

LA-UR-15-29082 (Accepted Manuscript)

A Tertiary Carbon–Iron Bond as an Fe Cl Synthon and the Reductive Alkylation of Diphosphine-Supported Iron(II) Chloride Complexes to Low-Valent Iron

Tondreau, Aaron
Scott, Brian Lindley
Boncella, James M.

Provided by the author(s) and the Los Alamos National Laboratory (2017-04-13).

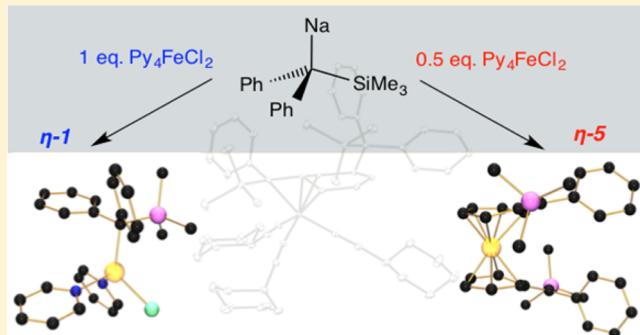
To be published in: Organometallics

DOI to publisher's version: 10.1021/acs.organomet.6b00108

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-15-29082>

Disclaimer:

Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

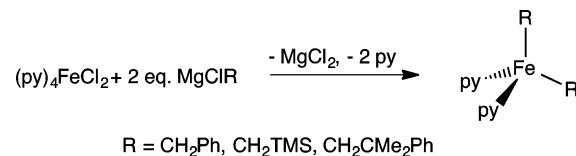

1 A Tertiary Carbon–Iron Bond as an $\text{Fe}^{\text{I}}\text{Cl}$ Synthon and the Reductive 2 Alkylation of Diphosphine-Supported Iron(II) Chloride Complexes to 3 Low-Valent Iron

4 Aaron M. Tondreau, Brian L. Scott, and James M. Boncella*

5 Chemistry and MPA Divisions, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States

6 Supporting Information

7 **ABSTRACT:** Ligand-induced reduction of ferrous alkyl
8 complexes via homolytic cleavage of the alkyl fragment was
9 explored with simple chelating diphosphines. The reactivities
10 of the sodium salts of diphenylmethane, phenyl-
11 (trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane
12 were explored in their reactivity with $(\text{py})_4\text{FeCl}_2$. A series of
13 monoalkylated salts of the type $(\text{py})_2\text{FeRCl}$ were prepared and
14 characterized from the addition of 1 equiv of the
15 corresponding alkyl sodium species. These complexes are
16 isostructural and have similar magnetic properties. The double
17 alkylation of $(\text{py})_4\text{FeCl}_2$ resulted in the formation of
18 tetrahedral high-spin iron complexes with the sodium salts of
19 diphenylmethane and phenyl(trimethylsilyl)methane that
20 readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl
21 species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to $(\text{py})_2\text{FeRCl}$ resulted in the overall
22 transfer of $\text{Fe}(\text{I})$ chloride concurrent with loss of pyridine and alkyl radical. $(\text{dmpe})_2\text{FeCl}$ was synthesized via addition of 1 equiv
23 of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to $(\text{dmpe})_2\text{FeCl}_2$ gave the
24 reduced $\text{Fe}(\text{0})$ nitrogen complex $(\text{dmpe})_2\text{FeN}_2$. These results demonstrate that iron–alkyl homolysis can be used to afford clean,
25 low-valent iron complexes without the use of alkali metals.

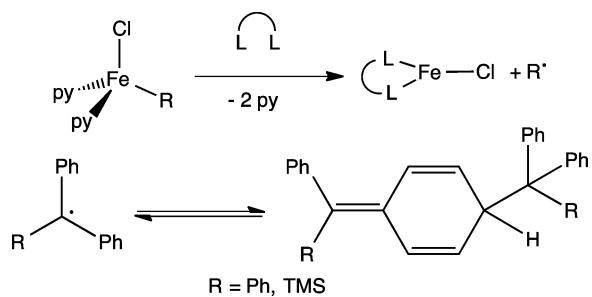

26 ■ INTRODUCTION

27 Ferrocene stands as the prototypical organoiron complex,
28 readily synthesized and persistent under ambient conditions.¹
29 The half-sandwich Fp derivatives (cyclopentadienyliron dicar-
30 bonyl) of the type $\text{Fp}(\text{X})$, where X is a one-electron donor,
31 have also been extensively studied. These cyclopentadienyl-
32 supported iron complexes owe their stability to strong field
33 ligands, an electronically saturated 18-electron count at the
34 metal center, and a saturated coordination sphere.^{1a,2} Outside
35 of cyclopentadienyl chemistry, iron alkyl compounds have
36 remained relatively uncommon. Burgeoning recent interest in
37 iron alkyl complexes can be traced to the discovery of base-
38 metal-centered olefin polymerization catalysts of Brookhart and
39 Gibson.³ The original discovery showed that bis(imino)-
40 pyridine chelates of iron dihalide, when combined with an
41 excess of MAO (methyl aluminoxane), yielded ethylene
42 polymerization catalysts that either produced linear high
43 density polyethylene⁴ or ethylene oligomers with a nearly
44 ideal Schultz–Flory distribution.^{3a,5} However, the nature of the
45 catalytically competent species of the “activated” iron complex
46 remained elusive and was a contentious topic for many years. In
47 the case of bis(imino)pyridine-supported catalysis, initial
48 reports supported by EPR and Mössbauer spectroscopy
49 implicated a ferric ($\text{Fe}(\text{III})$) complex as the active species
50 under catalytic conditions.⁶ Later studies described the

51 synthesis and ethylene polymerization activity of bis(imino)-
52 pyridine-supported ferrous ($\text{Fe}(\text{II})$) monoalkyl cations, chal-
53 lenging the previous description of the active species.⁷ This
54 conflict in assignment of the active species has led researchers
55 to investigate complexes with iron–alkyl σ bonds more actively
56 in recent years.

57 While investigating methods of synthesizing bis(imino)-
58 pyridine-supported iron dialkyl compounds, Cámpora and co-
59 workers discovered the synthesis of an easily accessible iron
60 dialkyl supported simply by two pyridine ligands (Scheme 1).⁸
61 Reactions of the readily available tetrakis(pyridine)iron(II)
62 chloride complex $(\text{py})_4\text{FeCl}_2$ with 2 equiv of an alkyl Grignard
63 give a practical source of “ $\text{Fe}(\text{alkyl})_2$ ” when the corresponding

64 Scheme 1. First Reported Synthesis of Bis(pyridine)iron 65 Dialkyl Complex



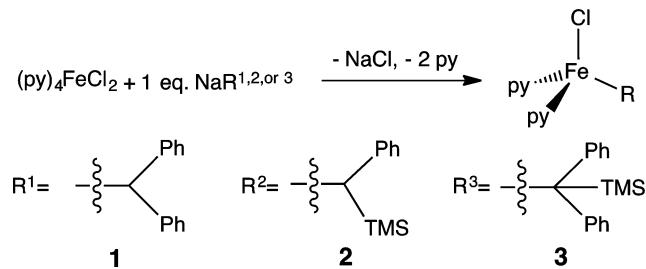
66 Received: February 9, 2016

64 alkyl group is a neosilyl, neophyl, or benzyl group. An 65 investigation by the Chirik group also led to the isolation of 66 the monoalkyl monochloride derivatives $(py)_2Fe(R)Cl$, as well 67 as observation of the loss of a neopentyl fragment upon addition 68 of bis(imino)pyridine chelate to either $(py)_2Fe(neopentyl)_2$ 69 or $(py)_2Fe(neopentyl)(neosilyl)$, yielding an iron(I) species.⁹ 70 These results indicate that alkyl species of iron may provide 71 good synthetic routes to low-valent iron centers, obviating the 72 use of alkali metals or other aggressive reducing agents.

73 Many groups have taken advantage of the utility of 74 Cámpora's reagent to substitute a variety of chelates onto the 75 iron center.¹⁰ Reports of such reactivity have until now been 76 limited to primary (1°) metallo-carbon centers, leaving the 77 alkyl–iron bond intact. This report utilizes the methods of 78 Cámpora to investigate the reaction of $(py)_4FeCl_2$ with bulkier 79 alkyl sodium reagents of 2° and 3° carbon centers in order to 80 obtain low-valent iron species. Tertiary carbon moieties such as 81 triphenylmethyl and diphenyl(trimethylsilyl)methyl are partic- 82 ularly attractive as radical leaving groups because they are 83 sterically demanding groups that form relatively stable radicals, 84 qualities which may facilitate reduction via metal–alkyl bond 85 cleavage. The formation of tertiary radicals may minimize 86 possible side reactions,¹¹ and the reactions can be followed by 87 observing the formation of the known Gomberg dimer like 88 products of radical coupling (Scheme 2).¹²

Scheme 2. Proposed Reactivity of the Iron–Tertiary Alkyl Bond

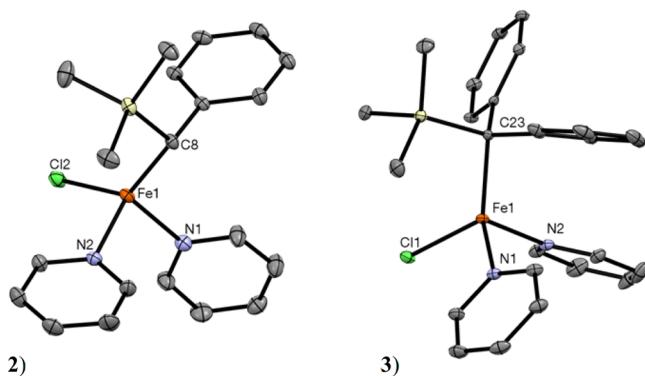
89 Low-valent, dinitrogen-bound iron centers continue to 90 generate interest for the analogy drawn to the Haber–Bosch 91 process. Herein we investigate the reactivity of 2° and 3° 92 sodium alkyls with $(py)_4FeCl_2$ in order to explore the ability of 93 $(py)_2Fe(R)Cl$ to act as an Fe(I) source upon chelation of 94 bidentate phosphine ligands. Secondary and tertiary alkyls were 95 investigated as the alkyl moiety to ensure dealkylation, with an 96 emphasis placed on 3° carbon centers. The tertiary alkyl salt 97 was also used in reactivity studies with iron complexes 98 supported by the chelating diphosphine ligands dmpe (1,2- 99 (dimethylphosphino)ethane) and dppne (*cis*-1,2- 100 (diphenylphosphino)ethylene). The results from these inves- 101 tigations indicate that bulky alkyl groups prove useful in 102 obtaining mono- or zerovalent iron complexes with concom- 103 itant loss of alkyl radical. Although the use of reductive 104 alkylations at iron centers is known,¹³ the isolation of an Fe(I) 105 synthon is a useful development in low-valent iron chemistry.


106 ■ RESULTS AND DISCUSSION

107 Alkylation of $(py)_4FeCl_2$ with 2° and 3° Carbon Alkyl 108 Sodium Salts.

109 Addition of 1 equiv of the sodium salt of 110 diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl- 111 (trimethylsilyl)methane to $(py)_4FeCl_2$ resulted in the formation

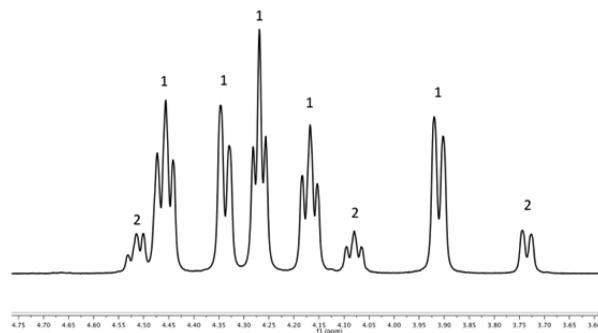
112 of the corresponding high-spin tetrahedral dipyridine iron alkyl 113 chloride complexes $(py)_2FeRCl$ (1, R = Ph_2CH ; 2, R = 112 113 $Ph(TMS)CH$; 3, R = $Ph_2C(TMS)$; TMS = trimethylsilyl) 113 (Scheme 3). These reactions were performed either in benzene 114 s3


Scheme 3. Synthesis of Bis(pyridine)iron Chloro Alkyl Complexes from Sodium Alkyl Reagents

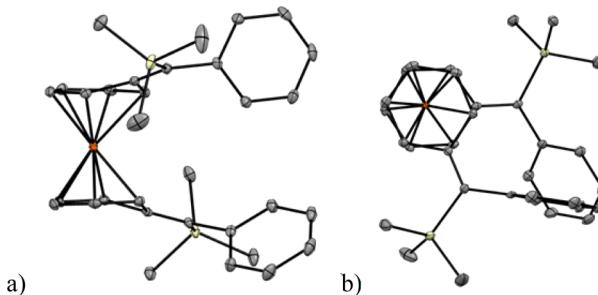
115 at room temperature or in cold ($-35^\circ C$) diethyl ether by the 116 addition of the solid alkyl sodium salt with negligible difference 116 in purity and yield. Isolation of 2 was performed by filtration 117 through Celite and removal of the solvent. Purification by 118 recrystallization from fluorobenzene layered with hexane at $-35^\circ C$ 119 gave 2 as dark orange-red crystals. 1 was worked up in the 120 same fashion but decomposed upon attempted crystallization. 121 Rinsing with hexane afforded 1 as a slightly impure solid. Both 122 1 and 2 quickly decomposed to insoluble material as solids at 123 room temperature. Filtration of 3 through Celite followed by 124 slow evaporation of solvent under reduced pressure gave a 125 bright orange crystalline precipitate. Magnetic susceptibilities of 126 1–3 furnished magnetic moments of 4.82, 4.68, and 4.73 μ_B , 127 respectively. These values are close to the spin-only value of 128 four unpaired electrons (4.90 μ_B) expected for a high-spin 129 iron(II) complex. The 1H NMR spectra of 1–3 exhibited broad 130 resonances over a 200 ppm range. These chemical shift ranges 131 are in agreement with the monoalkyl chloride complexes 132 reported by Chirik and co-workers.⁹ 133

134 The solid-state structures of 2 and 3 were determined via 134 single-crystal X-ray diffraction studies (Figure 1). Attempts to 135 grow crystals of 1 suitable for X-ray diffraction were 136 unsuccessful. Iron–carbon bond lengths for 2 and 3 were 137 found to be 2.072 and 2.093 Å, respectively. These are 138 comparable to the iron–carbon bond lengths reported by 139 Cámpora for the dialkyl species $(py)_2Fe(neophyl)_2$, 2.091 and 140 2.090 Å, respectively, for the two neophyl groups.⁸ The 141 differences in steric demand of the 2° versus the 3° carbon 142 centers do not lead to significant changes in the iron–alkyl 143 bond lengths.¹⁴⁴

145 Addition of 2 equiv of either sodium diphenylmethane or 146 sodium phenyl(trimethylsilyl)methane to $(py)_4FeCl_2$ in diethyl 146 ether or benzene resulted in the formation of unstable 147 paramagnetic iron complexes. 1H NMR spectra obtained 148 directly following synthesis confirm the formation of new 149 species, with resonances distinct from those of 1 and 2,¹⁵⁰ respectively. At room temperature both complexes decomposed 151 within hours to insoluble dark material concurrent with the 152 formation of diphenylmethane or benzyltrimethylsilane,¹⁵³ respectively. The initial products from this reaction are assigned 154 as the dialkyl $(py)_2FeR_2$ complexes (4, R = Ph_2CH ; 5, R = 155 $Ph(TMS)CH$) (Scheme 4). Attempts to further characterize 156 these compounds were hindered by the facile decomposition of 157 these materials. The addition of 2 equiv of sodium diphenyl- 158 (trimethylsilyl)methane to $(py)_4FeCl_2$ resulted in the formation 159


Figure 1. Solid-state structures of **2** and **3**, presented with 50% probability ellipsoids. Solvent molecules and hydrogen atoms have been removed for clarity. Selected bond lengths (Å) and bond angles (deg) for **2**: Fe(1)–C(1) = 2.073(2), Fe(1)–N(1) = 2.115(2), Fe(1)–N(2) = 2.117(2), Fe(1)–Cl(1) = 2.284(1); N(1)–Fe(1)–C(1) = 108.62(7), N(2)–Fe(1)–C(1) = 108.03(7), N(1)–Fe(1)–N(2) = 99.59(7), N(1)–Fe(1)–Cl(1) = 108.03(7), C(1)–Fe(1)–Cl(2) = 130.70(5). Selected bond lengths (Å) and bond angles (deg) for **3**: Fe(1)–C(1) = 2.093(2), Fe(1)–N(1) = 2.129(2), Fe(1)–N(2) = 2.129(2), Fe(1)–Cl(1) = 2.3058(1); N(1)–Fe(1)–C(1) = 114.17(8), N(2)–Fe(1)–C(1) = 112.95(8), N(1)–Fe(1)–N(2) = 100.50(8), N(1)–Fe(1)–Cl(1) = 102.08(6), C(1)–Fe(1)–Cl(2) = 123.67(7).

Scheme 4. Dialkylation of $(py)_4FeCl_2$ with $Na-R^{1-3}$


of the dark red-brown iron complex **6** (Scheme 4). 1H NMR spectroscopy revealed **6** to be a mixture of isomers. The isomers of **6** are diamagnetic, each with a diagnostic pattern of resonances between 3.7 and 4.6 ppm (Figure 2), consisting of three triplets and two doublets, consistent with an η^5 -cyclohexadienyl ligand. This region integrated against the trimethylsilyl fragment and aromatic region suggests an iron sandwich compound containing solely two diphenyl(trimethylsilyl)methane alkyl ligands, each with an η^5 -cyclohexadienyl group coordinated to the iron center. This arrangement provides a ferrocene-like 18-electron compound. The added stability from the formation of a tetrasubstituted olefin allows for the 3° carbanion to undergo this hapticity shift from η^1 to η^5 . The secondary carbon centers in compounds **4** and **5** remain η^1 and are more susceptible to degradation.

Of the two isomers of **6** formed in the reaction, we assign the major isomer as the C_2 (*rac*) isomer, since the bulky

Figure 2. Resonances observed in the 1H NMR spectrum between 3.7 and 4.6 ppm, showing the two isomers of **6**. The minor isomer is labeled 2, and two resonances are hidden under the resonances of isomer 1.

trimethylsilyl groups are anti to one another, and the minor product (10%) as the C_s (*meso*) isomer. A solid-state structure was obtained to unambiguously characterize the complex, the C_2 complex being the observed isomer in the solid state (Figure 3). Analogous bis(cyclohexadienyl)iron complexes have pre-

Figure 3. Side view (a) and top-down view (b) of the solid-state structure of **6** shown with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

viously been reported from the reaction of either cyclohexadienyl or 6,6-dimethylcyclohexadienyl potassium and iron chloride in THF. *exo*-Methylene derivatives have classically been synthesized via deprotonation of alkyl-substituted η^6 -aryl iron cations of mixed-sandwich cyclopentadienyl compounds.¹⁴

Attempts to disrupt the sandwich complex **6** and change the hapticity of one of the alkyl ligands from η^5 to η^1 were unsuccessful. The addition of the chelating phosphines dmpe (1,2-(dimethylphosphino)ethane) and dppne (*cis*-1,2-diphenylphosphino)ethylene resulted in no reaction, even with extended reaction times. Over the course of several days **6** showed slight decomposition (~10%) to colloidal iron and alkane with no formation of a new organometallic iron product. Heating the reaction mixture to 70 °C expedited the decomposition. The addition of either cyclohexyl or *tert*-butyl isocyanide did not yield a new product; however, the C_2 and C_s isomers reached a roughly 50:50 ratio following addition of the isocyanide, suggestive of a ligand-induced isomerization process (Supporting Information).

Given the hapticity shift of the tertiary alkyl upon double alkylation of iron to form **6**, we attempted to induce a hapticity shift using the monoalkylated iron complex **3**. Upon addition of cyclohexyl isocyanide to **3** in THF, the bright orange solution turned dark red-brown. 1H NMR investigation of the reaction mixture indicated a large quantity of the dimerized alkyl radical 1-diphenyl(trimethylsilyl)methyl-4-(phenyl(trimethylsilyl)-

208 methyl)benzene¹² and diphenyl(trimethylsilyl)methane, along
209 with broad peaks indicating the presence of paramagnetic
210 species. Crystallization of the hexane-soluble material produced
211 both a colorless solid and a small quantity of an orange
212 crystalline material. Single-crystal X-ray diffraction measure-
213 ments of the orange crystalline material yielded a structure
214 demonstrating the hapticity shift of the starting iron compound
215 to form, in very low yield, the piano-stool tris(isocyanide) iron
216 complex **11** (Figure 4). Attempts to increase the quantity and
217 purity of **11** failed, as the complex displayed solubility
218 properties similar to those of the free alkane.

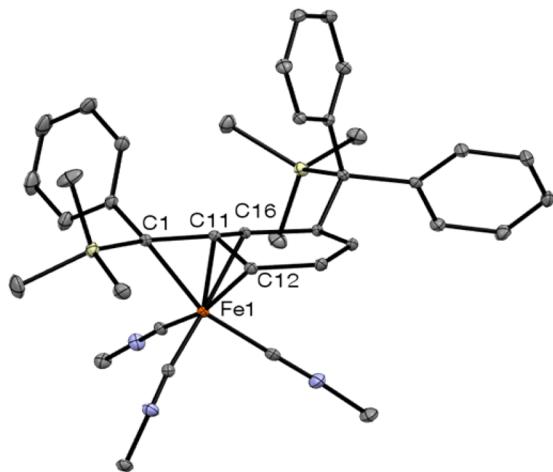
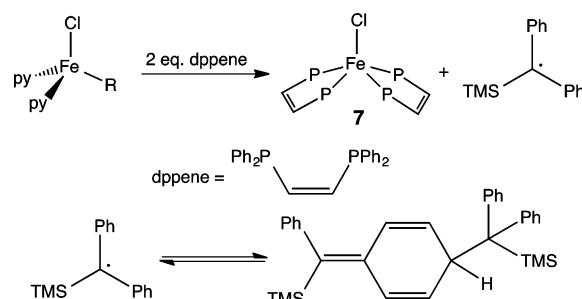
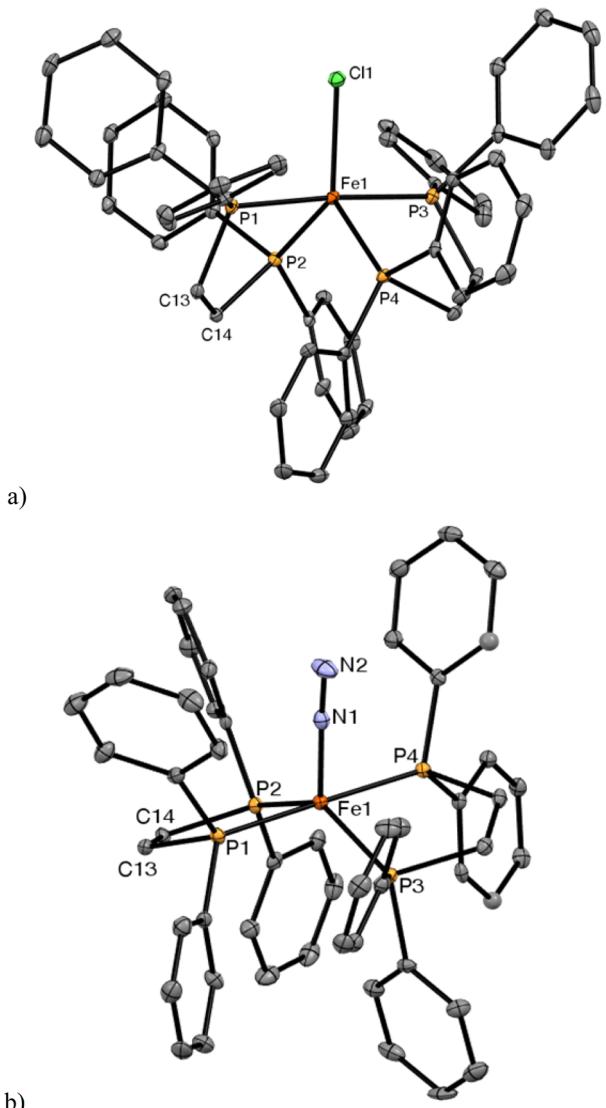



Figure 4. Complex **11** shown with 50% probability ellipsoids. Cyclohexyl groups of the isocyanide ligands and hydrogen atoms are omitted for clarity.

219 Complex **11** bears a dimerized diphenyl(trimethylsilyl)-
220 methane, although the dimerization occurs at the meta position
221 of the aryl ring rather than at the typical para position. The iron
222 coordinates in an η^4 fashion to the aryl/exo-methylene group of
223 the alkyl, but due to the meta carbon dimerization, the aryl
224 group bears a diradical, making this moiety a four-electron
225 donor, giving the iron an 18-electron configuration. Similar 18-
226 electron iron piano-stool complexes bearing carbonyl and
227 trimethylenemethane ligands have been known for some time
228 and represent a seminal example of how a metal center can
229 stabilize a very reactive organic species through complex
230 formation.¹⁵ This is the first example to our knowledge of a
231 carbonyl-free derivative. Angles and bond distances, as well as
232 simplified representations of the four-atom, four-electron alkyl
233 ligand can be found in the *Supporting Information*.

234 The reductive dealkylation of **3** was pursued using chelating
235 diphosphines to induce homolysis of the iron–alkyl bond. The
236 addition of 1 equiv of dppene resulted in the formation of 1/2
237 equiv of $(\text{dppene})_2\text{FeCl}$ (**7**), with starting material composing
238 the remaining iron. Complete conversion to $(\text{dppene})_2\text{FeCl}$
239 could be achieved by adding 2 equiv of dppene to **3**, yielding **7**
240 and a tertiary radical (Scheme 5). Formation of $(\text{dppene})_2\text{FeCl}$
241 arises from loss of the alkyl fragment, most likely as a tertiary
242 carbon radical. Diphenyl(trimethylsilyl)methane and the radical
243 dimerization product are observed by ^1H NMR spectroscopy.
244 Broad resonances of $(\text{dppene})_2\text{FeCl}$ compose the remainder of
245 the spectrum. Performing the reaction in toluene- d_8 did not
246 yield deuterium incorporation into the alkane. We are not
247 certain of the source of the protons but feel that small
248 quantities of adventitious water on the glassware or in the


Scheme 5. Addition of dppene to **3** Results in the Formation of **7** and a Tertiary Radical

solvent are responsible for the amount of diphenyl-
249 (trimethylsilyl)methane observed. Verification of the formation
250 of $(\text{dppene})_2\text{FeCl}$ was achieved by comparison to an
251 independently prepared sample made via reduction of
252 $(\text{dppene})_2\text{FeCl}_2$ with 1 equiv of sodium metal. Compound **7**
253 could also be synthesized by the comproportionation of
254 $(\text{dppene})_2\text{FeCl}_2$ with $(\text{dppene})_2\text{Fe}(\text{N}_2)$ (**8**). Compound **8**
255 was synthesized by reducing $(\text{dppene})_2\text{FeCl}_2$ with 2 equiv of
256 sodium in THF under N_2 with naphthalene as a catalyst.
257

258 Despite continuing interest in low-valent diphosphine-
259 supported iron compounds, the dppene-supported iron(I)
260 chloride and the iron(0) dinitrogen complex have yet to be
261 reported in the literature, although a very similar iron(I)
262 monochloride compound has previously been reported.¹⁶
263 Magnetic susceptibility measurements of **7** using the Evans
264 method yielded an effective magnetic moment of $2.1\ \mu_{\text{B}}$, slightly
265 higher than the spin-only value expected for a low-spin iron(I)
266 compound. The structure of $(\text{dppene})_2\text{FeCl}$ was unambigu-
267 ously assigned by single-crystal X-ray diffraction. The solid-state
268 structure of **7** shows a distorted-trigonal-bipyramidal structure,
269 with the equatorial plane containing the chlorine ligand. The
270 solid-state structure of **8** was also obtained and shows further
271 distortion from an ideal TBP geometry, with the equatorial
272 P(2)–Fe(1)–P(4) angle increasing to over 30° . Further
273 discussion, distances, and angles regarding the solid-state
274 structures of both **7** and **8** are given (*Supporting Information*)
275 along with the corresponding solid-state structures (Figure 5).
276 Complex **8** proved difficult to isolate, as it was prone to
277 decomposition and displayed solubility characteristics similar to
278 those of free dppene. Attempts to crystallize **8** from the mother
279 liquor or recrystallize isolated material yielded a light brown
280 powder that did not display the characteristic N_2 stretch in the
281 IR spectra. Only once did a crystallization of the mother liquor
282 yield dark red crystals suitable for X-ray diffraction (*Supporting*
283 *Information*). A comparison of N_2 stretches of analogous
284 bis(dichelating)phosphine iron(0) complexes is given (Table
285 t1), yielding a metric that illustrates a trend in the relative
286 electron-donating power of the supporting phosphine ligands.
287

288 The results from the investigation with dppene, specifically
289 the difficulty in isolating the Fe(0) dinitrogen adduct, led us to
290 examine the reactivity with dmpe-supported iron. The addition
291 of 2 equiv of dmpe to **3** under the same conditions as were
292 employed with dppene resulted in the formation of
293 $(\text{dmpe})_2\text{FeCl}_2$ along with a dark uncharacterized precipitate.
294 This differing reactivity with dmpe moved us to investigate the
295 reactivity of sodium diphenyl(trimethylsilyl)methane with
296 $(\text{dmpe})_2\text{FeCl}_2$ in order to obtain tractable, low-valent iron
297 compounds. In addition, if the bulky diphenyl(trimethylsilyl)-
298 methane can bind to the metal center, it would more likely
299

Figure 5. Solid-state structures of 7 (a) and 8 (b) shown with 50% probability ellipsoids. Hydrogen atoms and solvent molecules are omitted for clarity.

Table 1. Comparison of the N₂ Stretches of Zerovalent Bis(diphosphine) Iron Complexes

complex	N ₂ stretch (cm ⁻¹)	d(N–N) (Å)
dppe ₂ Fe(N ₂) ^a	2068	
(dppene) ₂ Fe(N ₂) ^b	2021	1.125(5)
(dmpe) ₂ Fe(N ₂) ^b	1976	1.133(7)
(DMeOPrPE) ₂ Fe(N ₂) ^c	1966	
depe ₂ Fe(N ₂) ^d	1955	1.139(13)

^aGenerated in situ; ref 18. ^bThis work. ^cReference 21a. ^dReference 22.

coordinate to the sterically less demanding complex supported with dmpe rather than the more sterically crowded dppene-supported complex. The addition of 1 equiv of the tertiary sodium salt in diethyl ether at -30°C resulted in the formation of a green powder that was tentatively assigned as the iron(I) monochloride complex (dmpe)₂FeCl (9). Attempts to purify or analyze this green substance resulted in the isolation of either (dmpe)₂FeCl₂ or the zerovalent dinitrogen adduct (dmpe)₂Fe(N₂), leading us to believe that the isolated green powder was a mixture of the two iron complexes.

The addition of 2 equiv of sodium diphenyl(trimethylsilyl)methane to (dmpe)₂FeCl₂ under the same conditions resulted in the formation of (dmpe)₂Fe(N₂) in good yields. Spectroscopic characterization was consistent with previously reported (dmpe)₂Fe(N₂).¹⁷ (dmpe)₂Fe(N₂) was proposed to be monomeric and IR spectroscopy in a benzene solution showed that it exhibits an N₂ stretch of 1976 cm⁻¹. However, when (dmpe)₂FeN₂ was crystallized from diethyl ether or hexane, it was determined to be the N₂ bridging diiron complex ((dmpe)₂Fe)₂(μ -N₂) (10) (Supporting Information). A KBr pellet of crystallized 10 showed only negligible absorption at 1976 cm⁻¹, but a Raman spectrum of crystallized 10 yielded an intense Raman stretch at 1942 cm⁻¹. The solid-state structure was obtained, and despite significant twinning and enantiomeric disorder, a good model of 10 was found and reasonable structural parameters were obtained. The N₂ bond length of 1.133(7) Å is indicative of a nonreduced N₂ ligand.

A recent report by Field made use of zerovalent (dmpe)₂Fe(N₂) as a means of producing ammonia from dinitrogen bound to an iron center, furthering the results of previous studies that also describe the formation of ammonia from dinitrogen complexes of zerovalent iron.¹⁹ The report by Field rigorously excludes functionalization of the nitrogen ligand of (dmpe)₂Fe-N₂ by protonation with HCl or triflic acid. Rather, a mechanism invoking dinitrogen activation via a strong electrophile (TMS-triflate), followed by addition of triflic acid, leads to the formation of ammonium salt. These results clarify earlier reports by Leigh where ammonium formation was observed upon the addition of acids to (dmpe)₂Fe(N₂).²⁰ Reports by Tyler also indicate that ammonium is formed upon the addition of acids to (DMeOPrPE)₂Fe(N₂) (DMeOPrPE = 1,2-[bis(dimethoxypropyl)phosphino]ethane).²¹ In contrast with this work, similar investigations by Komiya using depe₂Fe(N₂) did not yield formation of ammonia.²² As the interest in nitrogen fixation with reduced iron centers continues, we feel that the solid-state structure may add to the discussion of the mechanism by introducing the possibility of the sterically accessible dmpe-supported iron of forming bimetallic complexes during the functionalization of dinitrogen, similar to what Tyler et al. have observed in their system.²⁰ Mechanistic investigations invoking a bimetallic pathway for N₂ activation with (dmpe)₂Fe(N₂) have yet to be experimentally excluded.

SUMMARY/CONCLUSION

We have shown that bulkier 2° and 3° carbon centers can be added to an iron center analogously to the reaction pioneered by Cámpora using (py)₄FeCl₂ with the use of sodium alkylating reagents. The monoalkyl products of both 2° and 3° sodium alkyl reagents were successfully isolated and characterized. A ferrocene-like sandwich structure was obtained upon addition of 2 equiv of sodium diphenyl(trimethylsilyl)methane to (py)₄FeCl₂. This set of results confirms the potential for ambidentate coordination of diphenyl(trimethylsilyl)methide to a metal center. The double alkylations with the secondary alkyl salts resulted in the formation of presumed tetrahedral bis(pyridine)iron dialkyl complexes that readily decomposed over the course of hours. A hapticity shift from η^1 to η^4 occurred upon the addition of an alkyl isocyanide to 3, resulting in the formation of the trimethylenemethane-like 18-electron complex 11.

The addition of 2 equiv of dppene to 3 resulted in the formation of (dppene)₂FeCl concurrent with the formation of

370 the dimerized radical of the alkyl ligand. This overall transfer of
 371 "Fe–Cl" highlights the utility of simple iron alkyl structural
 372 types as monovalent iron precursors. Thus, **3** behaves as an
 373 isolable iron(I) synthon. Studies on the transfer of the iron(I)
 374 moiety are ongoing with a variety of ligand architectures.
 375 Furthermore, the reactivity of 2 equiv of the sodium salt with
 376 $(\text{dmpe})_2\text{FeCl}_2$ resulted in the formation of the known complex
 377 $(\text{dmpe})_2\text{Fe}(\text{N}_2)$. A solid-state structure revealed the bimetallic
 378 nature of the molecule that crystallized as $((\text{dmpe})_2\text{Fe})_2(\mu\text{-N}_2)$.
 379 Thus, NaR^3 can also be used as a reductive alkylation agent as
 380 well as in formation of the iron(I) synthon **3**.

381 ■ EXPERIMENTAL SECTION

382 **General Considerations.** All air- and moisture-sensitive manip-
 383 ulations were carried out using standard vacuum line Schlenk
 384 techniques or in an MBraun drybox containing a purified nitrogen
 385 atmosphere. THF, diethyl ether, toluene, and *n*-hexane were dried over
 386 molecular sieves and shaved sodium before use. Pyridine was dried
 387 with molecular sieves and passed through neutral alumina before use.
 388 THF-*d*₈, DMSO-*d*₆, CDCl₃, and C₆D₆ were purchased from
 389 Cambridge Isotope Laboratories and dried over 4 Å molecular sieves.
 390 The chemicals dppene, dmpe, FeCl₂, diphenylmethane, benzyltrime-
 391 thylsilane, sodium *tert*-butoxide, and *n*-butyllithium were purchased
 392 from Fisher Scientific and were used as received. The compounds
 393 (py)₄FeCl₂,²³ (dppene)₂FeCl₂,²⁴ (dmpe)₂FeCl₂,²⁵ Ph₂TMSCH,²⁶
 394 Ph₂TMSCNa,²⁶ Ph₂CHNa,²⁷ and PhTMSCHNa²⁶ were synthesized
 395 according to published procedures.

396 ¹H NMR, ¹³C NMR, and ³¹P NMR spectra were recorded on a
 397 Bruker Avance 400 MHz spectrometer operating at 400.132, 100.627,
 398 and 161.978 MHz, respectively. All ¹H and ¹³C NMR chemical shifts
 399 are reported relative to SiMe₄ using the ¹H (residual in the deuterated
 400 solvents) and ¹³C chemical shifts of the solvent as a secondary
 401 standard. Paramagnetically shifted peaks are listed with the peak width
 402 at half-height (Hz). Infrared spectra were collected on a Thermo
 403 Scientific Nicolet iS10 spectrometer equipped with a Smart Omni
 404 transmission tool for the collection. Raman micro spectrometric
 405 measurements were collected using a DXRxi Raman Imaging
 406 Microscope. A 532 nm laser was focused on the sample using a 10×
 407 objective providing a spot size of 7 μm . A spectral collection consisted
 408 of 100 scans at 0.2 s exposures to the laser operating at 0.1 mW.

409 Single crystals suitable for X-ray diffraction were coated with *n*-
 410 Paratone (dried under reduced pressure overnight at 100 °C) oil in a
 411 drybox, placed on a nylon loop, and then transferred to the
 412 goniometer head of a Bruker X8 APEX 2 diffractometer equipped
 413 with a molybdenum X-ray tube ($\lambda = 0.71073 \text{ \AA}$) or to a Bruker D8
 414 Quest instrument equipped with a molybdenum X-ray tube ($\lambda =$
 415 0.71073 Å).²⁸ A hemisphere routine was used for data collection and
 416 determination of lattice constants. The space group was identified, and
 417 the data were processed using the Bruker SAINT+ program and
 418 corrected for absorption using SADABS.²⁹ The structures were solved
 419 using direct methods (SHELXS) completed by subsequent Fourier
 420 synthesis and refined by full-matrix least-squares procedures.³⁰
 421 Complex **10** was solved using both SHELX (heavy atoms and
 422 disorder) and OLEX2 (hydrogen atoms).³¹

423 **Synthesis of Ph₂TMSCNa (Na-R³).** In a 250 mL round-bottom
 424 flask in an inert atmosphere drybox were placed 7.5 g (31.19 mmol) of
 425 diphenyl(trimethylsilyl)methane and 150 mL of hexane to dissolve the
 426 white solid. With stirring, finely powdered sodium *tert*-butoxide (3.00
 427 g, 31.20 mmol) was added and the mixture stirred for 30 min. *n*-
 428 Butyllithium (1.6 M; 22 mL, 1.1 equiv) in hexanes was added to the
 429 fine slurry, which began slowly to turn red. The reaction mixture was
 430 stirred overnight, after which time a red-orange precipitate had formed.
 431 The precipitate was collected on a glass frit and washed with 3 × 50
 432 mL of hexane. Volatiles were removed under reduced pressure,
 433 yielding 7.20 g (88%) of Na-R³ that was spectroscopically identical
 434 with a previously reported sample.²⁵ X-ray-quality single crystals of the
 435 THF adduct of Na-R³ were grown from a concentrated THF solution
 436 layered at -30 °C with *n*-hexane.

437 **Synthesis of Chloro(diphenylmethyl)iron Bis(pyridine) (1).** 438 (py)₄FeCl₂ (1.00 g, 2.256 mmol) was placed in a 100 mL round- 438 bottom flask along with 50 mL of diethyl ether and cooled to -30 °C. 439 To this cooled, stirred slurry (0.600 g, 2.275 mmol) was added 440 NaCPh₂ at once, the reaction mixture was warmed to reach room 441 temperature, stirred for an additional 1 h, and then filtered through 442 Celite, and the volatiles were removed. The residue was washed with 443 hexane, dried, and collected to yield 0.320 g (34%) of a gummy 444 brown-orange material identified as **1**. Attempts to purify **1** by 445 recrystallization resulted in decomposition into a dark, insoluble 446 pyrophoric material. Attempts to obtain elemental analysis data on **1** 447 resulted in unsuccessful values, most likely due to the facile 448 decomposition of the material. 449

450 Analysis for C₂₃H₂₁ClFeN₂Si: ¹H NMR (C₆D₆) δ -54.04 (411 Hz), 450
 451 -34.16 (1027 Hz), 1.79 (45 Hz), 10.33 (126 Hz), 17.39 (488 Hz), 451
 452 25.85 (173 Hz), 38.88 (191 Hz); μ_{eff} (Evans, C₆D₆, 19 °C, μ_{B}) 4.82. 452

453 **Synthesis of Chloro(phenyltrimethylsilylmethyl)iron Bis- 453 (pyridine) (2).** In a 100 mL round-bottom flask, 1.00 g (2.256 454 mmol) of (py)₄FeCl₂ was added to 50 mL of diethyl ether and cooled 455 to -30 °C. To the stirred iron slurry was added 2.256 mmol of 456 Na(CH(TMS)Ph) over 5 min in 10 portions. The reaction mixture 457 was stirred for 1 h and then filtered through Celite, and the volatiles of 458 the mother liquor were removed. The residue was taken up in 459 benzene, layered with 3 volume equiv of hexane, and cooled to -30 460 °C. Crystalline material formed, but the crystals would dissolve in 461 residual solvent when they were warmed to room temperature. The 462 crystals also slowly dissolved in *n*-Paratone oil. Removal of the mother 463 liquor followed by removal of volatiles yielded 0.220 g (23%) of a 464 sticky dark orange material identified as **2**. Single crystals were grown 465 from a concentrated benzene/hexane solution (~1/3) at -30 °C and 466 melted/dissolved upon warming. Attempts to obtain elemental 467 analysis data on **2** resulted in unsuccessful values, most likely due to 468 the facile decomposition of the material. Analysis for C₂₀H₂₅ClFeN₂Si: 469
¹H NMR (C₆D₆) δ -54.04 (411 Hz), -34.16 (1027 Hz), 1.79 (45 470 Hz), 10.33 (126 Hz), 17.39 (488 Hz), 25.85 (173 Hz), 38.88 (191 471 Hz); μ_{eff} (Evans, C₆D₆, 19 °C, μ_{B}) 4.68. The lack of elemental analysis 472 data is a consequence of the oily nature of the material. The ¹H 473 spectrum shows very little impurity. 474

475 **Synthesis of Chloro(diphenyltrimethylsilylmethyl)iron Bis- 475 (pyridine) (3).** (py)₄FeCl₂ (1.00 g, 2.256 mmol) was placed in a 100 476 mL round-bottom flask along with 50 mL of diethyl ether and cooled 477 to -30 °C. To this cooled, stirred solution (0.600 g, 2.275 mmol) was 478 added NaCPh₂TMS at once, and the reaction mixture was warmed to 479 room temperature and stirred for an additional 1 h. The initially pale 480 yellow slurry turned orange over the course of the reaction. The 481 reaction mixture was filtered over Celite and the solution concentrated 482 to roughly 10 mL, at which time a bright orange precipitate began to 483 form. The mother liquor was transferred to a vial and cooled to -30 484 °C while the orange precipitate was dried and collected. Following the 485 cooling of the mother liquor, additional orange precipitate formed and 486 was isolated. The total combined yield of the bright orange powder, 487 identified as (py)₂FeCl(CPh₂TMS) (**3**), was 0.85 g (92%). Compound 488 **3** could be stored at -30 °C for several weeks with minimal 489 degradation but at room temperature decomposed slowly over the 490 course of several days. Anal. Calcd for C₂₆H₂₉ClFeN₂Si: C, 63.87; H, 491 5.98; N, 5.73. Found: C, 62.80; H, 5.83; N, 5.20. ¹H NMR (C₆D₆): δ 492 -54.04 (411 Hz), -34.16 (1027 Hz), 1.79 (45 Hz), 10.33 (126 Hz), 493 17.39 (488 Hz), 25.85 (173 Hz), 38.88 (191 Hz). μ_{eff} (Evans, C₆D₆, 494 19 °C, μ_{B}): 4.73. The elemental analysis results consistently returned 495 low for carbon. The ¹H spectrum is shown in the *Supporting* 496 *Information*, and very little impurity was found. 497

498 **Synthesis of Bis(exo-(1,1-trimethylsilylphenylmethylene)- η^5 - 498 cyclohexadienyl)iron (6).** (py)₄FeCl₂ (1.00 g, 2.256 mmol) was 499 placed in a 50 mL round-bottom flask along with 30 mL of diethyl 500 ether and cooled to -30 °C. To this stirred slurry was added 501 NaCPh₂TMS (1.195 g, 4.550 mmol) at once, and the reaction mixture 502 was warmed to room temperature and stirred for an additional 1 h. 503 The initially pale yellow slurry turned burgundy and then orange- 504 brown over the course of the reaction. The reaction mixture was 505 filtered over Celite and the solution concentrated to roughly 10 mL. 506

507 The reaction solution was then placed in a vial, cooled to -30°C , and 508 layered with hexane, and the brown solid (1.05 g, 87%) that formed 509 was collected and dried under reduced pressure. Anal. Calcd 510 $\text{C}_{32}\text{H}_{38}\text{FeSi}_2$: C, 71.89; H, 7.16. Found: C, 72.16; H, 7.21. ^1H NMR 511 (C_6D_6): *rac* isomer, δ 0.22 (s, 9H, $\text{Si}(\text{CH}_3)_3$), 3.92 (dd, J = 7.1, 2.1 Hz, 512 1H), 4.17 (dd, J = 6.9, 5.2 Hz, 1H), 4.26 (t, J = 5.2, 1H), 4.34 (dd, J = 513 7.1, 2.1 Hz, 1H), 4.45 (dd, J = 6.9, 5.2 Hz, 1H), 7.11–7.02 (m, 3H), 514 7.26 (t, J = 7.5 Hz, 2H); *meso* isomer, δ 0.15 (s, 9H, $\text{Si}(\text{CH}_3)_3$), 3.73 515 (d, J = 7.0 Hz, 1H), 4.08 (t, J = 6.3 Hz, 1H), 4.51 (t, J = 6.3 Hz, 1H) 516 7.30–7.38 (m, 2H). The remaining three resonances are located under 517 the resonances of the *rac* isomer. $^{13}\text{C}\{^1\text{H}\}$ NMR (C_6D_6): *rac* isomer, δ 518 1.2, 63.3, 63.4, 71.5, 84.4, 84.9, 109.1, 125.0, 128.9, 130.4, 137.1, 145.3; 519 *meso* isomer, δ 1.0, 65.9, 67.5, 71.2, 83.6, 86.3, 130.3, 137.2. Four 520 resonances were not located.

521 **Reaction of $(\text{py})_4\text{FeCl}_2$ with 2 equiv of Sodium Diphenyl- 522 **methane (4).** $(\text{py})_4\text{FeCl}_2$ (1.00 g, 2.256 mmol) was placed in a 50 mL 523 round-bottom flask along with 30 mL of diethyl ether and cooled to 524 -30°C . To this stirred slurry was added NaCPh_2 (1.195 g, 4.550 525 mmol) at once, and the reaction mixture was warmed to room 526 temperature and stirred for an additional 1 h. The initially pale yellow 527 slurry turned burgundy and then dark brown over the course of the 528 reaction. The reaction solution was filtered over Celite, and volatiles 529 were removed. Attempts to recrystallize 4 resulted in an insoluble dark 530 precipitate and pale yellow mother liquor.**

531 **Reaction of $(\text{py})_4\text{FeCl}_2$ with 2 equiv of Sodium 532 **(Phenyltrimethylsilyl)methane (5).** $(\text{py})_4\text{FeCl}_2$ (1.00 g, 2.256 533 mmol) was added to a 50 mL round-bottom flask along with 30 mL 534 of diethyl ether and cooled to -30°C . To this stirred slurry was added 535 $\text{NaCPh}(\text{TMS})$ (1.195 g, 4.550 mmol) at once, and the reaction 536 mixture was warmed to room temperature and stirred for an additional 537 1 h. The initially pale yellow slurry turned red over the course of the 538 reaction.**

539 **Synthesis of $(\text{dppene})_2\text{FeCl}$ (7).** $(\text{dppene})_2\text{FeCl}_2$ (0.250 g, 0.272 540 mmol) and 10 mL of THF were combined in a 20 mL scintillation vial 541 with a stir bar. This reaction slurry was cooled to -30°C and, with 542 stirring, NaCPh_2TMS (0.075 g, 0.275 mmol) was added at once and 543 the reaction mixture was warmed to room temperature and stirred for 544 an additional 1 h. Volatiles were then removed under reduced 545 pressure, and the residue was taken up in benzene and filtered through 546 Celite. The reaction solution was then diluted with 2 volume equiv 547 (\sim 10 mL) of hexane, and the mixture was cooled to -30°C . The dark 548 powder that formed was collected on a glass frit, rinsed with hexane, 549 and dried under reduced pressure to yield 0.195 g (87%) g of dark 550 crystals identified as $(\text{dppene})_2\text{FeCl}$. Single crystals suitable for X-ray 551 diffraction were grown from slow diffusion of hexane into a 552 fluorobenzene solution of 7 at room temperature. Anal. Calcd for 553 $\text{C}_{52}\text{H}_{44}\text{ClFeP}_4$: C, 70.64; H, 5.02. Found: C, 71.59; H, 5.32%. ^1H 554 NMR (C_6D_6): δ 8.56 (br s, 934 Hz), 6.65 (br s, 124 Hz), 5.11 (br s, 555 124 Hz). μ_{eff} (Evans, C_6D_6 , 19°C , μ_{B}): 2.11. The elemental analysis 556 results were consistently high in carbon by \sim 1%. No free dppene was 557 observed in the ^{31}P spectrum. We attribute the high value to residual 558 solvent, although the complex was triturated with pentane and dried 559 for several hours.

560 **Alternate (a) Synthesis of 7.** $(\text{py})_2\text{FeCl}(\text{CPh}_2\text{TMS})$ (0.100 g, 561 0.204 mmol) was dissolved in 5 mL of benzene in a 20 mL scintillation 562 vial. In a separate vial, dppene (0.165 g, 0.410 mmol) was dissolved in 563 benzene and was subsequently added dropwise to the stirred solution 564 of $(\text{py})_2\text{FeCl}(\text{CPh}_2\text{TMS})$. The reaction mixture immediately became 565 dark brown. Slight vacuum was applied until 5 mL of solvent 566 remained, at which time the solution was layered with hexane and was 567 allowed to sit undisturbed for 12 h. Large dark crystals formed 568 overnight. These were collected on a sintered-glass frit and were 569 spectroscopically identical with previously characterized samples of 570 $(\text{dppene})_2\text{FeCl}$. Crystals suitable for single-crystal X-ray diffraction 571 were grown in the same fashion.

572 **Alternative (b) Synthesis of 7.** Sodium metal (0.012 g, 0.522 573 mmol) was smeared on the bottom of a 50 mL round-bottom flask. 574 $(\text{dppene})_2\text{FeCl}_2$ (0.480 g, 0.522 mmol) and 0.005 g of naphthalene 575 were added as powders on top of the sodium. A 20 mL portion of 576 THF was then added to the stirred solids. The reaction mixture was

577 stirred until the sodium was consumed. Volatiles were then removed 578 under reduced pressure, and the residue was taken up in diethyl ether 579 and filtered through Celite. Volatiles were removed, and the brown 580 solid was mobilized with hexane, collected on a glass frit, rinsed with 581 hexane, and dried under reduced pressure to yield 0.335 g (73%) of a 581 dark brown powder identified as $(\text{dppene})_2\text{FeCl}$. 582

583 **Attempted Synthesis of $(\text{dmpe})_2\text{FeCl}$ (9).** $(\text{dmpe})_2\text{FeCl}_2$ (0.250 584 g, 0.585 mmol) and 10 mL of diethyl ether were combined in a 20 mL 585 scintillation vial with a stir bar. This reaction slurry was cooled to -30°C 586 and, with stirring, NaCPh_2TMS (0.155 g, 0.589 mmol) was added 587 at once and the reaction mixture was warmed to room temperature 588 and stirred for an additional 1 h. The reaction mixture was filtered 589 through Celite, and volatiles were removed. The residue was then 590 taken up in ether and layered with hexane and the mixture was cooled 591 to -30°C . The dark green powder that formed was collected on a 591 glass frit, rinsed with hexane, and dried under reduced pressure to yield 592 0.190 g (83%) of a green-brown powder that was tentatively ascribed 593 as $(\text{dmpe})_2\text{FeCl}$. Attempts to purify this complex resulted in the 594 formation of 8 and $(\text{dmpe})_2\text{FeCl}_2$ and other unidentified decom- 595 position products. ^1H NMR and ^{31}P NMR spectra obtained showed 596 the presence of $(\text{dmpe})_2\text{FeCl}_2$ and 8. 597

598 **Synthesis and Attempted Purification of $(\text{dppene})_2\text{FeN}_2$ (8).** 599 Sodium metal (0.025 g, 0.525 mmol) was thinly spread on the bottom 599 of a 50 mL round-bottom flask. $(\text{dppene})_2\text{FeCl}_2$ (0.480 g, 0.522 600 mmol) and 0.010 g of naphthalene were added as powders on top of 601 the sodium. A 20 mL portion of THF was then added to the stirred 602 solids. The reaction mixture was stirred until the sodium was 603 consumed. Volatiles were then removed under reduced pressure, 604 and the residue was taken up in diethyl ether and filtered through 605 Celite. Volatiles were removed, and the brown solid was dissolved in a 606 minimum amount of diethyl ether and cooled to -30°C . Dark crystals 607 formed that were isolated by decanting the mother liquor and drying 608 under reduced pressure to yield 0.167 g (36%) of a dark brown 609 crystalline material identified as $(\text{dppene})_2\text{Fe}(\text{N}_2)$. This material was 610 consistently contaminated with large quantities of the free dppene, and 611 attempts to recrystallize the crude material furnished a more impure 612 compound. Anal. Calcd for $\text{C}_{52}\text{H}_{44}\text{FeN}_2\text{P}_4$: C, 70.64; H, 5.06; N, 3.20. 613 Found: C, 59.99; H, 4.64; N, 0.27. ^{31}P NMR (THF): δ 19.22 (d, $J_{\text{P},\text{P}} = 64$ Hz), 19.44 (d, $J_{\text{P},\text{P}} = 64$ Hz). IR (KBr): 2021 cm^{-1} . The elemental 615 analysis was obtained even though it was known that the complex was 616 unstable to search for remaining nitrogen content. 617

618 **Synthesis of $((\text{dmpe})_2\text{Fe})_2(\mu\text{-N}_2)$ (10).** $(\text{dmpe})_2\text{FeCl}_2$ (0.125 g, 619 0.272 mmol) and 10 mL of THF were combined in a 20 mL 619 scintillation vial with a stir bar. This reaction slurry was cooled to -30°C 620 and, with stirring, NaCPh_2TMS (0.158 g, 0.550 mmol) was added 621 at once and the reaction mixture was warmed to room temperature 622 and stirred for an additional 1 h. Volatiles were then removed under 623 reduced pressure, and the residue was taken up in benzene and filtered 624 through Celite. Volatiles were removed, and the residue was taken up 625 in a minimal amount of hexane and the mixture cooled to -30°C . 626 The red crystals that formed were collected on a glass frit and dried 627 under reduced pressure to yield 0.085 g (78%) g of a deep red powder 628 was consistent with a previously reported sample of $((\text{dmpe})_2\text{Fe})_2(\mu\text{-N}_2)$. 629 Crystals suitable for single-crystal X-ray diffraction were grown in 630 the same fashion. 631

632 **Observation of $\text{R}^3\text{Fe}(\text{CNCy})_3$ (11).** $(\text{py})_2\text{FeCl}(\text{CPh}_2\text{TMS})$ (0.100 633 g, 0.204 mmol) was dissolved in 5 mL of diethyl ether in a 20 mL 633 scintillation vial. This reaction slurry was cooled to -30°C and, with 634 stirring, cyclohexyl isocyanide (0.045 g, 0.410 mmol) was added at 635 once and the reaction mixture was warmed to room temperature and 636 stirred for an additional 1 h. The reaction solution was filtered over 637 Celite and cooled to -30°C . The formed solid material was 638 contaminated with diphenyl(trimethylsilyl)methane and the dimer of 639 the diphenyl(trimethylsilyl)methane radical. Crystals suitable for 640 single-crystal X-ray diffraction were grown from hexane and were 641 physically cleaned of free organic material before mounting. Due to the 642 small quantity of crystals formed and the difficulty in purification 643 ([Supporting Information](#)), determination of the yield for 11 and 644 further characterization were not attempted. 645

646 ■ ASSOCIATED CONTENT

647 ■ Supporting Information

648 The Supporting Information is available free of charge on the
 649 ACS Publications website at DOI: [10.1021/acs.organomet.6b00108](https://doi.org/10.1021/acs.organomet.6b00108).

651 Crystallographic details and spectra and notes pertaining
 652 to certain compounds presented in this paper ([PDF](#))
 653 X-ray crystallographic details compounds 2, 3, 6–8, 10,
 654 11, and $(\text{THF})_3\text{Na-R}^3$ ([CIF](#))

655 ■ AUTHOR INFORMATION

656 Corresponding Author

657 *E-mail for J.M.B.: boncella@lanl.gov.

658 Notes

659 The authors declare no competing financial interest.

660 ■ ACKNOWLEDGMENTS

661 A.M.T. acknowledges a Director's funded postdoctoral fellowship
 662 from Los Alamos National Laboratory for support. We
 663 also wish to acknowledge LANL science campaign 5 for partial
 664 support of this research.

665 ■ REFERENCES

- 666 (1) (a) Kerber, R. C. In *Comprehensive Organometallic Chemistry II*;
 667 Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: New York,
 668 1995; Vol. 7, Chapter 2. (b) *J. Organomet. Chem.* **2001**, Vols. 637–
 669 639, 1–875.10.1016/S0022-328X(01)01226-8
- 670 (2) Piper, T. S.; Cotton, F. A.; Wilkinson, G. *J. Inorg. Nucl. Chem.*
 671 **1955**, *1*, 165–174.
- 672 (3) (a) Small, B. L.; Brookhart, M.; Bennett, A. M. A. *J. Am. Chem. Soc.* **1998**, *120*, 4049. (b) Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan, G. A.; White, A. J. P.; Williams, D. *J. Chem. Commun.* **1998**, 849.
- 676 (4) Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Stromberg, S.; White, A. J. P.; Williams, D. *J. Am. Chem. Soc.* **1999**, *121*, 8728–8740.
- 680 (5) Britovsek, G. J. P.; Mastroianni, S.; Solan, G. A.; Baugh, S. P. D.; Redshaw, C.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; Elsegood, M. R. *J. Chem. - Eur. J.* **2000**, *6*, 2221–2231.
- 683 (6) Britovsek, G. J. P.; Clentsmith, G. K. B.; Gibson, V. C.; Goodgame, D. M. L.; McTavish, S. J.; Pankhurst, Q. A. *Catal. Commun.* **2002**, *3*, 207.
- 686 (7) (a) Bouwkamp, M. W.; Lobkovsky, E.; Chirik, P. *J. Am. Chem. Soc.* **2005**, *127*, 9660–9661. (b) Tondreau, A. M.; Milsmann, C.; Patrick, A. D.; Hoyt, H. M.; Wieghardt, K.; Chirik, P. *J. Am. Chem. Soc.* **2010**, *132*, 15046–15059.
- 690 (8) Cámpora, J.; Naz, A. M.; Palma, P.; Alvarez, E.; Reyes, M. L. *Organometallics* **2005**, *24*, 4878.
- 692 (9) Fernández, I.; Trovitch, R. J.; Lobkovsky, E.; Chirik, P. *J. Organometallics* **2008**, *27*, 109–118.
- 694 (10) (a) Hoyt, J. M.; Shevlin, M.; Margulieux, G. W.; Krksa, S. W.; Tudge, M. W.; Chirik, P. *J. Organometallics* **2014**, *33*, 5781–5790.
- 696 (b) Biernesser, A. B.; Li, B.; Byers, J. A. *J. Am. Chem. Soc.* **2013**, *135*, 16553–16560. (c) Sauer, D. C.; Kruck, M.; Wadeohl, H.; Enders, M.; Gade, L. H. *Organometallics* **2013**, *32*, 885–892. (d) Tondreau, A. M.; Atienza, C. C. H.; Darmon, J. M.; Milsmann, C.; Hoyt, H. M.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Boyer, J.; Delis, J. G. P.; Lobkovsky, E.; Chirik, P. *J. Organometallics* **2012**, *31*, 4886–4893.
- 702 (11) Cámpora, J.; Pérez, C. M.; Rodriguez-Delgado, A.; Naz, A. M.; Palma, P.; Alvarez, E. *Organometallics* **2007**, *26*, 1104–1107.
- 704 (12) (a) Gomberg, M. *J. Am. Chem. Soc.* **1900**, *22*, 757–771.
- 705 (b) Lankamp, H.; Nauta, W. Th.; Maclean, C. *Tetrahedron Lett.* **1968**, *9*, 249–254. (c) Hillgärtner, H.; Neumann, W. P.; Schulten, W.; Zarkadis, A. K. *J. Organomet. Chem.* **1980**, *201*, 197–211. (d) Beckhaus, H.-D.; Schaetzer, J.; Rüchardt, C. *Tetrahedron Lett.* **1983**, *24* (32), 708 3307–3310. (e) Neumann, W. P.; Penenory, A.; Stewen, U.; Lehnig, M. *J. Am. Chem. Soc.* **1989**, *111*, 5845–5851.
- 711 (13) (a) Bouwkamp, M. W.; Bart, S. C.; Hawrelak, E. J.; Trovitch, R. J.; Lobkovsky, E.; Chirik, P. *J. Chem. Commun.* **2005**, 3406–3408. (b) Nakajima, Y.; Ozawa, F. *Organometallics* **2012**, *31*, 2009–2015. (c) Bedford, R. B.; Carter, E.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Neeve, E. C.; Nunn, J. *Angew. Chem., Int. Ed.* **2013**, *52*, 1285–1288. (d) Bedford, R. B.; Brenner, P. B.; Carter, E.; Clifton, J.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Kehl, J. A.; Murphy, D. M.; Neeve, E. C.; Neidig, M. L.; Nunn, J.; Snyder, B. E. R.; Taylor, J. *Organometallics* **2014**, *33*, 719 5767–5780.
- 721 (14) (a) Trujillo, H. A.; Casado, C. M.; Ruiz, J.; Astruc, D. *J. Am. Chem. Soc.* **1999**, *121*, 5674–5686. (b) Astruc, D. *Top. Curr. Chem.* **1991**, *160*, 47.
- 722 (15) (a) Emerson, G. F.; Ehrlich, K.; Giering, W. P.; Lauterbur, P. C. *J. Am. Chem. Soc.* **1966**, *88*, 3172–3173. (b) Ehrlich, K.; Emerson, G. F. *J. Am. Chem. Soc.* **1972**, *94*, 2464–2465. (c) Girard, L.; Macneil, J. H.; Mansour, A.; Chiverton, A. C.; Page, J. A.; Fortier, S.; Baird, M. C. *Organometallics* **1991**, *10*, 3114–3119.
- 724 (16) (a) Gargano, M.; Giannoccaro, P.; Rossi, M.; Sacco, A. *J. Chem. Soc., Chem. Commun.* **1973**, 233b. (b) Adams, C. J.; Bedford, R. B.; Carter, E.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Huwe, M.; Cartes, M. A.; Mansell, S. M.; Mendoza, C.; Murphy, D. M.; Neeve, E. C.; Nunn, J. *J. Am. Chem. Soc.* **2012**, *134*, 10333–10336.
- 725 (17) Hills, A.; Hughes, D. L.; Jimenez-Tenorio, M.; Leigh, G. J.; Rowley, A. T. *J. Chem. Soc., Dalton Trans.* **1993**, 3041.
- 726 (18) (a) Crossland, J. L.; Tyler, D. R. *Coord. Chem. Rev.* **2010**, *254*, 1883–1894. (b) Cable, R. A.; Green, M.; Mackenzie, R. E.; Timms, P. L.; Turney, T. W. *J. Chem. Soc., Chem. Commun.* **1976**, 270b.
- 727 (19) Field, L. D.; Hazari, N.; Li, H. L. *Inorg. Chem.* **2015**, *54*, 4768–4776.
- 728 (20) (a) Leigh, G. J.; Jimenez-Tenorio, M. *J. Am. Chem. Soc.* **1991**, *113*, 5862–5863. (b) Hills, A.; Hughes, D. L.; Jimenez-Tenorio, M.; Leigh, G. J.; Rowley, A. T. *J. Chem. Soc., Dalton Trans.* **1993**, 3041–3049. (c) Hall, D. A.; Leigh, G. J. *J. Chem. Soc., Dalton Trans.* **1996**, 3539–3541.
- 729 (21) (a) Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. *J. Am. Chem. Soc.* **2005**, *127*, 10184–10185. (b) Balesdent, C. G.; Crossland, J. L.; Regan, D. T.; López, C. T.; Tyler, D. R. *Inorg. Chem.* **2013**, *52*, 14178–14187.
- 730 (22) (a) Komiya, S.; Akita, M.; Yoza, A.; Kasuga, N.; Fukuoka, A.; Kai, Y. *J. Chem. Soc., Chem. Commun.* **1993**, 787–788. (b) Hirano, M.; Akita, M.; Morikita, T.; Kubo, H.; Fukuoka, A.; Komiya, S. *J. Chem. Soc., Dalton Trans.* **1997**, 3453–3458.
- 731 (23) Baudisch, O.; Hartung, W. H. *Inorg. Synth.* **1939**, *1*, 184.
- 732 (24) Cecconi, F.; Di Vaira, M.; Midollini, S.; Orlandini, A.; Sacconi, L. *Inorg. Chem.* **1981**, *20*, 3423–3435.
- 733 (25) Chatt, J.; Hayter, R. G. *J. Chem. Soc.* **1961**, 5507–5511.
- 734 (26) Hill, M. S.; Hitchcock, P. B. *J. Organomet. Chem.* **2002**, *664*, 182–187.
- 735 (27) Suzuki, T.; Kusakabe, J.; Kitazawa, K.; Nakagawa, T.; Kawauchi, S.; Ishizone, T. *Macromolecules* **2010**, *43*, 107–116.
- 736 (28) *Bruker Instrument Service, Version 2010.1.0.0*; Bruker AXS Inc., Madison, WI, USA, 2010.
- 737 (29) (a) SAINT Plus, Data Reduction Software, Version 7.68A; Bruker AXS Inc., Madison, WI, USA, 2009. (b) Sheldrick, G. M. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, *64*, 112–122.
- 738 (30) (a) Sheldrick, G. M. *Acta Crystallogr., Sect. A: Found. Adv.* **2015**, *71*, 3–8. (b) APEX2, Data Refinement Software, Version 2010.1-2; Bruker AXS Inc., Madison, WI, USA, 2010.
- 739 (31) (a) Olex2 1.2 (compiled 2014.06.27 svn.r2953 for OlexSys, GUI svn.r4855). (b) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Crystallogr.* **2009**, *42*, 339–341.