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Summary 

 Membranes are attractive for a wide range of separations due to their low energy costs 

and continuous operation.  To achieve practical fluxes, most membranes consist of a thin, 

selective skin on a highly permeable substrate that provides mechanical strength.  Thus, this 

project focused on creating new methods for forming highly selective ultrathin skins as well as 

modeling transport through these coatings to better understand their unprecedented selectivities.  

The research explored both gas and ion separations, and the latter included transport due to 

concentration, pressure and electrical potential gradients.  This report describes a series of 

highlights of the research and then provides a complete list of publications supported by the 

grant.  These publications have been cited more than 4000 times.  Perhaps the most stunning 

finding is the recent discovery of monovalent/divalent cation and anion selectivities around 1000 

when modifying cation- and anion-exchange membranes with polyelectrolyte multilayers 

(PEMs).  This discovery builds on many years of exciting research.  (Citation numbers refer to 

the journal articles in the bibliography.) 

Highlights 

Formation of Ultrathin Skins.  This 

research first demonstrated that layer-

by-layer adsorption of PEMs or 

growth of hyperbranched polymer 

films yields coatings that fully cover 

nanoporous membranes to form 

selective, ultrathin skins.40,42  Films as 

thin as 20 nm span alumina pores with 

diameters of 20 nm without filling the 

underlying substrate (Figure 1), and 

ion-transport studies show that 

coatings are essentially free of defects 

after deposition of 4-5 polyanion/polycation bilayers.42  These findings spawned numerous 

subsequent studies (by us and many others) of transport through PEMs or hyperbranched 

polymers.  Later papers showed 

full coverage of polymeric 

supports.24 

Heat-induced Formation of 

Polyamides and Polyimides 

from Polyelectrolyte 

Multilayers.  Polyamides and 

polyimides are some of the 

most attractive membrane 

materials due to their high 

selectivities and permeabilities.  

This research developed simple 

Figure 2.  Imidization of a poly(p-phenylenepyromellitamic 

acid)/protonated poly(allylamine) film. 

Figure 1.  Scanning electron microscope image of a poly-

electrolyte multilayer film on a porous alumina support. 

 



heating of PEMs to dehydrate them and form either polyimides or polyamides, depending on the 

composition of the PEM (see Figure 2 for an example).26,31,37,41  Ultrathin aromatic polyimide 

films created in this way show the same high gas-transport selectivities as much thicker cast 

films,31 and Cl-/SO4
2- diffusion dialysis selectivities as high as 1000.37  Moreover, formation of 

polyamides leads to films that resist corrosion.41  Thus, these findings yield methods for creating 

unusually thin films for membranes and anticorrosion coatings.   

Templating PEMs to Enhance Selectivity.  This project hypothesized that introducing charge into 

PEMs would greatly increase 

monovalent/divalent ion-transport 

selectivities.  New methods to insert 

charge into PEMs include templating 

films with either metal-ion complexes 

or photolabile groups.35-36  Subsequent 

removal of metal ions (Figure 3) or 

photolysis leads to excess anionic 

groups in the films and enhances Cl-

/SO4
2- diffusion dialysis selectivities to 

values as high as 600 when including 

cross-linking to avoid film swelling in 

water.  Without templating, films show selectivities <30.  Models of transport suggest that both 

electrostatic and diffusive factors contribute to discrimination among ions. 

Nanofiltration through Ultrathin Polyelectrolyte Multilayers.  Initial transport studies employed 

diffusion dialysis.35-38,42  While 

such experiments provide insight 

into membrane selectivity, 

diffusion dialysis is not a high-flux 

separation method.  Subsequent 

cross-flow nanofiltration (NF) 

studies (Figure 4 depicts the 

experimental apparatus) showed 

that water flux through PEMs can 

exceed that through commercial 

NF membranes, although flux 

varies with the number of 

polyelectrolyte layers and their 

composition.17,21,30  Polyelectrolyte 

multilayer membranes show NF selectivities of 20-30 between monovalent and divalent anions 

or cations,17,30 but this selectivity is sometimes less than in diffusion dialysis, presumably 

because of convective ion transport.10  Highly selective NF occurs with films deposited on both 

porous alumina and polymeric ultrafiltration membranes.24,30   
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Figure 3.  Schematic diagram showing Cu2+ imprinting of a 

cross-linked PAA/PAH film. 

Ar
Feed 

Tank

Pump

Prefilter

Flowmeter Pressure gauges

Nanofiltration

cells

Ar
Feed 

Tank

Pump

Prefilter

Flowmeter Pressure gauges

Nanofiltration

cells

Figure 4.  Cross-flow nanofiltration apparatus. 



Formation of Metal Nanoparticles 

in PEMs.  PEMs are also excellent 

templates for forming metal 

nanoparticles.34  Layer-by-layer 

adsorption using films containing 

metal-ion complexes followed by 

reduction (Figure 5) gives 

nanoparticles whose sizes depend 

on the ratio of metal ion to polyethyleneimine in the polycation deposition solution.  These 

nanoparticle-containing films exhibit anti-bacterial properties and also catalyze the selective 

hydrogenation of alkenes.  Using the same principles as in the membrane studies, selective 

transport of alkenes to the nanoparticles results in selective catalysis,16 which could potentially 

allow synthetic chemists to proceed to a subsequent reaction without performing a purification 

step.  The rate of hydrogenation of allyl alcohol by films containing Pd nanoparticles is as much 

as 24-fold greater than the rate of hydrogenation of 3-methyl-1-penten-3-ol.  Additionally, 

nanoparticles in polyelectrolyte multilayers may allow membrane catalysis,20 which can combine 

separation and reaction in a single operation.   

Correlation of PEM Swelling and Permeability.  

Diffusion dialysis and NF with sugars and small alcohols 

give an indication of the size-based selectivity of PEMs 

because charge has minimal effect on the transport of 

these molecules.  Based on modelling of the transport of a 

series of small molecules, the effective pores size in 

protonated poly(allylamine) (PAH)/poly(styrene 

sulfonate) (PSS) films is about 0.8 nm, and the porosity is 

2.8%.29  Equally important, permeability varies with film 

swelling (determined from in situ ellipsometry), which is 

a function of the polyelectrolytes employed to form membranes.25,27  Coatings that show a 400% 

increase in thickness upon immersion in water minimally reject sugars, whereas films that swell 

~100% show >99.5% rejection of sucrose.  By varying the composition of polyelectrolytes, one 

can optimize membranes to pass salt and reject sucrose.22,27   

CO2-Selective 

Polymer Brush 

Membranes.  

Selective removal 

of CO2 from gas 

streams is 

becoming 

increasingly 

important for 

applications such 

as CO2 

sequestration, fuel 
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Figure 6.  Scheme of selective 

permeation of glycerol over glucose in 

a PEM-coated membrane. 
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Figure 5.  Formation of nanoparticles in a polyelectrolyte 

multilayer film. 

Figure 7.  Surface-initiated copolymerization of PEGMEMA-475 and 

PEGMEMA-1100 to provide a membrane skin that remains amorphous at room 

temperature. 

 



cell operation, and H2 synthesis. Poly(ethylene glycol) (PEG) exhibits a particularly high 

selectivity for CO2 over H2.  To develop thin PEG-containing skins, this work employed atom-

transfer radical polymerization (ATRP) from porous supports (Figure 7).12 However, for 

monomers with long PEG chains crystallization limits permeability, and with short PEG side 

chains CO2/H2 selectivity is not as high as with longer side chains.  This research showed that the 

use of copolymer films (poly(PEGMEMA-475-co-PEGMEMA-1100, see Figure 7 for structures) 

prevents crystallization while maintaining the selectivity of PEGMEMA-1100 films, and films 

cover underlying pores without filling them.  The ATRP method is vital for controlling film 

thickness because it minimizes polymerization in solution and affords controlled film growth.  

Importantly, the room-temperature CO2/H2 selectivity of 12 achieved with these membranes is 

equivalent to the selectivities of the best membranes in the literature. 

 
Separation of Fluoride from Other Monovalent Anions Using PEM 

Nanofiltration Membranes.  Separation of different monovalent 

ions is much more difficult than our prior monovalent/divalent ion 

(e.g. Cl-/SO4
2-) separations because charge-based selectivity is 

precluded.  Nevertheless, development of NF for F- removal will 

require the synthesis of highly permeable membranes that reject F- 

while passing other monovalent anions such as Cl- and Br- (Figure 

8) to both reduce osmotic pressures and avoid the need for 

remineralization. Remarkably, deposition of 4.5-bilayer 

PSS/poly(diallyl dimethylammonium chloride) (PDADMAC) films 

on porous alumina supports yields membranes that exhibit Cl-/F- 

and Br-/F- selectivities >3 with low Cl- and Br- rejections and a solution flux of 3.5 m3/m2-day at 

4.8 bar.19  In contrast, the selectivities of commercial NF membranes (NF 90 and NF 270 from 

DOW) and PSS/PAH-coated membranes were about 1 under the same experimental conditions, 

and the highest flux through the commercial membranes was 1.1 m3/m2-day at 4.8 bar.   

 

Understanding the Variation 

of Selectivity with the number 

of layers in a PEM.  In a 

number of anion separations, 

the selectivity of 

PSS/PDADMAC films shows 

a maximum after deposition 

of around 4.5 bilayers.  For 

example, the Cl-/SO4
2- 

selectivities of 

PSS/PDADMAC-coated 

membranes are >30 with 4.5 

bilayers but only 3 with 6.5-

bilayer films.13  The Cl-/F- selectivities of 4.5-, 5.5-, and 6.5-bilayer films were 3.4, 1.9, and 1.1, 

respectively.19  Attenuated total reflectance infrared spectroscopy (Figure 7) showed a dramatic 

increase in the concentration of adsorbed SCN- in PSS/PDADMAC films on going from 6 to 7 

bilayers, and a similar trend occurred in the adsorption of Ni(CN)4
2-.  Zeta potentials of films also 

began decreasing after formation of about 6 bilayers.  This suggests that after deposition of about 

F-

Cl-

Br-

Figure 8.  Selective 

permeation of fluoride salts 

relative to chloride and 

bromide salts is important 

for water purification. 

Figure 9.  Schematic drawing of increased anion partitioning into 

thicker PSS/PDADMAC films.  Attenuated total reflectance IR 

spectroscopy enabled studies of ion partitioning. 



4-6 bilayers, film growth involves deposition of large excesses of PDADMAC during polycation 

adsorption, which results in a large number of ion-exchange sites.  This is consistent with much 

larger growth rates after deposition of the first 4-6 layers.  During PSS adsorption, the excess 

PDADMAC in the film likely diffuses to the surface and forms the PSS/PDADMAC complex.  

This process should yield a highly hydrated material, so only with <6 layers is film hydration low 

enough to give Cl-/F- selectivity. 

 

Facilitated Transport through PEMs.  Facilitated transport in 

PEMs may enhance discrimination among cations with the 

same valence.  The minimal thickness of the films should lead 

to reasonable fluxes even with fixed-carrier facilitated 

transport (Figure 10) where hopping between ion-binding 

sites may be slow. To prepare ultrathin membrane skins that 

selectively bind Cu2+, we deposited poly[(N,N’-

dicarboxymethyl)allylamine] (PDCMAA, Figure 10)/PAH 

films on porous alumina supports.6  In diffusion dialysis, 

these membranes show Cu2+/Mg2+ transport selectivities of 50 

and 80 for PAH-capped and PDCMAA-capped films, 

respectively.  Although Cu2+ and Mg2+ have similar aqueous 

diffusion coefficients, the equilibrium constant for metal-ion 

binding to iminodiacetic acid functionalities is 7 orders of 

magnitude higher for Cu2+ than for Mg2+.  Amines also bind 

Cu2+ more strongly than Mg2+.  In the presence of Cu2+, the 

Mg2+ flux through the membrane decreases several orders of 

magnitude to generate the selectivity, so presumably the Cu2+ 

binding excludes the Mg2+ from the membrane.  These membranes also exhibit high Cu2+/Ca2+ and 

Cu2+/Ni2+ selectivities, again, likely because of specific sorption of Cu2+.  

 

Selective Transport in Charged Nanopores.  Charged nanochannels offer unique opportunities for 

ion separations because at small enough dimensions, the electrical double layer in such channels 

selectively excludes cations or anions.  This research employed adsorption of polyelectrolyte 

multilayers in the pores of track-etched membranes to control nanopore size and charge and enable 

separations based on ion exclusion from a nanopore double layer.8  In the simplest case, selective 

exclusion of a divalent cation, e.g. Mg2+, from a (PSS/PAH)1-coated (positively charged) nanopore 

leads to K+/Mg2+ transport selectivities >20.  Negatively charged pores show Br-/SO4
2- selectivity.  

Because the selectivity relies on exclusion from the nanopore, however, it decreases with ionic 

strength.   

Charged capillaries will exclude all monovalent cations to approximately the same extent, 

so selectivity among different monovalent cations is not feasible through electrostatic exclusion.  

However, when the pore surface charge is opposite in sign to the ions of interest, streaming 

potentials can separate ions according to their mobilities as Figure 11 shows.  When Cs+ and Li+ 

are the more and less mobile cations, respectively, the negatively charged capillary excludes 

anions and attracts Li+ and Cs+ equally.  Application of a transmembrane pressure creates a 

streaming potential that decreases cation transport and enhances anion transport to achieve zero 

current.  However, because they have different mobilities, the Cs+ and Li+ traverse the membrane 

at different rates.  The higher rate of electrical migration (in the negative direction) of Cs+ 
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Figure 10.  Cartoon of Cu2+-selective 

fixed carrier facilitated transport 

through a (PDCMAA/PAH)n film.   



compared to Li+ yields selective 

transport of Li+ over Cs+. For PSS-

modified track-etched membranes 

(nominal 30 nm pores prior to 

modification), Li+/Cs+ selectivities 

are around 3.4.  Similarly, pores 

modified with a PSS/PAH film have a 

positive charge that leads to 

acetate/Br- selectivities around 5.7.   

 

Adsorption of Polyelectrolyte 

Multilayers to Create Highly 

Selective ED Membranes.  

Electrodialysis (ED) is similar to 

diffusion dialysis, but as Figure 12 

shows an electrical potential, rather 

than a concentrations gradient, drives 

ions across the membrane.  ED is an established membrane-based 

technique for applications such as preconcentrating brines and 

treating wastewater.  Nevertheless, although ED ion-exchange 

membranes allow highly specific passage of either anions or 

cations, they show minimal selectivities among anions or among 

cations.  Such discrimination among cations or anions could open 

new applications such as acid recovery and salt purification or 

production.  Common cation-exchange membranes show 

monovalent/divalent cation selectivities <2.  Remarkably, 

adsorption of PAH/PSS multilayers on Nafion cation-exchange 

membranes yields unprecedented K+/Mg2+ selectivities >1000. 

Such selectivities also occur for Li+/Co2+ and K+/La3+.3,5,7  Very 

recent studies show that similar discrimination also occurs with 

polyelectrolyte films on inexpensive poly(amide) cation-exchange 

membranes, and high selectivities are also possible with anions in 

transport through coated anion-exchange membranes.1 

 

Modelling of Ion Transport.  Commercial reverse osmosis 

(RO) and NF membranes contain ultrathin barrier layers on porous 

supports. Although solution-diffusion models of salt transport through barriers assume 

electroneutrality,2 with ultrathin skins and low ion partition coefficients, space-charge regions may 

occupy most of the layer. Thus, this research examined theoretically the implications of 

nonelectroneutrality on salt transport.4 Both immobile external surface charge and unequal cation 

and anion solvation energies in the barrier layer can give regions with excess mobile charge, and 

the size of these regions increases with decreasing feed concentrations and ion partition 

coefficients. Figure 13 shows the ion concentration profile in a membrane skin where the intrinsic 

partition coefficient (the partition coefficient with no electrical potential difference between the 

solution and the membrane) is much lower for the cation.  The low cation solubility in the barrier 

Figure 12.  Diagram of the 

ED apparatus.  Diffusion 

dialysis occurs in the same 

cell without an applied 

potential.  Cations move from 

the source to the receiving 

phase in ED across a cation-

exchange membrane. 
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gives a negatively charged region with a low cation 

concentration.  This space charge creates a gradient of 

electrical potential between the solution and the 

membrane interior, and for this case the potential 

difference leads to nearly equal cation and anion 

concentrations only in the center of the membrane. 

The low cation concentrations control transport and 

may increase the resistance to ion passage by an order 

of magnitude compared to the assumption of a neutral 

membrane, depending on the values of intrinsic 

partition coefficients.  This is a new paradigm for 

explaining selective ion transport in NF and RO 

membranes.4 

 

 

  Figure 13.  Simulated (a) ion-concentration 

profiles and (b) electrical potential for a 

membrane equilibrated on both sides with 

a solution containing 31 mM MA2.  In 

figure (a), the partition coefficient is the 

ratio of the concentration at the location in 

the membrane to the feed 

concentration. The X-axis is the distance 

from the center of the membrane barrier, 

which has a total thickness of 40 nm.  The 

concentration profile is symmetric about 

zero due to the assumption of a low 

concentration difference across the 

membrane.  The simulation assumes 

intrinsic partition coefficients (in the 

absence of electrical potential) of 0.14 for 

the anion A- and 3.4 x 10-4 for the cation 

M2+.   
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