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Abstract

Propagation of a strong shock through a bed of particles results in complex wave dynamics
such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle
bed. In this paper we present three-dimensional numerical simulations of shock propagation
in air over a random bed of particles. We assume the flow is inviscid and governed by the
Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of
the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise
and transverse drag coefficients as a function of time for each particle in the random bed as
a function of volume fraction. We show that (i) there are significant variations in the peak
drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance
through the bed decreases with a slope that increases as the volume fraction increases, and
(iii) the deviation from the mean peak drag does not correlate with local volume fraction. We
also present the local Mach number and pressure contours for the different volume fractions to
explain the various observed complex physical mechanisms occurring during the shock-particle
interactions. Since the shock interaction with the random bed of particles leads to transmitted
and reflected waves, we compute the average flow properties to characterize the strength of the
transmitted and reflected shock waves and quantify the energy dissipation inside the particle
bed. Finally, to better understand the complex wave dynamics in a random bed, we consider
a simpler approximation of a planar shock propagating in a duct with a sudden area change.
We obtain Riemann solutions to this problem, which are used to compare with fully resolved
numerical simulations.

1 Introduction

The study of shock interaction with particles has been largely motivated because of its wide ranging
applications in engineering systems and natural phenomena. It has applications in drug delivery
systems [1], volcanic eruptions, dust storms in mines, supernovae and explosive dispersal of particles
using a smoke grenade. Shock interaction with a bed of particles has also been studied to predict
blast wave attenuation using porous media to design products for blast wave mitigation. The
complex interaction between the compressible flow features, such as shock wave and expansion fan,
the dispersed phase, and the resulting turbulence makes these multiphase flows very difficult to
predict and control. Furthermore, these problems encompass a wide range of spatial and temporal
scales resulting in challenges for modeling and numerical simulations. Experimental measurements
of high speed multiphase flows are also fraught with difficulties. Nonetheless, the problem of
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shock interactions with particles has been actively researched using different computational and
experimental approaches over last couple of decades.

Multiple experiments and numerical solutions have been carried out to investigate the problem
of shock particle interaction. At the level of an isolated particle, Igra, Britan, Takayama, Tanno
and Sun et al. [2–6] have carried out experiments and simulations to report the unsteady drag
experienced by a particle during shock impingement. Parmar et al. [7–9] rigorously solved the
linearized compressible Navier-Stokes equations to obtain a model that accurately predicts the
unsteady force on the particle during shock propagation, that compared well with the experimental
data reported by Sun et al. [6]. More recently, a number of numerical solutions of shock interaction
with multiple particles have been reported. Lu et al. [10] performed direct numerical simulations
of shock interaction with a cloud of particles and built a multi-scale model using neural network
to predict the particle motion. Regele et al. [11] carried out two-dimensional simulations of shock
interaction with cylinders. They reported a pressure drop inside the bed and reduced the two-
dimensional phase-averaged information to a one-dimensional model to predict the flow behavior.
They also highlighted the effect of Reynolds stress induced in the flow because of the presence
of the particles. Collins et al. [12] reported the flow field fluctuations during shock interaction
with randomly distributed foam fibers and investigated collapse of foam fibers and eventual mixing
caused by unsteady flow in the particle bed. Sridharan et al. [13] considered shock propagation
over a streamwise array of particles and investigated the effect of particle spacing and shock Mach
number on the drag experienced by the array of particles. They reported increase in the peak drag
coefficient as the shock traveled deep into the array. Mehta et al. [14] carried out simulations of
shock interaction with a one-dimensional transverse array of particles and reported that temporal
deviations in the drag coefficient from that of a single particle can be correlated to the acoustic-
particle interaction time. More recently Mehta et al. [15] performed fully resolved three-dimensional
numerical investigation of shock interacting with structured array of particles. They examined the
effect of shock Mach number and volume fraction on the drag experienced by the particles. They
also reported pressure fluctuations inside the particle bed and pressure attenuation behind the
particle curtain.

When an incident shock encounters a particle bed, one of the primary effects of the particle
bed is to act as a sudden contraction, since the area of cross-section for the flow rapidly decreases
from 100% to (100 − φ1)% across the leading front of the bed, where φ1 is the volume fraction of
particles within the bed. If we ignore for the moment the role of particles in diffracting the shock
wave and the resulting momentum exchange between the particles and the flow, we can simplify
the problem as a planar shock propagating in a duct with a sudden area reduction. We note that
an analytical solution of the Riemann problem for a duct with a sudden change in cross-sectional
area has recently been obtained by [16–18]. Unlike the standard problem of a planar shock tube
of uniform cross-section, with a sudden area change, a total of four different waves (a combination
of shocks, expansion fans, contact discontinuity and stationary wave) propagate upstream and
downstream. A variety of possible flow configurations, including the possibility of resonance, has
been shown to exist. Resonance occurs when different elementary waves are not well separated and
they coincide.

Here, we exploit these general Riemann solutions in the context of a strong shock propagating
into a particle bed. After the incident shock encounters the leading front of the particle bed, a
reflected wave travels upstream of the particle bed and a transmitted shock travels downstream
through the particle bed. The strength and nature of the reflected wave, whether it is a shock wave
or an expansion fan, depends on parameters such as the incident shock strength and the volume
fraction of the particle bed. On average the strength of the transmitted shock is less than that
of the incident shock, i.e., shock interaction with a particle bed results in pressure attenuation
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behind the particle bed [19, 20]. However, it has been observed in case of shock propagation
through a structured array of particles or rods that there are localized regions within the array
where the shock pressure could be amplified due to constructive interference or shock focusing
[21]. Recent three-dimensional simulations have however shown that the overall effect is to weaken
the transmitted shock because of energy dissipation inside the particle bed [15]. In this work we
will obtain solutions of the corresponding Riemann problem considering only the effect of the area
reduction. These solutions show the nature of waves other than the reflected and transmitted shocks
to propagate through the bed. The Riemann solutions can then be compared to those of numerical
simulations of shock propagation through a bed of particles to highlight the role of particles in
diffracting the flow.

For an isolated spherical particle the critical Mach number is 0.6. If the Mach number based on
relative velocity between the oncoming flow and the particle exceeds the critical Mach number, the
flow as it negotiates around the particle becomes supersonic around the particle resulting in the
formation of shocklets. If the Mach number of the oncoming flow is greater than unity, a bow shock
will form ahead of the particle. In the case of an incident shock wave in air, for shock Mach numbers
less than 1.50, the Mach number of the post-shock uniform flow is below critical. Incident shock
Mach numbers greater than 1.50 will result in the formation of shocklets during the post-shock
flow. For incident shock Mach numbers greater than 2.0 there will be a bow shock forming ahead
of the particle. These results are for shock propagation past an isolated particle. The behavior is
expected to qualitatively remain the same even for a distribution of particles. The critical values
of incident shock Mach number that will result in the formation of shocklets and bow shocks can
be expected to decrease with increasing particle volume fraction. Nevertheless, when present, the
bow shocks and local shocklets contribute to energy dissipation, which is in addition to dissipation
due to viscous mechanisms as the flow goes through the bed of particles.

As the transmitted shock travels inside the particle bed, each individual particle inside the bed
diffracts the shock wave and radiates out compression and expansion waves. Waves from individ-
ual particles interact, resulting in a complex flow inside the bed. This complex wave interaction
results in large unsteady fluctuation of flow quantities inside the bed. Currently there is very little
understanding regarding the strength and nature of these inviscid fluctuations. Flow field fluctu-
ations have a big impact on momentum and heat transfer between the continuous and dispersed
phases. There is a need to resolve these fluctuations and understand their relation to the inter-
phase momentum and energy coupling. Viscous effects add to this complexity with the formation
of boundary layers and vortical wakes behind individual particles. A bed of particles will lead to
wake-wake and wake-particle interactions as well.

To understand the effect of shock wave on the forces experienced by the particle and the back
effect of particles on the flow, here we will specifically consider the problem of a planar shock encoun-
tering a randomly distributed bed of spherical particles. We have carried out fully resolved three-
dimensional direct numerical simulations of shock interaction with randomly distributed spherical
particles. The particle volume fraction, φ1, is varied as 10%, 15%, 20% and 25%. The simulations
to be reported here are inviscid in nature, and furthermore the particles are held fixed in position
during the simulation. Thus, the applicability of the present work is limited to the short time
immediately following the passage of the transmitted shock. As pointed out in Mehta et al. [15],
during this early period the inviscid mechanisms dominate the flow and the forces experienced by
the particle. Also, for large particle-to-gas density ratios, during this early period of transmitted
shock propagation, the particles can be assumed nearly stationary.

We start with a planar incident shock of Mach number 3, which propagates inside the particle
bed. This planar wave is then distorted as it travels through the bed, resulting in spatial and
temporal fluctuations in the transmitted shock wave front. These fluctuations in shock wave front
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result in variations in drag experienced by the particles. In other words, as the transmitted shock
wave propagates through the bed, there will be substantial particle-to-particle variation in their
aerodynamic forces. These force variations are not correlated to local volume fraction but depend
on the precise location of neighboring particles. For example, a particle shielded by an immediate
upstream neighbor will experience drag reduction, wheres a particle whose upstream neighbor
contributes to shock focusing and a substantial increase in drag. Currently there does not exist any
analytical model which can explain or capture these particle-to-particle variations in drag force.
The complex three-dimensional flow within the bed also leads to transverse forces on the individual
particles. However, when averaged over a large number of particles, we expect the average to
approach zero, since the transverse force on individual particles is randomly oriented depending on
the location of its neighbors. Dissipation of energy leads to weakening of the transmitted shock
leading to a decrease in peak drag force experienced by the particles deeper in the bed. We compare
this reduction in drag force for random pack of particles with reduction in drag force experienced
by the particles arranged in structured arrays. We also compute cross-section averaged flow field
quantities such as pressure, density, and streamwise velocity and transverse velocity to quantify the
level of pseudo-turbulence within the particle bed.

This paper is organized as follows. The governing equations, computational setup, and a grid
resolution study are presented in Section 2. The Riemann solution for a planar shock propagating
in a duct is presented in Section 3. The results are presented in Section 4. Here, we compute
the streamwise and transverse forces as a function of time for each particle in the bed as the
transmitted shock propagates through the bed. We also discuss the flowfield and the pressure
attenuation through the bed. Finally, to gain a deeper understanding of the dynamics as the
imposed shock propagates into the bed, we compare numerical solutions with the Riemann solution
of a planar shock propagating in a duct. Finally, conclusions are given in Section 5.

2 Basic Model

2.1 Governing Equations

In this paper we investigate shock-particle interactions, where the interactions are dominated by
inviscid mechanisms and so viscous and thermal effects are ignored. For a discussion of relevant
time scales, see [15]. The appropriate three-dimensional equations governing an inviscid fluid are
therefore given by

∂ρ

∂t
+∇ · (ρ~u) = 0, (1)

∂(ρ~u)

∂t
+∇p+∇ · (ρ~u~u) = 0, (2)

∂E

∂t
+∇ · ((E + p)~u) = 0, (3)

where ρ is the density, ~u = (u, v, w) the velocity, p the pressure, and E the total energy per unit
volume given by

E = ρ(e+
1

2
~u · ~u), (4)

where e is the internal energy. In this work we assume an ideal gas, for which p = (γ − 1)ρe with
properties γ = 1.4, cp = 1004.6 J/kg-K, and R = 287.04 J/kg-K.
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2.2 Numerical Method

For the numerical simulations we use a finite volume solver on a body conforming unstructured
grid. A random distribution of monodispersed spheres in a rectangular box, as shown in Fig. 1(a)
is considered. The region of gas flow exterior of the spheres is discretized with a well-resolved
unstructured grid. A second order accurate AUSM+ [22] scheme is used for the flux computation
and the gradients are modified using a weighted essentially non-oscillatory (WENO) reconstruction
technique [23]. Time integration is performed using third order Runge-Kutta method. This code
has been tested and validated previously for numerous problems involving compressible flows with
shock-waves. Validation and verification of the numerical scheme can be found in [7, 24–26].

During the passage of the shock, the particles are assumed to remain rigid and immobile during
the short duration of the simulations. The configuration shown in Fig. 1(a) can thus serve as a good
approximation for shock propagation through a porous medium. We also consider this configuration
to well approximate shock propagation through a random dispersion of spherical particles. The
short-lived transient force created as the shock interacts with the particle, imparts a near impulsive
force on the particle. If the particle was allowed to freely move, as shown by Ling et al. [26],
the ratio of change in particle velocity due to this impulsive force to that of fluid velocity across
the shock scales as fluid-to-particle density ratio. For example, for aluminum particle in air, the
density ratio is O(1000) and the initial impulsive gain in particle velocity is small. The timescale
associated with significant particle movement is therefore relatively long due to the large inertia of
the particle (particle-fluid density ratio is large). Thus, for the situation and time scales considered
here, it is reasonable to ignore particle movement.

2.3 Drag

The drag coefficient is defined by

~CD =
~F

1

2
ρ6u26A

, (5)

where ~F is the force, ρ6 the post incident shock density, u6 the corresponding post incident shock
velocity, and A the cross-section of the particle. For a sphere, A = πd2p/4, where dp is the particle
diameter. Note that since we are carrying out inviscid simulations, only the pressure contributes
to the force. The force components are therefore given by

Fi = ~F · êi ≡

∫

Sp

p n̂ · êi dS, (6)

where êi is the unit vector in the xi-direction, n̂ the outward pointing normal, and Sp the surface
of the particle. In this way the drag coefficients in the (x, y, z)-directions are given by

CD =
Fx

1

2
ρ6u

2

6
A
, CL,y =

Fy

1

2
ρ6u

2

6
A
, CL,z =

Fz

1

2
ρ6u

2

6
A
. (7)

The total transverse drag coefficient is given by C2

L = C2

L,y +C2

L,z, and the total drag coefficient is

given by C2

D,T = C2

D +C2

L,y + C2

L,z.

2.4 Geometry, Simulation Setup, and Boundary Conditions

In this paper we consider particles placed randomly in a three-dimensional rectangular box; the
computational domain and distribution of particles for a fixed volume fraction of 10% can be seen
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in Fig. 1(a). The computational domain has equal y and z edge lengths, with an extended x length
that is in the direction of the flow. The computational domain shown in Fig. 1(a) can be separated
into two distinct regions: (i) A shocked air side that is upstream of the imposed shockwave (the
state in this region is denoted by 6©), and (ii) a pre-shocked quiescent ambient air into which the
imposed shockwave is moving (the state in this region is denoted by 1©). The two regions are
marked in Fig. 1(b).

X

Y

Z

(a)

Post-Shock

Flow

Partic le  BedShockwave

6 1 

(b)

FIG. 1: (a) Diagram of computational domain with 200 rigid particles randomly dispersed. (b)
Imposed shock wave moving into a bed of particles.

Since we are solving the inviscid equations, there are only a few relevant length scales in the
problem. These are the particle diameter, the mean inter-particle distance, and the length scale
associated with the unit cell of the particle bed. The mean inter-particle distance is related to
global particle volume fraction defined by

φ1 =
VpNp

Vc

. (8)

We fix the particle diameter dp = 100 µm, with the volume of a particle defined by Vp = (π/6)d3p.
Here, Np is the total number of particles within the computational domain and Vc is the volume of
the unit cell that contains the the Np particles. The domain is chosen to be 8 particle diameters
in length along the y and z directions. Along the streamwise direction the computational domain
is separated into an upstream region without particles and a downstream region containing a
random distribution of particles. The streamwise length of the computational domain containing
the particles is chosen to be about 12 particle diameters, whose precise value are chosen such
that as the particle volume fraction varied from 10% to 25%, the number of particles within the
computational domain varied from 200 to 500 respectively. Particles are randomly placed within
the downstream section of the computational domain with the following two constraints: (i) a
minimum allowable inter-particle spacing is maintained at dp/20, and (ii) a minimum allowable
spacing between a particle and the domain walls along the y and z directions is also maintained at
dp/20.

The pre-shock state is quiescent ambient air with p1 = 101.325 kPa and ρ1 = 1.2048 (kg/m3).
The post-shock conditions for air for a shock Mach number of Ms = 3.0, as determined by the
Rankine-Hugoniot relations for an ideal gas with γ = 1.4 and R = 287.04 J/kg-K, are p6 = 1047.025
kPa, T6 = 784.951 K, ρ6 = 4.647 kg/m3, and u6 = 762.529 m/s. The post-shock Mach number
is M6 = 1.36. The shock speed in the absence of particles is us = 1029.678 m/s. Note that the
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post-shock pressure p6 in air remains well below the yield strength for most materials (0.2 GPa),
and so we do not expect the particles to deform.

For each volume fraction the simulation domain length in the streamwise x-direction is chosen
large enough to avoid disturbances/reflections from upstream and downstream boundaries. The
upstream boundary is treated as constant inflow boundary with inflow at post-shock properties,
while all other boundaries, including the particle surfaces, are treated as slip walls.

2.5 Data Analysis

We characterize the randomized particle bed by generating a three-dimensional Voronoi tessella-
tion of the domain where the centers of the Voronoi cells are the centers of the particles in the
computational domain. Fig. 2 shows a sample Voronoi tessellation of a random particle bed for
a 25 percent volume fraction bed. The orange lines in Fig. 2 mark the boundaries of the Voronoi
cells. The blue objects are the particles in the domain. Thus, each particle is associated with a
Voronoi cell and the number of Voronoi cell faces corresponds to the number of closest neighbors.
By definition, all points within the Voronoi cell are closer to the corresponding particle than all
the neighbors. The size of the Voronoi cell around each particle gives a measure of how much
personal space each particle has as dictated by the location of its nearest neighbors and hence,
provides information about the local volume fraction that is associated with each particle. This
local volume fraction was computed for each particle in every simulation. The equation used to
calculate the local volume fraction of the ith particle is given by

φi =
Vp

VV,i

. (9)

where VV,i is the Voronoi volume associated with the ith particle. Each simulation for a different
volume fraction has a unique distribution of particles. Even for the same volume fraction, different
realizations with different distribution of particles can be considered. The distribution of particles
within the computational domain will result in a unique distribution of local volume fractions
associated with the particles. The mean, standard deviation, minimum and maximum values of
the local volume fraction based on Voronoi volumes for the different simulations are tabulated to
provide additional characterization of the different particle distributions. These values are provided
in Table I. By definition

∑Np

i=1
VV,i = Vc, and as a result it can be seen that the mean local volume

fraction based on Voronoi cells will not be precisely equal to φ1. As can be seen from the table the
difference between the two definitions of mean volume fraction is small, but non-zero. At φ1 = 10%
the standard deviation is about 36% of the mean volume fraction and with increasing volume
fraction the standard deviation decreases to about 22% of the mean at φ1 = 25%. This reduction
is consistent with the fact that with increasing volume fraction there is less freedom in the relative
position of the neighboring particles. Observe that for φ1% the volume of the smallest Voronoi
cell is only 30% of the mean and the largest Voronoi cell is 250% of the mean, indicating large
variations in the local volume fraction, even though the particles are randomly distributed with
uniform probability. The level of variation decreases with increasing φ1, but remains substantially
large even at φ1 = 25%. Another way to quantify this local volume fraction variation is given by

φflui
=

φi − φ1

φ1

, (10)

which is just the relative difference between the local volume fraction of the Voronoi cell and the
packing fraction.
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FIG. 2: Voronoi tessellation of the domain with 500 randomly placed particles; volume fraction
25%.

TABLE I: Statistics of the Voronoi cell volume fractions for different volume fraction grids. The
columns correspond to (1) volume fraction φ1 as defined by equation (8); (2) the mean volume
fraction as determined from Voronoi tessellation; (3) the standard deviation; (4,5) the minimum
and maximum volume fractions based on equation (9). Note that all quantities are in percentages.

Volume
Fraction

Mean Volume
Fraction

Std Volume
Fraction

Min Volume
Fraction

Max Volume
Fraction

10 10.75 3.88 3.09 24.81

15 15.59 4.65 5.07 29.53

20 19.94 4.53 8.03 31.08

25 24.78 5.38 10.07 38.43
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2.6 Grid Resolution

Unstructured tetrahedral grids are used for carrying out the fully resolved three-dimensional sim-
ulations of a shock propagating over a random bed of particles. DistMesh [27] is used to generate
the mesh on the surface of the spherical particles. Once a surface mesh is created around the parti-
cles, TetGen [28] is used to generate the body-conforming unstructured tetrahedral mesh inside the
simulation domain. The quality and size of the elements in the domain determines the sharpness
of the shock and the accuracy of the solution. Similarly, adequate mesh resolution on the particle
surface is required to properly compute aerodynamic forces, which are determined by integrating
the pressure on the surface of each particle. The quality and size of the elements are controlled
by monitoring the element aspect ratio and maximum element volume. Surface mesh resolution is
controlled by specifying the maximum element area.

Previously, a grid resolution study was performed for a face-centered cubic (FCC) array of
particles to determine the effect of these two constraints, the size of the elements in the domain
and the surface mesh resolution per particle, on the solution [15]. Various grids were generated by
varying the volume mesh and the surface mesh. For each mesh, the drag coefficient was compared
to that of a well resolved simulation for shock propagation past a single isolated particle. In this
way the error as a function of resolution was quantified. Based on the resolution study for the FCC
array, we selected an appropriate mesh that balanced convergence of the peak drag coefficient with
computational costs. We then generated unstructured grids for volume fractions of 10, 15, 20, and
25%. The total cell count for the grids and the number of particles in the random bed as a function
of volume fraction are shown in Table II.

TABLE II: Tetrahedral cell counts and number of particles for different volume fractions.

Volume Fraction Number of Tet Elements Number of Particles

10 16,316,466 200

15 17,462,616 300

20 18,588,773 400

25 19,702,876 500

To determine the adequacy of the grid used in these simulations, we show in Fig. 3 a plot of the
drag coefficient as a function of nondimensional time t/τ for a single isolated particle (red) with
that of the first particle in the random bed (black). Here, τ is the shock-particle interaction time
defined by

τ = dp/us, (11)

where us is the shock speed and dp is the particle diameter. The metrics that can be compared
between the two simulations are the initial rise of the drag coefficient, the peak value of the drag
coefficient, and the initial decay of the drag coefficient as the shock passes over the particle. From
the figure we note that (i) both the initial rise and the initial decay in the drag coefficient compares
well with that of the single particle; (ii) there is a small deviation of about 2% in the value of the
peak drag coefficient; and (iii) that the time that the peak occurs is slightly shifted from that of
the single particle result. The time shift in the peak and the difference in peak values are due
to the reduced mesh resolution of each particle compared to the resolution used for the isolated
particle. This reduction was necessary to keep the simulation at a reasonable size and cost. Also
from the figure we see that for t/τ > 2 the drag coefficient of the leading particle deviates from the
drag coefficient of the isolated particle. This is because of the interactions of the shock reflections
off the adjacent particles that occur in the random particle pack simulation. In other words, the
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time history of the force on the leading particle at later times is influenced by the presence of the
neighboring particles.

0 1 2 3 4
t/τ

0

0.5

1

1.5

2

C
D

FIG. 3: Plot of streamwise drag, CD, as a function of non-dimensional time, t/τ for isolated particle
(red) and the leading particle in the random pack (black); Ms = 3.

3 Riemann Solution

Before we proceed to the analysis of the simulation results for a shock propagating through a
random bed of particles, in this section we will first consider the simpler approximation of a planar
shock propagating in a duct with a sudden area reduction. The instant when the incident shock
is positioned exactly at the location of area reduction is shown in Fig. 4(a), with the pre-shock
ambient state on the right marked by 1© and the post-shock high-pressure state on the left marked
by 6©. The area to the left is taken to be A6 = 1, and the area to the right is set as A1 = 1−φ1. The
left and the right states are related through the Rankine-Hugoniot relations for the incident shock
of Mach number Ms. Fig. 4(b) then represents a Riemann problem, where across an imaginary
diaphragm located at x = 0 we have the classic problem of a jump in the flow state represented
by velocity, pressure and density, but in addition we also have a jump in the cross-sectional area.
The solution to this Riemann problem can be obtained by solving equations (1-3), along with the
following equation for the volume fraction evolution

∂φ

∂t
= 0 , (12)

which simply states that the initial area change remains unchanged over time.
The above Riemann problem represented by Fig. 4(a) has been recently investigated by [16–18].

These investigations are more general than the particular case of an imposed shock propagating
through a duct of sudden area reduction, as they presented solutions for any combination of values
for gas velocity, pressure, density, and change in cross-sectional area across the diaphragm. In
particular, Han et al. [18] classified the general solution into six basic cases for the left-to-middle
(L-M) waves and a matching six basic cases for the right-to-middle (R-M) waves, which taken
together covers all solutions for all possible initial conditions. The six L-M cases are differentiated
according to (i) whether the flow in state 6© is supersonic or subsonic, and (ii) the ordering of two
different areas As and AT (defined below) with respect to A6 and A1. The six R-M cases on the right
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FIG. 4: Plot of (a) 1-D setup of shock propagation over discontinuous area change, (b) wave
configuration based on initial data, and (c) approximate locations of waves in the domain.
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are differentiated similarly. In the absence of resonance there are four waves: a stationary wave with
three other elementary waves that can be a shock wave, expansion fan, or a contact discontinuity.
For some initial conditions the solution exhibits resonance, which results in a complex resonant
wave with two other elementary waves.

Here we apply this general theory for the present case of the post-shock state 6© on one side
and pre-shock ambient state 1© on the other side of the sudden area reduction, as shown in Fig.
4(a). Let the gas velocity, pressure, density, and speed of sound in the left state be u6, p6, ρ6,
and c6, respectively. The corresponding values on the right are u1, p1, ρ1, and c1. Values for our
problem for a Mach 3.0 shock wave moving into quiescent ambient are given in Table III. For
this case the post-shock flow on the left is supersonic, therefore u6 − c6 > 0 and also u1 + c1 ≥ 0.
Furthermore, the particle bed represents an area reduction (i.e., A6 > A1). Following [18], two
more area parameters AT and AS are defined as

AT = A1

∣

∣

∣

∣

u6
c6

∣

∣

∣

∣

[

(

γ − 1

γ + 1

)(

u6
c6

)2

+

(

1−
γ − 1

γ + 1

)

]

−

1

2( γ−1
γ+1)

, (13)

AS = A1

∣

∣

∣

∣

u6
0

c60

∣

∣

∣

∣

[

(

γ − 1

γ + 1

)(

u6
0

c60
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where u6
0 and c6

0 are given by
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For our initial conditions, the values of AT and AS are computed, and we note that A6 > AS >

AT > A1. Based on this ordering, we classify the L-M wave structure as belonging to case VI
and correspondingly the R-M wave structure as belonging to case II, according to the classification
of [18]. The resulting resonant wave structure that is most relevant for our setup is given in Fig.
4(b). Immediately following the arrival of the incident shock at the sudden area reduction, there
is a reflected shock wave moving to the left, a stationary wave at x = 0 across which the area sees
a reduction, followed by a resonant expansion fan whose head is attached to the stationary wave
while its tail moves to the right, followed by a contact discontinuity that also travels to the right,
and finally a right moving transmitted shock.

The wave structure described in Fig. 4(b) is illustrated with approximate relative positions of
different wave components in a duct with sudden area reduction in Fig 4(c). State 6© represents
the post-shock flow ahead of the reflected shock moving to the right and the Mach number of the
reflected shock will be denoted by Mr. State 5© represents the subsonic side of the reflected shock,
and the flow continues to travel in the positive streamwise direction. Between states 5© and 4©

there is a sudden area change where the incoming subsonic flow expands isotropically, and this is
the stationary wave mentioned previously. At state 4© there is a resonant expansion wave which
is coincident with the stationary wave. The upstream front of the expansion fan is stationary,
while the downstream front is moving into region whose state is given by 3©. States 3© and 2©

are connected by a contact discontinuity across which the density and temperature change. The
ambient state 1© and state 2© are connected by the transmitted shock, which is traveling in the
positive streamwise direction and whose Mach number is denoted by Mt.
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We now describe the step-by-step process involved in obtaining the unique solution represented
by the wave structure given in Fig. 4(c). We consider a representative example with incident shock
Mach number 3.0 and an area change of 10% across the particle bed.

Step 1 - We are given the post-shock state 6©, from which for varying values of the reflected
shock Mach number Mr we obtain the shock speed and the flow quantities across the reflected
shock for state 5©. We now demand that (i) the velocity of the reflected shock ur be negative;
i.e., that the reflected shock must move upstream, and (ii) the gas velocity of state 5© be positive.
These constraints restrict the possible reflected shock Mach numbers to be between 1.3580 and
2.1040. For all the possible values of the reflected shock Mach number, the flow for state 5© is
always subsonic.

Step 2 - The next is to match the post-reflected-shock state 5© with the stationary wave, which
is isentropic flow through an area change, to obtain the flow state 4©. In our case the area change is
like a contracting nozzle, since (A6 = A5) > (A4 = A1). A subsonic inflow into a contracting nozzle
can at most reach a sonic state. In the present work we consider area reductions of 10% to 25%,
and in all these cases the flow becomes sonic for state 4©. This is indeed a condition for resonance,
since only then the head of the expansion fan that is to follow, whose velocity with respect to the
local flow must be sonic, will remain stationary in the laboratory frame, and coincide with the
stationary wave. For smaller area reductions it is possible that the flow at state 4© may still be
subsonic and deviate from the scenario shown in Fig. 4(c). However, if the flow reaches a sonic
state after the area reduction, there is only one unique possible solution for the reflected shock and
the post-reflected-shock flow. For example, for an area change of 10%, the flow must enter the area
reduction at a Mach number of 0.6787 to reach the sonic condition (or Mach 1.0) as it exits the
area reduction. The corresponding reflected shock Mach number is 1.4180 with a slow upstream
velocity of ur = −33.87 (m/s). Table III summarizes the flow properties for states 5© and 4©.

Step 3 - The resonant wave is an expansion fan whose upstream front is stationary and the
downstream front is moving at local speed of sound into a region with state 3©. The expansion
fan is an isentropic process and flow properties within the expansion fan can be easily evaluated in
terms of the Mach number corresponding to state 3©. In particular, we calculate the gas velocity
and pressure for state 3© for varying values of M3 and plot them in Fig. 5 as the black curve.

Step 4 - We know that the flow with state 3© is followed by a contact discontinuity to state 2©

and a transmitted shock from state 2© to 1©. Since the pressure and velocity do not change across
a contact discontinuity, the pressure and velocity behind the transmitted shock for state 2© must
match those presented in Fig. 5 for state 3©. Since the ambient conditions at 1© are known, the
state of the gas behind the transmitted shock can be fully expressed in terms of the transmitted
shock Mach number, Mt. We vary the transmitted shock number and plot in Fig. 5 the resulting
pressure versus velocity for state 2© as the red curve. It is clear from the plots that there is a unique
solution given by the intersection point between the two curves, which yields a common pressure
and velocity for states 3© and 2©. We find that the transmitted shock Mach number to be nearly
the same as that of the incident shock (i.e., Mt ≈ 3) with a velocity of ut = 1029.414(m/s).

Step 5 - The corresponding densities for states 3© and 2© however are not be equal. This
results in a contact discontinuity across which both density and temperature change. The contact
discontinuity travels downstream at the local gas velocity. In the case of 10% volume reduction the
density jump across the contact discontinuity is 1.0137. Table III summarizes the flow properties
for states 3© and 2©. Strength of the contact discontinuity is computed by taking the ratio of
densities in state 3 and 2, which is presented in Table III.

We repeat Steps 1-5 for different area changes to obtain the flow properties across the wave
structure. Plots of pressure, density, and velocity for different area changes are presented in Fig.
6. In addition, the key properties of these solutions are listed in Table IV. These baseline Rie-
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mann solutions of the sudden contraction will be used to compare with those from the numerical
simulations of shock propagation through a random particle bed to be presented in the subsequent
sections.
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FIG. 5: Plot of pressure as a function of velocity for different Mach numbers for states three and
two.

TABLE III: Flow properties across the domain for 10% area reduction and for an imposed shock
Mach number of 3.

Flow property State 6 State 5 State 4 State 3 State 2 State 1

u(m/s) 762.5293 428.9251 602.9424 763.3319 763.3319 0

P (MPa) 1.047025 2.281653 1.640794 1.046600 1.046600 0.101325

ρ(kg/m3) 4.6470 7.9967 6.3187 4.5829 4.6459 1.2048

M 1.3577 0.6787 1.0 1.3500 1.3576 0

4 Simulation Results

In this section we present numerical results of a shock propagating over a random bed of particles
that are held fixed in space and time. We study the effect of volume fraction for a fixed shock
Mach number Ms = 3. We compute the individual force histories on each particle as well as flow
field information to extract data about the behavior of the shockwave as it propagates through the
random particle bed. The main insights that can be obtained from the results are an understanding
of how the interaction of a shock with the distribution of particles affects its propagation, as well
as how the presence of a large number of adjacent particles modifies the force experienced by each
individual particle as it interacts with the shock wave.
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FIG. 6: Plot of normalized (a) pressure, (b) density, and (c) velocity across the domain at t/τ = 12
for φ1 = 10%, 15%, 20%, and25%.

TABLE IV: Flow properties across the domain for different area reductions and for an imposed
shock Mach number of 3.

φ1 Mr ur(m/s) Mt P5/P6 ρ5/ρ6 u5/u6 P4/P6 ρ4/ρ6 u4/u6 P2/P6 ρ2/ρ6 u2/u6 ρ2/ρ3
10% 1.41 -33 3.00 2.178 1.721 0.562 1.567 1.359 0.791 1.000 1.000 1.000 1.014

15% 1.47 -64 3.03 2.365 1.816 0.513 1.606 1.377 0.795 1.020 1.007 1.012 1.019

20% 1.52 -91 3.05 2.529 1.896 0.471 1.645 1.395 0.799 1.035 1.012 1.021 1.009

25% 1.56 -115 3.07 2.687 1.971 0.432 1.687 1.414 0.805 1.047 1.016 1.029 1.011
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4.1 Streamwise Force on the Particles

The time histories of streamwise force for an imposed shock propagating through a three-dimensional
random bed of particles are presented in Fig. 7 for the four different volume fractions considered in
this study. Note that the streamwise force history for each particle is shown in the figure; since each
bed contains hundreds of particles, there are hundreds of curves. The force plots are affectionately
referred to as “force spaghetti” plots because of the chaotic and tangled appearance of the drag
force histories. The time resolved force histories of each particle paint a picture of the flow field
that every particle sees during the shockwave interaction.

In a sense each time history of force shown in Fig. 7 qualitatively resembles that shown in Fig.
3. This includes the characteristic feature of a rapid rise in the streamwise force due to the primary
shock, whose arrival time depends on the streamwise location of the particle, and manifests as the
horizontal shift seen in the different force histories. In Fig. 7 we note that the peak drag coefficients
of the leading particles in the random bed correspond to the limit of the shock interaction with a
single isolated particle case. The leading particles are almost isolated in the limit of small shock
interaction times; i.e., at times before transverse reflections from neighboring particles arrive to
disrupt the single particle behavior. In the classical single shock-particle interaction case, the drag
coefficient will quickly rise as the shock passes over the particle and then the drag coefficient will
either drop to zero for a subcritical inviscid case or to a constant non-zero value for the supercritical
case. For the supercritical case, the post-shock velocity is supersonic, and a bow shock forms
upstream of the particle, causing the wave drag to be non-zero. Thus, as a result of interaction
with the primary shock front, each force history rapidly reaches a peak and decays over time.

However, substantial differences are seen between the different force histories, emphasizing the
important role of secondary interactions with the reflected waves and wakes of the other particles
in the domain. For example, we can see that there are negative drag coefficients for some of the
particles in the bed, indicating that the pressure behind the particle is larger than the pressure in
front of it. In comparison, for an isolated particle subjected to a Mach 3 shock wave, at all later
times the drag coefficient remains larger than unity due to the formation of a bow shock ahead
of the particle. The presence of large variations in the streamwise force, including negative force
values, indicate the strong influence of neighbors on the force history experienced by the different
particles. Hence in what follows we will quantify both the mean force within the particle bed as
well as the particle-to-particle force variation seen within the bed.

One way to simplify the characterization of the complex force histories seen in Fig. 7 is to focus
only of the peak values of CD for each particle. Fig. 8 plots the peak streamwise drag coefficient,
CD,peak, as a function of nondimensional streamwise distance x/dp of the particle center for the
same four volume fractions shown in Fig. 7. It is clear from the figure that there is a downward
trend in the peak drag, that there is stochastic variation, and that the rate of decrease in the peak
drag increases as the volume fraction increases. For each volume fraction, a least squares linear fit
for the peak drag is carried out. The linear fit is plotted as the red line in the figure, and is given
by 〈CD,peak〉 = p1ξ/dp + p2, where ξ is measured from the leading edge of the particle bed. Here
p1 is the slope of the line and can be thought of as the rate of decrease of peak drag, and p2 is the
intercept at ξ/dp = 0, or the mean peak drag experienced by the leading particles. For the four
different volume fractions Table V presents p1 and p2 along with the goodness of the fit measured
in terms of the R2 value and also the rms value (σ) of the deviation of the actual peak CD about
the fit. Since 〈CD,peak〉 is typically in the range 0.8 to 1.6, the value of σ suggests more than 20%
particle-to-particle variation in the peak drag coefficient.

For comparison, also plotted in Figs. 8(a) and 8(c) are the peak drag coefficients obtained in the
case of Mach 3 shock propagation over a FCC array of particles at 10% and 20% volume fractions.
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FIG. 7: Plot of streamwise drag coefficient, CD, as a function of nondimensional time t/τ and for
volume fractions of (a) φ1 = 10%, (b) φ1 = 15%, (c) φ1 = 20%, and (d) φ1 = 25%.
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The figure clarifies the importance of particle arrangement. The results for the FCC arrangement
are for five streamwise planes of particle [15] which are shown in the figure. By symmetry all
particles within a streamwise plane of FCC array experience the same stream-wise drag force. For
both volume fractions the drag coefficient of the FCC arrangement increased from the leading
(first) plane of particles to the third plane, and then slightly decreased towards the fifth plane of
particles. Three mechanisms were identified contributing to the downstream variation of peak drag
force: (i) As the primary shock transmits through the particle bed, diffraction around each plane
of particles can lead to regions of shock focusing in the wake and contribute to higher drag on the
subsequent plane of particles. (ii) If the Mach number of the post shock flow is greater than critical
value, shocklets from around the particles, which dissipate energy from the transmitted shock as it
propagates into the bed. This dissipation contributes to the downstream weakening of the shock
and hence reduction in the peak drag force. (iii) Further wave reflections from the neighboring
particles contribute constructive and destructive interferences and corresponding modifications of
the force. In the case of FCC arrangement, shock focusing effect dominates over the first few planes
of particles. In the random array, the effect of shock focusing and constructive interference can
be seen as the cause of above average peak force experienced by some of the particles. However,
when averaged over all the particles at any streamwise location, we see that the effect of shock
dissipation dominates and the mean peak force steadily decreases with downstream distance from
the leading edge of the particle bed. Also, in the random array occasional particles are subjected
to destructive interference and the resulting weaker shock contributes to substantially lower than
mean drag.

Also plotted in Fig. 8 are the results for simple cubic (SC) array of particles at 10% and 20%
volume fractions. In this case 10 planes of particles are considered in the streamwise direction and
due to symmetry the drag force on all the particles that lie on a streamwise plane are the same. As
can be expected, the peak drag force for the leading particle in the random, FCC and simple cubic
array are the same. The peak drag force on the subsequent planes of SC are qualitatively similar to
that of the FCC arrangement. In the case of SC arrangement, the peak drag increases from the first
to the second plane, but steadily decreases from the third plane onwards. It is interesting to observe
that the peak drag force in the structured arrays are substantially higher than the mean drag of
the random array, thus emphasizing the importance of arrangement on promoting constructive
interference. The streamwise decay of the peak drag force in the SC arrangement is about the same
as that for the random array signifying similarities in their shocklet-induced dissipation.

φ1 (%) p1 p2 R2 σ

10 -0.0385 1.7705 0.2354 0.2468
15 -0.0568 1.7767 0.3122 0.2934
20 -0.0745 1.7687 0.5249 0.2471
25 -0.0896 1.7562 0.6359 0.2391

TABLE V: Least-squares curve fit statistics for peak streamwise drag CD,peak.

To gain some insight into the variations in peak drag observed in Figs. 7-8, we plot their
corresponding histograms in Fig. 9 as a function of the scaled peak drag coefficient, CD,peak −
〈CD,peak〉. The histograms are obtained by sorting the peak drag coefficients into bins of equal
width for each volume fraction. Also plotted as the red curve is a normal distribution that best fits
the histogram. Note that at all the volume fractions, the distribution of the peak drag coefficient
is reasonably close to a normal distribution. If one were to use point-particle drag models for the
simulation of shock propagation through a random bed, it is not sufficient to capture the mean
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FIG. 8: Plot of peak streamwise drag coefficient, CD,peak, as a function of distance x/dp. The red
curve is the least squares linear fit for the data, 〈CD,peak〉. Here, (a) φ1 = 10%, (b) φ1 = 15%, (c)
φ1 = 20%, and (d) φ1 = 25%.
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drag force. As indicated in Figs. 7 and 8, the substantial particle-to-particle variation in the drag
force must also be taken into accounted. Based on the near-Gaussian distribution, a stochastic
model can be constructed to account for the distribution of drag histories about the mean.
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FIG. 9: Histogram of scaled peak drag coefficient, CD,peak − 〈CD,peak〉. The red curve is a normal
distribution fit for the data given in Table V. Here, (a) φ1 = 10%, (b) φ1 = 15%, (c) φ1 = 20%,
and (d) φ1 = 25%.

On a local level, if we define the undisturbed flow witnessed by each sphere to be the flow in
its absence, but in the presence of all other spheres, the local undisturbed shock propagating past
each particle will depend on the precise relative arrangement of all its upstream neighbors. The
unique neighborhood of each particle results in a unique undisturbed flow seen by this particle,
which then contributes to its departure from the mean drag and lift forces. First, we will consider
the local volume fraction of each particle, obtained in terms of its Voronoi volume, to provide an
overall measure of its neighborhood. A particle with a small Voronoi volume is closely surrounded
by its neighbors, while a particle with a large Voronoi volume has its neighbors far away. Here we
will investigate the correlation of the peak drag coefficient experienced by a particle with its local
volume fraction. A positive correlation can be expected, since a higher local volume fraction would
indicate higher velocity and a faster propagation of the shock resulting in a higher drag.

In Fig. 10 we plot the normalized variation in peak streamwise drag coefficient as a function
of scaled local volume fraction. The normalized variation in peak drag coefficient is defined by
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(CD,peak − 〈CD,peak〉)/〈CD,peak〉, where CD,peak is the peak drag coefficient for each particle and
〈CD,peak〉 is the mean value shown by the red line in Fig. 8. The scaled local volume fraction is
given by, (φi −φ1)/φ1. From the figure we see that increasing the global volume fraction from 10%
to 25% decreases the spread in the local volume fraction, which is consistent with the statistics
provided in Table I. However, with increasing global volume fraction, the spread in the fluctuating
peak streamwise drag coefficient slightly increases. Contrary to expectation, this figure shows
that the increase (or decrease) in the peak drag coefficient does not correlate with an increase (or
decrease) in the local volume fraction. This observation is consistent with findings of Akiki et al.
[29] who also noted that in the case of a uniform steady flow over a random bed of particles, the
deviation of the drag force on each particle from the bed-averaged mean does not correlate with
the local volume fraction. In fact, other definitions of local volume fraction, such as number of
particles within a large volume (Quintanilla & Torquato [30]) or distance to the n-nearest neighbor
(Yazdchi et al. [31], Matsumura and Jackson [32]), can be used instead of the present definition
based on local Voronoi volume. Nevertheless, local volume fraction as defined with all such isotropic
definitions do not explain the particle-to-particle variation in the drag force [29].

It is clear that two different particles with the same local volume fraction can have vastly
different peak drag forces. For example, the two particles marked A and B in Fig. 10(b) have
nearly the same local volume fraction, but their peak CD are respectively 1.9194 and 0.7251. The
particle marked A experiences a peak drag force 45% higher than the mean, while the particle
marked B experiences a peak drag force 50% lower than the mean. The neighborhood and the
resulting pressure field around the two particles as the shock propagates through the neighborhood
of the two particles are shown in Fig. 11. It is clear that particle B is sheltered by another
particle that is located directly upstream close to it, thus decreasing the local strength of the shock
encountering particle B. Whereas, particle A’s neighbors are located such that they help in focusing
the transmitted shock as it encounters particle A. In both these cases the shock strength can be
estimated from the pressure contours. Thus, local volume fraction, or local Voronoi volume of a
particle, is not an adequate measure [29, 33]. A more precise knowledge of where the neighboring
particles (especially upstream neighbors) are located is critical in explaining higher or lower than
mean drag forces experienced by the different particles within the bed [34, 35]. Anisotropic measures
of local neighborhood involving distances to the nearest neighbors along the upstream, downstream
and lateral directions were introduced by Akiki et al. [29, 33], and these measures were shown to
better correlate with the drag force experienced by the different particles.

We now investigate the time history of the mean drag force. In order to avoid the influence
of the downstream shock decay, we will calculate the mean drag force over bins of particles. We
define each bin to be two diameters wide along the streamwise direction. Thus, the first bin will
include all particles whose center lies within −8 ≤ x/dp < −6, and correspondingly other bins are
defined. The force histories for particles in the first, third and fifth bin for φ1 = 10% are plotted
in Fig. 12(a-c). It can be seen that the shock strength within each bin can be taken to be nearly
uniform. The time history of CD presented in Fig. 12(a-c) for all the particles within the bin are
sifted in time and averaged. The bin-averaged CD for bin-1 is shown in Fig. 12 (d). Also plotted in
the figure is one sigma variation, along with drag history of a sample particle. It can be observed
that the level of particle-to-particle variation seen in the peak value of Cd persists over the entire
duration of the simulation. However, as can be seen in the figure, there is no guarantee that the
particle with the higher peak will continue to experience higher than mean force. This is due to
the fact that the neighborhood configuration that was responsible for shock focusing and increased
peak force may not present favorable conditions for increased drag during post-shock flow. Finally,
Fig. 12(e) shows the time history of the bin-averaged force for 15% volume fraction for bin-1, bin-3
and bin-5, along with the time history of force for an isolated particle subjected to Mach 3 shock.
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Note from the figure that the drag coefficient for a single particle is larger than for those for bins 1,
3, and 5, and that the peak and short time transient downstream behavior decreases monotonically
as the bin number increases.
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FIG. 10: Plot of normalized peak streamwise drag coefficient, (CD,peak − 〈CD,peak〉)/〈CD,peak〉, as
a function of scaled local volume fraction (Voronoi volume), (φi − φ1)/φ1, for (a) φ1 = 10%; (b)
φ1 = 15%; (c) φ1 = 20%; and (d) φ1 = 25%.
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FIG. 11: Contour plot of pressure for (a-d) particle with low force (particle B form Fig. 10b) and
(e-h) particle with high force (particle A form Fig. 10b) along the x-z plane at four different t/τ
as the transmitted shock passes over the particles.
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FIG. 12: Plot of streamwise drag coefficient, CD, as a function of nondimensional time t/τ and for
volume fraction φ1 = 15% for (a) bin 1 : −8 < x/dp < −6, (b) bin 3 : −4 < x/dp < −2, and (c)
bin 5 : 0 < x/dp < 2. (d) Force averaged over bin 1 along with one sigma variation and force on a
sample particle. (e) bin 1, bin 3, bin 5 averaged along with force on a single particle.
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4.2 Transverse Particle Forces

We plot in Fig. 13 the spaghetti plot of y-force on all the particles for 10-25% volume fraction.
The results for force in the z-direction show similar behavior and are not shown here. From the
plot we see that the mean transverse force, averaged over all the particles over time is zero, but
that there are significant variations. Fig. 14 also shows the time history of net transverse force
magnitude (vector sum of y and z forces). As with the drag force, the transverse force coefficient is
identically zero until the arrival of the transmitted shock. However, the transverse force due to the
transmitted shock is significant only in situations where the shock is substantially oblique when it
encounters the particle. In most other cases, the transverse force is due to the supercritical and
unsteady nature of the post shock flow. Thus, not only the magnitude, but also the instance when
the transverse force reaches a peak, varies strongly from particle to particle. It is also important to
note that the transverse force can be 20 to 40% of the streamwise force. Macroscale simulations of
shock interaction with a point particle model typically accounts for only the streamwise force on the
particle bed. Even though the mean transverse force is zero, the strong instantaneous transverse
force on the different particles is likely to play a role in both the shock transmission and the long
term motion of the bed of particles.

Fig. 15 plots the peak values CL,peak for the different particles as a function of their streamwise
location. The linear curve shown in Fig. 15 is given by 〈CL,peak〉 = q1ξ/dp + q2, with the statistics
of the least squares fit given in Table VI. The slow decay of the peak transverse force along the
streamwise direction is due to dissipation-induced shock weakening. The variability in the peak
lift force is of the same magnitude as the variability in the drag force. However, since the mean
transverse force is smaller, the relative importance of transverse force variability increases. The
histograms of the transverse force variation is presented in Fig. 16. By definition CL,peak is non-
negative and as a result the peak transverse force is positively skewed. The variations in peak
transverse force is compared to a log-normal distribution in Fig. 16.

φ1 (%) q1 q2 R2 σ

10 -0.0046 0.4065 0.0176 0.1221
15 -0.0036 0.4291 0.0112 0.1191
20 -0.0154 0.4905 0.1770 0.1159
25 -0.0229 0.5363 0.3529 0.1096

TABLE VI: Least-squares curve fit statistics for total transverse drag CL,peak.
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FIG. 13: (a) Plot of transverse drag coefficient, CD,y, as a function of non-dimensional time t/τ
and for volume fractions of (a) φ1 = 10%; (b) φ1 = 15%; (c) φ1 = 20%; and (d) φ1 = 25%.
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FIG. 14: (a) Plot of total transverse drag coefficient, CL, as a function of non-dimensional time t/τ
and for volume fractions of (a) φ1 = 10%; (b) φ1 = 15%; (c) φ1 = 20%; and (d) φ1 = 25%.
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FIG. 15: Plot of peak total transverse drag coefficient, CL,peak, for each particle. The red curve is
the least squares linear fit for the data. Here, (a) φ1 = 10%; (b) φ1 = 15%; (c) φ1 = 20%; and (d)
φ1 = 25%.
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FIG. 16: Histogram of peak transverse drag coefficient, CL,peak. The red curve is the Log-normal
distribution fit for the data given in Table VI. Here, (a) φ1 = 10%, (b) φ1 = 15%, (c) φ1 = 20%,
and (d) φ1 = 25%.
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4.3 Flow Fields

To highlight the flow dynamics as the shock propagates through a random pack of particles, we show
in Figs. 17-18 contour plots of the local Mach number, pressure, and vorticity magnitude on the
x− z plane at a fixed transverse (y = 0) location in the middle of the computational domain. The
particles cut by this x−z plane are marked as white circles. Fig. 17 plots contours at four different
times and for a volume fraction of φ1 = 15%. The initial configuration and location of the imposed
shock are shown in Fig. 17(a). As time proceeds, the imposed shock propagates downstream until
it reaches the front of the particle bed. At later times a transmitted shock proceeds through the
particle bed, which is visible in Mach number contours shown in Fig. 17(b). At this early time bow
shocks can be seen to form ahead of the lead particles. A bow shock around an individual particle is
expected to reach a steady stand-off distance from the particle, with the stand-off distance scaling
as the size of the particle. In the case of a finite cluster of particles, a reflected shock forms from
the coalescence of individual bow shocks. The reflected shock will propagate upstream to form a
collective bow shock of the particle cluster [14, 34], whose stand-off distance from the cluster will
scale as the lateral size of the cluster. In the present simulations the particle bed is of infinite extent
in the lateral directions, due to the symmetry boundary conditions along the y and z directions.
Based on this we can expect the reflected shock to continue to move upstream and reach a constant
propagation velocity, in agreement with the Riemann solution of the corresponding nozzle flow.
The imposed incoming shock is strictly planar and the reflected shock is nearly planar once the
bow shocks of the different lead particles coalesce into one. In contrast, the transmitted shock is
corrugated as it propagates through the particle bed. But it can be observed that the length scale
of these corrugations is smaller than the particle diameter. Thus, shock arrival time in a porous
medium can be reasonably well approximated to be that of a planar shock.

After the passage of the transmitted shock, shocklets are seen to form around the particles,
which can be identified as regions of higher Mach number in Figs. 17(f-h). The existence of
these shocklets is a direct consequence of the flow being supercritical; i.e., the post-shock Mach
number is locally greater than one. This observation is consistent with previous findings of a shock
propagating through a face-centered cubic array [15]. We note that the shocklets appear to connect
nearest neighbors as the volume fraction increases beyond the dilute limit. In the pressure contours
plots substantial variation in the pressure distribution around particles that are at roughly the same
streamwise location can be observed. Such differences in pressure distribution directly contribute
to particle-to-particle variation in the streamwise and transverse drag forces. In interpreting these
figures it must be borne in mind that only a x− z plane is shown. Nearby particles that do not cut
this x−z plane are not shown. However, such particles will have a strong influence on what is shown
in these figures. As the primary shock weakens the pressure drop across the propagating primary
shock decreases. However, due to shock reflection the pressure is high in the region between the
reflected shock and the upstream particle front. Also due to internal compressional waves and their
constructive superposition regions of high pressure can be seen within the particle bed, typically
close to and upstream of the particles.

Since the simulations are inviscid, the vorticity (magnitude) shown in Figs. 17(j-l) is baroclinic
in origin. In a viscous simulation additional vorticity will be generated on the surface of the
sphere due to no-slip boundary condition. Nevertheless, it is interesting to note that most of the
vorticity is in the wake region behind the particles. The downstream particles are thus subjected
to vorticity generated by the upstream particles. The deformation of the advected vorticity around
the downstream particle contributes to rotational forces on the particle [Eames & Hunt [36], Auton
et al. [37] ], whose magnitude can be estimated in terms of ~u×~ω where ~u and ~ω are the undisturbed
velocity and vorticity at the particular location.
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Fig. 18 plots similar quantities but at a fixed time and for different volume fractions. Several
points should be noted. First, the upstream propagation speed of the reflected shock is in general
small, but appears to form quicker and travel upstream faster as the volume fraction increases.
Comparing with the results of the Riemann problem shown in Fig. 6, it can be observed that
the speed of the reflected shock is higher for the larger area reduction cases. The terminal Mach
number of the reflected shock, is presented in Table VII, which can be compared with that shown
in Table IV for the Riemann problem. It can be seen that the strength of the reflected shock,
computed from numerical simulations is slightly higher than those predicted by the 1-D Riemann
theory.
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FIG. 17: Contour plot of Mach number (a-d); pressure (e-h); and vorticity (i-l) along the x − z
plane at y = 0 for Ms = 3.0 and φ1 = 15% at (a,e,i) t/τ = 0; (b,f,h) t/τ = 4; (c,g,k) t/τ = 8; (d,h,l)
t/τ = 12.
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FIG. 18: Contour plot of Mach number (a-d); pressure (e-h); and vorticity (i-l) along the x − z
plane at y = 0 for Ms = 3.0 at t/τ = 12 for (a,e,i) φ1 = 10%; (b,f,h) φ1 = 15%; (c,g,k) φ1 = 20%;
(d,h,l) φ1 = 25%.
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4.4 Shock Attenuation through the Particle Bed

In this section we plot y − z-averaged flow quantities in the computational domain to determine,
among other things, the strength of the transmitted shock. These cross-stream-averaged plots can
be compared to those of the Riemann problem in order to better understand the impact of the
particles on the flow, and to investigate the pressure attenuation or local amplification behind the
particle (porous) barrier.

To compute averaged flow quantities, the computational domain is decomposed into 200 indi-
vidual y-z slices. The flow field variables on the slices are then averaged to obtain a mean value of
the quantities on the slice. This process yields a discrete set of averaged flow quantities that vary
with time and the streamwise x-direction. If a flow variable is denoted as F (x, y, z, t), then the
process for determining the averaged value of the flow field variable on a slice is given by

〈F 〉(x, t) =
1

Ag

∫

Ly

∫

Lz

Ig(x, y, z)F (x, y, z, t) dydz. (17)

where Ly and Lz are the size of the computational domain along the transverse directions. Here,
Ig(x, y, z) is the indicator function that identifies only the region occupied by the gas, outside the
particle volume (i.e., Ig = 1 in the gas and Ig = 0 inside the particle). Thus, the integral is only
over the cross-sectional area occupied by the gas and correspondingly Ag =

∫

Ly

∫

Lz

Ig(x, y, z) dydz is

the cross-sectional area occupied by the gas.
The cross-stream-averaged pressure, density, and (u, v, w) velocity components normalized by

post-shock values are shown in Figs. 19-21, respectively, and for the four volume fractions considered
in this study. Here we consider the flow field results from the 200 2-D slices. Four representative
times are used to show the evolution of the averaged flow field with time as the transmitted shock
passes through the particle bed. Note that all four cases of volume fraction have the same post
incident shock properties in the absence of a particle bed (i.e., same state 6© ), so the deviation
from this state indicates how the flow in each particle bed differs.

The transmitted shock front can be seen in Fig. 19 as the location where the pressure rises
rapidly from the ambient pressure state, which is the constant state on the right side of these figures.
All quantities are scaled by their post incident shock value, and thus ahead of the reflected shock,
all normalized quantities reach a constant value of 1.0 on the left. For 10% volume fraction, the
pressure distribution shown in red of Fig. 19(a) is the initial condition with the shock discontinuity
placed upstream of the particle bed. Hence the region between shocked and unshocked is clearly
marked with a sharp pressure discontinuity. As the shock moves into the particle bed (green, blue,
black) a coalesced bow shock begins to form upstream of the particle bed. The presence of this
coherent bow shock can be seen as the steep pressure rise above the post shock pressure ahead of
the particle bed. For the 15% volume fraction case, we can see in Fig. 19(b) that the pressure
distributions are qualitatively similar to those in Fig. 19(a). The effect of the higher volume fraction
in the bed can be seen in the peak upstream pressure increasing by about 20 percent compared to
the peak in Fig. 19(a). In both these lower volume fraction cases, the pressure across the reflected
shock continues to increase over the range of time considered. Thus, it can be concluded that the
reflected shock is still developing towards a quasi-stationary state. For the 20% volume fraction
case shown in Fig. 19(c), we can see that the pressure distributions are qualitatively similar to those
of 10% and 15%. However, the pressure increase across the reflected shock upstream of the particle
bed has reached a steady value, which is indicated by the near constant flat pressure distribution
between the reflected shock and the front of the particle bed. This flattened peak is about 40%
higher than the peak pressure of the 10% volume fraction case. This increase in pressure between
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the reflected shock and the front of the particle bed with increasing particle volume fraction is in
qualitative agreement with the corresponding behavior seen in the Riemann problem for sudden
area reduction. The pressure ratios are given in Table VII for the four different volume fractions,
which can be compared against the corresponding values presented in Table IV for the Riemann
problem. From Fig 19, note that the growth of the coalesced bow shock is faster with increasing
volume fraction. But this temporal development through coalescence of individual bow shocks is
only a feature of the particle bed, as the reflected shock instantly forms in the case of the Riemann
problem. Furthermore, the temporal development only pertains to the peak pressure, since in Fig.
19 the location of the reflected shock can be observed to steadily move upstream in all the cases
considered. Similar to the previous pressure plot for 20% volume fraction, we see that the peak
upstream pressure across the reflected shock increasing and plateauing in Fig. 19(d) for 25% volume
fraction.

The pressure drops rapidly across the front face of the particle bed, which can be clearly observed
in the higher volume fraction cases. The pressure continues to fall steadily across the bed and the
pressure gradient increases with volume fraction. The pressure gradient within the bed appears to
be nearly a constant in the high volume fraction cases, while in the low volume fraction cases the
gradient seems to be slightly larger close to the front face of the particle bed.

The pressure jump on the right seen in all the plots is due to the transmitted shock. The pressure
change across the shock front in all the cases experiences a decay with time as the transmitted shock
front moves through the particle bed. Also, unlike the reflected shock, the pressure jump across
the transmitted shock appears to occur over a region of finite thickness. From the Mach number
contours shown in Figs. 17 and 18 it is clear that the transmitted shock is not planar. The
undulations in the transmitted shock front as it diffracts around the bed of particles is responsible
be the apparent finite thickness of the transmitted shock.

Fig. 20 shows the density variation with x/dp at four different times for the four different
particle bed volume fractions considered in this study. The density profiles are quite similar to
those of pressure shown in Fig. 19. Again the signature of the reflected shock can be seen as the
rapid increase in density upstream of the particle bed. The density of the gas rapidly decreases
as it enters the particle bed, which is most evident at the higher volume fraction. Again the
density linearly decreases within the upstream portion of the bed, and reaches a near constant
value ahead of the transmitted shock. This behavior is entirely consistent with the density plot of
the Riemann solution presented in Fig. 6. The region of linear density variation within the bed
denotes the presence of a resonant expansion fan, whose thickness increases over time. However,
such a constant state is not observed in the pressure distribution, since the decrease in pressure
within the bed is due to both the resonant expansion fan and shocklet-induced energy dissipation.
Nevertheless, the presence of a contact discontinuity cannot be discerned in the density plots, due
to the very small value of the density jump that can be expected from the Riemann problem. The
density jump seen in Fig. 20 across the reflected shock is consistent with the reflected shock Mach
number presented in Table VII and similarly the density jump across the transmitted shock is
consistent with the transmitted shock Mach number presented in Table VII.

The normalized streamwise velocity profiles are shown in Fig. 21. Here the velocity drops across
the reflected and the transmitted shocks. As can be expected, the streamwise velocity increases
sharply as the flow enters the bed of particles. Within the bed itself the velocity continues to
increase. This increase is partially due to the resonant expansion fan and partially due to the
dissipative decrease in pressure. We also calculated cross-stream averaged y and z components
of velocities (but not shown here). They are typically limited to only 2% to 3% of the mean
streamwise velocity. From statistical considerations we expect the ensemble-averaged transverse
velocities to be zero and thus their small non-zero values are indicative of the effect of the finite

35



-15 -10 -5 0 5 10
X/dp

0

0.5

1

1.5

2

2.5

3

3.5

<
P
>

P
6

(a)

-15 -10 -5 0 5 10
X/dp

0

0.5

1

1.5

2

2.5

3

3.5

<
P
>

P
6

(b)

-15 -10 -5 0 5 10
X/dp

0

0.5

1

1.5

2

2.5

3

3.5

<
P
>

P
6

(c)

-15 -10 -5 0 5 10
X/dp

0

0.5

1

1.5

2

2.5

3

3.5

<
P
>

P
6

(d)

FIG. 19: Plot of normalized streamwise-averaged pressure, 〈p〉/p6, in the random particle bed at
four times and for (a) φ1 = 10%, (b) φ1 = 15%, (c) φ1 = 20%, and (d) φ1 = 25%. Times shown are
t/τ = 0 (red), t/τ = 4 (green), t/τ = 8 (blue), and t/τ = 12 (black). The location of the imposed
shock at t/τ = 0 is approximately at x/dp = −9. The particle bed begins at approximately
x/dp = −8.
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dimension of the computational domain in the y and z directions. With a larger computational
domain in the transverse directions the mean y and z velocities can be further decreased, however
the computational cost will increase as well.

Ratios of pressure, density, and velocity behind the transmitted shock normalized by the post
incident shock properties (P2/P6, ρ2/ρ6, and u2/u6) are presented in Table VII. These ratios help
us quantify the dissipation inside the particle bed, since in the absence of particles the incident
shock will be the transmitted shock. Note that the flow properties behind the transmitted shock
in the case of the Riemann problem are nearly equal to the post incident shock properties. Also
given in Table VII is the strength of the transmitted shock Mt, which can be compared with the
Mach number of the transmitted shock for the Riemann problem given in Table IV. It is clear that
the strength of the transmitted shock decreases as the volume fraction increases. We see from the
table that the pressure drop across the particle bed varies between 13% for φ1 = 10% to 33% for
φ1 = 25%. Thus, there is a significant drop in the post-shock pressure of the transmitted shock
front. This trend is consistent with the observed drop in the peak particle drag coefficients shown
in Fig. 8. This decay of the transmitted shock is due to the added dissipation within the bulk of
the particle bed, which will be further discussed in the following section.

TABLE VII: Flow properties across the domain from numerical simulations for different area re-
ductions ; Ms = 3 and t/τ = 12.

φ1 Mr Mt P5/P6 ρ5/ρ6 u5/u6 P4/P6 ρ4/ρ6 u4/u6 P2/P6 ρ2/ρ6 u2/u6
10% 1.41 2.75 2.174 1.699 0.582 1.879 1.473 0.646 0.874 0.921 0.881

15% 1.59 2.64 2.778 2.016 0.412 1.811 1.379 0.659 0.799 0.880 0.822

20% 1.67 2.43 3.101 2.160 0.339 2.186 1.665 0.633 0.718 0.805 0.789

25% 1.72 2.34 3.277 2.229 0.304 2.216 1.606 0.562 0.678 0.761 0.751
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FIG. 20: Plot of normalized streamwise-averaged density, 〈ρ〉/ρ6, in the random particle bed at
four times and for (a) φ1 = 10%, (b) φ1 = 15%, (c) φ1 = 20%, and (d) φ1 = 25%. Times shown
are t/τ = 0 (red), t/τ = 4 (green), t/τ = 8 (blue), and t/τ = 12 (black).
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FIG. 21: Plot of normalized streamwise-averaged velocity, 〈u〉/u6, in the random particle bed at
four times and for (a) φ1 = 10%, (b) φ1 = 15%, (c) φ1 = 20%, and (d) φ1 = 25%. Times shown
are t/τ = 0 (red), t/τ = 4 (green), t/τ = 8 (blue), and t/τ = 12 (black).
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4.5 Approach to Equilibrium

The nozzle flow considered in Sec. 3 is similar to the problem of shock propagation through a bed of
particles, except for the inviscid drag induced on the particles within the bed and the corresponding
feedback effect on the flow. In the case of the 1-D nozzle flow shown in Fig. 4, the reflected and the
transmitted shocks form very rapidly and propagate at constant velocity without any decay, and
thus the 1-D nozzle flow can be considered to have reached its equilibrium state. A few additional
points should be noted. In the inviscid nozzle limit there is dissipation of energy only at the
reflected and the transmitted shocks, but the rate of energy dissipation remains a constant, since
the reflected and the transmitted shock strengths remain the same over time; i.e., the reflected and
the transmitted shocks are steady in respective frames attached to them. The equilibrium state
of shock propagation in a 1-D nozzle flow is possible only when the dissipation rate is a constant.
From Fig. 6 it is clear that the reflected shock will continue to move upstream at a constant speed,
which is substantially lower than the speed of the transmitted shock.

The most significant difference between the 1-D nozzle solution and the results shown in Figs. 19
to 21 is the continued decay of the transmitted shock as it propagates deeper inside the particle bed.
In contrast the transmitted shock in the 1-D nozzle is of constant strength. The difference between
the two configurations is the presence of shocklets within the particle bed as the near uniform
flow behind the transmitted shock negotiates around the random distribution of particles. These
shocklets contribute to energy dissipation within the particle bed, which is in addition to dissipation
that occurs at the reflected and transmitted shocks. As the transmitted shock propagates deeper
into the particle bed, an increasing region of shocklets and energy dissipation forms within the bed
swept by the transmitted shock. Thus, unlike in the 1-D nozzle flow where dissipation is limited
to the reflected and the transmitted shocks and therefore remains a constant over time, in the case
of a particle bed the rate of dissipation increases over time. This increasing total dissipation rate
is related to (i) the steady reduction in the strength of the transmitted shock, (ii) the enhanced
pressure gradient within the particle bed (in the 1-D nozzle flow the pressure gradient is only in
the resonant expansion fan), and (iii) the next positive inviscid drag experienced by the particles
over long time well after the passage of the transmitted shock.

We now can investigate conditions under which an equilibrium state will be approached in the
case of shock propagation over a bed of particles. When the particle bed is of finite thickness
(in other words in case of shock propagation past a frozen particle curtain), we can expect an
equilibrium state to be approached over a very long time. As the transmitted shock moves past
the finite-sized particle bed, subsequent evolution can be studied as a 1-D sudden expansion and
the corresponding Riemann solution for the transmitted and reflected waves can be obtained. The
reflected waves which propagate into the bed of particles will interact with the forward propagating
contact discontinuity and the expansion fan, before reaching the front face of the particle bed.
Similar reflections will occur for the contact as well as the expansion fan as they reach the back end
of the particle bed. Over time there will be repeated reflections of waves inside the particle bed, with
each reflections contributing to possible transmitted waves. The strength of these reflections decay
over time and a final quasi-equilibrium state for the original reflected and the original transmitted
shocks can be expected. This quasi-equilibrium state will depend on the net rate of dissipation
that occurs within the bed of particle, which will approach a steady value as the internal reflections
decay over time.

Two other factors that were not considered in the present simulations will affect the equilibrium
state and its approach. It is appropriate to include viscous effects to represent the flow within
the particle bed, even when the high-speed flow away from the particle bed can be satisfactorily
represented by the Euler equations. The added viscous effect will enhance the aerodynamic force
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on the particles, both during the transient state when the transmitted shock and the subsequent
internally reflected waves propagate through the bed and during the long-term stationary state well
after the passage of the transmitted shock. The enhanced dissipation within the bed of particles
will decrease the equilibrium strengths of the reflected and transmitted shocks.

The relative importance of the viscous drag within the particle bed depends on the strength
of the incident shock. In the present case of Mach 3 incident shock, the post-shock velocity is
supercritical (i.e., greater than 0.6). As a result of the supercritical flow within the particle bed
after the passage of the transmitted shock, shocklets are created within the bed, which result in
dissipation and inviscid drag on the particles. Viscous effects will add to this dissipation and drag on
the particles. With increasing incident shock Mach number the viscous contribution to dissipation
and drag will become smaller. On the other hand, as the incident shock Mach number decreases
below a certain critical value (which may depend on the particle volume fraction of the bed) the flow
within the bed after the passage of the transmitted shock will remain entirely subsonic. In which
case, the entire dissipation and drag on the particles is due to viscous effects. At such weak incident
shock Mach numbers, an inviscid simulation result can be expected to be in closer agreement with
the 1-D nozzle theory, as there is no added dissipation within the particle bed.

Substantial differences arise if the bed of particles is allowed to move downstream in response
to the aerodynamic forces exerted on it (Wagner et al. [35], Ling et al. [25]). If the particle inertia
is large, the particle acceleration will be slow and the velocity of the bed may not be significant
until the transmitted shock is far downstream of the bed. Thus, as long as the transmitted shock
is within the particle bed or only a short distance downstream, the results for a freely moving
particle may still be close to those for a stationary bed. Over long time two effects contribute
to a substantially different behavior. As the particles within the bed start to move downstream,
the relative velocity between the particles and the surrounding gas decreases. As a result both the
inviscid and viscous drag on the particles decrease over time, which will in turn modify the reflected
and transmitted shocks. Also, experiments and simulations have shown that the thickness of the
particle bed increases over time [25, 35, 38]), which will also influence the strength of the reflected
and transmitted shocks.

Finally, let us consider the situation when the thickness of the particle bed is large. If we
first restrict our attention to a strong incident shock in the inviscid limit, the following scenario
can be envisioned. As the transmitted shock propagates through the bed its strength decreases
due to shocklet-induced dissipation. As the transmitted shock strength decreases, there will be
a location (Lcrit) within the bed where the shock strength is sufficiently low that the flow after
the shock passage is subcritical and does not support any internal shocklets within the bed. In
this case, dissipation within the bed is limited to only upstream of Lcrit and the extent of the bed
beyond this point is unimportant. The transmitted shock strength at the very beginning will be
as predicted by 1-D nozzle theory, but it will steadily decrease until the transmitted shock reaches
Lcrit. Beyond this point the transmitted shock strength will remain the same (as there is no
additional dissipation), which is its inviscid equilibrium state. Correspondingly, the reflected shock
will reach its equilibrium state as well. This equilibrium picture is pertinent only in an inviscid
simulation. With viscous effects into account, dissipation rate will continue to increase within the
bed and an equilibrium state cannot exist in the case of a very thick bed. The transmitted shock
will be fully dissipated.
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5 Conclusions

An investigation of a strong shock propagating through a random bed of spherical particles was pre-
sented. Three-dimensional numerical simulations were carried out and results for varying volume
fraction at a fixed shock Mach number were given. We first computed the local volume fraction
around each particle by means of Voronoi tessellation, and show significant variation in the local
volume fraction. Knowledge of such information is useful when understanding the influence of
nearest neighbors on global flow quantities such as drag. We next computed the unsteady inviscid
streamwise and transverse drag coefficients for each particle in the random bed and found that the
drag for each particle is strongly influenced by its nearest neighbors and the volume fraction. In
particular, we show that the peak streamwise drag coefficient as a function of streamwise distance
through the random bed decreases, and that the rate of decrease increases with volume fraction.
We show that when properly scaled, the particle-particle variation of the peak streamwise drag
coefficient can be well represented by a normal distribution. We also show that the peaks do not
correlate with the local volume fraction or local Voronoi volume of a particle. Similar observations
are made for the transverse particle forces. We also plotted the local Mach number and pressure
contours for various volume fractions to explain the observed complex physical mechanisms occur-
ring during the shock-particle interactions. Since the shock interaction with the random bed of
particles lead to transmitted and reflected waves, we compute the average pressure to characterize
the strength of the transmitted shock wave to study pressure attenuation through the particle bed.
Finally, to better understand the complex wave dynamics in the particle bed, we compare solutions
of the random bed to the Riemann problem of a shock propagating in a duct with a discontinuous
cross-sectional area. Future work will include viscous effects as well as particle movement.
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