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Abstract

Over the past century, the significance of the rhizosphere has been increasingly recognized by the scientific community. This
complex biological system is comprised of vast interconnected networks of microbial organisms that interact directly with their
plant hosts, including archaea, bacteria, fungi, picoeukaryotes, and viruses. The rhizosphere provides a nutritional base to the
terrestrial biosphere, and is integral to plant growth, crop production, and ecosystem health. There is little mechanistic understand-
ing of the rhizosphere, however, and that constitutes a critical knowledge gap. It inhibits our ability to predict and control the
terrestrial ecosystem to achieve desirable outcomes, such as bioenergy production, crop yield maximization, and soil-based carbon
sequestration. Multi-omics have the potential to significantly advance our knowledge of rhizospheric science. This review covers
multi-omic techniques and technologies; methods and protocols for specific rhizospheric science questions; and the challenges to
be addressed during this century of rhizospheric science.
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1. Introduction1

1.1. Brief history of rhizospheric science2

The rhizosphere is the interface between a plants roots and the surrounding soil (Figure 1). The rhizosphere3

microbiome is the specific microbial community within the first several millimeters away from the root. It consists4

of all domains of microbial life, including archaea, bacteria, fungi, picoeukaryotes, and viruses, but also constitutes5

a microbial community specific to plant species and genotype. The activities of a rhizosphere’s microbiome are6

driven by the nature and characteristics of the plant root exudates [1, 2]. The rhizosphere is one of the most dynamic7

interfaces on Earth, containing up to 1011 microbial cells per gram of root [3], representing over ∼30, 000 bacterial8

species [4].9

Figure 1. Depiction of the rhizosphere components and processes (not to scale).

The term was coined in 1904 by Lorenz Hiltner, who demonstrated that a plants nutrition is significantly in-10

fluenced by the composition of its rhizosphere microbiome [5]. Hiltners research on germination and plant growth11
2
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demonstrated that rhizosphere-based microbial communities exhibit plant-specificity because of differences in the12

composition and concentration of plant root exudates [6]. Successive researchers built upon Hiltners original work.13

Most prominent among them was Albert Rovira, whose research on “the rhizosphere effect” [7], provided detailed14

views of plant-driven microbial colonization of the rhizosphere at the microscopic scale.15

Figure 2. Number of manuscripts found on PubMed featuring the keyword “rhizosphere” published from 1947 to 2017 (to February 2017).

1.2. Current state of rhizospheric science16

A PubMed search from 1947 to 2017 revealed a total of 6, 344 manuscripts published featuring the keyword17

“rhizosphere,” of which almost 70% were published in the last decade (Figure 2). Early publications, describing18

research conducted without the use of computers, emphasized the need for prefatory understanding of the nature and19

characteristics of the rhizosphere at microscopic scales. Over the last decade, the surge in rhizosphere publications can20

be linked to several developments in high-throughput technologies, to improvements in computational capabilities,21

to the maturity of the Web as a data dissemination platform, and to the development of novel algorithms for the22

analysis of complex, multi-omic datasets. These new methodologies target the microbial composition, specificity, and23

functionality of the rhizosphere microbiome at the community scale [8, 9, 10, 11], as well as the complex network24

plant-microbe interactions at the molecular scale [12, 13, 14, 15, 16].25
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1.3. What is multi-omics?26

Multi-omics is a modern, holistic approach to systems biology that leverages the datasets of multiple -omes (the27

genome, for instance, as well as the proteome, transcriptome, and metabolome). These multiple -omes are from indi-28

vidual organisms (such as archaea, bacteria, fungi, picoeukaryotes, plants, animals, and viruses) as well as from multi-29

organism communities and consortia. Directly measured data is gathered with a variety of instrumentation pertaining30

to, at minimum, the “central dogma” of molecular biology [17]: that is, DNA, mRNA, and proteins are measured, an-31

alyzed, and integrated using multivariate statistics to be considered multi-omics. Examples of such microbiome-based32

multi-omics studies (which integrate data from DNA, mRNA, and protein) are described in Hultman et al., [18] and33

Heintz-Buschart et al., [19].34

Figure 3. The -omes of multi-omics for microbial communities and consortia.

1.4. Multi-omics terminology35

In this section, we introduce and discuss the terminology used in subsequent sections of this review (Figure36

3). The word “-ome,” used in a biological context, is the totality of a class of biological molecules. Current high-37

throughput technologies discussed later provide global measurements of the totality of an entire -ome. For example,38

the “genome” is the total genetic information encoded by the DNA of an entire organism. The term “sampling,” as39
4
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used in this review, refers to the process of obtaining a point-in-time profile of a single sample for a given -ome.40

The suffix “meta” has been adopted in this biological context to mean a collection of many individuals that refers to41

whole microbial communities. The term “metagenomics” refers to a whole-community sampling of the totality of all42

genetic information encoded by the DNA of all individuals found within that sample. Metagenomics was derived from43

the original definition of the term “metagenome” by Handelsman et al., [20], referred to the “cloning and functional44

analysis of the collective genomes.” Metagenomics should only refer to whole-community genomics, where DNA45

is randomly fragmented and directly sequenced, and where both function and taxonomy are predicted from direct46

measurements. Metagenomics should not be used to describe whole-community polymerase chain reaction (PCR)47

amplification of individual markers (mostly commonly 16S ribosomal RNAs (16S rRNA)), which uses the form of48

sequencing known as PCR amplicon sequencing. PCR amplicon sequencing is limited to direct measurement of49

taxonomy and diversity measurements.50

1.5. General challenges of obtaining -omics from the rhizosphere51

Rhizosphere and soil science are rapidly undergoing a transition to interdisciplinary approaches that require col-52

laboration in many areas of science, including geology, pedology, mineralogy, physics, biology, bioinformatics, math-53

ematics, statistics, and computer science. Successful holistic studies of the rhizosphere will in the future depend54

on developments of both techniques and technologies, along with robust data analytics and software. Our review55

discusses developments in the techniques and technologies of -omics as they are applied to the rhizosphere or to sur-56

rogate environmental ecosystems. Another short review contained in this special edition issue will tackle the largest57

challenge of the obtaining multi-omic models of the rhizosphere: the data analysis.58

As mentioned above, rhizosphere soil represents one of the most exceptionally complex ecosystems because of59

the numerical diversity of microbes alone. A current rhizosphere study using 16S rRNA PCR amplicon sequencing of60

Arabidopsis thaliana across 613 samples illustrates the high diversity of microbes contained within the rhizosphere.61

It found >2,000 species (as operational taxonomic units − OTUs) per gram of rhizosphere soil [10]. If we assume that62

the average microbial genome has ∼3,000 protein-coding genes with ∼2,000 species, that represents 6x106 bacterial63

proteins at the low end. At the high end, an estimate of ∼30,000 species per gram posits 9x107 proteins [10].64

Rhizosphere soil contains very high levels of interfering humic acids from the soil matrix, as well as plant polyphe-65

nols and other degraded macromolecules, all of which makes extracting biological molecules such as DNA, RNA,66

proteins, and metabolites difficult. These compounds interfere due to co-extraction and they inhibit PCR and the67

ionization required for analyzing proteins and metabolites. Separating these biological molecules from interfering68

compounds is critical for high resolution -omics results.69
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One main challenge that is rarely discussed is extraction bias, based on the fact that many microbes are resistant70

to lysis; thus, we are getting a bias view point of microbial communities. Extraction bias is an important problem71

in rhizosphere studies since a single commercial kit or method is commonly used for isolating biological molecules72

such as DNA, RNA, proteins, and metabolites from rhizosphere soil microbial communities. All -omics require73

robust extraction and lysis in order to get the most comprehensive downstream comparisons and analysis with lowest74

bias extraction. We discuss this challenge in greater detail later in the sections on the challenges of next-generation75

sequencing (NGS) and metaproteomics.76

2. Next-generation sequencing (NGS) of rhizospheric microbial communities77

2.1. Introduction to next generation sequencing (NGS)78

NGS platforms are used for direct measurements of the genomes and transcriptomes of individuals, and for the79

metagenomes and metatranscriptomes of whole communities. In recent years, NGS has become vastly more cost-80

and time-efficient compared to other technologies for multi-omic analysis, including mass spectrometry (MS) based81

proteomics and metabolomics [21]. NGS platforms are characterized by two parameters: mean read length and82

throughput (Table 1). The preeminent manufacturers of NGS platforms are Illumina, Pacific Biosciences of California,83

Inc. (i.e., PacBio), and Oxford nanopore technologies (i.e., Oxford) (Table 1).84

Table 1. Summary of Next Generation Sequencing (NGS) platforms. ‘Per unit’ refers to flow cell lane (Illumina), MinION cell (Oxford), or SMRT
cell (PacBio) [22].

Vendor Platform Instrument Date Read length (bp) Accuracy Data (per unit) Data (total)
Illumina Illumina HiSeq/MiSeq 2007 100–300 99.9% 1.8 Tb 18 Tb
Moleculo Illumina HiSeq 2012 6, 000–16, 000 99.9% 1 Gb 16 Gb
PacBio SMRT PacBio RS II (P6) 2011 10, 000–25, 000 89.0% 300 Mb 10 Gb
Oxford Nanopore MinION 2012 1, 000–90, 000 90.0% 1 Gb 1 Gb

Illumina is the most mature maker of NGS platforms, and aims to provide great utility in sequencing capabili-85

ties. Illumina’s NGS platforms use oligonucleotide array flow cells, reversible chain terminators, and bridge PCR86

amplification in order to directly sequence nucleic acids by synthesis [23]. Nucleic acids are fragmented based on87

obtaining wanted insert size (usually ∼350 bp) then oligonucleotide adapters/barcodes are added resulting in library88

for sequencing. The library adapter/barcode sequences are complementary to array flow cells, which are then an-89

nealed and amplified by a special PCR on the flow-cell known as bridge PCR [23]. Illumina provides overlapping90

insert libraries with paired end reads (medium throughput); varying read lengths (high throughput); and short reads91

(ultra-high throughput) [21]. Illumina offers a novel longer-read technology that provides read lengths of approxi-92

mately 8-15 kbp. The technology, formally called Moleculo, is now referred to as the TruSeq synthetic long-read93
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DNA library prep kit [24, 25]. In recent studies, this approach has been demonstrated [26, 25, 27] to improve de novo94

metagenomic assembly and genomic binning of microbial communities, including prairie soils [26].95

NGS platforms made by PacBio and Oxford nanopore technologies offer generally low-to-medium throughput96

when compared to Illumina platforms. However, they yield significantly longer read lengths by two orders of magni-97

tude (Table 1) and have been reviewed further elsewhere [21]. PacBio uses tethered DNA polymerases and zero-mode98

waveguides to detect and sequence nucleic acids [28, 29]. Oxford Nanopore Technologies NGS platforms thread99

individual nucleic acid molecules through nano-size pores, and then detect the individual nucleotide bases through100

changes in electrical conductivity [30]. It should be noted that, to date, Oxford nanopore technologies NGS platforms101

have demonstrated the longest read lengths (up to 90 kbp) [30]; however, these long reads were rare and prone to error102

but can be corrected by novel software [31].103

Both PacBio and Oxford nanopore technologies NGS platforms offer direct detection of modifications to nu-104

cleic acids (e.g., methylation and/or hydroxymethylation of cytosine). While they have not been applied to microbial105

communities as they have been in metaepigenomics (Figure 3), both PacBio and Oxford nanopore could be the tech-106

nologies that access whole community modification profiles of nucleic acids. Microbial genomes appear to have107

modification of their DNA; the study by Murray et al., [32] is an excellent example of epigenomics on single mi-108

crobes. PacBio’s NGS platforms also detect modifications to nucleic acids by measuring the “wobble” of unnatural109

bases during polymerase threading [32]. Oxford nanopore technologies can detect modified bases (e.g., methylated110

bases), by a decrease in voltage as the modified bases are threaded through the nanopore [33].111

2.2. Usage and applications of next-generation sequencing112

NGS has been used to infer rhizospheric microbial community structure [10]; the core microbial community113

[11]; microbial community structure and metabolic potential by metagenomics [34]; microbial community expression114

under pesticide treatment (i.e., glyphosate) [35]; and plant-microbe interactions [36]. These and other studies have115

provided a wealth of information pertaining to responses to perturbation, as well as to the abundance, structure,116

diversity, spatial distribution, and core members of rhizospheric communities. Studies of the rhizosphere employing117

NGS platforms have mainly focused on model plants such as Arabidopsis thaliana [10, 11], legumes (e.g., peas and118

soybeans) [34, 35, 36], and cereals (e.g., wheat, oats, and corn) [35, 36].119

After posing a research question, the first step in a successful NGS workflow is the selection of an appropriate ex-120

perimental technique for the downstream application to the rhizosphere. Two techniques are quite useful for inferring121

core- and pan-microbial community structure [10, 11] and spatial and temporal distributions [37]: amplifying 16S122

rRNA genes (e.g., bacteria/archaea-specific markers) or using internal transcribed spacer (ITS) (e.g., fungal specific123

markers) regions for PCR amplicon sequencing as phylogenetic markers [38, 39].124
7
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Both DNA- and cDNA-based templates can be used for PCR analysis. They provide the most inexpensive NGS ex-125

periments, high replication, and limited sample input (approximately 1 ng nucleic acid template). These cDNA-based126

PCR amplicon templates can also measure the metabolically active members of a microbial community. However,127

PCR amplification creates bias towards certain microbial groups [38, 40]. Illumina HiSeq and MiSeq represent the128

best options for PCR amplicon studies. They are cost-effective and robust, obtain deep coverage (often to level rar-129

efaction even for diverse communities), and they scale to many samples [38]. Recently, Illumina Moleculo [26],130

Illumina MiSeq [41] and PacBio sequencing [42] have been used to obtain long full-length 16S rRNA genes for high-131

resolution microbial taxonomy and phylogenetic placement. Still, these technologies cannot provide the sequencing132

depth offered by shorter PCR amplicons. In the near future, these long-read technologies may provide higher numbers133

of sequences.134

Metagenomics provides taxonomy in a less biased manner than 16S rRNA PCR amplicons and it allows direct135

inference of the metabolic potential of a microbial community. De novo assembly of metagenomics data provides136

error correction of reads, connects protein coding gene fragments, and it provides more robust assignment of function137

and taxonomy due to added length during alignment to reference databases [43]. Metagenomics by using de novo138

assembly allows for reconstruction of complete to near-complete genomes from unknown and uncultivated phyla139

[26, 44, 45].140

For the reconstruction of genomes, long reads are superior to short reads for de novo metagenomic assembly141

due to increased contig length [43, 46]. A length of reads or contigs of ∼7,000 bp or greater has been called the142

“golden threshold,” of de novo assembly of microbial genomes [46]. Long reads or contigs ∼7,000 bp can resolve the143

most common repeats in bacterial genomes, which allows for the reconstruction of complete microbial genomes [46].144

Longer reads offer more overlapping data for higher accuracy annotation, and potentially allow for higher genome145

completeness (that is, the percentage of how complete a genome is, based on universal marker genes found across146

all clades of bacteria) for reconstructing genomes from metagenomes [25, 26, 27]. Illumina Moleculo, PacBio, and147

Oxford nanopore are the best sequencing platforms for providing long reads (Table 1). Note that short reads can be148

used for genome reconstruction for low-complexity microbial communities [44, 45, 47]. However, long reads provide149

better protection from assembly errors caused by genome repeats [46] and often contain gene operons on single reads150

[48]. Metagenomics alone cannot be used to deduce whether any of the metabolic genes are expressed at the time of151

sampling. For this information, metatranscriptomics is needed.152

Metatranscriptomics is a powerful, robust, and cost-efficient use of NGS because it allows for a variety of ques-153

tions to be answered with one experiment. If rRNAs are not depleted, they can provide indicators of protein synthesis;154

however, due to lifestyle strategies, they cannot be used as general indicators of activity or growth [49]. If meta-155
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transcriptomics are combined with temporal and/or spatial measurements, it can answer questions relating to when156

functions are transcriptionally present and active in relation to time and space. Expressed functions obtained from157

metatranscriptomics facilitates the inference of biogeochemical cycles [34], models of plant-microbe interactions158

[50], and functional diversity measurements [51].159

For metagenomic and metatranscriptomic studies, Illumina HiSeq provides many counts at relatively low cost. The160

reads provided by Illumina HiSeq are very short, however, from 100 to 250 bp. These shorter reads are useful if the161

microbial community in question is well characterized with known reference genomes; if so, then high-quality align-162

ment/mapping to these reference genomes can provide insights into functional and taxonomic distributions. However,163

if the microbial community is not well characterized, which is very common in soil/rhizosphere studies, then very164

short reads often lead to lower gene prediction, and to less usable data [52]. If there are no reference genomes and/or165

high quality metagenomes, then de novo assembly of the metatranscriptome should be completed in order to allow166

for higher quality gene prediction. Shorter-read technologies, such as those offered by Illumina, are highly useful167

for counting mRNA transcripts (with high quality reference genomes/metagenomes), and should be used to provide168

further providence in gene predictions within genomes obtained from metagenomes (genomic bins) [26]. Metatran-169

scriptomics can also be done on longer-read technologies, and sequencing can be done directly on Oxford Nanopore170

[53].171

2.3. NGS challenges172

Many challenges remain in using NGS for the rhizosphere, including: data analysis, data storage, extraction of173

nucleic acids, free nucleic acids, and nucleic acid stability. The greatest challenge in rhizosphere science is data174

analysis. For data analysis and data storage there are excellent reviews on NGS microbial community studies [54, 55,175

56, 57].176

Extraction bias and the presence of free and/or high molecular weight nucleic acids remain the most stubborn177

obstacles to using NGS for rhizospheric studies. Many microbes within soil and rhizosphere samples have robust cell178

walls (e.g., gram positives), which makes them difficult to lyse [58]. Soil and rhizosphere samples also have dormant179

microbes and spores that are difficult to extract nucleic acids [58]. Since no single extraction method is capable of180

extracting all members of a microbial community, more than one extraction technique, as well as different methods of181

lysis, have to be used in order to get more complete coverage. If enough material is available, to minimize extraction182

bias we suggest using multiple-extraction replicates from the same extraction technique and using different methods183

of extracting nucleic acids.184

Free nucleic acids from dead microbial cells are also problematic. The DNA from these cells can result in185

both abundances and metabolic potential being misrepresented. Using metatranscriptomes to validate DNA based186
9
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metagenomes or 16S PCR amplicon studies is beneficial because they are more reliable than only DNA in predicting187

functions and microbial communities that are transcriptionally active. However, transcriptional activity doesnt always188

mean an organism is growing or active, but it provides greater evidence than DNA alone [59]. Nucleases, DNA-189

binding chemicals, and stable-isotope probing (SIP) may also help enrich metabolically active members [60, 61].190

The stability of nucleic acid in field-collected samples is an ongoing problem in soil and rhizosphere science.191

Using liquid nitrogen for the rapid freezing of samples is the most common way to preserve samples, but it may not192

be possible in all field conditions. RNAlater (ThermoFisher) and Lifeguard (Qiagen) may be alternatives to protecting193

nucleic acids in field conditions, but their chemistry may not be compatible with all extraction kits [62]. Ethanol and194

RNAlater showed bias in the amplification of certain microbial groups [62]. Phenol-chloroform may be an alternative195

when freezing is not possible in the field and has been shown to stabilize nucleic acids [62].196

Few technologies are available to obtain samples of high quality in high-molecular nucleic acids from soil and197

rhizosphere samples. This is a major challenge in moving to long-read technologies since such methods require198

samples of high purity and of the highest molecular weight in order to obtain the longest possible sequence reads.199

3. Mass-spectrometry-based omics: metaproteomics and metabolomics200

Metaproteomics and metabolomics provide deep characterization of, respectively, all proteins and metabolites201

that are present in a given sample [63, 64]. A variety of analytical techniques have been used to characterize proteins202

and metabolites from samples. However, because of significant advances in techniques and technologies, mass spec-203

trometry (MS) is currently the predominant method for both metaproteomics and metametabolomics analysis. Global204

protein and metabolite characterization of complex samples is typically achieved by combining chromatography with205

mass analysis. MS-based metaproteomics typically employs reverse phase liquid chromatography (LC), while MS-206

based metabolomics can be also performed using gas chromatography (GC) through the derivatization of molecular207

compounds [65, 66].208

MS-based proteomics is completed by the extraction of proteins via solvents (e.g., chloroform/methanol), deter-209

gents (e.g., sodium dodecyl sulphate (SDS), or by physical means (e.g., sonication). Once a protein is extracted, it210

is cleaved into peptides (most commonly trypsin) for downstream analysis. Metabolites are extracted using similar211

methods in proteomics; however, detergents are rarely used due to their lack of compatibility and the potential of212

downstream loss. For proteins, there are methods for quantification (e.g., bicinchoninic acid assay, or BCA assay) and213

detergent removal; but methods for global metabolite quantification and detergent removal without loss of material214

have yet to be established.215

Electrospray ionization (ESI) is currently the most typical ionization method for liquid chromatography mass216
10
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spectrometry (LC-MS), proteomics [65], and metabolomics [66]. LC-MS uses ESI, yielding a softer ionization of217

compounds and facilitating measurements of intact species [67]. ESI technique consists in by applying a high voltage218

electric field to a liquid sample passing through a capillary tube forming millions of nanometric charged droplets. Gas219

chromatography mass spectrometry (GC-MS), in metabolomics only, uses electron impact (EI), which often results220

in extensive fragmentation. A typical EI induces ionization by applying a high potential electron beam under vacuum221

to ionize from the analytes. After molecules (either peptides or metabolites) are ionized, a mass analyzer measures its222

mass-to-charge ratio (m/z) and a detector accounts for the number of ions at each m/z value.223

4. Metaproteomics of rhizospheric microbial communities224

4.1. Introduction to metaproteomics225

In recent decades, metaproteomics has evolved into a large-scale assessment of produced and/or modified proteins226

(e.g., post-translational modifications, or PTMs) in microbial communities [68]. Metaproteomics methodologies are227

summarized in Table 2.228
Table 2. Summary of metaproteomics methodologies, where direct measurements are obtained using LC-MS.

Name Proteome Coverage Detectable Moiety Size Ease of Detection
Bottom-up High Small High

Hybrid Medium Medium Medium
Top-down Low Large Low

Bottom-up proteomics is the most frequently applied strategy for metaproteomics. The bottom-up approach re-229

quires that proteins within the sample be digested into smaller peptides using a protease (e.g., trypsin); then further230

separated by various multidimensional LC strategies (e.g., strong cation exchange and/or reversed phase); and then231

ultimately analyzed using MS/MS [69, 70, 71]. Bottom-up metaproteomics provides high proteome coverage, mak-232

ing it one of the best approaches currently employed for microbial community analysis. Metaproteomics is mainly233

accomplished using a label-free strategy via spectral counts (i.e., the total number of spectra identified) of detected234

proteins. The samples are run individually, at the same total peptide mass, to avoid bias in analysis.235

To obtain more specificity in proteomic community assessments, an alternative strategy is top-down proteomics236

[72], which analyzes intact proteins in their original form by using high resolution MS. It answers targeted questions237

for specific proteins within a complex sample. Currently, top-down proteomics are not high-throughput enough to238

measure whole communities. However, as the technology advances these techniques will become more commonplace.239

11
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4.2. Metaproteomics usage and applications240

Metaproteomics has been used to characterize rhizospheres associated with leaf litter decomposition [73], methan-241

otrophs in rhizosphere/root tissues of rice plants [74], crop rhizospheres [75, 76], and black truffles [77]. The per-242

mafrost metaproteome from Hultman et al., [18]; which thus far has identified 7, 000 proteins, has been estimated to243

contain billions of unique proteins [68]. Both bulk and rhizosphere soil have much higher microbial diversity than244

permafrost. It is likely that the number of unique proteins would be higher in bulk and rhizosphere soils because of245

the higher growth rates of microbes in those soil types when compared to low-growth frozen permafrost. As a result,246

these soils might have a greater number of unique proteins than permafrost by an order of magnitude [68].247

With this predicted vast number of unique proteins in the rhizosphere, which technique is the best? LC-MS/MS248

bottom-up is the current standard for shotgun metaproteomics measurements of protein abundances in microbial com-249

munities. For quantitative and qualitative metaproteomics, spectral counts (i.e., the total number of spectra identified250

for a protein) are the standard in the field. But stable-isotope labeling (SIL), if deconvoluted correctly, could prove251

helpful in quantifying proteins as that area of proteomics continues to develop [78]. Using SIL tagging for relative252

abundance determination is common in proteomics, but is rarely utilized in metaproteomics. That presents an im-253

mediate opportunity for rhizosphere science. SIL is recommended if an analysis requires a combination of growth254

rates, substrate utilization, post-translational modifications of proteins (PTMs), translational rates, time series, and255

quantitative data.256

4.3. Metaproteomics challenges257

Metaproteomics in the rhizosphere and surrounding soil is very challenging for several reasons: the high diversity258

of organisms present, protein redundancy, and the general difficulty in protein extraction[79]. By digesting proteins259

into peptides (typically with trypsin), protein specificity is lost; many organisms, after all, contain redundant peptides260

that are similar to many other proteins. This challenge reduces bottom-down proteomics to a technique primarily261

used to assess protein changes in related groups of organisms. Another caution regarding bottom-up proteomics is its262

bias for detecting peptides coming from highly translated proteins such as ribosomal proteins, chaperones, and others263

involved in cellular maintenance. On the other hand, top-down proteomics measures intact proteins. It could be used264

to mitigate the problems of protein redundancy in protein digestion associated with bottom-up analysis. Top-down265

proteomics presents another immediate opportunity in studies of the rhizosphere.266

Metaproteomic coverage can be improved with better proteomic extraction methods and fractionation that decrease267

peptide complexity. Direct lysis (e.g., with SDS) is the least biased method compared to indirect methods since it268

captures all intracellular and extracellular proteins [79]. However, SDS is incompatible with downstream metabolomic269
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analysis. A novel method, known as metabolite, protein and lipid extraction (MPLEx), presents a potentially improved270

means for simultaneously extracting proteins, polar metabolites, and lipids from rhizospheric soil [80]. Metaproteomic271

coverage can be improved by online 2D separation, which is comprised of on-line strong cation exchange (SCX)272

or high-pH reversed phase (i.e., C-18), followed by a secondary separation of low-pH reversed phase separations273

typically electrosprayed directly into a mass spectrometer [81, 82]. These added separation techniques decrease274

complexity for the mass analyzer allowing more detection on coverage of individual proteins.275

Sampling multiplexing (that is, running multiple samples in a single analysis) is not possible with standard pep-276

tide labeling approaches such as iTRAQ [83] and Tandem Mass Tag (TMT) labels [84]. In rhizosphere soils samples277

there is an abundance of humic acids in the soil matrix, which inhibits efficient labeling. Label-free samples cannot278

be multiplexed. The preferred method of multiplexing samples for metaproteomics is to feed the microbial commu-279

nity a isotopically labeled substrates (e.g., 13C, 15N and H18
2O) [85]. This labels proteins directly for quantitative280

metaproteomics in rhizosphere and/or soil samples.281

5. Metabolomics of rhizospheric microbial communities282

5.1. Introduction to metabolomics283

Metabolomics aims to analyze the metabolomes of organisms at a specific time under specific conditions [64]. An284

organism’s metabolome includes thousands of cellular substrates and products (metabolites) from primary metabolism285

(e.g., amino acids and sugars), and from secondary metabolism, (e.g., flavonoids and terpenoids), all of which are286

involved in many specific functions, including signaling and stress responses. The metabolome is considered the287

chemical phenotype of an organism [64], and is typically much more susceptible to environmental fluctuations than288

either the proteome or the transcriptome [86]. That makes metabolomics a useful method of understanding the specific289

metabolic pathways involved in the phenotypic responses of organisms [87].290

Metabolomics can be targeted (i.e., highly specific) and untargeted (i.e., global and unspecific) [88]. Targeted291

metabolomics focuses on the detection and quantification of metabolites selected a priori given the scientific ques-292

tion [88, 89]. Specific metabolites are detected and quantified through optimization and by user-generated standard293

curves (injecting internal standards) [90]. Untargeted global metabolomics aims to simultaneously analyze as many294

metabolites as possible in a single analysis, yielding hundreds of metabolites across many samples [90, 91]. This can295

be subsequently followed by a targeted approach for a selected subset of metabolites of biological interest.296

5.2. Metabolomics usage and applications297

Metabolomics has been widely used to follow metabolic changes in samples from many disciplines, including298

plant physiology [92, 93], ecology [87, 94, 95], and microbiology [96, 97]. However, metabolomics is still an299
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emerging field, with much room for further advancement in understanding many complex systems, including the300

rhizosphere, which has been significantly underrepresented. That underrepresentation is likely due to several factors:301

limitations in sampling specific exudates; the sensitivity of current metabolomics platforms; and the difficulties of302

tracking the spatial and temporal dynamics of exudates at a relevant scale [98].303

How can metabolomics help analyze a system as complex as the rhizosphere? LC-MS and GC-MS, along with304

nuclear magnetic resonance (NMR) spectroscopy, are the most widely used technologies for analyzing metabolomes305

in biological samples because of their capacity to detect a wide range of metabolites in a single run [87, 99]. Consider306

what NMR can do: it can detect the most abundant metabolites within samples with high accuracy, precision, and307

reproducibility without the need for extensive sample preparation or fractionation. The detection limit of NMR is308

at single-digit micromolar concentration. NMR intensities correlate linearly with the relative concentrations of the309

mixture’s components, providing absolute concentration by adding a standard molecule with known concentration310

[100, 101]. NMR generates a quick overview of the most abundant metabolites in the sample. NMR can detect the311

metabolites that are difficult to ionize for MS, a common occurrence in salty samples. NMR can robustly quantify312

small molecular weight volatile organic compounds (SMWVOCs) like alcohols and short-chain fatty acids (SCFAs),313

such as acetate, propionate and butyrate. These molecules are often undetected or underrepresented when using MS314

sample preparation methods, such as drying down and derivatization [102]. LC-MS and GC-MS are more sensitive315

techniques than NMR spectroscopy [94].316

Both LC-MS and GC-MS instruments provide a similar data format, resulting in two orthogonal and independent317

variables: retention time (RT), and m/z relative to each of the detected ions, which can be further used for metabolite318

assignment [103]. Recently, it has been shown that combining MS with NMR spectroscopy enables accurate structure319

elucidation of unknown and known metabolites in complex mixtures [104]. GC-MS is a high-resolving, chromato-320

graphic separation method and it has been widely used to analyze volatile and semi-volatile compounds such as321

biogenic volatile organic compound (BVOCs) [98]. GC-MS has proven to also be suitable for detecting compounds322

from primary metabolism such as fatty acids, carbohydrates, and organic acids, after derivatization of the extracts323

[105]. Due to sample derivatization and compound fragmentation during EI, GC-MS provides indirect detection of324

compounds, which complicates the quantification and elucidation of novel metabolites in samples. LC-MS has been325

the most common method to resolve a large variety of non-volatile compounds. It covers metabolites like flavonoids,326

alkaloids, phenolic acids, and saponins, as well as primary metabolites such as amino acids, carbohydrates, and or-327

ganic acids [106]. However, using LC-MS is limited to solvent-soluble compounds. The lack of derivatization of the328

samples for LC-MS analyses, and the use of ESI, allow for direct detection of metabolites in samples. Other practical329

aspects of MS for analyzing the rhizosphere have been reviewed elsewhere [107]. Nevertheless, no single analytical330

14



White, R.A., III et al. / Rhizosphere 00 (2017) 1–23 15

method or combination of instrumentations can cover the entire metabolome composition of a given sample [99]. In331

the future, new analytical techniques that extend the current metabolome coverage will be very important.332

Mass spectrometers are quickly becoming more powerful and sensitive methods for measuring metabolites and333

proteins in the rhizosphere and in soil samples. A substantial number of published metabolomics studies demonstrates334

that the recent Orbitrap technology, coupled to LC or GC, offers the best current option for untargeted metabolomics335

of plant exudates and microbes. However, in the near future it is likely that IMS-MS (i.e., ion-mobility spectrometry336

mass spectrometry) will represent an inflection point for untargeted metabolomics analysis, allowing the detection337

and characterization of hundreds of metabolites in a single run [108, 109]. IMS-MS metabolomics will therefore338

permit rapid and accurate metabolomic profiles from very complex metabolite mixtures, such as the rhizosphere, in339

time frames never achieved before. IMS-based technology for metabolomics and lipidomics should be commercially340

available in the near future [110]. A single technique cannot recover the whole metabolome of a sample, so coupling341

different technologies such as high-resolution LC-MS with GC-MS and/or the ultra-high resolution FT-ICR-MS [111]342

would facilitate the acquisition of extensive metabolomic fingerprints. That would enable the elucidation of novel343

compounds present in very low concentration from complex mixtures.344

5.3. Metabolomics challenges345

Characterizing the metabolome of a complex microbial community in a robust and comprehensive way still rep-346

resents a significant challenge [88]. Currently, extracting exudates is one of the major challenges in rhizospheric347

metabolomics. In order to accurately understand the complex interplay between the metabolic processes of plants348

and microbes, it is imperative to obtain separate data from the microbe and plant fractions, as well as from the fi-349

nal products of their interaction. Applying the most advanced mass spectrometers to gnotobiotic (i.e., germ-free or350

microbe-free) plants may offer a breakthrough in rhizospheric science.351

Studies have characterized the chemistry of given soil samples [112], but those studies have characterized soils352

as a single complex sample that includes decomposing mixed organic matter blended with exudates and microbes.353

These organic compounds, and the organic matter in decomposition, are constantly exposed to several transformation354

processes (e.g., oxidation, methylation, and dehydration), which makes it crucial to consider the temporal scale of355

chemical transformations in the rhizosphere [63]. Several attempts at plant exudate collection have been addressed356

through different methods [[63], but the biggest challenge for rhizospheric metabolomics is differentiating between357

products from the microbe and plant fractions, as well as from the final product of interactions within their natural358

functional networks. Optimized protocols for accurately sampling and analyzing different fractions of the rhizosphere359

are necessary. Such optimized protocols would address the integrated nature of the metabolic processes of plants and360

microbes in the rhizosphere and in the larger terrestrial ecosystem.361
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6. Conclusions362

The rhizosphere is a fascinating habitat for research for both basic and applied microbiology, plant biology, and363

ecology. Multi-omic approaches will lead to greater understanding of rhizosphere organisms and their roles in plant364

growth, crop production, and ecosystem health. Many of the novel -omics techniques were initially developed in365

other research fields but can be modified for use in the rhizosphere. Since there are numerous plant species (∼374,000366

are estimated to live on our planet), we have a long road ahead to obtain a holistic view of the numerous and highly367

plant-specific rhizospheric communities [113]. A big challenge in rhizosphere studies is to choose the technique368

and technology platforms that can best answer the most pressing scientific questions. Such considerations remain369

important in several areas: obtaining data that answers a specific scientific hypothesis; preventing data deluge and370

long delays from study to publication; and allowing for meaningful scientific advancements. Poor planning or limited371

knowledge of available technology often creates big problems downstream. Here we have mentioned and described372

selected techniques and technologies that may resolve such problems. Considerable challenges lie ahead, but we373

believe that increased applications of multi-omic approaches in rhizosphere science offers great potential. They can374

help harness the rhizosphere as a resource for improved plant growth and quality, for sustainable crop production, and375

for increased soil carbon storage under a variety of environmental stresses.376
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