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Abstract—We estimate the capacity value of concentrating

solar power (CSP) plants with thermal energy storage (TES) in

the southwestern U.S. Our results show that incorporating TES

in CSP plants significantly increases their capacity value. While

CSP plants without TES have capacity values ranging between

60% and 86% of maximum capacity, plants with TES can have

capacity values between 79% and 92%. We demonstrate the

effect of location and configuration on the operation and capacity

value of CSP plants. We also show that using a capacity payment

mechanism can increase the capacity value of CSP, since the

capacity value of CSP is highly sensitive to operational decisions

and energy prices are not a perfect indicator of scarcity of supply.

Index Terms—Capacity value, equivalent conventional power,

concentrating solar power

I. NOMENCLATURE

A. Optimization Model Sets and Parameters

T index set for time

T ′ index set for shortage event hours

τ− minimum operating level of powerblock when it is online

τ+ maximum operating level of powerblock when it is online

ū minimum up-time of powerblock when it is started up

s̄ maximum amount of energy that can be charged into

thermal energy storage (TES) during one hour

d̄ maximum amount of energy that can be discharged from

TES during one hour

η hours of storage in TES system

eSU thermal energy required to startup powerblock

f(τ) powerblock heat rate function

Ph(d) heat transfer fluid pump parasitic load function

ρ amount of thermal energy retained by the TES system

from one hour to the next

φ roundtrip efficiency of TES system

Pb(τ) powerblock parasitic load function

eSFt thermal energy collected by the solar field of the concen-

trating solar power (CSP) plant at hour t

c variable generation cost of CSP plant
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M e
t energy price at hour t

MK capacity price

Kp capacity shortfall penalty factor

B. Optimization Model Variables

τt thermal energy delivered to powerblock at hour t

et net electric output of CSP plant at hour t

lt amount of energy in TES system at end of hour t

st amount of thermal energy charged into TES in hour t

dt amount of thermal energy discharged from TES in hour

t

rt binary variable that equals 1 if powerblock is started up

in hour t, equals 0 otherwise

ut binary variable that equals 1 if powerblock is online in

hour t, equals 0 otherwise

τ
µ
t maximum thermal energy that can be delivered to the

powerblock in hour t

e
µ
t maximum potential electric output of CSP plant in hour

t

d
µ
t maximum thermal energy that can discharged from TES

in hour t

K l capacity sold by the CSP plant in the capacity market

Kr
t capacity shortfall during hour t

C. Capacity Value Estimation Variables and Parameters

T̃ highest-load or -LOLP hours used for capacity value

estimation

pt loss of load probability (LOLP) in hour t

Gt conventional generating capacity available in hour t

Bt output of benchmark plant in hour t

Lt hour-t load

EC loss of load expectation (LOLE) when CSP plant is added

to the system

EB LOLE when benchmark plant is added to the system

C̄ nameplate capacity of CSP plant

wt LOLP-based weight used in hour t

S set of solar multiples examined

Ψ set of hours of TES examined

Λ set of locations examined

vEs,ψ,λ equivalent conventional power of a CSP plant at location

λ with a solar multiple of s and ψ hours of TES

vCs,ψ,λ capacity factor-based approximation of a CSP plant at

location λ with a solar multiple of s and ψ hours of TES



2

II. INTRODUCTION

R
ESOURCE adequacy is an important issue with which

power system planners contend [1]. Renewables provide

an alternative to traditional sources of capacity and energy.

Some renewables pose capacity planning challenges, however,

due to variable and uncertain real-time output [2]–[6]. Thus

accurate capacity value estimates of such resources are vital

for long-term planning purposes.

Due to excellent solar resource availability, the southwestern

U.S. has great potential for concentrating solar power (CSP)

development, with a number of plants currently operational

and others in development. Although the capacity value of

CSP plants without thermal energy storage (TES) has been

analyzed [7], TES is a promising technology that can increase

the capacity value of CSP. This paper uses a model to

optimize the operation of a CSP plant with TES and applies

reliability-based and approximation techniques to estimate the

capacity value of CSP plants at a number of locations in the

southwestern U.S. We show that TES can significantly increase

a plant’s capacity value—plants without TES have capacity

values between 60% and 86% of maximum capacity, whereas

adding one hour of TES can increase the capacity value to

between 79% and 90%. We also examine the effect of capacity

payments, demonstrating that they can increase the capacity

value of CSP. This is because the capacity value of CSP with

TES is highly sensitive to operational decisions and energy

prices are not a perfect signal of system capacity scarcity. The

remainder of this paper is organized as follows: section III

describes CSP technology and the model used to optimize the

operation of the CSP plants, section IV discusses the capacity

value estimation methods used in our analysis, section V

provides details of our case study, section VI summarizes

our results, section VII examines the effect of some of our

assumptions, and section VIII concludes.

III. CSP MODEL

CSP plants consist of three separate but interrelated parts: a

solar field, which collects solar thermal energy; a powerblock,

which uses a heat engine to convert the thermal energy into

electricity; and a TES system, which can store thermal energy

collected by the solar field for later use. There are also

hybridized CSP plants that include a fossil-fueled backup

system. Since our analysis only considers pure CSP plants,

we exclude such systems from this discussion.

One common CSP plant design is a parabolic trough system

[8]–[10]. The solar field of such a plant consists of trough-

shaped mirrors, which concentrate the thermal energy of sun-

light onto a heat-transfer fluid (HTF). The HTF is circulated

through the field and is used to drive the powerblock. Another

design is a power tower, which consists of a field of mirrors,

called heliostats, that concentrate sunlight on an HTF at

the top of a tower in the center of the field. Although our

analysis assumes parabolic trough technology, our approach

is sufficiently general that it can be applied to trough designs.

TES has several advantages compared to mechanical or

chemical storage technologies. TES typically has very low

capital costs, with recent estimates between $72 and $240

per kWh [11]. Moreover, demonstration CSP plants with large

TES systems, that can be charged and discharged for many

hours, have shown high roundtrip efficiencies, often in excess

of 98% [12], [13]. This can be compared to electrochemical

battery storage, which can cost upwards of $300 per kWh

(excluding high-cost power conversion equipment) and tend to

have lower efficiencies [14]. TES is significantly more efficient

because the thermal energy does not have to go through a

conversion process to be stored or discharged. Rather, heat

exchangers transfer the thermal energy between the HTF in

the plant and a storage medium, which is typically a molten

salt. One standard TES design, which our analysis considers,

is a two-tank indirect system, which consists of two storage

tanks (one hot, the other cold) [13], [15], [16]. When energy

is stored, the HTF flows through heat exchangers and the salt

flows from the cold to hot tank while being heated by the HTF.

Energy is discharged by operating the system in reverse and

the salt is used to heat the HTF. Other TES technologies are

under development and could further reduce costs [16]–[19].

The three components of the CSP plant can be sized

differently, affecting the operation and capacity value of the

plant. The size of the powerblock is typically measured based

on its rated output, measured in MW of electricity (MW-e).

The size of the solar field can be measured by its solar multiple

(SM) [20]. A solar field with an SM of 1.0 is sized to provide

sufficient thermal energy to operate the powerblock at its rated

capacity with direct normal irradiance (DNI) of 950 W/m2, a

wind speed of 5 m/s, and an ambient temperature of 25◦ C.

TES has both a power and an energy capacity. The power

capacity of TES is typically set to allow the powerblock to

operate at maximum capacity using energy discharged from

TES only, and we make this assumption. The energy capacity

can be measured in terms of the number of consecutive hours

that the TES system can be charged at its power capacity

before filling the system, which is the convention we use.

Hours of storage is occasionally defined as the number of

consecutive hours that a fully-charged TES system can be

discharged. Due to the high roundtrip efficiency of TES, these

two definitions are similar. Because the solar field and TES

system are sized in relation to the powerblock, we hold the

powerblock size fixed in our analysis and consider plants with

different SMs and hours of storage.

We optimize the operation of the CSP plants using the

model that Sioshansi and Denholm [21] develop. This model is

composed of two parts. We first use the Solar Advisor Model

(SAM) [20], which is a dynamic model that uses weather

data to determine the amount of thermal energy collected by

the solar field in each hour. SAM assumes that the parabolic

troughs in the solar field have a single-axis tracking system

to follow the sun. It further accounts for the affect of ambient

temperature, relative humidity, and other weather parameters

on the efficiency of the solar field in collecting thermal energy.

SAM has been validated against empirical data from the Solar

Electric Generating Stations [22]. In the second part of the

model the thermal energy collected by the solar field, as

modeled by SAM, is input to a mixed-integer program (MIP)

that optimizes the operation of the CSP plants by determining

how the powerblock and TES should be operated, subject to
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thermal energy availability and plant-operating constraints.
We model the CSP plants under two different market

structures, which affect their operations. The first assumes

an energy-only market, in which the CSP plants receive pay-

ments for only energy supplied. The second assumes that the

CSP plants receive energy payments as well as supplemental

payments for providing firm capacity. The formulation of the

energy-only model is given by:

max
e,l,s,d,
τ,r,u

∑

t∈T

(M e
t − c) · et; (1)

s.t. lt = ρ · lt−1 + st − dt, ∀ t ∈ T ; (2)

0 ≤ lt ≤ η · s̄, ∀ t ∈ T ; (3)

0 ≤ st ≤ s̄, ∀ t ∈ T ; (4)

0 ≤ dt ≤ d̄, ∀ t ∈ T ; (5)

st − φ · dt + τt + eSU · rt ≤ eSFt , ∀ t ∈ T ; (6)

et = f(τt) − Ph(dt) − Pb(τt), ∀ t ∈ T ; (7)

τ− · ut ≤ τt ≤ τ+ · ut, ∀ t ∈ T ; (8)

rt ≥ ut − ut−1, ∀ t ∈ T ; (9)

ut ≥
t

∑

ξ=t−ū

rξ, ∀ t ∈ T ; (10)

ut, rt ∈ {0, 1}; ∀ t ∈ T. (11)

Objective function (1) maximizes revenues from energy

sales less variable generation costs. Constraints (2) through (5)

impose restrictions on the TES system. Constraints (2) define

the storage level in each hour in terms of the previous storage

level, less thermal energy losses, and current-hour storage and

discharge decisions. Constraints (3) impose the energy restric-

tions, and constraints (4) and (5) impose power restrictions.

Constraints (6) restrict the amount of thermal energy used

in net in each hour to be less than the amount collected by

the solar field. Constraints (7) define net generation at each

hour to equal gross powerblock output less parasitic loads.

The heat rate and parasitic load functions in constraints (7)

account for the effects of weather on powerblock efficiency.

Constraints (8) impose the minimum and maximum output

restrictions when the powerblock is online, fixing powerblock

output to zero otherwise. Constraints (9) define the powerblock

startup state variables in terms of changes in online state

variables, while constraints (10) enforce the minimum up-time

restriction when the powerblock is started up. Constraints (11)

impose the integrality restriction on the state variables.
While scarcity pricing in an energy-only spot market theo-

retically signals the need for additional capacity, such signals

are not perfect in practice. Some markets employ capacity (in

addition to energy) payments to induce generation to enter the

market and provide capacity when it is needed in real-time.

Since such payments are subject to performance requirements,

they could provide stronger incentives for a CSP plant to have

energy available when it is most needed—thereby improving

the plant’s capacity value—which we explore in section VII.
Although the details of capacity payment mechanisms differ

between markets, they all have some common elements.

Generally, generators contract with the system operator (SO)

to provide capacity over some fixed time period for a payment

per MW of capacity provided. The generator must have the

contracted capacity available during SO-designated shortage

events, otherwise it is subject to financial penalties. Most

markets set the capacity payment price and non-performance

penalties using a combination of a capacity auction and ad-

ministrative rules. Following the design of ISO New England’s

Forward Capacity Market we assume that if the CSP plant

contracts to provide capacity that cannot be delivered during

a shortage event, a penalty based on the percentage of the

contracted capacity not provided is levied.

When the capacity payments and penalties are included, the

CSP optimization model becomes:

max
e,l,s,d,τ,r,

u,Kl,Kr
t

∑

t∈T

(M e
t − c) · et +MKK l (12)

−MKKp
∑

t∈T ′

Kr
t

K l

s.t. constraints (2) through (11); (13)

Kr
t ≥ K l − e

µ
t , ∀ t ∈ T ; (14)

d
µ
t ≤ min

{

ρ · lt−1, d̄
}

, ∀ t ∈ T ; (15)

− φ · dµt + τ
µ
t + eSU · rt ≤ eSFt , ∀ t ∈ T ; (16)

e
µ
t = f(τµt ) − Ph(d

µ
t ) − Pb(τ

µ
t ), ∀ t ∈ T ; (17)

τ− · ut ≤ τ
µ
t ≤ τ+ · ut, ∀ t ∈ T ; (18)

Kr
t , d

µ
t ,K

l ≥ 0, ∀ t ∈ T. (19)

Objective function (12) maximizes the sum of energy

and capacity payments, less penalties for non-performance

in the capacity market. Constraints (2) through (11) are

included since the underlying operating capabilities of the

plant are unchanged when capacity payments are included.

Constraints (14) through (19) define the maximum amount of

energy that the CSP plant can generate in each hour and the

resulting capacity shortfall. Constraints (14) define the hour-

t capacity shortfall to at least equal the difference between

the contracted quantity and the maximum amount of energy

that the plant can feasibly produce in hour t. Constraints (15)

define the maximum amount of energy that can be discharged

from TES in each hour to be the minimum of the discharge

capacity and the energy in TES carried over from the pre-

vious hour. Constraints (16) define the maximum amount

of thermal energy that can be delivered to the powerblock

in each hour based on the solar field energy and energy

in TES. Constraints (17) define the maximum amount of

electricity that can be generated in each hour based on the

amount of thermal energy that can be feasibly delivered to the

powerblock. Constraints (18) and (19) impose minimum and

maximum powerblock loading and non-negativity restrictions.

Constraints (18) further require the powerblock to be online

to provide capacity to the system in a given hour.

These types of ‘price-taking’ models yield dispatch pattern

that are generally similar to demand patterns. In summer

months output tends to peak in the late afternoon, whereas

in the winter a morning and evening peak is often observed

due to demand peaks driven by lighting and heating loads.

Sioshansi and Denholm [21], [23] and Madaeni et al. [7]

provide examples of CSP dispatch patterns during different
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periods of the year.

IV. CAPACITY VALUE ESTIMATION METHODS

A. Reliability-Based Method

Numerous techniques have been used to approximate the

capacity value of conventional and renewable generators.

Reliability-based methods are among the most robust and

widely accepted of these [6], [7], [24]–[30]. These techniques

use a standard power system reliability index, loss of load

probability (LOLP), to determine how a generator affects the

reliability of the system. LOLP is defined as the probability

that generator or transmission outages leave the system with

insufficient capacity to serve the load in a given hour. A related

reliability index, loss of load expectation (LOLE), is defined

as the sum of LOLPs over some planning horizon, and gives

the expected number of outage hours within that horizon.

Conventional generator and transmission outages are typically

modeled using an equivalent forced outage rate (EFOR),

which captures the probability of a failure at any given

time. With variable renewables, one must model mechanical

failures using an EFOR and capture resource variability. The

latter is typically done using historical resource data or by

simulating such data from underlying probability distributions.

Reliability-based methods determine the capacity value of a

generator by how it affects the system’s LOLPs and LOLE.

Standard reliability-based methods include the effective

load-carrying capability (ELCC), equivalent firm power (EFP),

and equivalent conventional power (ECP), which is the

reliability-based metric that we focus on. The ELCC of a

generator is defined as the amount by which system loads

can increase when the generator is added while maintaining

the same LOLE [31]. The EFC of a generator, g, is defined

to be the capacity of a fully reliable generator (i.e. with a

0% EFOR) that can replace g while maintaining the same

LOLE [32], [33]. A generator will generally have a different

ELCC and EFC since changing the generation mix of a system

will change the probability distribution of available generating

capacity in an hour, whereas changing loads will not [30]. ECP

is similar to EFC, except that the generator against which g

is benchmarked is not fully reliable and instead assumed to

have a positive EFOR. This metric is particularly attractive

for renewable generators, since it allows the capacity value

to be compared to a conventional dispatchable resource. For

instance, one may find that a 100 MW wind plant has a

capacity value that is equivalent to a 30 MW natural gas-fired

combustion turbine, which corresponds to a 30% ECP.

Estimating the capacity value of a CSP plant with TES is

complicated by the fact that one must account for both the

energy that the plant actually plans to generate, as well as

stored energy. This is because if a system shortage event is to

occur, stored energy could be used to increase the output of

the CSP plant and help mitigate the capacity shortfall. Tuohy

and O’Malley [34] propose a capacity value approximation

technique for pumped hydroelectric storage (PHS) that we

apply to a CSP plant with TES. Their method determines an

optimal (e.g. revenue-maximizing) dispatch of the PHS plant

subject to technical constraints. They then determine, based on

this dispatch and the amount of energy in storage in each hour,

the maximum amount of energy that the PHS could feasibly

generate in a subset of hours during which the system has

a high likelihood of experiencing an outage. This maximum

potential generation is used to estimate the capacity value of

the plant. In our analysis, we focus on the 10 hours of each

year with the highest LOLPs, since the capacity value of CSP

without TES is most sensitive to its operation during these

most critical hours [7]. This can be contrasted with wind,

which can require up to the top 900 hours of the year to be

considered to accurately estimate its capacity value [3].
To apply this method to CSP, we first define the maximum

amount of energy that can be generated by the CSP plant

in each hour, based on the optimized operation of the plant.

In the case with capacity payments, this quantity is defined

endogenously by the optimized values of the e
µ
t variables. In

the case with only energy payments, we compute this by first

defining the maximum amount of thermal energy that could

be delivered to the powerblock in each hour as:

τ
µ
t = ut · max

{

0,min
{

τ+, eSFt − eSU · rt (20)

+φ · min
{

d̄, ρ · lt−1

}}}

.

Equation (20) defines τ
µ
t as the minimum of the powerblock’s

rated capacity and the sum of the thermal energy collected

by the solar field and energy available in TES. Equation (20)

further assumes that the powerblock must be online in order

to generate energy, precluding the possibility of an immediate

emergency startup during a contingency event. We explore the

effects of relaxing this assumption in section VI.
We next determine the amount of τ

µ
t that is taken out of

TES as:

d
µ
t = max

{

0, τµt − eSFt
}

. (21)

We finally define the maximum potential generation of the

CSP plant in each hour as:

e
µ
t = f(τµt ) − Ph(d

µ
t ) − Pb(τ

µ
t ). (22)

To estimate the CSP plant’s ECP, we first compute the

LOLPs of the base system without the CSP plant as the prob-

ability that the load cannot be met by the existing generators:

pt = Prob {Gt < Lt} , (23)

where the probability function accounts for the likelihood

of outages. We let T̃ denote the subset of hours with the

highest LOLPs, which are considered for the capacity value

estimation. We then compute the LOLE when the CSP plant

is added to the system as:

EC =
∑

t∈T̃

Prob {Gt + e
µ
t < Lt} . (24)

We also compute the LOLE when a benchmark unit only

(i.e. without the CSP plant) is added to the system as:

EB =
∑

t∈T̃

Prob {Gt +Bt < Lt} . (25)

The ECP of the system is found by adjusting the nameplate

capacity of the benchmark unit until:

EC = EB. (26)
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B. Capacity Factor-Based Approximation Method

Although reliability-based methods, such as ECP, provide

robust capacity value estimates, they require detailed sys-

tem data. They can also be computationally expensive, since

LOLPs must be iteratively recalculated until achieving con-

dition (26). This is less of an issue today, however, with

computational resources currently available [35]. As such,

approximation techniques have been developed. One such

class of techniques, which we call capacity factor-based ap-

proximations, consider the capacity factor of a generator over

a subset of hours during which the system faces a high risk

of a shortage—for instance hours with high loads or LOLPs.1

A generator’s capacity factor is defined as its average output

during a set of hours divided by its maximum capacity. A

number of studies apply capacity factor-based approximations

to wind [3], [36], [37] and photovoltaic solar [38], comparing

them with reliability-based methods to assess their accuracy.

Madaeni et al. [7] compare the accuracy of applying different

capacity factor-based approximations as opposed to reliability-

based methods to CSP plants without TES. They approximate

the capacity value of CSP as the average capacity factor during

the 10 and 100 hours of each year with the highest loads

and LOLPs, where the LOLPs of the base system without the

CSP plant added are used. We refer to these as the top-load

and -LOLP methods. They also examine a method, which we

refer to as the LOLP-weighted method, which uses a weighted

average capacity factor during the highest-load hours, with the

LOLPs used as weights. They show that the LOLP-weighted

method provides the closest approximation of the reliability-

based methods, and that using the 10 highest-load hours of

the year provides the best approximation.

We compare ECP and capacity factor-based approximations

using the 10 hours of each year with the highest loads and

LOLPs, as well as the LOLP-weighted method. The top-load

and -LOLP methods approximate a plant’s capacity value as:
∑

t∈T̃

e
µ
t

|T̃ | · C̄
, (27)

where T̃ is the set of hours with the highest system loads or

LOLPs and |T̃ | is the cardinality of T̃ . The weights used in

the LOLP-weighted approximation are:

wt =
pt

∑

ξ∈T̃

pξ
. (28)

The LOLP-weighted approximation of the capacity value is

then given by:
∑

t∈T̃

wt · e
µ
t

C̄
. (29)

V. CASE STUDY

We estimate the capacity values of CSP plants at three sites

in the southwestern U.S., which are listed in Table I, using

1Although loads and LOLPs are correlated, they are not perfectly coinci-
dent, since generator EFORs and capacities can vary seasonally due to factors
such as planned maintenance outages and water inflows to hydroelectric
plants.

historical conventional generator, load, and weather data from

1998 to 2005. The capacity values of CSP plants without TES

have significant interannual variability [7], and studying eight

years provides a more robust long-term estimate. We study

these locations in isolation, considering a CSP plant added

to each site individually. Thus our capacity value estimates

are not additive, since they do not account for correlation

in weather conditions between the locations. Moreover, our

capacity values are calculated by assuming a single CSP plant

is added and do not account for the fact that the marginal

capacity value of CSP decreases as more CSP capacity is

added to the system. Our estimates also neglect transmission

constraints, which can reduce the capacity value of CSP if

there is insufficient capacity to deliver power to loads. Our

estimates use hourly data as the capacity value of CSP plants

without TES is relatively insensitive to subhourly resource

variability, and we expect this to be true of plants with TES

[7].

TABLE I
LOCATION OF CSP PLANTS STUDIED

CSP Site Coordinates
Thermal, California 33.65◦ N, 116.05◦ W
Amargosa Valley, Nevada 36.55◦ N, 116.45◦ W
Magdalena, New Mexico 34.35◦ N, 107.35◦ W

A. CSP Plants and Operation

Our analysis assumes that the components and performance

of the CSP plants correspond to the default trough system

modeled in version 2.0 of SAM [20]. This plant has a

110 MW-e wet-cooled powerblock, which can be operated

at up to 115%, a two-hour powerblock minimum up-time,

non-linear parasitic loads, and no auxiliary fossil-fueled heat

source. When the parasitic component loads are taken into

account, the maximum net electric output of the CSP plant is

about 120 MW-e. We use this 120 MW-e maximum net output

to normalize the capacity values of the plants. The default CSP

plant in SAM has a 6% EFOR, which we assume.
In order to make our model computationally tractable, we

optimize the operation of the CSP plants one day at a time

using a rolling 48-hour optimization horizon. Inclusion of

hours 25 through 48 in the model ensures that thermal energy

that would be valuable on the subsequent day is kept in TES

at the end of hour 24 [39]. We further assume that price

and weather data are perfectly known to the plant operator

a priori. Sioshansi and Denholm [21] use a ‘backcasting’

heuristic to demonstrate that the operation and profitability

of CSP are relatively insensitive to these assumptions. This

heuristic determines the operation of a plant on each day by

assuming that prices and solar availability from the previous

day will repeat themselves and can capture at least 87% of the

profits that are possible with perfect foresight. The heuristic

works well because price patterns are relatively similar from

one day to the next.

B. Data Sources

Since the locations that we study are in the Western Elec-

tricity Coordinating Council (WECC) region, we model the
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entire WECC to determine LOLPs. Since we use the same

underlying system in our calculations, capacity value differ-

ences between the locations are solely due to solar resource

and CSP dispatch differences. System planners often use more

limited regions in capacity planning, however. Because the

capacity value of CSP depends on the relationship between

LOLPs and generation patterns, the capacity value of a CSP

plant may differ depending on whether a more limited study

region is used.

WECC LOLPs are estimated by calculating the system’s

capacity outage table, which assumes that generator outages

follow Bernoulli distributions that are serially and jointly

independent [24]. Data requirements and sources used in our

calculations are detailed below.

1) Conventional Generators: The rated capacities of con-

ventional generators are obtained from Form 860 data col-

lected by the U.S. Department of Energy’s Energy Information

Administration. Form 860 reports winter and summer capac-

ities for each generator, which we use in our analysis. The

WECC had between 1,016 and 1,622 generating units and

123 GW and 163 GW of generating capacity during the years

that we study, reflecting load growth during this period.

We model generator outages using a simple two-state

(online/offline) model. We use the North American Electric

Reliability Corporation’s Generating Availability Data System

(GADS) to estimate generator EFORs. The GADS specifies

historical annual average EFORs for generators based on

generating capacity and technology, which we combine with

generating technology data given in Form 860. The EFORs

used range between 2% and 17% and have a capacity-weighted

average of 7% for the entire WECC.

2) Load: Hourly historical load data for each year are

obtained from Form 714 filings with the Federal Energy

Regulatory Commission (FERC). Form 714 includes load

reports for nearly all of the load-serving entities (LSEs) and

utilities in the WECC, although some small municipalities and

cooperatives are not included. We assume loads are fixed and

deterministic based on these data, which have annual peaks

ranging between 107 GW and 124 GW. Since the system loads

increased over the study period and capacity expansion can

lead or lag such growth, we adjust the hourly load profiles in

each year individually so that the LOLPs of the base system

in each year sum to 2.4. This corresponds to the standard

planning target of one outage-day every 10 years [40]. This

load adjustment is done by scaling all of the hourly loads

by a fixed percentage, ranging between 0.1% and 5% in the

different years.

3) Prices: In the energy-only market, the operations of the

CSP plants is optimized to maximize energy revenues. Hourly

day-ahead prices for the California ISO’s SP15 zone are used

to optimize the plant in California. Hourly load lambda data,

obtained from FERC Form 714 filings by Nevada Power and

Public Service Company of New Mexico, are used for the

other locations.

The capacity market case is modeled by assuming that the

plant receives a supplemental fixed payment for its contracted

capacity, which carries an obligation to be able to provide

energy during SO-designated shortage events. The capacity

price is assumed to be set based on the capital cost of a natural

gas-fired combustion turbine (NGCT), since such generators

are often used for peak-capacity purposes. We assume an

NGCT cost of $625/kW in 2005 dollars [41] and use a capital

charge rate (CCR) to convert this total capital cost into an

annualized cost [42]. Using an 11% CCR yields an annualized

capacity payment of MK = $68.75/kW-year. Most SOs define

shortage events as hours with low operating reserves, since that

is when the system faces the highest probability of a system

outage. We assume that the 10 hours of each year with the

highest LOLPs are shortage event hours. The penalty price

for not providing contracted capacity is assumed to be half of

the annualized capacity cost (i.e. Kp = $34.38/kW-year). All

of the capacity payments and penalties are deflated to 1998

through 2005 dollars using consumer price index data reported

by the U.S. Bureau of Labor Statistics. The capacity payment

and penalty parameters used are based on the design of the

Forward Capacity Market operated by ISO New England.

4) Weather: SAM requires detailed weather data, including

DNI, dry-bulb and dew-point temperatures, relative humidity,

barometric pressure, and wind speed. These data are obtained

from the National Solar Radiation Data Base [43], which

accounts for cloud cover and other factors in determining local

weather conditions.

VI. CAPACITY VALUE ESTIMATES

Fig. 1 shows the average (over the years 1998 to 2005)

annual capacity values of a CSP plant with an SM of 1.9 at

the California location in an energy-only market. ECPs and

capacity factor-based approximations, which are reported as

percentages of the 120 MW-e maximum net output of the

plant, are given. The figure shows that TES can increase

the plant’s capacity value by up to 7%. It also shows that

the LOLP-weighted method provides the best approximation

of the ECP, with similar results for CSP plants at the other

locations and with different configurations. Madaeni et al. [7]

compare the different capacity factor-based approximations

using a root mean squared error (RMSE) metric, which is

defined as:
√

1

|S| · |Ψ| · |Λ|

∑

s∈S

∑

ψ∈Ψ

∑

λ∈Λ

(

vEs,ψ,λ − vCs,ψ,λ

)2

. (30)

The LOLP-weighted method has an RMSE of 0.71 as opposed

to 2.62 and 2.61 for the top-load and -LOLP methods, respec-

tively.

Fig. 2 through 4 show average annual LOLP-weighted

approximations for CSP plants with different configurations

at all three locations in an energy-only market. They show

the sensitivity of the capacity value to both plant location and

size, and that the values can range between 61% and 91%.

A larger solar field increases total plant generation, whereas

TES allows generation to be shifted to higher-priced hours.

Since prices are correlated with supply scarcity, which is

related to system LOLPs, this generation shifting increases

capacity values. Energy prices in California provide relatively

strong scarcity signals, which is theoretically true of energy

spot markets [44]. Conversely, the Nevada and New Mexico
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Fig. 1. Average (over the years 1998 to 2005) annual capacity value of
a CSP plant with SM of 1.9 at the California location, as a percentage of
120 MW-e maximum net output of the plant. ECPs and capacity factor-based
approximations are given.

plants are dispatched against load lambda data, which do not

incorporate such factors. Thus these plants have weaker signals

to have energy in storage and be online during high-LOLP

hours. Indeed, although the New Mexico plant has lower

capacity values, its energy yield is about 0.5% higher than the

plant in California. The figures also show that the marginal

value of TES quickly tapers off after about two to three hours

of storage. This is because energy prices and LOLPs are not

perfectly correlated, thus there are high-LOLP hours during

which it is less profitable for CSP to generate.
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Fig. 2. Average annual LOLP-weighted approximation for a CSP plant at
the California location, as a percentage of 120 MW-e maximum net output
of the plant.

Fig. 1 through 4 also show that the relationship between

plant size and capacity value is not perfectly monotone. This

non-monotonicity is because changing the configuration of a

CSP plant can affect its operation, resulting in the plant being
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Fig. 3. Average annual LOLP-weighted approximation for a CSP plant at
the Nevada location, as a percentage of 120 MW-e maximum net output of
the plant.
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Fig. 4. Average annual LOLP-weighted approximation for a CSP plant at
the New Mexico location, as a percentage of 120 MW-e maximum net output
of the plant.

offline or having less energy in TES during a critical hour

when the system has a high LOLP. To further illustrate these

effects, Fig. 5 summarizes the operation of CSP plants with

four hours of TES and SMs of 2.2 and 2.7 in Nevada on

July 12, 1999—a day with relatively high LOLPs—and on

the previous day. The figure shows LOLPs and the amount of

thermal energy available from TES and the solar field in each

hour. Contrasting the profiles of the two plants shows that the

larger CSP plant with an SM of 2.7 has less stored energy

available on July 12 and, importantly, during the high-LOLP

hours of the afternoon. The reason for this is that this plant

was able to startup and generate electricity during high-priced

hours in the afternoon of the previous day. The plant with an

SM of 2.2 was not able to due to the powerblock minimum-

load and up-time constraints, and as such more energy is kept
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in TES, yielding the higher capacity value. Similarly, a larger

TES system can affect the operation of a plant, for instance

allowing it to startup during a high-priced hour due to more

stored energy being available. This reduces the amount of

stored energy available in subsequent hours, which can reduce

the plant’s capacity value.
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Fig. 5. Hourly LOLPs and energy in TES and collected by solar field of
CSP plant with four hours of TES and different solar field sizes at the Nevada
location on July 11–12, 1999.

In addition to increasing the capacity value of CSP, TES also

reduces interannual capacity value variability. The capacity

value of CSP plants without TES can have significant inter-

annual variability, due to differences in resource availability

[7]. A CSP plant with an SM of 1.5 and no TES can have

an annual capacity value that ranges between 12% and 94%,

depending on the year and location. Adding four hours of

TES to such a plant increases the minimum annual capacity

value to 38%. Table II provides summary statistics of the

coefficient of variation, which is the ratio between the standard

deviation and mean, of the annual capacity value of CSP plants

with different amounts of TES. The summary statistics are

given over the different locations and solar field sizes that we

analyze. The table shows that TES can have a significant effect

in reducing interannual capacity value variability—adding one

hour of TES nearly halves the variability relative to a plant

without TES. This can be attractive from a system planning

perspective, since less variability implies that a CSP plant can

be viewed as a more ‘firm’ resource for long-term capacity

planning purposes.

VII. SENSITIVITY OF CAPACITY VALUES TO

ASSUMPTIONS

A. Capacity Payments

Our analysis illustrates that the capacity value of CSP is

very sensitive to signaling the need for capacity, since it is

critically related to the dispatch of the plant and TES. Our

analysis thus far shows that energy prices provide such signals

TABLE II
SUMMARY STATISTICS OF COEFFICIENT OF VARIATION OF ANNUAL CSP

CAPACITY VALUE

Coefficient of Variation
Hours of TES Minimum Maximum Average
0 0.17 0.34 0.27
1 0.04 0.29 0.15
2 0.02 0.26 0.12
4 0.01 0.25 0.09
8 0.02 0.25 0.08
12 0.02 0.25 0.08

to a limited extent, since energy prices and LOLPs are some-

what correlated. Energy prices do not provide perfect signals,

however. For instance, plants in Nevada and New Mexico that

are dispatched against load lambdas have relatively low capac-

ity values due to a lack of strong scarcity signals. Even a plant

in California does not attain the 94% theoretical maximum

LOLP-weighted capacity value approximation (accounting for

the 6% EFOR).

We use the model consisting of objective function (12)

and constraints (13) through (19) to explore the benefits of a

capacity payment mechanism in increasing the capacity value

of CSP. To overcome computational issues raised by the non-

linear objective function, we solve the model using a grid-

search method wherein we hold the value K l fixed, solve the

resulting linear MIP, and find a profit-maximizing choice of

K l. K l = 120, which is the maximum generating capacity

of the CSP plant, is profit-maximizing at all locations. The

optimized values of the e
µ
t variables are used to compute

LOLP-weighted estimates of the capacity values of the plants.

Fig. 6 shows the annual average capacity value estimates

of CSP plants with SM of 1.5 when the capacity payment is

included. Contrasting this with Fig. 1 through 4 shows that

the capacity payment can significantly increase the capacity

values. Nevertheless, the capacity values of the plants are not

exactly 94% despite the plants selling 120 MW-e of capacity.

This is because the non-performance penalty is less than the

revenue that the plants earn from selling capacity. Thus there

are high energy-price hours with low LOLPs during which

the plants sell energy, with the energy revenues outweighing

the associated capacity-related penalties in another high-LOLP

hour.

B. Immediate CSP Startup

In deriving the maximum potential generation of the CSP

plant using (18) or (20) we assume that for the CSP plant to be

able to generate in hour t it must already be online. In practice,

a CSP plant that would otherwise be offline, may technically

be able to startup and generate energy in a system contingency

or emergency situation. We bound the effect of relaxing the

startup assumption by estimating the capacity value of a CSP

plant that can startup immediately and generate electricity

without any ramping constraints, so long as the necesssary

startup energy is expended.

To do so we define the maximum amount of thermal energy
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Fig. 6. Average annual LOLP-weighted approximation for CSP plants with
SM of 1.5 at the three locations when a capacity payment is included, as a
percentage of 120 MW-e maximum net output of the plant.

that can be delivered to the powerblock in hour t as:

τ
µ
t = max

{

0,min
{

τ+, eSFt − eSU · (1 + rt − ut)(31)

+φ · min
{

d̄, ρ · lt−1

}}}

.

If the powerblock is not scheduled to be online (as determined

by the optimization model) in hour t, then rt = ut = 0.

Thus (31) allows the powerblock to be started up and electric-

ity to be generated, so long as eSU MWh-t is used for startup

energy. Otherwise, if the powerblock is already scheduled to

be online, then (20) and (31) yield the same value for τ
µ
t .

Defining τ
µ
t this way, the maximum potential generation of the

CSP plant in each hour can be computed using (21) and (22)

and an LOLP-weighted approximation can be computed as

before.

Fig. 7 summarizes the capacity value of a CSP plant at the

Nevada location in an energy-only market when the startup

assumption is relaxed. Contrasting this with Fig. 3 shows that

allowing a CSP plant to startup immediately during an system

shortage event has two noticeable effects. One is that the

capacity values tend to increase. The other is that the capacity

values are slightly more monotone in the plant size. Both of

these effects are because in some cases a CSP plant has energy

in TES, but the powerblock is not online since the energy is

being saved to exploit higher prices during subsequent lower-

LOLP hours. If the powerblock is able to startup to provide

capacity during a contingency event, this allows the energy in

TES to increase the plant’s capacity value. Relaxing the startup

assumption has similar effects on CSP plants at the other two

locations—the plants have capacity values of at least 88% and

are almost completely monotone in the plant size.

VIII. CONCLUSIONS

This paper adapts an approximation method to estimate the

capacity value of CSP plants with TES. We demonstrate that

capacity factor-based methods can provide reasonable approx-

imations of reliability-based methods. The LOLP-weighted
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Fig. 7. Average annual LOLP-weighted approximation for a CSP plant at the
Nevada location if immediate powerblock startups are allowed, as a percentage
of 120 MW-e maximum net output of the plant.

method provides the best approximations, with an RMSE of

0.71. We find that only the most critical hours of each year

need to be considered when estimating the capacity value of

CSP. This is an important consideration, since SOs often rely

on such approximation techniques to estimate the capacity

value of renewables. Clearly, CSP should be treated differently

than wind in such calculations. Using a case study of the

southwestern U.S. we show that CSP plants with TES can

have extremely high capacity values ranging between 79% and

92% of maximum capacity, as opposed to only 60% to 86%

without TES. TES also reduces interannual variability in the

capacity value of CSP, which can be beneficial for long-term

planning. This further implies that multiple years of data may

not be as crucial for estimating the capacity value of CSP with

TES as it is for other renewables. Larger CSP plants tend to

have higher capacity values, although this relationship is not

perfectly monotone, demonstrating some of the limitations of

energy prices in signaling resource scarcity. We demonstrate

that including capacity payments can significantly increase

capacity values, especially in the absence of organized spot

markets that signal scarcity through energy prices. Similarly,

designing the powerblock to be able to startup immediately

during a system shortage event can significantly increase the

capacity value.

Although we estimate capacity values by modeling the

entire WECC system, system planners often use more limited

system footprints in their analyses. This could affect the

capacity value of CSP, depending on the extent to which

the plant’s generation is coincident with the ‘local’ system

load. By modeling the entire WECC system we further as-

sume that the system has sufficient transmission capacity to

deliver power wherever it is needed. If binding transmission

constraints prevent this, actual capacity values could be lower

than our calculations suggest [45]. Further work is needed to

better understand the effects of such considerations, which is

an area of future research that we are pursuing.
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While our analysis is limited to locations within the WECC,

we expect similar capacity values, especially in plants with

TES, in regions of the world with solar resources that are

favorable for CSP development. Nevertheless, further research

is needed to examine how CSP plants would be operated and

associated capacity value implications in other systems and

regions. Other areas for future research include examining the

marginal capacity value of CSP as a function of penetration,

and developing more detailed models of tower, linear Fresnel

reflector, and dry-cooled CSP plants. These are increasingly

important issues, as a number of tower plants under construc-

tion in the U.S. and internationally.
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[8] H. Price, E. Lüpfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and
R. Mahoney, “Advances in parabolic trough solar power technology,”
Journal of Solar Energy Engineering, vol. 124, pp. 109–125, May 2002.

[9] “Assessment of parabolic trough and power tower solar technology cost
and performance forecasts,” National Renewable Energy Laboratory,
Tech. Rep. NREL/SR-550-34440, October 2003.

[10] M. Selig and M. Mertins, “From saturated to superheated direct solar
steam generation—technical challenges and economical benefits,” in
SolarPACES 2010 Conference, Perpignan, France, 21-24 September
2010.

[11] C. Turchi, M. Mehos, C. K. Ho, and G. J. Kolb, “Current and future
costs for parabolic trough and power tower systems in the us market,”
National Renewable Energy Laboratory, Tech. Rep. NREL/CP-5500-
49303, October 2010.

[12] J. E. Pacheco and R. Gilbert, “Overview of recent results of the solar
two test and evaluations program,” Sandia National Laboratories, Tech.
Rep. SAND99-0091C, January 1999.

[13] U. Herrmann and D. W. Kearney, “Survey of thermal energy storage for
parabolic trough power plants,” Journal of Solar Energy Engineering,
vol. 124, pp. 145–152, May 2002.

[14] P. W. Parfomak, “Energy storage for power grids and electric transporta-
tion: A technology assessment,” Congressional Research Service, Tech.
Rep. R42455, March 2012.

[15] D. W. Kearney, B. Kelly, U. Herrmann, R. Cable, J. E. Pacheco,
A. R. Mahoney, H. Price, D. M. Blake, P. Nava, and N. Potrovitza,
“Engineering aspects of a molten salt heat transfer fluid in a trough
solar field,” Energy, vol. 29, pp. 861–870, April-May 2004.

[16] A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba,
and L. F. Cabeza, “State of the art on high temperature thermal
energy storage for power generation. part 1—concepts, materials and
modellization,” Renewable and Sustainable Energy Reviews, vol. 14,
pp. 31–55, January 2010.

[17] J. E. Pacheco, S. K. Showalter, and W. J. Kolb, “Development of a
molten-salt thermocline thermal storage system for parabolic trough
plants,” Journal of Solar Energy Engineering, vol. 124, pp. 153–159,
May 2002.

[18] D. L. Barth, J. E. Pacheco, W. J. Kolb, and E. E. Rush, “Development
of a high-temperature, long-shafted, molten-salt pump for power tower
applications,” Journal of Solar Energy Engineering, vol. 124, pp. 170–
175, May 2002.

[19] M. Medrano, A. Gil, I. Martorell, X. Potau, and L. F. Cabeza, “State of
the art on high-temperature thermal energy storage for power generation.
part 2—case studies,” Renewable and Sustainable Energy Reviews,
vol. 14, pp. 56–72, January 2010.

[20] P. Gilman, N. Blair, M. Mehos, C. B. Christensen, and S. Janzou, “Solar
advisor model user guide for version 2.0,” National Renewable Energy
Laboratory, Tech. Rep. NREL/TP-670-43704, August 2008.

[21] R. Sioshansi and P. Denholm, “The value of concentrating solar power
and thermal energy storage,” IEEE Transactions on Sustainable Energy,
vol. 1, pp. 173–183, October 2010.

[22] H. Price, “Parabolic trough solar power plant simulation model,” Na-
tional Renewable Energy Laboratory, Tech. Rep. NREL/CP-550-33209,
January 2003.

[23] R. Sioshansi and P. Denholm, “The value of concentrating solar power
and thermal energy storage,” National Renewable Energy Laboratory,
Tech. Rep. NREL/TP-6A2-45833, February 2010.

[24] R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems.
Boston: Pitman Advanced Publishing Program, 1984.

[25] M. R. Milligan and B. Parsons, “Comparison and case study of capac-
ity credit algorithms for intermittent generators,” National Renewable
Energy Laboratory, Tech. Rep. NREL/CP-440-22591, March 1997.

[26] C. D’Annunzio and S. Santoso, “Noniterative method to approximate the
effective load carrying capability of a wind plant,” IEEE Transactions
on Energy Conversion, vol. 23, pp. 544–550, June 2008.

[27] M. R. Milligan and K. Porter, “Determining the capacity value of
wind: An updated survey of methods and implementation,” National
Renewable Energy Laboratory, Tech. Rep. NREL/CP-500-43433, June
2008.
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