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Abstract

We consider the estimation accuracy of individual strength parameters of a Thurstone
choice model when each input observation consists of a choice of one item from a set of
two or more items (so called top-1 lists). This model accommodates the well-known choice
models such as the Luce choice model for comparison sets of two or more items and the
Bradley-Terry model for pair comparisons.

We provide a tight characterization of the mean squared error of the maximum like-
lihood parameter estimator. We also provide similar characterizations for parameter esti-
mators defined by a rank-breaking method, which amounts to deducing one or more pair
comparisons from a comparison of two or more items, assuming independence of these pair
comparisons, and maximizing a likelihood function derived under these assumptions. We
also consider a related binary classification problem where each individual parameter takes
value from a set of two possible values and the goal is to correctly classify all items within
a prescribed classification error.

The results of this paper shed light on how the parameter estimation accuracy depends
on given Thurstone choice model and the structure of comparison sets. In particular, we
found that for unbiased input comparison sets of a given cardinality, when in expectation
each comparison set of given cardinality occurs the same number of times, for a broad
class of Thurstone choice models, the mean squared error decreases with the cardinality of
comparison sets, but only marginally according to a diminishing returns relation. On the
other hand, we found that there exist Thurstone choice models for which the mean squared
error of the maximum likelihood parameter estimator can decrease much faster with the
cardinality of comparison sets.

We report empirical evaluation of some claims and key parameters revealed by theory
using both synthetic and real-world input data from some popular sport competitions and
online labor platforms.

1. Introduction

We consider the statistical inference problem of estimating individual strength or skill pa-
rameters of items based on observed choices of items from sets of two or more items. This

x. A preliminary version of this work was published in ICML 2016.
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accommodates the case of pair comparisons as a special case, where each comparison set
consists of two items. In our more general case, each observation consists of a compari-
son set of two or more items and the identity of the chosen item from this set. In other
words, each observation is a partial ranking, which is often referred to as a top-1 list. Many
applications are accommodated by this framework, e.g., choices indicated by user clicks in
various information retrieval systems, outcomes of single-winner contests in crowdsourcing
services such as TopCoder or Tasken, outcomes of hiring decisions where one applicant is
hired among those who applied for a job, e.g., in online labour markets such as Fiverr and
Upwork, as well as numerous sport competitions and online gaming platforms.

We consider the parameter estimation for the statistical choice model known as the
Thurstone choice model; also referred to as the random wutility model. According to the
Thurstone choice model, items are associated with latent performance random variables that
are independent across different items and different comparisons. For any given comparison
set, the choice is the item from this set with the largest performance random variable.
For any given item, the performance random variable is equal to the sum of a strength
parameter, whose value can be specific to this item, and a noise random variable according
to a given cumulative distribution function. The values of the strength parameters are
unknown and have to be estimated from the observed comparisons, and the distribution of
noise random variables is assumed to be known. The Thurstone choice model accommodates
many known choice models by admitting different distribution for noise random variables,
e.g., Luce choice model (Luce (1959)) for comparison sets of two or more items, and its
special case for pair comparisons, often referred to as the Bradley-Terry model (Bradley
and Terry (1954)).

In this paper, we study the accuracy of the maximum likelihood estimator of the pa-
rameter of the Thurstone choice model. Our goal is to characterize the accuracy of the
maximum likelihood estimator and shed light on how it depends on the given Thurstone
choice model and properties of the observed input data such as the number of observations
and the structure of comparison sets. In particular, we consider the following statistical
inference question. Suppose that the input observations are such that all comparison sets
are of the same cardinality &£ > 2 and are unbiased, meaning that in expectation every com-
parison set of given cardinality occurs the same number of times in the input data. Then,
we would like to understand how does the accuracy of the maximum likelihood estimator
of the strength parameters depend on the cardinality of comparison sets. Notice that from
any comparison set of cardinality k, we can deduce at most k(k — 1)/2 pair comparisons.
Intuitively, we would expect that the parameter estimation accuracy would increase with
the cardinality of comparison sets. However, it is not a priori clear how fast the accuracy
would improve and whether any significant gains can be achieved by increasing the sizes
of comparison sets. Moreover, it is also not a priori clear whether or not there can be any
significant difference between different Thurstone choice models, with respect to how the
parameter estimation accuracy is related to the cardinality of comparison sets. We also con-
sider these questions for parameter estimators that are derived by rank breaking methods,
which amount to deducing one or more pair comparisons from each comparison of two or
more items, assuming independence of these pair comparisons, and defining the estimator
as the maximum likelihood estimator under these assumptions.

The main contributions of this paper can be summarized as follows.
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We provide upper bounds on the mean squared error of the maximum likelihood esti-
mator, and a lower bound that establishes their minimax optimality. We show that the
effect of the structure of comparison sets on the mean squared error is captured by one key
parameter: algebraic connectivity of a suitably defined weighted-adjacency matrix. The el-
ements of this matrix correspond to distinct pairs of items and are equal to a weighted sum
of the number of input comparisons of different cardinalities that contain the corresponding
pair of items, where the weights are specific to given Thurstone choice model.

For the statistical inference question of how the estimation accuracy improves with the
cardinality of comparison sets, we derive a tight characterization of the mean squared error
in terms of the cardinality of comparison sets (Corollary 12). This characterization reveals
that for a broad class of Thurstone choice models, which includes the well-known cases such
as the Luce choice model, there is a diminishing returns decrease of the mean squared error
with the cardinality of comparison sets. For this class of Thurstone choice models, the mean
squared error tends to be largely insensitive to the cardinality of comparison sets. On the
other hand, we show that there exist Thurstone choice models for which the mean squared
error decreases much faster with the cardinality of comparison sets. Perhaps suprisingly, in
these cases, the amount of information extracted from a comparison set of cardinality k is
in the order of k? independent pair comparisons, which yields a 1/k? reduction of the mean
squared error of the maximum likelihood estimator. Section 6 provides more discussion.

We consider two natural rank-breaking methods, one that deduces k—1 pair comparisons
and one that deduces 1 pair comparison from a comparison set of cardinality k (Section 4).
We derive mean squared error upper bounds when choices are according to the Luce choice
model for these two rank-breaking methods in Theorem 17 and Theorem 18, respectively.
These results show that both estimators are consistent. Interestingly, both mean squared
error upper bounds are equal to that of the maximum likelihood estimator up to a constant
factor. Hence, they both inherit all the properties that we established to hold for the mean
squared error upper bound for the maximum likelihood estimator.

We also consider a binary classification problem where all strength parameters associ-
ated with items take one of two possible values (separating items into two classes), and
the goal is to correctly classify each item within a prescribed probability of classification
error (Section 5). We identify sufficient conditions for correctness of a simple point score
classification algorithm (Theorem 19) and establish their tightness (Theorem 20). These
conditions are of the same form as those that we imposed for deriving upper bounds on the
mean squared error of the maximum likelihood parameter estimator.

We present experimental results using both simulation and real-world data (Section 7).
In particular, we validate the claim that the mean squared error can decrease with the
cardinality of comparison sets in a qualitatively different way depending on the given Thur-
stone choice model. We also evaluate algebraic connectivity of weighted-adjacency matrices
for several real-world input data, demonstrating that it can cover a wide range of values
depending on specific application scenario.

1.1 Related Work

A model of comparative judgement for pair comparisons was introduced by Thurstone
(1927), which is a special case of a model that we refer to as a Thurstone choice model,



MILAN VOJNOVIC AND SE-YOUNG YUN

for the case of pair comparisons and Gaussian random noise variables. A statistical model
of pair comparisons that postulates that an item is chosen from a set of two items with
probability proportional to the strength parameter of this item was introduced by Zermelo
(1929), and was then popularized by the work of Bradley and Terry (1952, 1954) and others,
and is often referred to as the Bradley-Terry model. The statistical model of choice where
for any set of two or more items an item is chosen with probability proportional to its
strength parameter was shown to be a unique model satisfying a set of axioms introduced
by Luce (1959), and is referred as the Luce choice model. The Bradley-Terry model is the
special case of the Luce choice model for pair comparisons. The choice probabilities of the
Luce choice model correspond to those of a Thurstone choice model with noise random
variables according to a double-exponential distribution. Relationships between the Luce
choice model and Thurstone choice model were studied by Yellott (1977). A statistical model
for full ranking outcomes (the outcome of a comparison is an ordered list of the compared
items) where the ranking is in the order of sampling of items without replacement from the
set of compared items and the sampling probabilities are proportional to the strengths of
items is referred as the Plackett-Luce model (Luce (1959) and Plackett (1975)).

The Thurstone choice models have been used in the design of several popular skill rating
systems, e.g., Elo rating system by Elo (1978) used for skill rating of chess players and in
other sports, and TrueSkill by Graepel et al. (2006) used for skill rating of gamers of a
popular online gaming platform. All these models are instances of Thurstone models, and
are special instances of generalized linear models, see, e.g., Nelder and Wedderburn (1972),
McCullagh and Nelder (1989), and Chapter 9 in Murphy (2012). An exposition to the
principles of skill rating systems is available in Chapter 9 in Vojnovié¢ (2016).

The parameter estimation problem for the Bradley-Terry model of pair comparisons
has been studied by many. The iterative methods for computing a maximum likelihood
parameter estimate have been studied in the early work by Hunter (2004) and the recent
work by Maystre and Grossglauser (2015). Simons and Yao (1999) shown that the maximum
likelihood parameter is consistent and asymptotically normal as the number of items n grows
large, under assumption that each pair is compared the same number of times and that the
true parameter vector is such that the maximum distance between any of its coordinates is
o(log(n)). Maydeau-Olivares (1999) studied Thurstonian model parameter estimation with
noise random variables according to a Gaussian distribution.

The accuracy of the parameter estimation for various instances of Thurstone models
has been studied in recent work. Negahban et al. (2012) found a sufficient number of
input pair comparisons to achieve a given mean squared error of a parameter estimator
for the Bradley-Terry model and the input comparisons such that in expectation each
distinct pair is compared the same number of times. In particular, they shown that under
given assumptions, it suffices to observe O(nlog(n)) input pair comparisons. Rajkumar and
Agarwal (2014) studied a statistical convergence property of ranking aggregation algorithms
for pair comparisons not only for the Bradley-Terry model but also under some more general
conditions referred to as low-noise and generalized low-noise. Hajek et al. (2014) provided a
characterization of the mean squared error of the maximum likelihood parameter estimate
for the Plackett-Luce model of full ranking outcomes. This work found that the algebraic
connectivity of a weighted-adjacency matrix captures the effect of the structure of input
comparison sets on the mean squared error of the maximum likelihood parameter estimator.
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Shah et al. (2016) established similar characterization results for the case of pair comparisons
according to Thurstone choice models.

Our work differs from previous work in that we consider characterization of the esti-
mation accuracy for a general class of Thurstone choice models for arbitrary sizes of com-
parisons. Specifically, our work provides a first characterization of the estimation accuracy
with respect to the cardinality of comparison sets for unbiased input comparisons, which
reveals an insight into the fundamental limits of statistical inference for given cardinality
of comparison sets. It is a folklore that different models of pair comparisons yield similar
performance with respect to the prediction error, e.g. Stern (1992), which suggests that
the precise choice of a Thurstone choice model does not matter much in applications. Our
results show that there can be significant difference between two Thurstone choice models
with respect to the statistical inference of model parameters.

Parameter estimators derived by various rank-breaking methods have been studied by
various authors. For instance, Soufiani et al. (2013) and Soufiani et al. (2014) studied
rank-breaking methods for full ranking data and Khetan and Oh (2016b) studied rank-
breaking methods for partial rankings. Recently, Khetan and Oh (2016a) characterized a
trade-off between the amount of information used per comparison and the mean squared
error of a parameter estimate based on rank breaking. Our work is different in that we are
interested in top-1 list observations and the effect of the structure of comparison sets for
rank-breaking methods. For the top-1 list observations and any given comparison structure,
our work provides upper bounds for the mean squared error of two natural ranking breaking
methods and shows the optimality of them.

1.2 Organization of the Paper

Section 2 introduces problem formulation, some basic concepts and key technical results used
to establish our main results. Section 3 provides a characterization of the mean squared
error for the maximum likelihood parameter estimation, including both upper and lower
bounds. Section 4 shows the same type of characterizations for two rank-breaking based
parameter estimators. Section 5 establishes tight conditions for correct classification of
items, when the strength parameters of items are of two possible types. Section 6 discusses
how the estimation accuracy depends on the cardinality of comparison sets. Section 7
contains results of our experiments. Finally, Section 8 concludes the paper. Appendix
contains some background facts and proofs of our theorems.

2. Problem Formulation and Notation

Let N = {1,2,...,n} be a set of two or more items. The input data consists of a sequence of
one or more observations (51,41), (S2,42), - .., (Sm,Ym), where each observation ¢ consists
of (a) a comparison set Sy C N and (b) a choice of an item y; from S;. The case of pair
comparisons is accommodated as a special case when each comparison set consists of two
items. Let w; g denote the number of observations for which the comparison set is S and
the chosen item is 7 € §. With a slight abuse of notation, for pair comparisons, let w; ; be
the number of observations for which the comparison set is {7, j} and the chosen item is 1.

A Thurstone choice model, denoted as Tp, is defined by a cumulative distribution func-
tion F of a zero mean random variable and parameter vector § = (01,602, ...,0,) that takes
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value in ® C R™. We can interpret 6; as the strength of item ¢ € N. The cumulative
distribution function F'is assumed to have a density function, denoted by f.

According to Thurstone choice model Tg, for any given sequence of comparison sets,
choices are independent random variables according to the following distribution: condi-
tional on that the comparison set is S, with k denoting the cardinality of S, the distribution
of choice is

pi,s(0) = pr(xi5(0)), forie S (1)

where x; 5(6) is a vector in R¥~! with elements 6; — 0, for j € S\ {i}, and

k—1
pr(x) = /R <H F(x, + z)) f(2)dz, for x € RFL, (2)
v=1

With a slight abuse of notation, for the case of pair comparisons, we let p; ;(#) denote
the probability that item i is chosen from the comparison set {4, j}. In this case, we have

pi,j(0) = p2(0; — 0)

where

pa(x) = /RF(:): +2)f(2)dz, for x € R.

A Thurstone choice model T corresponds to the following probabilistic generative model
of choice, also referred to as a random wutility model. The items of each comparison set
are associated with latent performance random wvariables, which are independent across
different items and different comparison sets. For any comparison set S and item ¢ € S, the
performance random variable X; is equal to the sum of a strength parameter 6; and a noise
random variable with distribution F'. The given probabilistic generative model assumes that
for any given comparison set S, the chosen item is the one with the largest performance.
Hence, the distribution of choice is p; 5(6) = P[X; > maxjcg Xj] for i € S, which can be
expressed as asserted in (1).

It is noteworthy that under a Thurstone choice model, the probability distribution of
choice depends only on pairwise differences of the strength parameters. This implies that
the probability distribution of choice is shift-invariant with respect to the parameter vector.
In order to allow for identifiability of the parameter vector, we assume that 6 is such that
Z:‘L:l 0; = 0.

We refer to several examples of Thurstone choice models as follows: (i) Gaussian dis-
tribution : f(z) = 1/(V270) exp(—z%(27")) with variance o2; (ii) Double-ezponential dis-
tribution: F(x) = exp(—exp(—(x + fv)/F)) with parameter § > 0 and v denoting the
Euler-Mascheroni constant, which has variance o? = 7w232/6; (iii) Laplace distribution:
F(z) =1/2 exp(z/p), for x < 0, and F(z) =1 — 1/2 exp(—z/3), for x > 0, with param-
eter 3, which has variance 02 = 23?; and (iv) Uniform distribution: f(z) = 1/(2a) for
x € [—a,a], which has variance 02 = a?/3.

For the general case of comparison sets of two or more items, the distribution of choice
admits an explicit form only for some special cases. For example, when noise random
variables are according to a double-exponential distribution, we have

1
IRy

Pr(x) , for x € R* 1.

6
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This amounts to the choice probabilities p; 5(6) = exp(6;/8)/ >, cgexp(8y/B), fori € S and
S C N, which under suitable re-parametrisation corresponds to the well-known Luce choice
model. In particular, for pair comparisons, we have ps(x) = 1/(1+exp(—=z/3)), which under
suitable re-parametrisation corresponds to the well-known Bradley-Terry model. For pair
comparisons, the choice probabilities admit an explicit form also for some other Thurstone
choice models; for example, when noise has a Gaussian distribution, we have po(x) =
®(z/(20)) where @ is the cumulative distribution function of a standard normal random
variable.

Maximum Pseudo Likelihood Estimation We consider parameter estimators that
are defined as maximizers of a pseudo log-likelihood function {:© — R. We refer to the
parameter estimator b arg maxgece E(G) as a maximum pseudo likelihood estimator.

We devote a special attention to maximum likelihood estimator, defined as a maximizer
of the log-likelihood function, which for a Thurstone choice model is given by

0(0) = log(py,,s,(9))- (3)
t=1
The log-likelihood function can be written as follows

00) = Z Zwi,g log(p|s|(xi,5(0))) + const (4)

SCN ieS

where recall w; g is the number of observations for which the comparison set is S and i is
the choice from S. In particular, for pair comparisons, we have

00) = Z Z w; j log (p2(0; — 6;)) + const. (5)

i=1 j=1

Evaluating the value of the log-likelihood function in (4) for given parameter vector
requires evaluating a sum that in the worst-case consists of exponentially many elements in
n (all possible combinations of two or more elements from the ground set of n elements).
On the other hand, for pair comparisons, the log-likelihood function in (5) is a sum of at
most n? elements; thus, polynomially many elements in n. A common approach to reduce
computational complexity is to use the so-called rank breaking, which amounts to deducing
pair comparisons from any given comparison set of two or more items, and assuming that
these pair comparisons are independent (if this is not the case). Using these pair compar-
isons, one then defines a pseudo log-likelihood function as the log-likelihood function under
the assumption that the deduced pair comparisons are independent.

We shall consider two natural rank-breaking methods. The first rank-breaking method
deduces k —1 pair comparisons from each comparison set of k items, by taking all pairs that
consist of the chosen item and each other item in the given comparison set. The pseudo
log-likelihood function in this case is given by

G0 =3 3 log(py.(0)). (6)

t=1 veSi\{y+}
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The second rank-breaking method that we consider deduces 1 pair comparison from each
comparison set of k items, by taking a pair that consists of the chosen item and a randomly
picked item from the remaining set of items in the given comparison set. The pseudo
log-likelihood function in this case is given by

01(0) = " log(py, 2, (0)). (7)
t=1

The first rank-breaking method uses maximum amount of information that is contained
in a comparison; by observing choice of one item from a comparison set of k items, we can
indeed deduce at most k — 1 pair comparisons (between the chosen item and each other
item in the given comparison set). In general, these pair comparisons are not mutually
independent. The second rank-breaking method is conservative in deducing only one pair
comparison from each comparison set of two or more items.

Parameter Estimation Accuracy We study the accuracy of a maximum pseudo log-
likelihood estimator 6 of the true parameter vector 8* by using the mean squared error
defined as follows:

7 ox 1~ *
MSE(6,6%) = |6 — 0 I3. (8)

We also consider the probability of classification error for the case when the strength
parameters belong to one of two classes and the goal is to correctly classify each item.

2.1 Eigenvalues, Adjacency, and Laplacian Matrices

Here we review some basic definitions that are used throughout the paper. We denote
eigenvalues of a matrix A € R™ " as A;(A), A\2(A),..., A\, (A). By convention, we assume
that A\1(A) < A2(A) < -+ < Ay (A). The spectral norm ||All2 of matrix A € R™*™ is
defined by ||A|l2 = /A (ATA). The spectral norm of A is induced by the Euclidean
vector norm as follows ||A|l2 = max{||Ax]|]2 : x € R",||x|| = 1}. If A € R"" is a real
symmetric matrix, then ||All2 = A, (A).

For any weighted-adjacency matrix A € Rﬁxn, we consider a Laplacian matrix La
defined by

La = diag(Al) — A

where for any given vector a, diag(a) denotes the diagonal matrix with diagonal a.

For any weighted-adjacency matrix A € R*", we refer to A2(La) as the Fiedler value of
A (Fiedler (1973, 1989)). The Fielder eigenvalue of a weighted-adjacency matrix quantifies
its algebraic connectivity. A weighted-adjacency matrix A corresponds to a connected graph
if and only if it has strictly positive Fielder value, i.e., Ao(La) > 0.

For any given observations and given weight function w: {1,2,...,n} — R, we define
the weighted-adjacency matrix M, as follows. Let m; ;(k) be the number of comparisons
of cardinality k that contain the pair of items {,j}. Then, we define M,, to be the matrix
in R"™ with zero diagonal elements and other elements given by

mij = — > w(k)mi (k). (9)

k>2
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With a slight abuse of notation, let M, be the weighted-adjacency matrix defined for the
weight function that takes constant value a > 0, and let M be written in lieu of M;.

If all comparison sets have identical cardinalities, then each element of the weighted-
adjacency matrix is equal to the number of comparisons that contain the corresponding pair
of items up to a multiplicative factor. The factor n/m can be interpreted as a normalization
with the mean number of comparison sets per item. This normalization is admitted so that
for the canonical case of pair comparisons when each pair is compared the same number of
times, A2(Ln,) is a constant independent of the number of observations m and the number
of items asymptotically for large n. Indeed, in this case, Ao(Lng,) = -+ = A(Lm,) =
(1 —1/n)a, which is equal to constant a, asymptotically for large n.

We say that comparison sets are unbiased if for any given cardinality, each set of the
given cardinality occurs the same number of times. In particular, for pair comparisons, this
means that each distinct pair is compared the same number of times. For any unbiased
comparison sets, the weighted-adjacency matrix can be expressed as follows. Let u(k) be
the fraction of comparison sets of cardinality k. Then, for every integer k > 2 and pair of
items {i, 7}, mq; (k) = ((gjg) /(’,;)) p(kym = (k(k —1)/[n(n — 1)]) u(k)m. Hence, for every
pair of items, we have

miy = —— 3 w(k)k(k — Da(k). (10)

n—1
k>2

It follows that for any unbiased comparison sets, we have

patian) = (1= 1) S wk)kh — k) (1)

n
k>2

which is a constant independent of n, asymptotically for large n.

We shall also consider comparison sets that are assumed to be an independent random
sequence according to a given distribution. Specifically, we shall consider the case where
all comparison sets are of the same cardinality, and are independent samples according to
uniform random sampling without replacement from the set of all items. We denote with
M, the expected weighted-adjacency matrix, where the expectation is with respect to the
distribution of the sequence of comparison sets. We say that comparison sets are a priori
unbiased if all non-diagonal elements of M,, are equal.

2.2 A Key Lemma and Probability Tail Bounds
All upper bounds for the mean squared error of a maximum pseudo log-likelihood estimator

in this paper are established by using the following key lemma.

Lemma 1 Suppose that g : R™ — R satisfies (i) V2g(0)1 = 0 and (ii) A2(V3g(0)) > 0 for
all 6 € ©, where © = {0 € [-,b]" : 671 =0} for b > 0. Let 6* be an arbitrary vector in ©
and 0 € argmingeg g(0). Then, we have

2(|Vg(67)ll, '
mingee A2(V2g(0))

16 — 642 <
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We shall apply this lemma to the case where g is a negative pseudo log-likelihood
function, 0 is a maximizer of the pseudo log-likelihood function, and 6* is the true parameter
vector. We upper bound the mean squared error by the following two steps:

S1 find o > 0 such that ||Vg(6*)||, < «, and

S2 find B > 0 such that mingee X2(V2g(0)) > B

which imply the upper bound [|§ — 6* 2 < 2a/B.

All our proofs of the mean squared estimation error upper bounds follow the above two-
step procedure, including the proof of Theorem 4 in Section 3.1 and other proofs provided
in Appendix.

In step S1, Vg(6*) is a sum of random vectors. We will make use of the following vector
version of Azuma-Hoeffding bound (Theorem 1.8 in Hayes (2003)) for a sum of random
vectors.

Lemma 2 (vector Azuma-Hoeffding bound) Suppose that S, = Y ;" X; is a mar-

tingale where X1, Xo, ..., X, are random variables that take values in R™ and are such
that E[X;] = 0 and || X¢||2 < o for allt € {1,2,...,m}, for c > 0. Then, for every x >0,
12

P[[|Smll, > 2] < 2¢2e” amo? .

In step S2, we need to find a lower bound for the second-smallest eigenvalue of the
Hessian matrix V2g(6) for all € ©. For pair comparisons according to a Thurstone choice
model or comparisons of two or more items according to the Luce choice model, V2g(f) is
determined by comparison sets and does not depend on the choices. We can find § from a
Laplacian matrix when the comparison sets are given. In other cases, V2g(#) is a sum of
random matrices. We will make use the following matrix version of Chernoff’s bound along
with properties of eigenvalues of a Laplacian matrix (which are given in Appendix A).

Lemma 3 (matrix Chernoff bound) Let S, = > ;" | X; where X1,Xo, ..., X, are ran-
dom independent real symmetric matrices in R™ ™ such that A\1(X¢) > 0 and, || X¢||2 < o
forte{1,2,...,m}, for o > 0. Then, for e € [0,1),

P A\(Sm) < (1= OM(E[Sy])] <ne™ 20

3. Maximum Likelihood Estimation

In this section, we present upper and lower bounds for the mean squared error of the
maximum likelihood parameter estimator for the Thurstone choice model. We will first
consider the case of pair comparisons. We then consider the more general case when each
comparison set consists of two or more items. For this more general case, we first give
an upper bound for the Luce choice model, and then present similar characterization for
a class of Thurstone choice models. We end this section with a lower bound on the mean
squared error of the maximum likelihood parameter estimator, which establishes minimax
optimality of our upper bounds.

10
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3.1 Pair Comparisons

We consider pair comparisons according to a Thurstone choice model Tr with parameter
vector 0* that takes value in © = [—b, b]"” and that satisfies the following conditions:

P1 There exists A > 0 such that

d*log(pa())

e < —A for all z € [—2b, 20]. (12)

P2 There exists B > 0 such that

dlog(p2(x))

I < B for all x € [—2b,2b]. (13)

P3 The weighted-adjacency matrix M is irreducible, i.e. Ao(Lng) > 0.

Condition P1 means that po is a strictly log-concave function on [—2b,2b]. Condition
P2 means that log(p2(x)) has a bounded derivative on [—2b, 2b]. Notice that this condition
is equivalent to dpa(x)/dx < Bpa(x) for all z € [—2b,2b]. Constants A and B are specific
for given Thurstone choice model and the value of the parameter b. In particular, for the
Bradley-Terry model, it can be easily checked that P1 and P2 hold with A = ¢—2b/8 /1B%(1+
e~ 2/8)2] and B = 1/[8(1 4 e~ ?/8)]. Condition P3 means that the observations are such
that the graph defined by the weighted-adjacency matrix is connected. Equivalently, there
exists no partition of the set of items N into two non-empty sets S and N \ S such that
some pair of items ¢ € S and j € N \ S is not compared in the input observations.

Theorem 4 Under conditions P1, P2 and P3, with probability at least 1 — 2/n,

n(log(n) + 2)

~ 1
MSE(6, 6%) < D? —
( ) B )\Q(LMI/AL)Q m

(14)

where D = B/A.

Before we show a proof of the theorem, we note the following remarks.

First, notice that D is a constant whose value is specific to given Thurstone choice
model and the value of parameter b. In particular, for the Bradley-Terry model, we have
D = (28 +1).

Second, from (14), for the mean squared error to be smaller than or equal to €2, for
given € > 0, it suffices that the number of observations is such that

1 1

m > ?D2W n(log(n) + 2). (15)

Third, and last, if each pair of items is compared the same number of times, then, from
(10), we have m; ; = 1/(2(n—1)) for all i # j. Hence, in this case Aa(Lm, ,) = n/(2(n—1)),
and, from (15), it suffices that the number of observations m is such that
4 9
m > = D*n(log(n) + 2).

_62
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Proof of Theorem 4 We now go on to provide a proof of Theorem 4. For pair compar-
isons, the log-likelihood function (3) can be written as

0(0) = log(pa(y, — 02,))
t=1

where y; denotes the choice from the comparison pair S; = {y, z:} for each observation t.
The negative log-likelihood function satisfies the relation in Lemma 1, which combined with
the following two lemmas, establishes the statement of the theorem.

Lemma 5 The following relation holds:
. 2 m
min Ao (V*(—=£(0))) > 4Ag)\2(LM1/4).

o€

Proof It is easy to verify that for all 8 € R™ and 7,5 € N, we have the following identities

d*log(pa(0; — 0;))  0%log(pa(6; — 6;))
dx? a 89?
_ 9% log(p2(6; — 0;))
o0
_ 9*(—log(p2(0; — 0;)))
0600, '

For all 7,j € N such that i # j, we have

0 (—log(pa(0y, — 0-,))) :{ 2 log(pa(By, — 0:)), if {iy5} = {ye, 2}

00;00; 0, otherwise
and

0%(—log(p2(Oy, — 0=))) _ 3 0*(— log(p2(0y, — 0-,)))

893 oy 89189] ’
Combining with condition P1, we have
0%(—log(p2(y, — 02,)))
2, 35’; < ALy, sy (i)
It follows that m
V2(—0(6)) = 4A— L, ., for all 6 € [~b,b)" (16)

where for two matrices A and B, A > B is equivalent to saying that A — B is positive
definite; see Appendix A. In (16), both V2(—£(6)) and 4/1%1}1\/[1/4 are positive-definite
matrices. Hence, by the elementary fact stated in Lemma 23 (Appendix), we obtain the
assertion of the lemma. |

12
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Lemma 6 With probability at least 1 — 2/n,

IV (=£(67))ll2 < 2B/m(log(n) + 2).

Proof V(—¢()) is a sum of independent random vectors in R" given by

m

V(=00)) =Y V(= log(p2(8y, —0-,)))-

t=1
The elements of V(—log(p2(0y, — 6.,))) can be expressed as follows

o d log(pg (Qyt 79—% ))

0(—log(p2(By, — 02,))) g oy
( ( aeiyt ) _ +dl g(pz&@;t Gzt))7 ifi= Z?
0, otherwise.

If i ¢ {y:, 2}, then clearly

Otherwise, we have

E [(’9(— log(p2 (67, — 9;)))] dlog(pa(6y, — 0%,))

dzx

o, dlog(p2(0F, —05.))
-l-pz(@Zt — Qyt) dxt Yt

_dpa(60, — 67) N dp2(0%, — 0,,)
dx dz

5 = (0}, 02)

= 0

where the last equation is by the fact that dps(x)/dx is an even function.
By condition P2, we have

2 2
V(- o (6, ~ 0 ) = (R0l ) (Dol Z0))

< 2B

Hence, by the vector Azuma-Hoeffding bound in Lemma 2, we have

PV (~£(6)]l2 > 2Bv/m{log(n) + 2)] < .

13
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3.2 Comparison Sets of Two or More Items

We now consider a more general case were each comparison set consists of two or more items.
We first show an upper bound for the mean squared error of the maximum likelihood pa-
rameter estimator when the choices are according to the Luce choice model and comparison
sets are of identical sizes. We then present a similar characterization under more general
assumption that allow for a broader set of Thurstone choice models and non-identical sizes
of comparison sets.

Theorem 7 Suppose that choices are according to the Luce choice model, all comparison
sets are of cardinality k > 2, and Ao(Lng) > 0. Then, with probability at least 1 — 2/n,

~ log(n) +2) 1
MSE ") < Dzn(——
SE(9,0%) < o(Ia)? m

where D = 4k2e*?.

The proof of Theorem 7 is provided in Appendix C. The mean squared error upper bound
in Theorem 7 corresponds that in Theorem 4 up to a constant factor. If the comparisons
sets are unbiased, from (11), we have that Ao(Ln) = (1 —1/n)k(k — 1). Hence, the mean
squared error upper bound in Theorem 7 depends on k only through the factor 1/(1—1/k)?,
which decreases to value 1 with k£ in a diminishing returns fashion. This suggests that there
is a limited dependence of the mean squared error on the size of comparison sets.

We now go on to establish a mean-squared upper bound for a class of Thurstone choice
models. We will allow for comparison sets of different cardinalities taking values in a set
K. We will admit the following conditions:

A1l There exists A > 0 such that for all S C N with |S| € K, ally € S, all 4,5 € S with
i # j, and all 6 € [—b,b]",

0%~ log(py5(0) _ ,0*(=log(p,s(0))) _
89189] - 89169] o

and, moreover, the following holds

0%(—log(py,5(0)))

b 6,00

< 0.

A2 There exists B > 0 such that for all S C N with |S| € K, ally € S, and all § € [-b,b]",
IVPy.s(0)ll2 < B[ Vpy,s(0)]l2-
A3 There exists C' > 0 such that for all S C N with |S| € K, ally € S, and all 8 € [—b, b]",
Py,5(0) = Cpy,5(0).

14
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Condition A1 ensures that V2(—log(p, s(0))) is a Laplacian matrix with non-negative
weights, and that V2(—log(pys(0))) = AVZ(—log(py,s(0))) for all 6 € [—b,b]". Condition
A1 also ensures that the expected value of V?(—log(p, s(6))) is a positive definite matrix
where V2(—log(pys(0))) is a random matrix when |S| > 2. Condition A2 requires that
|Vpy.s(0)||2 is bounded for all # € [—b,b]", while condition A3 ensures that the choice
probabilities are not too much imbalanced. Conditions A1 and A2 may be seen as gener-
alizations of conditions P1 and P2 for the case of pair comparisons.

Conditions A1, A2 and A3 can be easily shown to hold for the Luce choice model. For
the Luce choice model, we have

2(—1lo
02( lagi(gg;sw))) _ _;pi’s(e)pj,s(e)

hence, A1 holds with A = e~%/ and 62(—log(p, 5(0)))/06;00; = —1/(|S|3)?. Conditions
A2 and A3 hold with B =4 and C = e=2%/5.

Note that constants A, B and C' that appear in A1, A2 and A3, respectively, may
depend on F', the cardinalities of comparison sets, and the parameter b, but are independent
of any other parameters. In particular, these constants are independent of the number of
observations. For any Thurstone choice model, the constants A, B, and C can be taken to
have values arbitrarily near to value 1 by taking b small enough.

We next show an upper bound for the mean squared error of the maximum likelihood
parameter estimator for a class of Thurstone choice models that satisfy the above stated
conditions. Before we do that, we need to introduce some new definitions.

Definition 8 (weight function) Let w* be a function defined on positive integers greater
than or equal to 2, we refer to as a weight function, which is defined by

w*(k) = <k8}(;;;(10)>27 fork=23,... (17)
where
Ipx(0) _ 22F () 2de
e WCRACD (18)

Notice that for the Luce choice model, dpy(0)/0z; = 1/(Bk)?. Hence, in this case,
w*(k) = 1/(Bk)?. We will see later in Section 6 that for a broad class of Thurstone choice

models, which includes well-known cases with noise according to either Gaussian or double-
exponential distribution, dpy(0)/0x1 = ©(1/k?) and, hence, w*(k) = O(1/k?).

Definition 9 (yp; parameter) Let yry be a parameter defined by

EEERE R (apk(o))2_ (19)

VFk O0x1

We note that for any comparison set S of cardinality k and all y € S, we have

wl,k = |V 1og(py.5(0)|? = k(k — Duw* (k)

which is discussed in more detail in the proof of Lemma 30. In particular, for the Luce
choice model, we have vry = (1 —1/k)/3%.
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Theorem 10 Assume Al, A2 and A3, let o i be such that 1/vpy, < opk forallk € K,
and Xa(Lyg ,) > 32(or,x/C)nlog(n)/m. Then, with probability at least 1 —3/n,

~ log(n) +2) 1
MSE(D, 0%) < 32D%0p 108 £2) 1
SE(0,0%) < 32D%0r K )\Q(LMM*)Q -~

where D = B/(AC).

The proof of the theorem is provided in Appendix D. The main technical difference
of the proof with respect to that of Theorem 7 is that VZ(—£(6)) is a sum of random
matrices. Every V?(—log(py,,s,(0))) is a random matrix for the following two reasons: (a)
V2(—log(py,.s,(0))) depends on the randomly chosen y; and (b) S; is allowed to be a random
set of items. We use the matrix Chernoff bound in the proof of Theorem 10.

We next show two corollaries of Theorem 10, which cover two interesting special cases.

Corollary 11 Suppose that all comparison sets are of identical cardinality of value k > 2,
A1, A2, A3 hold, and )\Q(LMI ) > 32(k—1)/(Ck). Then, with probability at least 1—3/n,

/K2

2
MSE(6, 0*) < 32D? (1 - 1) r

n(log(n) +2) 1
k) R x (L

2
1/k2) m
where Yp, is giwen by (19), and M, 2 is the weighted-adjacency matriz with the weight
function w(k) = 1/k>.

Corollary 12 Suppose that comparison sets are independent with each comparison set being
a sample without replacement from the set of all items, conditions A1, A2, A3 hold, and
m > 32(1 — 1/n)/Cnlog(n). Then, with probability at least 1 — 3/n,

MSE(6,6*) < 32D? (1 — n) vF,k”(Og(:LH).

3.3 Lower Bound

In this section, we present a lower bound for the mean squared error of the maximum
likelihood parameter estimator, which establishes minimax optimality of the established
upper bounds. We define the following conditions:

A1’ There exists A > 0 such that for all S C N with S| € K,ally € S, alli,j € S such
that ¢ # j, and all € [—b,b]", it holds
0*(—log(py,s(0))) _ +0%(—log(py,s(0)))

>
89i89j z 4 8916@

A3’ There exists C' > 0 such that for all S C N with |S| € K, ally € S, and all § € [—b, b]",
it holds N
Py.s(0) < Cpy,s(0).

16
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Notice that, in particular, for the special case of I' being a double-exponential distribu-
tion with parameter 3, we have that A1’ and A3’ hold with A = et/8 and C = /8.

Theorem 13 Under conditions A1’ and A3’, for any unbiased estimator (/9\, we have

The following two corollaries follow from the last theorem.

Corollary 14 If all comparison sets are of cardinality k > 2, then any unbiased estimator

0 satisfies
~ 1 1 - 1 1
E[MSE(0,0*)] > — (1 — = — | =
MSEQ. )2 2 (1 ) e (ZZ;MLM)) m

Corollary 15 If, in addition, each comparison set is drawn independently, uniformly at
random from the set of all items, then any unbiased estimator 6 satisfies

. 1 1\?2 n
* > —— - T .
E[MSE(6, 6*)] > == (1 n) TRk

The last corollary implies that under the given assumptions, for the mean squared error
to be smaller than a constant, it is necessary that the number of observed comparisons is
m = Q(yprn).

Proof of Theorem 13 We denote by cov[Y] the covariance matrix of a multivariate
random variable Y i.e.,

cou[Y] = E[(Y — E[Y])(Y —E[Y])"].
The proof uses the Cramér-Rao inequality, which is stated as follows.

Lemma 16 (Cramér-Rao bound) Let X be a multivariate random variable with distri-
bution p(x;0), for parameter 6 € O, and let ¢ : © — R" be a differentiable function. Then,
for any unbiased estimator T(X) = (Ty(X),...,T.(X))" of ¥(0) = (¥1(0),..., ¥ (0))T, we
have

-

cov[T(X)] > 50 50

where &gé@) is the Jacobian matriz of 1 and F(0) is the Fisher information matriz given by

F(0) = E[V?(~log(p(X;0)))].

17
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Let us define ¢;(0) = 0; — %2?21 6; for all i = 1,2,...,n. Since ), 6; = 0, we have
S 1i(0) = 0. Note that we can write

0 1
&gg) :1—511T. (20)
Let F(0) be the Fisher information matrix given by
0) =Y _E[V*(~log(py,s.(9)] - (21)
t=1
By conditions A1’ and A3’, and Lemma 36, we have
[VQ(_ log pyt,st Z py,St - log(py St (9)))
YyESt
Z WVQ log(py,s,(9)))
YESt
AC
L))
yESt t
. ap|s, 2
=40 (151222 g, (22)

where Mg is a matrix in R™*" that has each element (i, 7) such {i,7} C S equal to 1 and
all other elements equal to 0.
From (21) and (22),

F(6) < Eé%Lm. (23)
Note that
E[|0 — 0]|2] = trace(cov[T(X)]) = >~ Aileor[D(X)]).

By the Cramér-Rao bound and (23), we have

~ T
CE[I6- 03] > RZAZ@";;)F«@)@??)

vV
)
Y
v
>

c

4|

~| =
2l
c
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4. Rank-Breaking Parameter Estimation Methods

The maximum likelihood parameter estimation requires to find a maximizer of a log-
likelihood function which for comparison sets of cardinality k& has the form of a sum of
(Z) elements in the worst case. For pair comparisons, this sum consists of at most n? el-
ements. It is common for parameter estimators to be defined as maximizers of a pseudo
log-likelihood function, which is defined as the log-likelihood function of pair comparisons
deduced from the input observations under assumption that these pair comparisons are
independent (which in general is false under a Thurstone choice model for comparison sets
of three or more items). This is commonly referred as rank breaking. In what follows, we
consider two different rank-breaking methods: (a) one that deduces k — 1 pair comparisons
from a choice from a comparison set of cardinality k, we refer to as rank-breaking method
ALL, and (b) one that deduces 1 pair comparison from a choice from a comparison set of
cardinality k, we refer to as rank-breaking method ONE.

Rank-breaking method ALL This rank-breaking method deduces k—1 pair comparisons
from each comparison set of cardinality k. Specifically, for every comparison set S;, the
method uses pair comparisons between the chosen item y; and each non-chosen item v €
St \ {yt}. Notice that for any comparison set of three or more items, the pair comparisons
selected from this set by the given rank-breaking method are not independent.

For the Luce choice model, the pseudo log-likelihood function is given by (6), which can
be written in a more explicit form as follows

m eeyt
lp—1(0) = Z Z log <€0yt n eev> .

t=1 veSi\{y:}

We consider the maximum pseudo log-likelihood estimator ék_l = arg maxgpeo lk—1(60).

Theorem 17 If Ay (L) > 128(k —1)%e%nlog(n)/m, then with probability at least 1—3/n,

~ log(n)+2) 1
*) < Qn( g )
MSE(0;_1,6%) < D TN m

where D = 16v/2/k(k — 1)3e?.

The proof of Theorem 17 is given in Appendix E.

The mean squared error upper bound in Theorem 17 implies that the given parameter
estimator is consistent. For any fixed size of a comparison set, the bound in Theorem 17
is equal to that in Theorem 7 up to a constant factor. Both bounds have the same scaling
with parameter k.

Rank-breaking method ONE This rank-breaking method deduces 1 pair comparison
from a comparison set of cardinality k. From each comparison set Sy, this rank-breaking
methods selects a pair that consists of the chosen item y; and an item z; selected uniformly
at random from the set of non-chosen items S; \ {y:}.
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For the Luce choice model, the pseudo log-likelihood function is given by (7), which can
be written in a more explicit form as follows

m ebue
01(0) = Zlog (eeyt n 602t> .

t=1

We consider the maximum pseudo log-likelihood estimator 51 := arg maxgee £1(0).

Theorem 18 If \y (L) > 8k(k — 1)e?’nlog(n)/m, then with probability at least 1 — 3/n,

~ log(n) +2) 1
MSE(61,6) < DP 0

where D = 4k(k — 1)e?.

The proof of Theorem 18 is given in Appendix F.

It is noteworthy that the mean squared error upper bounds in Theorem 17 and Theo-
rem 18 are equal up to a constant factor. Intuitively, one would expect that rank-breaking
method ALL would yield a smaller mean squared error than rank-breaking method ONE
because it uses more information from each observed choice. The reason why the two mean
squared error upper bounds are equal up to a constant factor is as follows. When applying
Lemma 1 we need to find an upper bound « for the norm of the gradient of the negative
pseudo log-likelihood function and a lower bound 3 for the second-smallest eigenvalue of
the Hessian matrix of the negative pseudo log-likelihood function. In our proofs, for the
case of Theorem 18, we obtained o and 3 that scale with k as 1 and 1/k2, respectively. On
the other hand, for the case of Theorem 17, we obtained o and § that scale with k as k and
1/k, respectively. For both cases, it follows that the ratio o/ scales as k2.

5. Binary Classification

We now consider a Thurstone choice model Tr where the strength parameter vector 6 takes
value in © = {—b,b}", for a parameter b > 0. Here each individual strength parameter
takes either a low or a high value. We say that each item is either of a low or a high class.
We consider a binary classification problem, where the goal is to correctly classify all items
with a prescribed probability of classification error. Let N7 be the set of high class items
and Ny be the set of low class items. We shall consider the case when the total number of
items is even and the number of high class items is equal to the number of low class items.

We consider a simple classification algorithm that uses point scores defined as follows:
each item is associated with a point score equal to the number of comparison sets in which
the given item is the chosen item. The algorithm outputs a classification of items with Zvl
and NQ denoting the sets of items classified to be high class or low class, respectively. The
algorithm follows the following three steps: (a) for each item compute its point score, (b)
sort the items in decreasing order of point scores, and (c) let Ni contain n/2 items with
highest point scores and ]/\\72 contain remaining items. We refer to this algorithm as a point
score ranking method.
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Theorem 19 Suppose that b < 4/(k*0py(0)/0z1) and

Ipk(0)
2 < : 24
L IVope()ll2 < =5 - (24)
Then, for every § € (0,1], if
1 1
m > 64? (1 — k:) vrk n(log(n) + log(1/6)) (25)

then, the point score ranking method correctly classifies all items with probability at least
1-6.

The proof of Theorem 19 is provided in Appendix J.

The sufficient condition in (25) for the point score ranking method to correctly classify
all the items with probability at least 1 — ¢ is shown to be necessary up to a constant-factor
for any classification algorithm, which is given in the following theorem.

Theorem 20 Suppose that b < 1/(6k%0pr(0)/0x1) and that condition (24) holds. Then,
for every even n > 16 and 6 € (0,1/4], for any algorithm to correctly classify all the items
with probability at least 1 — &, it is necessary that the following condition holds

w2 g (1 1) v nlion(n) + log(1/3).

The proof of Theorem 20 is given in Appendix K. In the proof, we use the statistical
difference between the case when all the items are correctly classified and the case that an
item is incorrectly classified. This proof strategy is motivated by that in Yun and Proutiere
(2014) where it was used to analyze the classification error of the stochastic block model.

6. Discussion of Results

In this section, we discuss how the number of observations needed to attain a prescribed
parameter estimation error depends on the cardinality of comparison sets.

In Section 3, we found that for a priori unbiased input comparisons, where each com-
parison set is of cardinality k and is drawn uniformly at random from the set of all items,
the number of observations needed for the mean squared error to be within a prescribed
tolerance is of the order ypy, defined by (19). In Section 5, we found that this also so to
ensure that the probability of classification error is within a prescribed tolerance.

In Table 1, we show the values of the parameter gy for several special instances of
the Thurstone choice model, along with the values of Op;(0)/0z1. From the expressions
in Table 1, we observe that for all the cases but the case of uniform distribution of noise,
vF,; decreases with the cardinality of comparison sets, but in a slow manner according to
a diminishing returns relation. In particular, observe that for both double-exponential and
Laplace distribution of noise, vr, = ©(1) and for Gaussian distribution of noise yp ) =
O(1/k¢). On the other hand, for uniform distribution of noise, yp ) = O(1/k?).

It is noteworthy that g, satisfies the following bounds.
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Table 1: The values of parameters for our examples of Tg.
F Op(0)

8501 ryF,k
Gaussian O(ﬁ) Q(kée)
Double-exponential % B2
1-1/2F—1 2 1
Laplace Bk(k—1) ﬁ k(1—1/2F1)2
Uniform m 4a2k=1

Lemma 21 For any cumulative distribution function F with density function f:
1. If f is even and continuously differentiable, then yr, = O(1).

2. If f is such that f(z) < C for all x € R, for a constant C > 0, then ypy = Q(1/k?).

We observe that both double-exponential distribution and Laplace distribution of noise
are extremal in the sense that they achieve the upper bound yg; = O(1). On the other
hand, uniform distribution of noise is extremal in the sense that it achieves the lower bound

Yrg = Q(1/k?).

7. Experimental Results

In this section, we present our experimental results using both simulations and real-world
data. Our first goal is to provide experimental validation of the claim that the mean
squared error can depend on the cardinality of comparison sets in different ways for dif-
ferent Thurstone choice models, which is suggested by our theory. Our second goal is to
evaluate Fiedler value for different weighted-adjacency matrices observed in real-world data,
which demonstrates that it can assume a wide range of values depending on the application
scenario.

7.1 MSE versus Cardinality of Comparison Sets

We consider the following simulation experiment. We fix the number of items n and the
number of observations m. We then run experiments for different values of the cardinality
of comparison sets k. For each given value of parameter k, we generate comparison sets
as independent uniform random sets of cardinality k& from the set of all items. We then
draw choices according to a Thurstone choice model 7 for the value of parameter vector
0* = 0. For every fixed value of k, we run 100 repetitions to estimate the mean squared
error. We do this for the distribution of noise according to a double-exponential distribution
(Bradley-Terry model) and according to a uniform distribution, both with unit variance.
Figure 1 shows the results for the case of n = 10 and m = 100. The results clearly
demonstrate that the mean squared error exhibits qualitatively different decay with the
cardinality of comparison sets for the two Thurstone choice models under consideration.
Our theoretical results in Section 3.2 suggest that the mean squared error should decrease
with the cardinality of comparison sets as 1/(1—1/k) for the double-exponential distribution,
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Figure 1: Mean squared error for two different Thurstone choice models Tr: (left) double-
exponential distribution of noise, and (right) uniform distribution of noise. The
vertical bars denote 95% confidence intervals. The results demonstrate two qual-
itatively different relations between the mean squared error and the cardinality
of comparison sets, which confirm the theory.

and as 1/k? for the uniform distribution of noise. Observe that the latter two terms decrease
with k to a strictly positive value and to zero value, respectively. The empirical results in
Figure 1 confirm these claims.

7.2 Fiedler Values of Weighted-Adjacency Matrices

We found that Fiedler value of a weighted-adjacency matrix plays a key role in upper bounds
on the mean squared error of parameter estimator in Section 3.1 and Section 3.2. Here
we evaluate Fiedler value for different weighted-adjacency matrices of different schedules of
comparisons. Throughout this section, we use the definition of a weighted-adjacency matrix
in (9) with the weight function w(k) = 1/k%. Our first two examples are representative of
schedules in sport competitions, which are typically carefully designed by sport associations
and exhibit a large degree of regularity. Our second two examples are representative of
comparisons that are induced by user choices in the context of online services, which exhibit
much more irregularity.

Sport competitions We consider the fixtures of games for the season 2014-2015 for (i)
football Barclays premier league and (ii) basketball NBA league. In the Barclays premier
league, there are 20 teams, each team plays a home and an away game with each other team;
thus there are 380 games in total. In the NBA league, there are 30 teams, 1,230 regular
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Figure 2: Fiedler value of the weighted-adjacency matrices for the game fixtures of two
sports in the season 2014-2015: (left) football Barclays premier league, and (right)
basketball NBA league.

games, and 81 playoff games.! We evaluate Fiedler value of weighted-adjacency matrices

defined for first m matches of each season; see Figure 2.

For the Barclays premier league dataset, at the end of the season, the Fiedler value of
the weighted-adjacency matrix is of value n/[2(n — 1)] &~ 1/2. The schedule of matches is
such that at the middle of the season, each team played against each other team exactly
once, at which point the Fiedler value is n/[4(n — 1)] = 1/4. The Fiedler value is of a
strictly positive value after the first round of matches. For most part of the season, its
value is near to 1/4 and it grows to the highest value of approximately 1/2 in the last round
of the matches.

For the NBA league dataset, at the end of the season, the Fiedler value of the weighted-
adjacency matrix is approximately 0.375. It grows more slowly with the number of games
played than for the Barclays premier league; this is intuitive as the schedule of games is
more irregular, with each team not playing against each other team the same number of
times.

Crowdsourcing contests We consider participation of users in contests of two competition-
based online labour platforms: (i) online platform for software development TopCoder and
(ii) online platform for various kinds of tasks Tacken. We refer to coders in TopCoder and
workers in Tasken as users. We consider contests of different categories observed in year
2012. In both these systems, the participation in contests is according to choices made by
users.

For each set of tasks of given category, we conduct the following analysis. We consider
a conditioned dataset that consists only of a set of top-n users with respect to the number

1. The NBA league consists of two conferences, each with three divisions, and the fixture of games has to
obey constraints on the number of games played between teams from different divisions.

24



PARAMETER ESTIMATION FOR THURSTONE CHOICE MODELS

of contests they participated in given year, and of all contests attended by at least two
users from this set. We then evaluate Fiedler value of the weighted-adjacency matrix for
parameter n ranging from 2 to the smaller of 100 or the total number of users. Our analysis
reveals that the Fiedler value tends to decrease with n. This indicates that the larger the
number of users included, the less connected the weighted-adjacency matrix is. See the top
plots in Figure 3.

We also evaluated the smallest number of contests from the beginning of the year that is
needed for the Fiedler value of the weighted-adjacency matrix to assume a strictly positive
value. See the bottom plots in Figure 3. We observe that this threshold number of contests
tends to increase with the number of top users considered. There are instances for which this
threshold substantially increases for some number of the top users. This, again, indicates
that the algebraic connectivity of the weighted-adjacency matrices tends to decrease with
the number of top users considered.

8. Conclusion

The results of this paper elucidate how the estimation accuracy of a Thurstone choice model
parameter depends on the given model and the structure of comparison sets. They show
that a key factor is the algebraic connectivity of a weighted-adjacency matrix, which is
specific to given model. It is shown that for a large class of Thurstone choice models,
including well-known instances, there is a diminishing returns decrease of the estimation
error with the cardinality of comparison sets at a slow rate for comparison sets of three of
more items.

The results provide guidelines to the designers of competition schedules such as to
ensure that a schedule has a well-connected weighted-adjacency matrix and to expect limited
estimation accuracy gains by enlarging the size of comparison sets.

References

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: 1.
method of paired comparisons. Biometrika, 39(3/4):324-345, Dec 1952.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: II.
additional tables for the method of paired comparisons. Biometrika, 41(3/4):502-537,
Dec 1954.

Arpad E. Elo. The Rating of Chessplayers. Ishi Press International, 1978.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23
(98):298-305, 1973.

Miroslav Fiedler. Laplacian of graphs and algebraic connectivity. Combinatorics and Graph
Theory, 25:57-70, 1989.

Thore Graepel, Tom Minka, and Ralf Herbrich. Trueskill(tm): A bayesian skill rating
system. In Proc. of NIPS 2006, volume 19, pages 569-576, 2006.

25



MILAN VOJNOVIC AND SE-YOUNG YUN

0.5 0.5
0.4+ 0.4r.
0.3} 0.3}
= =
N N
~< 0.2} ~< 0.2}
0.1t 0.1F *
—— ‘ O —
0 20 40 60 80 100 0 20 40 60 80 100
n
200 200
150 f 150 | L
’E “N... c. ’E o
~5100¢ ~5 100
£ g .
50t . 50t
O et L L O aa’setenetes®® | i L L
0 20 40 60 80 100 0 20 40 60 80 100

Figure 3: (Left) Topcoder data restricted to top-n coders and (Right) same as left but for
Tasken, for Design and Website task categories, respectively. The top plots show
the Fiedler value and the bottom plots show the minimum number of contests to
observe a strictly positive Fiedler value.

Bruce Hajek, Sewoong Oh, and Jiaming Xu. Minimax-optimal inference from partial rank-
ings. In Proc. of NIPS 2014, pages 1475-1483, 2014.

Thomas P. Hayes. A large-deviation inequality for vector-valued martingales. 2003. URL
http://www.cs.unm.edu/~hayes/papers/VectorAzuma/VectorAzuma20030207 . pdf.

Roger A. Horn and Charles R. Johnson. Matrixz Analysis. Cambridge University Press,
1985.

26


http://www.cs.unm.edu/~hayes/papers/VectorAzuma/VectorAzuma20030207.pdf

PARAMETER ESTIMATION FOR THURSTONE CHOICE MODELS

David R Hunter. Mm algorithms for generalized bradley-terry models. Annals of Statistics,
pages 384-406, 2004.

Ashih Khetan and Sewoong Oh. Computational statistical tradeoffs in learning to rank. In
Proc. of NIPS 2016, 2016a.

Ashish Khetan and Sewoong Oh. Data-driven rank breaking for efficient rank aggregation.
Journal of Machine Learning Research, 17(193):1-54, 2016b.

R. Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. John Wiley & Sons,
1959.

Albert Maydeau-Olivares. Thurstonian modeling of ranking data via mean and covariance
structure analysis. Psychometrika, 64(3):325-340, 1999.

Lucas Maystre and Matthias Grossglauser. Fast and accurate inference of plackett—luce
models. In Advances in Neural Information Processing Systems, pages 172—-180, 2015.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall, New York,
2 edition, 1989.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Sahand Negahban, Sewoong Oh, and Devavrat Shah. Iterative ranking from pair-wise
comparisons. In Proc. of NIPS 2012, pages 2483-2491, 2012.

J. A. Nelder and R. W. Wedderburn. Generalized linear models. Journal of the Royal
Statistical Society, Series A, 135:370-384, 1972.

Robin L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society.
Series C' (Applied Statistis), 24(2):193-202, 1975.

Arun Rajkumar and Shivani Agarwal. A statistical convergence perspective of algorithms
for rank aggregation from pairwise data. In Proc. of ICML 2014, pages 118-126, 2014.

Nihar B. Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchan-
dran, and Martin J. Wainwright. Estimation from pairwise comparisons: Sharp minimax
bounds with topology dependence. J. Mach. Learn. Res., 17(1):2049-2095, January 2016.

Gordon Simons and Yi-Ching Yao. Asymptotics when the number of parameters tends to
infinity in the bradley-terry model for paired comparisons. The Annals of Statistics, 27
(3):1041-1060, 1999.

Azari Soufiani, David Parkes, and Lirong Xia. Computing parametric ranking models via
rank-breaking. In Proceedings of the 31st International Conference on Machine Learning
(ICML), pages 360-368, 2014.

Hossein Azari Soufiani, William Chen, David C Parkes, and Lirong Xia. Generalized
method-of-moments for rank aggregation. In Proc. of NIPS 2013, 2013.

27



MILAN VOJNOVIC AND SE-YOUNG YUN

Hal Stern. Are all linear paired comparison models empirically equivalent? Mathematical
Social Sciences, 23(1):103-117, 1992.

L. L. Thurstone. A law of comparative judgment. Psychological Review, 34(2):273-286,
1927.

Joel A Tropp. An introduction to matrix concentration inequalities. arXiv preprint
arXiv:1501.01571, 2015.

Milan Vojnovi¢. Contest Theory: Incentive Mechanisms and Ranking Methods. Cambridge
University Press, 2016.

John I. Yellott. The relationship between Luce’s choice axiom, Thurstone’s theory of com-
parative judgement and the double exponential distribution. Journal of Mathematical
Psychology, 15:109-144, 1977.

Se-Young Yun and Alexandre Proutiere. Community detection via random and adaptive
sampling. In COLT, pages 138-175, 2014.

E. Zermelo. Die berechnung der turnier-ergebnisse als ein maximumproblem der wahrschein-

lichkeitsrechnung. Math. Z., 29:436-460, 1929.

28



PARAMETER ESTIMATION FOR THURSTONE CHOICE MODELS

Appendix A. Background Material

Location of Eigenvalues We make note of the well-known Gersgorin circles theorem,
which we state as at the following lemma:

Lemma 22 Let A € R™ ", then all eigenvalues of A are located in the union of n discs

PiqzeCz—au < lail
J#i

Properties of Positive Definite and Laplacian Matrices A symmetric matrix A €
R™" is said to be positive semidefinite if x' Ax > 0 for all nonzero x € R™. If the
inequality is replaced with strict inequality, A is said to be positive definite.

Each eigenvalue of a positive definite matrix is a positive real number. Each eigenvalue
of a positive semidefinite matrix is a nonnegative real number.

For two matrices A, B € R"*"™ we write A = B for the positive semidefinite ordering,
which means that A — B is a positive semidefinite matrix. Similarly, we write A > B for
the positive definite ordering, which means that A — B is a positive definite matrix. Note
that A > 0 means that A is a positive semidefinite matrix, and A > 0 means that A is a
positive definite matrix.

We note the following ordering relations for eigenvalues of two positive definite matrices
that satisfy the positive semidefinite ordering (e.g., see Corollary 7.7.4 Horn and Johnson
(1985)).

Lemma 23 For any two positive definite matrices A,B € R"*" such that A = B, \;(A) >
Ai(B) foralli=1,2,...,n.

For any A € R™*" with zero diagonal such that A > 0, the Laplacian matrix La is

positive semidefinite. This follows from the localization of eigenvalues by the GerSgorin
circles theorem.

Lemma 24 If A € R" is a symmetric matrix with zero diagonal, then
(i) A\i(La) =0, and
(1) Ni(La) = \i—1(UTLAU), foric {2,3,...,n}

where U € R™ ™1 is any matriz such that UTU = 1.

We shall use the following property of real symmetric matrices:

Lemma 25 If A,B € R"*" are real symmetric matrices with zero diagonals such that
B > A where the inequality holds element-wise, then Ly = La.
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Chernoff Tail Bounds The following bounds follow from the Chernoff bound:

Lemma 26 Suppose that X is a sum of m independent Bernoulli random variables each
with mean p, then if ¢ < p < 2gq,

N2
PLX < gm] < exp (—Wm) (26)
and, if p < g,
(¢—p)?
P[X > gm] < exp 10 m|. (27)

Proof We prove only prove (27) as (26) follows by similar arguments. By the Chernoff’s
bound, for every s > 0,

P[X >qm] < e *TE[e™]
= e "1 —ptpe’)™
_ e—mh(s)
where h(s) = gs — log(l — p + pe®). Since log(l — z) < —z for all x € R, we have
h(s) > qs + p — pe®. Take s = s* :=log(q/p) to obtain h(s*) > qlog(q/p) + p — q.
Now, let e = ¢—p, and note that glog(q/p)+p—q := g(€) where g(e) = qlog(q/(qg—¢€)—e.
Since ¢'(€) = q/(q¢ — €) =1 =¢/(q — €) > ¢/(2q), we have g(e) = [§ ¢'(z)dx > €*/(4q).
Hence, it follows that h(s*) > (p — ¢)?/(4q), and, thus

P[X > gm] < exp <—41(J(p - q)2> :

|
Appendix B. Proof of Lemma 1
Let A =X — x*. By the Taylor expansion, we have
~ .
9(%) > g(x") + Vg(x*) A + 5 min ATV g(x* + ad)A. (28)
ag|0,
Since g(X) < g(x*), we have
m[%)nl] ATVZg(x* + aA)A < —Vg(x*)TA.
agl0,
Hence,
min ATVZg(x)A < 2[[Vg(x")l, [ All2- (29)
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Fix an arbitrary x € X. From condition (i) it follows that V2g(x) has eigenvalue 0 with
eigenvector 1. Combining with condition (ii), we have

0= (V?g(x)) < X2(V?g(x)) < - < Ma(VEg(x)). (30)

Let U = [uj,uy,...,u,] € R™"™ where uj,uy,...,u, are ortonormal eigenvectors of
V2g(x), which correspond to eigenvalues A1 (V2g(x)), A\2(V2g(x)), ..., A\n(VZ2g(x)), respec-
tively. Note that

u/ A =0. (31)

Let A = diag(A1(V?g(x)), 22(VZg(x)), - .., An(V(x))).
We have the following relations:

ATVi(x)A = ATUAU'A

= Y N(VEe)|(UT A
i=1

= D (Vi) AP
1=1

= 3 (V)] AP
=2

v

A2(V2g(x)) Y luf A7
1=2

= )\2(V29(X))Z|UZTA|2
=1
= X(V(x))]|A]3

where we use the properties in (30) and (31).
Hence, it follows that

min ATV2g(x)A > ||A||3 min Ao (V3g(x)). (32)
xeX xeX

By combining (32) and (29), we conclude the proof of the lemma.

Appendix C. Proof of Theorem 7

The log-likelihood function in (3) can be written in the following more explicit form:

0! il < e > (33)
= gl =—— 1.

ZvESt 69v

Since VZ(—£(6))1 = 0, for all # € R, under assumption that mingeg A2 (—V2((6)) > 0,
the upper bound in Lemma 1 holds. This combined with the following two lemmas yields
the statement of the theorem.
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Lemma 27 The following lower bound holds:

min X3 (V(~£(6)) 2 @%AZ(LM). (34)

Proof From (33), we have for 7,5 € {1,2,...,n} such that j # 1,

Y pi,s,(0)pj s, (0) and = — .
00,00 LTS, 00; por 00,00,
Since for all ¢ # j,
2
0°4(0) S 1 me

69@89] = k2e4d

we have that V2(—£(0)) — @%LM is a Laplacian matrix of a matrix with nonnegative
elements. Every such Laplacian matrix is positive semidefinite, hence

1 m

VH=U0)) = 155w (35)
From (35), we conclude (34). [ |
Lemma 28 With probability at least 1 —2/n,
IV (=£0"))llz < 2+/m(log(n) + 2). (36)
Proof From (33), we have
V(=(0)) = D V(~log(py, 5, (9))) (37)
t=1
where Py, S: (9) = eezt/ZvESt egv‘
It is straightforward to derive that V(—log(py,,s,(#))) has elements given by
—(1—pis,(0), ifi=uy
o(—1lo 6 ( Ot o
( g(pymst( ))) — Pi,St(9)7 le c St \ {yt} (38)
00; X
0, otherwise.

From (37), V{(6) is a sum of independent random vectors in R" that satisfy for all
te{l,2,...,m},
E [V(=log(py,,s,(67)))] = 0 (39)
and

IV (~ og (py,s, (6)))ll; < V2. (40)
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The last two relations are easy to establish using (38) as follows. Equation (39) holds
because for every ¢ € N,

B o(— log(gzz,st(e*))) = —pis, (7)1 = pis,(07) + (1 — pis,(0%))pis, (0%) = 0.

Equation (39) follows from
||V(— log(pyt,St (9*)))”3 = (1 — Py, S: ((9*))2 + Z Pj,S, (0*)2 < 2.
€S \{we}

By the vector Azuma-Hoeffding bound in Lemma 2, we have

P{IV(~£(0))]l> > 2/milog(m) + 2] < -

which completes the proof of (36). [ |

Appendix D. Proof of Theorem 10

Since V2(—£(0)) is a Laplacian matrix, by condition A1,
V2(—£(0)) = AV?(—£(0)) for all § € [~b,b]".

Hence, in particular,
L da(—((6)) 2 Mha(VH(-(0))). (41)
€[-b,pn

We have the following two lemmas.

Lemma 29 If \o(Ly; ) > 32(0r,kx/C)(nlog(n))/m, then with probability at least 1 —1/n,

MoV (~(0))) = 5O (g, )

Proof VZ(—£(0)) is a sum of independent random matrices given by

m

V2 (=£(0)) =) V*(—log(py,.s,(0))).

t=1

We have the following relations:

E [V2(—£(0))] = > E[V*(-log(py,s(0)))]
t=1

= 30 Y s (07) VA log(py,5,(0)))

t=1 yeSt
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= CZ Z WV2 log(py,s,(0)))

t 1 yesS: St
9p;s,(0)\

— CZZ L, <yst‘ g;l )

=1 yes; 1
where we use Lemma 36.
Hence,
m
X2 (E[VZ(—£(0))]) > C—Xa(lyg,)- (42)

By Lemma 37, for all t € {1,2,...,m},

| V?1og(py,,5,(0)) ]|, < < 20Fk- (43)
VS
Using the matrix Chernoff bound with € = 1/2, (42) and (43, we conclude the statement
of the lemma. u

Lemma 30 With probability at least 1 — 2/n,

|VE(6%)||2 < By\/ork+/2m(log(n) + 2

Proof For every S C N and 4,5 € S such that j # i,

Olog(p;s(0)) _ 1 9p;s(0) (44)
801 pj75(9) 801 .
and
dlog(pi,s(6)) 1 > Opy,s(6)
) - _ : ) (45)
0; i5 (0 . 0;
9 p ’S( ) veS\{i}

From (44) and (45), for every t € {1,2,...,m},
E [V logpy,.s,(0%)] = 0. (46)
From (44) and (45), for every S C N such that |S| =k > 2 and 4,j € S such that i # j,

Olog(p;,5(0)) _ , 9pk(0)
891 8951

dlog(pi,s(0)) 9pk(0)
90; Ory
Hence, for every ¢t € {1,2,...,m} such that |S;| =k

= k(k — 1)

2
N ()
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By condition A3 and (47), for every ¢t € {1,2,...,m},
IV log py, 5, (0%)II3 < B?(|V log py, s,(0)|3 < B*0r k. (48)

Using (46) and (48) and the vector Azuma-Hoeffding bound in Lemma 2, with proba-
bility at least 1 — 2/n,

|VE(0%)||2 < B\/ork+/2m(log(n) + 2)
|
The negative log-likelihood function satisfies the bound in Lemma 1. This combined with

relation (41), Lemma 29 and Lemma 30 implies that if Ap(Lyz; ,) > 32(op,x/C)nlog(n)/m,
then with probability at least 1 — 3/n,

2
18- 9*\|2<32<f0) GF7K§(<)+)22)7711

which proves the theorem.

Appendix E. Proof of Theorem 17

Under condition that Ay (V*(—fx_1(0)) > 0, the negative pseudo log-likelihood function
satisfies the bound in Lemma 1. This, combined with the following two lemmas implies the
statement of the theorem.

Lemma 31 If \o(Lag) > 8k(k — 1)e?*nlog(n)/m, then with probability at least 1 — 1/n,

min \o(VZ(—4_1(0))) > .

90 = 4ke?b )\ (L)-

Proof We will establish the lemma by using the matrix Chernoff bound in Lemma 3 as
follows. Note that V2(—£;_1(#)) is a sum independent random matrices given by:

V2 (—ly—1(0 ZVQ Z —log(py, ()

vES\{yt}

The nonzero elements of V2 (ZvESt\{yt} - log(pyhv(e))) are, for every i,j € S; such that
i 7

2

7 (Suesii) ~108@un0)) [ b @)1= pis(0), I {05} C Smn € {02}
00,00, 10, otherwise

(49)
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and

0 ZUGSt\{ o} —log(py:,v(0))
(Sesig- )

jeS\{i}

0 (Zoesiuy — 108 Py (0)))
960,00, ‘

From (49), we have

& (Zvest\{yz} - log(pyw(e)))

E 96,00, = —pi;(0)(1 —pi;(0))(pis,(0) + pj,St(e))

et + eli e¥iefi
- 0 ; 6,
> ves, €7 (ef +€%)?
1 1
> ves, et e=0i 4 ¢=0;
1
2ke2b’

Hence, we have
1 m

E [VQ(_Ek—l(Q))] = mg

L.
and, in particular,

Ao (E [V (—L-1(0))]) > ﬁ

To apply the matrix Chernoff bound in Lemma 3, we use the following identities that
follow by Lemma 24,

X (V2((—lr-1(0)))) = M(UTVZ((—4-1(6)))U) (51)

%AQ(LM). (50)

and
X2 (VA(E[(~6—1(0)]) = M(UT VA (E[(—le-1(6))])U) (52)
and the following fact:

UTVQ( > log<pyt,v(9>>)U

(53)

vES\{yt}

2

IN

U]l

2

v
2

VQ( > log(pyt,v(@))

veS\{yt}

= VQ( > log(pyt,v(@))

veS\{y¢}

2

< max
3

*2

i veS\{yt} J#i vES\{ye}

- 2 m?xzpi,j@)(l —ij(0) 14 3CSyeetigh (54)
J#i

%(k _1). (55)

o2 9?
57 Z log(py,,+(9)) m Z log(py,,»(0))

IN
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where the first equation follows by |[UT ||z = ||U||2 = 1, and the second inequality is by the
Gersgorin circles theorem (Lemma 22).

L (L))

P (VA (b1 (0) < a5

1
< Po(VA(—r-1(0))) < §A2(V2E[(—€k—1(9))])]
1
= PM(U'V(—4-1(0)U) < §>\1(UTV2E[(—€1<71(9))]U)]
M (UTVZB[(—4,_1(0)]U)
< ne argt
_ _MaInpm
< ne 4k(k—1)e2bn
1
S —
n

where the first inequality is by (50), the equality is by (51) and (52), the second inequality
is by the matrix Chernoff bound in Lemma 3 and (55), the third inequality is by (50), and
the last inequality is by the condition Ao(Lng) > 8k(k — 1)e%*nlog(n)/m. [ ]

Lemma 32 With probability at least 1 — 2/n,

IV (=lr=1(0")ly < 2/k(k — 1)m(log(n) + 2). (56)

Proof V(—{;_1(0)) is a sum of independent random vectors given by:

V(-lra(0)=> V| Y —log(py.(9)
t=1 vE€S\{y¢}

It is straightforward to show that V (Zvesz\{yt} - log(pytvv(ﬂ))> has the elements given
by

g (Zvesz\{yt} - log(Pyt,v(g))> B ZUESt\{yt}p%yz(Q), if i =y
0. =< Diy(0), ifi eS¢\ {y:} (57)
! 0, otherwise

For every t € {1,2,...,m} and i € {1,2,...,n}, we have

0 (Suesu — 108 .0(0)))

E
00;

=0.
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The last equation obviously holds for every i ¢ S;, and it holds for i € Sy by the following
derivations

a * * * * *
E |0 ( > —log(py,.(0 )))] = —pis(07) D P+ Y pus,(0")piw(67)
* \veSi\{u:} veSH\{i} veS\{i}
= > (P (O)Pu(6) + pus ()i (67) = 0.
veSi\{:}
From (57), we have
2 2
\% ( Z - IOg(pyt,v(e))) = ( Z Do,y (6)) + Z pv,yt(9)2
veSH\{ys} 9 vESH\{yt} vESt\{ys}
< (k=12+k-1=k(k-1).
Hence,
v ( > log(pyt,v(@)) < VEk(k-1). (58)
veSi\{yt} 2
Therefore, by vector Azuma-Hoeffding bound in Lemma 2, (56) holds with probability
at least 1 —2/n. [ ]

Appendix F. Proof of Theorem 18
The proof follows by the same steps as that of Theorem 17, and the following two lemmas.

Lemma 33 If \y (La) > 8k(k — 1)e**nlog(n)/m, then with probability at least 1 — 1/n,

L o (L)- (59)

Aao(V2(=£1(0))) > Tk —De® n

Proof V2(—/1(0)) is a sum of random matrices given by:

VAH(—1(8) = ) V2 (~log(py,.=(6)))
t=1

where DPyi,z¢ (9) = eeyt /(eeyt + eezt )
It is easy to establish that for all ¢ € {1,2,...,m} and i # j,

82(—10g(py,=(0)) [ —pis(0)A —pis(0), if {i,5} = {ve, 2}
80i8y9j _{ Ovp g Otherivise g (60)
and
0% (—log(py,=(9))) _ 5 0*(— 108 (py. () o)

062 96,00,

veSi\{i}
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Hence, for every i,j € {1,2,...,n} such that i # 7,
0% (— log(py,,=. (9)))

E —pii(0)(1 = pi;(0))P[{ys, 2} = {i, j}]

00,00,
1
= —pis(O)1 = Pig(0) T (p1.5.(6) + p15,(0))
1 1 1
T I et e
1
<
— 2k(k—1)e?
Hence,
1 m
2E[(— - — L
VEE[(-60))] = 2k(k —1)e?t n M
and, in particular,
9 1 m
A2 (VZE[(—£1(0))]) A2 (L) (62)

> -
T 2k(k—1)e** n
By (60) and (61) and Gresgorin circle theorem,

. (63)

N |

HV2 (_10g(pyt,Zt(9)))Hg < 2pyt73t(9)(1 _pyt,Zt(e)) <

The rest of the proof follows by the same arguments as in the proof of Lemma 31. M

Lemma 34 With probability at least 1 —2/n,
IV (=£2(0)lly < 2¢/m(log(n) + 2). (64)

Proof V(—¢1(6)) is a sum of independent random vectors in R™ with elements given by

—Pz 4 9) lf 7, = Yt
d(—1 0 Pai(9),
( Og(apey-t@t( >)) = pi,yt(g)v ifi=z
! 0, otherwise.

It follows that for all ¢t € {1,2,...,m} and i € {1,2,...,n},

O(— log(py, = (6%))) . 1 1
E 06, = ps(07) Z o0+ Z Pjsi(0") = P15 (67)
jesi\{i} jesi\{i}
1 *
= 7 > (pis 00 + pis (0)pis(0%) = 0
jesi\{i}
and
1V (=108 (Py = (D)) = Pvy (0)° + Pz (0)° < 2. (65)

The statement of the lemma than follows by vector Azuma-Hoeffding bound in Lemma 2. B
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Appendix G. Proof of Lemma 3
From Theorem 5.1.1 in Tropp (2015),

. A (ElSm))
e o

Ao for e € 0,1). (66)

P [ (S) < (1 M (BIS])] < n (

which combined with the fact

e ¢ c

W § 6_7, for all € S (0, 1]

N

yields the lemma.

G.1 Proof of Lemma 24
Since La = diag(A1l) — A, we have
Lal =diag(A1)1 — Al = Al — Al =0.

Hence, 0 is an eigenvalue of L for eigenvector 1.

Let y € R"™ be an eigenvector with corresponding eigenvalue A of L. Since the columns
of U are independent, U is nonsingular and it has inverse U~! (e.g., Section 0.5 Horn and
Johnson (1985). Let x = U~ ly).

Note that the following equations hold:

xIUTLAUx = (Ux)"La(Ux)
y' Lay

Ayly
Mx'UTUx

= I 'x.

Hence, it follows that A is an eigenvalue of UT LU with corresponding eigenvector x.

Appendix H. Proof of Lemma 25
Let C=B — A > 0. Note that
L —La = (diag(Bl)—B) — (diag(Al) — A)
= diag((B—A)1)— (B—A)
= Lc.

Since L¢ is positive semidefinite, it follows that Ly — La is positive semidefinite, i.e.
L = La.

Lemma 35 For all S C {1,2,...,n} such that |S| = k > 2 we have: for all i,j €
{1,2,...,n} such thati # j, forve {1,2,...,n} \ {i,5},

0*(—log(pk(x+(0)))) _ , 9*pk(0) pr(0) )
891593 =k axlkal‘g + k2 ( 8];1 ) (67)
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and

0%(—log(pr(x;(0)))) _ k(k — 2) *px(0) Opr(0) )
801gej B 2 8I1k8332 B kQ(k B 1) ( 81;1 > ' (68)
Moreover, , )
0°(—log(pr(x4(0)))) _ 0°(— log(pk(x4(0))))
962 B _jg\:{i} 90,00, ' (69)

Proof Let S C N be such that |S| = k, for an integer 2 < k < n. Without loss of
generality, let S ={1,2,...,k}. Let x,(6) = (0, — Oy,u € S\ {v}), for v € S. We first

consider 60 89 (— log(pk(xv(Q)))) for i # j. It is easy to note that

0*(—log(pr(x0(0)))) _ 1 pu(xu(0))
89i89j pk(xv(‘g)) 86189]
L1 Ope(B(9)) Opi(xu(0))
pk(xv(ﬂ))z 831 89]‘ ’

We separately consider two different cases.
Consider first the case when {i} N {j} N{v} = (. By differentiation, we have

0*(—log(pk(x+(0)))) _ , 9*pi(0) pr(0) )
891593 =k 0%1%1‘2 + k2 ( 8];‘1 )

which establishes (67).
Consider now the case when i # v and j = v. First, note

o 0
a0,08, s OD)) = =0 akeiajaj
1 Opk(x;(0)) Opr(x;(0))
@2 oo oo, 0

For every u € S, pr(x4(0)) does not change its value by changing 6 with 6 + ¢1, for
every constant ¢ € R. Hence, by full differentiation, we have

Opr(x;(0)) Opr(xu(0))
o, T 2 o, (™)
veS\{j}
From (71),
Ppr(x;(0)) _  Ppi(x4(9)) 9*pr.(x;(6))
aaiajej T aegj _Ueg{;j} 801»8]% ' 12)

Now, note that

];ZQXJ / f)f (2 + 2) H F(xy + 2)dz
veS\{i,j}
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Hence,

2 X
Mée(o)) - /Rf(Z)f’(Z)F(Z)“dZ

= f(Z)QF(Z)kQIMOO—/ FE)f(2)F(2)72) dz
R

- / F) () F ()5 2dz — (k - 2) / F(2)2F (2)F3d2
R R

_ Pp(x4(0)) (k — 2)321%(0)
6912 (9.1‘16.%’2 .

From this it follows
O?pr(x;(0)) k=2 0?pr(0)

803 N 2 8x16x2 ' (73)
From (72) and (73),
00,00, 2 0x10x9
From (71),
Ipk(x;(0)) _ . . Op(0)
o0, =(k-1) oy (75)

Combining (70), (74) and (75), we obtain (68).

Since for every v € S, log(pr(z,(0))) does not change its value by changing 6 to 6 + c1
for all ¢ € R, by full differentiation

O(—log(pr(zu(0)))) Z O(= log(pk (2.(9)))
00 jeS\{i} %;

Taking partial derivative with respect to 6; on both sides implies (69). [ |

Lemma 36 Let S C N be such that |S| =k > 2 and Y be a random variable according to
distribution py s(0), for 8 € R™. Then,

2
B V(- tog(pr.s(0)] = (k5% ) Lan,

wh@f)ﬁe MS — [mfj] c Ran is Such th(],t mf] = 1 Zf ’L,] c S and’L ;é j, and mfj - 0;
otherwise.
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Proof By (67) and (68) in Lemma 35, we have for all 7,5 € {1,2,...,n} such that i # 7,

9% (—log(pk(x.(0))))

9*(—log(py,5(0)))
E 391‘8(9]‘ :| UES%{:M.} Pr(%x4(0)) 691'89]'
2(~1o X;
i (0)) o Q)
2(~1lo X;
1y (0) e O
k=203~ log(pu(x,(0))))
k 00;00;
?(—1lo X; .
%8 (=1 ggjgé] (0)))), for any v € S\ {4,j}
_ op(0)\*
- - (%2)
By (69) in Lemma 35, we have
9%(—1o 9% (—1o Xy
E ( %9(91:;/73(0)))} _ Z Zpk(xv(o)) ( gé]z?géu (0))))

ueS\{i} ves

= KX(k-—1) (82;";(?))2.

Lemma 37 If for S C N such that |S| =k > 2,

82(_ log(pU,S(O)))
0600,

<0 foralli,j,v €{1,2,...,n} such thati # j

then
1

[V*(=1og(py,5(0)))]|, < —

where 1/yp ), = (kzc'?pk(O)/Oxl)z.

(76)

Proof Without loss of generality, let y =1 and S = {1,2,...,k}. By Lemma 35, we have

0*(~log(p1.5(0)) _ Op(0)\* | Kk —2) °pr(0)
({')918;: __kz(k_l)< 81.6%'1 ) + 2 81‘1%.%2

and for 1 £ 1, j # 1 and j # 1,

0*(=log(p1,5(0)) _ , &*p(0) g2 ((9p0) ’
80189] 8%’18%‘2 8.1‘1 '
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Since by condition of the lemma the left-hand side in (77) is non positive, we have

2 2
20 < (%52)

(79)

and, since by condition of the lemma the left-hand side in (78) is non positive, we have

9’pi(0)

> 0.
Ox10x9 —

From (77) and (80),

9%(—log(p1,5(0))) 9p(0)\?
90,00, Z"“Z("’_l)< Ers ) '

Consider now the case when i # 1, j # 1 and i # j. If k = 2, then obviously

9 (—log(p1,5(0)))

96,00, =0

Otherwise, if & > 2, from (78) and (79), we have

0*(—log(p1,5(0) o 2 (5’pk(0)>2 2K (k1) <3pk(0)>2

89189] B or k—2 oxq
o 2k= 1) (0pk(0))?
N K < 1 + k—2 31'1
_ ek <apk(0>>2

-2 T

k 0
_i3 Opi(0) ?
3.T1 '

Y

Hence, it follows

2
3 @’jf”) Lns = V2(—log(py.5(0))).

Therefore, we conclude

2
I92(~ log(py s (O < k3(8p’“(°>) |t o
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Appendix I. Remark for Theorem 10

For the special case of noise according to the double-exponential distribution with parameter

3, we have
1

IRED YT

Pr(x)

For every 6 € 6,, and every S C N of cardinality k£ and 4, j,y € S, we can easily check

that ,
0 1
96,00, (—log(py,s(0))) = — @pz‘,s(Q)pj75(9).

Furthermore, the following two relations hold

k 2 2 9
" - < <24 '
=) (L~ Pus @)’ < IVPys Ol < 5 (1= pys(®))
Since ,
i 0) = > 0)e—20/8
yes,gél[l—lb,b]npy’s( ) 1+ (k—1)e2/8 > py.s(0)e
and
1

max (O)eQb/ﬁ

0) = <
YES,0€[=b,b]" 2y5(0) 1+ (k—1)e26/8 — Py
we have that
OrK < 2
and
e WP < B<B<4,
e /B <0< C<B

Appendix J. Proof of Theorem 19

Let p® denote the probability that the point score ranking method incorrectly classifies at

least one item:

p =P U{veﬁl}u U{UENQ}

vEN, vE N2

Let R; denote the point score of item ¢ € N. If the point scores are such that R, > m/n
for every v € Ny and R, < m/n for every v € Ny, then this implies a correct classification.
Hence, it must be that in the event of a misclassification of an item, R, < m/n for some

v € Ny or R, > m/n for some v € Na. Combining this with the union bound, we have

p‘fsve%P[Rvs Z] +ZEZN2P =R
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Let ¢ and j be arbitrarily fixed items such that ¢ € N; and j € Na. We will show that
for t € {1,2,...,m},

1 bk?0pi(0)
P g > f— —_—
e =iz~ + - - (85)
and bR O (0)
L1 P (0
Plyy=j] < —— — :
e =l = n 4n Oz (86)

By the Chernoff bound (26) we have

PR<™| < e (711” (;—E[m:é])Qm)
= exp<‘4(zliag}(1)>2m>

< exp(—log(n/d))
0

n
Similarly, by the Chernoff bound (27), we have
P [Rj > T} <2

n

n

Combining with (84), we have p® < 4.

In the remainder of the proof we show that (85) and (86) hold.

Let A contain all A C N such that |[A] = k— 1 and AN {i,j} = 0 and B contain all
B C N such that |B] = k — 2 and BN {i,j} = 0. Then, we have

Ply: = i] — Py = j] ZPSt AU {i}|D )+ ZPSt BU{i,j}Di;(B) (87)
AcA BeB

where
D;j(A) =Ply; =Sy = AU {i}] — Plys = j|Se = AU {j}]

and

D; j(B) = Ply; = i|S; = BU{i, j}] — Plys = j|S: = BU{i, j}].

Let b be a k — 1-dimensional vector with all elements equal to b. Then, note that
D; j(A) = pr(b —04) — pr(=b —04).

By limited Taylor series development, we have

) = pa(0) + Vpk(0) x — LAxB (58)
pex) < ps(0)+ Vpk(0) x4+ A3 (59)

where
B= max, | IV D1 (%) 2- (90)
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Hence, it follows that for every 64 € {—b,b}F~1,

Opi(0)

. > _
Dij(A) > 2(k = b=~

—4(k — 1)V*B. (91)

Under the condition of the theorem, we have

< 1 9p(0)
— 4b Oxq '

Hence, combining with (91), for every 4 € {—b,b}*~1,

Ipk(0) _ kbOpy(0)
D; i (A) > -1 > — . 2
ij(A) = (k—1)b 91 = 2 Om (92)
By the same arguments, we can show that
Dig(B) = pefo — 05") — pu(-b — o) > 220 (93)

where Hg)) € {—b,b}* 1 and 9}(971’) € {—b,b}*1 are (k— 1)-dimensional vectors with the first
two elements equal to b and —b, respectively, and other elements equal to the parameters
of items B.

Since comparison sets are sampled uniformly at random without replacement,

n—1
P[S; = Au{i}] = (]E;)l) , forall Ae A (94)
k
and
n—2
P[S; =BU{i,j}] = (k_Q) , for all B € B. (95)

(x)
From (87), (92), (93), (94) and (95), we have

2
- k70 dpi(0)

Ply, = i| = Plyr = j] > on O

Using this inequality together with the following facts (i) Ply; = v] = P[y; = i] for every
v € Ny, (ii) Ply; = v] = Ply; = j] for every v € Na, (iii) > n Plys = v] = 1, and (iv)
|N1| = |N2| = n/2, it can be readily shown that

o1 E*bop(0)
Ply =i > -+ ——2~
=1l = n * dn  Ox

which establishes (85). By the same arguments one can establish (86).

47



MILAN VOJNOVIC AND SE-YOUNG YUN

Appendix K. Proof of Theorem 20

Suppose that n is a positive even integer and 6 is the parameter vector such that 6; = b
for i € Ny and 6; = —b for i € Ny, where N1 = {1,2,...,n/2} and N» = {n/2+1,...,n}.
Let 0" be the parameter vector that is identical to 6 except for swapping the first and the
last item, i.e. @) = b for ¢ € Nj and 0, = —b for i € Nj, where N| = {n,2,...,n/2} and
Ny={n/2+1,...,n—1,1}.

We denote with Py[A] and Py [A] the probabilities of an event A under hypothesis that
the generalized Thurstone model is according to parameter 6 and ', respectively. We denote
with Eg and Ey the expectations under the two respective distributions.

Given observed data (S,y) = (S1,91),- -, (Sm,Ym), we denote the log-likelihood ratio
statistic L(S,y) as follows

pyt,St )P (S ))
log < , 96
Z P O () )
where p;(S) is the probability that S is drawn at time ¢.

The proof follows the following two steps:

Step 1: We show that for given § € [0, 1], for the existence of an algorithm that correctly
classifies all the items with probability at least 1 — §, it is necessary that the following
condition holds

PylL(S.y) > log(n/8)] > 3. (97)
Step 2: We show that
2
By[L(S.y) < 367 (kbafgj‘”) (98)
oa[L(S,y)] < 144% <k2681;’;(10)>2 (99)

where o3,[L(S,y)] denotes the variance of random variable L(S,y) under a generalized
Thurstone model with parameter ¢’.
By Chebyshev’s inequality, for every g € R,

oy L(S,y)]

2

Using this for g = log(n/d) — E¢/[L(S,y)], it follows that (97) implies the following
condition:

Po[|L(S,y) — Eo[L(S,y)]| > |g]] <

< |log(n/d) — Eg/[L(S,y)]|
< V3oylL(S,y)]
Further combining with (98) and (99), we obtain

1 1
62 b2k*(0pr(0)/021)?

which is the condition asserted in the theorem.

log(n/8) — Eg/[L(S,y)]

n(log(n) + log(1/9))
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Proof of Step 1. Let us define the following two events
A={IN1\ Ni| =1} n{|Na\ No| = 1}

and R R

Let B¢ denote the complement of event B.
Note that
4

Po[B] = PolBAIPLA] = (2) Pold] < 0

n

where the second equation holds because B C A and every possible partition in A has the
same probability under 6.
For every g € R, we have

Py[L(S,y) < g] =Pg[L(S,y) < g,B] + P¢[L(S,y) < g, B
Now, note

PG’[L(Say) < Q,B}

Eg[1(L(S,y) < g, B)]
Egle"SY1(L(S,y) < g, B)]
Ey[e/1(L(S,y) < g, B)]
eIPy[L(S,y) < g, B]
eIPy|[B|

15

n2

IN

IN

ed

IN

where in the second equation we use the standard change of measure argument.
Since the algorithm correctly classifies all the items with probability at least 1 — §, we
have
Py [L(S,y) < g,B°] < Py[B°] <. (100)

For g =log(n/J), from (100) and (100), it follows that

Py[L(S,y) <log(n/d)] <6+

S

1
< —
-2
where the last inequality is by the conditions of the theorem.

Proof of Step 2. If the observed comparison sets S1, So, . .., Sy, are such that S;N{1,n} =
(), for every observation ¢, then we obviously have

9/
log (pytst()> =0, for all ¢.
Dy:,S; (0)

We therefore consider the case when S; N {1,n} # 0.
Using (88), (89), and (90), we have for every S and i € S,

Opi(0)
8%1

Opi(0)
alil

Ipi.s(0") — pis(0)| < 2kb + 48bk < 3kb (101)
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where the last inequality is obtained from the condition of this theorem.
From (101), for every comparison set S such that SN {1,n} # (), we have

S (wis®) —pis®)’ < Y. (s —pis@)+ [ Y] pis®) —piso)

€8 ie{l,n}Ns €S\{1,n}
opr(0))?
3kb————=
( 81’1 ’
(102)
which is because for every comparison set S such that 1 € .S,
1 .
p1,5(0") < z < p1,5(0) and p; 5(0') > pis(0) Vi#1;
and, for every comparison set S such that n € S,
1 .
Pn,s(0) > 72 Pn,s(0) and p; s(0') < pis(0) Vi#n.
From (101) and the assumption of the theorem, we have
1 Opr(0) 1
i = ns(0) > — — 3kb > —. 1
min ey pis(8) = pinpns() 2 =3k, 2 o (103)
For simplicity of notation, let
D = 3220 (104)
T
Then, for all S such that SN {1,n} # 0, we have
0,5 (0
> pis(0')log <p s )> < 2kD? (105)
icS pi.s(0)
which is obtained from
(i) pi,s(0) > 1/(2k) for all ¢ € S that holds by (103),
(ii) Zies(pLS(H’) —pi’s(G))2 = 2D? from (102),
(iii) alog§ < (a b) +a—b.
Similarly to (105), from (i) and (ii) and a (log b) < (a/\b) (1 + 3‘?‘1}%)’ we have
w50\
> pis(d’ <log <p il )>> < 8kD2. (106)
pis(0)

€S

Since

Py [{S:n{l,n} # @}] =1- (n;2) <2
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and according to the model, the input observations are independent, from (105) and (106),
we have

pyl,Sl(el)
Eg/ L S,y = mng |:10g <
HE) 0 ,
X s (320
5:5N{1,n}#0 yes Dy,s
< 4g2p? (107)
n

and

oy [L(S,y)] = maj [log <py1’sl /)>]

py1731 )
pthl( / >>
< mEgy log<
’ [( Py, ()
o)\
= m Y Py[Si=5]) pys(@) [(log(%))]
5:5N{1,n}£0 yes Py.s
16%]4:2D2. (108)

IN

Appendix L. Characterizations of dp;(0)/0z,
In this section, we note several different representations of the parameter dpy(0)/0x;.
First, note that
Ipk (0 /
= JdF(x 109
83:1 — | f@ (109)

The integral corresponds to E[f(X )] where X is a random variable whose distribution
is equal to that of a maximum of £ — 1 independent and identically distributed random
variables with cumulative distribution F.

Second, suppose that F'is a cumulative distribution function with its support contained
in [—a,al, and that has a differentiable density function f. Then, we have

Opr(0)
=A B 110
1 Fk+ DFRk (110)
where )
Apgp = mf(a)
and

1 o
e | e

The identity (110) is shown to hold as follows. Note that

Bpy =

S F @) = L RF ) () = Kk~ DF@) @) + kE@) 7 ().
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By integrating over [—a, a], we obtain

d a a

@ L =k(k=1) | f@)F(2)"de+k / f(@)F () da.

Combining with the fact

d

L F@ N = k@ P @)% = kf(a),

we obtain (110).

Note that Bpj = E[—f'(X)]/(k(k—1)) where X is a random variable with distribution
that corresponds to that of a maximum of k£ independent samples from the cumulative
distribution function F. Note also that if, in addition, f is an even function, then (i)
Bpy > 0 and (ii) By is increasing in k.

Third, for any cumulative distribution function F' with an even density function f, we
have F(—x) =1 — F(z) for all x € R. In this case, we have the identity

8%‘;1 / f(z + (1 - F(2))*2)da. (111)

Appendix M. Proof of Lemma 21

The upper bound follows by noting that that Bry in (110) is such that Bpj = Q(1/k?).
Hence, it follows that

vrE = O(1).

The lower bound follows by noting that for every cumulative distribution function F
such that there exists a constant C' > 0 such that f(x) < C for all z € R,

Opr(0 k2 / k2
<
) /f dzx C f da:—Ck T

Hence, vp > (1/C)(k — 1)/k* = Q(1/k?).

Appendix N. Derivations of parameter v

We derive explicit expressions for parameter ypj for our example generalized Thurstone
choice models introduced in Section 2
Recall from (19) that we have that

1 1
TER= (k= 1)k (9pi(0) /01 )2

where

Fre Rf(x)QF(:):)k_Qd:U
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Gaussian distribution A cumulative distribution function F' is said to have a type-
3 domain of maximum attraction if the maximum of r independent and identically dis-
tributed random variables with cumulative distribution function F' has as a limit a double-
exponential cumulative distribution function:

e ¢ K
where
_1 1
ar =F 1—-
r
and

bT:F_1<1—1>—F_1<1—1>.
er T

It is a well known fact that any Gaussian cumulative distribution function has a type-3
domain of maximum attraction. Let ® denote the cumulative distribution function of a
standard normal random variable, and let ¢ denotes its density.

Note that

_T—ar

[ owinwr ~ L [ e

1 1 2
—(ar+brlog(1l/2))? —=z

— e 2 e “dz

\/27r/

1
= e 2
1

b2 log(1/2)? e ?dz

U/rb'r

e
a

eQT
1 12

= e 2 T(a,b, +1).
\/ﬂ (7'7“ )

Now, note that
2log(r) and b, = O(1), for large 7.

It is readily checked that e=%/2 ~ 1/r and T'(a,by + 1) = O(r€) for every constant ¢ > 0.
Hence, we have that

| sty = o/t
R
and thus, dpy(0)/0z1 = O(1/k*>¢). Hence,

’yEk = Q(l/er).

z+By

Double-exponential distribution Note that f(z) = %ei 5~ F(z). Hence, we have
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/ f(z)2F(z)*2dz
R
1/ e_z%F(:U)kdx

52 Jr
1 [ k
/ ze "Fdz
0
1

pk?

Laplace distribution Let 8 = o/v/2. Note that

F(x) =

and

ie*"’”/ﬁ, forx € R4.

1
_ /B —
1 5¢ and f(x) 55

J
J

e}

f(z)2F(z)*2dz

0o 2 1 k—2
( ) e~ 2t/B (1 — 26_50“) dx

1
28

1ot k=2

25/1/22(1 2)z"%dz

1/ 1 1 1 1

5<k—1<1_2k‘1>_k<1_2’“>>
1 Lk k-1

Bk(k—1)< BT )

/0 @)1 - F(a) e

IG)

1

1
il —2z/f_~ —(k=2)z/B
53 e e dzx

9k—2

L[ ks

= ook /0 e kelB gy

_ 1

- Bk2k
Combining with (111), we obtain

Ipk(0) 1 1
=A+B= 1- .
D1 LT T
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Uniform distribution Note that

rl0) - _ IR
R

01‘1
B 1 /a r+a\"? dx
(202 ), \ 2a

1 /!
= / 224z
2a 0

1

2a(k — 1)
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