
LLNL-TR-729017

Regression with Small Data Sets: A Case
Study using Code Surrogates in Additive
Manufacturing

C. Kamath, Y. J. Fan

April 12, 2017



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Regression with Small Data Sets: A Case Study using Code
Surrogates in Additive Manufacturing

Chandrika Kamath and Ya Ju Fan

Lawrence Livermore National Laboratory

7000 East Avenue

Livermore, CA 94551, USA

kamath2,fan4@llnl.gov

April 6, 2017

Abstract

There has been an increasing interest in recent years in the mining of massive data sets whose
sizes are measured in terabytes. While it is easy to collect such large data sets in some application
domains, there are others where collecting even a single data point can be very expensive, so the resulting
data sets have only tens or hundreds of samples. For example, when complex computer simulations
are used to understand a scientific phenomenon, we want to run the simulation for many different
values of the input parameters and analyze the resulting output. The data set relating the simulation
inputs and outputs is typically quite small, especially when each run of the simulation is expensive.
However, regression techniques can still be used on such data sets to build an inexpensive “surrogate”
that could provide an approximate output for a given set of inputs. A good surrogate can be very useful
in sensitivity analysis, uncertainty analysis, and in designing experiments. In this paper, we compare
different regression techniques to determine how well they predict melt-pool characteristics in the problem
domain of additive manufacturing. Our analysis indicates that some of the commonly used regression
methods do perform quite well even on small data sets.

1 Introduction

The recent focus in data mining has been on the analysis of massive data sets in application domains where
data are easy to collect, such as mining the web or online collections of text documents and images. At
the other extreme are application domains where generating each data point is very time consuming or
expensive, resulting in much smaller data sets consisting of a few tens or hundreds of samples. However, we
can still apply data mining techniques to these data to gain insight. An example of such a situation is the
building of code surrogates as a faster alternative to computer simulations.

In many application domains, such as additive manufacturing [20] and climate [1, 29], computer sim-
ulations, sometimes referred to as “codes”, are increasingly being used to complement experiments and
observations. These simulations are essentially computational models that, given the inputs of a physical
phenomenon (referred to as the parameters of the code), generate the corresponding outputs [36]. The
insight provided by simulations benefits scientists in many ways; for example, it enables them to select pa-
rameters for use in an experiment, to determine which input parameters are more important than others,
and to understand how uncertainties in input parameters of an experiment affect the uncertainties in the
outputs. Computer simulations can range from the very simple, providing a fast but approximate solution
to a problem, to the very complex, with detailed physics that gives more accurate results. However, such
complex simulations can take hours or days to run on massively-parallel, high-performance systems. Since



the number of simulations required to do a full sweep through the range of possible input parameters is ex-
ponential in the number of parameters, it can be prohibitively expensive to run even a moderately-complex
simulation to gain an in-depth understanding of a physical phenomenon.

To make the problem tractable, scientists often generate the simulation results at a few carefully selected
sample points in the input parameter space and then build a data-driven model (also referred to as a code
surrogate or a metamodel) that relates the outputs to the inputs[15, 24]. The surrogate is then used to
predict the outputs corresponding to the inputs for a new sample point, in effect serving as an interpolation
algorithm. Traditionally, simple surrogates or response surfaces in the form of low-order models, such as
first or second degree polynomials, were used. However, when the surfaces relating the outputs to the inputs
become more complex, alternatives such as neural networks are an option; such techniques arethe focus of
the work presented in this paper.

Code surrogates can be used in many ways as they are essentially an inexpensive alternative to a sim-
ulation. When the simulations are simple, but approximate, surrogates can be used to identify a viable
region in design space, where an experiment is more likely to work. The points in this viable region could
then be considered as inputs to more complex and longer-running simulations [20], thus making better use
of computer resources. If the simulation is more complex and provides results closer to experiments, the
surrogates could be used directly in designing experiments. For data sets that are generated incrementally,
a code surrogate could indicate the next sample points that should be run to provide the most benefit, in a
manner similar to active learning [8]. Finally, surrogates play an important role in uncertainty analyses and
sensitivity studies [12].

Code surrogates can be relatively inexpensive to build and use. However, to be effective, their predictions
must be accurate enough for the task at hand. The predictive quality of a surrogate depends on several
factors, including the number and placement of sample points in the simulation input parameter space, the
complexity of the function relating the outputs to the inputs, and the algorithm used to create the surrogate
model. For computationally-expensive simulations that result in small data sets, an obvious question to ask
is the following - are some code surrogates better predictors then others when the number of sample points
is small? In this paper, we attempt to address this question using a problem from additive manufacturing
(AM) as a testbed.

This paper is organized as follows: First, in Section 2, we describe the application domain of additive
manufacturing. We are interested in determining the characteristics of the melt-pool formed in laser powder-
bed fusion, which is one of many AM processes currently in use. We describe two different simulations used
in our work (Section 2.1) and two different sampling schemes used to generate sample points at which to
run the simulations (Section 2.2). In Section 3, we describe the resulting data sets, followed in Section 4 by
the algorithms used to build the code surrogates. Section 5 compares the performance of these algorithms
using a variety of metrics. Related work is discussed in Section 6 and we conclude with a summary in 7.

2 The application domain of additive manufacturing

Additive manufacturing (AM), also referred to as 3-D printing, is a process for fabricating parts, layer-by-
layer. In laser powder-bed fusion, which is one of many AM processes currently in use, a laser beam is
used to fuse fine powders together. The process starts by slicing a three-dimensional model of the part into
two-dimensional layers of a fixed thickness, typically a few tens of microns. To build the part, a thin layer
of powder is then spread on a base plate and the first layer is created by selectively melting the powder in
the locations indicated in the first slice of the part. The process is repeated for each successive layer and
the part is built, layer by layer, with the power and speed of the laser selected so that the energy density is
sufficient to melt the powder and the layers below it, thus integrating the new layer into the rest of the part.

AM enables the production of complex parts not possible with traditional manufacturing processes. But,
it is a challenge to understand how the many parameters — nearly 130 by some estimates — that control an
AM process affect the properties and quality of an additively-manufactured part. These parameters include
the properties of the material, such as thermal conductivity and melting point; the properties of the powder
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bed, such as the particle sizes and the layer thickness; as well as the laser parameters, such as the power of the
laser, its speed, and the path taken by the laser in each layer. It is very expensive to use experiments to fully
explore the high-dimensional design space of AM, and while computer simulations are a viable alternative,
they too can be expensive if they incorporate all the physics involved in AM.

In our previous work [22], we showed that we could combine simple simulations and experiments to
identify process parameters that resulted in high-density AM parts. We then extended this work by using
the simple simulations to identify the design space of viable sample points, and running a more expensive,
but more accurate, simulation at a select subset of these viable points [20]. Our focus in these simulations
was the characteristics of the melt pool that is formed when the laser melts the powder. We wanted to
select input parameters that would result in melt pools that were deep enough to melt through the powder
into the substrate below, but not so deep that we waste energy. In comparing the simulation results with
experiments, we found that the simple simulations were not sufficiently accurate in predicting the melt pool
characteristics, while the more expensive ones are accurate, but it was time consuming to run too many
of them. This naturally prompted us to consider code surrogates for these simulations. We next briefly
describe the simulations we used and the process for generating the data used in this paper.

2.1 Computer simulations to determine melt-pool characteristics

We considered two physical models for generating the melt-pool characteristics:

• Eagar-Tsai model: This very simple model [13] considers a Gaussian laser beam moving on a flat
plate. The resulting temperature distribution on a three-dimensional spatial grid representing the plate
is used to compute the melt-pool width, depth, and length as a function of four input parameters: laser
power, laser speed, beam size, and laser absorptivity of the powder, which indicates how much of the
laser energy is absorbed by the powder. The model is computationally inexpensive, taking ≈1 minute
to run on a laptop. This means that we can sample the input parameter space of the Eagar-Tsai model
rather densely, making it possible to use the model to identify the viable region in the input space.

• Verhaeghe model: A more expensive physical model is the Verhaeghe model, which considers various
physical phenomena involved in the laser melting of powder on a substrate [38]. This model is more
computationally expensive than the Eagar-Tsai model, with the three-dimensional simulations requir-
ing about 1-3 hours of computational time (depending on the laser speed) on a small eight-processor
cluster. While this is a moderate requirement in terms of computational resources, the Verhaeghe
model has a larger number of parameters, such as the powder layer thickness, the void fraction in the
powder, and various material properties, not all of which are known precisely. While the addition of
the new physics in the Verhaeghe model makes it more realistic compared with the Eagar-Tsai model,
and the output predicts the melt-pool characteristics more accurately, the new parameters lead to a
higher-dimensional design space, which requires more sample points for exploration.

In addition to simulations, it is also possible to determine the melt-pool characteristics using single-track
experiments [39], where a single layer of powder is spread on a plate, and the laser is used to create single
tracks at a specific power and speed values. The plate is then cut perpendicular to the tracks, etched, and
polished to reveal the track cross section from which the depth and width are obtained. The cost and time
for creating the tracks is small, usually less than a minute, but the pre- and post-processing of the plate
after the creation of the track is quite expensive. Therefore the parameters for each track have to be selected
carefully, which is a challenge if a material has not been additively manufactured in the past, or the AM
machine has characteristics different from current machines. As a more cost-effective alternative, we have
used computer simulations to guide the choice of process parameters for the single track experiments [20, 22].
Later in Section 5.3, we will compare the prediction of a surrogate for the Verhaeghe model with single-track
experimental data.
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Figure 1: Sampling in a two-dimensional space: 100 samples distributed using (a) random sampling, (b) stratified
random sampling with ten levels along each axis, and (c) best-candidate sampling.

2.2 Sampling the input space of simulations

The two physical models described in Section 2.1 have a number of input parameters. For each set of values
for the inputs, the simulations produce an output consisting of values of variables, such as the temperature,
at each grid point in three-dimensional space; from this we can extract the melt-pool characteristics. The
input to a simulation run can be considered as a sample point in parameter space, where each parameter
takes on a specific value. When we use computer simulations to understand a physical process by changing
various parameters in the simulation and observing the effect of these changes on the outputs, we have to
decide which parameters to change and what values to use for the parameters. This is especially important
for expensive simulations as the number of sample points required to adequately sample a parameter space
is exponential in the number of parameters, an issue referred to as the curse of dimensionality [9].

When little is known about a simulation, the initial set of sample points are generated randomly in
the design space and additional points are added as required. However, as seen in Figure 1(a) for a two-
dimensional space, a random sampling can result in regions that are over- or under-sampled. Improved
sampling techniques have been extensively studied in two related fields - the traditional “design of (physical)
experiments” [26] and the contemporary “design and analysis of computer experiments” [15], resulting in a
wealth of sampling techniques currently in use [27, 28]. Since one of our physical models is computationally
inexpensive and the other is moderately expensive, we consider two sampling schemes that were selected for
their simplicity:

• Stratified random sampling: In this scheme, we first divide each input parameter range into a
number of levels and select a sample point randomly in each resulting cell (Figure 1(b)). While the
spatial distribution of sample points is improved in comparison with a purely random sampling, the
number of samples, which is determined by the number of parameters and number of levels in each
parameter, can be too large for use with expensive simulations.

• Best-candidate sampling: The second sampling scheme considered is Mitchell’s best-candidate
sampling [25] that was originally proposed in computer graphics. The method starts by placing the
first point randomly. Then, for each new point, it randomly generates a pre-specified number of
candidate points and selects as the next sample the candidate that has the largest nearest-neighbor
distance to the current set of samples. The process continues until the desired number of samples have
been generated. This method tends to place samples as far apart from each other as possible. It also
allows us to specify an arbitrary number of samples, incrementally add new samples to an existing set,
and sub-sample from an existing set.
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3 Description of the data

To conduct our study into the performance of different surrogate models when the number of sample points
is small, we use three data sets generated from the two physical models from Section 2.1 and the two
sampling schemes from Section 2.2. These data sets were also used in our previous work in identifying
process parameters for additive manufacturing [20].

• Eagar-Tsai-462: This data set was generated using the Eagar-Tsai model and the stratified random
sampling. We selected the ranges and number of levels of the four input parameters to match our
additive manufacturing machine and the material being used, resulting in 462 simulations [22]. Each
data point in this data set consists of the four inputs — laser power, laser speed, laser beam size, and
absorptivity of the material — and the corresponding values of melt-pool depth, width, and length
obtained from the Eager-Tsai model.

• Eagar-Tsai-100: This data set was also generated using the Eagar-Tsai model, but used just 100
sample points generated using the best-candidate sampling scheme. It allows us to compare surrogates
using the same, simple, Eagar-Tsai model when the size of the data set is reduced. Each sample point
has the four inputs used in the simulation and only the corresponding value of melt-pool depth as it is
the most important of the three outputs.

• Verhaeghe-41: This data set was generated by considering the 41 points in the Eagar-Tsai-100 that
had a melt-pool depth larger than 55 microns, a value that indicated a viable parameter set. The
Verhaeghe model was then run at these sample points to obtain the melt-pool depth. Each of the 41
data points consists of the four inputs used in the simulation and the corresponding values of melt-
pool depth. The remaining inputs were set to standard values for the material. We focused only on
the depth as the Verhaeghe model, while an improvement on the simpler Eagar-Tsai model, does not
include the physics required to reproduce the melt-pool width. This data set allows us to compare
experimental results with the predictions from surrogates for the case where a complex simulation was
run at a small number of sample points.

4 Description of the code surrogates

We consider several different code surrogates in our study to determine if some surrogates perform better than
others on small sample data sets. We next briefly describe the algorithms used to build these surrogates.
They were chosen based on their effectiveness in building a good predictive model, their simplicity and
the resulting interpretability, as well as their successful use in various application domains. One of these
algorithms (the nearest-neighbor method), is a “lazy” method, deferring the processing of the data until the
prediction needs to be made at a sample point. The other algorithms involve the more traditional three step
process, where the model is first built in a training phase, evaluated in a testing phase with data not used
in building the model, and then applied only if the accuracy is found to be sufficient.

4.1 Nearest neighbor methods

The simplest among regression methods, this class of methods predict the value at a point in input space as a
function of the values of its nearest neighbors in the input space. The k-nearest-neigbor method predicts the
output as the mean of the values of the k nearest neighbors, where k is chosen appropriately. More complex
models replace the mean by distance-weighted averages, where near neighbors contribute more than ones
that are farther away.

In our work, we use locally-weighted regression [2], where we build a locally-linear model, whose coeffi-
cients are obtained using a least squares fit. The distance used is a kernel distance, with a Gaussian kernel.
Since our input variables have units such that some inputs (for example, laser power) have values much
larger than others (for example, beam size), we scale each input to lie between 0.0 and 1.0 before we apply
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the method. This scaling also allows us to select an appropriate bandwidth of the Gaussian, which we set
to 0.1. By using a kernel distance, we avoid having to select a value for k, the number of neighbors, as far
away neighbors will have a very large kernel distance, resulting in a very small contribution to the result.
We refer to this method as locally-weighted kernel regression (LWKR).

We initially used a Euclidean distance metric to calculate the distances between sample points. However,
an initial exploratory analysis of the training data using Analysis of Variance (Section 5.1) indicated that
we could improve the performance of the LWKR method by using a weighted Euclidean distance.

4.2 Regression trees

A regression tree algorithm [7] uses the data, consisting of simulation inputs and the corresponding outputs,
to create a structure that is either a leaf, indicating a continuous value, or a decision node that specifies
some test to be carried out on an input, with a branch and sub-tree for each possible outcome of the test.
For continuous inputs, there are two branches, depending on whether the condition being tested is satisfied
or not. The decision at each node of the tree is made to reveal the structure in the data. To predict the
output for a new sample point, its inputs are used to traverse the tree, until a leaf node is reached. The
predicted value is the mean of the output values of the training data that end up at that leaf node.

The test at each node of the tree is determined by examining each feature and finding the split that
optimizes an impurity measure. We use the mean-squared error, MSE, which for a split A on a certain input
is defined as

MSE(A) = pL · s(tL) + pR · s(tR)

where tL and tR are the subset of samples that go to the left and right, respectively, by the split based on
A, pL and pR are the proportion of samples that go to the left and right, and s(t) is the standard deviation
of the N(t) output values, ci, of samples in the subset t:

s(t) =

√√√√ 1

N(t)

N(t)∑
i=1

(ci − c(t)
2
)

where c(t) is the mean of the values in subset t. The split at each node of the tree is the one that minimizes
MSE across all features for the samples at that node. In tree-based algorithms, if the data are split too
finely, it can lead to over fitting. To avoid this, we stop the splitting if the number of samples at a node is
less than 5 or the standard deviation of the values of the output variable at a node has dropped below 5%
of the standard deviation of the output variable of the original data set. As a split can be viewed a decision
surface perpendicular to one of the axes (the input variable selected for the split), regression models often
have a “block” structure (see, for example, Figure 4.)

A common approach to improving the accuracy of regression algorithms is to use an ensemble, where
many models, built from the same training data using randomization, are created [19, 31, 32]. The final
prediction is the mean of the prediction from each of the models. In our work, we consider 10 trees in the
ensemble, with randomization introduced through sampling. Instead of using all the sample points at a node
of the tree to make a split, we use a random subset of the samples [21], thus making each tree in the ensemble
different from the others.

4.3 Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) [16] is a regression model for high dimensional data that
combines separate linear models for segments within the input variables in a way that automatically models
linear and nonlinear interactions among these variables. The combination involves identifying additive
contributions and multivariable interactions based on a divide and conquer strategy.

Let X = {X1, X2, . . . , Xp} be a matrix of p input variables and y be the target dependent responses.
MARS makes no assumptions about the underlying functional relationships between y and X. In the training
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phase, the data are partitioned into separate, piecewise, linear segments of differing slopes. MARS builds
piecewise curves, called basis functions, using these linear segments (called linear splines) that are connected
smoothly together. The MARS model is a linear combination of the basis functions and their interactions.
The points between the curves, called knots, indicate the end of one segment of data and the beginning of
another. These knots are incorporated into the basis functions using hinge functions, defined as

max(0, x− t) =

{
x− t, if x ≥ t
0, otherwise.

The knot is represented at value t for a variable x ∈ {X1, X2, . . . , Xp}. By connecting the knots, the hinge
functions create piecewise linear functions. The MARS model f(x) is in the form of a weighted sum of basis
functions βj(x)

f(x) =

M∑
j=1

cjβj(x)

with each cj being a constant coefficient. Each basis function can be a constant, a hinge function, or a
product of two or more hinge functions, depending on the interactions of multiple variables. The hinge
functions allow the MARS model to capture the nonlinearity in the output variable.

The MARS algorithm requires two user-defined parameters — the maximum number of basis functions
and the maximum interaction level — and is composed of two phases. The forward phase locates candidate
knots at random positions within the range of each input variable to define a pair of basis functions. The
algorithm then searches over all possible univariate candidate knots and across all interactions among the
variables, iteratively adding a knot and its corresponding pair of basis functions to reach the maximum
reduction in residual sum-of-squares (RSS) error in the prediction. The process of adapting the basis functions
continues until the maximum number of functions is reached. At the end of the forward phase, the model is
usually very complicated and overfits the data. The backward phase is to delete the redundant basis functions
that made the least contributions at each step until the algorithm finds the best sub-model. The best sub-
model is determined using the generalized cross validation (GCV) criterion that trades off goodness-of-fit
against model complexity:

GCV =
1
N

∑N
i=1[yi − f(xi)]

2

1− 1
N [M + δ × M−1

2 ]
,

where M is the number of basis functions; M−1
2 is the number of hinge function knots; N is the number of

training samples; and δ is a penalty that is about 2 or 3. The numerator of GCV is the mean squared error,
which is the average of the residual sum-of-squares. The denominator contains both the number of basis
functions and the number of knots, which results in less complex models being selected.

4.4 Support vector regression

The support vector regression (SVR) algorithm starts with a training set ofN points, denoted as {(x1, y1), . . . , (xN , yN )} ∈
<p × <, where xi ∈ <p is a p-dimensional feature vector and yi ∈ <1 is the corresponding output. In the
training phase, the algorithm constructs a decision function

f(x) =

N∑
i=1

(αi − α∗
i )k(xi, x) + b

= 〈w, φ(x)〉+ b

where x and w ∈ <p, b ∈ <, k(xi, x) := 〈φ(xi), φ(x)〉 is a kernel function, representing a dot product of xi
and x in some feature space defined by φ, and w =

∑N
i=1(αi − α∗

i )φ(xi). SVR optimizes αi and α∗
i , which

provides the conditions for computing b. Given a new feature vector x, we can then use f(x) as an estimation
of the corresponding output.
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Support vectors are a small subset of all training samples that represent a decision boundary that can be
used in classification or regression [34]. Given just the support vectors, we can easily make estimations based
on the decision boundaries without having to keep all training samples. To extend this sparseness property
to the case of support vector regression, the ε-SVR method [37] tries to find a decision function f(x) that has
at most ε deviation from all of the actual target output values, yi, in the training data. Following statistical
learning theory, SVR tries to obtain a small risk by minimizing both model complexity (‖w‖2) and training
error (max{0, |y− f(x)| − ε}), using a constant C as the trade-off. In our work, we use the ν-Support vector
regression (ν-SVR) method [10, 35] that formulates the optimization problem as:

min
w,b,ξ,ξ∗,ε

1

2
wTw + C ·

(
νε+

1

N

N∑
i=1

(ξi + ξ∗i )
)

subject to wTφ(xi) + b− yi ≤ ε+ ξi,

yi − wTφ(xi)− b ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , N, ε ≥ 0.

where the parameter ν ∈ (0, 1] is used to control the number of support vectors so that ε becomes a
decision variable that is to be optimized. Since the existence of the decision function f that approximates
all pairs (xi, yi) with ε precision is not always possible, SVR uses the idea of a soft margin loss function [5]
that includes the slack variables ξi and ξ∗i , for i = 1, . . . , N , to cope with otherwise infeasible constraints.
The optimization model is solved using its dual problem by introducing two dual variables, αi and α∗

i , for
i = 1, . . . , N [10].

4.5 Gaussian processes

Gaussian process (GP) is a surrogate model that provides not just a prediction, but also an uncertainty on
the prediction. A GP is a collection of random variables, any finite number of which have a joint Gaussian
distribution [30]. GPs can be considered to be an extension of multivariate Gaussian distributions to infinite
dimensions. Since our training data with N samples can be thought of as a single point sampled from an
N-variate Gaussian distribution, they can be partnered with a Gaussian process. The mean of this GP is
often taken to be zero.

We describe GP [14] using a one-dimensional problem with a training set of N samples, {x1, . . . , xN}
and the associated output values y = {y1, . . . , yN}. For ease of exposition, we use the same notation as in
the previous sections to describe GP for a one-dimensional problem. Two samples xi and xj in the training
data are related to each other through the covariance function k(xi, xj). We use the squared-exponential
function:

k(xi, xj) = σ2
f exp

(
−(xi − xj)2

2l2

)
where σ2

f is the maximum allowable covariance and l is a length parameter that determines the extent of

influence of each point. σ2
f should be set to a large value for functions which cover a broad range of values.

If points xi and xj are close to each other, their output values are highly correlated, but if they are far
away, then the value at one point does not influence the value at the other point. Therefore, the parameter
l controls the smoothness of the interpolation.

Suppose we want to use the training data to predict the output at a new sample point x∗. Since the data
can be represented as a sample from a multivariate Gaussian distribution, we have[

y

y∗

]
= N

(
0,

[
K KT

∗
K∗ K∗∗

])
,

where y is the output variable corresponding to the N training data, y∗ is the prediction of the output at
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point x∗, and the submatrices are defined as follows:

K =


k(x1, x1) k(x1, x2) . . . k(x1, xN )

k(x2, x1) k(x2, x2) . . . k(x2, xN )
...

...
...

...

k(xN , x1) k(xN , x2) . . . k(xN , xN )

 ,

K∗ =
[
k(x∗, x1) k(x∗, x2) . . . k(x∗, xN )

]
,

and
K∗∗ = k(x∗, x∗).

The probability of y∗, that is, the output at the new sample point, is then given by

y∗ = K∗K
−1y

and the uncertainty in the estimate is given by the variance

var(y∗) = K∗∗ −K∗K
−1KT

∗ .

The parameters l and σf of the Gaussian process can be calculated from the training data using a maximum
likelihood approach. It is also possible to include a Gaussian noise component in the output variable, but in
our current analysis, we have assumed the noise to be zero.

5 Experimental results

We conduct several experiments with the three data sets described in Section 3 to evaluate the different
surrogates and understand their performance for a small training set. Specifically, we:

• perform an exploratory analysis of the data using ANOVA as a prelude to understanding the data
(Section 5.1),

• evaluate the accuracy of the different surrogate models on Eagar-Tsai-462 and Eagar-Tsai-100 data
sets using two different metrics (Section 5.2), and

• describe how surrogate models built using a small training set perform in prediction (Section 5.3).

Recall that we use three data sets — Eagar-Tsai-462, Eagar-Tsai-100, and Verhaeghe-41 — with 462,
100, and 41 sample points respectively. There are four inputs in each data set: the laser power in watts, the
laser speed in m/s, the beam size, which is the standard deviation of the Gaussian beam in micron, and the
absorptivity of the material in the form of a fraction, indicating how much of the laser energy is absorbed
by the material. In the larger Eagar-Tsai data set, we consider three outputs: the melt-pool width, depth,
and length, while in the remaining two data sets, we focus only on the depth as it is the most important of
the three outputs.

Before we present our results comparing the different surrogate models, we observe that any such com-
parison will also reflect the underlying function we are trying to model, as well as the location of the sample
points at which we ran the simulations. In our problem in additive manufacturing, the depth of the melt-pool
is a relatively well behaved function that varies linearly or mildly-nonlinearly over a large range of the input
parameters [20]. So, the comparison of the surrogates will give us insight on how they perform on such
functions when the number of sample points is small.

We also observe that the melt-pool depth increases rapidly in a small region of the design input space
where the laser power is high and the laser speed is low. This region is avoided in AM for several reasons.
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The high energy input leads to melt-pools that are far deeper than necessary, thus wasting energy. The
process also becomes unstable, leading to a large variation in depth for a fixed laser power and speed. The
high energy also causes vaporization, resulting in porosity and low quality parts [23]. Since this non-linear
region is quite small, it is possible that a small number of samples might not capture the variation in this
region adequately. This explains why the Eagar-Tsai-462 data set has melt-pool depth values in the range
12-289 microns, while the smaller Eagar-Tsai-100 data set has depth values in the range 23-101 microns.
This is an inherent problem whenever a small number of samples is used to model a rapidly-varying function.

5.1 Exploratory analysis using ANOVA

Before presenting the results for the different surrogates described in Section 4, we first discuss the results
obtained from the application of the Analysis of Variance (ANOVA) method [26] to data derived from the
Eagar-Tsai-462 data set. ANOVA can be considered as the use of very simple models based on mean values,
and the deviation from mean values, to explain data sets. It is related to linear regression, though it cannot
be considered as a surrogate in the strictest sense. It is mainly used in the context of design of physical
experiments and therefore, has been applied in additive manufacturing to select process parameters. Our
main reason for including ANOVA in this paper is that the insight it provides is very useful in improving
the performance of nearest neighbor surrogates.

In the ANOVA approach [26], a physical or computational experiment, with a set of input variables
(called factors), is run at a select set of values (called levels) of these inputs, and the resulting outputs are
analyzed. To generate such a data set from the Eagar-Tsai-462 data, we first identified the minimum and
the maximum values of each of the four inputs. We then divided this range into four equal segments and
took the mid-point of each segment as the value at that level. These values are listed in Table 1. Next, we
generated the output data (the melt-pool length, width, and depth) at these 256 points by using the MARS
method applied to the Eagar-Tsai-462 data. We repeated this three times, each time using a random 90%
subset of the to build the MARS model, giving us a total of 768 predictions (three values at each of the 256
points) for each of the three output variables.

Level Speed Power Beam size Absorptivity

1 0.335325 93.8875 26.125 0.325

2 0.882375 181.0625 28.375 0.375

3 1.429425 268.2375 30.625 0.425

4 1.976475 355.4125 32.875 0.475

Table 1: Input values used for each factor for the ANOVA experiment. The laser speed in m/s, the laser power in
watts, the beam size is the diameter of the Gaussian laser beam in micron, and the absorptivity of the material is a
fraction indicating how much of the laser energy is absorbed.

We then performed a 4-way ANOVA on this data set, focusing on the main effects and first-order in-
teractions of the four input factors. The F-statistic for these are summarized in Table 2, with the larger
values indicated in bold. These results suggest that not all inputs contribute equally to the three outputs.
Specifically:

• The laser speed affects the melt-pool depth and width; the absorptivity affects the melt-pool length;
and the laser power affects all three outputs.

• The laser power and laser speed have a strong interaction that affects the melt-pool depth and width,
while the laser power and absorptivity interaction strongly affect the length.

We drew the same conclusions in our previous work using feature selection algorithms on the Eagar-
Tsai-462 data set [20]. These conclusions suggest that, to build good surrogate models, methods that are
based on distances in the input space, such as the nearest-neighbor methods, would benefit by weighting the
inputs in the calculation of the distances. To address this, we modified our implementation of the LWKR
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Input Output Variables

Parameters depth length width

Speed 4.11× 102 4.50 ×10−2 3.88× 102

Power 1.12× 102 2.06× 103 1.15× 102

Beam size 6.96× 10−4 1.26× 10−5 3.52× 10−3

Absorptivity 7.35 2.59× 101 6.70

Input Output Variables

Parameters depth length width

speed & power 9.73× 101 2.13× 10−2 1.49× 102

speed & beam size 2.20× 10−2 2.20× 10−3 5.08× 10−3

speed & absorptivity 9.73× 10−1 2.49× 10−3 5.83× 10−1

power & beam size 1.15× 10−2 9.96× 10−5 5.47× 10−3

power & absorptivity 1.37× 10−1 5.90× 103 3.38× 10−2

beam size & absorptivity 3.26× 10−3 1.27× 10−5 9.67× 10−4

Table 2: F-statistic values for main effects (top) and 2-way interaction terms (bottom) from 4-factor ANOVA.

method to used a weighted Euclidean distance. The near-optimal feature weights were obtained using a
simple approach where we generated random samples in the weight space with values in the range [0.0, 5.0],
and selected the point that resulted in the minimum sum of absolute leave-one-out error on the training set.
Table 3 lists the weights used for the LWKR model in this paper. Note that these weights, especially for the
larger data sets, reflect the observations we made from the ANOVA analysis.

Input Eagar-Tsai-462 Eagar-Tsai-100 Verhaeghe-41

parameters length depth width depth depth

Speed 0.93 4.17 4.90 1.23 1.47

Power 1.40 1.52 1.03 0.79 0.20

Beam size 0.03 0.05 0.05 0.10 0.24

Absorptivity 1.05 0.09 0.21 0.08 0.37

Table 3: The near-optimal feature weights for the LWKR surrogate model.

5.2 Evaluating the accuracy of surrogate models

We consider two different metrics to evaluate the accuracy of the predictive model. The first is k runs of
m-fold cross validation, where the data are divided randomly into m parts, the model is trained on (m− 1)
parts and evaluated on the part that is held out. This is repeated for each of the m parts. The process
is repeated k times, each with a different random partition of the data. The final accuracy metric is the
average of the accuracy for each of the k×m parts. We use the relative mean-squared error metric, defined
as

n∑
i=1

(pi − ai)2
/ n∑

i=1

(ā− ai)2 (1)

where pi and ai are the predicted and actual values, respectively, of the i-th sample point in the test data
consisting of n points, and ā is the average of the actual values in the test data. This is essentially the ratio
of the variance of the residual to the variance of the target (that is, actual) values and is equal to (1.0−R2),
where R2 is the coefficient of determination. The second metric is the prediction using a leave-one-out (LOO)
approach, where a model, which is built using all but one of the sample points, is used to predict the value
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at the point that is held out. For a data set with N points, this is essentially N -fold cross validation. The
plot of predicted versus actual values provides an estimate of the quality of the results.

We first present the results for the prediction of melt-pool length, depth, and width for the Eagar-Tsai-
462 data set and the melt-pool depth for the Eagar-Tsai-100 data set. Table 4 summarizes the results of
five runs of five-fold cross validation for the different surrogates, while Figures 2 and 3 show the predicted
vs. actual values using the leave-one-out method. We observe the following:

• The errors in the melt-pool depth and width tend to be similar and larger than the error in the length,
which is the least important characteristic.

• A single regression tree tends to be less accurate than an ensemble of 10 trees, which is to be expected.
However, the cross validation error for an ensemble is still relatively high and the plots of predicted vs.
actual values show a good deal of scatter. This is because the condition that a node in the tree is split
only if it has a minimum number of instances, results in a very shallow and inaccurate tree, especially
in the smaller Eagar-Tsai-100 data set.

• SVR has a much higher cross-validation error than either LWKR with optimal weights, MARS, or GP.
The predicted vs. actual value plots indicate that the error is mainly at the higher values, where the
method underpredicts both the depth and width. We suspect that the smaller number of samples at
higher values results in a less-than-optimal choice of support vectors. The prediction is better for the
Eagar-Tsai-100 data set that has fewer samples with large depth.

• As suggested by the ANOVA analysis, the cross-validation results and the LOO prediction plots for the
melt-pool depth and width are substantially improved if we use LWKR with optimal weights instead
of weighting all inputs equally in calculating distances.

• The accuracy of MARS and LWKR with optimal weights is comparable, while GP outperforms both.
This is true for both data sets and all melt-pool characteristics.

• In surrogate models that perform well, there is a slightly more scatter at higher values of the depth
and width in the plots of predicted vs. actual values for the Eagar-Tsai-462 data set. As mentioned
earlier, there is a small region in design space where high laser power and low laser speed result in a
rapid increase in the melt-pool depth and width. While the Eagar-Tsai-462 data set has some samples
in this region, they are not enough to capture the variation, resulting in less accurate prediction. In
contrast, this behavior is not seen in the Eagar-Tsai-100 data set as the smaller number of samples
does not even capture this region.

Surrogate Relative MSE for 5 runs of 5-fold cross-validation

Eagar-Tsai-462 Eagar-Tsai-100

Length Depth Width Depth

LWKR (no weighting) 0.04% 9.02% 9.76% 6.40%

LWKR (optimal weights) 0.02% 0.34% 0.19% 0.25%

Regression tree 1.92% 8.95% 8.91% 27.32%

Ensemble of 10 trees 0.85% 3.89% 4.19% 12.43%

MARS 0.02% 0.72% 0.62% 0.42%

SVR 0.01% 10.24% 11.08% 1.52%

GP 0.01% 0.02% 0.07% 0.08%

Table 4: Error rate of the different surrogate models using relative MSE (equivalent to 1-R2) for five runs of five-fold
cross-validation for the Eagar-Tsai-462 and the Eagar-Tsai-100 data sets.

For the remainder of the paper, we focus on the melt-pool depth as it is the most important of the three
characteristics. Also, given their improved performance, we present results for LWKR only with optimal
weights and for regression trees only with an ensemble of 10 trees.
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5.3 Comparing surrogate models in practical applications

We have shown in Section 5.2 that several surrogate models give results with prediction accuracy that is
satisfactory when evaluated using the two metrics of 5 runs of 5-fold cross-validation and the leave-one-out
error. We next compare how effective each surrogate is in its prediction of the melt-pool depth at new sample
points especially as we reduce the size of the training data. These examples also illustrate the ways in which
the surrogates can be used in practice in additive manufacturing.

5.3.1 Determination of viable region

In the first example, we use the surrogates to determine the viable region where the power and speed values
result in sufficiently deep, but not too deep, melt pools. In our previous work [20], we found that if we used
a powder layer thickness of 30 microns in building a part, then a depth value from the simple Eagar-Tsai
model could be considered viable if it was greater than or equal to 60 microns, but less than or equal to 120
microns.

Ideally, a surrogate that provides good predictions with a smaller number of sample points would give
similar viable regions with the smaller Eagar-Tsai-100 data set as with the larger Eagar-Tsai-462 data set.
So, we generated viability plots by using the two data sets as training data for the different surrogate models,
and predicting the depth on a 40× 40 grid of sample points in the power-speed space, keeping the values of
the other two variables fixed at 52 microns for the beam size and 0.4 for the absorptivity. Figures 4 and 5
show the predictions of melt-pool depth over this grid of 1600 sample points, along with the viability regions,
using the Eagar-Tsai-462 and the Eagar-Tsai-100 data sets. For the GP surrogate, we also include the one
standard deviation uncertainty in the prediction. We make the following observations:

• The viable region for the ensemble of regression trees shows the block structure that is observed in tree
methods due to the axis-parallel cuts that are made to divide the input space. The results also show
that the viable region is very different when a smaller training set is used.

• For SVR, the viable region with the smaller training set completely fills the gap near the top left corner,
where the melt-pools are deep and therefore not considered viable for use in AM. This is because SVR
underpredicts the depth at larger values.

• For both LWKR with optimal weights and MARS, the viable region for the smaller training set is very
similar to, but slightly larger than, the viable region for the larger training set.

• For the GP surrogate, the viable region for the smaller data set is closest to the viable region for the
larger data set. Note that in the larger data set, there are a small number of viable points in the upper
right corner at speed values of 2500mm/s. These points are also associated with greater uncertainty in
prediction as they lie outside the range of the training data, which has a maximum speed of 2250mm/s.
This availability of the associated uncertainty in the prediction is an added benefit of the GP surrogate.

5.3.2 Identifying parameters for constant depth

In additive manufacturing, to create a higher quality part, we would ideally like to keep the dimensions of
the melt pool roughly constant as the laser traces out the part on each layer. This can be challenging as
the local environment around the laser beam is constantly changing. In tracing out a layer, the laser could
go over fresh powder, over previously melted-then-solidified powder, or adjacent to a just melted region of
powder. The laser speed also changes when it slows down to take a turn. An approach proposed by Beuth
and colleagues [6] was to identify curves, called “process maps”, in power-speed space where characteristics
such as melt-pool depth were constant. So, if the laser had to slow down to turn, it could change the power
appropriately to keep the depth constant.

A possible use of code surrogates is to build these process maps for constant depth. Figure 6 shows the
curves with melt-pool depths of 60, 75, and 90 microns, as predicted by the four surrogates built using the
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Eagar-Tsai-462 and Eagar-Tsai-100 data sets. The points in these plots are within ±1 micron of the depth
for each curve. A good surrogate would give very similar curves with the smaller training data set as with
the larger training data set. We see that this is the case for LWKR with optimal weights and GP; though the
latter has spurious points in the top right corner, it gives a better localization of the curves as the training
set size is reduced. In contrast, the location and completeness of the curves using MARS and SVR is very
different between the two training sets.

5.3.3 Predictions for designing experiments

In our earlier work [20], we showed that a Gaussian process model trained using the Verhaeghe-41 data set
was able to predict, with reasonable accuracy, the actual depth obtained from an experiment where 14 single
tracks were created on a plate. Unlike the Eagar-Tsai physical model, which is a simple approximation, the
Verhaeghe physical model gives results that are much closer to the experiment. However, it is computationally
very expensive, and therefore it is not possible to run a large number of Verhaeghe simulations to fully
understand the input design space. Code surrogates are an obvious alternative, but it is important to
understand how well a surrogate would perform with such a small training set.

In Table 5, we present the predictions of four surrogates for the melt-pool depth for the 14 experimental
tracks. These results were obtained using the Verhaeghe-41 data set for training. We have also included the
experimental value of the depth, mainly for comparison and to illustrate that more complex simulations can
give results close to the experiment. The table lists the error in prediction of each of the surrogates relative
to the depth from running the Verhaeghe simulation at the parameters for the 14 tracks. As a simple metric,
we evaluated the sum of the absolute values of these errors for the four surrogates, which is 43.4, 47.9, 52.6,
and 96.4 microns for MARS, LWKR with optimal weights, GP, and SVR, respectively. This indicates that
the MARS, LWKR, and GP surrogates tend to perform better than SVR.

Track Power Speed Expt Verhaeghe Surrogates

LWKR MARS SVR GP

1 400 1800 105.0 105.0 (0.0) 105.6 (-0.6) 101.5 (3.5) 105.0 (0.0) 105.0 (0.0)

2 400 1500 119.0 127.5 (-8.5) 127.7 (0.2) 124.4 (3.1) 130.6 (-3.1) 126.6 (0.9)

3 400 1200 182.0 163.5 (18.5) 157.8 (5.7) 158.0 (5.5) 160.5 (3.0) 155.5 (8.0)

4 300 1800 65.0 75.0 (-10.0) 78.6 (-3.6) 76.8 (-1.8) 63.1 (11.9) 68.1 (6.9)

5 300 1500 94.0 90.0 (4.0) 90.6 (-0.6) 91.1 (-1.1) 87.5 (2.5) 89.4 (0.6)

6 300 1200 114.0 115.0 (-1.0) 113.6 (1.4) 113.4 (1.6) 116.7 (-1.7) 116.7 (-1.7)

7 300 800 175.0 172.5 (2.5) 179.1 (-6.6) 167.2 (5.3) 161.2 (11.3) 169.3 (3.2)

8 200 1500 57.0 55.0 (2.0) 52.3 ( 2.7) 57.8 (-2.8) 41.7 (13.3) 57.9 (-2.9)

9 200 1200 68.0 70.0 (-2.0) 68.2 (1.8) 68.8 (1.2) 68.8 (1.2) 78.3 (-8.3)

10 200 800 116.0 105.0 (11.0) 114.4 (-9.4) 99.4 (5.6) 111.3 (-6.3) 104.5 (0.5)

11 200 500 195.0 165.0 (30.0) 165.9 (-0.9) 163.2 (1.8) 146.3 (18.7) 169.0 (-4.0)

12 150 1200 30.0 47.5 (-17.5) 45.0 (2.5) 46.4 (1.1) 45.3 (2.2) 59.5 (-12.0)

13 150 800 67.0 72.5 (-5.5) 81.6 (-9.1) 65.5 (7.0) 86.1 (-13.6) 69.5 (3.0)

14 150 500 120.0 112.5 (7.5) 115.3 (-2.8 110.5 (2.0) 120.1 (-7.6) 113.1 (0.6)

Table 5: Depth, in microns, from the single track experiments, the Verhaeghe model, and the predictions using four
code surrogates built with the Verhaeghe-41 data set. Power values are in watts and speed is in mm/s. For the
Verhaeghe model, the value in parenthesis is the difference from the experiment, and for the four surrogates, it is the
difference from the Verhaeghe model. The sum of the absolute error for LWKR, MARS, SVR, and GP is 47.9, 43.4,
96.4, and 52.6, respectively.
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5.4 Discussion of results

Our comparison of regression algorithms for use as code surrogates in additive manufacturing provides some
interesting insights into the use of these algorithms with small data sets. We start with some observations
on the data sets used in this paper. Our application domain is one where we can evaluate the algorithms not
just in terms of their prediction accuracy, but also in terms of how they would be used in practice, making
our observations more applicable in the context of a real problem. The use of simulations to generate the
data enables us to create data sets of different sizes for comparison. The melt-pool characteristics to be
predicted are reasonably well-behaved, without any discontinuities or large regions with rapidly varying
values. This makes the results somewhat independent of the sample points used as inputs to the simulations.
We do observe however, that when we use a small number of sample points, despite our efforts to spread the
samples uniformly, but randomly, we can miss some small regions with rapidly changing values. This is an
inherent problem in sampling, but as all our algorithms are compared on the same data set, it should not
be an issue in interpreting the results in this paper.

Of the five algorithms compared, the regression tree performs the worst with smaller data sets. This
is mainly due to two reasons. The axis-parallel cuts of the input space results in structured splits of the
space, making the predictions discontinuous at the splits. Further, as the size of the data set decreases, the
requirement that each leaf node of the tree have a reasonable number of samples leads to leaf nodes with a
large variation in values of the target variable, and therefore less accurate predictions.

The support vector regression method tends to perform poorly when there is a region with large variation,
but there are few sample points to capture the variation. We suspect the support vectors do not adequately
reflect the target values in such regions. This would make SVR not competetive with smaller data sets.

The remaining three methods — LWKR with optimal weights, MARS, and GP — all perform well. Of
these, GP provides the best performance, both in terms of prediction accuracy and use in practice. It has the
added benefit of providing the uncertainty in prediction, which could also be used to determine locations to
add new sample points when a data set is generated incrementally. Both LWKR and MARS are comparable
in accuracy and practical use. The use of weights in calculating distances in LWKR can also provide insight
into the relative importance of difference input dimensions.

In our comparisons, we did not include the computational time for each algorithm. As the data sets
are small, the time required to build and apply the model is also small, and therefore less relevant in the
comparison.

6 Related work

The work in prediction using small data sets has been driven mainly by two, somewhat related, factors: the
high cost of collecting data in some problem domains and the need to draw conclusions from the data that
has already been collected, while accounting for the fact that a small sample data set might not reflect the
population as a whole. The early work in this topic focused on the sample sizes required to build good models
with small data sets. In behavioural sciences, where simple linear regression models on predictor variables
were used, the desire to avoid overfitting led to several rules of thumb to determine appropriate sample
sizes. Typical rules suggested a minimum of 10 to 15 observations per predictor variable or a minimum base
sample size of 50 obervations plus 8 additional observations per predictor [4]. With increasing availability of
compute power, Monte Carlo simulations have been used to determine minimum sample sizes for estimating
regression coefficients and for R2 statistics in prediction [3]. The topic of selecting models for small sample
sizes has been studied both theoretically for parametric regression [11] and for classificaton problems in
high-dimensional simulated data sets in bio-informatics [18].

The contribution of our paper is to study how models built using diferent regression methods perform in
small data sets, both in terms of prediction, as well as practical use in the domain of additive manufacturing.
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7 Conclusions

In this paper, we presented an empirical study on the performance of different machine learning methods for
regression in small data sets. We used the problem domain of additive manufacturing. where both computer
simulations and experiments are expensive, resulting in small data sets. Our focus was on code surrogates
that are models built using data from simulations. Using different metrics such as prediction accuracy and
practical application in the problem domain, we compared five different regression algorithms. In the contect
of our data sets, we found that ensembles of regression trees and support vector regression did not perform
well, but locally weighted kernel regression and multi-variate adaptive regression splines performed well.
The best performance of that of Gaussian process models that were not only accurate, but also provided a
measure of confidence in the prediction results.
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Figure 2: Predicted vs. actual values for the length, depth, and width for the Eagar-Tsai-462 data set and the depth
using the Eagar-Tsai-100 data set for the different surrogate models using a leave-one-out approach. From top to
bottom: locally weighted kernel regression with no feature weighting, locally weighted kernel regression with optimal
feature weights, single regression tree, ensemble of 10 regression trees
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Figure 3: Predicted vs. actual values for the length, depth, and width for the Eagar-Tsai-462 data set and the depth
using the Eagar-Tsai-100 data set for the different surrogate models using a leave-one-out approach. From top to
bottom: multivariate adaptive regression splines (MARS), support vector regression (SVR), and Gaussian processes
(GP).
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Figure 4: Comparing the viability regions identified by different surrogates for the Eagar-Tsai simulation as the
number of samples points is reduced. Columns 1 and 3 are the prediction of the melt-pool depth using Eagar-Tsai-
462 and Eagar-Tsai-100, respectively, while columns 1 and 4 are the corresponding viability regions. The rows are
from top to bottom — LWKR with optimal weights, an ensemble of ten regression trees, MARS, and SVR.
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Figure 5: Comparing the viability regions identified by and Gaussian process for the Eagar-Tsai simulation as the
number of samples points is reduced. The columns are from left to right: the prediction of the melt-pool depth,
the standard deviation in the prediction, and the viability region. Results for the top row are generated using the
Eagar-Tsai-462 data set and for the bottom row, using the Eagar-Tsai-100 data set.
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Figure 6: Process maps indicating points at a constant depth in the power-speed space. The columns from left
to right are LWKR with optimal weights, MARS, SVR, and GP. Results for the top row are generated using the
Eagar-Tsai-462 data set and for the bottom row, the Eagar-Tsai-100 data set.

20



References

[1] ACME: Accelerated Climate Modeling for Energy Web Page, 2016. https://climatemodeling.

science.energy.gov/projects/accelerated-climate-modeling-energy.

[2] Atkeson, C., Schaal, S. A., and Moore, A. W. Locally weighted learning. AI Review 11 (1997),
75–133.

[3] Austin, P. C., and Steyerberg, E. W. The number of subjects per variable required in linear
regression analyses. Journal of Clinical Epidemiology 68 (2015), 627–636.

[4] Babyak, M. A. What you see may not be what you get: a brief, non-technical introduction to
overfitting in regression-type models. Psychosomatic Medicine 66 (2004), 411–421.

[5] Bennett, K. P., and Mangasarian, O. L. Robust linear programming discrimination of two linearly
inseparable sets. Optimization Methods and Software 1, 1 (1992), 23–34.

[6] Beuth, J., et al. Process mapping for qualification across multiple direct metal additive manufac-
turing processes. In International Solid Freeform Fabrication Symposium, An Additive Manufacturing
Conference, D. Bourell (Ed.), University of Texas at Austin, Austin, Texas (2013), pp. 655–665.

[7] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. Classification and Regression
Trees. CRC Press, Boca Raton, FL, 1984.

[8] Burl, M. C., et al. Automated knowledge discovery from simulators. In Proceedings, Sixth SIAM
International Conference on Data Mining (2006), pp. 82–93.
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