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Using density-functional theory–based molecular-dynamics simulations, we have 

investigated the equation of state for silicon in a wide range of plasma 

density/temperature conditions of  = 0.001 to 500 g/cm3 and T = 2000 to 108 K. With 

these calculations, we have established a first-principles equation-of-state (FPEOS) table 

of silicon for high-energy-density (HED) plasma simulations. When compared with the 

widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted 

Hugoniot is ~20% softer; for off-Hugoniot plasma conditions, the pressure and internal 

energy in FPEOS are lower than those of SESAME EOS for temperatures above T . 1 to 

10 eV (depending on density), while the former becomes higher in the low-T regime. The 

pressure difference between FPEOS and SESAME 3810 can reach to ~50%, especially in 

the warm-dense-matter regime. Implementing the FPEOS table of silicon into our 
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hydrocodes, we have studied its effects on Si-target implosions. When compared with the 

one-dimensional radiation–hydrodynamics simulation using the SESAME 3810 EOS 

model, the FPEOS simulation showed that (1) the shock speed in silicon is ~10% slower; 

(2) the peak density of an in-flight Si shell during implosion is ~20% higher than the 

SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is 

~40% higher at the peak compression; and (4) the final areal density and neutron yield 

are, respectively, ~30% and ~70% higher predicted by FPEOS versus the traditional 

simulation using SESAME  3810. All of these features can be attributed to the larger 

compressibility of silicon predicted by FPEOS. These results indicate that an accurate 

EOS table, like the FPEOS presented here, could be essential for the precise design of 

targets for HED experiments. 

 

PACS numbers: 52.27.Gr, 51.30.+i, 64.30.-t, 52.57.-z 

 

I. INTRODUCTION 

 As one of the most-abundant elements on Earth, silicon is important to many 

different fields ranging from the semiconductor industry,1 geophysics,2 photovoltaics,3 

planetary and astrophysics,4–6 to inertial confinement fusion (ICF) physics studies.7–9 

For ICF applications, silicon has been used as dopants to ablators in indirect-drive ICF 

target designs.10 It has also been applied to mitigate laser-imprint effects11,12 and the 

two-plasmon–decay instability13,14 for multilayer target designs in direct-drive ICF 

implosions.15 For these high-energy-density (HED) applications, it is essential to know 

the properties of silicon under extreme conditions. The equation of state (EOS) of silicon 
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is one of such intrinsic properties that are crucial to both ICF and geophysics applications 

since it is needed for hydrodynamic simulations of ICF implosions and for understanding 

the geophysics of the earth’s outer core.2 

 The EOS studies of silicon under megabar (Mbar) pressures began in the 1960s 

(Ref. 16) using explosive drive. The principal Hugoniot measurements of silicon were 

continued in the 1970s and 1980s by different groups.17,18 Many surprises were found 

in our understanding the behavior of shocks in silicon. For instance, the elastic behavior 

of shocks was observed in silicon even at Mbar pressures.19 Namely, the lattice 

reduction related to shock compression may occur only along the shock-propagation 

direction, instead of hydrostatical lattice-shrinking in all three dimensions. Furthermore, 

the measured optical emission from shocked silicon was found to be much lower than 

expected, which has been hypothesized to be caused by the unusually long electron–ion 

equilibration time in silicon shock.20–22 These abnormal phenomena have been 

observed in shock experiments up to ~6-Mbar pressures. What might occur for silicon 

under extreme pressures (>10 Mbar) remains to be seen. To the best of our knowledge, 

these anomalies observed in shocked silicon are not fully understood. To this end, a 

thorough understanding of silicon properties under HED conditions is necessary.  

 Theoretical investigations on shock compressions of silicon have been performed 

by classical molecular-dynamics methods,23–25 quantum molecular-dynamics 

simulations based on density functional theory (DFT),26–29 and path-integral Monte 

Carlo (PIMC) modeling.27,29 Most of these studies have been devoted to the moderate-

pressure regime of P < 2 Mbar, while the two most-recent first-principles 

calculations27,29 extended the Hugoniot pressures from ~1 Mbar to over ~10 Gbar for 
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the first time. These calculations combined the orbital-based–DFT Kohn–Sham 

molecular-dynamics (KSMD) method, the orbital-free–DFT molecular-dynamics 

(OFMD) method, and the PIMC simulation. All three first-principles calculations are in 

good agreement in predicting the principal Hugoniot of silicon, which was found to be 

~20% softer than both the extensively used SESAME-EOS model30 (Table 3810) and the 

quotidian equation-of-state (QEOS) model.31 The predicted softening of silicon should 

have important implications for HED simulations of silicon plasmas. However, those 

calculations are concerned with only the plasma conditions along the principal Hugoniot. 

To study how such a softening behavior of silicon affects HED plasma simulations, we 

must expand our first-principles calculations to cover a wide range of off-Hugoniot 

plasma conditions. 

 For this paper, we calculated EOS for a wide range of silicon plasma conditions 

by using DFT-based molecular-dynamics simulations. To be specific, we have sampled 

silicon densities from  = 0.001 g/cm3 to  = 500 g/cm3 and temperatures from T = 

2000 K to T = 108 K. Based on these ab-initio calculations, we have built a first-

principles equation-of-state (FPEOS) table of silicon for ICF and HED applications. For 

off-Hugoniot conditions, we have investigated the difference in pressure and internal 

energy between FPEOS and SESAME EOS. Implementing the FPEOS table of silicon 

into the one-dimensional (1-D) hydrocode LILAC32 and two-dimensional (2-D) 

hydrocode DRACO, we have tested its effects on HED plasma simulations of ICF 

implosions using a Si ablator. Comparisons with traditional SESAME-EOS simulations 

illustrated the need for more-accurate EOS tables to precisely design ICF and HED 

experiments.  
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 This paper is organized as follows: First, the details of our first-principles 

calculations are described in Sec. II. For completeness, the principal Hugoniot 

comparison is included in Sec. III, even though it has been reported elsewhere.29 The 

FPEOS and SESAME EOS are also compared in Sec. III for different isochoric plasma 

conditions. In Sec. IV, the effects of the FPEOS table on HED plasmas through LILAC 

simulations of ICF implosions using a silicon layer as the ablator are presented. Finally, 

our conclusions are presented in Sec. V.  

 

II. MOLECULAR-DYNAMICS SIMULATIONS BASED ON THE DENSITY 

FUNCTIONAL THEORY 

 First-principles methods, such as DFT-based quantum molecular-dynamics 

(QMD),33–36 path-integral Monte Carlo (PIMC),37 and quantum Monte Carlo 

(QMC),38,39 have been developed over the past decades to understand the properties of 

materials under extreme conditions. Two different versions of QMD have been 

implemented by the condensed-matter and HED physics communities. One uses the 

orbital-based Kohn–Sham formalism40 with the finite-temperature density-functional 

theory, in conjunction with the molecular-dynamics method for ion motion (denoted here 

as “KSMD”). The other is the orbital-free molecular-dynamics (OFMD) method,41 

which is based on the original DFT idea that the free energy of a many-electron system 

can be written  as a function solely depending on the electron density. For most cases, the 

KSMD method has been proven to be an accurate and efficient method for calculating 

material properties under high compression at temperatures generally below the electron 

Fermi temperature TF. It becomes impractical for high-temperature (T > TF) simulations 
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because thermal excitation of electrons requires a large number of orbitals for 

convergence. The OFMD method is a natural extension of the KSMD method for high-T 

material simulations, even though it is not as accurate as KSMD. Nevertheless, the 

pressure difference between KSMD and OFMD calculations is still within ~1% in the 

overlapping regime of T ~ TF (valid for both methods), which is acceptable for general 

ICF/HED applications. 

 We have used the Vienna ab initio Simulation Package (VASP)42–44 for KSMD 

simulations, in which electrons are treated quantum-mechanically with a plane-wave 

finite-temperature DFT description. The electrons and ions of the material are in 

thermodynamic equilibrium with equal temperature (Te = Ti). The electron–ion Coulomb 

interaction is represented by a projector augumented-wave (PAW) pseudopotential with 

“frozen” 1s-core electrons. The electron exchange-correlation potential is described by 

the generalized-gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) 

functional,45 Under the Born–Oppenheimer approximation, the self-consistent electron 

density is first determined for an ion configuration. Then, the classical ions are moved by 

the combined electronic and ionic forces, using Newton’s equation. This molecular-

dynamics procedure is repeated for thousands of time steps from which the 

thermodynamic EOS quantities such as pressure and internal energy can be directly 

calculated.  

 In our KSMD simulations, we have employed the  point (k = 0) sampling of the 

Brillouin zone. We used either 32 or 64 Si atoms (depending on density) in a cubic cell 

with a periodic boundary condition. The cubic cell size is determined from the mass 

density. The PAW potential of Si included 12 active electrons; the plane-wave cutoff 
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energy was set to 2000 eV. In all KSMD simulations, a sufficient number of bands 

(varying from 500 to 4100) were included such that the occupation of the highest band 

was less than 10–5. The time step varied from t = 1.5 fs to t = 0.085 fs, respectively, 

for the lowest and highest densities (min = 0.1 g/cm3 and max = 50 g/cm3). Good 

convergence was obtained for these parameter sets. The sampled temperature points 

varied from T = 2000 K to a maximum temperature of T = 500,000 K. Outside these 

density and temperature ranges, we switched to the OFMD calculations since the 1s-core 

electrons must be included in the EOS calculations. 

 The OFMD method41 originated from the true spirit of the Hohenberg–Kohn 

theorem,46 i.e., the free energy of an electron–ion system at any ion configuration can be 

written as a function of the electron density. The kinetic energy of the electrons is 

currently represented by the Thomas–Fermi functional plus the von Weizsäcker 

correction that takes into account the gradient of electron density. These terms were 

obtained from the semiclassical expansion of the partition function up to the first order. 

In OFMD simulations, all electrons, both bound and free, are treated on equal footing. 

The divergence of the electron-nucleus potential is regularized for each thermodynamic 

condition through a similar procedure of generating the norm-conserving pseudopotential 

as the PAW treatment. The cutoff radius is chosen to be less than 10% of the Wigner–

Seitz radius to avoid an overlap of regularized ion spheres. The exchange-correlation 

function is expressed in the local density approximation of Perdew and Zunger.47  

 At each time step of an OFMD simulation, the electron free energy for a ionic 

configuration is first minimized in terms of the local electron density. Then, the classical 

ions are moved by the combined electronic and ionic forces, the same as in the KSMD 
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procedure. In our OFMD simulations of silicon plasmas, we used 128 atoms in a cubic 

cell with a periodic boundary condition. The time step varied from t = 0.144 fs to t = 

6 × 10–5 fs, respectively, for the lowest-density/temperature ( = 0.001 g/cm3 and T = 

125,000 K) point and the highest-density/temperature ( = 500 g/cm3 and T = 108 K) 

point. Finally, the thermodynamic EOS quantities were statistically evaluated from the 

MD propagation of the system (5000 to 100,000 steps depending on the density).  

 For each isochoric curve, we examined the EOS quantities for the overlapping 

temperature points between the KSMD and OFMD calculations. We make the transition 

from KSMD to OFMD at the temperature point where their differences are the smallest 

(within ~1%). Carrying out these calculations for a wide range of silicon plasma 

conditions, we obtained both pressure and internal energies for all the sampled density 

and temperature points ( = 0.001 to 500 g/cm3 and T = 2000 to 108 K). As an example, 

in Fig. 1 we plot the total pressures as a function of the silicon plasma temperature for 

each of the sampled isochoric curves.  

 

III. COMPARISONS BETWEEN FPEOS AND SESAME EOS 

 From the FPEOS table, we can derive the principal Hugoniot curve for silicon 

shocks by using the Rankine–Hugoniot equation. The initial state is chosen to be solid 

silicon (0 = 2.329 g/cm3) in its diamond phase at ambient pressure (P0 = 1 bar). We 

compare the FPEOS Hugoniot with the one derived from the extensively used SESAME-

EOS model (SESAME 3810 table) in Fig. 2(a), in which the Hugoniot pressure spanning 

more than five orders of magnitude is plotted as a function of the shock density. The 

SESAME-EOS model was based on the chemical picture of matter, meaning that the total 
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free energy can be decomposed into the cold curve, the ionic excitation, and the electron 

thermal excitation. It was typically constructed (constrained) by the best-available 

experimental data (typically limited). Specifically, for SESAME 3810 (Si) constructed in 

1997, the EOS below the solid–liquid phase transition was based on experimental 

Hugoniot data.16–18 For conditions above the liquid phase transition, the EOS was 

constructed such that the shock Hugoniot was “similar” to germanium (SESAME 3950) 

up to 4.4 Mbar. The ion thermal contribution is based on a Debye model with a correction 

for the liquid specific heat beyond the melt temperature.48 The correction also ensures 

that in the high-temperature limit, the proper model (ideal gas) is recovered that will give 

a shock Hugoniot compression ratio /0 = 4. The Hugoniot comparison in Fig. 2(a) 

indicates that under shock compression, silicon is much softer than predicted by the 

traditional chemical picture of materials.29 For example, at a constant pressure of 

~20 Mbar, the SESAME 3810 table predicted a shock density of  . 6.3 g/cm3, while the 

FPEOS table gives a much-higher shock density of  . 7.7 g/cm3. Namely, the FPEOS 

table predicts that silicon under 10- to 1000-Mbar pressures is ~20% softer than SESAME 

3810. For the same shock density at  = 8 g/cm3, the SESAME 3810 model predicts a 

shock pressure of P . 73.4 Mbar, which is more than 3× higher than the FPEOS case 

(P . 24 Mbar). Figure 2(a) indicates that the maximum compression (/0) changes from 

the SESAME-predicted value of ~4.6 to 5.0 in FPEOS. Finally, in the same figure, we 

have plotted the existing experimental data,16–18 which are represented by the different 

symbols. These Hugoniot data were obtained from explosively driven shock experiments. 

To the best of our knowledge, no published data exist for laser-shock Hugoniot 
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measurements in pressures above 10 Mbar. The opacity of Si for most VISAR laser 

wavelengths49 is one of the hurdles for accurate shock measurements in silicon. 

Nevertheless, it is shown in Fig. 2 that the explosively driven shock data up to ~2 Mbar 

agree well with our calculations, which seems also to indicate the softening of silicon 

under compression. It is noted that at the measured highest shock density of  = 

4.6 g/cm3, the SESAME-EOS–predicted pressure is at least 2× higher than the 

experimental value of P . 2 Mbar.  

 To further examine the properties of shocked silicon, we have calculated the heat 

capacity Cv along its principal Hugoniot. Because Cv is a measure of the energy change 

with respect to temperature at a fixed volume, it can give some indication of how rapidly 

the entropy is increasing with temperature in a silicon shock. The obtained Cv results are 

plotted in Fig. 2(b) as a function of the Hugoniot density for both SESAME 3810 (red 

dashed line) and FPEOS (blue solid line). In Fig. 2(b), we also plot three horizontal lines 

to indicate the expected heat capacities for ideal-gas plasmas of three different ionization 

stages of Si4+, Si12+, and Si14+, respectively. For instance, the lowest black dashed line 

represents the ideal-gas plasma that includes only Si4+ and free electrons without any 

interactions. Since the electron ionization process acts like a “heat sink” for the system, 

one expects the heat capacity to increase during the ionization of bound electrons. This is 

especially true for innermost shell electrons because of the large energy gaps between the 

L-shell and K-shell electrons. This is exactly what can be seen in Fig. 2(b): the FPEOS 

calculation (blue solid line) gives a peak of Cv near the peak compression at  . 

11.5 g/cm3 [see Fig. 2(a)]. After the 1s-electron ionization is completed, the heat capacity 

approaches the ideal-gas limit (pink long-dashed line) as a fully ionized Si plasma is 
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formed. The SESAME 3810–predicted Cv has a similar trend, but the same value of Cv is 

reached at a smaller density. In other words, at the same density the FPEOS-predicted Cv 

is ~50% lower than the SESAME 3810 case, meaning that less entropy increase is 

expected in FPEOS. By referring to the ideal-gas Cv, one can argue that the same 

ionization stage is first reached at much-lower densities in SESAME 3810 than in FPEOS. 

Again, all of these features are consistent with the higher compressibility of silicon 

predicted by FPEOS.   

 Next, we compare the pressure and internal energy of silicon plasmas for off-

Hugoniot conditions between FPEOS (blue solid line) and SESAME 3810 (red dashed 

line) in Figs. 3–5. Figures 3(a) and 4(a) show the pressure as a function of plasma 

temperature, respectively, for silicon densities of  = 5 g/cm3 and  = 10 g/cm3, while the 

internal energy comparisons are made in Figs. 3(b) and 4(b). One sees in Fig. 3(a) that 

the SESAME pressure is ~10% lower than FPEOS for low temperatures of T < 104 K, but 

it reverses for the high-T regime (104 < T < 106) with a “crossover” temperature at T ~ 

104 K (~1 eV). The pressure difference between FPEOS and SESAME 3810 reaches a 

maximum of ~50% in the warm dense regime (T ~ 105 K) at this density ( = 5 g/cm3). 

This is the regime in which both electron degeneracy and strong ion–ion coupling play 

significant roles in determining the EOS. The internal energy comparison in Fig. 3(b) 

shows a similar trend, although the difference is only ~20%. For high temperatures of T > 

106 K, both FPEOS and SESAME 3810 are in good agreement with each other, as the two 

EOS tables correctly approach the ideal gas limit. Figure 4 shows similar EOS 

comparisons for  = 10 g/cm3. At this higher density, we see the crossover temperature 

now moves to near ~105 K (~10 eV), and the maximum difference in pressure between 
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FPEOS and SESAME 3810 reduces to ~20%. The difference in internal energy in 

Fig. 4(b) is also reduced when compared to Fig. 3(b). 

 Finally, we explore two other isochores at high densities of  = 50 g/cm3 and  = 

500 g/cm3, respectively, in Figs. 5(a) and 5(b). Again, the two panels compare the 

pressures of FPEOS with SESAME 3810 at various temperatures. Figure 5(b) indicates 

that both FPEOS and SESAME 3810 are very close to each other at this high density of 

 = 500 g/cm3, even though SESAME 3810 gives a slightly higher pressure over the 

entire temperature range (no more crossover is seen between the two EOS’s). Both EOS 

tables are in better agreement with each other in this electron-degeneracy–dominated 

regime. For the intermediate density of  = 50 g/cm3, Fig. 5(a) still shows a trend similar 

to the one seen in Figs. 3 and 4. Namely, the SESAME 3810 model still underestimates 

the pressure for the low-T regime (T < 106 K). With these large EOS differences 

identified in both on-Hugoniot and off-Hugoniot warm-dense-plasma conditions, we 

expect to see significant effects on HED plasma simulations between using the newly 

established FPEOS and using the SESAME 3810 for silicon.  

 

IV. FPEOS EFFECTS ON HED PLASMA SIMULATIONS INVOLVING 

SILICON 

 To examine the EOS effects on HED plasma simulations, we have implemented 

our FPEOS table of silicon into our radiation–hydrodynamics codes LILAC and DRACO. 

We have extrapolated our EOS results for temperatures outside our calculation range 

(2000 K to 108 K). With the implementation of the FPEOS table, we can investigate its 

effects on HED simulations involving silicon plasmas. Since in an ICF implosion the 
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capsule generally undergoes a path sweeping through many different density and 

temperature conditions, integrated ICF implosion simulations would be more suitable for 

examining EOS effects. As an example, we consider a NIF-type direct-drive implosion 

with the target and pulse shape shown in Fig. 6. The  = 2.4-mm capsule is made of a 

40-m Si layer filled with 3 atm of deuterium–tritium (DT) gas. The step laser pulse has 

a total energy of 800 kJ, with a duration of 8 ns. Figures 7–10 show the LILAC simulation 

results using either FPEOS (blue solid line) or SESAME 3810 (red dashed line) for 

silicon. Both simulations used the same nonlocal thermal-transport model50 and inverse-

bremsstrahlung absorption with cross-beam energy transfer modeling.51 For DT gas, the 

two simulations used the same FPEOS table52,53 and the same first-principles opacity 

table54 of DT, so that the EOS tests are solely focused on the silicon ablator layer. In 

Fig. 7, we plot the density and temperature profile snapshot at t = 0.9 ns as a function of 

target radius for the two simulations. At this time, the shock is still propagating inside the 

Si layer (the shock front is located at R ~ 1180 m). Figure 7 indicates that (1) the shock 

density in FPEOS is ~20% higher than the SESAME simulation and (2) the shock in the 

SESAME simulation is ahead of the FPEOS case, giving a shock-speed difference of 

~10%. These features can be understood by considering the softening of silicon shock in 

FPEOS (see Fig. 2). Namely, the identical laser drive gives the same ablation pressure in 

the two simulations; for the same shock pressure (PS), the FPEOS simulation will give 

~20%-higher shock density (S) as the Hugoniot curve seen in Fig. 2(a). Since the shock 

speed depends on the shock density through S S 0 0 S1 ,V P      one can see that 

for the same PS, the ~20%-higher shock density in FPEOS will give an ~10%-smaller 
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shock speed than the SESAME case. Figure 7 also indicates the shock temperature is 

~20% higher in FPEOS.  

 As the implosion proceeds, Fig. 8 shows the density and temperature profiles 

during the in-flight stage of t = 5.4 ns [Fig. 8(a)] and at the end of acceleration of t = 

7.9 ns [Fig. 8(b)]. One sees from Fig. 8 that the peak density of the shell from the FPEOS 

simulation is always ~20% higher than the SESAME 3810 case. This can be attributed to 

the larger compressibility of silicon predicted by FPEOS. Except for the difference in 

peak density, the two simulations give very similar density and temperature profiles for 

the imploding shell. Some difference in the back surface of the shell appears only at the 

end of the acceleration phase, as indicated by Fig. 8(b). Note that the coronal plasma 

conditions are also very similar in the two cases, as the EOS difference becomes very 

small at high temperatures of T > 106 K. Figure 8 also shows an interesting double-

ablation-front feature, which can develop in such mid-Z–ablator implosions55 because of 

the significant radiation preheat from coronal emissions. The ~20% difference in peak 

density in the two simulations can have significant consequence when the imploding shell 

stagnates. Figure 9 displays the situation at the time of peak neutron production (near 

peak compression). Again, the figure shows the density and ion temperature as functions 

of the target radius. The maximum density reached in the FPEOS simulation is p = 

271.9 g/cm3, in contrast to the SESAME 3810–predicted p = 185.5 g/cm3. The Si shell is 

converged slightly more in FPEOS than SESAME, resulting in a somewhat different hot-

spot radius (Rhs = 30.5 m versus Rhs = 33.6 m). Consequently, the maximum ion 

temperature is increased from Ti . 3.07 keV (SESAME) to Ti . 3.45 keV (FPEOS).  
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 Finally, we plot the history of the compression areal density (R) and neutron 

yield, respectively, in Figs. 10(a) and 10(b) for the two implosion simulations. One sees 

from Fig. 10(a) that the peak areal density reaches a value of R = 1.38 g/cm2 in FPEOS, 

which is ~30% higher than the SESAME simulation. The total neutron yield predicted by 

FPEOS, shown by Fig. 10(b), is increased by more than ~70% with respect to the 

SESAME case [Y = 5.0 × 1014 (FPEOS) versus Y = 2.9 × 1014 (SESAME)]. As a result, 

the EOS difference can have significant consequences on predicting the 1-D target 

performance. This illustrates the importance of having a more-accurate EOS table to the 

1-D hydrodynamic designs of ICF/HED experiments.  

 

V. CONCLUSION 

 We have applied DFT-based molecular-dynamics simulation methods for 

investigating the EOS of silicon, spanning a wide range of plasma conditions from  = 

0.001 to 500 g/cm3 and T = 2000 to 108 K. The resulting pressures and internal energies 

have been assembled into a first-principles equation-of-state table, which is studied in 

detail by comparing it with the extensively used SESAME 3810 table of silicon. We 

found that the shock Hugoniot of silicon is ~20% softer in FPEOS than SESAME 3810. 

For off-Hugoniot warm-dense-plasma conditions, the pressure difference can reach ~50% 

between FPEOS and SESAME 3810, while the internal energy difference is within ~20%. 

After implementing the FPEOS table of silicon into our 1-D radiation–hydrodynamics 

code LILAC, we tested its effects on HED plasma simulation by carrying out hydro-

simulations of an ICF implosion with a Si shell using either FPEOS or SESAME 3810. 

The simulation results indicated that (a) the FPEOS-predicted shock density is ~20% 
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higher than the SESAME 3810 case (accordingly, the shock speed is ~10% lower in the 

former case); (b) the peak density of the imploding Si shell is ~20% larger in FPEOS than 

in SESAME; (c) the maximum density at peak compression is different by ~40%; and 

(d) the final areal density and yield predicted by FPEOS are also significantly varied, 

respectively, by ~30% and ~70%, with respect to the SESAME simulation. The observed 

differences in target performance can be attributed to the different compressibility of 

silicon predicted by FPEOS. These studies illustrate the importance of having a more-

accurate EOS table in order to precisely design ICF/HED experiments. Hopefully these 

results will facilitate shock-wave experiments in the untested high-pressure (>10-Mbar) 

regime. 
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Figure captions 

FIG. 1. (Color online) The pressure as a function of silicon plasma temperature for all 

densities ( = 0.001 to 500 g/cm3) scanned by our first-principles (KSMD + OFMD) 

calculations. 

 

FIG. 2. (Color online) (a) The shock Hugoniot of silicon predicted by FPEOS (blue solid 

line) is compared to the EOS-model SESAME 3810 (red dashed line), a recent KSMD 

study (green dashed line),28 and available experiments (various symbols) by Pavlovskii 

et al.,16 Gust and Royce,17 and Goto et al.18 (b) A comparison of heat capacity 

calculated from FPEOS and SESAME 3810 along the principal Hugoniot. The diamond 

phase silicon (0 = 2.329 g/cm3) is chosen as the initial state for the Hugoniot 

calculations. 

 

FIG. 3. (Color online) The off-Hugoniot equation-of-state comparisons between FPEOS 

and SESAME 3810. The (a) pressures and (b) internal energies are plotted as functions of 

temperature for a silicon density of  = 5 g/cm3.  

 

FIG. 4. (Color online) Same as Fig. 3 except for a different silicon density of  = 10 

g/cm3.  

 

FIG. 5. (Color online) The pressure comparisons between FPEOS and SESAME 3810 for 

higher densities of silicon plasmas: (a)  = 50 g/cm3 and (b)  = 500 g/cm3.  
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FIG. 6. (Color online) The laser pulse shape and target dimensions for implosion 

simulations to test the silicon-EOS effects. The capsule consists of a 40-m-thick silicon 

shell (0 = 2.329 g/cm3) filled with 3 atm of DT gas. The initial target radius R = 

1200 m. The total laser energy is 800 kJ with 8-ns pulse duration, available on NIF-type 

facilities. 

 

FIG. 7. (Color online) Comparisons of density and electron temperature profiles 

predicted by the two LILAC simulations using FPEOS (blue solid lines) and SESAME 

3810 (red dashed line) EOS models. The snapshot was taken at t = 0.9 ns, when the first 

shock was still propagating in the silicon layer.  

 

FIG. 8. (Color online) Same as Fig. 7 but for different implosion times: (a) t = 5.4 ns (in 

flight of the imploding shell) and (b) t = 7.9 ns (the end of shell acceleration). 

 

FIG. 9. (Color online) Comparisons of density and ion temperature profiles predicted by 

the two LILAC simulations using FPEOS (blue solid lines) and SESAME 3810 (red 

dashed line) EOS models. The snapshot is shown for the instant at their peak neutron 

production (t ~ 9.0 ns). 

 

FIG. 10. (Color online) Comparisons of (a) the areal density R and (b) the total neutron 

yield as functions of time, for the two LILAC simulations using FPEOS (blue solid lines) 

and SESAME 3810 (red dashed line) EOS models. 

 


