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Section 1
Abstract

This white paper introduces the application of advanced data analytics to the modernized grid. In
particular, we consider the field of machine learning and where it is both useful, and not useful,
for the particular field of the distribution grid and buildings interface. While analytics, in general,
is a growing field of interest, and often seen as the golden goose in the burgeoning distribution
grid industry, its application is often limited by communications infrastructure, or lack of a focused
technical application. Overall, the linkage of analytics to purposeful application in the grid space
has been limited. In this paper we consider the field of machine learning as a subset of analytical
techniques, and discuss its ability and limitations to enable the future distribution grid and the
building-to-grid interface. To that end, we also consider the potential for mixing distributed and
centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of
computer science that studies and constructs algorithms that can learn from data and make
predictions and improve forecasts. Incorporation of machine learning in grid monitoring and
analysis tools may have the potential to solve data and operational challenges that result from
increasing penetration of distributed and behind-the-meter energy resources. There is an
exponentially expanding volume of measured data being generated on the distribution grid, which,
with appropriate application of analytics, may be transformed into intelligible, actionable
information that can be provided to the right actors — such as grid and building operators, at the
appropriate time to enhance grid or building resilience, efficiency, and operations against various
metrics or goals — such as total carbon reduction or other economic benefit to customers. While
some basic analysis into these data streams can provide a wealth of information, computational
and human boundaries on performing the analysis are becoming significant, with more data and
multi-objective concerns. Efficient applications of analysis and the machine learning field are
being considered in the loop.

This paper describes benefits and limits of present machine-learning applications for use on the
grid and presents a series of case studies that illustrate the potential benefits of developing
advanced local multi-variate analytics machine-learning-based applications.
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Section 2

Introduction, Opportunity and Goals

A vision of the future distribution grid and its interface to buildings is one of cohesion — an
interactive reliable environment where there are consumer benefits and motivations to leverage
customer owned behind-the-meter assets to provide services to the grid, energy markets, other
entities within the distribution feeder, and ultimately to the larger society as a whole. This future
distribution grid may be a reliable, safe, and resilient energy transport platform that supports high
penetration of DER or other strategies that lead to a decarbonized utility.

The growth of communicative DER and connected behind-the-meter power electronic devices may
introduce fluctuations and uncertainty not previously seen on the distribution grid if the resources
operate independently, or are driven by independent communications and controls. However, these
new data generating and communicative features may also offer a vast opportunity to increase the
operational efficiency of both the grid and the buildings connected to it, but only if the data
collected at all the various nodes can be easily transformed into intelligible, actionable information.

Considering the customer interface to the grid, and vice versa, is a key opportunity to which
analytics can be applied to enable greater interaction and unlock the potential of these resources.
For example, in the vision we describe of cohesion, the availability of the resource to provide a
particular service must be understood for that asset to be utilized and rewarded. The average
customer has no desire to perform power flow calculations and evaluate their available data on a
minute by minute, or even daily basis, and a contribution to a new service such as power quality
management may have a difficult transition into the language of the consumer. Application of
analytics at this interface will allow the automation of this function, providing useful information
to the consumer regarding what they are participating in, while also giving the utility and grid a
clear accurate understanding of the resources availability and performance. The existing
customers benefit from new markets, new customers can integrate more distributed resources, all
customers will have improved reliability, and the utility can manage the distributed generation
adequately. We consider analytics to either derive information, diagnostics, prediction or a
prescription or instruction for optimal control. While existing descriptive and diagnostic analytics
for example, simple fault location and outage analysis, do not require forward thinking analytics,
but a processing of information to distill useful information, utilizing this data in a prediction or
prescription often requires a method of correction which can be enabled by machine learning. We
discuss this in later stages of this introductory paper.

To further this point, the large spatial footprint of the distribution grid and the diverse locations of
its assets and node points make observability of normal, stochastic, and dynamic behavior and
monitoring and diagnosis of abnormal (faults) and even planned (demand response or DER
dispatch) events challenging tasks for the existing descriptive analytics field. The lack of
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observability, controllability, and validation/verification of DER and other behind the meter assets
including their availability due to consumer behavior, preference, and choice may be a barrier to
developing new transaction based markets, where consumer resources interact with one and other
to provide or receive these services.

The work being developed by the multi-national laboratory team, funded through the Grid
Modernization Initiative will evaluate these challenges to develop data driven solutions leveraging
multi-scale machine learning based analytics. The work utilizes various data sets across the nodes
within the end to end power system (e.g. generation to end use) to automatically produce accurate
actionable information for the various parties and actors encompassing the power system. At the
heart of the work, applied analytics are required to turn these raw data into actionable information.
Machine learning is required to enable a predictive prescriptive, computationally efficient and
accurately managed modernized grid.

Although the terms data and information are often used interchangeably, in the context of
analytics, they differ: Data are measurements — for example voltage, current, phase angle, power,
or even metadata such as location and sensor type — and information is the actionable result of an
application of an analytics technique to the data — for example calculating the availability of a
behind-the-meter resource, predicting availability over time or the mean time to failure of a
component, verifying the success of a requested action, and determining the best course of action
with available resources. We examine where further development is needed to address gaps in
existing analytics techniques to successfully apply these techniques to the grid and present notional
case studies to demonstrate the potential value of these data analytics.

This paper will answer key questions related to:

. Machine learning and its definition as specific to the grid and buildings interface

. Existing state of the art in machine learning applied to building and grid datasets

. Key case studies of machine learning applied to building and grid datasets with value
propositions to each

. Proposed next steps to realize these solutions at the DOE programmatic level

Lawrence Livermore National Laboratory 7



Integrated Multi-Scale Data Analytics and Machine Learning for the Distribution Grid and Building-to-Grid Interface

Section 3

Machine Learning and its Application at the Buildings to Grid
Interface

Characteristics of the distribution grid that make it daunting for conventional analysis but ideal for
application of machine learning are randomness of customer behavior, high nodal volume, lack of
useful metadata and the number of unknowns such as grid topology and availability of behind-the-
meter resources. In addition, the increasing number of sensors being deployed to monitor and help
reliably manage the distribution grid produce constant streams of data. However, mere availability
of more data will not, by itself, lead to changes in grid visibility, security, and resiliency. In order
to create the predictive and prescriptive environment required for enablement of new markets,
customer revenue and a reliable grid, the data must collected, organized, evaluated, and analyzed
using sophisticated pattern-detection (i.e. incipient failure analysis can have subtle signatures only
recognizable by advanced analytics) and discovery algorithms to provide actionable information
allowing operators and customers to reliably manage an increasingly complex grid, and to enable
progress toward scientific and engineering solutions for distribution grid challenges.

In analytics you can consider analyses as descriptive analysis (what is there), diagnostics
(determining the problem), predictive (forecasting) and prescriptive (determining a corrective or
beneficial action). Descriptive and diagnostic analyses often are considered as being performed
either on historical or towards real-time data, whereas predictive and prescriptive analyses project
the outcome into a future dataset and information from that set. While there are benefits to
applying machine learning to diagnostics and descriptive analysis, the present set of analytics on
historical data can do little towards forecast and prescription.

Take the following case of a failing distribution transformer and three potential scenarios. Firstly
we consider the existing state of the art. The transformer fails catastrophically due to an internal
problem which has been developing for weeks. Customers and smart meters reports an outage in
a region and field crews are dispatched to switch and replace, depicted on the left side of Figure 1.
While we may have a grid with DER and microgrids available to respond, the lack of prediction
and prescription does not allow their full capabilities to be utilized. The transformer will be
replaced, but the customer loses reliable power and generation revenue. Consider the hybrid case,
with descriptive and diagnostics enabled, the fault can be quickly located and the exact reason for
the problem diagnosed. Field crews are more accurately dispatched, and therefore a more efficient
use of resources. However, there is still an outage. In the machine learning enhanced state the
analytics determined, based on available measured data, that there was a developing fault within
the transformer (incipient fault detection). The application, in close to real time, analyzed a set of
scenarios it had been taught were effective in this case and determined the best reconfiguration
and resource dispatch, and the appropriate customer rates applied for participation. The action to
reduce transformer load is taken quickly, without major operator or field crew intervention, and
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the transformer can then be easily repaired or replaced. This is depicted on the right side of Figure
1. The benefits of the third approach to the consumer are reduced outage time, and new markets
for the DER. The utility benefits from predictive analysis by enabling repair rather than run to
failure. Field crew dispatch time is minimized with appropriate analysis.

Y
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Sensor Network Anomaly former
Detection e °

Report of Report of Customer

Transformer Issue Outage
and Location (7 ( )
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1. No outage, 1. 4+ Hour QOutage
2. Utility Savings 2. Transformers Replaced
3. Customers rewarded 3. Customers lost generation time

Figure 1. Example of State of the Art in Analytics

In Summary

e The problem we are addressing is too great a volume of raw data and not enough distributed
analysis to turn these data into actionable predictive and prescriptive information.

e Existing analytics depend on singular, siloed data sources and techniques; analytics need
to evolve to be adaptive and applicable, relying on multiple data sources in real-world
settings.

e Machine learning is a good choice when a domain is poorly understood such as the
distribution grid and grid-building interface, particularly with the growth in behind-the-
meter DER.

e Fundamental research is needed to develop/advance machine learning techniques that
account for power-systems physics and variability at the building-to-grid interface, with
acceptable computational burden.
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Section 4

Case Studies and State of the Art in Machine Learning

A significant volume of analyses are already being proposed for the power grid and buildings
interface. Analyses such as consumption, forecast of load, and outages at present often rely on
single data sources, such as smart metering on/off status being utilized to diagnose an outage
location. Within the existing analytics platforms where techniques such as machine learning are
already implemented, there are numerous instances of siloed data sources and techniques, and the
analytics developed are often specific to the architecture of one set of data and tools rather than
being multi-variate and applying data fusion techniques. This is the area where we intend to work
and move the industry forward, ensuring that full advantage is taken of the data that are available,
and that they are transformed into actionable information.

Machine learning is a subfield of computer science that studies and constructs algorithms that can
learn and make predictions from data. Machine learning traditionally is suitable for situations
where a domain is poorly understood or random, and a system needs to adapt to changes in the
environment. In general it is applied when there is no knowledge to draw upon to create
algorithmic solutions. Adapting analytics to machine learning, and advancing machine learning
to meet the needs of power systems, can solve the problems and achieve the goals defined in the
previous section, delivering the right information at the right time to the right people.

Machine learning uses techniques from many disciplines, including statistics, probability, game
theory, and neurobiology. The basic principle is that a computer algorithm learns through
experience with a set of tasks. The algorithm’s performance is measured by how much the results
improve over time and the speed of calculation. Machine learning can assist in interpreting
stochastic and random behavior and using this information to benefit the customer and grid
operator. One example of what advanced localized machine learning-based analytics could enable
is phase identification for buildings. The full capabilities of smart metering, at present limited by
communications and customer privacy concerns could also be enabled, by integrating two types
of data sources that exist in different realms of analytics, to allow simple phase identification and
allow operational models to learn where balancing and dispatch are required. This would, in turn,
enable rebalancing of the grid by relying on customer markets and transactions without significant
field crew involvement.  The case studies we describe in this paper will have multi-program
application (described in Section 6) and can play a key role in enabling the modernized grid.

On a broad scale, machine learning can be categorized into three areas: supervised, unsupervised,
and reinforcement learning. Supervised machine learning entails learning from labeled examples
(features) and produces a function that predicts either a discrete (classification) or continuous
(regression) outcome. Unsupervised learning tries to describe patterns from data, while
reinforcement techniques entail learning with rewards.

Lawrence Livermore National Laboratory 10
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Current, state-of-the-art machine-learning solutions often rely on “black box” approaches, of
which there has been significant development, applied often where systematic knowledge is poor
but applications are computationally intense, require ubiquitous data sets, and are often agnostic
to the subject area; i.e., the same methods are used for disparate areas such as medical data, grid
data, or social census data. The application of machine learning in the power system is relatively
new. Existing and recently developed machine-learning algorithms and approaches for power-
distribution data problems can be divided into two categories: 1) utilizing established black box
machine-learning methods to solve distribution-grid problems agnostic of power-system physics,
and 2) improving and developing new methods utilizing power-system theory and models.

Centralized versus Distributed Analytics

One of the benefits of machine learning is the flexibility between it being applied locally or in a
distributed manner, at the grid edge or building to grid interface, or by improving the existing state
of the art applied normally in a centralized big data stack fashion. We now introduce centralized
and distributed analytics as a preface to the case study discussion.

Evaluation and maintenance of grid health currently depends on a centralized, deterministic
approach in which data are collected and analyzed, and some control action is then taken. This
practice is designed for the old electricity grid that functioned as a one-way conduit from a
centralized plant to customers. Centralized analytics use data to discover the state of a system or
find controls through global optimization. For example, in the case of grid state estimation,
centralized analytics entail finding system parameters that are most consistent with the data. The
global optimization problem is huge and frequently impractical to solve. However, in some cases
an exact, or sufficiently accurate, optimal solution can be found by breaking systems into pieces
and solving local optimization problems that each correspond to a piece of the system and results
and information are updated among the pieces until convergence is achieved. The latter, the
distributed approach, is computationally advantageous (as a function of communication latency
and processor availability) and, as with distributed analytics, the processing power and
communication remain local when this “piecewise” solution methodology is applied.

By contrast to traditional centralized grid data monitoring and analysis, building component health
relies on a decentralized analytic approach in which each building component is monitored and
analyzed individually. DER and smart meters have changed the grid paradigm, adding isolated,
disparate data sources in both the distribution grid and buildings. At the same time, some building
components impact grid performance, for example, the power-quality impact of a high penetration
of electric vehicle chargers, or new electronically commutated motors in air conditioners.
Actionable, evolving information is essential at both the building and grid level to enable reliable,
efficient grid and building operations.

Collecting and mining raw data centrally make it challenging to act in a timely fashion on the
information embedded in those data, whereas distributed analysis is challenging for the overall
systematic approach. Central data management also requires significant amounts of data storage
and increases the frequency of data errors (inconsistency, incompleteness, redundancy). To
achieve the speed and efficiency required for grid operations, we need to move toward a hybrid
approach to the central and decentralized model in which the computation takes place at the data
sources themselves, or at the central area depending on the action, and actions are taken locally
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and reported globally. In this resource we consider intelligence as needing to be embedded in the
grid, while informing overall operations in a timely accurate manner, a hybrid approach.

Limitations of Existing Approaches to Analytics and Machine Learning

There are areas where the existing black box approaches of machine learning will not currently be
useful. For example, machine learning can be brittle when faced with new situations, i.e. values
that were not observed during training. Examples of this on the existing distribution grid are the
few cases where PV penetration has reached more than 100% of peak demand (excluding Hawaii
and California) or where significant volumes of customers have engaged in transactions to provide
a local distribution grid service such as phase balancing or reduction in transformer loading.
Without training on the impact of this scenario, machine-learning techniques, as currently applied,
cannot easily provide operators sufficient confidence in the performance of advanced analytics.
However, physics-based models and new techniques presented could create training sets for
algorithms for situations that have not yet been experienced by the building or grid analytics node
and assist in forecasting performance. This is a key benefit of new machine-learning applications
that can be used to improve robustness and constrain outputs to build confidence in the new grid
paradigm for system operators, who are traditionally conservative actors. In general, operators
manage the grid well within stakeholders’ bounds of safety, reliability, and comfort — which is not
normally the most economically beneficial approach for the customers and leaves a significant
bandwidth of untapped potential for building and grid services.

Applications of Machine Learning to the Building to Grid Interface

We consider three case studies areas across the spectrum of the building to grid interface including
1) Demand Response (DR) and Distributed Energy Resource (DER) Local Availability and
Verification, 2) Incipient Failure Detection in Distribution, and 3) Topology and Parameter
Estimation. For each of these cases we consider the present state of the art, the problem we are
trying to solve and the potential for distributed machine learning to create benefit for consumers
and grid operators. These case studies are summarized in Figure 2, in addition to the time frames
and potential stakeholders.

DR and DER Local Availability and Verification

At the building to grid interface, the ability of customers to transact or exchange resources is being
considered as a new operational paradigm, both individually and in clustered aggregate systems
with the grid. At the heart of this structure is controllable load, DR and DER The ability of new
controllable DER devices to reliably provide controllable action depends on several factors. For
one, these devices’ response to input signaling and frequency fluctuation needs to be quantified.
For aggregated loads like buildings, efficient load modeling is necessary to understand their
cumulative response. Finally, efficient, low-overhead control schemes need to be designed and
deployed in a distributed manner to create ubiquitous ancillary services from the distribution grid.
Under present conditions, achieving all of these goals would be difficult.

Lawrence Livermore National Laboratory 12
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Figure 2. Basic Outline of the Case Studies

The decentralized approach of transactive energy systems encompasses both energy and non-
energy transactions in the distribution grid and buildings. The characteristics of transactive
systems are that they have distributed control, provide feedback (via DER), concurrently address
multiple objectives (e.g., load vs. comfort), are multi-scaled (microseconds, years), leverage
automation (e.g., local action of voltage events) with the human-in-the-loop (control actions), and
engage in coordination (negotiate decisions for competing objectives).  Transactive system
analysis encompasses several dimensions across time, space, stakeholders, and decision of risk.
Distributed machine-learning techniques can enable customers and operators to leverage monetary
and non-monetary benefits (e.g., health, comfort and environmental quality) of actions, while also
communicating the overall verification of response to the upper grid hierarchy.

Within building energy consumption monitoring is provided by a complex network of building
occupancy and local equipment sensors plus smart metering. Providing useful information from
the grid operator to the building, or vice versa, must use a single system that conveys the right
information. Our goal is to use existing information about individual buildings to build a class of
statistical models that characterize operations of the buildings under different/varying grid
conditions, and then to reconstruct/learn the operational parameters of the probability distributions
for multiple buildings simultaneously. The building side will benefit from improved forecasting
and value streams being enabled for participating in non-kilowatt-only services. Grid operators
will benefit from improved forecasting of customer behavior and new methods for enhancing
stability on a grid with millions of resources.

Within this case we can consider the P-Q consumption of multiple buildings and complex loads
within the distribution grid, enabling buildings and behind-the-meter resources to act, in clusters,
like conventional generators, thereby enhancing grid stability. Kara et al (2017)! developed a
machine learning driven estimation method to determine the electrical performance of clusters of
behind the meter resource, which is often limited by utilization of weather versus electrical

! Stewart, Kara, Roberts et al, "Contextually Supervised Generation State Estimation (CSGSE)"
Provisional U.S. Patent 62/311,319, Submitted March 21, 2016
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measurements. These types of techniques are the pre-cursors to a distributed environment with
predictive resource capabilities (Figure 3).
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Figure 3. Predicting electrical availability and performance of a solar resource

Building operators who are managing multiple objectives such as building comfort, system load,
component failure risks, and extreme event responses need timely interpretable information about
the building. Aswani et al. (2012)* used a machine-learning technique called Learning-based
Model Predictive Control that combined models with statistics to estimate occupancy and heating
load based only on temperature measurements. To compensate for heating by occupancy control
action chosen (AC on/off), Behl et al. (2016)° demonstrated a demand-response strategy synthesis
that uses regression trees to partition the data space into small, manageable regions and then to
partition the partitions until the data spaces can have simple models to fit them (easier for humans
to interpret). Predictor variables are disturbances (weather, temperature) and controllable actions.
During extreme events and peak-demand periods, utility customers could be incentivized to reduce
electricity consumption. Establishing methods of reporting a customer’s reduction in electricity
use is critical for increasing the effectiveness of demand-response programs. Transactive control
applications are generally designed to be self-organizing and localized; that is, they are
decentralized and not coordinated.

Application of grid and building machine learning, could improve the accuracy and accountability
for these services, which would enable an increase in the potential revenue streams and energy
savings as well as enabling utility interaction with participating customers and an expansion of
localized services to include ancillary services, distribution voltage regulation, and distribution
balancing. The Bonneville Power Administration stated that to enable a comparable project at
scale, i.e. with millions of available participating customers each with DER, the control schemes
would require enhanced programmability, reliability, cost, and cost recovery for the utility.
Application of advanced analytics with machine learning could address these requirements.

2 Aswani, A, et al. 2012. "Reducing transient and steady state electricity consumption in HVAC using
learning-based model-predictive control." Proceedings of the IEEE 100.1: 240-253.

3 Behl, M., Jain, A., and Mangharam, R., 2016. "Data-driven modeling, control and tools for cyber-
physical energy systems." 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems
(ICCPS) 11 April.
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The predicted impact of making use of these resources would be derived locally, with analytics
informed by the grid and the state of the building and trained to apply to the local conditions. The
current radial and manual configuration of the distribution grid state will change as the grid
modernizes. The grid services being discussed here must be spatially and temporally verifiable to
a particular electrical feeder, substation, and potentially phase of the distribution system.
Incorporating these services requires that building and grid information be strongly linked and that
services be verified, able to evolve, and repeatable.

New approaches to DER and DR controls and coordination will be essential with millions of
resources available as described above. Millions of distributed smart grid assets require innovative
approaches as existing theories that work on a scale of hundreds rather than millions of customers
will no longer hold true. The increased volume of customer interaction would pose a significant
computational and hierarchical burden using today’s methods, and bounds of error for existing
approaches will become untenable for large-scale control problems. Conceptual data-driven
improvement of verifying and predicting DER controls could be made for example by cycling
through aggregation and reinforcement learning. Machine-learning schemes built on observations
collected from novel devices can help in realizing this vision. Aggregate load modeling and
dynamic characterization of loads are possible using pattern-recognition schemes operating on
training data. Theoretical machine learning provides the necessary mathematical foundation to
develop distributed algorithms with low sample complexities that guarantee convergence of
consensus and other control algorithms. These can aid in fast recovery, using load resources, after
a frequency event. Further, the distributed nature of the algorithms will ensure an equitable share

of the ancillary services among different distribution resources, and more reserve accountability
will be enabled

Incipient Failure Detection in Distribution

Detection and identification of incipient failures within the electrical grid infrastructure can be
considered in two realms a) direct sensing detection of failure and b) analysis of available local
data for signs of failure. Proactive detection schemes can enable condition based maintenance and
preventative responses that prevent potentially disruptive, costly, and potentially even catastrophic
outages and failures before they occur. Large power transformers are commonly measured directly
due to the high impact an outage would cause and the relative cost of that outage in comparison to
a direct sensor. While large power transformers have a clear value proposition for specific
monitoring and measurement of condition through techniques such as dissolved gas analysis,
distribution asset monitoring is a field which does not benefit from the economies of scale in the
same regard. Each component is a magnitude smaller at least, and for every large power
transformer, there may be thousands of distribution level transformers. At present, condition
monitoring and maintenance in the distribution system is based upon a run to failure, and age based
approach. Often the first sign of a distribution transformer failure is an outage for a number of
customers, detected via smart metering, or a customer call to indicate a component with a visible
failure, i.e. smoke.

In the event of a prediction of incipient failure, there is potential for delaying catastrophic failure

with preventative action such as unloading the device, or a deeper dive analysis to find the root
cause in the data. In doing this there is potential for utilizing the future DER and building
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resources available to operators. Some synergistic work in different fields for predicting behavior
has been performed. Sadigh et al. (2014)* created a predictive model with data gathered from
vehicle drivers to generate individualized driver models. This model uses the prior two seconds of
driver pose to estimate the future four seconds. The approach showed that driver state (attentive,
distracted) can increase the accuracy of prediction. Stewart et al (2016)° leverages a new data
source, pPMUs (micro phasor measurement units) to help distribution planners accurately
anticipate and control risks and opportunities for improvement on the distribution grid instead of
relying on reactive operations (Figure 4 & 5). Stewart et al.’s method uses event clustering to
interpret events and predict issues such as anomalous tap change detection, arc flash, and capacitor
bank switching. At the building to grid interface, the ability of customers to transact or exchange
resources is being considered as a new operational paradigm, both individually and in clustered
aggregate systems with the grid. Atthe heart of'this structure is controllable load, demand response
(DR) and distributed energy resources (DER).
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Figure 4. Anomalous behavior at a tap changer measured with a set of distribution pPMUs
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Figure S. Clustered repetitive behavior can be utilized in incipient failure detection

A new approach under development (Lokhov et al, 2017) assumes the linear dynamics of the
device, and that the associated dynamic parameters that represent the normal behavior can be

4 Sadigh, D., Driggs-Campbell, K., Puggelli, A., Li, W., Shia, V., Bajcsy, R., et al. 2014. Data-driven
probabilistic modeling and verification of human driver behavior. AAAI Spring Symposium - Technical
Report, SS-14-02, 56 - 61. UC Berkeley: 701392

3 Stewart, E., et al. 2016. “Predictive Distribution Component Health Monitoring with Distribution Phasor
Measurement Units” Submitted to IEEE Transactions on Power Systems, October

® Lokhov, A., Deka, D., Vuffray, M., Misra, S., and Chertkov, M.,“Reconstructing the power grid dynamic
model from sparse measurements”, to appear 2017
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extracted from data using the state of the art regression algorithms (Bento et al 2010)’. The
amplitude of the failure related noise can be learned from the time series data. These parameters
are then used to predict the near-term evolution and rigorously identify anomalies that significantly
deviate from the predicted behavior. The long-term changes in parameters will serve as an
indication of an incipient failure.

Most approaches considered in these realms could be decentralized or distributed with only key
data being communicated. A centralized analytics approach to fault analysis is limited by the
requirement that a human in the loop make decisions, which in itself is an inefficiency. Centralized
approaches for fault analysis rely on whether smart meter reporting status is “on” or “off,” a key
example of the limitations of centralized analytics. The bandwidth for communicating status and
other useful information from smart meters has been tied to vendor and proprietary data structures,
and is, in turn, limited by customer communications. Decentralized architectures based on machine
learning can propel this information to a new level. Incipient failure detection also requires
detailed interpretation of high-fidelity sources, which is computationally intensive, so
decentralization and communication of “mean time to failure” form a more efficient approach.
New automated, online streaming algorithms, in the distributed environment will enable a)
Classification of anomalies into key types that will inform a range of conditioned-based
maintenance including vegetation management and transformer and switch replacement over a
longer time period and b) Reduced loads on communications networks due to the distributed and
local nature of the algorithms to be deployed.

Topology and Parameter Identification

Distribution utilities typically do not model the network structure below the medium-voltage
distribution lines and hence do not have full observability of their network topology or detailed
models of the thousands of low-voltage distribution components in play. Additionally, it can be
difficult to track changes that occur to the medium-voltage distribution system, so the utility may
not know the current state of the system. Lack of accurate knowledge of the current topology is
problematic in a planning environment but especially challenging following extreme damage
events, e.g. hurricanes. Further, accurate distribution topology and parameter estimation is
necessary for improved situational awareness, control and optimization of DERs and Electric
Vehicles and validation of line parameters. As placement of meters specifically for topology
estimation is expensive, it is imperative to use the available power system data for identifying the
network. Learning in this regime also needs to be amenable to prevalent availability of data, where
sensors for voltage and power injections are placed only at a subset of the buses in the grid. In
secondary circuit modeling for example a large portion of the per-unit voltage drop/raise occurs
over the service transformers and lines that have large impedances, and accurate accounting for
these is essential for an efficient environment. Significant portions of these errors can be attributed
to the GIS system, which is typically corrected with manual inspection, requiring considerable
personnel hours and resources. This can also be challenging to performing with underground
wiring and inside customer owned buildings.

" Bento, J., Pereira, J., Ibrahimi, M., and Montanari, A., 2010. Learning networks of stochastic differential
equations. In Advances in Neural Information Processing Systems, 172-180.

Lawrence Livermore National Laboratory 17



Integrated Multi-Scale Data Analytics and Machine Learning for the Distribution Grid and Building-to-Grid Interface

The current state-of-the art is to assume that the topology in the distribution grid is correct for
planning studies, but also assumes a conservative large margin of error in the studies. This can
lead to an increased interconnection cost as the conservative approach breaches more requirements
and requires mitigation. In transformer modeling at the low voltage side, the models assume a
fixed voltage drop or include a typical model.

Deka et al (2016, 2017)*° has demonstrated that theoretically correlations in nodal voltage
magnitudes can be used to design greedy algorithms that provably learns the operating topology
of radial grids. One benefit of this effort is its easy extension to the case where voltage and
injections measurements are available only from a subset of the grid nodes, provided missing nodes
are separated by two or more hops in the operational tree. The learning algorithm is based on trends
in fluctuations in voltages that arise from fluctuations in loads and get propagated by the power
flow relations (Figure 6). Proof-of-concept algorithms have also been demonstrated using
simplistic real datasets for parameter estimation'® and topology detection''.

At the building to grid interface, the ability of customers to transact or exchange resources is being
considered as a new operational paradigm, both individually and in clustered aggregate systems
with the grid. At the heart of this structure is controllable load, demand response (DR) and
distributed energy resources (DER).

Figure 6. Example of topology detection algorithm

Other new machine learning approaches to parameter estimation could include self organizing
maps for outlier and bad data detection, random forest for topology identification and robust
regression for grid parameter estimation all being developed through the Grid Modernization
Initiative work. In all these methods the accuracy of the metering and sensing is a challenge, which
learning based methods distributed through multi-variate sources can seek to improve
significantly. There is thus a benefit to utilizing new techniques which predict and prescribe.

8 Deka, D., Chertkov M., and Backhaus S., 2017. "Structure Learning in Power Distribution Networks," in
IEEE Transactions on Control of Network Systems.

? Deka, D., Chertkov M., and Backhaus S., 2016. “Learning topology of the power distribution grid with
and without missing data,” in European Control Conference (ECC)

10 peppanen, J., Reno, M. J., Broderick, R. J., and Grijalva, S., 2016 "Distribution System Model Calibration
with Big Data from AMI and PV Inverters," in IEEE Transactions on Smart Grid.

! Peppanen, J., Reno, M. J., Broderick, R. J., and Grijalva, S., 2016 “Distribution System Low-Voltage Circuit
Topology Estimation using Smart Metering Data,” IEEE PES Transmission & Distribution Conference.
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To summarize, an automated, steaming algorithm for learning distribution network topology will
enable a) improvements in control and optimization of distribution grid resources b) validation of
topology switching action by system operator and c) increased situational awareness and system
restoration following extreme damage events. Consumer benefits will include improved power
quality, and less outage time during extreme events, lesser interconnection costs through
enablement of better control actions for stability and voltage regulations.
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Section 5

Benefits Assessment

This paper has presented a vision of the future distribution grid and buildings operation as a
cohesive environment where customers are rewarded for utilizing behind-the-meter distributed
energy resources, and the distribution grid is enabled as an automated, reliable, safe, resilient
energy-transport vehicle with high penetration of DER. The rewards to customers and other end
users include energy cost savings and enhanced grid reliability and resiliency. These benefits are
interlinked; for example, enhanced reliability could reduce customer energy cost by reducing
unplanned solar-photovoltaic (PV) outages caused by voltage variability.

For the benefits assessment, we identified some of the areas in which grid and building applications
would benefit from enhanced information derived from local data provided at the distributed level.
We also identified where distributed analytics would benefit both the building and grid versus a
centralized approach. These included availability of markets-based analytics for millions of
resources, dynamic behind the meter controls to provide ancillary services.

In all of the case studies presented a combination of customer or ratepayer resources, and grid
resources will be able to be coordinated and optimized. This will reduce the overall cost of energy
to the consumer while increasing system reliability and reducing customer outage time. At the
same time, advanced analytics will give grid operators useful visibility into the performance and
controllability of these resources. The current lack of visibility of these behind-the-meter resources
is a key obstacle to their participation in new and existing markets. If the operator cannot see a
resource, the operator cannot use it. The benefit to the grid must be co-optimized with the benefit
to the customer (reduced energy cost). Co-optimizing these benefits is a challenge that new power-
flow-linked local machine-learning-driven analytics are ideally suited to solve. The interoperable,
data-vendor-agnostic approach of these analytics allows for a low-economic-barrier entry into the
market for individual end users wishing to utilize their systems’ flexibility to reduce their
electricity bills. The customer themselves will not require detailed knowledge of the performance
of the analytics, but more consider a framing of their needs for resources such as driving their car
for a planned trip, or scheduling laundry. The benefits are not limited to customers who participate
in behind-the-meter and transactive markets. There are significant numbers of customers who may
not participate in these markets but will be affected by the development of these markets. For
example, if the cost of electricity increases because of additional maintenance or integration costs
associated with high penetration of DER, all customers will be directly affected. Therefore, we
consider here the benefits to the ratepayer of enhanced reliability and resiliency and therefore
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reduced or at a minimum stabilized cost of being served by a particular utility (NREL 2013'2,
Stewart 2013'3) .

Ratepayers reap substantial savings from grid and grid-to-building interface performance
enhancements and new markets because: (1) Visibility into the instantaneous generation of
intermittent renewable sources can assist in optimal operation of both the grid, buildings and the
renewable resources. Variability can be tracked by observing the localized performance of PV
units, allowing scheduling of charging/discharging of grid storage and EVs in an automated
fashion that accounts for transmission and distribution constraints as well as opportunities for
participation to achieve wider system objectives. (2) Communication to the control center of
information on the aggregate controllability of a node relieves system operators of a computational
burden and facilitates seamless integration of this information into operators’ current decision-
making process, reducing requirements for significant information technology services that might
otherwise be required in a data-rich utility environment. (3) Aggregation of resources at a node
can facilitate scheduling of those resources in a complementary manner and thus reduce stress on
the grid, enabling benefits from condition-based maintenance rather than the “run to failure”
approach. A potential failure could be predicted and DER utilized to extend system operating
lifetime or to reduce load and enable reconfiguration to avoid failure. (4) Operators of larger
commercial buildings have an increased choice of markets in which they can participate.

Examples of grid regulation schemes that are improved with enhanced application of grid informed
machine learning include:

. Providing reactive power in addition to kilowatt-hour-driven schemes, reducing need
for traditional regulation equipment such as local capacitors

. Controlling voltage and providing accurate knowledge of voltage, which enables local
participation in voltage regulation

. Improving voltage at the building, enabling more up time for generation resources

. Improving power quality at the building

. Saving energy for the building owner by allowing participation in new markets and

better quantification of resource availability at all grid levels

The proposed advancements in machine learning will allow these potential schemes to be
automated and verifiable, which black box machine-learning approaches cannot achieve because
of lack of information for training. Measurement and verification or provision of grid services can
also be an expensive data-collection task for operators, and, with new markets that require a level
of grid understanding, this task is complex and cannot be achieved without multiple streams of
information.

12 Eber, K., Corbus, D., 2013. Hawaii Solar Integration Study: Executive Summary, National Renewable Energy

Laboratory NREL.

13 Stewart, E.M., et al. 2013, Analysis of High - Penetration Levels of Photovoltaics into the Distribution Grid on
Oahu, Hawaii. Detailed Analysis of HECO Feeder WF1. National Renewable Energy Laboratory NREL, (2013)
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Section 6

Stakeholder and Programmatic Assessment

There is a broad range of stakeholders for the application of machine-learning techniques to the
building and grid interface. The market segments for case study 1 1 are primarily residential and
commercial customers, with the aggregators, Customers and DER Management System vendors
benefitting from the new value schemes. Some examples of these stakeholders include SolarCity,
Spirae and Smarter Grid Solutions. Ancillary services provision are beneficial to the independent
system operators, in that they have new automated sources of response to variation and greater
confidence in the reliability of high penetration of DER. Commercial stakeholders include the
Siemens, Eaton and Schneider. Customers also benefit from the new reliability and resiliency for
the wider network.

We also consider the DOE programmatic needs for a new approach to analytics and machine
learning at the building to grid interface as referenced from the DOE Grid Modernization Multi-
Year Program Plan. Within different program offices we consider this project to contribute to the
following specific program goals:

Building Technologies Office (BTO): 1) Develop and promulgate grid-responsive equipment
characterization procedures 2) Characterize the response characteristics of connected buildings
and other behind-the-meter equipment so that their performance can be accurately predicted and
other services they can support can be evaluated 3) Align the buildings community with analytic
methods and testing procedures that enable a credible means to assess grid-readiness and
implications of utilization 4) Develop fundamental concepts and capabilities for transaction-based
energy systems, so that buildings are effectively rewarded for providing grid services

Cyber Security for Energy Delivery Systems (CEDS): Continuous security state monitoring of all
energy delivery system architecture levels and across cyber-physical domains is widely adopted
by energy sector asset owners and operators.

EIMA: Data Management & Analytics: These activities focus on the way data is collected, used,
stored, and archived (i.e. data architecture) to improve applicability of large, multi-source datasets
for real-time operations and off-line planning studies.

SMART GRID: Validated Models of Smart Grid Devices and Systems. Models of integrated
systems for voltage and frequency control, distribution network reconfiguration, and short-circuit
protection must be validated. Microgrid controls and operations must be tested and validated.

Solar Energy Technology Office (SETO): 1) Grid Performance and Reliability: Maintain and
enhance the efficiency and reliability of electric transmission and distribution systems in a cost-
effective, safe manner with hundreds of GW of solar generation deployed onto the nation’s power

Lawrence Livermore National Laboratory 22



Integrated Multi-Scale Data Analytics and Machine Learning for the Distribution Grid and Building-to-Grid Interface

system 2) Communications. Create infrastructure that is used to inform, monitor and control
generation, transmission, distribution and consumption of solar energy effectively under broad
temporal and spatial scales
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Section 7

Summary

Generic “big data black box” machine-learning approaches can only be a starting point for this
work. New, innovative machine-learning approaches are needed that incorporate complex
constraints imposed by engineering, physical, communication, security, and other principles
unique to power systems. Power system data are being collected from a variety of sources,
including PMUs, meters, outage-management systems, supervisory control and acquisition data
recorders, weather, and DER. The diversity in volume and time “stamps” of these data sets are
important to the findings derived from the data. Additionally, many utilities are tapping into other
data sets, including smart meters, call centers, social media, billing systems, and mobile apps to
support grid planning and operations. The volume of data from these and additional data sets is
expected to grow exponentially in the next few years. Machine-learning analytics would support
each area of grid modernization by using this growing volume of data to improve detection of
normally invisible phenomena, learn grid topology, and support security applications including
detection of physical or cyber-based attacks. Machine-learning analytics will also enable resilience
and reliability applications, for example predictive models for responding to hazards or models for
reconstructing events.

Lack of useful operational visibility and information from extensive disparate data sources will
drive the need for forward-thinking integrated approaches. The “brute force” approach to data
collection is to analyze every node with bigger and better computing, which is often not available
to utilities and customer-facing industries. A more efficient approach is to combine data sources
with metadata; aggregate and fuse the data; incorporate buildings physics (for example air-flows);
and develop sophisticated, relevant, and computationally efficient analytics.

In summary, the overall goals of this activity within the Grid Modernization Initiative are to:

. Make use of new and improved machine learning-based analytics to improve the state
of the art in the fields of building and grid science

. Evaluate operator and customer information that would benefit from a distributed,
learning-based approach rather than centralized analytics.

. Evaluate key case studies at the building-to-grid intersection that would benefit from
machine-learning approaches, and quantify benefits to key stakeholders and DOE.

. With minimum investment, improve the visibility, observability, verification, and

validation of the building-to-grid resource.
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