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Section 1

Abstract

This white paper introduces the application of advanced data analytics to the modernized grid. In 
particular, we consider the field of machine learning and where it is both useful, and not useful, 
for the particular field of the distribution grid and buildings interface.  While analytics, in general, 
is a growing field of interest, and often seen as the golden goose in the burgeoning distribution 
grid industry, its application is often limited by communications infrastructure, or lack of a focused 
technical application. Overall, the linkage of analytics to purposeful application in the grid space 
has been limited. In this paper we consider the field of machine learning as a subset of analytical 
techniques, and discuss its ability and limitations to enable the future distribution grid and the 
building-to-grid interface. To that end, we also consider the potential for mixing distributed and 
centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of 
computer science that studies and constructs algorithms that can learn from data and make 
predictions and improve forecasts.  Incorporation of machine learning in grid monitoring and 
analysis tools may have the potential to solve data and operational challenges that result from 
increasing penetration of distributed and behind-the-meter energy resources.  There is an 
exponentially expanding volume of measured data being generated on the distribution grid, which, 
with appropriate application of analytics, may be transformed into intelligible, actionable 
information that can be provided to the right actors – such as grid and building operators, at the 
appropriate time to enhance grid or building resilience, efficiency, and operations against various 
metrics or goals – such as total carbon reduction or other economic benefit to customers.   While 
some basic analysis into these data streams can provide a wealth of information, computational 
and human boundaries on performing the analysis are becoming significant, with more data and 
multi-objective concerns. Efficient applications of analysis and the machine learning field are 
being considered in the loop. 

This paper describes benefits and limits of present machine-learning applications for use on the 
grid and presents a series of case studies that illustrate the potential benefits of developing 
advanced local multi-variate analytics machine-learning-based applications.  
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Section 2

Introduction, Opportunity and Goals

A vision of the future distribution grid and its interface to buildings is one of cohesion – an 
interactive reliable environment where there are consumer benefits and motivations to leverage 
customer owned behind-the-meter assets to provide services to the grid, energy markets, other 
entities within the distribution feeder, and ultimately to the larger society as a whole. This future 
distribution grid may be a reliable, safe, and resilient energy transport platform that supports high 
penetration of DER or other strategies that lead to a decarbonized utility.

The growth of communicative DER and connected behind-the-meter power electronic devices may 
introduce fluctuations and uncertainty not previously seen on the distribution grid if the resources 
operate independently, or are driven by independent communications and controls. However, these 
new data generating and communicative features may also offer a vast opportunity to increase the 
operational efficiency of both the grid and the buildings connected to it, but only if the data 
collected at all the various nodes can be easily transformed into intelligible, actionable information.

Considering the customer interface to the grid, and vice versa, is a key opportunity to which 
analytics can be applied to enable greater interaction and unlock the potential of these resources.  
For example, in the vision we describe of cohesion, the availability of the resource to provide a 
particular service must be understood for that asset to be utilized and rewarded.  The average 
customer has no desire to perform power flow calculations and evaluate their available data on a 
minute by minute, or even daily basis, and a contribution to a new service such as power quality 
management may have a difficult transition into the language of the consumer.   Application of 
analytics at this interface will allow the automation of this function, providing useful information 
to the consumer regarding what they are participating in, while also giving the utility and grid a 
clear accurate understanding of the resources availability and performance.  The existing 
customers benefit from new markets, new customers can integrate more distributed resources, all 
customers will have improved reliability, and the utility can manage the distributed generation 
adequately.  We consider analytics to either derive information, diagnostics, prediction or a 
prescription or instruction for optimal control.   While existing descriptive and diagnostic analytics 
for example, simple fault location and outage analysis, do not require forward thinking analytics, 
but a processing of information to distill useful information, utilizing this data in a prediction or 
prescription often requires a method of correction which can be enabled by machine learning.  We 
discuss this in later stages of this introductory paper.  

To further this point, the large spatial footprint of the distribution grid and the diverse locations of 
its assets and node points make observability of normal, stochastic, and dynamic behavior and 
monitoring and diagnosis of abnormal (faults) and even planned (demand response or DER 
dispatch) events challenging tasks for the existing descriptive analytics field.  The lack of 
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observability, controllability, and validation/verification of DER and other behind the meter assets 
including their availability due to consumer behavior, preference, and choice may be a barrier to 
developing new transaction based markets, where consumer resources interact with one and other 
to provide or receive these services.  

The work being developed by the multi-national laboratory team, funded through the Grid 
Modernization Initiative will evaluate these challenges to develop data driven solutions leveraging 
multi-scale machine learning based analytics.  The work utilizes various data sets across the nodes 
within the end to end power system (e.g. generation to end use) to automatically produce accurate 
actionable information for the various parties and actors encompassing the power system.  At the 
heart of the work, applied analytics are required to turn these raw data into actionable information. 
Machine learning is required to enable a predictive prescriptive, computationally efficient and 
accurately managed modernized grid.  

Although the terms data and information are often used interchangeably, in the context of 
analytics, they differ: Data are measurements – for example voltage, current, phase angle, power, 
or even metadata such as location and sensor type – and information is the actionable result of an 
application of an analytics technique to the data – for example calculating the availability of a 
behind-the-meter resource, predicting availability over time or the mean time to failure of a 
component, verifying the success of a requested action, and determining the best course of action 
with available resources.  We examine where further development is needed to address gaps in 
existing analytics techniques to successfully apply these techniques to the grid and present notional 
case studies to demonstrate the potential value of these data analytics.

This paper will answer key questions related to: 

• Machine learning and its definition as specific to the grid and buildings interface
• Existing state of the art in machine learning applied to building and grid datasets 
• Key case studies of machine learning applied to building and grid datasets with value 

propositions to each
• Proposed next steps to realize these solutions at the DOE programmatic level
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Section 3

Machine Learning and its Application at the Buildings to Grid 
Interface

Characteristics of the distribution grid that make it daunting for conventional analysis but ideal for 
application of machine learning are randomness of customer behavior, high nodal volume, lack of 
useful metadata and the number of unknowns such as grid topology and availability of behind-the-
meter resources. In addition, the increasing number of sensors being deployed to monitor and help 
reliably manage the distribution grid produce constant streams of data.  However, mere availability 
of more data will not, by itself, lead to changes in grid visibility, security, and resiliency. In order 
to create the predictive and prescriptive environment required for enablement of new markets, 
customer revenue and a reliable grid, the data must collected, organized, evaluated, and analyzed 
using sophisticated pattern-detection (i.e. incipient failure analysis can have subtle signatures only 
recognizable by advanced analytics) and discovery algorithms to provide actionable information 
allowing operators and customers to reliably manage an increasingly complex grid, and to enable 
progress toward scientific and engineering solutions for distribution grid challenges. 

In analytics you can consider analyses as descriptive analysis (what is there), diagnostics 
(determining the problem), predictive (forecasting) and prescriptive (determining a corrective or 
beneficial action).   Descriptive and diagnostic analyses often are considered as being performed 
either on historical or towards real-time data, whereas predictive and prescriptive analyses project 
the outcome into a future dataset and information from that set.  While there are benefits to 
applying machine learning to diagnostics and descriptive analysis, the present set of analytics on 
historical data can do little towards forecast and prescription. 

Take the following case of a failing distribution transformer and three potential scenarios.  Firstly 
we consider the existing state of the art.  The transformer fails catastrophically due to an internal 
problem which has been developing for weeks. Customers and smart meters reports an outage in 
a region and field crews are dispatched to switch and replace, depicted on the left side of Figure 1.  
While we may have a grid with DER and microgrids available to respond, the lack of prediction 
and prescription does not allow their full capabilities to be utilized.  The transformer will be 
replaced, but the customer loses reliable power and generation revenue.  Consider the hybrid case, 
with descriptive and diagnostics enabled, the fault can be quickly located and the exact reason for 
the problem diagnosed. Field crews are more accurately dispatched, and therefore a more efficient 
use of resources. However, there is still an outage.  In the machine learning enhanced state the 
analytics determined, based on available measured data, that there was a developing fault within 
the transformer (incipient fault detection). The application, in close to real time, analyzed a set of 
scenarios it had been taught were effective in this case and determined the best reconfiguration 
and resource dispatch, and the appropriate customer rates applied for participation.  The action to 
reduce transformer load is taken quickly, without major operator or field crew intervention, and 
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the transformer can then be easily repaired or replaced.  This is depicted on the right side of Figure 
1.   The benefits of the third approach to the consumer are reduced outage time, and new markets 
for the DER.  The utility benefits from predictive analysis by enabling repair rather than run to 
failure.  Field crew dispatch time is minimized with appropriate analysis.  

Figure 1. Example of State of the Art in Analytics

In Summary
 The problem we are addressing is too great a volume of raw data and not enough distributed 

analysis to turn these data into actionable predictive and prescriptive information.
 Existing analytics depend on singular, siloed data sources and techniques; analytics need 

to evolve to be adaptive and applicable, relying on multiple data sources in real-world 
settings.

 Machine learning is a good choice when a domain is poorly understood such as the 
distribution grid and grid-building interface, particularly with the growth in behind-the-
meter DER. 

 Fundamental research is needed to develop/advance machine learning techniques that 
account for power-systems physics and variability at the building-to-grid interface, with 
acceptable computational burden.
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Section 4

Case Studies and State of the Art in Machine Learning 

A significant volume of analyses are already being proposed for the power grid and buildings 
interface.  Analyses such as consumption, forecast of load, and outages at present often rely on 
single data sources, such as smart metering on/off status being utilized to diagnose an outage 
location. Within the existing analytics platforms where techniques such as machine learning are 
already implemented, there are numerous instances of siloed data sources and techniques, and the 
analytics developed are often specific to the architecture of one set of data and tools rather than 
being multi-variate and applying data fusion techniques.    This is the area where we intend to work 
and move the industry forward, ensuring that full advantage is taken of the data that are available, 
and that they are transformed into actionable information.

Machine learning is a subfield of computer science that studies and constructs algorithms that can 
learn and make predictions from data. Machine learning traditionally is suitable for situations 
where a domain is poorly understood or random, and a system needs to adapt to changes in the 
environment.  In general it is applied when there is no knowledge to draw upon to create 
algorithmic solutions.  Adapting analytics to machine learning, and advancing machine learning 
to meet the needs of power systems, can solve the problems and achieve the goals defined in the 
previous section, delivering the right information at the right time to the right people.  

Machine learning uses techniques from many disciplines, including statistics, probability, game 
theory, and neurobiology.  The basic principle is that a computer algorithm learns through 
experience with a set of tasks. The algorithm’s performance is measured by how much the results 
improve over time and the speed of calculation. Machine learning can assist in interpreting 
stochastic and random behavior and using this information to benefit the customer and grid 
operator. One example of what advanced localized machine learning-based analytics could enable 
is phase identification for buildings. The full capabilities of smart metering, at present limited by 
communications and customer privacy concerns could also be enabled, by integrating two types 
of data sources that exist in different realms of analytics, to allow simple phase identification and 
allow operational models to learn where balancing and dispatch are required. This would, in turn, 
enable rebalancing of the grid by relying on customer markets and transactions without significant 
field crew involvement.    The case studies we describe in this paper will have multi-program 
application (described in Section 6) and can play a key role in enabling the modernized grid. 

On a broad scale, machine learning can be categorized into three areas:  supervised, unsupervised, 
and reinforcement learning. Supervised machine learning entails learning from labeled examples 
(features) and produces a function that predicts either a discrete (classification) or continuous 
(regression) outcome.  Unsupervised learning tries to describe patterns from data, while 
reinforcement techniques entail learning with rewards. 
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Current, state-of-the-art machine-learning solutions often rely on “black box” approaches, of 
which there has been significant development, applied often where systematic knowledge is poor 
but applications are computationally intense, require ubiquitous data sets, and are often agnostic 
to the subject area; i.e., the same methods are used for disparate areas such as medical data, grid 
data, or social census data.   The application of machine learning in the power system is relatively 
new. Existing and recently developed machine-learning algorithms and approaches for power-
distribution data problems can be divided into two categories:  1) utilizing established black box 
machine-learning methods to solve distribution-grid problems agnostic of power-system physics, 
and 2) improving and developing new methods utilizing power-system theory and models.

Centralized versus Distributed Analytics

One of the benefits of machine learning is the flexibility between it being applied locally or in a 
distributed manner, at the grid edge or building to grid interface, or by improving the existing state 
of the art applied normally in a centralized big data stack fashion.   We now introduce centralized 
and distributed analytics as a preface to the case study discussion.  

Evaluation and maintenance of grid health currently depends on a centralized, deterministic 
approach in which data are collected and analyzed, and some control action is then taken.  This 
practice is designed for the old electricity grid that functioned as a one-way conduit from a 
centralized plant to customers.    Centralized analytics use data to discover the state of a system or 
find controls through global optimization. For example, in the case of grid state estimation, 
centralized analytics entail finding system parameters that are most consistent with the data. The 
global optimization problem is huge and frequently impractical to solve.  However, in some cases 
an exact, or sufficiently accurate, optimal solution can be found by breaking systems into pieces 
and solving local optimization problems that each correspond to a piece of the system and results 
and information are updated among the pieces until convergence is achieved.  The latter, the 
distributed approach, is computationally advantageous (as a function of communication latency 
and processor availability) and, as with distributed analytics, the processing power and 
communication remain local when this “piecewise” solution methodology is applied. 
By contrast to traditional centralized grid data monitoring and analysis, building component health 
relies on a decentralized analytic approach in which each building component is monitored and 
analyzed individually.  DER and smart meters have changed the grid paradigm, adding isolated, 
disparate data sources in both the distribution grid and buildings. At the same time, some building 
components impact grid performance, for example, the power-quality impact of a high penetration 
of electric vehicle chargers, or new electronically commutated motors in air conditioners.  
Actionable, evolving information is essential at both the building and grid level to enable reliable, 
efficient grid and building operations.  

Collecting and mining raw data centrally make it challenging to act in a timely fashion on the 
information embedded in those data, whereas distributed analysis is challenging for the overall 
systematic approach. Central data management also requires significant amounts of data storage 
and increases the frequency of data errors (inconsistency, incompleteness, redundancy).  To 
achieve the speed and efficiency required for grid operations, we need to move toward a hybrid 
approach to the central and decentralized model in which the computation takes place at the data 
sources themselves, or at the central area depending on the action, and actions are taken locally 
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and reported globally.   In this resource we consider intelligence as needing to be embedded in the 
grid, while informing overall operations in a timely accurate manner, a hybrid approach. 

Limitations of Existing Approaches to Analytics and Machine Learning 

There are areas where the existing black box approaches of machine learning will not currently be 
useful.   For example, machine learning can be brittle when faced with new situations, i.e. values 
that were not observed during training.  Examples of this on the existing distribution grid are the 
few cases where PV penetration has reached more than 100% of peak demand (excluding Hawaii 
and California) or where significant volumes of customers have engaged in transactions to provide 
a local distribution grid service such as phase balancing or reduction in transformer loading.  
Without training on the impact of this scenario, machine-learning techniques, as currently applied, 
cannot easily provide operators sufficient confidence in the performance of advanced analytics. 
However, physics-based models and new techniques presented could create training sets for 
algorithms for situations that have not yet been experienced by the building or grid analytics node 
and assist in forecasting performance.  This is a key benefit of new machine-learning applications 
that can be used to improve robustness and constrain outputs to build confidence in the new grid 
paradigm for system operators, who are traditionally conservative actors. In general, operators 
manage the grid well within stakeholders’ bounds of safety, reliability, and comfort – which is not 
normally the most economically beneficial approach for the customers and leaves a significant 
bandwidth of untapped potential for building and grid services.

Applications of Machine Learning to the Building to Grid Interface 

We consider three case studies areas across the spectrum of the building to grid interface including 
1) Demand Response (DR) and Distributed Energy Resource (DER) Local Availability and 
Verification, 2) Incipient Failure Detection in Distribution, and 3) Topology and Parameter 
Estimation.  For each of these cases we consider the present state of the art, the problem we are 
trying to solve and the potential for distributed machine learning to create benefit for consumers 
and grid operators.  These case studies are summarized in Figure 2, in addition to the time frames 
and potential stakeholders.

DR and DER Local Availability and Verification 

At the building to grid interface, the ability of customers to transact or exchange resources is being 
considered as a new operational paradigm, both individually and in clustered aggregate systems 
with the grid.  At the heart of this structure is controllable load, DR and DER  The ability of new 
controllable DER devices to reliably provide controllable action depends on several factors. For 
one, these devices’ response to input signaling and frequency fluctuation needs to be quantified. 
For aggregated loads like buildings, efficient load modeling is necessary to understand their 
cumulative response. Finally, efficient, low-overhead control schemes need to be designed and 
deployed in a distributed manner to create ubiquitous ancillary services from the distribution grid. 
Under present conditions, achieving all of these goals would be difficult. 
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Figure 2. Basic Outline of the Case Studies

The decentralized approach of transactive energy systems encompasses both energy and non-
energy transactions in the distribution grid and buildings.  The characteristics of transactive 
systems are that they have distributed control, provide feedback (via DER), concurrently address 
multiple objectives (e.g., load vs. comfort), are multi-scaled (microseconds, years), leverage 
automation (e.g., local action of voltage events) with the human-in-the-loop (control actions), and 
engage in coordination (negotiate decisions for competing objectives).   Transactive system 
analysis encompasses several dimensions across time, space, stakeholders, and decision of risk. 
Distributed machine-learning techniques can enable customers and operators to leverage monetary 
and non-monetary benefits (e.g., health, comfort and environmental quality) of actions, while also 
communicating the overall verification of response to the upper grid hierarchy.
Within building energy consumption monitoring is provided by a complex network of building 
occupancy and local equipment sensors plus smart metering. Providing useful information from 
the grid operator to the building, or vice versa, must use a single system that conveys the right 
information.  Our goal is to use existing information about individual buildings to build a class of 
statistical models that characterize operations of the buildings under different/varying grid 
conditions, and then to reconstruct/learn the operational parameters of the probability distributions 
for multiple buildings simultaneously. The building side will benefit from improved forecasting 
and value streams being enabled for participating in non-kilowatt-only services.  Grid operators 
will benefit from improved forecasting of customer behavior and new methods for enhancing 
stability on a grid with millions of resources.

Within this case we can consider the P-Q consumption of multiple buildings and complex loads 
within the distribution grid, enabling buildings and behind-the-meter resources to act, in clusters, 
like conventional generators, thereby enhancing grid stability.   Kara et al (2017)1  developed a 
machine learning driven estimation method to determine the electrical performance of clusters of 
behind the meter resource, which is often limited by utilization of weather versus electrical 

                                               
1 Stewart, Kara, Roberts et al, "Contextually Supervised Generation State Estimation (CSGSE)" 
Provisional U.S. Patent 62/311,319, Submitted March 21, 2016
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measurements.  These types of techniques are the pre-cursors to a distributed environment with 
predictive resource capabilities (Figure 3).  

Figure 3. Predicting electrical availability and performance of a solar resource

Building operators who are managing multiple objectives such as building comfort, system load, 
component failure risks, and extreme event responses need timely interpretable information about 
the building. Aswani et al. (2012)2  used a machine-learning technique called Learning-based 
Model Predictive Control that combined models with statistics to estimate occupancy and heating 
load based only on temperature measurements. To compensate for heating by occupancy control 
action chosen (AC on/off),  Behl et al. (2016)3  demonstrated a demand-response strategy synthesis 
that uses regression trees to partition the data space into small, manageable regions and then to  
partition the partitions until the data spaces can have simple models to fit them (easier for humans 
to interpret).  Predictor variables are disturbances (weather, temperature) and controllable actions.  
During extreme events and peak-demand periods, utility customers could be incentivized to reduce 
electricity consumption.  Establishing methods of reporting a customer’s reduction in electricity 
use is critical for increasing the effectiveness of demand-response programs. Transactive control 
applications are generally designed to be self-organizing and localized; that is, they are 
decentralized and not coordinated.    

Application of grid and building machine learning, could improve the accuracy and accountability 
for these services, which would enable an increase in the potential revenue streams and energy 
savings as well as enabling utility interaction with participating customers and an expansion of 
localized services to include ancillary services, distribution voltage regulation, and distribution 
balancing.   The Bonneville Power Administration stated that to enable a comparable project at 
scale, i.e. with millions of available participating customers each with DER, the control schemes 
would require enhanced programmability, reliability, cost, and cost recovery for the utility.  
Application of advanced analytics with machine learning could address these requirements.     

                                               
2 Aswani, A., et al. 2012. "Reducing transient and steady state electricity consumption in HVAC using 
learning-based model-predictive control." Proceedings of the IEEE 100.1: 240-253.
3 Behl, M., Jain, A., and Mangharam, R., 2016. "Data-driven modeling, control and tools for cyber-
physical energy systems." 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems 
(ICCPS) 11 April. 
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The predicted impact of making use of these resources would be derived locally, with analytics 
informed by the grid and the state of the building and trained to apply to the local conditions.  The 
current radial and manual configuration of the distribution grid state will change as the grid 
modernizes. The grid services being discussed here must be spatially and temporally verifiable to 
a particular electrical feeder, substation, and potentially phase of the distribution system.  
Incorporating these services requires that building and grid information be strongly linked and that 
services be verified, able to evolve, and repeatable.  

New approaches to DER and DR controls and coordination will be essential with millions of 
resources available as described above. Millions of distributed smart grid assets require innovative 
approaches as existing theories that work on a scale of hundreds rather than millions of customers 
will no longer hold true. The increased volume of customer interaction would pose a significant 
computational and hierarchical burden using today’s methods, and bounds of error for existing 
approaches will become untenable for large-scale control problems.   Conceptual data-driven 
improvement of verifying and predicting DER controls could be made for example by cycling 
through aggregation and reinforcement learning.  Machine-learning schemes built on observations 
collected from novel devices can help in realizing this vision.  Aggregate load modeling and 
dynamic characterization of loads are possible using pattern-recognition schemes operating on 
training data. Theoretical machine learning provides the necessary mathematical foundation to 
develop distributed algorithms with low sample complexities that guarantee convergence of 
consensus and other control algorithms. These can aid in fast recovery, using load resources, after 
a frequency event. Further, the distributed nature of the algorithms will ensure an equitable share 
of the ancillary services among different distribution resources, and more reserve accountability 
will be enabled

Incipient Failure Detection in Distribution

Detection and identification of incipient failures within the electrical grid infrastructure can be 
considered in two realms a) direct sensing detection of failure and b) analysis of available local 
data for signs of failure.  Proactive detection schemes can enable condition based maintenance and 
preventative responses that prevent potentially disruptive, costly, and potentially even catastrophic 
outages and failures before they occur. Large power transformers are commonly measured directly 
due to the high impact an outage would cause and the relative cost of that outage in comparison to 
a direct sensor.       While large power transformers have a clear value proposition for specific 
monitoring and measurement of condition through techniques such as dissolved gas analysis, 
distribution asset monitoring is a field which does not benefit from the economies of scale in the 
same regard.  Each component is a magnitude smaller at least, and for every large power 
transformer, there may be thousands of distribution level transformers.   At present, condition 
monitoring and maintenance in the distribution system is based upon a run to failure, and age based 
approach.  Often the first sign of a distribution transformer failure is an outage for a number of 
customers, detected via smart metering, or a customer call to indicate a component with a visible 
failure, i.e. smoke. 

In the event of a prediction of incipient failure, there is potential for delaying catastrophic failure 
with preventative action such as unloading the device, or a deeper dive analysis to find the root 
cause in the data.   In doing this there is potential for utilizing the future DER and building 
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resources available to operators. Some synergistic work in different fields for predicting behavior 
has been performed.  Sadigh et al. (2014)4  created a predictive model with data gathered from 
vehicle drivers to generate individualized driver models. This model uses the prior two seconds of 
driver pose to estimate the future four seconds.   The approach showed that driver state (attentive, 
distracted) can increase the accuracy of prediction. Stewart et al (2016)5  leverages a new data 
source, µPMUs (micro phasor measurement units) to help distribution planners accurately 
anticipate and control risks and opportunities for improvement on the distribution grid instead of 
relying on reactive operations (Figure 4 & 5). Stewart et al.’s method uses event clustering to 
interpret events and predict issues such as anomalous tap change detection, arc flash, and capacitor
bank switching.  At the building to grid interface, the ability of customers to transact or exchange 
resources is being considered as a new operational paradigm, both individually and in clustered 
aggregate systems with the grid.  At the heart of this structure is controllable load, demand response 
(DR) and distributed energy resources (DER).

Figure 4. Anomalous behavior at a tap changer measured with a set of distribution µPMUs

Figure 5. Clustered repetitive behavior can be utilized in incipient failure detection 

A new approach under development (Lokhov et al, 2017)6  assumes the linear dynamics of the 
device, and that the associated dynamic parameters that represent the normal behavior can be 

                                               
4 Sadigh, D., Driggs-Campbell, K., Puggelli, A., Li, W., Shia, V., Bajcsy, R., et al. 2014. Data-driven 
probabilistic modeling and verification of human driver behavior. AAAI Spring Symposium - Technical 
Report, SS-14-02, 56 - 61. UC Berkeley: 701392
5 Stewart, E., et al. 2016. “Predictive Distribution Component Health Monitoring with Distribution Phasor 
Measurement Units” Submitted to IEEE Transactions on Power Systems, October 
6 Lokhov, A., Deka, D., Vuffray, M., Misra, S., and Chertkov, M.,“Reconstructing the power grid dynamic 
model from sparse measurements”, to appear 2017
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extracted from data using the state of the art regression algorithms (Bento et al 2010)7. The 
amplitude of the failure related noise can be learned from the time series data. These parameters 
are then used to predict the near-term evolution and rigorously identify anomalies that significantly 
deviate from the predicted behavior. The long-term changes in parameters will serve as an 
indication of an incipient failure.   

Most approaches considered in these realms could be decentralized or distributed with only key 
data being communicated.  A centralized analytics approach to fault analysis is limited by the 
requirement that a human in the loop make decisions, which in itself is an inefficiency.  Centralized 
approaches for fault analysis rely on whether smart meter reporting status is “on” or “off,” a key 
example of the limitations of centralized analytics.  The bandwidth for communicating status and 
other useful information from smart meters has been tied to vendor and proprietary data structures, 
and is, in turn, limited by customer communications. Decentralized architectures based on machine 
learning can propel this information to a new level.  Incipient failure detection also requires 
detailed interpretation of high-fidelity sources, which is computationally intensive, so 
decentralization and communication of “mean time to failure” form a more efficient approach.   
New automated, online streaming algorithms, in the distributed environment will enable a) 
Classification of anomalies into key types that will inform a range of conditioned-based 
maintenance including vegetation management and transformer and switch replacement over a 
longer time period and b) Reduced loads on communications networks due to the distributed and 
local nature of the algorithms to be deployed.

Topology and Parameter Identification

Distribution utilities typically do not model the network structure below the medium-voltage 
distribution lines and hence do not have full observability of their network topology or detailed
models of the thousands of low-voltage distribution components in play. Additionally, it can be 
difficult to track changes that occur to the medium-voltage distribution system, so the utility may 
not know the current state of the system. Lack of accurate knowledge of the current topology is 
problematic in a planning environment but especially challenging following extreme damage 
events, e.g. hurricanes. Further, accurate distribution topology and parameter estimation is 
necessary for improved situational awareness, control and optimization of DERs and Electric 
Vehicles and validation of line parameters. As placement of meters specifically for topology 
estimation is expensive, it is imperative to use the available power system data for identifying the 
network. Learning in this regime also needs to be amenable to prevalent availability of data, where 
sensors for voltage and power injections are placed only at a subset of the buses in the grid.   In 
secondary circuit modeling for example a large portion of the per-unit voltage drop/raise occurs 
over the service transformers and lines that have large impedances, and accurate accounting for 
these is essential for an efficient environment.  Significant portions of these errors can be attributed 
to the GIS system, which is typically corrected with manual inspection, requiring considerable 
personnel hours and resources. This can also be challenging to performing with underground 
wiring and inside customer owned buildings.  

                                               
7 Bento, J., Pereira, J., Ibrahimi, M., and Montanari, A., 2010. Learning networks of stochastic differential 
equations. In Advances in Neural Information Processing Systems, 172-180.
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The current state-of-the art is to assume that the topology in the distribution grid is correct for 
planning studies, but also assumes a conservative large margin of error in the studies. This can 
lead to an increased interconnection cost as the conservative approach breaches more requirements 
and requires mitigation.  In transformer modeling at the low voltage side, the models assume a 
fixed voltage drop or include a typical model.  

Deka et al (2016, 2017)89 has demonstrated that theoretically correlations in nodal voltage 
magnitudes can be used to design greedy algorithms that provably learns the operating topology 
of radial grids. One benefit of this effort is its easy extension to the case where voltage and 
injections measurements are available only from a subset of the grid nodes, provided missing nodes 
are separated by two or more hops in the operational tree. The learning algorithm is based on trends 
in fluctuations in voltages that arise from fluctuations in loads and get propagated by the power 
flow relations (Figure 6).  Proof-of-concept algorithms have also been demonstrated using 
simplistic real datasets for parameter estimation10 and topology detection11.

At the building to grid interface, the ability of customers to transact or exchange resources is being 
considered as a new operational paradigm, both individually and in clustered aggregate systems 
with the grid.  At the heart of this structure is controllable load, demand response (DR) and 
distributed energy resources (DER).

Figure 6. Example of topology detection algorithm

Other new machine learning approaches to parameter estimation could include self organizing 
maps for outlier and bad data detection, random forest for topology identification and robust 
regression for grid parameter estimation all being developed through the Grid Modernization 
Initiative work.  In all these methods the accuracy of the metering and sensing is a challenge, which 
learning based methods distributed through multi-variate sources can seek to improve 
significantly. There is thus a benefit to utilizing new techniques which predict and prescribe.  

                                               
8 Deka, D., Chertkov M., and Backhaus S., 2017. "Structure Learning in Power Distribution Networks," in 
IEEE Transactions on Control of Network Systems.
9 Deka, D., Chertkov M., and Backhaus S.,  2016. “Learning  topology  of  the power  distribution  grid  with  
and  without  missing  data,”  in European Control Conference (ECC)
10 Peppanen, J., Reno, M. J., Broderick, R. J., and Grijalva, S., 2016 "Distribution System Model Calibration 
with Big Data from AMI and PV Inverters," in IEEE Transactions on Smart Grid.
11 Peppanen, J., Reno, M. J., Broderick, R. J., and Grijalva, S., 2016 “Distribution System Low-Voltage Circuit 
Topology Estimation using Smart Metering Data,” IEEE PES Transmission & Distribution Conference.
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To summarize, an automated, steaming algorithm for learning distribution network topology will 
enable a) improvements in control and optimization of distribution grid resources b) validation of 
topology switching action by system operator and c) increased situational awareness and system 
restoration following extreme damage events.  Consumer benefits will include improved power 
quality, and less outage time during extreme events, lesser interconnection costs through 
enablement of better control actions for stability and voltage regulations. 
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Section 5

Benefits Assessment

This paper has presented a vision of the future distribution grid and buildings operation as a 
cohesive environment where customers are rewarded for utilizing behind-the-meter distributed 
energy resources, and the distribution grid is enabled as an automated, reliable, safe, resilient 
energy-transport vehicle with high penetration of DER.    The rewards to customers and other end 
users include energy cost savings and enhanced grid reliability and resiliency.  These benefits are 
interlinked; for example, enhanced reliability could reduce customer energy cost by reducing 
unplanned solar-photovoltaic (PV) outages caused by voltage variability. 

For the benefits assessment, we identified some of the areas in which grid and building applications 
would benefit from enhanced information derived from local data provided at the distributed level. 
We also identified where distributed analytics would benefit both the building and grid versus a 
centralized approach. These included availability of markets-based analytics for millions of 
resources, dynamic behind the meter controls to provide ancillary services. 

In all of the case studies presented a combination of customer or ratepayer resources, and grid 
resources will be able to be coordinated and optimized. This will reduce the overall cost of energy 
to the consumer while increasing system reliability and reducing customer outage time. At the 
same time, advanced analytics will give grid operators useful visibility into the performance and 
controllability of these resources. The current lack of visibility of these behind-the-meter resources 
is a key obstacle to their participation in new and existing markets. If the operator cannot see a 
resource, the operator cannot use it. The benefit to the grid must be co-optimized with the benefit 
to the customer (reduced energy cost).  Co-optimizing these benefits is a challenge that new power-
flow-linked local machine-learning-driven analytics are ideally suited to solve. The interoperable, 
data-vendor-agnostic approach of these analytics allows for a low-economic-barrier entry into the 
market for individual end users wishing to utilize their systems’ flexibility to reduce their 
electricity bills.  The customer themselves will not require detailed knowledge of the performance 
of the analytics, but more consider a framing of their needs for resources such as driving their car 
for a planned trip, or scheduling laundry.  The benefits are not limited to customers who participate 
in behind-the-meter and transactive markets.  There are significant numbers of customers who may 
not participate in these markets but will be affected by the development of these markets. For 
example, if the cost of electricity increases because of additional maintenance or integration costs 
associated with high penetration of DER, all customers will be directly affected.  Therefore,  we 
consider here the benefits to the ratepayer of enhanced reliability and resiliency and therefore 
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reduced or at a minimum stabilized cost of being served by a particular utility (NREL 201312, 
Stewart 201313) . 

Ratepayers reap substantial savings from grid and grid-to-building interface performance 
enhancements and new markets because: (1) Visibility into the instantaneous generation of 
intermittent renewable sources can assist in optimal operation of both the grid, buildings  and the 
renewable resources. Variability can be tracked by observing the localized performance of PV 
units, allowing scheduling of charging/discharging of grid storage and EVs in an automated 
fashion that accounts for transmission and distribution constraints as well as opportunities for 
participation to achieve wider system objectives. (2) Communication to the control center of 
information on the aggregate controllability of a node relieves system operators of a computational 
burden and facilitates seamless integration of this information into operators’ current decision-
making process, reducing requirements for significant information technology services that might 
otherwise be required in a data-rich utility environment. (3) Aggregation of resources at a node 
can facilitate scheduling of those resources in a complementary manner and thus reduce stress on 
the grid, enabling benefits from condition-based maintenance rather than the “run to failure” 
approach. A potential failure could be predicted and DER utilized to extend system operating 
lifetime or to reduce load and enable reconfiguration to avoid failure. (4) Operators of larger 
commercial buildings have an increased choice of markets in which they can participate. 

Examples of grid regulation schemes that are improved with enhanced application of grid informed 
machine learning include: 

• Providing reactive power in addition to kilowatt-hour-driven schemes, reducing need 
for traditional regulation equipment such as local capacitors

• Controlling voltage and providing accurate knowledge of voltage, which enables local 
participation in voltage regulation

• Improving voltage at the building, enabling more up time for generation resources
• Improving power quality at the building
• Saving energy for the building owner by allowing participation in new markets and 

better quantification of resource availability at all grid levels

The proposed advancements in machine learning will allow these potential schemes to be 
automated and verifiable, which black box machine-learning approaches cannot achieve because 
of lack of information for training.  Measurement and verification or provision of grid services can 
also be an expensive data-collection task for operators, and, with new markets that require a level 
of grid understanding, this task is complex and cannot be achieved without multiple streams of 
information.

                                               
12 Eber, K., Corbus, D., 2013. Hawaii Solar Integration Study: Executive Summary, National Renewable Energy 
Laboratory NREL. 
13 Stewart, E.M., et al. 2013, Analysis of High - Penetration Levels of Photovoltaics into the Distribution Grid on 
Oahu, Hawaii. Detailed Analysis of HECO Feeder WF1. National Renewable Energy Laboratory NREL, (2013)
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Section 6

Stakeholder and Programmatic Assessment

There is a broad range of stakeholders for the application of machine-learning techniques to the 
building and grid interface.   The market segments for case study 1 1 are primarily residential and 
commercial customers, with the aggregators, Customers and DER Management System vendors 
benefitting from the new value schemes.  Some examples of these stakeholders include SolarCity, 
Spirae and Smarter Grid Solutions.  Ancillary services provision are beneficial to the independent 
system operators, in that they have new automated sources of response to variation and greater 
confidence in the reliability of high penetration of DER.  Commercial stakeholders include the 
Siemens, Eaton and Schneider.  Customers also benefit from the new reliability and resiliency for 
the wider network. 

We also consider the DOE programmatic needs for a new approach to analytics and machine 
learning at the building to grid interface as referenced from the DOE Grid Modernization Multi-
Year Program Plan.  Within different program offices we consider this project to contribute to the 
following specific program goals:

Building Technologies Office (BTO): 1) Develop and promulgate grid-responsive equipment 
characterization procedures 2) Characterize the response characteristics of connected buildings 
and other behind-the-meter equipment so that their performance can be accurately predicted and 
other services they can support can be evaluated 3) Align the buildings community with analytic 
methods and testing procedures that enable a credible means to assess grid-readiness and 
implications of utilization 4) Develop fundamental concepts and capabilities for transaction-based 
energy systems, so that buildings are effectively rewarded for providing grid services

Cyber Security for Energy Delivery Systems (CEDS): Continuous security state monitoring of all 
energy delivery system architecture levels and across cyber-physical domains is widely adopted 
by energy sector asset owners and operators.

EIMA:  Data Management & Analytics: These activities focus on the way data is collected, used, 
stored, and archived (i.e. data architecture) to improve applicability of large, multi-source datasets 
for real-time operations and off-line planning studies.

SMART GRID: Validated Models of Smart Grid Devices and Systems.  Models of integrated 
systems for voltage and frequency control, distribution network reconfiguration, and short-circuit 
protection must be validated. Microgrid controls and operations must be tested and validated.
Solar Energy Technology Office (SETO): 1) Grid Performance and Reliability: Maintain and 
enhance the efficiency and reliability of electric transmission and distribution systems in a cost-
effective, safe manner with hundreds of GW of solar generation deployed onto the nation’s power 
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system 2) Communications.  Create infrastructure that is used to inform, monitor and control 
generation, transmission, distribution and consumption of solar energy effectively under broad 
temporal and spatial scales
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Section 7

Summary

Generic “big data black box” machine-learning approaches can only be a starting point for this 
work. New, innovative machine-learning approaches are needed that incorporate complex 
constraints imposed by engineering, physical, communication, security, and other principles 
unique to power systems.  Power system data are being collected from a variety of sources, 
including PMUs, meters, outage-management systems,  supervisory control and acquisition data 
recorders, weather, and DER. The diversity in volume and time “stamps” of these data sets are 
important to the findings derived from the data. Additionally, many utilities are tapping into other 
data sets, including smart meters, call centers, social media, billing systems, and mobile apps to 
support grid planning and operations. The volume of data from these and additional data sets is 
expected to grow exponentially in the next few years. Machine-learning analytics would support 
each area of grid modernization by using this growing volume of data to improve detection of 
normally invisible phenomena, learn grid topology, and support security applications including 
detection of physical or cyber-based attacks. Machine-learning analytics will also enable resilience 
and reliability applications, for example predictive models for responding to hazards or models for 
reconstructing events. 

Lack of useful operational visibility and information from extensive disparate data sources will 
drive the need for forward-thinking integrated approaches.  The “brute force” approach to data 
collection is to analyze every node with bigger and better computing, which is often not available 
to utilities and customer-facing industries.   A more efficient approach is to combine data sources 
with metadata; aggregate and fuse the data; incorporate buildings physics (for example air-flows); 
and develop sophisticated, relevant, and computationally efficient analytics.  

In summary, the overall goals of this activity within the Grid Modernization Initiative are to:

• Make use of new and improved machine learning-based analytics to improve the state 
of the art in the fields of building and grid science

• Evaluate operator and customer information that would benefit from a distributed, 
learning-based approach rather than centralized analytics.

• Evaluate key case studies at the building-to-grid intersection that would benefit from 
machine-learning approaches, and quantify benefits to key stakeholders and DOE.

• With minimum investment, improve the visibility, observability, verification, and 
validation of the building-to-grid resource.


