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FIG. 1: Left: DMET benchmark energies (half-filling U = 4) agree well with the best state-of-the-art data from AFQMC and
DMRG (Simons Collaboration [1]). Right: Cluster size convergence of DMET (cellular and DCA formulations): embedded
cluster energies converge to the TDL much faster than when using twist-averaged boundary conditions [2].
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We briefly describe some selected results below. (In this section, “Pub.” refers to numbers above).

1. Developments in density matrix embedding. DMET is a quantum embedding theory that we introduced at the
beginning of the last funding period, around 2012-2013. Since the first DMET papers, which demonstrated proof-of-
principle calculations on the Hubbard model and hydrogen rings, we have carried out a number of different develop-
ments, including:

• Extending the DMET technology to compute broken symmetry phases, including magnetic phases and super-
conductivity (Pub. 13).

• Calibrating the accuracy of DMET and its cluster size convergence against other methods, and formulation of
a dynamical cluster analog (Pubs. 4, 10) (see Fig. 1).

• Implementing DMET for ab-initio molecular calculations, and exploring different self-consistency criteria (Pubs.
9, 14).

• Using embedding to define quantum classical interfaces Pub. 2.

• Formulating DMET for spectral functions (Pub. 7) (see Fig. 1).

• Extending DMET to coupled fermion-boson problems (Pub. 12).

Together with these embedding developments, we have also implemented a wide variety of impurity solvers within
our DMET framework, including DMRG (Pub. 3), AFQMC (Pub. 10), and coupled cluster theory (CC) (Pub. 9).

It is also worth noting that in the last few years, many other groups have started to contribute to different aspects
of DMET [3–6].

2. Applications to correlated lattice models. We have applied DMET in many different settings ranging from molecules
(Pub. 9), to surfaces, to different kinds of correlated lattice models (Pubs. 3, 4, 7, 10, 12, 13). Through the economy
of the DMET formulation, together with efficient ground-state solvers, we have used larger impurity clusters than
previously employed in zero temperature studies, e.g. up to 100 sites, (Pub. 10).

Amongst these applications, we have carried out several studies on the 1-band Hubbard model on a square lattice,
the prototypical model for the high Tc cuprates (Pub. 13). Here we have computed a highly-converged ground-state
phase diagram, a long-standing goal of numerical simulation (Fig. 2). Our worst case estimated error, across the range
of parameters, is between 0.001-0.01t (about 3-30K in physical units). While this accuracy has been achieved before
for select values of the Hubbard U and doping parameters, this is, to our knowledge, the first full phase diagram
computed at this level of precision. An independent confirmation of the accuracy of our results has recently been
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FIG. 2: Left: DMET ground-state phase diagram of the Hubbard model, showing AFM and SC regions. The “metallic”
region denotes a region where order is too weak to detect numerically [7]. Right: Stripes in the underdoped region: energy vs.
wavelength for 3 methods, showing the remarkable near-degeneracy of stripes of wavelengths between 5 and 8.
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FIG. 3: Left: Magnetic, charge, and pairing order in the 3-band model (2x2 unit cell) at 1/8 doping, showing inhomogeneous
pairing order within the 2x2 cell. Right: Preliminary ab-initio DMET calculation for magnetic order as a function of doping
in La2CuO4 and Ca2CuCl2O2. These show the correct material trends and even absolute magnitudes.

.

provided by the Simons survey, which examined the performance of 9 numerical methods, including DMET, at a
few points in the Hubbard phase diagram (Pub. 4). Our DMET calculations provide new ground-state information
beyond what has been seen in DCA simulations, as in such studies even the lowest temperatures accessed do not
reach the energy scale of competing ground-state phases. One important conclusion is that we find strong evidence
for robust ground-state superconductivity as well as for coexisting competing magnetic orders, including several kinds
of inhomogeneous orders in the underdoped region.

Recently, in a multi-method collaboration with Corboz, Noack, White, and Zhang, we have carried a further,
more detailed, DMET study of the underdoped region, to definitively resolve the order. In conjunction with several
methods, we establish that the lowest energy order at 1/8 doping is a vertically striped state (see Fig. 2), with a
charge wavelength of 8 and vanishing superconducting order. Intriguingly, our DMET calculations find almost perfect
degeneracy between stripes of wavelengths 5-8, on the scale of 0.001t per site, and this remarkable degeneracy is
supported also by the other numerical methods. This study, currently under revision for Science (arxiv:1701.00054),
highlights a new fluctuation mode that clearly will be important in the physics of the underdoped region. To our
knowledge, this may be the first conclusive numerical resolution of competing order in the underdoped region of the
2D Hubbard model.

Although the precise control that DMET now provides for the ground-state of the 2D Hubbard model is gratifying,
it is important to remember that the model is artificial. Real cuprate materials contain many more Hamiltonian terms:
long-range Coulomb, multi-orbital interactions, and disorder, all of which likely break the degeneracies observed in
the Hubbard model. For the physics of real materials, it seems urgent to include these additional effects. We have
been working hard to set up the infrastructure for ab-initio embedded calculations, and preliminary results in this



4
3

Unlike GW theory, CC approximations are invariant to the
values of the single-particle energies in the mean-field used
to generate |Φ0⟩. They are further relatively insensitive to
the single-particle orbitals, because eT1 parametrizes rotations
from |Φ0⟩ to any other determinant [43]. While CC calcu-
lations typically start from a HF mean-field calculation, in
the UEG the HF and DFT mean-field theories share the same
plane-wave states as their one-particle eigenstates. This means
that the UEG CC calculations are completely invariant to the
mean-field choice (in the paramagnetic phase). This com-
plicates a fair comparison between one-shotGW calculations
and the CC calculations. For this reason, we present calcula-
tions with both HF (HF+GW and LDA (LDA+GW) as a refer-
ence; the former may be considered a fairer comparison with
CC when assessing the diagrammatic quality of the theories.
Results. To establish the accuracy of the different methods,

we initially study a supercell containing 14 electrons in a min-
imal single-particle basis of 19 spatial orbitals (kcut = 0.572
a.u.). The electrons occupy seven orbitals, namely the orbital
with k = (0, 0, 0), corresponding to the bottom of the band in
the thermodynamic limit, and the six-fold degenerate highest
occupied orbital k = (2π/L, 0, 0) corresponding to the Fermi
level in the thermodynamic limit. For this small system, we
can compareGW and CCSD to coupled-cluster theory with all
triple excitations (CCSDT) as well as numerically exact dy-
namical density matrix renormalization group (DMRG) cal-
culations of the spectral function.
Figure 1(a) shows our results for the deeply bound k =

(0, 0, 0) state. All spectral functions (except for GW+C) ex-
hibit two peaks: a quasiparticle peak near −6 eV and a strong
satellite peak near −10 eV nd excellent agreement between
the CCSDT and the dynamical DMRG result. The agreement
between CCSD and the DMRG result is aso very good, in par-
ticular for the quasiparticle peak. Starting from the same HF
reference as typically used in coupled-cluster theory, HF+GW
yields a much less accurate result: the binding energy of the
quasiparticle is too large by about 1 eV and the spectral weight
is overestimated by almost a factor of 2. This error is inherited
from the underlying HF mean-field theory and illustrates the
starting point dependence of the method. Even worse results
are obtained for the satellite feature which is at far too low an
energy. However, when starting from a DFT-LDA reference,
the GW approximation gives results with much improved ac-
curacy, and is only slightly worse than CCSD. (As discussed
above, in the UEG the CC results are invariant to the refer-
ence).
Interestingly, GW+C yields several satellite peaks with in-

correct energies and underestimated peak heights, illustrat-
ing some of the challenges in systematically improving on
GW theory through standard vertex corrections. By construc-
tion, theGW+C approach produces a plasmon-replica satellite
structure (see below) even for small systems, which is physi-
cally incorrect.
Consistent with Fermi liquid theory, the spectral functions

of the k = (2π/L, 0, 0) state shown in Fig. 1(b) exhibit signifi-
cantly weaker electron correlations than the spectral functions

(a) k = (0, 0, 0) (b) k = (2π/L, 0, 0)
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FIG. 1. Spectral functions for the UEG with rs = 4.0 using a
supercell containing 14 electrons in 19 spatial orbitals. (a) For the
k = (0, 0, 0) state, the spectral functions exhibits a prominent satellite
peak. (b) For the highest occupied state at k = (2π/L, 0, 0), the spec-
tral function exhibits a strong quasiparticle peak with a very weak
satellite structure; only converged data points are shown for DMRG.
A linewidth broadening of η = 0.2 eV is used in all calculations.

of the k = (0, 0, 0) state. Specifically, all methods predict a
strong quasiparticle peak with a binding energy of about 5 eV
and weak satellite features. The inset of Fig. 1(b) shows that
the detailed structure of the satellites is quite complex. While
CCSDT accurately captures the complex features seen in the
exact spectrum, none of the other methods are fully satisfac-
tory. In particular, HF+GW pushes satellite features to too
low energies, the LDA+GW places the satellite peaks at too
high an energy, and CCSD places them in between. GW+C
correctly reduces the weight of the main GW satellite peaks
but does not otherwise improve the spectrum.
Next, to study the approach to the thermodynamic limit,

we carried out calculations on larger supercells for which
CCSDT and dynamical DMRG are no longer computationally
tractable. We performedCCSD,GW, andGW+C calculations
for supercells containing 38, 54, 66 and 114 electrons; here
we will only discuss the largest system studied. For the 114
electron system, we used plane-wave basis sets with at least
485 spatial orbitals, corresponding to kcut = 0.985 a.u, which
is sufficiently large to converge all peak positions to within
0.2 eV.
Figure 2(a) shows the spectral function of the k = (0, 0, 0)

state for the UEG with 114 electrons in 485 orbitals. The
CCSD spectral function exhibits a strong quasiparticle peak
near −6 eV. For the GW calculations, we observe again a
strong dependence on the mean-field starting point: while the
quasiparticle energy from LDA+GW agrees very well with
CCSD, that from HF+GW is significantly worse. This is not
surprising since DFT-LDA yields much more accurate metal-
lic bands than HF.
At higher binding energies, the CCSD spectral function ex-

hibits a rather complex satellite structure, however two ma-
jor regions of spectral weight can be identified near −12
eV and −18 eV. In contrast, both the HF+GW and the
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best 0 K “experimental” lattice energy is �55.3 ± 2.2 kJ/mol, as estimated in Table 2.
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direction, for the 3-band cuprate Hubbard model and for an ab-initio 40 band cuprate representation are shown in
Fig. 3.

3. Coupled cluster calculations in the condensed phase. We have also explored using coupled cluster methods in the
condensed phase, building off our earlier work on local molecular coupled cluster methods, funded in earlier rounds
by the DOE. To investigate the potential of condensed phase coupled cluster calculations, we carried out a simple
initial exercise, namely to compute as accurately as possible the lattice energy of the benzene molecular crystal, a
well-studied benchmark for crystal structure total energy methods (Pub. 1). We aimed to establish whether or not
we could achieve the same absolute predictive accuracy that coupled cluster provides in molecular problems. Because
the molecular crystal lattice energy can be obtained from a series of supramolecular calculations via the many-body
expansion, we could simply reuse our existing local coupled cluster molecular codes. With large basis sets and high
levels of correlation, we found that we could determine the lattice energy to within an estimated uncertainty of about
0.75 kJ/mol, similar to the accuracy achievable in molecular thermochemistry.

Highly accurate lattice energies are essential to distinguish between the stability of crystal polymorphs. Our
calculation was the first to achieve an accuracy below the 1 kJ/mol polymorph energy scale. Interestingly, we
found that our lattice energy estimate was significantly different from the experimental estimates (by about 2-3
kJ/mol). Since our estimate was obtained by converging the solution of the Schroedinger equation without further
approximations, such a deviation could only come from errors in the experimental estimate! As we showed in our
analysis in Pub. 1, this was indeed the case, as the experimental number employed an incorrect thermal extrapolation
and zero point energy correction. Even though these systematic calculations are relatively expensive, the ability to
compute lattice energies to this accuracy has important implications for crystal structure prediction, as today most
search algorithms can identify a set of plausible correct polymorph structures, and but lack the ability to correctly
rank the few candidates in energy.

While our calculation on the benzene crystal targeted the ground-state, the simulation of materials spectra is a
more central objective. To study the use of coupled cluster theory for condensed phase spectra, we first considered the
simplified setting of the 3D uniform electron gas (Pub. 15). Here, we computed single-particle spectral functions using
equation-of-motion coupled cluster and compared them against the GW and GW+C (cumulant) approximations, as
well as DMRG benchmarks. We found that the CC spectral functions significantly improved on GW and GW+C,
particularly in the satellite regions (Fig. 4). Further, the CC spectra had no dependence on the initial mean-field
state, unlike standard single-shot GW.

The success of the above exercises provides real motivation to develop and explore genuine periodic implementations
of ground-state and spectral coupled cluster methods, for condensed phase energetics and spectra beyond existing
ab-initio diagrammatic approximations. This is one of the major thrusts of our current work.

4. Model Hamiltonian derivation. We have continued to work on methods to derive model Hamiltonians from ab-initio
calculations, in particular through numerical canonical transformations. The most common difficulty is the divergence
of canonical transformations near perturbation theory singularities. We found a particularly simple regularization of
perturbation theory that allows for qualitatively accurate model Hamiltonians in molecules to be derived by a simple
second order canonical transformation (Pub. 11).

5. Multi-reference perturbation theory solvers. For realistic impurity models associated with bare Hamiltonian inter-
actions, as of interest in the current proposal, one has to treat a wide range of energy scales that includes a set of
strongly correlated degrees of freedom coupled to a larger number of weakly correlated, higher energy orbitals. We
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have been investigating multi-reference perturbation theory methods, and in particular density matrix renormaliza-
tion group plus perturbation theory, as a practical approach to this problem (Pubs. 5, 16, 17). We have extensively
tested our DMRG + PT solvers in strongly correlated molecular applications (see e.g. Fig. 4 where we show one of
the most accurate binding curves for the Cr2 molecule, the archetype of a strongly correlated molecule, determined
using DMRG + SC-NEVPT2).

6. Gaussian basis software infrastructure for periodic many-body methods. Behind any ab-initio many-body calculation
lies many layers of computational infrastructure. In molecular quantum chemistry, these various layers - integral
transformations, Hartree-Fock solvers, Gaussian integrals, basis sets - are well decoupled, and in a structured molecular
code one can choose to work on the different components (e.g. on correlation methods) without concerns about the
other layers (such as basis sets). However, the same infrastructure and separation of components is less well-developed
in ab-initio periodic codes. One reason is the historical emphasis on DFT, where the supporting technology (e.g. for
many-body matrix elements) has not been needed, while another factor is the use of plane-wave basis sets, which due
to their large number, prevent the straightforward construction and storage of many-body wavefunctions and matrix
elements, thus complicating the separation of responsibilities.

In the last funding period, we have been building a new open-source simulation package, PySCF (github.com/
sunqm/pyscf) to simplify the development of electronic structure methods, and many-body quantum methods in
particular. Our code is unusual in that it aims to achieve equal capabilities for the quantum chemical treatment of
molecules, and for many-body simulations of materials. Our technology is based on Gaussian basis sets, whose com-
pactness is an important advantage in many-body calculations, as we have recently demonstrated (Pub. 8). Our open
source PySCF project now provides start-of-the-art implementations of many molecular methods, competitive with
the leading commercial quantum chemistry software packages. Our recent work has extended the base infrastructure
(basis sets, integrals, mean-field solvers, and integral transformations) to periodic boundary conditions and Brillouin
sampling. A unique feature of PySCF is that it provides this leading performance while being implemented primarily
in Python, which greatly enhances ease-of-use.
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