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Abstract

®

CrossMark

We consider a droplet of electrons confined within an external harmonic potential well of
elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor
quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the
effective Bohr radius, the dominant contribution to average system parameters in the Thomas—
Fermi approximation comes from the potential energy terms, which allows us to derive
expressions describing the electron droplet’s shape and dimensions, its density, total and
capacitive energy, and chemical potential. The analytical results are in very good agreement
with experimental data and numerical calculations, and make it possible to follow the
dependence of the properties of the system on its parameters (the total number of electrons,
the axial ratios and curvatures of the confinement potential, and the dielectric constant of the
material). An interesting feature is that the eccentricity of the electron droplet is not the same

as that of its confining potential well.
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1. Introduction

Advances in the field of nanotechnology have led to the devel-
opment of nanoscale quantum dots (QD) in which electrons
are spatially confined within dimensions ranging from just a
few up to several hundreds of nanometers.

If the motion of the electrons is effectively restricted
to a two-dimensional (2D) plane, as occurs, e.g. in semi-
conductor inversion layers, disks of electrons sandwiched
within semiconductor pillars, and self-assembled islands
within layered heterostructres [1, 2] then by adding a
weaker in-plane confinement one obtains a 2D QD island.
Restriction to two dimensions is achieved when there is
strong transverse quantization, that is, when the layer
thickness becomes commensurate with the effective Bohr
radius,
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Here e and m™* are the electron charge and effective mass, and

¢ is the dielectric constant of the semiconductor material. For

example, for InGaAs dots described in [1], the disk diam-

eter is a few hundred nm, its thickness is about 10nm, and
ag ~ 10nm [3].

In the lateral (soft) direction the 2D ‘artificial atom’ is con-
fined within a potential well V created by external electrostatic
gates and/or by the sidewalls, and this potential can frequently
be approximated as quadratic. In this respect the QD artifi-
cial atoms differ from real atoms, in which the electron cloud
resides within the Coulomb potential of the nucleus rather
than within a parabolic bowl. Another important distinction
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lies in the fact that the dot’s potential does not need to be
central: by a suitable design of the electrode or pillar shape,
the confinement can be made asymmetric. An important case
is when the potential is elliptical, i.e. with different oscillator
curvatures along is two principal axes.

A 3D analog of the above corresponds to an electron cloud
within a 3D harmonic oscillator potential. This can arise for
QDs grown in semiconductor heterostructures [4] as well as
for electrons confined to the interior of metal nanocluster par-
ticles [5, 6]. In the latter case the effective Bohr radius and
consequently the QD dimension can be 1-2 orders of magni-
tude smaller than for semiconductors.

In analyzing the behavior of QD electrons, quantities
of interest include the shape and depth of the mean field,
the shape and size of the electron cloud, its total energy, the
chemical potential, etc. Evaluating these quantities as a func-
tion of the number of electrons in the dot must be done in a
self-consistent manner, accounting for the electron—electron
interaction and screening. Of the large number of calculations
in the literature the majority employ numerical methods such
as exact diagonalization for few-electron dots, and Hartree—
Fock, density-functional or related treatments for larger ones.
Thus, identifying a reliable analytical approach is certainly
worthwhile: it can enable one to map the system’s behavior
over a large parameter space and to track the interdependence
between different parameters. This is the goal of the present
paper.

In the study of finite Fermi systems it has been found con-
venient to separate two contributions to their ground-state
properties. One is the average variation of the system’s char-
acteristics with the number of constituent particles (such as
the liquid-drop model of nuclei or the Thomas—Fermi descrip-
tion of atoms or metal clusters), which can be referred to as
the ‘smooth’ part; and the other is a superimposed structure of
quantum oscillations. This is referred to as the ‘shell-correction
method’ (see, e.g. [7, 8]). In the present context, the statistical
approximation [9-13] is an accurate descriptive tool for the
calculation of average parameters of finite systems, such as
an electron droplet within a QD. What’s more, it has been
shown [14] that it rigorously reduces to the electrostatic limit
when the QD dimension is sufficiently large; see section 2.
As a result, it is possible to describe the properties of the dot
electron cloud analytically even for non-centrally-symmetric
confining potentials. This is done in sections 3 and 4 for 2D
and 3D quantum dots, respectively, where we present expres-
sions for the electron density distribution functions and their
shapes, and for the electron energies, chemical potentials, and
capacitive energies. The efficacy of the results is affirmed by
comparisons with experimental data and numerical calcul-
ations from the literature. Section 5 contains a summary.

2. Semiclassical theory and its classical limit

As mentioned, it is well known that a many-electron system
within a smooth potential well can be accurately described
by the semiclassical statistical approach, namely the Thomas—
Fermi (TF) theory. This treatment yields reliable values of

physical quantities which are averaged over the quantum
oscillations. The TF method is based on the picture that the
maximum kinetic energy of the electron gas, treated semiclas-
sically, cannot exceed the local depth of the self-consistent
potential well (as measured relative to the chemical potential):

—

Pa(F)

*

+ V(r) + ep(r) = p @)

Here pr is the local value of the Fermi momentum, the
chemical potential of the electron system is denoted by pu
(0 = 0 for a neutral isolated atom, but not in general), V is the
external confining potential, and ¢ is the electrostatic poten-
tial generated by the electron cloud. The charge e is defined to
be a negative quantity.

In 2D p} =27h* where n is the number of elec-
trons per unit area. For electrons confined within a 3D dot
pE = H23nn)"” where n is the number of electrons per unit
volume. An important observation [14] is that the relative
magnitude of the ground state kinetic energy p% term, which
derives from quantum effects, is proportional to the factor
ay/R where R is the radius of the dot’s electron cloud. This
means that for sufficiently extended systems (such as, e.g. the
InGaAs dots mentioned above) where this factor is <1, it can
be sufficient to retain only the following from equation (2):

V(r) 4 ep(r) = p, 3)

which can be recognized as the classical equation of force

equilibrium. The electrostatic potential is given by

o) = < [y 4)
ed |F =7

with D = 2 or 3 for a 2D or 3D QD, respectively.

Quantum deviations from equation (3) show up only in the
region near the dot edge, r ~ R, because here the density profile is
changing rapidly and the kinetic energy term in the TF differential
equation V2 pZ(¥)2m* — dmen(i')le + V2 V(F) = 0 (obtained
from equation (2) by differentiation) becomes large.
Treatments of the full TF equation incorporating edge effects
for such systems as axially symmetric 2D quantum dots,
planar metallic surfaces, metal clusters and 3D parabolically
confined electrons can be found, e.g. in [6, 15-18].

In the following, we make use of the classical limit to
consider harmonically confined QD and to derive expres-
sions for those parameters which are well represented by this
formalism: the size and shape of the electron cloud and the
energetics of the system. In particular, we focus on the case
of elliptical (or ellipsoidal) dots, for which a full analytical
solution of the TF equation is unavailable but a solution in the
classical limit can be written out in closed form.

3. 2D elliptical quantum dots

3.1. Electron distribution

We consider an electron island within an elliptical external
potential well



J. Phys.: Condens. Matter 00 (2016) 000000

A Halder and V V Kresin

V() = 4 + 2? Q)

where 7, and y, determine the parabolic curvature along the x
and y axes, respectively. The zero of energy is set at the min-
imum of V for convenience. Sometimes it is also convenient
to impose the constant area constraint 7,7y, = ~? by defining
the deformation parameter § viavy, = §~1/2y, Yy =0 12~ In the
present picture the external field is everywhere balanced by
the electron—electron electrostatic repulsion. The local kinetic
energy of the particles is neglected, and at every point the
potential energy of the electron cloud satisfies equation (3).
We assume that the QD contains N electrons and that the
electron density n vanishes outside the boundary of an ellipse
with semi-major and semi-minor radii a and b, respectively.
Note an important point: it should not be automatically
assumed that the ellipse circumscribing the electron density
has exactly the same shape as the confining potential V, equa-
tion (5). In fact, the calculation will show that it does not.
Combining equations (3)—(5), we have

*2ffn(x 2D gty = - % = 1%,

where the effective charge is defined as e* = e/e!/2.

This 2D integral equation has a well-known solution which
arises not only in the electrostatics of a flattened ellipsoid but
also in the problem of an elastic elliptical contact (the Hertz
contact problem) [19]. Previously, a similar approach has
been employed to analyze electron ‘dimple’ islands on liquid
helium surfaces [20, 21].

One finds that the electron number density inside the dot
has the following form:

(6)

2 2
n(x,y) = noy|1 — = — 2= )
a

Here {a,b} define the outer boundary of the electron
cloud, as specified above, and the normalization condition

[n(x,y)dxdy = N yields

3N
2mwab

for the density at the center [20]. As mentioned above, near
the very edge the solution (7) requires quantum correction
as the proper density always has a decay tail rather than an
abrupt drop.

The next step is to relate the shape of the electron cloud
to that of its external confining potential by solving for the
semi-axes {a,b} in terms of {1,7,,7y}. For this we again refer
to the electrostatic problem described, e.g. in [19] where the
following identity is derived:

b \/ 1 - /2/a y'2/b?
| dx’'dy’
-7
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Comparing this relation with equations (6)—(8), we can
immediately identify
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Figure 1. (a) An elliptical harmonic confining potential V(x.y)
with deformation parameter 6 = ,/y, = 43 and confinement force
constant v = 3.8 eV nm~2, as defined in equation (5) ff. (b) The
corresponding electron number density distribution, equation (7),
inside this asymmetric quantum dot for N = 20 and ¢ = 12.9,

m* = 0.065, which are the parameters [24] for Ing95GagosAS
samples in [3, 25].
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Here [22] K and E are the complete elliptic integrals of the
first and second kind [23]* and k = +/1 — b?/a? is the eccen-
tricity of the electron cloud’s boundary (a > b).

Dividing equation (12) by (11) gives

(1 — k% 'E(k) —
Y, K(k) — E(k)

This means that if we know the axial ratio v,/~, of the con-
fining potential V, equation (5), we can find the axial ratio a/b
of the electron cloud. An example is shown in figure 1 [24, 25].
In fact, equation (13) demonstrates that the shapes are
uniquely related independent of the number of electrons in the
QD. Furthermore, the eccentricities of the external potential
V(x,y) and of the electron cloud it confines, n(x,y), are not the
same. This is highlighted in figure 2(a).

Once the eccentricity k of the pool of electrons is found,
the spatial dimension a of the latter can then be obtained from

K(k)

(13)

3 One has to be careful about conflicts in notation found in reference books
and computational packages. The present usage of K and E follows that
found, for example, in [23].
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Figure 2. (a) The inverse axial ratio b/a of the electron droplet
(solid line) in a quantum dot as a function of its confining
potential’s asymmetry , as determined by the universal relation
(13). The shape of the cloud deviates from that of the potential well
(dashed line). (b) The resulting semi-minor and semi-major axes of
the electron droplet for the quantum dot described in figure 1. The
limit of 6 — 1 corresponds to a circular quantum dot, and

6 — oo to the 1D limit. Note, however, that the calculation holds for
axis lengths >>aj, equation (1). In the present example this point is
reached at 6 ~ 200, as marked by a black dash.

equation (11) (and b follows from a and k). An example is
illustrated in figure 2(b).
Directly from equations (10)—(12) we find the relation

p=a’+ b (14)

In the round-dot limit, 7y =+, = and a = b =R, the
above equation shows that the chemical potential becomes
1 = 29R? and together with equation (10) and the fact that
K(0) = 7/2 this reduces to the correct solution [14]

- 3_7TN€*2

R 5 (15)

3.2. Electron energy

Now we can also calculate the total internal energy E, of the
dot’s electrons which is composed of their mutual repulsion
E,. and the interaction with the external potential Ey. Recall
that in the present approximation the kinetic energy of the
electrons can be neglected. Thus E, = E,, + Ey, or

Ey= [[[Lewten+ vy e yidxay
— % [+ v pine sy

=2Vt [[veomeyaa. 00
where we made use of equation (3) in the second step and of
the density normalization in the last step.

The results can be cast into several representations. An
effective approach is to take advantage of a relation derived in
the Appendix using a variational argument:

E, = 2Ey. (17)
Together with the last line of equation (16) it is easily seen
to result in

3
Ey= ZpN. (18)

One also can calculate the integral for Ey directly by sub-
stituting the potential from equation (5), the electron density
from equation (7), and changing the variables to generalized
polar coordinates (x = arcosf, y = brsind). Then one recovers
precisely the relation (14).

And alternatively, if one wishes to express the answer only
in terms of the confining potential parameters and the dot’s
eccentricities, so as to bring out the dominant N and shape
dependences, one can use equations (18) together with equa-
tion (10), and in the latter expression use equation (11) to sub-
stitute for a in terms of ~,. The result can be written

E, — 2(2)2/31\,5/3@*4/371/3 k7K (k) a9
"s2 * KK — ER)P
In the round-dot limit
5/3._2/3
= 3 17(; NS i3y113 20)

which can also be written in terms of the total electron charge
QO = Ne as

2
5L
20 eR

The variation of the quantum dot energy with the number of
electrons N and with the deformation parameter is illustrated
in figures 3(a) and (b). We see that deformation decreases
the total internal energy of the quantum dot. (In a manner of
speaking, this resembles the quantum-mechanical Jahn—Teller
effect which favors oblate and prolate deformations for many
nuclei and metal nanoclusters [7, 26, 27].)

This doesn’t of course really imply that the minimal energy
corresponds to extreme distortion (transformation into an
almost 1D nanowire). Indeed, as marked in figure 2(b), the
underlying approximation, that the electron droplet dimension
is much greater than ap and the kinetic energy is relatively
small, breaks down when elliptical deformations become too
large.

Nanostructure fabrication has enabled the formation not
only of single QD electron pools within sandwiched semi-
conductor layers, but also of multiple barrier-separated elec-
tron puddles [28, 29]. The latter are also referred to as QD
molecules [30]. Interestingly, the N¥3 energy scaling suggests
that distributing N electrons over n identical dots decreases
the total electronic energy by a factor of n*3, potentially
enhancing the stability of the system.

21

3.8. Quantum dot capacitance

The chemical potential of a QD with N electrons is the differ-
ence in total energy between two dots with same deformations
containing N and N — 1 electrons respectively,
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Figure 3. (a) Energy E, of the electron system in elliptical quantum dots versus the number of confined electrons, for several values of

the deformation parameter 6 = 7,/7, of the external potential V. (b) E, versus the potential deformation parameter 6 for a dot with N = 20
electrons. (c) Variation of the capacitive, or addition, energy, equation (23), with the deformation parameter 6 for N = 20. The examples are
for InGaAs, as in figure 1. Black dashes correspond to the same limit of applicability as in figure 2.

pN) = E,(N) — E,(N — 1). (22)

The electron addition energy, also known as the capacitive
energy, is [31, 32]

*2

C(N)

= pWN + 1) — p(N), (23)
i.e. the second difference E, (N + 1) + E, (N — 1) — 2E, (N).

The variation of the capacitive energy with the degree of
dot deformation ¢ for a fixed number of electrons N is illus-
trated in figure 3(c). This quantity is of particular interest
from the experimental point of view. For example, it has been
measured in circular QD in [1] and in rectangular QD with
rounded corners (i.e. close to elliptical) in [3]. Figure 4 shows
the experimental data and numerical density function theory
(DFT) calculations together with our results for the same
parameters. Clearly, the present analytical results describe the
size and shape variation of the capacitive energies extremely
well.

4. 3D ellipsoidal quantum dots

4.1. Electron distribution

The treatment of an electron droplet confined within a 3D har-
monic potential

V(F) = X% + 3 + .22 (24)

to a large degree parallels the 2D case considered above.
However, there is a significant difference in how the elec-

trons distribute themselves within the dot. Within the electro-

static approximation (applicable, as above, when the electron

% ; ;
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Figure 4. A comparison of capacitive (electron addition) energies
derived in this work with experimental and numerical results

for elliptical InGaAs (as in figure 1) quantum dots, for different
degrees of deformation of the confining potential. Green diamonds:
experimental data on circular [1] and rectangular [3] QD. Blue
circles: local spin-density approximation (LSDA) calculation

[3, 24] taking the curvature of the confining potential to be

v = e*Y(2raNY2), ry = 1.54%, and approximating rectangular dots
with rounded-off corners as ellipses with the axial ratio 6 of the
latter equal to the edge length ratio of the former. (The peaks in the
data at N = 2, 6, 12 are due to quantum 2D shell closings.) Solid
red line: values obtained from the analytical energy expression in
the text, equation (23), calculated using the same parameters.

distribution is not varying rapidly and its size is much larger
than the effective Bohr radius aj) the density of electrons in the
3D case is constant throughout the QD, as opposed to peaking
near the origin as in 2D, equation (7). Indeed, the electrons
will distribute themselves so as to create a potential balancing
out V(7), and it well known [33-35] that a uniformly charged
dielectric ellipsoid creates a quadratic potential
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Figure 5. (a) Electron droplet inverse axial ratio for an oblate spheroid (v, =1, < 7, @ = b > ¢) as a function of the confining potential
well’s deformation parameter 6 = ,/7,, as determined by the universal relation (28). The shape of the droplet deviates from that of the
potential well (dashed line). (b) The resulting semi-minor and semi-major axes of the electron cloud for an Ing ¢sGagosAs dot (¢ = 12.9,
m* = 0.067) with N = 100 electrons and the confinement force constant v = 3.95 eV nm~2. The calculation holds for axis lengths “>ay,
equation (1). In the present example this point is reached at § ~ 25, as marked by a dash.

2
o(F) = f” (A —Da?— Dy~ Dz (25
Here
3 N
n=-———0 26
47 abc (26)

is the electron number density (N is the total number of elec-
trons in the QD) and D; are the familiar tabulated [34, 35]
depolarization factors. If the ellipsoidal charge distribution
has semi-axes {a,b,c} they’re given by
abc [ d¢
D= ==
290 W OV@ + OB+ O + )

(with v; ={a,b,c} for i={x)y,z}, respectively) and are
expressible in terms of elliptic integrals. It is assumed that we
choosea>b>c>0.

The electron—electron repulsion, equation (25), will pre-
cisely balance the potential V, equation (24), so obviously the
shape of the electron droplet is determined by setting

27)

_ 3Ne*?
K 2abc

Di(p,0) (28)
and solving for the unknowns {a,b,c} in terms of {7,,7y.7:}.
Here [34] cos = b/a and cosf = c/a. Again, we see that the
shapes of the electron droplet and the confinement potential
are related to each other purely in terms of their axial ratios,
independent of the number of electrons.

As in the 2D case, the shape of the electron droplet will be
different from that of the confining potential. (This is simply
a restatement of the fact that the harmonic potential (25) has a

different shape than the uniform charged ellipsoid which gives
rise to this potential.) Figure 5 illustrates the result for the case
of spheroidal confinement (when the depolarization factors
can be expressed in terms of elementary functions [34-36]).

In the round-dot limit v, = 7, = v, = yanda = b = c =R,
and with the depolarization factors of a sphere equal to 1/3,
equation (28) reduces to the result which follows from the
potential of a uniformly charged sphere:

Ne*2

R3
2 ’

(29)

differing from the 2D solution (15) only by a numerical factor.
The chemical potential, as follows from equations (3), (25)
and (26) and the expression for A given in [33], is

3 Ne*?
= ——=F(k,0),
r= az—cz( ) (30)
where F is the elliptic integral of the first kind,

k= \/ (a* — b?*)/(a* — c*) = sin p/sin @ and the angles 0 and

 are defined above.

4.2. Quantum dot energy and capacitance

The total energy of the 3D dot’s electrons, E, = E,, + Ey, is
calculated in the same way as in the 2D case of section 3.2.
The variational condition (17) and its corollary (18) hold in
the present case as well.

Direct evaluation of the integral for Ey, as in equation (16),
in the present case of uniform electron density, equation (26),
can be performed using generalized spherical coordinates
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Figure 6. (a) The total internal energy, E,, for an oblate 3D
Ing 0sGag 9sAs dot with the same parameters as figure 5(b), as a
function of the confinement deformation parameter & = y./7;.
(b) Variation of the dot’s capacitive energy with ¢.

(x = arcosypsing, y = brsingsing, z = crcos), Jacobian
J = abcr’sinf). Then precisely the same form as the 2D case
(14) follows: p = v,a* + 'yyb2 + ’yzzz.

Figure 6(a) illustrates the shape dependence of the 3D QD
energy for the case of spheroidal (v, = 7,) confinement. Here
it is convenient again to use a deformation parameter 6 to
write 5, = 7, = 6713y, 5 = 6%

For an isotropic QD the total energy reduces to the value
corresponding to a uniformly charged sphere

9 (Ne)* 9
710 ek 5.2%8
This differs from the expression (20) for a 2D dot with the
same number of electrons and external potential curvature by
a factor of (6/7%)'3.

Figure 7(a) compares the above expression for a symmetric
3D dot with the values obtained in [37] by the coupled-cluster
method. The present analytical model provides an excellent
match with the numerically intensive calculation.

In figure 7(b) the results for a nonspherical QD are com-
pared with the density-functional computation in [38].
Here, as the confining potential along the vertical axis is
kept unchanged and that in the horizontal plane is gradually
relaxed, the total internal energy of the system decreases, as
expected: in a flatter external potential well the electron cloud
spreads out over a larger volume. The calculated trends are
very similar, although there is a mismatch in the absolute
magnitude. Interestingly, as pointed out below, the energy dif-
ferences are in very good agreement. It would be useful to
replicate the DFT results and to investigate if they contain a
possible energy offset.

The QD capacitive, or addition, energy is defined as above,
equation (23). An example of its shape dependence for a sphe-
roidal system is illustrated in figure 6(b). The size variation of
this quantity is compared with Hartree—Fock calculations for a
spherical dot [39] and with DFT calculations for a spheroidal
dot [38] in figure 7. Apart from quantum shell oscillations,

N5/3€*4/3,.yl/3 (31)
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Figure 7. (a) The internal energy of a spherically symmetric

3D quantum dot confined in GaAs. Dots: computation by the
relativistic coupled cluster method [37] for ¢ = 12.4, m* = 0.067,
confinement strength v = 15.8 eV nm~2), line: present analytical
results using the same parameters. (b) The electron energy of oblate
spheroidal GaAs QD. Circles: spin DFT calculations [38] for three
different confinement strengths, lines: present results using the same
parameters.

which cannot be reproduced by (semi)classical methods, the
analytical theory demonstrates excellent agreement, with no
adjustable parameters.

5. Summary

The properties of a multielectron system, such as a quantum
dot, can be represented as quantum oscillations around a
smooth evolution with size. In this paper we obtain fully
analytical expressions for the average size-dependent quanti-
ties (electron droplet dimension, shape, and density, the total
energy, the chemical potential, and the capacitive energy)
for carriers confined within 2D elliptical and 3D ellipsoidal
quantum dots by a harmonic external potential.

Such confinement geometry corresponds to the most com-
monly implemented practical situations, and the analytical
solution makes it possible to follow the variation of important
quantities over a wide range of parameters (such as the total
number of electrons, the axial ratios and curvatures of the con-
finement potential, and the dielectric constant of the material).
The results obtained are in very good agreement with the pub-
lished experimental data and numerically computed values.

The solution is facilitated by the rigorously established
fact that for a sufficiently large size of the confined electron
droplet (specifically, when its size is much larger than the
effective Bohr radius aj, equation (1)) the dominant contrib-
ution to the Thomas—Fermi problem of confinement equilib-
rium comes from the potential energy terms. As a result, the
case of 2D confinement is aided by the electrostatic analogue
of the Hertz elastic contact problem, and that of 3D confine-
ment is expressed with the help of depolarization factors. One
also can derive a useful relation between the electrostatic and
external potential energies, equation (17), using a variational
approach.
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Figure 8. (a) Capacitive (electron addition) energy for a spherically symmetric GaAs quantum dot for different strength of confining
potential. Circles: Hartree—Fock calculation [39]; lines: present analytical results for the same parameters. (b) Capacitive energies for oblate
quantum dots. Circles: spin DFT calculations [38]; lines: present results. (Peaks are assigned to quantum shell closings).

One interesting feature of the solution, possibly unintuitive
at the outset, is that the eccentricity (i.e. the axial ratios) of the
electron droplet, in both the 2D and 3D cases, is not the same
as that of its external confinement potential. The relationship
between the two is derived and is shown to depend only on
the shape of the potential well (the ratios of its axial force
constants) and not on the number of the electrons, the size of
the dot, or any other parameters.

The approach can be extended to study the effect of point
impurities introduced inside the quantum dots, as well as the
perturbative effects of anharmonicities in the confinement
potential. These problems will be considered elsewhere.
Newly developed families of 2D semiconductors [40] such
as silicene, phosphorene, and germanene represent another
potential stage for applications of the theory.
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Appendix

Equation (17) can be derived using a scaling variational
method. We follow [41] where the same method is applied
to derive the virial theorem for the Thomas—Fermi model
of the atom. We replace n(x,y) by the set of functions
ny(x,y) = N2n(A\x,\y) which all satisfy the normalization con-
dition Jn A(x,y)dxdy = N. The constituents of the total energy
then transform as E,.(\) = \E,, and E®\) = A\2Ey so that
E,(N) = AEg, + A"2Ey. In the equilibrium configuration the
energy is minimized, i.e. OE,(A\)/OX =0 for A= 1. This
immediately leads to equation (17).
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