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We numerically examine clogging transitions for bidisperse disks flowing through a two dimen-
sional periodic obstacle array. We show that clogging is a probabilistic event that occurs through
a transition from a homogeneous flowing state to a heterogeneous or phase separated jammed state
where the disks form dense connected clusters. The probability for clogging to occur during a fixed
time increases with increasing particle packing and obstacle number. For driving at different angles
with respect to the symmetry direction of the obstacle array, we show that certain directions have a
higher clogging susceptibility. It is also possible to have a size-specific clogging transition in which
one disk size becomes completely immobile while the other disk size continues to flow.

A loose collection of particles such as grains or bubbles
can exhibit a transition from a flowing liquidlike state to
a non-flowing or jammed state as a function of increas-
ing density, where the density ¢; at which the system
jams is referred to as Point JY¥. One system in which
jamming has been extensively studied is a bidisperse two-
dimensional (2D) packing of frictionless disks, where the
area faction covered by the disks at Point J is approxi-
mately ¢ = 0.84, and where the system density is uni-
form at the jamming transition™*4. Related to jamming
is the phenomenon of clogging, as observed in the flow
of grains®® or bubbles? through an aperture at the tip
of a hopper. The clogging transition is a probabilistic
process in which, for a fixed grain size, the probability
of a clogging event occurring during a fixed time inter-
val increases with decreasing aperture size. A general
question is whether there are systems that can exhibit
features of both jamming and clogging. For example,
such combined effects could appear in a system contain-
ing quenched disorder such as pinning or obstacles where
jammed or clogged configurations can be created by a
combination of particles that are directly immobilized in
a pinning site as well as other particles that are indirectly
immobilized through contact with obstacles or pinned
particles. In many systems where pinning effects arise,
such as for superconducting vortices or charged particles,
the particle-particle interactions are long range, meaning
that there is no well defined areal coverage density? at
which the system can be said to jam, so a more ideal sys-
tem to study is an assembly of hard disks with strictly
short range particle-particle interactions. Previous stud-
ies have considered the effect of a random pinning land-
scape on transport in a 2D sample of bidisperse hard
disks™, while in other work on the effect of obstacles,
the density at which jamming occurs decreases when the

number of pinning sites or obstacles increases2:3,

Here we examine a 2D system of bidisperse frictionless
disks flowing through a square periodic obstacle array
composed of immobile disks with an obstacle lattice con-
stant of a. The total disk density, defined as the area
coverage of the mobile disks and the obstacles, is ¢;. We
find that for ¢, far below the obstacle-free jamming den-
sity ¢;, the system can reach clogged configurations by

forming a phase separated state consisting of a high den-
sity connected cluster surrounded by empty regions, and
that the clogging probability P. during a fixed time in-
terval depends on both a and ¢;. There is also a strong
dependence of P. on the direction of drive with respect
to the obstacle lattice symmetry, with an increase in P,
for certain incommensurate angles. At finite drive an-
gles we observe a novel size-dependent clogging effect in
which the smaller disks become completely jammed while
a portion of the larger disks continue to flow. This work
is relevant for filtration processes’®8 the flow of dis-
crete particles in porous medial™® and the flow and
separation of of colloids on periodic substrates!?22

Model and Method— We consider a 2D square system
of size L x L where L = 60 with periodic boundary con-
ditions in the z and y-directions. The sample contains
N; disks of diameter o; = 0.7 and N, = N; disks of di-
ameter o, = 0.5, giving a size ratio of 1 : 1.4. This same
size ratio has been studied in previous works examining
jamming in bidisperse obstacle-free disk packings, where
jamming occurs near a packing fraction of ¢; = 0.844
and is associated with a contact number of Z = 4.024,
A total of N, obstacles are placed in a square lattice with
lattice constant a and are modeled as disks of diameter
0s = 0.5 held at fixed positions. The initial configura-
tion is prepared by placing the small and large disks in
non-overlapping random positions with a uniform den-
sity. The disks interact through a repulsive short range
harmonic force, F;;l = ]{J(Uij — |rij|)®(0ij — |rij|)f'ij where
0ij = (05 + 05)/2 is the sum of the radii of disks ¢ and
j, rij =TI, — Iy, f‘ZJ = rij/|rij|7 © is the Heaviside Step
function, and the interaction force drops to zero when
the separation |r;;| > o;;. The spring constant is set to
k = 300 which is large enough to ensure that the overlap
between disks for the largest driving force considered in
this work remains small. After initialization we apply a
constant driving force F; to the mobile disks which could
arise from a gravity or fluid induced flow. The dynamics
for a given disk ¢ at position r; is obtained by integrating
the following overdamped equation of motion:

dr; iy
- =§F;?+Fd. (1)
1#]
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FIG. 1: (a) The average disk velocities (V4), (b) the fraction
of disks in a cluster Cy, and (c) the average contact number
Z versus time in simulation time steps for a 2D system of
bidisperse disks moving through a square periodic obstacle
array with total disk density of ¢: = 0.54, lattice constant
of a = 3.0, and constant external drive F; = 0.025 applied
in the positive z-direction. Blue curves: a run in which the
disks remain flowing; red curves: a run in which the disks be-
come clogged; green curves: a run in which the disks become
partially clogged. (d) Distribution P(¢) of local disk density
¢ in the initial state (blue) and after reaching a clogged state
(red), averaged over 40 clogged realizations.

Here N = Ny + N; + N, is the total number of disks and
the damping constant 7 is set to unity. The external driv-
ing force is given by Fg = Fy(cos(6)% + sin(0)§), where
6 is the angle of the driving direction with respect to the
positive z axis. We take F; = 0.025 but, provided Fjy
is sufficiently small, our results are not sensitive to the
choice of Fy. In the absence of obstacles, all the disks
move in the driving direction at a speed of Fj;. The total
disk density ¢; is the area fraction covered by the free
disks and obstacles, ¢; = m(Niof + (N + Ny,)o2)/L%
To quantify the clogging transition, we monitor the aver-
age velocity of the mobile disks along the x and y direc-
tions, (V,,) = (Ns + N;) ™t Zf\ilﬂv’ v - (X,¥), where v;
is the velocity of disk i. To ensure that the system has
reached a steady state, we run all simulations for 3 x 108
simulation time steps and average the values of (V,,) and
(V) over 10° simulation time steps. We define P, to be
the probability that the system will reach a clogged state
with (V,) = 0.0 after a total of 3 x 10® simulation time
steps, and perform 100 realizations for each value of ¢
and a.

Results— We fist consider the case in which the ex-
ternal drive is applied along the x direction with § = 0.
In Fig. [I(a) we plot (V,) versus time for a system with
¢ = 0.54 and a = 3.0. At this obstacle density, we
find that the clogging probability P. = 1.0 for ¢, > 0.62,

P. =~ 0 for ¢y < 0.52, and at ¢, = 0.54, the density shown
in the figure, P, = 0.31. We illustrate three representa-
tive realizations in Fig. a,b,c): one in which the system
does not clog but continues to flow, one in which the sys-
tem clogs completely, and one in which a partial clogging
occurs where at least three-quarters of the disks are no
longer moving. Due to the nonequilibrium fluctuations,
it is possible that if we were to consider a longer time
average, the flowing or partially clogged states may fully
clog; however, the fully clogged states can never unclog.
In realizations that reach a clogged state, the system does
not pass instantly from a flowing to a non-flowing state,
but instead exhibits a series of steps in which a progres-
sively larger number of disks become clogged, with (V)
continuing to diminish until it reaches zero. This be-
havior is different from that typically observed in hopper
flows, where a single event brings the flow to a sudden
and complete halt. The red curve in Fig. 1(a) contains
time intervals during which the number of flowing grains,
which is directly proportional to the value of (V,.), tem-
porarily increases prior to the system reaching a final
clogged state with (V,) = 0 after 2.5 x 107 simulation
time steps. Since there are no thermal fluctuations or ex-
ternal vibrations, once the system is completely clogged,
all of the dynamical fluctuations disappear and the sys-
tem is permanently absorbed into a clogged state. In
Fig. b) we plot the fraction C; of mobile disks that
are in the largest connected cluster versus time, while in
Fig. c) we show the corresponding average disk con-
tact number Z. For the realization that fully clogs, C
gradually increases with time, indicating that there is
a single growing cluster, while Z also increases. When
(V) reaches zero, C; = 0.98, indicating that almost all
the disks have formed a single cluster, while Z = 3.25,
which is well below the critical value Z. = 4.0 expected
at the obstacle-free jamming transition. In contrast, for
the system that remains flowing, (V,,) = 0.025, indicating
that almost all of the mobile grains are freely flowing. At
the same time, C is close to zero and Z = 2.0.

In Fig. [2a) we show an image of the initial uniform
density disk configuration for the system in Fig. a)
which reaches a clogged state. For the same sample,
Fig. [2(b) illustrates the clogged state with (V) = 0.
The disks phase separate into a high density connected
cluster surrounded by regions devoid of mobile disks. In
contrast, Fig. [2[c) shows a late time image of the sam-
ple from Fig. [Ifa) that remains flowing. Here the overall
disk density is uniform and the motion is confined in one-
dimensional (1D) channels that run between the rows of
obstacles. For the partially clogged state, Fig. b) in-
dicates that the cluster fraction C; = 0.84 is lower than
the value C; = 0.98 observed in the fully clogged state.
At late times for the partially clogged sample, Fig. d)
shows that a large jammed cluster forms, while in the
middle of the sample there is a region of uniform disk
density through which the grains flow in 1D channels.
Thus, the partially clogged state combines features of
the clogged and flowing states in Fig. 2f(b,c).
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FIG. 2: Images of the obstacle locations (green circles) and
the mobile disks (large disks: blue; small disks: orange) for
the samples shown in Fig. [[] from systems with a = 3.0 and
¢+ = 0.54. (a) Initial configuration of the sample that clogs.
(b) Final clogged configuration of the same sample. (c) Late
time snapshot of the sample that continues to flow. (d) Late
time snapshot of the sample that partially clogs.

In Fig. [[[d) we plot the distribution P(¢) of the local
packing density ¢ at initial and late times for a sample
that reaches a clogged state. To measure ¢, we divide the
sample into squares of size 2 x 2 and find the area fraction
of each square covered by free disks and obstacles. In
the initial state, there is a peak in P(¢) centered at the
total disk density of ¢; = 0.54. In contrast, P(¢) has
multiple peaks in the clogged state centered at ¢ = 0,
corresponding to empty regions, ¢ = 0.2, corresponding
to the obstacle density, and at ¢ = 0.82, corresponding
to the clogged regions which have a density close to the
free disk jamming density.

In Fig. a) we plot the clogging probability P. ver-
sus ¢; for samples with obstacle lattice constant rang-
ing from a = 2.5 to a = 3.33. We perform 100 realiza-
tions for each value of ¢;. When a = 3.33, P. = 0 for
¢r < 0.79, and there is a sharp increase to P, = 1.0 at
¢r = 0.8, indicating that when the spacing between ob-
stacles is large, a high density of mobile particles must
be introduced in order for the system to clog. We take
the critical density ¢f to be the value of ¢, at which P,
passes through P. = 0.5. As a decreases, ¢§ also de-
creases, and at a = 2.5, ¢f = 0.49. We do not observe a
strictly monotonic decrease in ¢f with decreasing a since
for some values of a there are particular combinations of
disk configurations that can better fit in the constraint of
a square obstacle lattice. Since our sample size is fixed at
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FIG. 3: (a) The fraction P. of states that clog vs ¢ for var-
ied obstacle lattice constant a = 2.5 (dark blue circles), 2.609
(light blue squares), 2.727 (light green diamonds), 2.857 (dark
green up triangles), 3.0 (orange left triangles), 3.158 (red
down triangles), and 3.333 (magenta right triangles). (b) The
average value of Z for realizations that clog vs a showing a
linear increase in Z with a.

a finite value, the square symmetry of our obstacle lattice
constrains us to a discrete number of possible choices of
a. By averaging the contact number Z over only realiza-
tions that clog, we find a monotonic increase Z with a,
as shown in Fig. [3[(b), where Z increases from Z = 2.9 at
a=25t0 Z =3.6 at a = 3.33. In principle, Z will ap-
proach the value Z = 4.0 for very large values of a or in
the limit of a single obstacle when ¢; = ¢; ~ 0.84; how-
ever, the time required to reach clogged states at large a
increases well beyond the length of our fixed simulation
time window.

Directional dependence and size dependent clogging—
We next consider the effect of changing the direction of
the drive relative to the symmetry axes of the square
obstacle array. In Fig. @(a) we plot P, versus the drive
angle 6 in samples with ¢, = 0.527 and a = 2.857. For
each value of 8, we perform 100 realizations. Here, P, = 0
for § = 0, as also shown in Fig. a). As 6 increases, a
local maximum in P, with P, = 0.3 appears near 6§ = 10.
This is followed by a drop to P. = 0 over the range 15° <
f < 25°, and an increase to P, = 0.98 for 25° < 6 < 40°,
with a dip to P. = 0.72 occurring near 6§ = 45°. Due the
symmetry of the obstacle lattice, the same features repeat
over the range 45° < 6 < 90°. The increase of P, near
# = 10° occurs due to a break down of the 1D channeling
that arises for the § = 0° flow. Similarly, the dip in P,
near 6 = 45° appears when the disks become able to form
1D channels of flow along the diagonal direction. As 6
varies, we find that certain angles, such as § = 0° and 6 =
45°, allow 1D channeling motion, whereas at drive angles
of 25° < 0 < 40° there is no easy flow direction so the
disks are forced to collide with the obstacles, producing
an increase in P.. In Fig. c) we illustrate a clogged
state that is aligned with the driving angle of 6 = 32°.

For 20° < 6 < 24° we observe a size-dependent clog-
ging behavior in which the smaller disks become com-
pletely clogged while a portion of the larger disks con-
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FIG. 4: (a) The fraction P. of states that clog vs 6, the an-
gle the driving direction makes with the positive z axis, in
samples with ¢; = 0.5272 and a = 2.857. The susceptibil-
ity to clogging is enhanced for 6 > 25°. (b) (V) vs time in
simulation time steps for the large disks only (red), the small
disks only (blue), and all disks (purple) for a driving angle of
6 = 20°. We find a size dependence, with only the smaller
disks becoming clogged while the large disks continue to flow.
(¢) The disk configuration in the clogged state at § = 32° from
panel (a). (d) The disk configuration for the size-dependent
clogged state from panel (b).

tinue to flow. In Fig. [d|(b) we plot (V) for the large and
small disks separately and for all disks combined for a
driving angle of § = 20°. After 2 x 107 simulation time
steps, for the small disks (V) = 0, indicating the com-
plete clogging of the small disks along with a saturation
to a steady state flow for the larger disks. This result
is counter-intuitive since it might be expected that the
larger disks would clog first. In Fig. d) we show a snap-
shot of the size-dependent clogged state from Fig. b).
All of the smaller disks are jammed in a cluster along
with a portion of the larger disks, while in the lower den-
sity regions there are a number of larger disks undergo-
ing channeling motion along the z-direction. The size-
dependent clogging can be understood as a consequence
of a directional locking effect’®23 in which the flow of

the larger disks remains locked to the 8 = 0° direction
of the obstacle lattice while the flow of the smaller disks
follows the angle of the drive, which increases the chance
for the smaller disks to become clogged. For 6 just below
0 = 20°, most of the smaller disks are clogged but there
are a few that remain mobile. The directional locking ef-
fect, in which particles preferentially move along lattice
symmetry directions, has been observed for colloids!?22
and superconducting vortices?? moving over periodic sub-
strates. It can be used to perform particle separation by
having one species lock to a symmetry direction while the
other does not. In our case, the disk size that does not
undergo directional locking ends up in a clogged state,
suggesting that species separation by selective clogging
could be a new method for particle separation.

Conclusion— We have investigated the clogging tran-
sition for a bidisperse assembly of frictionless disks mov-
ing through a two-dimensional square obstacle array. We
find that the probability of clogging during a fixed time
interval increases with increasing total disk density ¢;
and decreases with the obstacle spacing a. For disk den-
sities well below the obstacle-free jamming density, the
clogged states are phase separated and consist of a con-
nected high density jammed cluster surrounded by a low
density disk-free region. In the clogged state, the con-
tact number Z increases linearly with decreasing obstacle
density. We also find that the clogging probability has a
strong dependence on the relative angle between the driv-
ing direction and the symmetry axes of the square obsta-
cle array. The clogging is enhanced for incommensurate
angles such as 6§ = 35° where the 1D channeling flow of
the disks between the obstacles is suppressed. We also
find that for some drive angles there is a size-dependent
clogging effect in which the smaller disks become com-
pletely clogged while a portion of the larger disks re-
main mobile. Here the motion of the larger disks remains
locked along the z-axis of the obstacle array whereas the
smaller disks move in the driving direction. This sug-
gests that selective clogging could be used as a particle
separation method.
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