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Abstract

Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon
cycle. Microbial-based decomposition models have seen much growth recently for
quantifying this role, yet dormancy as a common strategy used by microorganisms has
not usually been represented and tested in these models against field observations. Here
we developed an explicit microbial-enzyme decomposition model and examined model
performance with and without representation of microbial dormancy at six temperate
forest sites of different forest types. We then extrapolated the model to global temperate
forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration
and microbial dormancy dynamics at different temporal-spatial scales. The dormancy

model consistently produced better match with field-observed heterotrophic soil CO,
efflux (Ry) than the no dormancy model. Our regional modeling results further indicated
that models with dormancy were able to produce more realistic magnitude of microbial
biomass (<2% of soil organic carbon) and soil Ry (7.5 £+ 2.4 Pg C yr b, Spatial

correlation analysis showed that soil organic carbon content was the dominating factor

(correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil Ry; with both

models. In contrast to strong temporal and local controls of soil temperature and moisture
on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio
(C:N) was a major regulating factor at regional scales (correlation coefficient = 0.43 to
0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our
findings suggest that incorporating microbial dormancy could improve the realism of
microbial-based decomposition models and enhance the integration of soil experiments

and mechanistically based modeling.
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1. Introduction

Soil has always been a focus of climate change studies due to its large carbon (C)
stocks — the global soil organic C (SOC) stock is at least four times greater than
atmospheric C [E G Jobbagy and R B Jackson, 2000] and soil respiration is the second
largest flux between the biosphere and the atmosphere following photosynthesis [J W
Raich and C S Potter, 1995]. Therefore soil C dynamics play a key role in net C
sequestration of terrestrial ecosystems and is essential to our understanding of
biogeochemical cycles and its climate-C interactions [/PCC, 2013].

Since there are limitations of traditional first-order decomposition modeling
approach in current earth system models [K E O Todd-Brown et al., 2013], microbial-
based soil organic matter decomposition models have been increasingly used in recent
studies at both site and global scales [S D Allison et al., 2010; Y He et al., 2014a; W R
Wieder et al., 2013]. The current generation of microbial-based decomposition models
usually features a common framework where enzyme production and microbial
physiology are associated with total microbial biomass (MIC), which has a direct
coupling with SOC enzymatic decomposition. A key microbial life-history trait that is
usually lacking in these models is microbial dormancy. Dormancy is a common, bet-
hedging strategy used by microorganisms when environmental conditions limit growth
and reproduction [S E Jones and J T Lennon, 2010; J T Lennon and S E Jones, 2011].
When microorganisms are confronted with unfavorable conditions, they may enter a
reversible state of low metabolic activity and resuscitate when favorable conditions
occur. Microorganisms in this state of reduced metabolic activity are not able to drive

biogeochemical processes such as soil CO, production; therefore only active
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microorganisms are involved in utilizing substrates in soils [E Blagodatskaya and Y
Kuzyakov, 2013]. Although there are some studies which have explicitly incorporated
dormancy into models [B P Ayati, 2012; S Blagodatsky and O Richter, 1998; N S Panikov
and MV Sizova, 1996; G Wang et al., 2014b; K W Wirtz, 2003], they are mostly confined
to incubation experiments, and applications of microbial models generally do not
consider dormancy.

The representation of dormancy in microbial-based decomposition models may be
necessary due to several main motivations that led to the inception of this study: (1)
current coupled SOC-MIC structure leads to oscillatory behavior of both pools with
unrealistically large amplitudes of interannual variation [Y Wang et al., 2013; W R
Wieder et al., 2013], thus incorporating dormancy may structurally improve model
realism; (2) there is a scale mismatch among common measurement procedures of
microbial biomass—based physiological metrics. For example, substrate induced
respiration and fumigation techniques measure the total microbial biomass when
conversion factor 40.04 calculated by [J Anderson and K Domsch, 1978] is used, whereas
Phospholipid Fatty Acid (PLFA) and fluorescence in situ hybridization (FISH) measure
the active proportion of total biomass [E Blagodatskaya and Y Kuzyakov, 2013; K Denef
et al., 2009; C Kramer and G Gleixner, 2006]; (3) the aforementioned inconsistency may
pose challenges in data-model integration and in microbial model comparisons and
evaluation; (4) the transition between dormant and active state of microbes can be fast (in
the order of hours to days) with substantial magnitude change (e.g., an order of
magnitude) in the proportion of active biomass and relative abundance of different

phylogenetically clustered microbial groups, but with little changes in total microbial
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biomass [S' 4 Blagodatsky et al., 2000; S B Hagerty et al., 2014; S A Placella et al.,
2012].

In this study, we hypothesize that: (1) a microbial model incorporated with
dormancy would outperform the model without dormancy at site-level parameterization;
and (2) a microbial model with dormancy would produce more realistic microbial
biomass and soil Ry on both site-level and regional scales. We compared two microbial
models that with and without representation of dormancy for site and regional patterns of
the modeled SOC and microbial related variables. We also discussed the primary controls
on microbial and SOC dynamics at different tempo-spatial scales.

2. Methods
2.1 Model description
Dormancy was incorporated into an existing microbial-enzyme conceptual

framework described by Allison et al. [2010], in which an Arrhenius formulation of

temp—15
temperature sensitivity was replaced with a simplified Q1o function (Q,, ' ) to reduce

the number of model parameters. The reversible transition between dormant and active
state of microbial biomass is assumed to be controlled by environmental cues — directly
accessible substrates, as demonstrated in Wang et al. [2013]. We integrate Davidson et
al.’s [2012] conceptual framework of quantifying concentration of soluble C substrates
that are directly accessible for microbial assimilation, thus building a direct linkage
between environmental factors with microbial state transitions. Substrate quality is also
reflected in the model through a generic index of soil C:N ratio [X Xu ef al., 2014] and
the assimilation of substrate by microorganisms is assumed to be regulated by the C:N

ratio of microbial biomass and that of the soil. The model simulates the microbial and
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SOC dynamics for the top 30cm of the soil column. The equations for the model with

microbial dormancy are as follows:

Decomposition
A
dsoc romp-13 soc
= Input_VmaxQIOe;g ENZ (120_CNsoil)
dt K +S0OC
Microbial uptake
dSolubleC . 1 temp13 .
—————— = Decomposition —— [ m,0,.0 B (—2<)"*+Br,. . +ENZr,
dt Yg a CNsoil
Transition from Transition from
active to dormant dormant to active
) - A
dB ¢ temp—15 CN o temp—15 temp—15
C=(==DmpQpme B(=9)" —(=P)mpQt B, AomeQiot By =Bt s = Buliean
dt a CNvoil g [
3)
dB temp—15 temp—15 temp—15

Ttd ==pmyQie By +A=P)mpOye B, —dmyQy,e By

4
dEc'i];]Z = Ba rpmd - EN Z]/}oss
(5)

where state variables are SOC, SolubleC, B,, B4 and ENZ, corresponding to SOC
content, SolubleC content, microbial biomass in active and dormant state respectively,

and enzyme C (mgC cm™); temp is soil temperature at each time step t; ¢ is directly

accessible substrate for microbial assimilation, calculated based on Michaelis-Menten
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SolubleC x D, x &
otubret X Pig > D, is a diffusion coefficient of the

kinetics formulated as ¢ = =, D,
K, +SolubleCx D, %6 !

substrate in liquid phase (determined by assuming all soluble substrate is directly

accessible at the reaction site, D, = ———————, BD is bulk density and PD is soil

“(1-BD/PD)’
particle density) , £1is volumetric soil moisture content, K is corresponding Michaelis

constant [E A Davidson et al., 2012]. Detailed description for other parameters is
summarized in Table 1. Adding up the equation 3 and 4 shown above gives the model
without dormancy.

Environmental factors such as substrate availability are often thought to be a
direct control of the transition between active and dormant states of microorganisms [J T
Lennon and S E Jones, 2011]. Therefore we adopted the formulation described in Wang
et al., [2014a], where the transition between active and dormant state of microorganisms
is scaled linearly with substrate availability and the direction of the net transition is
determined by the balance of maintenance metabolic requirement and substrate
availability.

We recognize that our model only simulates C dynamics, and decomposition is
effectively influenced by various nutrients through kinetic and stoichiometric constrains
that are not explicitly represented in this model [S D Allison, 2005; S E Hobbie et al.,
2002; R L Sinsabaugh et al., 2013; K-J van Groenigen et al., 2006]. Instead of using a
more sophisticated modeling framework, we introduced a temperature and population

size dependent scaling factor on the potential microbial death rate, formulated as

temp—15

15 1

x ————2—— where a metabolic temperature sensitivity of 1.5 and a
SOCx%0.025
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population capacity of 2.5% of SOC is assumed for temperate forest soils [X Xu et al.,

2013; G Yvon-Durocher et al., 2012]. This multiplier is used to modify the parameter

71, @0d implicitly represents competition for nutrients and down regulates microbial

growth.
2.2 Model calibration and validation

We calibrated the model at 6 different temperate forest sites in northeastern China
(3) and conterminous USA (3) with a latitudinal span of 38 — 45°N using a global
optimization algorithm known as the SCE-UA (shuffled complex evolution; [Q Duan et
al., 1992; O Duan et al., 1994] (Table 2). The 3 northeastern China sites were all
trenched plots with monthly measured Ry, soil temperature and gravimetric soil moisture
content at 10cm from 2004 to 2007 [C Wang and J Yang, 2007; C Wang et al., 2006].
The 3 US sites are part of the AmeriFlux network. The level 2 (gap-filled) eddy
covariance data with half-hourly measured soil temperature (at 10cm, °C), volumetric soil
moisture content (at 10cm, %; VSM) and automated soil chamber measured soil
respiration (umol m™ s') were used for this study [L Gu et al., 2006; J Irvine and B E
Law, 2002]. Approximately 50% of soil respiration was assumed to be Ry [P J Hanson et
al., 2000]. Litterfall was assumed to be a fixed proportion (0.3) of net primary production
(NPP), and we assume NPP/GPP = 0.45 (gross primary production, GPP) [B E Law et al.,
2001; B E Law et al., 2003]. GPP at US-Me2 and US-MRf sites (see Table 2) were also
obtained from level 2 data, but were not available for US-MOz site. Therefore for the Ry
measurement period (2004-2007), we used level 4 gap-filled net ecosystem exchange
(NEE) and we calculated GPP based on NEE and meteorological data using an online

flux partitioning tool (http://www.bgc-jena.mpg.de/~MDIwork/ eddyproc/upload.php) [G

10
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Lasslop et al., 2010]. Site level state variables (e.g. SOC content) served as initial states
for the model calibration. Note that we rescaled the prior used in inverse modeling for
parameters on per unit of microbial biomass basis (Table 1). The first 75% of total
available data at each site was used for calibration and the remaining was used for
validation. Model evaluation statistics were calculated using the whole data series.
2.3 Data sources for spatial extrapolation

We used the above calibrated ecosystem specific parameters and extrapolated to
the whole temperate forest region defined as the latitudinal band from 25°N to 50° N. We
did not include the Southern Hemisphere due to limited forest coverage and lack of
calibration site located in the region. The average parameters of the corresponding forest
types are used for each forest type involved the latitudinal band. Forest land cover
information was extracted from Moderate Resolution Imaging Spectroradiometer
(MODIS) land cover product (MCD12C1) for the period 2000-2012 and annual mean
land cover distribution was used. The original 0.05°x0.05° (lonxlat) resolution grid was
aggregated to 0.5°x0.5° using a majority resampling approach to best preserve the spatial
structure of the major classes. NPP (2000-2012, annual mean) data were extracted from
MOD17A3 L4 Global 1km product (Version-55) [M Zhao and S W Running, 2010]. The
original data were aggregated to 0.5°%0.5° using the areal mean. Soil physical properties
and organic C and N content of the top 30cm were obtained from gridded Global Soil
Dataset for use in Earth System Models (GSDE) dataset [ W Shangguan et al., 2014].
Particle density was calculated based on bulk density and porosity, and porosity was
estimated using VSM at -10kPa (provided in GSDE). Specifically, we assumed saturated

VSM as same as VSM at -10kPa for silt loam soil and we added 10% for sand loam soil

11
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based on the soil water retention curve [W M Cornelis et al., 2005]. Soil was classified
according to soil taxonomy [Soil Survey Staff, 2003] and using sand, silt, and clay
content from GSDE data set. For transient simulations, we used CMIP5 historical runs
initialized in year 2006 from CCSM4 land modeling realm (rlilp1) to retrieve soil
temperature (tsl, average of top 10cm) and soil water content in the top 10cm (mrsos)
(http://www.earthsystemgrid.org). Soil water content in mass was converted to soil
volumetric moisture using relevant soil properties provided by GSDE dataset. Soil
temperature and moisture data were interpolated from 0.9 x 1.25 to 0.5 X 0.5 using
bilinear interpolation method [T Wang et al., 2006].
2.4 Statistical Analysis

Because we are interested in the overall functional correlations between dormancy
and related environmental factors, we choose to use simple Pearson correlation for spatial
correlation analysis. The spatial extrapolation used the soil temperature and moisture
profile from 2006 and ran for 3 years, and the simulation results for the last year was used
for spatial grid-based and temporal correlation analysis.
3. Results
3.1 Site level calibration and validation

Both the dormancy and no-dormancy models can reproduce the observed soil Ry
reasonably well. The adj-R* of the dormancy model ranges from 0.51 to 0.76 (Table 3),
and four out of the six sites had positive Nash-Sutcliffe model efficiency coefficients
(0.43 to 0.75). The no-dormancy model performed slightly worse, as adj-R” ranged from
0.36 to 0.73; the Nash coefficients were also slightly lower (Table 3). The no-dormancy

model did not adequately reproduce the observed soil respiration well at Missouri Ozark
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AmeriFlux site (US-MOz) (adj-R* = 0.32), likely because the high SOC content at this
site makes it more difficult to find an appropriate K., due to its high sensitivity (see
discussion in Section 4.3). A paired t-test on adj-R* showed marginally significant
difference between the two models (df=5, p=0.098). Simulated dynamics of various C
pools (e.g., SOC, SolubleC, ENZ and MIC) of the two models exhibited similar patterns
over time (Figure 1, 2). SOC at US-Me2 showed a slight decline over the course of 11
years in both models (Figure 1a,e), with SolubleC content showing a seasonal fluctuation
anti-phased with microbial biomass due to active substrate uptake during summer thus
less substrate availability, and suppressed microbial activity during winter, which led to
the accumulation of substrate (Figure 1a,e). The active proportion of microbial biomass
tracked the changes in soil moisture tightly, despite the opposite moisture regimes at the
two sites where US-Me2 experienced moderate drought during summer while CN-Lar
featured benign moisture conditions for microbial decomposition (Figure 1b,f; Figure 2
b,f). It is worth noting here that the seasonal MIC amplitude (calculated as the difference
between annual maximum and minimum MIC) was always much larger (up to two times
larger) in no-dormancy models than in the dormancy models (Table 3; Figure 1b,g;
Figure 2b,g), and there was significant difference between the two models (df=5,
p=0.033). Thus, the magnitude of the oscillations in the dormancy model is significantly
smaller than in the no-dormancy model.
3.2 Inversed model parameters

Parameters that have biophysical meaning should reflect the patterns that
characterize different ecosystem properties. Our mixed forest (CN-fixed) generally

showed intermediate parameter values compared to deciduous broadleaf and evergreen
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needleleaf forests (Figure 3). Some parameters exhibited distinct patterns among
deciduous broadleaf and evergreen needleleaf forests. For instance, microbial
maintenance respiration (mR) was overall higher in evergreen needleleaf forests than
deciduous broadleaf forests (Figure 3c), but the opposite was seen for initial active
fraction (Figure 31), indicating more stressed soil environment and higher energy
limitation for microorganisms in evergreen needleleaf forests due to less substrate
availability and poorer substrate quality. For other parameters, especially microbial and
enzyme related parameters, the differences between the two major forest types were not
significant (Figure 3f-1). Km is highest in US-MOz (Figure 3e), because it has the highest
SOC content and the Michaelis-Menten formulation makes high Km important for
maintaining the relative substrate level in a reasonable range, which suggests the high
sensitivity of the half-saturation constant to SOC in the Michaelis-Menten formulation.
3.3 Spatial Extrapolation
3.3.1 Spatial distribution of soil Ry and microbial biomass

The two models both simulated soil R ranging between 300 and 1000 gC m™ yr
! The spatial pattern of the soil Ry of the dormancy and no-dormancy model differed in
large areas of northwestern and southeastern US and in southern China, with no-
dormancy model simulating about 30% higher respiration than that of the dormancy
model (Figure 4a,b). The soil Ry of other regions was generally comparable between the
two models. The total soil Ry of all temperate forests from the dormancy model
amounted to 6.88 PgC yr', and 7.99 PgC yr’' from no-dormancy model. While there may
not be significant difference in the simulated spatial soil Ry between the models, the

MIC/SOC ratio showed distinct patterns in both magnitude and spatial distribution of the
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two models (Figure 4c¢,d). Here the MIC is the total microbial biomass including active
and dormant microbes for dormancy model. The no-dormancy model overall simulated
about two-times higher MIC/SOC ratio for temperate forests, especially in northeastern
US, south Europe, and Japan, than the dormancy model. In the no-dormancy model, the
MIC/SOC ratio can reach about 4% (Figure 4d) whereas in the dormancy model the ratio
ranged from 0.5% to 2% (Figure 4¢). Our simulated spatial soil Ry of temperate forests
was high at the Great lakes regions in the US where SOC content was also reported high
from the GSDE dataset (Figure 4a,b). Grid cell based spatial correlation analysis showed
that in both models, soil Ry was negatively affected by bulk density and particle density
(p=-0.36 and -0.48, respectively, P<0.001), but had a significant correlation with soil C:N
ratio (p=0.3, P<0.001) and especially organic matter content (p~0.89, P<0.001)(Table 4).
Soil temperature and moisture also had significant positive effects on soil Ry (p=0.17 and
0.14, respectively, P<0.001), but was not as strong as the SOC.
3.3.2 Spatial pattern of microbial dormancy and its controlling factors

Annual active proportion of microbial biomass ranged from 2% to 40% across
temperate forests (Figure 5a,b). The spatial distribution of active fraction was relatively
the same across seasons. Seasonal active proportion of microbial biomass in summer was
generally about 10% higher than in winter for large areas of northeastern US and
northeaster China, whereas northwestern US, Europe and southern China featured
relatively constant active fraction across seasons (Figure 5a,b). Grid cell based spatial
correlation analysis showed that the soil C:N ratio was a major controlling factor on
dormancy (p=0.41 in summer and 0.21 in winter , respectively, P<0.001, Table 4),

indicating higher substrate availability (higher C:N ratio), lower dormancy proportion
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(higher active fraction). Annual temperature and moisture were weak controls on spatial
dormancy pattern (p<0.1) except that winter active fraction had a stronger positive
correlation with annual temperature (p=0.17, P<0.001). However, temperature and
moisture had very strong local controls on dormancy on temporal scales, with moisture
had mostly strong positive temporal correlations with active fraction (p>0.8, Figure 6a),
as moisture was formulated to directly control substrate availability. Temperature showed
negative temporal correlation with active fraction (p<-0.5, Figure 6b), primarily due to
the negative covariation between temperature and moisture in the CCSM4 results (Figure
6¢). It is worth noting here that, although annual temperature and moisture had weak
controls on spatial patterns of active fraction, the seasonal amplitude of soil temperature
and moisture generally exhibited higher correlations with active fraction (p>0.1 and
P<0.001 for summer and winter, Table 4), suggesting there is a high sensitivity of active-
dormancy transition to seasonal changes in moisture levels on spatial scales.
4. Discussion
4.1 Model performance and limitations

A synthesis by Bond-Lamberty et al. [2004] documented soil Ry from
temperate forests to range from 300 to 800 gC m™ yr'. We calculated the regional total
soil Ry based on reported mean value of 600 gC m™yr' and the land cover map used in
this study and resulted in total soil Ry to be around 7.11 PgC yr™'. The dormancy model
thus produced closer estimates to this synthetic estimate with 6.88 PgC yr™', whereas the
no-dormancy model overestimated soil Ry of 7.99 PgC yr'. Despite the comparable
results between our simulated soil Ry and synthesized observations, we used a simplified

modeling framework without explicitly considering other key element cycles. Although
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we used soil C:N ratio to indicate substrate quality and its effects on microbial
assimilation as a representative index, the coupled dynamics of kinetics and
stoichiometric constrains on microbial physiology, which also pose key controls on
decomposition dynamics, are not incorporated [S D Allison, 2005; R L Sinsabaugh et al.,
2013; K-J van Groenigen et al., 2006]. While the simplified framework may be sufficient
to serve the purpose of this study, a more complex modeling scheme that accounts for the
stoichiometry of other key elements should be able to reveal more biogeochemical
controls which can then be benchmarked with observations to improve model
performance.
4.2 Implications for informing experimental needs

Rainfall induced activation of dormant biomass can generate soil CO, pulses
comparable in magnitude to the annual net C exchange of many terrestrial ecosystems,
such as Mediterranean [S A Placella et al., 2012; L Xu et al., 2004]. Particularly, such
drying-rewetting events can exert stress on soil microbial communities and cause
decrease in soil basal respiration while total biomass increases [N Fierer and J P Schimel,
2002]. In addition, changes in soil temperature and moisture conditions can induce
responses in microbial basal respiration that were not explained by changes in total
microbial biomass but rather changes in the physiology of soil microbial communities
such as resuscitation of physiologically clustered microbial groups [S B Hagerty et al.,
2014; S 4 Placella et al., 2012; J M Steinweg et al., 2012; V Suseela et al., 2012]. In
contrast to seasonal variation in soil Ry driven by changes in temperature and moisture in
a variety of ecosystems [V Suseela and J S Dukes, 2012; V Suseela et al., 2012], total

microbial biomass is generally unaffected by seasonality [E Blume et al., 2002; N
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Gunapala and K Scow, 1998]. All of these indicate that soil respiration responses to
environmental conditions are more closely associated with active portion of microbial
biomass than the total. Thus, the no-dormancy model that does not distinguish microbial
biomass with different physiological states may not correctly represent the microbe-soil
interactions. Similarly, using total biomass as an important metric in both experiments
and modeling may also hinder effective data-model integration.

Our modeling results demonstrate that the ecosystem level controls (substrate
quality and availability) on the average dormancy level (active proportion) at large spatial
scales are different from that at local transient scales (temporal effects of soil moisture).
This suggests that both site-level and spatial data should be used for model validation,
because it is usually easier for model to reproduce site-level, short-term observations with
data assimilation techniques, but much more difficult to capture spatial patterns [K £ O
Todd-Brown et al., 2013] and long-term dynamics [He et al., 2014b]. In this study, we
successfully reproduced soil Ry at six temperature forest sites, but our extrapolated soil
Ry revealed the potential issues with applying Michaelis-Menten kinetics on ecosystem
scales and yielded high soil Ry in the northeastern US due to the high SOC content in
that region. Such insufficiency in the model structure may not be disclosed at site-level
examination. Therefore, spatially gridded comprehensive soil C and microbial physiology
metrics would be tremendously helpful in model validation and assessment. For example,
the contrasting controls of bulk density, particle density and organic C content on
simulated soil Ry likely reflects covariation among these variables, because with

increasing particle density C concentration decreased, implying that the soil organic
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matter accumulations were thinner [P Sollins et al., 2009]. Our simulated soil Ry is then
able to reflect the spatial controls of soil physical properties on decomposition.

Uncertainty in driving data for decomposition models may also be substantial and
experimental measurements on large spatial scales would also be helpful. For example,
the CCSM4 simulation we used cannot reproduce the surface frozen soil in northeastern
China we observed in the site level measurements (Figure 2f), which potentially could
introduce inaccuracies in model results. Note that in southern China broadleaf temperate
forest does not show high temporal positive correlation of active proportion with soil
moisture, this is likely because soil moisture is relatively constant throughout the year [X
Tang et al., 2006], thus soil moisture may not be the primary limiting factor on
dormancy-active transition in that region. More experimental data in that region should
help benchmark both simulated soil moisture and temperature.
4.3 Implications for informing future model development

The high correlation between soil Ry and the organic C content in the top 30cm
(Table 4) in our analysis may be attributable to the Michaelis-Menten kinetics we used in
the SOC enzymatic decay process (Eqn 1), where SOC content directly controls
saturation level of the organic matter. Such high positive correlation between soil Ry and
the organic C content were not reported for other formulations (e.g., first-order kinetics in
CMIPS5 simulations where turnover time and net primary production are both positively
correlated with SOC content across different earth system models) where decomposition
rate is also associated with SOC content [K E O Todd-Brown et al., 2013]. Thus we argue
that Michaelis-Menten kinetics may not be suitable for characterizing SOC enzymatic

decay process when different soil layers are treated as one unified substrate. This is
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because that Michaelis-Menten kinetics has an implicit assumption that all substrate are
accessible to enzymes under a homogeneous spatial distribution, and that a solution
environment where Michaelis-Menten kinetics was usually applied to is a good example
that demonstrates the homogeneity requirement [L Michaelis and M L Menten, 1913],
thus Michaelis-Menten kinetics has a spatial constrain on relatively local scales. In
addition, Michaelis-Menten formulation is derived under the assumption that enzymatic
kinetics can cause a significant change on substrate levels [L Michaelis and M L Menten,
1913], which is unrealistic for the microbial extracellular hydrolysis of SOC due to soil
mineral-organic matter interaction and occlusion of SOC in soil aggregates which forms
physical barriers [B P Ayati, 2012; N S Panikov and M V Sizova, 1996]. These limitations
may explain the under-performance of the no-dormancy model at US-MOz site which has
the highest SOC content among 6 sites. Although this issue is less notable in dormancy
model, its unrealistic spatial distribution of high soil Ry in high SOC regions still
suggests some issues of using Michaelis-Menten kinetics when treating a large SOC as
homogeneous (Table 4). We propose that a better representation of soil vertical
heterogeneity (e.g., [C Koven et al., 2013]) would be essential to using Michaelis-Menten
kinetics in microbial-based decomposition models . Large SOC content likely induced
mismatch of the temporal scale of SOC change with that of microbial activity. To
reconcile the homogeneity assumption of Michaelis-Menten dynamics and the
localization of actual SOC enzymatic decay, vertical heterogeneity can be implemented
using multi-layer soil model structure or depth-resolved SOC profile thus ensuring
certain degree of homogeneity of SOC and enzyme distribution at each depth increment

[Y He et al., 2014Db]. Stabilization of organic matter by interaction with poorly crystalline
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minerals is also a key mechanisms missing in current models [B P Ayati, 2012; N S
Panikov and M V Sizova, 1996] and should be incorporated in future model development.

In both models, soil temperature and moisture exhibited similar levels of controls
on soil Ry (Table 4), this is likely attributed to the way soil moisture effect is defined in
the model where it directly controls substrate availability. Such formulation with direct
coupling with microbial activity can shed light on improving soil moisture representation
in decomposition models as current first-order formulation in decomposition models only
yield in marginal effects of soil moisture [K E O Todd-Brown et al., 2013].
S. Conclusion

Microbial life-history traits such as dormancy play an important role in
biogeochemical cycles. It has been widely observed that the active portion of microbial
biomass, rather than the total biomass, explains the changes in microbial basal respiration
rates. This study examines whether including dormancy in microbial-based soil
decomposition model can improve the estimates of SOC dynamics and other microbial
related metrics. Our results showed that although both dormancy and no-dormancy
models can capture the field observed soil Ry, the no-dormancy model exhibited larger
seasonal oscillation and overestimation in microbial biomass. Our regional modeling
results also indicated that models with dormancy were able to produce more realistic
magnitude in microbial biomass and soil Ry, and that Michaelis-Menten kinetics may not
be appropriate for models that do not vertically resolve decomposition dynamics in the
soil profile. This study also identified the scale-dependent biogeochemical controls on
microbial dynamics. Overall, our findings suggest future microbial model development

should consider the representation of microbial dormancy, which will both improve the
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realism of microbial-based decomposition models and enhance the avenues for

integration of empirical soil experiments and modeling.
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ible 1. Description of parameters used in the model and the prior used in inverse modeling. The value is given if parameter

>defined to be a constant and is not used in inverse modeling. Parameters that are per microbial biomass based have differe

lors for dormancy and no-dormancy model. Note that the model simulates top 30 cm of soil.

arameter | Description Prior / value Prior / Notes and citations
(Dormancy value
model) (No-
Dormancy
model)
Maintenance respiration weight, [0.01, 0.5] [0.005, [G Wang et al., 2014b]
mg/(Ugtmg), where pg is specific 0.05]
growth rate (h™)
Ratio of dormant microbial [0.0005, - [G Wang et al., 2014b]; [E Blagodatskayc
maintenance rate to mg 0.005] and Y Kuzyakov, 2013]

1R Specific maintenance rate for [0.001,0.08] [0.0001, [G Wang et al., 2014b]; [J P Schimel and

active biomass (h™) 0.008] M N Weintraub, 2003]; [E Blagodatskaya
and Y Kuzyakov, 2013]

S Half-saturation constant for [0.01, 10] Same Calculated based on approximate range of
directly accessible substrate (mgC SolubleC/SOC ratio of le-4~1e-3 [E 4
cm™) Davidson et al., 2012] and reported Ks fo

substrate breakdown of 72mg kg™ soil [X
Xu et al.,2014]

m Half-saturation constant for [200, 1000]* | Same Assuming SOC is not at saturation for
enzymatic decay of SOC (mgC cm’ enzymatic decay [J P Schimel and M N
%) Weintraub, 2003]

'max Maximum SOC decay rate [le-4, 5e-3] Same Calculated based on the magnitude of

litter input C
_prod Enzyme production rate of active [1e-4, 8e-4] [1e-5, 8e-5] | [J P Schimel and M N Weintraub, 2003]

microorganism (h™)

assumes 5% of the C uptake by
microorganism is allocated to exoenzyme
production (d™"). This is equivalent to an




hourly rate of 2e-3 h™'; the typical hourly
uptake rate in our model is ~0.3 per
microbial biomass

loss Enzyme loss rate (h™) [0.0005,0.002] | Same [S D Allison et al., 2010]; [J P Schimel
and M N Weintraub, 2003]
_death Fotential rate of microbial death (h™ | [2e-4, 2¢-3] [2e-5,2¢e-4] | [S D Allison et al., 2010]; [X Xu et al.,
) 2014];
)10 _enz | Temperature effects on enzyme 1.79 Same [D L Purich, 2009]
activity (rate change per 10°C
increase in temperature). Based on
6% rate increase per °C.
)10 _mic | Temperature effects on microbial [1.5,3.5] Same [G Yvon-Durocher et al., 2012]
metabolic activity (rate change per
10°C increase in temperature).
Based on 0.65eV activation energy
for soils.
‘g True growth yield, or carbon use [0.3,0.7] Same [R L Sinsabaugh et al., 2013]
efficiency
‘g slope | Temperature sensitivity of Yg -0.012 Same [D P German et al., 2012]
per °C increase
1itial Active proportion of microbial [0.05, 0.3] - [J T Lennon and S E Jones, 2011]
ctive biomass
-action
,’0)

Jpper bound of 2500 is used for US-MOz due to its high SOC content.



1ble 2. Calibration sites that are used in this study, including 3 sites from northeastern China and 3 AmeriFlux sites from th

terminous USA. Soil properties are based on the total element content or measurements in the top 30 cm of soil.

Mixed Oak forest Larch Marys River Fir | Metolius Missouri Ozark
deciduous (CN-0Oak) plantation (US-MRY) Intermediate (US-MOz)
forest (CN-Lar) Pine (US-Me2)
(CN-Mixed)
atitude, 45.33-45.42N, | 45.33-45.42N, | 45.33-45.42N, | 44.65N, 44 45N, 38.74N,
ngitude ' 127.50-127.56E | 127.50-127.56E | 127.50-127.56E | 123.55W 121.56W 92.20W
levation 400 400 400 263 1253 219
nasl)’!
1AT, MAP' | 2.8°C, 2.8°C, 2.8°C, 9.0°C, 10°C, 12.8°C,
700cm 700cm 700cm 1350mm 480mm 940mm
‘egetation | Mixed forest Deciduous Deciduous Evergreen Evergreen Deciduous
(GBP) broadleaf forest | needleleaf needleleaf needleleaf broadleaf fores
forest forest forest
)ominant Tilia amurensis | Quercus Larix gmelinii | Pseudotsuga Pinus Quercus alba 1
pecies in Rupr.; Juglans | mongolica Rupr. menziesii ponderosa (white oak), Q.
verstory' mandshurica Fisch; (Mirb.) Franco | (ponderosa velutina Lam.
Maxim. (Douglas fir) pine) (black oak)
oil type” Sandy loam Sandy loam Sandy loam Sandy loam* Sandy loam Silt loam
lay” - - - - 7 -
and” - - - - 67 -
ilt’ - - - - 26 -
oil C:N° 13.6 20.6 15.8 23.86 * 23.86 16 *
oC 9.7 7.6 4.8 1.2 * 1.2 8 *
-action (%)’
rulk density | 0.63 0.58 1.01 1.15* 1.15 1.37
ycm)’
flicrobial 1950 1050 900 - - -
iomass C

ng kg")’




ficrobial 210 110 90 - - -

iomass N

ng kg')°

Ticrobial 9.3 9.6 10 - - -

“N°

1IC/SOC® ] 0.013 0.011 0.009 0.016 0.016 0.99

‘itations 1.[C Wang et 1.[C Wang et 1.[C Wang et 1.[CK Thomas | 1. [J Irvine and | 1-2.[L Gu et
al., 2006] al., 2006] al., 2006] etal.,2009] B E Law, 2002] | al., 2006]
2-3.[M Fu et 2-3.[M Fu et 2-3.[M Fu et 6.[X Xu et al., 2-5. DOI: 5. DOLI:
al., 2009] al., 2009] al., 2009] 2013] 10.3334/CDIA | 10.3334/
4-5.[J Yang and | 4-5.[J Yang and | 4-5.[J Yang and C CDIAC/amf.U;
C Wang, 2005] | C Wang, 2005] | C Wang, 2005] /amf.US-Me2.b | -Moz.b
6.[S Liuand C | 6.[S Liuand C | 6.[S Liu and C 6. Xu et al., 6. Xu et al.,
Wang, 2010] Wang, 2010] Wang, 2010] 2013 2013

Values are not reported in literature, average of the same ecosystem type are used for substitution
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Table 3. Model evaluation statistics from ensemble inverse parameter estimation for

dormancy and no-dormancy model at the 6 temperate forest sites. NS is the Nash-

Sutcliffe model efficiency coefficient. The significance of the difference of metrics

between the two models is tested using paired t-test.

Seasonal MIC

RMSE (S.D.)  Adjusted-R*
Model o NS coefficient  amplitude (mg
(mgCcm~h) (S.D.)* 5
Ccem™)**
Dormancy model:
CN-Mixed  0.0062 0.55 -0.25 2.8
CN-Oak 0.0021 0.51 -0.02 2.5
CN-Lar 0.0016 0.54 0.53 1.3
US-MRf 0.0011 0.76 0.75 1.7
US-Me2 0.0012 0.63 0.55 3.2
US-MOz 0.0018 0.56 0.43 23
No-dormancy model:
CN-Mixed  0.0065 0.36 -0.29 53
CN-Oak 0.0056 0.48 -0.02 52
CN-Lar 0.002 0.52 0.48 4.5
US-MRf 0.0009 0.73 0.71 1.3
US-Me2 0.0015 0.63 0.48 3.9
US-MOz 0.0093 0.32 -0.68 3.5

*: Metrics are significantly different between the two models at p<0.1

**: Metrics are significantly different between the two models at p<0.05
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v -

e

e

biomass (r) and soil heterotrophic respiration (Ry), and soil properties, soil temperature, and soil

volumetric moisture content for temperate forest.

No-
Soil physical and Dormancy Model dorrnanfy
environmental factors Mode
r r r (annual R R
(summer) | (winter) mean) i H
Bulk density (g cm™) - - - - -0.37%
0.36%**
Particle density (g cm™) - - - - -0.49%
0.48***
Organic C content (mg cm™) in | 0.04* 0.14%%* | (. ]1%** 0.89%*** | (0.90%**
the top 30 cm
Soil C:N ratio 0.41%*%% | 0.21%%% | 0.34*** 0.32%** | .27%**
Lillterfall C input (g€ m™ yr'") |- - - 0.06%* | 0.02
Annual mean soil temperature | 0.03 0.17%%* | 0.08%** 0.19%** | 0.16%**
at 10cm
Annual mean soil volumetric 0.06*** 1 0.04 0.04%* 0.14%%* | (. ]5%**
moisture at 10cm
Seasonal amplitude of soil 0.10%** 1 0.09*** | 0.03 - -
temperature (summer - winter)
Seasonal amplitude of soil 0.19%** 1 0.13*** | 0.06** - -
volumetric moisture (summer -
winter)
Soil volumetric moisture in 0.05%* 0.07** | 0.06** -
summer
Soil volumetric moisture in 0.06 0.06** | 0.02 - -
winter

* Significant at P<0.1; ** significant at P<0.05; ***significant at P<0.001
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Figure Captions

Figure 1. Modeled SOC decomposition dynamics at an Ameriflux ponederosa pine forest
in the United States (US-Me2). Subplot (a) — (d) are outputs from the dormancy model;
(e), (g), (h) are outputs from the no-dormancy model. (f) is the measured soil temperature
and volumetric moisture content at the site.

Figure 2. Modeled SOC decomposition dynamics at the larch plantation in northeastern
China (CN-Lar). Note that this is a trenched plot. Subplot (a) — (d) are outputs from the
dormancy model; (e), (g), (h) are outputs from the no-dormancy model. (f) is the
measured soil temperature and volumetric moisture content at the site.

Figure 3. Parameters that are obtained after inverse modeling for dormancy model at all
6 sites. DB indicates deciduous broadleaf forest; EN indicates evergreen needleleaf
forest.

Figure 4. Simulated spatial pattern soil Ry and the MIC/SOC ratio of the two models.
Figure 5. The spatial pattern of the active proportion of microbial biomass in summer
and winter, and the C:N ratio of soil organic matter of the temperate forest latitudinal
band (25°N-50°N).

Figure 6. Temporal correlation (Pearson correlation coefficient) at each grid cell between
(a) active proportion of microbial biomass and soil volumetric moisture content, (b)
active proportion of microbial biomass and soil temperature, and (c) soil temperature and

moisture content.
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