1) - - - 0.06** 0.02 
Annual mean soil temperature 
at 10cm 

0.03 0.17*** 0.08*** 0.19*** 0.16*** 

Annual mean soil volumetric 
moisture at 10cm 

0.06*** 0.04 0.04** 0.14*** 0.15*** 

Seasonal amplitude of soil 
temperature (summer - winter) 

0.10*** 0.09*** 0.03 - - 

Seasonal amplitude of soil 
volumetric moisture (summer - 
winter) 

0.19*** 0.13*** 0.06** - - 

Soil volumetric moisture in 
summer 

0.05** 0.07** 0.06** -  

Soil volumetric moisture in 
winter 

0.06 0.06** 0.02 - - 

* Significant at P<0.1; ** significant at P<0.05; ***significant at P<0.001672	
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Figure Captions 673	

Figure 1. Modeled SOC decomposition dynamics at an Ameriflux ponederosa pine forest 674	

in the United States (US-Me2). Subplot (a) – (d) are outputs from the dormancy model; 675	

(e), (g), (h) are outputs from the no-dormancy model. (f) is the measured soil temperature 676	

and volumetric moisture content at the site. 677	

Figure 2. Modeled SOC decomposition dynamics at the larch plantation in northeastern 678	

China (CN-Lar). Note that this is a trenched plot. Subplot (a) – (d) are outputs from the 679	

dormancy model; (e), (g), (h) are outputs from the no-dormancy model. (f) is the 680	

measured soil temperature and volumetric moisture content at the site. 681	

Figure 3. Parameters that are obtained after inverse modeling for dormancy model at all 682	

6 sites. DB indicates deciduous broadleaf forest; EN indicates evergreen needleleaf 683	

forest. 684	

Figure 4. Simulated spatial pattern soil RH and the MIC/SOC ratio of the two models. 685	

Figure 5. The spatial pattern of the active proportion of microbial biomass in summer 686	

and winter, and the C:N ratio of soil organic matter of the temperate forest latitudinal 687	

band (25°N-50°N). 688	

Figure 6. Temporal correlation (Pearson correlation coefficient) at each grid cell between 689	

(a) active proportion of microbial biomass and soil volumetric moisture content, (b) 690	

active proportion of microbial biomass and soil temperature, and (c) soil temperature and 691	

moisture content.692	
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