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1.  Introduction

Advances in the field of nanotechnology have led to the devel-
opment of nanoscale quantum dots (QD) in which electrons 
are spatially confined within dimensions ranging from just a 
few up to several hundreds of nanometers.

If the motion of the electrons is effectively restricted 
to a two-dimensional (2D) plane, as occurs, e.g. in semi-
conductor inversion layers, disks of electrons sandwiched 
within semiconductor pillars, and self-assembled islands 
within layered heterostructres [1, 2] then by adding a 
weaker in-plane confinement one obtains a 2D QD island. 
Restriction to two dimensions is achieved when there is 
strong transverse quantization, that is, when the layer 
thickness becomes commensurate with the effective Bohr 
radius,

ε
=∗ ∗
�

a
m e

.B

2

2
� (1)

Here e and m* are the electron charge and effective mass, and 
ε is the dielectric constant of the semiconductor material. For 
example, for InGaAs dots described in [1], the disk diam-
eter is a few hundred nm, its thickness is about 10 nm, and 
∗aB  ≈  10 nm [3].

In the lateral (soft) direction the 2D ‘artificial atom’ is con-
fined within a potential well V created by external electrostatic 
gates and/or by the sidewalls, and this potential can frequently 
be approximated as quadratic. In this respect the QD artifi-
cial atoms differ from real atoms, in which the electron cloud 
resides within the Coulomb potential of the nucleus rather 
than within a parabolic bowl. Another important distinction 
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Abstract
We consider a droplet of electrons confined within an external harmonic potential well of 
elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor 
quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the 
effective Bohr radius, the dominant contribution to average system parameters in the Thomas–
Fermi approximation comes from the potential energy terms, which allows us to derive 
expressions describing the electron droplet’s shape and dimensions, its density, total and 
capacitive energy, and chemical potential. The analytical results are in very good agreement 
with experimental data and numerical calculations, and make it possible to follow the 
dependence of the properties of the system on its parameters (the total number of electrons, 
the axial ratios and curvatures of the confinement potential, and the dielectric constant of the 
material). An interesting feature is that the eccentricity of the electron droplet is not the same 
as that of its confining potential well.
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lies in the fact that the dot’s potential does not need to be 
central: by a suitable design of the electrode or pillar shape, 
the confinement can be made asymmetric. An important case 
is when the potential is elliptical, i.e. with different oscillator 
curvatures along is two principal axes.

A 3D analog of the above corresponds to an electron cloud 
within a 3D harmonic oscillator potential. This can arise for 
QDs grown in semiconductor heterostructures [4] as well as 
for electrons confined to the interior of metal nanocluster par-
ticles [5, 6]. In the latter case the effective Bohr radius and 
consequently the QD dimension can be 1–2 orders of magni-
tude smaller than for semiconductors.

In analyzing the behavior of QD electrons, quantities 
of interest include the shape and depth of the mean field, 
the shape and size of the electron cloud, its total energy, the 
chemical potential, etc. Evaluating these quantities as a func-
tion of the number of electrons in the dot must be done in a 
self-consistent manner, accounting for the electron–electron 
interaction and screening. Of the large number of calculations 
in the literature the majority employ numerical methods such 
as exact diagonalization for few-electron dots, and Hartree–
Fock, density-functional or related treatments for larger ones. 
Thus, identifying a reliable analytical approach is certainly 
worthwhile: it can enable one to map the system’s behavior 
over a large parameter space and to track the interdependence 
between different parameters. This is the goal of the present 
paper.

In the study of finite Fermi systems it has been found con-
venient to separate two contributions to their ground-state 
properties. One is the average variation of the system’s char-
acteristics with the number of constituent particles (such as 
the liquid-drop model of nuclei or the Thomas–Fermi descrip-
tion of atoms or metal clusters), which can be referred to as 
the ‘smooth’ part; and the other is a superimposed structure of 
quantum oscillations. This is referred to as the ‘shell-correction 
method’ (see, e.g. [7, 8]). In the present context, the statistical 
approximation [9–13] is an accurate descriptive tool for the 
calculation of average parameters of finite systems, such as 
an electron droplet within a QD. What’s more, it has been 
shown [14] that it rigorously reduces to the electrostatic limit 
when the QD dimension is sufficiently large; see section 2. 
As a result, it is possible to describe the properties of the dot 
electron cloud analytically even for non-centrally-symmetric 
confining potentials. This is done in sections 3 and 4 for 2D 
and 3D quantum dots, respectively, where we present expres-
sions for the electron density distribution functions and their 
shapes, and for the electron energies, chemical potentials, and 
capacitive energies. The efficacy of the results is affirmed by 
comparisons with experimental data and numerical calcul
ations from the literature. Section 5 contains a summary.

2.  Semiclassical theory and its classical limit

As mentioned, it is well known that a many-electron system 
within a smooth potential well can be accurately described 
by the semiclassical statistical approach, namely the Thomas–
Fermi (TF) theory. This treatment yields reliable values of 

physical quantities which are averaged over the quantum 
oscillations. The TF method is based on the picture that the 
maximum kinetic energy of the electron gas, treated semiclas-
sically, cannot exceed the local depth of the self-consistent 
potential well (as measured relative to the chemical potential):

( )
( ) ( )ϕ µ+ + =∗

→
→ →p r

m
V r e r

2
F
2

� (2)

Here pF is the local value of the Fermi momentum, the 
chemical potential of the electron system is denoted by μ 
(μ  =  0 for a neutral isolated atom, but not in general), V is the 
external confining potential, and ϕ is the electrostatic poten-
tial generated by the electron cloud. The charge e is defined to 
be a negative quantity.

In 2D π= �p n2F
2 2  where n is the number of elec-

trons per unit area. For electrons confined within a 3D dot 

( ) /π= �p n3F
2 2 2 2 3 where n is the number of electrons per unit 

volume. An important observation [14] is that the relative 

magnitude of the ground state kinetic energy pF
2 term, which 

derives from quantum effects, is proportional to the factor 
/∗a RB  where R is the radius of the dot’s electron cloud. This 

means that for sufficiently extended systems (such as, e.g. the 
InGaAs dots mentioned above) where this factor is �1, it can 
be sufficient to retain only the following from equation (2):

( ) ( )ϕ µ+ =→ →V r e r ,� (3)

which can be recognized as the classical equation  of force 
equilibrium. The electrostatic potential is given by

( ) ( )
∫ϕ
ε

=
−

′

′
′→

→

→ →
→r

e n r

r r
d rD

� (4)

with D  =  2 or 3 for a 2D or 3D QD, respectively.
Quantum deviations from equation (3) show up only in the 

region near the dot edge, r ~ R, because here the density profile is 

changing rapidly and the kinetic energy term in the TF differential 

equation  ( )/ ( )/ ( )π ε∇ − +∇ =∗→ → →p r m en r V r2 4 02
F
2 2  (obtained 

from equation  (2) by differentiation) becomes large. 
Treatments of the full TF equation incorporating edge effects 
for such systems as axially symmetric 2D quantum dots, 
planar metallic surfaces, metal clusters and 3D parabolically 
confined electrons can be found, e.g. in [6, 15–18].

In the following, we make use of the classical limit to 
consider harmonically confined QD and to derive expres-
sions for those parameters which are well represented by this 
formalism: the size and shape of the electron cloud and the 
energetics of the system. In particular, we focus on the case 
of elliptical (or ellipsoidal) dots, for which a full analytical 
solution of the TF equation is unavailable but a solution in the 
classical limit can be written out in closed form.

3.  2D elliptical quantum dots

3.1.  Electron distribution

We consider an electron island within an elliptical external 
potential well

J. Phys.: Condens. Matter 00 (2016) 000000
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( ) γ γ= +→V r x yx y
2 2� (5)

where γx and γy determine the parabolic curvature along the x 
and y axes, respectively. The zero of energy is set at the min-
imum of V for convenience. Sometimes it is also convenient 
to impose the constant area constraint γ γ γ=x y

2 by defining 

the deformation parameter δ via / /γ δ γ γ δ γ= =− ,x y
1 2 1 2 . In the 

present picture the external field is everywhere balanced by 
the electron–electron electrostatic repulsion. The local kinetic 
energy of the particles is neglected, and at every point the 
potential energy of the electron cloud satisfies equation (3).

We assume that the QD contains N electrons and that the 
electron density n vanishes outside the boundary of an ellipse 
with semi-major and semi-minor radii a and b, respectively. 
Note an important point: it should not be automatically 
assumed that the ellipse circumscribing the electron density 
has exactly the same shape as the confining potential V, equa-
tion (5). In fact, the calculation will show that it does not.

Combining equations (3)–(5), we have

( )
∫ ∫ µ γ γ

−
= − −

′ ′
′ ′

′
∗

→ →
e

n x y

r r
x y x y

,
d d ,

a b

x y
2

0 0

2 2� (6)

where the effective charge is defined as / /ε≡∗e e 1 2.
This 2D integral equation has a well-known solution which 

arises not only in the electrostatics of a flattened ellipsoid but 
also in the problem of an elastic elliptical contact (the Hertz 
contact problem) [19]. Previously, a similar approach has 
been employed to analyze electron ‘dimple’ islands on liquid 
helium surfaces [20, 21].

One finds that the electron number density inside the dot 
has the following form:

( ) = − −n x y n
x

a

y

b
, 10

2

2

2

2
� (7)

Here {a,b} define the outer boundary of the electron 
cloud, as specified above, and the normalization condition 

( )∫ =n x y x y N, d d  yields

π
=n

N

ab

3

2
0� (8)

for the density at the center [20]. As mentioned above, near 
the very edge the solution (7) requires quantum correction 
as the proper density always has a decay tail rather than an 
abrupt drop.

The next step is to relate the shape of the electron cloud 
to that of its external confining potential by solving for the 
semi-axes {a,b} in terms of {μ,γx,γy}. For this we again refer 
to the electrostatic problem described, e.g. in [19] where the 
following identity is derived:

/ /

/( ) /( )
( )( )

∫ ∫

∫

′ ′

π
ξ ξ

ξ ξ ξ
ξ

− −

−

=
− + − +

+ +

′ ′
′

∞

→ →

x a y b

r r
x y

ab
x a y b

a b

1
d d

1

2

1
d

a b

0 0

2 2 2 2

0

2 2 2 2

2 2

� (9)

Comparing this relation with equations  (6)–(8), we can 
immediately identify

( )( )
( )∫μ

ξ

ξ ξ ξ
=

+ +
=*

∞ *
Ne

a b

Ne

a
K k

3

4

d 3

2
,2

0 2 2

2

� (10)
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2
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2
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2

2

� (12)

Here [22] K and E are the complete elliptic integrals of the 
first and second kind [23]3 and /= −k b a1 2 2 is the eccen-
tricity of the electron cloud’s boundary (a  ⩾  b).

Dividing equation (12) by (11) gives

( ) ( ) ( )
( ) ( )

γ

γ
δ≡ =

− −
−

−k E k K k

K k E k

1y

x

2 1

� (13)

This means that if we know the axial ratio γy/γx of the con-
fining potential V, equation (5), we can find the axial ratio a/b 
of the electron cloud. An example is shown in figure 1 [24, 25].  
In fact, equation  (13) demonstrates that the shapes are 
uniquely related independent of the number of electrons in the 
QD. Furthermore, the eccentricities of the external potential 
V(x,y) and of the electron cloud it confines, n(x,y), are not the 
same. This is highlighted in figure 2(a).

Once the eccentricity k of the pool of electrons is found, 
the spatial dimension a of the latter can then be obtained from 

Figure 1.  (a) An elliptical harmonic confining potential V(x,y) 
with deformation parameter δ  =  γy/γx  =  43 and confinement force 
constant γ  =  3.8 µeV nm−2, as defined in equation (5) ff. (b) The 
corresponding electron number density distribution, equation (7), 
inside this asymmetric quantum dot for N  =  20 and ε  =  12.9, 
m*  =  0.065, which are the parameters [24] for In0.05Ga0.95As 
samples in [3, 25].
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found, for example, in [23]. AQ3
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equation  (11) (and b follows from a and k). An example is 
illustrated in figure 2(b).

Directly from equations (10)–(12) we find the relation

µ γ γ= +a b .x y
2 2� (14)

In the round-dot limit, γx  =  γy  =  γ and a  =  b  =  R, the 
above equation  shows that the chemical potential becomes 
μ  =  2γR2 and together with equation  (10) and the fact that 
K(0)  =  π/2 this reduces to the correct solution [14]

π
γ

=
∗

R
Ne3

8
.3

2

� (15)

3.2.  Electron energy

Now we can also calculate the total internal energy Ep of the 
dot’s electrons which is composed of their mutual repulsion 
Eee and the interaction with the external potential EV. Recall 
that in the present approximation the kinetic energy of the 
electrons can be neglected. Thus Ep   =  Eee   +  EV, or

ϕ

µ

µ

= +

= +

= +

∬
∬

∬

( ) ( ) ( )

[ ( )] ( )

( ) ( )

⎡
⎣

⎤
⎦E e x y V x y n x y x y

V x y n x y x y

N V x y n x y x y

, , , d d

1

2
, , d d

1

2

1

2
, , d d .

p
1

2

�

(16)

where we made use of equation (3) in the second step and of 
the density normalization in the last step.

The results can be cast into several representations. An 
effective approach is to take advantage of a relation derived in 
the Appendix using a variational argument:

=E E2 .ee V� (17)

Together with the last line of equation (16) it is easily seen 
to result in

µ=E N
3

5
.p� (18)

One also can calculate the integral for EV directly by sub-
stituting the potential from equation (5), the electron density 
from equation (7), and changing the variables to generalized 
polar coordinates (x  =  arcosθ, y  =  brsinθ). Then one recovers 
precisely the relation (14).

And alternatively, if one wishes to express the answer only 
in terms of the confining potential parameters and the dot’s 
eccentricities, so as to bring out the dominant N and shape 
dependences, one can use equations (18) together with equa-
tion (10), and in the latter expression use equation (11) to sub-
stitute for a in terms of γx. The result can be written

( )
[ ( ) ( )]

/
/ / /

/

/
⎜ ⎟
⎛
⎝

⎞
⎠ γ=

−
∗E N e

k K k

K k E k

3

5

3

2
.p x

2 3
5 3 4 3 1 3

2 3

1 3� (19)

In the round-dot limit

/ /
/ / /π

γ= ∗E N e
3

10
,p

5 3 2 3
5 3 4 3 1 3� (20)

which can also be written in terms of the total electron charge 
Q  =  Ne as

π
ε

=E
Q

R

9

20
.p

2

� (21)

The variation of the quantum dot energy with the number of 
electrons N and with the deformation parameter is illustrated 
in figures  3(a) and (b). We see that deformation decreases 
the total internal energy of the quantum dot. (In a manner of 
speaking, this resembles the quantum-mechanical Jahn–Teller 
effect which favors oblate and prolate deformations for many 
nuclei and metal nanoclusters [7, 26, 27].)

This doesn’t of course really imply that the minimal energy 
corresponds to extreme distortion (transformation into an 
almost 1D nanowire). Indeed, as marked in figure 2(b), the 
underlying approximation, that the electron droplet dimension 
is much greater than ∗aB and the kinetic energy is relatively 
small, breaks down when elliptical deformations become too 
large.

Nanostructure fabrication has enabled the formation not 
only of single QD electron pools within sandwiched semi-
conductor layers, but also of multiple barrier-separated elec-
tron puddles [28, 29]. The latter are also referred to as QD 
molecules [30]. Interestingly, the N5/3 energy scaling suggests 
that distributing N electrons over n identical dots decreases 
the total electronic energy by a factor of n2/3, potentially 
enhancing the stability of the system.

3.3.  Quantum dot capacitance

The chemical potential of a QD with N electrons is the differ-
ence in total energy between two dots with same deformations 
containing N and N  −  1 electrons respectively,

Figure 2.  (a) The inverse axial ratio b/a of the electron droplet 
(solid line) in a quantum dot as a function of its confining 
potential’s asymmetry δ, as determined by the universal relation 
(13). The shape of the cloud deviates from that of the potential well 
(dashed line). (b) The resulting semi-minor and semi-major axes of 
the electron droplet for the quantum dot described in figure 1. The 
limit of δ  →  1 corresponds to a circular quantum dot, and  
δ  → ∞ to the 1D limit. Note, however, that the calculation holds for 
axis lengths � ∗aB, equation (1). In the present example this point is 
reached at δ ~ 200, as marked by a black dash.

0 0.5 1
0

0.5

1

1/δ

b/
a

 

 

0 .5 1
0

300

600

1/δ

La
te

ra
l d

im
en

si
on

 (
nm

)

 

 

(a) (b)

a

b

J. Phys.: Condens. Matter 00 (2016) 000000



A Halder and V V Kresin﻿

5

( ) ( ) ( )µ = − −N E N E N 1 .p p� (22)

The electron addition energy, also known as the capacitive 
energy, is [31, 32]

( )
( ) ( )µ µ= + −

∗e

C N
N N1 ,

2

� (23)

i.e. the second difference Ep (N  +  1)  +  Ep (N  −  1)  −  2Ep (N).
The variation of the capacitive energy with the degree of 

dot deformation δ for a fixed number of electrons N is illus-
trated in figure  3(c). This quantity is of particular interest 
from the experimental point of view. For example, it has been 
measured in circular QD in [1] and in rectangular QD with 
rounded corners (i.e. close to elliptical) in [3]. Figure 4 shows 
the experimental data and numerical density function theory 
(DFT) calculations together with our results for the same 
parameters. Clearly, the present analytical results describe the 
size and shape variation of the capacitive energies extremely 
well.

4.  3D ellipsoidal quantum dots

4.1.  Electron distribution

The treatment of an electron droplet confined within a 3D har-
monic potential

( ) γ γ γ= + +→V r x y zx y z
2 2 2� (24)

to a large degree parallels the 2D case considered above.
However, there is a significant difference in how the elec-

trons distribute themselves within the dot. Within the electro-
static approximation (applicable, as above, when the electron 

distribution is not varying rapidly and its size is much larger 
than the effective Bohr radius ∗aB) the density of electrons in the 
3D case is constant throughout the QD, as opposed to peaking 
near the origin as in 2D, equation (7). Indeed, the electrons 
will distribute themselves so as to create a potential balancing 
out ( )→V r , and it well known [33–35] that a uniformly charged 
dielectric ellipsoid creates a quadratic potential

Figure 3.  (a) Energy Ep of the electron system in elliptical quantum dots versus the number of confined electrons, for several values of 
the deformation parameter δ  =  γy/γx of the external potential V. (b) Ep versus the potential deformation parameter δ for a dot with N  =  20 
electrons. (c) Variation of the capacitive, or addition, energy, equation (23), with the deformation parameter δ for N  =  20. The examples are 
for InGaAs, as in figure 1. Black dashes correspond to the same limit of applicability as in figure 2.

Figure 4.  A comparison of capacitive (electron addition) energies 
derived in this work with experimental and numerical results 
for elliptical InGaAs (as in figure 1) quantum dots, for different 
degrees of deformation of the confining potential. Green diamonds: 
experimental data on circular [1] and rectangular [3] QD. Blue 
circles: local spin-density approximation (LSDA) calculation 
[3, 24] taking the curvature of the confining potential to be 

/( )/γ = ∗e r N22
0
3 1 2 , = ∗r a1.50 B, and approximating rectangular dots 

with rounded-off corners as ellipses with the axial ratio δ of the 
latter equal to the edge length ratio of the former. (The peaks in the 
data at N  =  2, 6, 12 are due to quantum 2D shell closings.) Solid 
red line: values obtained from the analytical energy expression in 
the text, equation (23), calculated using the same parameters.
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( ) ( )ϕ
π
ε

= − − −→r
en

A D x D y D z
2

x y z
2 2 2� (25)

Here

π
=n

N

abc

3

4
� (26)

is the electron number density (N is the total number of elec-
trons in the QD) and Di are the familiar tabulated [34, 35] 
depolarization factors. If the ellipsoidal charge distribution 
has semi-axes {a,b,c} they’re given by

( ) ( )( )( )∫
ξ

ν ξ ξ ξ ξ
=

+ + + +

∞
D

abc

a b c2

d
i

i
0 2 2 2 2� (27)

(with νi  =  {a,b,c} for i  =  {x,y,z}, respectively) and are 
expressible in terms of elliptic integrals. It is assumed that we 
choose a  ⩾  b  ⩾  c  ⩾  0.

The electron–electron repulsion, equation  (25), will pre-
cisely balance the potential V, equation (24), so obviously the 
shape of the electron droplet is determined by setting

( )γ ϕ θ=
∗Ne

abc
D

3

2
,i i

2

� (28)

and solving for the unknowns {a,b,c} in terms of {γx,γy,γz}. 
Here [34] cosϕ  =  b/a and cosθ  =  c/a. Again, we see that the 
shapes of the electron droplet and the confinement potential 
are related to each other purely in terms of their axial ratios, 
independent of the number of electrons.

As in the 2D case, the shape of the electron droplet will be 
different from that of the confining potential. (This is simply 
a restatement of the fact that the harmonic potential (25) has a 

different shape than the uniform charged ellipsoid which gives 
rise to this potential.) Figure 5 illustrates the result for the case 
of spheroidal confinement (when the depolarization factors 
can be expressed in terms of elementary functions [34–36]).

In the round-dot limit γx  =  γy  =  γz  =  γ and a  =  b  =  c  =  R, 
and with the depolarization factors of a sphere equal to 1/3, 
equation  (28) reduces to the result which follows from the 
potential of a uniformly charged sphere:

γ
=

∗
R

Ne

2
,3

2

� (29)

differing from the 2D solution (15) only by a numerical factor.
The chemical potential, as follows from equations (3), (25) 

and (26) and the expression for A given in [33], is

( )µ θ=
−

∗Ne

a c
F k

3

2
, ,

2

2 2
� (30)

where F is the elliptic integral of the first kind, 

( )/( ) /ϕ θ= − − =k a b a c sin sin2 2 2 2  and the angles θ and 

ϕ are defined above.

4.2.  Quantum dot energy and capacitance

The total energy of the 3D dot’s electrons, Ep  =  Eee  +  EV, is 
calculated in the same way as in the 2D case of section 3.2. 
The variational condition (17) and its corollary (18) hold in 
the present case as well.

Direct evaluation of the integral for EV, as in equation (16), 
in the present case of uniform electron density, equation (26), 
can be performed using generalized spherical coordinates 

Figure 5.  (a) Electron droplet inverse axial ratio for an oblate spheroid (γx   =  γy  <  γz, a  =  b  >  c) as a function of the confining potential 
well’s deformation parameter δ  =  γz/γx, as determined by the universal relation (28). The shape of the droplet deviates from that of the 
potential well (dashed line). (b) The resulting semi-minor and semi-major axes of the electron cloud for an In0.05Ga0.95As dot (ε  =  12.9, 
m*  =  0.067) with N  =  100 electrons and the confinement force constant γ  =  3.95 µeV nm−2. The calculation holds for axis lengths � ∗aB, 
equation (1). In the present example this point is reached at δ ~ 25, as marked by a dash.
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(x  =  arcosϕsinθ, y  =  brsinϕsinθ, z  =  crcosθ, Jacobian 
J  =  abcr2sinθ). Then precisely the same form as the 2D case 

(14) follows: µ γ γ γ= + +a b zx y z
2 2 2.

Figure 6(a) illustrates the shape dependence of the 3D QD 
energy for the case of spheroidal (γx  =  γy) confinement. Here 
it is convenient again to use a deformation parameter δ to 

write / /γ γ δ γ γ δ γ= = =− ,x y z
1 3 2 3 .

For an isotropic QD the total energy reduces to the value 
corresponding to a uniformly charged sphere

( )
/

/ / /
ε

γ= =
⋅

∗E
Ne

R
N e

9

10

9

5 2
p

2

2 3
5 3 4 3 1 3� (31)

This differs from the expression (20) for a 2D dot with the 
same number of electrons and external potential curvature by 
a factor of (6/π2)1/3.

Figure 7(a) compares the above expression for a symmetric 
3D dot with the values obtained in [37] by the coupled-cluster 
method. The present analytical model provides an excellent 
match with the numerically intensive calculation.

In figure 7(b) the results for a nonspherical QD are com-
pared with the density-functional computation in [38]. 
Here, as the confining potential along the vertical axis is 
kept unchanged and that in the horizontal plane is gradually 
relaxed, the total internal energy of the system decreases, as 
expected: in a flatter external potential well the electron cloud 
spreads out over a larger volume. The calculated trends are 
very similar, although there is a mismatch in the absolute 
magnitude. Interestingly, as pointed out below, the energy dif-
ferences are in very good agreement. It would be useful to 
replicate the DFT results and to investigate if they contain a 
possible energy offset.

The QD capacitive, or addition, energy is defined as above, 
equation (23). An example of its shape dependence for a sphe-
roidal system is illustrated in figure 6(b). The size variation of 
this quantity is compared with Hartree–Fock calculations for a 
spherical dot [39] and with DFT calculations for a spheroidal 
dot [38] in figure  7. Apart from quantum shell oscillations, 

which cannot be reproduced by (semi)classical methods, the 
analytical theory demonstrates excellent agreement, with no 
adjustable parameters.

5.  Summary

The properties of a multielectron system, such as a quantum 
dot, can be represented as quantum oscillations around a 
smooth evolution with size. In this paper we obtain fully 
analytical expressions for the average size-dependent quanti-
ties (electron droplet dimension, shape, and density, the total 
energy, the chemical potential, and the capacitive energy) 
for carriers confined within 2D elliptical and 3D ellipsoidal 
quantum dots by a harmonic external potential.

Such confinement geometry corresponds to the most com-
monly implemented practical situations, and the analytical 
solution makes it possible to follow the variation of important 
quantities over a wide range of parameters (such as the total 
number of electrons, the axial ratios and curvatures of the con-
finement potential, and the dielectric constant of the material). 
The results obtained are in very good agreement with the pub-
lished experimental data and numerically computed values.

The solution is facilitated by the rigorously established 
fact that for a sufficiently large size of the confined electron 
droplet (specifically, when its size is much larger than the 
effective Bohr radius ∗aB, equation (1)) the dominant contrib
ution to the Thomas–Fermi problem of confinement equilib-
rium comes from the potential energy terms. As a result, the 
case of 2D confinement is aided by the electrostatic analogue 
of the Hertz elastic contact problem, and that of 3D confine-
ment is expressed with the help of depolarization factors. One 
also can derive a useful relation between the electrostatic and 
external potential energies, equation (17), using a variational 
approach.

Figure 6.  (a) The total internal energy, Ep, for an oblate 3D 
In0.05Ga0.95As dot with the same parameters as figure 5(b), as a 
function of the confinement deformation parameter δ  =  γz/γx.  
(b) Variation of the dot’s capacitive energy with δ.
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Figure 7.  (a) The internal energy of a spherically symmetric 
3D quantum dot confined in GaAs. Dots: computation by the 
relativistic coupled cluster method [37] for ε  =  12.4, m*  =  0.067, 
confinement strength γ  =  15.8 µeV nm−2), line: present analytical 
results using the same parameters. (b) The electron energy of oblate 
spheroidal GaAs QD. Circles: spin DFT calculations [38] for three 
different confinement strengths, lines: present results using the same 
parameters.
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One interesting feature of the solution, possibly unintuitive 
at the outset, is that the eccentricity (i.e. the axial ratios) of the 
electron droplet, in both the 2D and 3D cases, is not the same 
as that of its external confinement potential. The relationship 
between the two is derived and is shown to depend only on 
the shape of the potential well (the ratios of its axial force 
constants) and not on the number of the electrons, the size of 
the dot, or any other parameters.

The approach can be extended to study the effect of point 
impurities introduced inside the quantum dots, as well as the 
perturbative effects of anharmonicities in the confinement 
potential. These problems will be considered elsewhere. 
Newly developed families of 2D semiconductors [40] such 
as silicene, phosphorene, and germanene represent another 
potential stage for applications of the theory.
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Appendix

Equation (17) can be derived using a scaling variational 
method. We follow [41] where the same method is applied 
to derive the virial theorem for the Thomas–Fermi model 
of the atom. We replace n(x,y) by the set of functions 
nλ(x,y)  =  λ2n(λx,λy) which all satisfy the normalization con-
dition  ∫nλ(x,y)dxdy  =  N. The constituents of the total energy 
then transform as Eee(λ)  =  λEee and EV(λ)  =  λ−2EV so that 
Ep(λ)  =  λEee  +  λ−2EV. In the equilibrium configuration the 
energy is minimized, i.e. ∂Ep(λ)/∂λ  =  0 for λ  =  1. This 
immediately leads to equation (17).
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