1/-22 78

SANDIA REPORT

ited Release
Printed October 1995

SAND95-1559 « UC—405
Aztec User’s Guide

Unlim

1.0

Version

94550

Ia

ot 0t At A ARRAN L S

)

e

distribution is unlimited.

)
!
i
i

Approved for public release;

Scott A. Hutchinson, John N. Shadid, Ray S. Tuminaro

Albuquerque, New Mexico 87185 and Livermore, Californ
for the United States Department of Energy
under Contract DE-AC04-34AL 85000

Sandia National Laboratories

Prepared by

73

DISTRIBUTION OF THIS DOCUMENT IS UNUNATED

SF29000Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Ozk Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A04
Microfiche copy: A01

SAND95-1559 Distribution
Unlimited Release Category UC-405
Printed October 1995

Aztec User’s Guide*
Version 1.0

Scott A. Hutchinson! John N. Shadid® Ray S. Tuminaro
Massively Parallel Computing Research Laboratory
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

Aztec is an iterative library that greatly simplifies the parallelization process when
solving the linear systems of equations Az = b where A is a user supplied n X n sparse
matrix, b is a user supplied vector of length n and z is a vector of length n to be
computed. Aztec is intended as a software tool for users who want to avoid cumbersome
parallel programming details but who have large sparse linear systems which require an
efficiently utilized parallel processing system. A collection of data transformation tools
are provided that allow for easy creation of distributed sparse unstructured matrices for
parallel solution. Once the distributed matrix is created, computation can be performed
on any of the parallel machines running Aztec: nCUBE 2, IBM SP2 and Intel Paragon,
MPI platforms as well as standard serial and vector platforms.

Aztec includes a number of Krylov iterative methods such as conjugate gradi-
ent (CG), generalized minimum residual (GMRES) and stabilized biconjugate gradient
(BiCGSTAB) to solve systems of equations. These Krylov methods are used in conjunc-
tion with various preconditioners such as polynomial or domain decomposition methods
using LU or incomplete LU factorizations within subdomains. Although the matrix A
can be general, the package has been designed for matrices arising from the approx-
imation of partial differential equations (PDEs). In particular, the Aztec package is
oriented toward systems arising from PDE applications.

* This work was supported by the Applied Mathematical Sciences program, U.S. Department of
Energy, Office of Energy Research, and was performed at Sandia National Laboratories, operated for
the U.S. Department of Energy under contract No. DE-AC04-94AL85000. The Aztec software package

was developed by the authors at Sandia National Laboratories and is under copyright protection
T Parallel Computational Sciences Department; sahutch@cs.sandia.gov; (505) 845-7996
§ Parallel Computational Sciences Department; jnshadi@cs.sandia.gov; (505) 845-7876
} Applied & Numerical Mathematics Department; tuminaro@cs.sandia.gov; (505) 845-7298

1

Contents.

1

2

Overview 1
Aztec: High Level View 1
21 AztecOptions o o i i e e e e e e 2
2.2 Aztecparameters L. it e e e e e e 6
2.3 Returnstatus v v i i i e e e e e e e e e e e e e 7
Data Formats 7
3.1 Distributed Modified Sparse Row (DMSR) Format. 9
3.2 Distributed Variable Block Row (DVBR) Format 9
High Level Data Interface 10
Examples 12
Advanced Topics 15
6.1 DataLayout i e 15
6.2 Reusing factorizations o o o oo 17
6.3 Important Constants [18
6.4 AZitransform Subtasks L o, 18
Aztec Functions 19
AZDbroadcast o i e e e e e e e e e e e e 20
AZ checkdnput e 21
AZ checkmsr o o i e e e e e e e e e e 21
AZ check vbr e e e e e e 22
AZ defaults e e e e e e e 22
AZ exchange bdry e e 23
AZfindindex oL e e e e e e e e e e e 23
AZ findlocalindicest e e e e e e 24
AZ find procsforexterns i i i e e e e e e e e e e e e e 24
AZ freememory e 25
AZ gavgdouble e 25
AZ gdot e e e e e 25
AZ gmax double e 26
AZ gmaxint e e e e e e e e e e e e e 26
AZ gmax matTiXNOII . . .« v v v v b v e e e e e e e e e e e e e e 26
AZ gMAaxX VEC . . v v v i i e e e e e e e e e e e e e e e e e e 27
AZgmindouble. e 27
AZ gminint e e e e e e e e e 27
AZ gsum.double e 28
AZ gsum.int L e e e e e e e e e e e 28
AZ gsum.vecdnt e e e e e e e e e e e 28
AZ gvectormorm e e e e e e e e e e e e 29
AZinitquickfind e e e e e e e 29
AZmatvecmult e e e 30
AZmsr2vbr e e e e e e e e 31

AZ orderele e e e e e e e e e e 31

AZ prinb_error. e e e e e e e e 32
AZ processordnfo L e e e e 33
AZ quickfind 33
AZreadmsrmatrix e e e e e e 34
AZreadupdate e e 34
AZ reordermatrix e e e e e e e e e e e e e e e e 35
AZsetmessageinfo e 36
AZS0lve . . . L e e e e e e e e e e 37
AZ. SOt . . e e e e e e e e 37
AZ transform e e e 38

id

Notation Conventions

Different fonts are used to indicate program fragments, keys words, variables, or
parameters in order to clarify the presentation. The table below describes the
meaning denoted by these different fonts.

Convention Meaning

typewriter File names, code examples and code fragments.

sans serif C language elements such as function names and constants when
they appear embedded in text or in function definition syntax lines.

italics Parameter and variable names when they appear embedded in text
or function definition syntax lines.

AZ_ C language elements such as function names and constants which

are supplied by the Aztec library.

Code Distribution

Aztec is publicly available for research purposes and may be licensed for commercial
application. The code is distributed along with technical documentation, example C
and Fortran driver routines and sample input files via the internet. It may be obtained
by.contacting one of the authors listed on page i of this report.

iv

1. Overview. Aztec is an iterative library that greatly simplifies the paralleliza-
tion process when solving the linear system of equations

Az =50

where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n
and 2 is a vector of length n to'be computed. Aztec is intended as a software tool for
users who want to avoid cumbersome parallel programming details but who have large
sparse linear systems requiring efficient use of a parallel processing system. The most
complicated parallelization task for an Asztec user is the distributed matrix specification
for the particular application. Although this may seem difficult, a collection of data
transformation tools are provided that allow creation of distributed sparse unstructured
matrices for parallel solution with ease of effort that is similar to a serial implementation.
Background information regarding the data transformation tools can be found in [5].
Once the distributed matrix is created, computation can occur on any of the parallel
machines running Aztec: nCUBE 2, IBM SP2, Intel Paragon, and MPI platforms. In
addition, Aztec can be used on standard serial and vector platforms such as SUN, SGI
and CRAY computers.

Aztec includes a number of Krylov iterative methods such as conjugate gradi-
ent (CQG), generalized minimum residual (GMRES) and stabilized biconjugate gradient
(BiCGSTAB) to solve systems of equations. These Krylov methods are used in con-
junction with various preconditioners such as polynomial preconditioners or domain
decomposition using LU or incomplete LU factorizations within subdomains. Back-
ground information concerning the iterative methods and the preconditioners can be
found in [4]. Although the matrix A can be general, the package has been designed
for matrices arising from the approximation of partial differential equations (PDEs).
In particular, the preconditioners, iterative methods and parallelization techniques are
oriented toward systems arising from PDE applications. Lastly, Aztec can use one of
two different sparse matrix notations — either a point-entry modified sparse row (MSR)
format or a block-entry variable block row (VBR) format. These two formats have been
generalized for parallel implementation and, as such, are referred to as “distributed”
yielding DMSR and DVBR references.

The remainder of this guide describes how Aztec is invoked within an application.
Aztec is written in ANSI-standard ¢ and as such, all arrays in the descriptions which
follow begin indexing with 0. Also, all function prototypes (loosely, descriptions) are
presented in ANSI ¢ format. Section 9 discusses iterative method, preconditioning and
convergence options. Section 3 explains vectors and sparse matrix formats supported
by Aztec. In Section 4 we discuss the data transformation tool for creating distributed
vectors and matrices. A concrete detailed programming example using this tool is given
in Section 5 and some advance topics are discussed in Section 6. Finally, Section 7 gives
a glossary of Aztec functions available to users.

2. Aztec: High Level View. The following tasks must be performed to success-
fully invoke Aztec:
describe the parallel machine (e.g. number of Processors).
initialize matrix and vector data structures.
choose iterative methods, preconditioners and the convergence criteria.
initialize the right hand side and initial guess.
invoke the solver.

1

Example

#include "az_aztec.h"
void main(void) {
AZ_processor_info(proc_config) ;

init_matrix_vector_structures(bindx, val, update, external,
update_index, extern_index, data_org);
init_options(options, params);

init_guess_and_rhs(x, b, data_org, update, update_index);

AZ_solve(x, b, options, params, bindx, val, data_org, status,
proc_config);

Fi1G. 1. High level code for Aztec application.

A sample C program is shown in Figure 1 omitting declarations and some parameters!.
The functions init_matrix_vector_structures, init_options, and init_guess_and_rhs are sup-
plied by the user. In this section, we give an overview of Aztec’s features by describing
the user input arrays, options and params, that are set by the user in the function
init_options. A discussion of the other subroutines is deferred to Sections 4 and 5.

2.1. Aztec Options. options is an integer array of length AZ_OPTIONS_SIZE set,
by the user. It is used (but not altered) by the function AZ_solve to choose between
iterative solvers, preconditioners, etc. Below we discuss each of the possible options. In
some of these descriptions, reference is made to a user-defined options or params value
which is yet be introduced. These descriptions will follow but the reader may wish to
“jump ahead” and read the descriptions if the immediate context is not clear.

Specifications
options[AZ solver] Specifies solution algorithm. DEFAULT: AZ_gmres.
AZ cg Conjugate gradient (only applicable to symmetric
positive definite matrices).
AZ_gmres Restarted generalized minimal residual.
AZ cgs Conjugate gradient squared.
AZ tfqmr Transpose-free quasi-minimal residual.

1 The entire main program with specific sample problems is distributed with the package in the file
azmain.c

AZ_bicgstab
AZ lu

options[AZ . scaling] -

AZ_none
AZ_Jacobi
AZ_BJacobi

AZ_row_sum

AZ sym_diag

AZ_sym_row_sum

options[AZ _precond]

AZ_none

AZ _lacobi

AZ_Neumann

AZls

AZ_lu

AZlu
AZ bilu

Bi-conjugate gradient with stabilization.
Sparse direct solver (single processor only).

Specifies scaling algorithm. The entire matrix is scaled
(overwriting the old matrix). Additionally, the right
hand side, the initial guess and the final computed so-
lution are scaled if necessary. DEFAULT: AZ_none.

No scaling.
Point Jacobi scaling.

Block Jacobi scaling where the block size corre-
sponds to the VBR blocks. Point Jacobi scaling
is performed when using the MSR format.

Scale each row so the magnitude of its elements
sum to 1.

Symmetric scaling so diagonal elements are 1.
Symmetric scaling using the matrix row sums.

Specifies preconditioner. DEFAULT: AZ _none.

No preconditioning.

k step Jacobi (block Jacobi for DVBR matrices
where each block corresponds to a VBR block).
The number of Jacobi steps, k, is set via op-
tions[AZ poly_ord].

Neumann series polynomial where the polynomial
order is set via options[AZ_poly_ord].

Least-squares polynomial where the polynomial
order is set via options/AZ_poly_ord].

Domain decomposition preconditioner (additive
Schwarz) using a sparse LU factorization in con-
junction with a drop tolerance params/AZ_drop]
on each processor’s submatrix. The treatment of
external variables in the submatrix is determined
by options[AZ overlap]. The current sparse lu fac-
torization is provided by the package y12m [6].

Similar to AZ_lu using ilu(0) instead of LU.

Similar to AZ_lu using block ilu(0) instead of LU
where each block corresponds to a VBR block.

AZ_sym_GS Non-overlapping domain decomposition (additive
Schwarz) k step symmetric Gauss-Siedel. In par-
ticular, a symmetric Gauss-Siedel domain decom-
position procedure is used where each processor
independently performs one step of symmetric
Gauss-Siedel on its local matrix, followed by com-
munication to update boundary values before the
next local symmetric Gauss-Siedel step.The num-
ber of steps, k, is set via options/AZ_poly.ord].

options[AZ conv] Determines the residual expression used in convergence
checks and printing. DEFAULT: AZ_r0. The iterative
solver terminates if the corresponding residual expres-
sion is less than params[AZ tol]:

AZ_r0 li7ll2/1lr @l

AZ_rhs lI7ll2/16]l2

AZ_Anorm Irll2/1| Alloo

AZ sol lIlloo/ (1 Alloo * llllz + [[Bl]oo)
AZ weighted l7llwrams

where ” . ”WRMS = \/(1/7’&) Z?=1(ri/wi)2, n is the
total number of unknowns, w is a weight vector
provided by the user via paramsfAZ _weights/ and
70 is the initial residual.

options[AZ output/ Specifies information (residual expressions - see op-
) tions[AZ_conv]) to be printed. DEFAULT: 1.

AZ_all Print out the matrix and indexing vectors for each
processor. Print out all intermediate residual ex-
pressions.

AZ_none No intermediate results are printed.

AZ last Print out only the final residual expression.

>0 Print residual expression every options/AZ output]
iterations.

options[AZ pre_calc] Indicates whether to use factorization information from

previous calls to AZ_solve. DEFAULT: AZ calc.

AZ calc Use no information from previous AZ solve calls.

AZ _recalc Use preprocessing information from a previous
call but recalculate preconditioning factors. This
is primarily intended for factorization software
which performs a symbolic stage.

4

AZ _reuse

options/AZ_max_iter]

options[AZ_poly_ord]

options[AZ overlap]

AZ _none

AZ _diag

AZ full

options[AZ kspace/
options[AZ orthog/

AZ classic
AZ_modified

options[AZ aux_vec/

AZ _resid

Use preconditioner from a previous AZ_solve call,
do not recalculate preconditioning factors. Also,
use scaling factors from previous call to scale the
right hand side, initial guess and the final solution.

Maximum number of iterations. DEFAULT: 500.

The polynomial order when using polynomial precondi-
tioning. Also, the number of steps when using Jacobi or
symmetric Gauss-Seidel preconditioning. DEFAULT: 3.

Determines the submatrices factored with the domain
decomposition algorithms: AZ_lu, AZ_ilu, AZ bilu.
DEFAULT: AZ_none.

Factor the local submatrix defined on this proces-
sor discarding column entries that correspond to
external elements.

Factor the local submatrix defined on this pro-
cessor augmented by a diagonal (block diagonal
for VBR format) matrix. This diagonal matrix
corresponds to the diagonal entries of the matrix
rows (found on other processors) associated with
external elements. This can be viewed as taking
one Jacobi step to update the external elements
and then performing domain decomposition with
AZ_none on the residual equations.

Factor the local submatrix defined on this proces-
sor augmented by the rows (found on other proces-
sors) associated with external variables (discard-
ing column entries associated with variables not
defined on this processor). The resulting proce-
dure is an overlapped additive Schwarz procedure.

Krylov subspace size for restarted GMRES.
DEFAULT: 30.

GMRES orthogonalization scheme.
DEFAULT: AZ classic.

Classical Gramm-Schmidt orthogonalization.
Modified Gramm-Schmidt orthogonalization.

Determines 7 (a required vector within some iterative
methods). The convergence behavior varies slightly de-
pending on how this is set. DEFAULT: AZ_resid.

7 is set to the initial residual vector.

AZ _rand . 7 is set to random numbers between -1 and 1.
NOTE: When using this option, the convergence
depends on the number of processors (i.e. the it-
erates obtained with x processors differ from the
iterates obtained with y processors if x # y).

2.2. Aztec parameters. params is a double precision array set by the user and
normally of length AZ_PARAMS_SIZE. However, when a weight vector is needed for the
convergence check (i.e. options/AZ_conv] = AZ weighted), it is embedded in params
whose length must now be AZ_PARAMS_SIZE + # of elements updated on this proces-
sor. In either case, the contents of params are used (but not altered) by the function
AZ_solve to control the behavior of the iterative methods. The array elements are
specified as follows:

Specifications
params[AZ tol] Specifies tolerance value used in conjunction with con-
vergence tests. DEFAULT: 1076.
params[AZ drop] Specifies drop tolerance used in conjunction with LU
preconditioner. DEFAULT": 0.0.
params[AZ _weights/ When options[AZ_conv] = AZ_weighted, the i’th local

component of the weight vector is stored in the location
params[AZ weights-+i].

Figure 2 illustrates a sample function init_options where the Aztec function AZ_defaults
sets the default options.

Example

void init_options(int options[AZ_OPTIONS_SIZE],
double params[AZ_PARAMS_SIZE])

{

AZ_defaults(options,params) ;

options[AZ_solver] = AZ_cgs;
options[AZ_scaling] = AZ_none;
options[AZ_precond] = AZ_ls;
options[AZ_output] =1;
options[AZ max_iter] = 640;
options[AZ_poly_ord] = T7;

params [AZ_tol] = 0.0000001;

F1G. 2. Ezample option initialization routine (init_options).

2.3. Return status. statusis a double precision array of length AZ_ STATUS_SIZE
returned from AZ_solve?. The contents of status are described below.

Specifications
status[AZ its] Number of iterations taken by the iterative method.
statusfAZ why] Reason why AZ_solve terminated.
AZ_normal User requested convergence criteria is satisfied.
AZ_param User requested option is not available.
AZ _breakdown Numerical breakdown occurred.
AZ_loss Numerical loss of precision occurred.
AZ_maxits Maximum iterations taken without convergence.
status[AZ_r] The true residual norm corresponding to the choice op-
tions[AZ conv] (this norm is calculated using the com-
puted solution).
statusfAZ scaled.r] The true residual ratio expression as defined by op-
tions[AZ_conv).
statusfAZ rec_r] Norm corresponding to options|AZ_conv] of final resid-

ual or estimated final residual (recursively computed
by iterative method). Note: When using the 2-norm,
tfqmr computes an estimate of the residual norm in-
stead of computing the residual.

When AZ_solve returns abnormally, the user may elect to restart using the current
computed solution as an initial guess.

3. Data Formats. In this section we describe the matrix and vector formats used
internally by Aztec. In Section 4 we discuss a tool that transforms data from a simpler
format to this format. Here, the terms “element” and “component” are used inter-
changeably to denote a particular entry of a vector.

The sparse matrix-vector product, y +— Az, is the major kernel operation of Aztec.
To perform this operation in parallel, the vectors z and y as well as the matrix A
must be distributed across the processors. The elements of any vector of length n are
assigned to a particular processor via some partitioning method (e.g. Chaco [2]). When
calculating elements in a vector such as y, a processor computes only those elements
in y which it has been assigned. These vector elements are explicitly stored on the
processor and are defined by a set of indices referred to as the processor’s update set.
The update set is further divided into two subsets: internal and border. A component
corresponding to an index in the internal set is updated using only information on the

2 All integer information returned from AZ solve is cast into double precision and stored in status.

7

current processor. As an example, the index ¢ is in internal if, in the matrix-vector
product kernel, the element y; is updated by this processor and if each j defining a
nonzero A;; in row ¢ is in update. The border set defines elements which would require
values from other processors in order to be updated during the matrix vector product.
For example, the index ¢ is in border if, in the matrix-vector product kernel, the element
¥; is updated by this processor and if there exists at least one 5 associated with a nonzero
A;; found in row ¢ that is not in update. In the matrix-vector product, the set of indices
which identify the off-processor elements in z that are needed to update components
corresponding to border indices is referred to as external. They are explicitly stored by
and are obtained from other processors via communication whenever a matrix-vector
product is performed. Figure 3 illustrates how a set of vertices in a partitioning of a
grid would be used to define these sets. Since these sets of indices are used exclusively

Interprocessor Boundary8

13 14 15 16 17 18
° * (o) &)

7 8 9 10 i1 12
* ® & 2 o

1 2 3 4 5 6
® ® (@ O Q)

Processor p

@ Internal Grid Points for Processor p (internal)
update set for Processor p

@ Border Grid Points for Processor p (border)
<@> External Grid Points for Processor p (external)
FiG. 3. Ezample partitioning of o finite element grid.

to reference specific vector components, the same names (i.e., update, internal, border
and esternal) are sometimes used below to describe the vector elements themselves.
Having generalized these labels, the three types of vector elements are distinguished by
locally storing the internal components first, followed by the border components and
finally by the external components. In addition, all external components received from
the same processor are stored consecutively. Below we summarize the nomenclature for
a processor with NV total elements where N_internal, N_border, and N_external elements
are distributed over the sets internal, border and external respectively.

8

| set description local numbering

internal updated w/o communication 0 to N_internal — 1.
border updated with communication N _internal to N_internal+

N border — 1.
external not updated but used to N _internal + N _border to N — 1.
update border elements received from the same

processor are numbered consecutively.

Similar to vectors, a subset of matrix non-zeros is stored on each processor. In
particular, each processor stores only those rows which correspond to its update set. For
example, if vector element ¢ is updated on processor p, then processor p also stores all
the non-zeros of row 7 in the matrix. Further, the local numbering of vector elements on
a specific processor induces a local numbering of matrix rows and columns. For example,
if vector element & is locally numbered as k;, then all references to row k or column % in
the matrix would be locally numbered as k;. Thus, each processor contains a submatrix
whose row and column entries correspond to variables defined on this processor.

The remainder of this section describes the two sparse matrix formats that are used
to store the local renumbered submatrix. These two sparse matrix formats correspond
to common formats used in serial computations.

3.1. Distributed Modified Sparse Row (DMSR) Format. The DMSR for-
mat is a generalization of the MSR format [3]. The data structure consists of an integer
vector bindz and a double precision vector val each of length N_nonzeros + 1 where
N_nonzeros is the number of nonzeros in the local submatrix. For a submatrix with m
rows the DMSR arrays are as follows:

bindx :

bindz[0] =m+1

bindzfk+1] - bindzfk] = number of nonzero off-diagonal elements in &’th

' o row, k<m

bindzfks...k.] = column indices of the off-diagonal nonzeros in row

ki where k; = bindzfk] and k. = bindafk+1]-1.

val :

valfk] = Apr, bk <m

vallk;] = the (k, bindz[k;])’th matrix element where

ks < k; <k, with k&, and k. as defined above.

Note: wvalfm/ is not used. See [1] for a detailed discussion of the MSR format.

3.2. Distributed Variable Block Row (DVBR) Format. The Distributed
Variable Block Row (DVBR) format is a generalization of the VBR format [1]. The
data structure consists of a double precision vector val and five integer vectors: indz,
bindz, rpntr, cpnir and bpnir. The format is best suited for sparse block matrices of

the form

Aw Aor - Ao
A= A.10 An A:lk
Lo

where A;; denotes a block (or submatrix). In a sparse block matrix, some of these blocks
would be entirely zero while others may be dense. The DVBR vectors are described
below for a matrix with M x K blocks.

rpntr[0 ... M]:

rpntr[0] =0

rpntrfk+1] - rpntrfk] = number of rows in k’th block row
cpntrf0 ... K] :

cpnir(0] =0

cpntrfk+1] - cpnirfk] = number of columns in k’th block column

bpntr(0 ... M]:
bpntr[0] =0
bpnirfk+1] - bpnitr[k] = number of nonzero blocks in the &’th block row

bindz(0 ... bpntr[M]] :
bindzfks...ke] = block column indices of nonzero blocks in block row &
where ks = bpnir[k] and k. = bpntrfk+1]-1

indz[0 ... bpnir[M] |
indz[0] =0
indzfk;+1] - indzfk;] = number of nonzeros in the (k, bindzfk;])’th block
where k;, < k; < k. with k,; and k. as defined
above.

valf0 ... indzfbpntr[M]] |

valfis..i.] = nonzeros in the (k, bindz[k;])’th block stored in
column major order where k; is as defined above,
is = indzfk;] and i, = indzfk;+1]-1

*See [1] for a detailed discussion of the VBR. format.

4. High Level Data Interface. Setting up the distributed format described in
Section 3 for the local submatrix on each processor can be quite cumbersome. In
particular, the user must determine a mapping between the global numbering scheme
and a local scheme which facilitates proper communication. Further, a number of
additional variables must be set for communication and synchronization (see Section 6).
In this section we describe a simpler data format that is used in conjunction with a
transformation function to generate data structures suitable for Aztec. The new format
allows the user to specify the rows in a natural order as well as to use global column
numbers in the bindz array. To use the transformation function the user supplies the

10

update set and the submatrix for each processor. Unlike the previous section, however,
the submatrix is specified using the global coordinate numbering instead of the local
numbering required by Aztec. This procedure greatly facilitates matrix specification
and is the main advantage of the transformation software.

On a given processor, the update set (i.e. vector element assignment to processors)
is defined by initializing the array update on each processor so that it contains the global
index of each element assigned to the processor. The update array must be sorted in
ascending order (i.e. 7 < j = update[i] < update[j]). This sorting can be performed
using the Aztec function AZ_sort. Matrix specification occurs using the arrays defined
in the previous section. However, now the local rows are defined in the same order as
the update array and column indices (e.g. bindz) are given as global column indices. To
illustrate this in more detail, consider the following example matrix:

Qoo Qo1 Qo3 Qo4
G0 Qan a13
A=) Q22 Q23 G24 Q25
30 G311 dz2 0ag3 Gz4 O35
@40 Qg2 Q43 Qa4
Q52 Q53 G55

Figure 4 illustrates the information corresponding to a particular matrix partitioning
that is specified by the user as input to the data transformation tool. Using this

Examples
proc 0:
N_update: 3
update: 0 1 3
bindx: 4 7 9 14 1 3 4 0 3 1 0 4 2.5
val: Qoo Q11 QA33 - Qp1 Qo3 Qo4 Q1o Q13 (30 431 G32 334 435
proc 1:
N_update: 1
update: 4
bindx: 2 5 0 3 2
val: Qg4 - G40 Q42 Q43
proc 2:
N_update: 2.
update: 2 5
bindx: 3 6 8 4 3 5 3 2
val: Gz Gs5 - Q23 Qg4 Q25 Os2 (53

F1G. 4. User input (MSR format) to initialize the sample matriz problem.

information, AZ_transform
e determines the sets internal, border and external.
e determines the local numbering: update_indezfi] is the local numbering for
updatefi] while extern_indezfi] is the local numbering for externalfi].
11

e permutes and renumbers the local submatrix rows and columns so that they
now correspond to the new ordering.
e computes additional information (e.g. the number of internal, border and ex-
ternal components on this processor) and stores this in data_org (see Section 6).
A sample transformation is given in Figure 5 and is found in the file az_app_utils.c.

Example

init_matrix_vector_structures(bindx, val, update, externmal,
update_index, extern_index, data_org);
{
AZ_read_update(update, N_update);
create_matrix(bindx, val, update, N_update);
AZ_transform(bindx, val, update, external, update_index,
extern_index, data_org, N_update);

FIG. 5. init_matrix_vector_structures.

AZ_read_update is an Aztec utility which reads a file and assigns elements to update.
The user supplied routine create_matrix creates an MSR or VBR matrix using the global
numbering. Once transformed the matrix can now be used within Aztec.

5. Examples. A sample program is described by completing the program frag-
ments given earlier (Figures 1, 2 and 5). In Figure 1, AZ_processor.info is an Aztec
utility which initializes the array proc_config to reflect the number of processors being
used and the node number of this processor. The function AZ solve is also supplied
by Aztec to solve the user supplied linear system. Thus, the only functions that the
user must supply which have not already been discussed include: init_guess_and_rhs in
Figure 1 and create_matrix in Figure 5.

The function init_guess_and_rhs initializes the initial guess and the right hand side.

Example

void init_guess_and_rhs(x, rhs, data_org, update, update_index)
{
N_update = data_org[AZ_N_internal] + data_org[AZ_N_border];
for (1 = 0; 1 < N_update ; i =i+ 1) {
rhs [update_index[i]] = (double) updatelil;
x[i] = 0.0;
}
¥

FiG. 6. init_guess_and_rhs.

In Figure 6, a sample routine is given which sets the initial guess vector to zero and
sets the right hand side vector equal to the global indices (where the local element
update_indezfi] corresponds to global element updatefi/, see Section 4).

12

A create_matrix function to initialize an MSR. matrix is illustrated in Figure 7. Dif-
ferent matrix problems can be implemented by changing the function add_row which
computes the MSR entries corresponding to a new row of the matrix. The specific

Example

void create_matrix(bindx, val, update, N_update)

{
N_nonzeros = N_update + 1;
bindx[0] = N_nonzeros;
for (i = 0; i < N_update; i =1 + 1)
add_row(update[i], i, val, bindx);
}

F1a. 7. create_matrix.

add_row function for implementing a 5-point 2D Poisson operator on an n X n grid is
shown in Figure 8 (n is a global variable set by the user). With these few lines of code

Example

void add_row(row, location, val, bindx)

{

k = bindx[location];

/* check neighboring points in each direction and add nonzero */

/* entry if neighbor exists. */
bindx[k] = row + 1; if (row/n != n-1) vall[k++] = -1.;
bindx[k] = row - 1; if (rowln != 0) vall[k++] = -1.;
bindx[k] = row + n; if ((row/n)%n != n-1) vallk++] = -1.;
bindx[k] = row - n; if ((row/n)%n = 0) vallk++] = -1.;

bindx[location+1] = k;
val[location] = 4.; /* matrix diagonal */

F1G. 8. add_row for a 2D Poisson problem

and the functions described earlier, the user initializes and solves a 2D Poisson prob-
lem. While for simplicity of presentation this specific example is structured the Aztec
library does not assume any structure in the sparse matrix. All the communication
and variable renumbering is done automatically without the assumption of structured
communication.

13

Other add_row functions corresponding to a 3D Poisson equation and a high order
2D Poisson equation are distributed with Aztec (file az_examples.c). We recommend
that potential users review at these examples. In many cases, new applications can be
written by simply editing these programs. The interested reader should note that only
a few lines of code are different between the functions for the 5-pt Poisson, the high
order Poisson and the 3D Poisson codes. Further, the add_row routines are essentially
identical to those that would be used to set up sparse matrices in serial applications
and that there are no references to processors, communications or anything specific to
parallel programming.

While Aztec simplifies the parallel coding associated with structured problems, it
is for unstructured problems that Aztec makes a significant programming difference.
To illustrate this, a 2D finite element example is given where the underlying grid is
a triangulation of a complex geometry. Unlike the previous example create_matrix de-
fines a sparsity pattern (i.e. bindzr) but not the actual nonzero entries (i.e. wal) as
interprocessor communication is required before they can be computed. Thus, in this
example AZ_transform takes the sparsity pattern and initializes the communication
data structures. Using these structures, communication can be performed at a later
stage in computing the matrix nonzeros.

Figure 9 depicts create_matrix while Figure 10 depicts an additional function ma-

Example

void create_matrix(bindx, val, update, N_update);
read_triangles(T, N_triangles);
init msr(val, bindx, N_update);

for (triangle = 0; triangle < N_triangles; triangle = triangle + 1)
for (1 =0; i <3;1i=1i+1){
row = AZ_find index(T{triangle] [i], update,N_update);
for (j =0; j<3;j=3+1){
if (row != NOT_FOUND)
add_to_element (row, T[triangle][j], 0.0, val, bindx, i==j);
}

}
}

compress_matrix(val, bindx, N_update);

FIG. 9. create_matrix for the Poisson finite element problem.

trix_fill that must be included before AZ solve is invoked in Figure 1. We have not made
any effort to optimize these routines. In both figures the new lines that have been
added specifically for a parallel implementation are underlined. That is, create_matrix
and matrixfill have been created by taking a serial program that creates the finite el-
ement discretization, splitting this program over the two functions and adding a few
new lines necessary for the parallel implementation. The only additional change is to
replace the single data file containing the triangle connectivity read using read_triangles
14

by a set of data files containing the triangle connectivity for each processor. We do not
discuss the details of this program but only wish to draw the readers attention to the
small number of lines that need changing to convert the serial unstructured application
to parallel. Most of the main routines such as setup_Ke which computes the element
contributions and add_to_element which stores the element contributions in the MSR
data structures remain the same. In fact, almost all the new lines of code correspond
to adding the communication (AZ_exchange_bdry) (which was the main reason that the
calculation of the matrix nonzeros was deferred) and the conversion of global index
values by local index values with the help of AZ find_index. As in the Poisson example,
all of the details with respect to communication are hidden from the user.

6. Advanced Topics.

6.1. Data Layout. The Aztec function AZ_transform initializes the integer array
data-org. This array specifies how the matrix is set up on the parallel machine. In many
cases, the user need not be concerned with the contents of this array. However, in some
situations it is useful to initialize these elements without the use of AZ_transform, to
access these array elements (e.g. determine how many énternal components are used),
or to change these array elements (e.g. when reusing factorization information, see
Section 6.2). When using the transformation software, the user can ignore the size of
data_org as it is allocated in AZ_transform. However, when this is not used, data-org
must be allocated of size AZ_COMM_SIZE + number of vector elements sent to other
processors during matrix-vector multiplies. The contents of data_org are as follows:

Specifications
data_org[AZ matrix_type/ Specifies matrix format.

AZ_VBR_.MATRIX Matrix corresponds to VBR format.
AZ MSR_MATRIX Matrix corresponds to MSR format.

data_orgfAZ_N_internal] Number of elements updated by this processor that
can be computed without information from neighbor-
ing processors (N_internal). This also corresponds to
the number of internal rows assigned to this processor.

data_org/AZ_N_border] Number of elements updated by this processor that use
information from neighboring processors (N_border).

data-orgfAZ_N_external] ~ Number of ezternal components needed by this proces-
sor (N_external).

data.org/AZ_N_int_blk/ Number of internal VBR block rows owned by this pro-
cessor. Set to data.org[AZ_N_internal] for MSR matri-
ces.

data_org[AZ_N_bord_bik/ Number of border VBR block rows owned by this pro-
' cessor. Set to data_org[AZ_N_border] for MSR matrices.

15

Example

void matrix_fill(bindx, val, N_update, update, update_index,
N_external, external, extern_index)

/* read the x and y coordinates from an input file */

for (i = 0; i < Nupdate; i =1 + 1){
read from file(x[update_index]i]], y[update_index][i]]);
}
AZ_exchange_bdry(x) ;
AZ_exchange_bdry(y) ;

/* Locally renumber the rows and columns of the new sparse matrix */

for (triangle = 0; triangle < N_triangles; triangle = triangle + 1)
for (i =0;i<3;i=1i+1){
row = AZ find_index(T[triangle][i], update, N._update);
if (row == NOT_FOUND) {
row = AZ find index(T[trianglel [i], external, N_external);
T[triangle] [i] = extern_index[row];

}

else T[triangle][i] = update_index[row];

}

}

/* Fill the element stiffness matrix Ke */

for (triangle = 0; triangle < N_triangles; triangle = triangle + 1){
setup_Ke(Ke, x[T[triangle] [0]], y[T[triangle][0]],
x[T[triangle] [11], y[T[triangle][1]1],
x[T[triangle] [2]1], y[T[triangle][2]]);

/* Fill the sparse matrix by scattering Ke to appropriate locations */

for (1 =0; 1<3;i=1i+1){
for (j =0; j <3;j=3+1{
if (T[trianglel[i] < N_update){
add_to_element (T[triangle] [i], T[triangle][jl, Keli][jl,
val, bindx, i==j);

Fi1Gg. 10. matrix Afill for the Poisson finite element problem.

16

data_org[AZ_N_ext_blk/ Number of external VBR block rows on this processor.
Set to data_org|[AZ_N_external] for MSR matrices.

data_org[AZ_N_neigh] Number of processors with which we exchange infor-
mation (send or receive) in performing matrix-vector
products.

data_org[AZ total send] Total number of vector elements sent to other processors

during matrix-vector products.

data.org/AZ_name] Name of the matrix. This name is utilized when decid-
ing which previous factorization to use as a precondi-
tioner (see Section 6.2). (positive integer value).

data_org[AZ _neighbors] Start of vector containing node i.d.’s of neighboring
processors. That is, data_org[AZ neighbors-+i] gives the
node i.d. of the (i+1)’th neighbor.

data_org/AZ _rec_length] Start of vector containing the number of elements to re-
ceive from each neighbor. We receive from the (i+1)’th
neighbor data_org/AZ _rec_length+i] elements.

data_org/AZ_send_length/ Start of vector containing the number of elements to
send to each neighbor. We send to the (i+1)’th neigh-
bor data.org[AZ rec_length-+i] elements.

data_org[AZ send_list/ Start of vector indicating the elements that we will
send to other processors during communication. The
first data-org/AZ send_length]/ components correspond
to the elements for the first neighbor and the next
data_org/AZ send_length+1] components correspond to
element indices for the second neighbor, and so on.

6.2. Reusing factorizations. When solving a problem, Aztec may create cer-
tain information that can be reused later. In most cases, this information corresponds
to either matrix scaling factors or preconditioning factorization information for LU or
ILU. This information is saved internally and referenced by the matrix name given by
data_org/AZ_name]. By changing options/AZ_pre_calc] and data_org/AZ_name] a number
of different Aztec possibilities can be realized. As an example, consider the following
situation. A user needs to solve the linear systems in the order shown below:

Az =b,Ay =2z, and A1z =1y.

The first and second systems are solved with options/AZ pre_calc/ set to AZ_calc. How-

ever, the name (i.e. data_org/AZ_name]) is changed between these two solves. In this

way, scaling and preconditioning information computed from the first solve is not over-

written during the second solve. By then setting options[AZ_pre_calc/ to AZ_reuse and

data_org/AZ name] to the name used during the first solve, the third system is solved

reusing the scaling information (to scale the right hand side, initial guess, and rescale
17

the final solution3) and the preconditioning factorizations (e.g. ILU) used during the
first solve. While in this example the same matrix system is solved for the first and
third solve, this is not necessary. In particular, preconditioners can be reused from
previous nonlinear iterates even though the linear system being solved are changing. Of
course, many times information from previous linear solves is not reused. In this case
the user must explicitly free the space associated with the matrix or this information
will remain allocated for the duration of the program. Space is cleared by invoking
AZ clear(data_org[AZ name)).

6.3. Important Constants. Aztec uses a number of constants which are defined
in the file az_aztec_defs.h. Most users can ignore these constants. However, there
may be situations where they should be changed. Below is a list of these constants with
a brief description:

AZ_MAX_NEIGHBORS Maximum number of processors with which in-
formation can be exchanged during matrix-vector

products.
AZ_MSG_TYPE All message types used inside Aztec lie be-
AZ_NUM_MSGS tween AZ_MSG_TYPE and AZ MSG_TYPE +

AZ NUMMSGS - 1.

AZ_MAX_BUFFER.SIZE Maximum message information that can be sent
by any processor at any given time before receiv-
ing. This is used to subdivide large messages to
avoid buffer overflows.

AZ_MAX_MEMORY.SIZE Maximum available memory. Used primarily for
the LU-factorizations where a large amount of
memory is first allocated and then unused por-
tions are freed after factorization.

AZ_TEST_ELE Internal algorithm parameter that can effect the
speed of the AZ_find_procs_for_externs calculation.
Reduce AZ_TEST_ELE if communication buffers
are exceeded during this calculation.

6.4. AZ_transform Subtasks. The function AZ_transform described in Section 4 is
actually made up of 5 subtasks. In most cases the user need not be concerned with the
individual tasks. However, there might arise situations where additional information is
available such that some of the subtasks can be omitted. In this case, it is possible for
the user to edit the code for AZ_transform located in the file az_tools.c to suit the
application. In this section we briefly describe the five subroutines which make up the
transformation function. More detailed descriptions are given in [5]. Prototypes for
these subroutines as well as for AZ_transform are given in Section 7.

AZ _transform begins by identifying the external set needed by each processor. Here,
each column entry must correspond to either an element updated by this processor or

3 The matrix does not need to be rescaled as the scaling during the first solve overwrites the original
matrix.

18

an ezternal component. The function AZ_ find local.indices checks each column entry. If
a column is in update, its number is replaced by the appropriate index into update (i.e.
update[new column indez] = old column index). If a column number is not found in
update, it is stored in the erternal list and the column number is replaced by an index
into ezternal (i.e. externalfnew column index - N_update] = old column index).

AZ find_procs_for_externs queries the other processors to determine which proces-
sors update each of its external components. The array extern_proc is set such that
extern_procfi] indicates which processor updates ezternalfi].

AZ_order_ele reorders the external components such that elements updated by the
same processor are contiguous. This new ordering is given by extern_indezr where ez-
tern_indez[i] indicates the local numbering of externalfi/. Additionally, update compo-
nents are reordered so the internal components precede the border components. This
new ordering is given by update_indez where update_indezfi] indicates the local num-
bering of updatefi].

AZ set_message_info initializes data_org (see Section 6.1) This is done by computing
the number of neighbors, making a list of the neighbors, computing the number of
values to be sent and received with each neighbor and computing the list of elements
which will be sent to other processors during communication steps.

Finally, AZ_reorder.matrix permutes and reorders the matrix nonzeros so that its
entries correspond to the newly reordered vector elements.

7. Aztec Functions . In this section we describe the Aztec functions available to
the user. Certain variables appear many times in the parameter lists of these frequently
used functions. In the interest of brevity we describe these variables at the beginning
of this section and then proceed with the individual function descriptions.

Frequently Used Aztec Parameters
data-org Array describing the matrix format (Section 6.1). Allo-
cated and set AZ_set_message._info and AZ_transform.

extern_index extern.indezfi] gives the local numbering of global ele-
ment ezternalfi]. Allocated and set by AZ_order_ele and
AZ transform.

extern_proc extern._procfi] is updating processor of ezternalfi]. Al-
located and set by AZ_find_procs_for_externs.

external Sorted list (global indices) of external elements on this
node. Allocated and set by AZ_find_local.indices and
AZ transform .

N_ezternal Number of external components. Set by
AZ find_procs.for_externs and AZ_transform.

N_update Number of update components assigned to this proces-
sor. Set by AZ_read_update.

options, params Arrays describing AZ_solve options (Section 2).

19

proc_config[AZ_node] Node i.d. of this processor.

proc_config[AZ_N_proc] Total number of processors used in current simulation.
Allocated and set by AZ_processor_info.

update_index update_indez[i] gives the local numbering of global ele-
ment updatefi/. Allocated and set by AZ_order_ele and
AZ transform.

update Sorted list of elements (global indices) to be updated on
this processor. Allocated and set by AZ_read_update.

val, bindz, bpntr, cpnir, Arrays used to store matrix. For MSR matrices bpnir,
indz, rpntr epnir, indz, rpnir are ignored (Section 3).

Prototype

void AZ broadcast(char *ptr, int length, int *proc_config, int action)

Description

Used to concatenate a buffer of information and to broadcast this information from
processor 0 to the other processors. The four possible actions are
e action == AZ_PACK

— proc_config[AZ node] == 0: store pir in the internal buffer.

— proc_config[AZ_node] # 0: read from the internal buffer to pir. If
the internal buffer is empty, first receive
the broadcast information.

e action == AZ_SEND

— proc_config[AZ_node] == 0: broadcast the internal buffer (filled by
AZ broadcast) and then clear it.

— proc_config[AZ_node] # 0: clear internal buffer.

Sample Usage:
The following code fragment broadcasts the information in ‘a’ and ‘b’.

if (proc_configlAZ_node] == 0) {

a=1;

b = 2;
}
AZ_broadcast(&a, sizeof(int), proc_config, AZ_PACK);
AZ_broadcast(&b, sizeof(int), proc_config, AZ_PACK);
AZ_broadcast (NULL , 0 , proc_config, AZ_SEND);

20

NOTE: There can be no other communication calls between the AZ_PACK and
AZ_SEND calls to AZ_broadcast.

Parameters
ptr On input, data string of size length. Information is ei-
ther stored to or retrieved from pitr as described above.
length On input, length of pir to be broadcast/received.
action On input, determines AZ_broadcast behavior.
Prototype

int AZ_check_input(int *data_org, int *options, double *params, int *proc_config)

Description

Perform checks for iterative solver library. This is to be called by the user of the solver
library to check the values in data-org, options, params, and proc_config. If all the
values are valid AZ_check_input returns 0, otherwise it returns an error code which can
be deciphered using AZ_print_error.

Prototype

void AZ_check_msr(int *bindz, int N_update, int N_external, int option,
int *proc_config)

Description

Check that the number of nonzero off-diagonals in each row and that the column
indices are nonnegative and not too large (see option).

Parameters

option

21

AZ_1LOCAL

AZ_GLOBAL

Prototype

On input, indicates matrix uses local indices. The
number of nonzeros in a row and the largest col-
umn index must not exceed the total number of
elements on this processor.

On input, indicates matrix uses global indices.
The number of nonzeros in a row and the largest
column index must not exceed the total number
of elements in the simulation.

void AZ _check_vbr(int N_update, int N_external, int option, int *bindz,
int *bpntr, int *cpnir, int *rpnir, int *proc_config)

Description

Check VBR matrix for the following:
e number of columns within each block column is nonnegative.
o rpntrfi] == cpnirfi] for i < N_update.
e number of nonzero blocks in each block row is nonnegative and not too large.
e block column indices are nonnegative and not too large.

Parameters

option

AZ_LOCAL

AZ_GLOBAL

Prototype

On input, indicates matrix uses local indices. The
number of block nonzeros in a row and the largest
block column index must not exceed the total
number of blocks columns on this processor.

On input, indicates matrix uses global indices.
The number of block nonzeros in a row and the
largest block column index must not exceed the
total number of blocks rows in the simulation.

int AZ _defaults(double *options, int *params)

Description

22

Set options and params so that the default options are chosen.

Parameters
options On output, set to the default options.
params On output, set to the default parameters.
Prototype

void AZ_exchange_bdry(double *z, int *data_org)

Description

Locally exchange the components of the vector z so that the ezrternal components of z
are updated.

Parameters
z On input, vector defined on this processor. On output,
external components of z are updated via communica-
tion.
Prototype

int AZ find_index(int key, int *list, int length)

Description

Returns the index, 4, in list (assumed to be sorted) which matches the key (i.e. listfi]
== key). If key is not found AZ_find_index returns -1. See also AZ_quick_find.

Parameters
key On input, element to be search for in list.
list On input, sorted list to be searched.
length On input, length of list.

23

Prototype

void AZ find_local_indices(int N_update, int *bindz, int *update,
int ¥**external, int * N_ezternal, int mat_type,
int *bpnir)

Description

Given the global column indices for a matrix and a list of elements updated on this
processor, compute the external set and change the global column indices to local
column indices. Specifically,
e allocate external, compute and store the external components in external.
e renumber column indices so that column entry k is renumbered as j where
either update[j] == k or externalfj-N_update] ==k .
Called by AZ_transform.

Parameters
mat_type On input, indicates whether matrix format is MSR (=
AZ_MSR_MATRIX) or VBR (= AZ_VBR_MATRIX).
external On output, allocated and set to sorted list of the exter-
nal elements.
bindz On input, contains global column numbers of MSR or
VBR matrix (Section 3). On output, contains local
column numbers as described above.
Prototype

void AZ find_procs_for_externs(int N_update, int *update, int *external,
int N_external, int *proc_config, int **extern_proc)

Description

Determine which processors are responsible for updating each external element.
Called by AZ_transform.

Parameters

extern_proc On output, extern_procfi] contains the node number of
the processor which updates externalfi/.
24

Prototype

void AZ _free_memory(int name)

Description

Free Aztec memory associated with matrices with data_org[AZ_name] = name. This
is primarily scaling and preconditioning information that has been computed on
earlier calls to AZ_solve.

Parameters
name On output, all preconditioning and scaling information
is freed for matrices which have data_org/AZ_name/ =
name.
Prototype

double AZ_gavg_double(double value, int *proc_config)

Description

Return the average of the numbers in value on all processors.

Parameters

value On input, value contains a double precision number.

Prototype

double AZ_gdot(int N, double *r, double *z, int *proc_config)

Description

Return the dot product of 7 and z with unit stride. This routine calls the BLAS
routine ddot to do the local vector dot product and then uses the global summation
routine AZ_gsum_double to obtain the required global result.

25

Parameters

N On input, length of r and 2 on this processor.
T, 2 On input, vectors distributed over all the processors.
Prototype

double AZ_gmax_double(double value, int *proc_config)

Description

Return the maximum of the numbers in value on all processors.

Parameters

value On input, value contains a double precision number.

Prototype

int AZ_gmax_int(int value, int *proc_config)

Description

Return the maximum of the numbers in walue on all processors.

Parameters

value On input, value contains an integer.

Prototype

double AZ_gmax_matrix_norm(double *val, int *indz, int *bindz, int *rpntr, int *cpntr,
int *bpntr, int *proc_config, int *data_org)

26

Description

Returns the maximum matrix norm ||4||e for the distributed matrix encoded in val,
indz, bindz, rpntr, cpntr, bpnir (Section 3).

Prototype

double AZ_gmax.vec(int N, double *vec, int *proc_config)

Description

Return the maximum of all the numbers located in vecfi/ (i < N) on all processors.

Parameters
vec On input, vec contains a list of numbers.
N On input, length of vec.

Prototype

double AZ_gmin_double(double value, int *proc_config)

Description

Return the minimum of the numbers in value on all processors.

Parameters

value On input, value contains a double precision number.

Prototype

int AZ_gmin_int(int value, int *proc_config)

Description

27

Return the minimum of the numbers in walue on all processors.

Parameters

value On input, value contains an integer.

Prototype

double AZ_gsum_double(double value, int *proc_config)

Description

Return the sum of the numbers in value on all processors.

Parameters

value On input, value contains a double precision number.

Prototype

int AZ_gsum_int(int value, int *proc_config)

Description

Return the sum of the integers in value on all processors.

Parameters

value On input, vaelue contains an integer.

Prototype

void AZ_gsum_vec_int(int *values, int *wkspace, int length, int *proc_config)

28

Description

values[i] is set to the sum of the input numbers in valuesfi/ on all processors (¢ <
length).

Parameters
values On input, values contains a list of integers. On output,
valuesfi] contains the sum of the input values[i/ on all
the processors.
wkspace On input, workspace array of size length.
length On input, length of values and wkspace.
Prototype

double AZ_gvector_norm(int n, int p, double *z, int *proc_config)

Description
Returns the p norm of the vector z distributed over the processors:
llzll = ([0 + [t} + -+ + [N — 1)/

where N is the total number of elements in z over all processors.
NOTE: For the || - || norm, set p = —1.

Parameters
n On input, number of update components of z on this
Processor.
P On input, order of the norm to perform, i.e., ||z,
T On input, vector whose norm will be computed.
Prototype

void AZ_init_quick_find(int *list, int length, int *shift, int *bins)

29

Description

shift and bins are set so that they can be used with AZ_quick_find. On output, shift
satisfies

range length range length
shift—1 { 4 J and —oom < | —

where range = list[length - 1] - list[0]. The array bins must be of size 2 + length/4
and is set so that

binslk] < list[j] < bins[k + 1]

where k = (list[j] — list[0]) /2577,
"This routine is used in conjunction with AZ_quick_find. The idea is to use bins to get a
good initial guess as to the location of value in list.

Parameters
list On input, sorted list.
length On input, length of list.
shift On output, shift is set as described in above.
bins On input, array of size 2 + length/4. On output, bins
is set as described above.
Prototype

void AZ_matvec_mult(double *val, int *indz, int *bindz, int *rpntr, int *cpntr,
int *bpntr, double *b, double *¢, int exchange_flag,
int *data_org)

Description

Perform the matrix-vector multiply
c+ Ab

where the matrix A is encoded in wal, indz, bindz, rpntr, cpntr, bpnir (Section 3).

Parameters

b On input, distributed vector to use in multiplication.
30

c

exchange_flag

On output, result of matrix-vector multiplication.

On input, dictates whether communication needs to oc-
cur. If exchange_flag == 1, communication occurs. If
exchange_flag == 0, no communication occurs.

Prototype

void AZ_msr2vbr(double *val, int *ndz, int *rpntr, int *cpntr, int *bpnir, int *bindz,
int *bindz2, double *val2, int total_blk_rows, int total_blk_cols,
int blk_space, int nz_space, int blk_type)

Description

Convert the DMSR matrix defined in (val2, bindz2) to a DVBR matrix defined in
(val,indz, rpntr, cpnir, bpnir, bindz).

Parameters

val2, bindz2

epntr

val, indz, rpntr,
bpntr, bindz

total_blk_rows

total blk_cols

blk_space
nz-space

blk_type

On input, DMSR arrays holding the matrix to be con-
verted.

On input, cpnir(i] is the block size of the ™ block in the
resulting DVBR matrix. Columns 0 to cpnitr{0]—1 form
the first block column, columns cpntr[0] to cpnir|[0] +
cpntrl]—1 form the second block column, etc. On out-
put, cpntr corresponds to the resulting DVBR matrix.

On output, DVBR arrays of converted DMSR matrix.

On input, number of block rows in resulting local VBR
matrix.

On input, number of block columns in resulting local
VBR matrix.

On input, length allocated for bindz and indz.
On input, length allocated for val.
On input, if blk_type > 0, indicates that all block rows

(and columns) have the same size given by blk_type. If
blk_type < 0, the block rows have different sizes.

31

Prototype

void AZ _order.ele(int *update_indez, int *extern_indez, int * N_internal,
int * N_border, int N_update, int *bpnir, int *bindz,
int *extern_proc, int N_ezternal, int option, int mat_type)

Description

Find orderings for update and external. external are ordered so that elements updated
by the same processor are contiguous. If option == AZ_ALL, update are ordered so
that the internal components have the lowest numbers followed by the border
components. Otherwise, the order of update is unchanged. The ordering information
is placed in update_index and eztern_index (Section 4). Called by AZ _transform.

Parameters

N_internal

N_border

update_index

extern_index

option
AZ_ALL

AZ_EXTERNS
mat_type

Prototype

On output, number of internal components on proces-
sor.

On output, number of border components on processor.

On output, update_indezfi] indicates the local index (or
order) of updatefi].

On output, extern_indezfi] indicates the new local index
(or order) of externalli].

On input, indicates whether to reorder update.
Order update and external.

Order only external elements.

On input, indicates whether matrix format is MSR (=
AZ_MSR_MATRIX) or VBR (= AZ_VBR_MATRIX).

void AZ_print_error(int error_code)

Description

32

Prints out an error message corresponding to error—code. Typically, error_code is
generated by AZ_check.input.

Parameters

error-code On input, error code generated by AZ_check_input.

Prototype

void AZ_processor_info(int *proc_config)

Description

proc_config[AZ_node] is set to the node name of this processor. proc_config[AZ_N._proc]
is set to the number of processors used in simulation.

Prototype

int AZ_quick_find(int key, int *list, int length, int shift, int *bins)

Description

Return the index, 4, in list (assumed to be sorted) which matches the key (i.e. listfi] =
key). If key is not found AZ_quick_find returns -1.

NOTE: This version is faster than AZ_find but requires bins to be set and stored using
AZ _init_quickfind.

Parameters
key On input, element to search for in list.
list On input, sorted list to be searched.
length On input, length of list.
shift On input, used for initial guess (computed by previous

AZ _init_quickfind call).

33

bins | On input, computed by AZ.init_quick_find for initial
guess. bins is set so that list[bins[k]] < key <
list[bins[k + 1]] where k = (key — list[0])/2Mft .

Prototype

void AZ_read_msr_matrix(int *update, double **val, int **bindz, int N_update,
int *proc_config)

Description

Read the file .data and create a matrix in the MSR format. Processor 0 reads the
input file. If the new row to be added resides in processor 0’s update, it is added to
processor 0’s matrix. Otherwise, processor 0 determines which processor has requested
this row and sends it to this processor for its local matrix.

The form of the input file is as follows:

num_rows

col_numl entryl col_num2 entry2
col_num3 entry3 -1

col_num4 entry4 col_numb entryd
col_num6.- entry6 -1

This input corresponds to two rows: 0 and 1. Row 0 contains entryl in column
col_numl, entry2 in column col_num?2 and entry3 in column col_num3. Row 1
contains entry4 in column col_numé4, entry5 in column col_num5 and entry6 in
column col_numé6.

NOTE: row and column numbers must start from O.

NOTE: AZ_read.-msr.matrix() is inefficient for large matrices.

Parameters
val, bindz On output, these two arrays are allocated and filled
with the MSR representation corresponding to the file
.data.
Prototype '

void AZ_read_update(int * N_update, int **update, int *proc_config,
int N, int chunk, int input_option)

34

Description

This routine initializes update to the global indices updated by this processor and
initializes N_update to the total number of elements to be updated.

Parameters

N_update

update

chunk

N
input_option

AZ_LINEAR

AZ_BOX

AZ_FILE

Prototype

On output, number of elements updated by processor.

On output, update is allocated and contains a list of
elements updated by this processor in ascending order.

Number of indices within a group. For example,
chunk == 2 = chunky = {0,1}, and chunk, = {2, 3}.

Total number of chunks in the vector.

Processor 0 is assigned the first [ﬂ“%J chunks,

N+P-2
P

processor 1 is assigned the next I_ J chunks,

etc. where P = proc_config[AZ_N_proc]).

The processor system is viewed as a pz X p; X
po where p; = 2L(+9/3) (50 proc_config[AZ_N_proc]
must equal 2%). The chunks are viewed as an n x
n xn cube where n is divisible by each p;. Chunks
are distributed into uniform boxes such that each
processor has the same number of chunks.

Read the proc_config[AZ_N_proc] lists contained
in the file update. Each list contains a set of
global indices preceeded by the of number of in-
dices in this set. List 0 is sent to processor
proc_config[AZ_N_proc] - 1, list 1 is sent to proces-
sor proc_config[AZ_N_proc] - 2, etc. Note: A graph
partitioning package named Chaco [2] produces
files in this format.

void AZ_reorder.matrix(int N_update, int *bindz, double *val, int *update_indez,
int *extern_indez, int *indz, int *rpntr, int *bpntr,
int N_external, int *cpnir, int option, int mat_type)

35

Description

Reorder the matrix so that it corresponds to the new ordering given by update_index
and eztern-indez. Specifically, global matrix entry (update[s], update[j]) which was
stored as local matrix entry (3, 5) is stored as (update_indez[i], update_indez[j]) on
output. Likewise, global matrix entry (update[i], externallk]) which was stored as
local matrix entry (¢, k + N_update) is stored locally as (update.indexfi],
extern_index[k]) on output. Called by AZ transform.

IMPORTANT: This routine assumes that updaete_indez contains two sequences of
numbers that are ordered but intertwined. For example,

updateindex: 4 5 0 6 1 2 3 7

sequence 1: 0 1 2 3
sequence 2: 4 5 6 7
Parameters
option On input, indicates whether to reorder update elements.
AZ_ALL All the rows and columns are renumbered.
AZ_EXTERNS Only columns corresponding to external elements
are renumbered.
mat_type On input, indicates matrix format.
AZ_MSR_MATRIX DMSR matrix format.
AZ VBR.MATRIX DVBR matrix format.
bindz, val, indx, On input, matrix ordered as described above. On
rpntr, bpntr, cpnir output, matrix reordered using update_index and ez-
tern_indez as described above.
Prototype

void AZ _set_message_info(int N_external, int *extern_indez, int N_update,
int *ezternal, int *estern_proc, int *update,
int *update_index, int *proc_config, int *cpntr,
int **data_org, int mat_type)

Description

Initialize data_org so that local communications can occur to support matrix vector
products. This includes:

36

e determine neighbors with which we send or receive.
e determine the total number of elements that we send and allocate data-oryg.
e initialize data_org as described in Section 6.1.
Note: data_org[AZ.name] is set to a number (starting from 1) that is
incremented each time AZ_set_message-info is called.
Called by AZ_transform.
NOTE: Implicitly the neighbors are numbered using the ordering of the external
elements (which have been previously ordered such that elements updated by the
same processor are contiguous).

Parameters
data_org On output, data_org is allocated and completely initial-
ized as described in Section 6.1.
mat_type On input, indicates matrix format.
AZ_MSR_MATRIX DMSR matrix.
AZ VBR_.MATRIX DVBR matrix.
Prototype

void AZ_solve(double *z, double *b, int *options, double *params, int *indz,
int *bindz, int *rpntr, int *cpnir, int *bpntr, double *val,
int *data_org, double *status, int *proc_config)

Description

Solve the system of equations Az = b via an iterative method where the matrix A is
encoded in indz, bindz, rpntr, cpnir, bpntr and val (see Section 3 and Section 2).

Parameters
T On input z contains the initial guess. On output z
contains the solution to linear system.
b Right hand side of linear system.
options, params Options and parameters used during the solution pro-
cess (Section 2).
status On output, status of iterative solver (Section 2).

37

Prototype

void AZ sort(int *list1, int N, int *list2, double *list3)

Description

Sort the elements in list1. Additionally, move the elements in 4st2 and list3 so that
they correspond with the moves done to list. NOTE: If list2 == NULL, list2 is not
manipulated. If list8 == NULL, list8 is not manipulated.

Parameters
list1 On input, values to be sorted. On output, sorted values
(ie. lst1fi] < list1fi+1])
N On input, length of lists to be sorted.
list2 On input, a list associated with listZ. On output, if
list1fk] on input is now stored in list1[j] on output,
list2[k] on input is also stored as list2[j] on output.
list3 On input, a list associated with listZ. On output, if
- list1[k] on input is now stored in listij] on output,
list3[k] on input is also stored as list8[j/ on output.
Note: if list3 == NULL on input, it is unchanged on
output.
Prototype

void AZ_transform(int *proc_config, int ¥*ezternal, int *bindz,
double *val, int *update, int **update_indez,
int **extern_index, int **data_org, int N_update,
int *indz, int *bpntr, int *rpntr, int **cpntr, int mat._type)

Description

Convert the global matrix description to a distributed local matrix format (see
Section 2 and Section 6.4).

Parameters

38

external

bindz, val, indez,
bpntr, rpnir

update_index

extern_index

data-org

cpntr

mat_type

On output, allocated and set to components that must
be communicated during the matrix vector multiply.

On input, matrix arrays (MSR or VBR) corresponding
to global format. On output, matrix arrays (DMSR or
DVBR) corresponding to local format. See Section 2.

On output, allocated and set such that update_index[s]
is the local numbering corresponding to update[s).

On output, allocated and set such that eztern_index|i]
is the local numbering corresponding to externalli].

On output, allocated and set to data layout informa-
tion, see Section 6.1.

On output, allocated and set for VBR matrices to the
column pointer array.

On input, matrix format: either AZ_VBR_MATRIX or
AZ MSR_MATRIX.

39

REFERENCES

[1] S. Carney, M. Heroux, and G. Li. A proposal for a sparse BLAS toolkit. Technical report, Cray
Research Inc., Eagen, MN, 1993.

[2] B. Hendrickson and R. Leland. The Chaco user’s guide - version 1.0. Technical Report
Sand93-2339, Sandia National Laboratories, Albuquerque NM, 87185, August 1993.

[3] J. N. Shadid and R. S. Tuminaro. Sparse iterative algorithm software for large-scale MIMD
machines: An initial discussion and implementation. Concurrency: Practice and Experience,
4(6):481-497, September 1992.

[4] J. N. Shadid and R. S. Tuminaro. Asztec - a parallel preconditioned Krylov solver library:
Algorithm description version 1.0. Technical Report Sand95:in preparation, Sandia National
Laboratories, Albuquerque NM, 87185, August 1995.

[5] R.S. Tuminaro, J. N. Shadid, and S. A. Hutchinson. Parallel sparse matrix vector multiply
software for matrices with data locality. Submitted to BIT, August 1995.

[6] Z. Zlatev, V.A. Barker, and P.G. Thomsen. SSLEST - a FORTRAN IV subroutine for solving
sparse systems of linear equations (user’s guide). Technical report, Institute for Numerical
Analysis, Technical University of Denmark, Lyngby,Denmark, 1978.

40

EXTERNAL DISTRIBUTION:

Steve Ashby

Lawrence Livermore Nat. Lab.
M/S L-316

PO Box 808

Livermore, CA 94551-0808

D. M. Austin

Army High Per. Comp. Res. Cntr.
University of Minnesota

1100 S. Second St.

Minneapolis, MN 55415

Rob Bisseling

Department of Mathematics
Budapestlaan 6, De Uithof, Utrecht
PO Box 80.010, 3508 TA Utrecht
The Netherlands

Petter Bjorstad
University of Bergen
Institutt for Informatikk
Thomohlengst 55
N-5008 Bergen, Norway

Randall Bramley
Dept of CSci

Indiana University
Bloomington IN 47405

G. F. Carey

ASE/EM Dept., WRW 305
University of Texas
Austin, TX 78712

Steven P. Castillo

Klipsch School of Electrical & Computer Eng.

New Mexico State University
Box 30001
Las Cruces, NM 88003-0001

J. M. Cavallini

US Department of Energy
OSC, ER-30, GTN
Washington, DC 20585

T, Chan

UCLA

405 Hilgard Ave.

Los Angeles, CA 90024-7009

Warren Chernock
Scientific Advisor DP-1
US Department of Energy
Forestal Bldg., 4A-045
‘Washington, DC 20585

Doug Cline

The University of Texas System

Center for High Performance Computing
10100 Burnett Road, CMS 1.154

Austin, Texas 78758

Tom Coleman

Dept. of Computer Science
Upson Hall

Cornell University

Ithaca, NY 14853

Pedro Diniz

Computer Science Department
Engineering I Bldg, Room 2106
University of California at Santa Barbara
Santa Barbara, CA 93106

J. J. Dongarra

Computer Science Dept.
104 Ayres Hall
University of Tennessee
Knoxville, TN 37996-1301

L S. Duff

CSS Division

Harwell Laboratory
Oxfordshire, OX11 ORA
United Kingdom

Alan Edelman

Dept. of Mathematics
MIT

Cambridge, MA 02139

Steve Elbert

US Department of Energy
OSC, ER-30, GTN
‘Washington. DC 20585

H. Elman

Computer Science Dept.
University of Maryland
College Park, MD 20842

R. E. Ewing

Mathematics Dept.

University of Wyoming

PO Box 3036 University Station
Laramie, WY 82071

Charbel Farhat

Dept. Aerospace Engineering
UC Boulder

Boulder, CO 80309-0429

J. E. Flaherty

Computer Science Dept.
Rensselaer Polytech Inst.
Troy, NY 12181

G. C. Fox

Northeast Parallel Archit. Cntr.
111 College Place

Syracuse, NY 13244

R. F. Freund
NRaD- Code 423
San Diego, CA 99152-5000

D. B. Gannon
Computer Science Dept.
Indiana University
Bloomington, IN 47401

Horst Gietl

nCUBE Deutschland
Hanauer Str. 85
8000 Munchen 50
Germany

Paul Giguere

Group TSA-8

MS K575

Los Alamos National Laboratory
Los Alamos, NM 87545

John Gilbert

Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

G. H. Golub

Computer Science Dept.
Stanford University
Stanford, CA 94305

Anne Greenbaum

New York University
Courant Institute

251 Mercer Street

New York, NY 10012-1185

Satya Gupta

Intel SSD

Bldg. CO6-09, Zone 8

14924 NW Greenbrier Parkway
Beaverton, OR 97006

J. Gustafson

Computer Science Dept.
236 Wilhelm Hall

Towa State University
Ames, IA 50011

Doug Harless

NCUBE

2221 East Lamar Blvd., Suite 360
Arlington, TX 76006

Michael Heath

Univ. of Ill., Nat. CSA
4157 Bechman Institute
405 North Matthews Ave.
Urbana, IL 61801-2300

Mike Heroux

Cray Research Park
655F Lone Oak Drive
Bagan, MN 55121

Dan Hitchcock

US Department of Energy
SCS, ER-30 GTN
Washington, DC 20585

Fred Howes

US Department of Energy
0SC, ER-30, GTN
‘Washington, DC 20585

Christopher R. Johnson
Department of Computer Science
3484 MEB

University of Utah

Salt Lake City, UT 84112

David Keyes

Dept. of Mechanical Engineering
Yale University

PO Box 2159, Yale Station

New Haven, CT 06520-2159

David Kincaid

Center for Numerical Analysis
RLM 13.150

University of Texas

Austin, TX 78713-8510

T. A. Kitchens

US Department of Energy
0S8C, ER-30, GTN
‘Washington, DC 20585

Vipin Kumar

Computer Science Department
Institute of Technology

200 Union Street S.E.
Minneapolis, MN 55455

Joanna Lees

Intel Corp.

Scalable Systems Division
CO1-15

15201 NW Greenbrier Parkway
Beaverton, OR 97006

John Lewis

Boeing Corp.

M/S 7L-21

P.O. box 24346

Seattle, WA 98124-0346

T. A. Manteuffel
Department of Mathematics
University of Co. at Denver
Denver, CO 80202

S. F. McCormick

Computer Mathematics Group
University of CO at Denver
1200 Larimer St.

Denver, CO 80204

Robert McLay

University of Texas at Austin
Dept. ASE-EM

Austin, TX 78712

P. C. Messina

158-79

Mathematics & Comp Sci. Dept.
Caltech

Pasadena, CA 91125

C. Moler

The Mathworks

24 Prime Park Way
Natick, MA 01760

Gary Montry

Southwest Software
11812 Persimmon, NE
Albuquerque, NM 87111

D. B. Nelson

US Department of Energy
0SC, ER-30, GTN
Washington, DC 20585

Kwong T. Ng

Klipsch School of Electrical & Computer Eng.
New Mexico State University

Box 30001

Las Cruces, NM 88003-0001

J. M. Ortega

Applied Mathematics Dept.
University of Virginia
Charlottesville, VA 22903

Linda Petzold

1-316

Lawrence Livermore Natl . Lab.
Livermore, CA 94550

Barry Peyton

Mathematical Sciences Section
Oak Ridge National Laboratory
PO. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367

Paul Plassman

Math and Computer Science Division
Argonne National Lab

Argonne, IL 60439

Claude Pommerell

AT&T Bell Labs

600 Mountain Ave, Room 2C-548A
Murray Hill, NJ 07974-0636

Alex Pothen

Department of Computer Science
Old Dominion University
Norfolk, VA 23529-0162

J. Rattner

Intel Scientific Computers

15201 NW Greenbriar Pkwy.
Beaverton, OR 97006

Patrick Riley

Intel-SSD

600 S. Cherry St., Suite 700
Denver, CO 80222

Ed Rothberg

Silicon Graphics, Inc.

MS 7L-580

2011 N. Shoreline Blvd.
Mountain View, CA 94043

Y. Saad

University of Minnesota
4-192 EE/CSci Bldg.

200 Union St.

Minneapolis, MN 55455-0159

P. Sadayappan

Ohio State University

Comp. & Inf. Sci., 228 Boltz Hall
2036 Neil Avenue

Columbus, OH 43210-1277

Joel Saltz

Computer Science Department
A.V. Williams Building
University of Maryland
College Park, MD 20742

A. H. Sameh

CSRD, University of Illinois
305 Talbot Laboratory

104 S. Wright St.

Urbana, IL 61801

P. E. Saylor

Dept. of Comp. Science

222 Digital Computation Lab
University of Illinois

Urbana, IL 61801

Carl Scarbnick

San Diego Supercomputer Center
P.O. Box 85608

San Diego, CA 92186-9784

Rob Schreiber

RIACS

NASA Ames Research Center
Mail Stop T045-1

Moffett Field, CA 94035-1000

Elliott Schulman
nCUBE Corp.
3575 9th St.
Boulder, Co. 80304

M. H. Schultz

Department of Computer Science
Yale University

PO Box 2158

New Haven, CT 06520

Mark Seager
LLNL, L-80
PO box 803
Livermore, CA 94550

Horst Simon

Silicon Graphics

Mail Stop 7L-580

2011 N. Shoreline Blvd.
Mountain View, CA 94043

Richard Sincovec
Mathematical Sciences Section
Oak Ridge Nat. Lab.

P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Vineet Singh

HP Labs, Bldg. 1U, MS 14
1501 Page Mill Road

Palo Alto, CA 94304

Anthony Skjellum
Mississippi State University
Computer Science

PO Drawer CS

Mississippi State, MS 39762

L. Smarr

Director, Supercomputer Apps.
152 Supercomputer Applications
Bldg. 605 E. Springfield
Champaign, IL 61801

Burton Smith

Tera Computer Co

400 N, 34th St., Suite 300
Seattle, WA 98103

Barry Smith

Department of Mathematics
UCLA

Los Angeles, CA 90024-1555

Harold Trease

Los Alamos National! Lab
PO Box 1666, MS F663
Los Alamos, NM 87545

C. VanLoan

Department of Computer Science
Cornell University, Rm. 5146
Ithaca, NY 14853

John VanRosendale

ICASE, NASA Langley Research Center
MS 132C

Hampton, VA 23665

Steve Vavasis

Department of Computer Science / ACRI
722 Engineering and Theory Center
Cornell University

Ithaca, NY 14853

R. G. Voigt

MS 132-C

NASA Langley Resch Cntr, ICASE
Hampton, VA 36665

Phuong Vu

Cray Research, Inc.
19607 Franz Road
Houston, TX 77084

Steven J. Wallach

Convex Computer Corp.
3000 Waterview Parkway
PO Box 833851
Richardson, TX 75083-3851

G. W. Weigand
DARPA/CSTO

3701 N. Fairfax Ave.
Arlington, VA 22203-1714

Olof B. Widlund

Dept. Computer Science
Courant Inst., NYU

251 Mercer St.

New York, NY 10012

Roy Williams

California Institute of Technology
206-49

Pasadena, CA 91104

INTERNAL DISTRIBUTION:

1 MS 0360 A.R.C. Westwood, 1000
1 MS 0151 Gerold Yonas, 9000

1 MS 0321 Ed Barsis, 1400

1 MS 0321 William Camp, 1400

1 MS 0601 Harry K. Moffat, 1126

1 MS 1111 Sudip Dosanjh, 1421

10 MS 111l Scott Hutchinson, 1421
10 MS1i11 John N. Shadid, 1421

1 MS 1111 Andrew G. Salinger, 1421
1 MS 1111 Gary L. Hennigan, 1421
1 MS 1111 Martin Lewitt, 1421

1 MS1il1 Mark P. Sears, 1421

1 MS 1111 Daniel Barnette, 1421

1 - MS1111 Steven J. Plimpton, 1421
1 MS 1111 David R. Gardner, 1421
1 MS 1110 Richard C. Allen, 1422

1 MS 1110 Bruce A. Hendrickson, 1422
1 MS 1110 David E. Womble, 1422
10 MS 1110 Ray S. Tuminaro, 1422

1 MS 1110 Lydie Prevost, 1422

1 MS 1109 Art Hale, 1424

1 MS 1109 Ted Barragy, 1424

1 MS 1109 Robert W. Leland, 1424
1 MS 1109 Karen Devine, 1424

1 MS 1109 Courtenay Vaughn, 1424
1 MS 1109 James Tomkins, 1424

1 MS 0819 J. Michael McGlaun, 1431
1 MS 0819 James S. Perry, 1431

1 MS 0819 Allem C. Robinson, 1431
1 MS 00439 David R. Martinez, 1434
1 MS 0833 Johnny H. Biffle, 1503

1 MS 0827 Dave K. Gartling, 1511

1 MS 0827 Randy Schunk, 1511

1 MS 0827 Phil Sackinger, 1511

1 MS 0827 Mario Martinez, 1511

1 MS 0827 Mike Glass, 1511

1 MS 0827 Bob McGrath, 1511

1 MS 0827 Poly Hopkins, 1511

1 MS 0827 Jim Schutt, 1511

1 MS 0827 Melinda Sirmar, 1511

1 MS 0834 Robert B. Campbell, 1512
1 MS 0835 Roy E. Hogan Jr., 1513

1 MS 0835 Mark A. Christon, 1513
1 MS 0826 Robert J. Cochran, 1514
1 MS 0750 Greg A. Newman, 6116

1 MS 0750 David L. Alumbaugh, 6116
1 MS 9214 Juan Meza, 8117

1 MS 9042 Joseph F. Grear, 8745

1 MS 9042 Greg Evans, 8745

1 MS 1166 Joseph Kotulski, 9352

IO e

MS 9018 Central Technical Files, 8523-2

MS 0899 Technical Library, 13414
MS 0619 Print Media, 12615
MS 0100 Document Processing, 7613-2

For DOE/OSTI

Org. Bldg. Name Rec'd by [Org. Bidg. Name Rec’d by

Sandia National Laboratories

