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ABSTRACT

NOVEL METHODS FOR THE TIME-DEPENDENT MAXWELL’S
EQUATIONS AND THEIR APPLICATIONS

by

Sidney Shields

Dr. Jichun Li, Examination Committee Chair
Professor, Mathematics

University of Nevada, Las Vegas, USA

This dissertation investigates three different mathematical models based on the

time-domain Maxwell’s equations using three different numerical methods: a Yee

scheme using a non-uniform grid, a nodal discontinuous Galerkin (nDG) method,

and a newly developed discontinuous Galerkin method named the weak Galerkin

(WG) method. The non-uniform Yee scheme is first applied to an electromagnetic

metamaterial model. Stability and superconvergence error results are proved for the

method, which are then confirmed through numerical results. Additionally, a numeri-

cal simulation of backwards wave propagation through a negative-index metamaterial

is given using the presented method. Next, the nDG method is used to simulate sig-

nal propagation through a corrugated coaxial cable through the use of axisymmetric

Maxwell’s equations. Stability and error analysis are performed for the semi-discrete

method, and are verified through numerical results. The nDG method is then used to

simulate signal propagation through coaxial cables with a number of different corruga-

tions. Finally, the WG method is developed for the standard time-domain Maxwell’s

equations. Similar to the other methods, stability and error analysis are performed

on the method and are verified through a number of numerical experiments.
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CHAPTER 1

INTRODUCTION

One field of physics that benefits greatly from numerical methods is electromag-

netics. The behavior of electric field E and magnetic field B can be described by

a set of PDEs called Maxwell’s equations. Maxwell’s equations are a set of coupled

partial differential equations describing the wave propagation in a specific material

with permittivity ε and permeability µ:

∇× E = −∂B

∂t
, ∇×H =

∂D

∂t
+ j, (1.1a)

∇ ·D = ρ , ∇ ·B = 0 , (1.1b)

supplemented with the following constitutive relations:

B = µH, j = σE, D = εE. (1.2)

Here E models the electric field, B describes the magnetic flux density, H represents

the magnetic field, D is the displacement current density, σ is the electric conductiv-

ity, and ρ is the charge density. Because this set of PDEs is dependent on time as well

as space, it is often converted to the frequency domain through a Fourier transform

to reduce the complexity of them. However, if these PDEs are left in the time do-

main when being solved numerically, the divergence free conditions are then enforced

implicitly and can be ignored. The following chapters will only concern numerical

methods for solving Maxwell’s equations in the time domain, though methods for

solving the equations in the frequency domain do exist.
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Often, under certain conditions, numerical methods will converge faster than ex-

pected; this phenomena is called superconvergence. The superconvergence study of

finite element methods (FEMs) started in the early 1970s, over the years many inter-

esting results have been proved mainly for a variety of equations such as elliptic Bank

and Xu (2004a,b); Cao (2014); Celiker et al. (2012); Li and Wheeler (2000), parabolic

Chen et al. (1998), hyperbolic Adjerid and Baccouch (2007); Guo et al. (2015), KdV

Arnold and Winther (1982), and Stokes equations Wang and Ye (2001). More details

on superconvergence can be found in classic books such as Chen and Huang (1995);

Krizek et al. (1998); Lin and Yan (1996); Wahlbin (1995). As for Maxwell’s equa-

tions in vacuum, in 1994 Monk carried out the first superconvergence analysis for

FEMs Monk (1994), and for finite difference method together with Süli Monk and

Süli (1994). Later more superconvergence results have been obtained on Cartesian

grids solved with edge elements Lin and Yan (1999); Lin and Li (2008), nonconform-

ing FEMs Qiao et al. (2011); Shi and Pei (2009), discontinuous Galerkin methods

Chung et al. (2013), and finite volume methods Chung et al. (2003); Nicolaides and

Wang (1998).

Inspired by the many exotic potential applications of metamaterials (cf. Craster

and Guenneau (2013); Engheta and Ziolkowski (2006); Li and Huang (2013) and

references therein), the study of metamaterials has been of significant interest as

of late in the field of electromagnetics. The term “metamaterial” is a broad term

that describes any material with special properties that are not found in nature.

Because these materials are not natural, they must be specially engineered to have

these properties. One specific type of metamaterial that is of interest is the negative-
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index metamaterial. This material is characterized by having frequency dependent

permittivitty and permeability, resulting in a negative index of refraction. To model

this frequency dependent permittivitty and permeability, one can employ either the

Drude model, Lorenz model, or a mixture of the two. Additionally, these definitions

can be converted into the time-domain as shown in (Li and Huang (2013)).

In the chapter 2 of this dissertation we extend this superconvergence analysis to

the Yee finite difference time-domain (FDTD) method with a non-uniform rectan-

gular grid for the time-domain Drude model for metamaterials. To the best of our

knowledge, superconvergence analysis for FDTD methods for Maxwell’s equations

are restricted to uniform rectangular grids (cf. Bokil and Gibson (2012); Chen et al.

(2008); Gao and Zhang (2011); Hong et al. (2014); Li et al. (2013)). However, in Monk

and Süli (1994) they extend this superconvergence result to an FDTD method with

a non-uniform grid. As a continuation of their work with superconvergence analysis

on FDTD methods with non-uniform grids, we extend their technique to the more

complicated Drude metamaterial model found in Li (2007).

The next application that was solved through the use of Maxwell’s equations is

the corrugated coaxial cable model. Due to the long standing and widespread usage

of coaxial cables, there are many published papers on modeling wave and signal prop-

agation through coaxial cables. Various methods Sen and Wheeler (1998); Schüppert

(1988), ranging from using experimental data to mathematical models, have been de-

veloped for transmission lines. For coaxial cables the two most common methods of

mathematically modeling signal and wave propagation through the cables are to solve

either the telegrapher’s equations Ramo et al. (1994) (developed by Oliver Heaviside
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in the 1880s) or Maxwell’s equations.

The telegrapher’s equations treat the conductors in the coaxial cable as an infinite

series of two-port elementary components, each representing an infinitesimally short

segment of the transmission line. Each segment of the line is modeled by a circuit

with four elementary components: a resistor and inductor in series, a shunt capac-

itor between the two conductors, and a shunt resistor between the two conductors

Ulaby (2007). The following telegrapher’s equations are used to model the voltage

V and current I of the transmitted signal on a transmission line with resistance R,

inductance L, capacitance C, and conductance G:

∂V

∂x
(x, t) = −L∂I

∂t
(x, t)−RI(x, t),

∂I

∂x
(x, t) = −C∂V

∂t
(x, t)−GV (x, t).

Note that the telegrapher’s equations are a coupled system of two one-dimensional

partial differential equations (PDEs), making them quite simple and efficient to solve.

However, since the telegrapher’s equations are a one-dimensional representation of the

coaxial cable, they do not take into account the geometry of the cable. Hence if the

cable’s cross section changes at different locations such as the corrugated cable, then

the effects of the corrugation cannot be accounted for without adding in an artificial

term. In Imperiale and Joly (2014), Imperiale and Joly derived the telegrapher’s

model via an asymptotic analysis from 3-D Maxwell’s equations for a lossy coaxial

cable whose cross section is not homogeneous.

To account for the variable cross section cables, we resort to solving the Maxwell’s

equations in three-dimensional (3-D) space. However, this PDE system is much more
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complex and computationally intensive to solve than the telegrapher’s equations. To

reduce the computational cost and consider notions of the fact that many coaxial ca-

bles of interest have rotational symmetry about the z-axis (i.e. the angular component

has no effect on the electric or magnetic fields), we often reduce the 3-D problem to

a 2-D problem whose domain is the length-wise cross-section (the red part in Figure

1.1).

Figure 1.1. (Left) A 3-D view of a coaxial cable. Red rectangle: cross-sectional do-
main; Green cylinder: inner conductor; Grey cylinder: outer conductor.
(Right) A 3-D view of a corrugated coaxial cable. Red rectangle: cross-
sectional domain.

Although there has been previous work concerning the numerical modeling of

corrugated coaxial cables Böcklin et al. (2009); Blank et al. (2013); Imperiale and Joly

(2014), we aim to explore the effects of these corrugations in more detail in chapter

3. Following the work of Blank et al. (2013), we consider the axisymmetric Maxwell’s

equations in cylindrical coordinates, and extend their work to the corrugated cable

model. Similar to their work, we solve these equations using a nodal Discontinuous
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Galerkin method (cf. Hesthaven and Warburton (2008); Li and Hesthaven (2014); Li

et al. (2012)). However, because they do not perform any analysis on their proposed

scheme, we provide stability and error analysis for the semi-discrete scheme.

Finally, a new numerical method for PDEs, named the weak Galerkin (WG)

method, was developed to spatially solve Maxwell’s equations. The Weak Galerkin

(WG) finite element method was initially developed by Wang and Ye Wang and Ye

(2013, 2014) for solving the second order elliptic equations. The main idea is to ap-

proximate the differential operators in partial differential equations (PDEs) through

the use of a new notion of discrete weak derivatives, which will be defined later (in

Section 4.2). This concept offers a new paradigm for solving various PDEs, and ap-

plications have been extended to the biharmonic equations Mu et al. (2014); Wang

and Wang (2015), Stokes equations Wang and Ye (2016), parabolic equations Li and

Wang (2013), and time-harmonic Maxwell’s equations Mu et al. (2015a), etc. The

WG method is a newcomer to the ever growing family of various popular discon-

tinuous Galerkin (DG) methods Oden et al. (1998); Babuśka et al. (1999); Arnold

et al. (0102), such as the hybridizable discontinuous Galerkin method (HDG) Cock-

burn et al. (2009), the discontinuous Pertrov-Galerkin (DPG) method Demkowicz

and Gopalakrishnan (2011); Chan et al. (2014), and the local discontinuous Galerkin

(LDG) method Cockburn and Shu (1998). Some DG methods are closely related,

for example, many differences and similarities between HDG and WG methods have

been addressed in Chen et al. (2015); Mu et al. (2015b).

Since this method had only been applied to Maxwell’s equations once, in the fre-

quency domain Mu et al. (2015a), we decided to extend it to the standard set of
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time-dependent Maxwell’s equations. The goal here was to lay down a framework of

analysis for the new method before continuing on to more difficult models. There-

fore, in chapter 4 we propose a semi-discrete and a fully-discrete WG scheme for the

time-dependent Maxwell’s equations. In addition to this, we provide stability and

convergence results for each of these schemes.

The rest of this dissertation is organized as follows. In chapter 2, we first propose

semi-discrete and fully-discrete finite difference schemes on non-uniform rectangular

meshes. Then we prove the discrete stability, and the second order convergence rate in

space (which is superconvergent) for all field variables for both schemes in the discrete

L2 norm. Afterwards, we provide numerical results to confirm the superconvergence

and solve a benchmark backwards wave propagation problem. In chapter 3 we extend

the nodal Discontinuous Galerkin method for the axisymmetric Maxwell’s equations

proposed in Blank et al. (2013) to the cable model. Then we prove a stability and

a convergence result for the aforementioned semi-discrete scheme. After, we support

our results with numerical tests, in addition to providing a benchmark problem for

signal propagation through corrugated coaxial cables. In chapter 4 we propose a semi-

discrete and a fully-discrete weak Galerkin scheme for the time-domain Maxwell’s

equations. For each scheme we provide stability and convergence results. Then,

we support our results with numerical tests. Finally, in chapter 5 we conclude and

summarize the results provided in this dissertation.
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CHAPTER 2

THE YEE SCHEME FOR METAMATERIAL
MAXWELL’S EQUATIONS ON NON-UNIFORM

RECTANGULAR MESHES

2.1 Introduction

In Li (2009), Li developed a finite element time-domain (FETD) method for solv-

ing the Drude metamaterial model (2.1)-(2.4) shown below, and proved that the

scheme has an optimal error estimate O(h) + O(τ 2) in the L2-norm for the lowest-

order edge element, i.e., converges first order in space, and second order in time. But

numerical results of Li (2009) showed the superconvergence rate O(h2) on non-uniform

rectangular grids. The observed superconvergence phenomena were proved later for

both 2D and 3D models solved by the FETD method on non-uniform rectangular

and cubic grids in Huang et al. (2012) and Huang et al. (2011), respectively.

Compared to the superconvergence results obtained for Maxwell’s equations by

FEMs, some superconvergences have also proved for the finite difference time-domain

(FDTD) methods (cf. Bokil and Gibson (2012); Chen et al. (2008); Gao and Zhang

(2011); Hong et al. (2014); Li et al. (2013)). However, all papers except Monk and

Süli Monk and Süli (1994) are restricted to uniform rectangular grids. In this chapter,

we extend Monk and Süli’s technique to the more complicated Maxwell’s equations

in metamaterials. First, we prove that similar superconvergence results hold true for

the metamaterial Maxwell’s equations solved by the FDTD method on staggered non-

8



uniform rectangular grids. Our proof is more succinct than Monk and Süli (1994).

Second, we present the complete proofs for both the semi- and fully-discrete schemes

(i.e, the true Yee scheme), while Monk and Süli (1994) only showed the proof for the

semi-discrete scheme. To our best knowledge, this is the first superconvergence result

obtained on Yee scheme for Maxwell’s equations in metamaterial.

The rest of this chapter is organized as follows. In Sect. 2, we first derive a semi-

discrete finite difference scheme on non-uniform rectangular meshes from a variational

form, which will be used late in the error analysis. Then we prove the discrete

stability, and the second order convergence rate in space (which is superconvergent)

for all field variables in the discrete L2 norm. In Sect. 3, we consider the fully-

discrete scheme on non-uniform rectangular meshes. Detailed analysis is present for

the discrete stability, and the error estimate which is second order in both time and

spatial variables. Numerical results are presented in Sect. 4 to support our theoretical

analysis. We conclude the chapter in Sect. 5. The research presented in this chapter

was previously published as Li and Shields (2016) where I was the 2nd author.

2.2 The semi-discrete scheme

Consider the metamaterial model Li (2007):

ε0
∂E

∂t
= ∇×H − J (2.1)

µ0
∂H

∂t
= −∇×E −K (2.2)

1

ε0ω2
pe

∂J

∂t
+

Γe
ε0ω2

pe

J = E (2.3)

9



1

µ0ω2
pm

∂K

∂t
+

Γm
µ0ω2

pm

K = H (2.4)

supplemented with the perfect conduct (PEC) boundary condition

n×E = 0 on ∂Ω, (2.5)

and the initial conditions

E(x, 0) = E0(x), H(x, 0) = H0(x), J(x, 0) = J0(x), K(x, 0) = K0(x), (2.6)

where n denotes the outward unit normal vector, E0(x),H0(x),J0(x) and K0(x)

are some given proper functions.

To avoid the technicality of the proof for 3D problems, below we only consider the

2D case of (2.1)-(2.6), in which E = (Ex, Ey),H = Hz := H,J = (Jx, Jy),K = Kz,

and the curls ∇ × E = ∂Ey
∂x
− ∂Ex

∂y
and ∇ × H = (∂H

∂y
,−∂H

∂x
)′. Here the subindices

x, y and z denote the components in the x, y and z directions, respectively. For

simplicity, we consider the rectangular domain Ω = [a, b]× [c, d], which is discretized

by a non-uniform grid

a = x0 < x1 < · · · < xNx = b, c = y0 < y1 < · · · < yNy = d.

We like to emphasize that our proof and the obtained results can be similarly extend

to 3D problem.

Following the classic FDTD scheme, we choose the unknowns Ex (and Jx) at

the mid-points of the horizontal edges, Ey (and Jy) at the mid-points of the vertical

edges, and H (and K) at the element centers (cf. Fig.2.1). Hence we can denote the

corresponding approximate solutions (we suppress the explicit dependence on time

10



t):

Ex,i+ 1
2
,j, Jx,i+ 1

2
,j, i = 0, · · · , Nx − 1, j = 0, · · · , Ny,

Ey,i,j+ 1
2
, Jy,i,j+ 1

2
, j = 0, · · · , Ny − 1, i = 0, · · · , Nx,

Hi+ 1
2
,j+ 1

2
, Ki+ 1

2
,j+ 1

2
, i = 0, · · · , Nx − 1, j = 0, · · · , Ny − 1.

For convenience, we denote the following three types of rectangles

Tij = (xi, xi+1)× (yj, yj+1), Ti− 1
2
,j = (xi− 1

2
, xi+ 1

2
)× (yj, yj+1),

Ti,j− 1
2

= (xi, xi+1)× (yj− 1
2
, yj+ 1

2
),

and the corresponding areas |Tij|, |Ti− 1
2
,j| and |Ti,j− 1

2
|, respectively. To distinguish

the role of non-uniform mesh, we denote hx = max0≤i≤Nx−1(xi+1 − xi) and hy =

max0≤j≤Ny−1(yj+1− yj) for the maximal mesh sizes in the x and y directions, respec-

tively. The global mesh size will be denoted by h = max(hx, hy).

Integrating the x-component of (2.1) on Ti,j− 1
2

(for any 0 ≤ i ≤ Nx − 1, 1 ≤ j ≤

Ny − 1), we obtain∫ xi+1

xi

∫ y
j+1

2

y
j− 1

2

ε0
∂Ex
∂t

=

∫ xi+1

xi

[H(x, yj+ 1
2
, t)−H(x, yj− 1

2
, t)]dx−

∫ xi+1

xi

∫ y
j+1

2

y
j− 1

2

Jx. (2.7)

Approximating those integrals in (2.7) by the mid-point quadrature rule, we have

ε0|Ti,j− 1
2
| · ∂Ex

∂t
|i+ 1

2
,j = (xi+1 − xi)(Hi+ 1

2
,j+ 1

2
−Hi+ 1

2
,j− 1

2
)− |Ti,j− 1

2
|Jx,i+ 1

2
,j. (2.8)

Similarly, integrating the y-component of (2.1) on Ti− 1
2
,j (for any 1 ≤ i ≤ Nx −

1, 0 ≤ j ≤ Ny − 1) yields∫ x
i+1

2

x
i− 1

2

∫ yj+1

yj

ε0
∂Ey
∂t

= −
∫ yj+1

yj

[H(xi+ 1
2
, y, t)−H(xi− 1

2
, y, t)]dy −

∫ x
i+1

2

x
i− 1

2

∫ yj+1

yj

Jy.

(2.9)

11



Figure 2.1. The exemplary grid for solving 2D Maxwell’s equations.

Approximating those integrals in (2.9) by the mid-point quadrature rule, we have

ε0|Ti− 1
2
,j| ·

∂Ey
∂t
|i,j+ 1

2
= −(yj+1 − yj)(Hi+ 1

2
,j+ 1

2
−Hi− 1

2
,j+ 1

2
)− |Ti− 1

2
,j|Jy,i,j+ 1

2
. (2.10)

By the same technique, integrating (2.2) on Tij (for any 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤

Ny − 1) yields

∫ xi+1

xi

∫ yj+1

yj

µ0
∂H

∂t
= −

∫ xi+1

xi

∫ yj+1

yj

(
∂Ey
∂x
− ∂Ex

∂y
)−

∫ xi+1

xi

∫ yj+1

yj

K. (2.11)

Further application of the mid-point quadrature rule leads to

µ0|Tij| ·
∂H

∂t
|i+ 1

2
,j+ 1

2
= −(yj+1 − yj)(Ey,i+1,j+ 1

2
− Ey,i,j+ 1

2
)

+(xi+1 − xi)(Ex,i+ 1
2
,j+1 − Ex,i+ 1

2
,j)− |Tij| ·Ki+ 1

2
,j+ 1

2
. (2.12)

Integrating the x-component of (2.3) on Ti,j− 1
2

(for any 0 ≤ i ≤ Nx − 1, 1 ≤ j ≤

12



Ny − 1), we obtain∫ xi+1

xi

∫ y
j+1

2

y
j− 1

2

1

ε0ω2
pe

∂Jx
∂t

+

∫ xi+1

xi

∫ y
j+1

2

y
j− 1

2

Γe
ε0ω2

pe

Jx =

∫ xi+1

xi

∫ y
j+1

2

y
j− 1

2

Ex. (2.13)

Approximating (2.13) by the mid-point quadrature rule, we have

|Ti,j− 1
2
| · 1

ε0ω2
pe

∂Jx
∂t
|i+ 1

2
,j + |Ti,j− 1

2
| · Γe
ε0ω2

pe

Jx,i+ 1
2
,j = |Ti,j− 1

2
| · Ex,i+ 1

2
,j. (2.14)

Integrating the y-component of (2.3) on Ti− 1
2
,j (for any 1 ≤ i ≤ Nx − 1, 0 ≤ j ≤

Ny − 1), and using the mid-point quadrature rule, we obtain

|Ti− 1
2
,j| ·

1

ε0ω2
pe

∂Jy
∂t
|i,j+ 1

2
+ |Ti− 1

2
,j| ·

Γe
ε0ω2

pe

Jy,i,j+ 1
2

= |Ti− 1
2
,j| · Ey,i,j+ 1

2
. (2.15)

Similarly, integrating (2.4) on Tij (for any 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1), and

using the mid-point quadrature rule, we obtain

|Tij| ·
1

µ0ω2
pm

∂K

∂t
|i+ 1

2
,j+ 1

2
+ |Tij| ·

Γm
µ0ω2

pm

Ki+ 1
2
,j+ 1

2
= |Tij| ·Hi+ 1

2
,j+ 1

2
. (2.16)

The stability analysis

We define the following mesh-dependent energy norms

||Ex||2E =
∑

0≤i≤Nx−1
1≤j≤Ny−1

|Ti,j− 1
2
| · |Ex,i+ 1

2
,j|2,

||Ey||2E =
∑

1≤i≤Nx−1
0≤j≤Ny−1

|Ti− 1
2
,j| · |Ey,i,j+ 1

2
|2,

||H||2H =
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij| · |Hi+ 1
2
,j+ 1

2
|2,

||Jx||2J =
∑

0≤i≤Nx−1
1≤j≤Ny−1

|Ti,j− 1
2
| · |Jx,i+ 1

2
,j|2,

||Jy||2J =
∑

1≤i≤Nx−1
0≤j≤Ny−1

|Ti− 1
2
,j| · |Jy,i,j+ 1

2
|2,

13



||K||2K =
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij| · |Ki+ 1
2
,j+ 1

2
|2.

First, we can prove the following energy conservation for our semi-discrete scheme.

Theorem 2.2.1. The solution of the semi-discrete scheme (2.8)-(2.16) satisfies the

global energy identity:

1

2
[ε0(||Ex||2E + ||Ey||2E) + µ0||H||2H +

1

ε0ω2
pe

(||Jx||2J + ||Jy||2J)

+
1

µ0ω2
pm

||K||2K ](t) +

∫ t

0

[
Γe
ε0ω2

pe

(||Jx||2J + ||Jy||2J) +
Γm

µ0ω2
pm

||K||2K ]dt

=
1

2
[ε0(||Ex||2E + ||Ey||2E) + µ0||H||2H +

1

ε0ω2
pe

(||Jx||2J + ||Jy||2J)

+
1

µ0ω2
pm

||K||2K ](0) (2.17)

holds true for any t ∈ [0, T ].

Proof. Multiplying (2.8) by Ex,i+ 1
2
,j, (2.10) by Ey,i,j+ 1

2
, (2.12) by Hi+ 1

2
,j+ 1

2
, (2.14)

by Jx,i+ 1
2
,j, (2.15) by Jy,i,j+ 1

2
, and (2.16) by Ki+ 1

2
,j+ 1

2
, summing up each over its

corresponding rectangular elements, then adding all results together, we obtain the

sum of the right hand side as

RHS =
∑

0≤i≤Nx−1
1≤j≤Ny−1

(xi+1 − xi)(Hi+ 1
2
,j+ 1

2
−Hi+ 1

2
,j− 1

2
)Ex,i+ 1

2
,j

−
∑

1≤i≤Nx−1
0≤j≤Ny−1

(yj+1 − yj)(Hi+ 1
2
,j+ 1

2
−Hi− 1

2
,j+ 1

2
)Ey,i,j+ 1

2

−
∑

0≤i≤Nx−1
0≤j≤Ny−1

(yj+1 − yj)(Ey,i+1,j+ 1
2
− Ey,i,j+ 1

2
)Hi+ 1

2
,j+ 1

2

+
∑

0≤i≤Nx−1
0≤j≤Ny−1

(xi+1 − xi)(Ex,i+ 1
2
,j+1 − Ex,i+ 1

2
,j)Hi+ 1

2
,j+ 1

2

=
∑

0≤i≤Nx−1

(xi+1 − xi)
∑

0≤j≤Ny−1

[Hi+ 1
2
,j+ 1

2
Ex,i+ 1

2
,j+1 −Hi+ 1

2
,j− 1

2
Ex,i+ 1

2
,j]

14



−
∑

0≤j≤Ny−1

(yj+1 − yj)
∑

0≤i≤Nx−1

[Hi+ 1
2
,j+ 1

2
Ey,i+1,j+ 1

2
−Hi− 1

2
,j+ 1

2
Ey,i,j+ 1

2
]

=
∑

0≤i≤Nx−1

(xi+1 − xi)[Hi+ 1
2
,Ny− 1

2
Ex,i+ 1

2
,Ny
−Hi+ 1

2
,− 1

2
Ex,i+ 1

2
,0]

−
∑

0≤j≤Ny−1

(yj+1 − yj)[HNx− 1
2
,j+ 1

2
Ey,Nx,j+ 1

2
−H− 1

2
,j+ 1

2
Ey,0,j+ 1

2
]

= 0, (2.18)

where we used the PEC boundary condition (2.5), which in our 2D case is equivalent

to

Ex,i+ 1
2
,Ny

= Ex,i+ 1
2
,0 = 0, Ey,Nx,j+ 1

2
= Ey,0,j+ 1

2
= 0, (2.19)

for all i and j.

Using the above defined energy norms, the sum of the left hand side corresponding

to the above operation is given as

LHS =
1

2

d

dt
[ε0(||Ex||2E + ||Ey||2E) + µ0||H||2H +

1

ε0ω2
pe

(||Jx||2J + ||Jy||2J)

+
1

µ0ω2
pm

||K||2K ] +
Γe
ε0ω2

pe

(||Jx||2J + ||Jy||2J) +
Γm

µ0ω2
pm

||K||2K . (2.20)

Equating (2.18) and (2.20), and integrating the resultant leads to the global con-

servation identity.

Dropping the non-negative terms on the left hand side of (2.17), we can easily

obtain the stability for our semi-discrete scheme.

Lemma 2.2.1. For any t ∈ [0, T ], the solution of the semi-discrete scheme (2.8)-(2.16)

satisfies the following stability:

[ε0(||Ex||2E + ||Ey||2E) + µ0||H||2H

+
1

ε0ω2
pe

(||Jx||2J + ||Jy||2J) +
1

µ0ω2
pm

||K||2K ](t)
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≤ [ε0(||Ex||2E + ||Ey||2E) + µ0||H||2H

+
1

ε0ω2
pe

(||Jx||2J + ||Jy||2J) +
1

µ0ω2
pm

||K||2K ](0). (2.21)

The error estimate

To make the error analysis easy to follow, we denote the errors by their corre-

sponding script letters. For example, the error of Ex at point (xi+ 1
2
, yj, t) is denoted

by Ex,i+ 1
2
,j = Ex(xi+ 1

2
, yj, t) − Ex,i+ 1

2
,j, where Ex(xi+ 1

2
, yj, t) and Ex,i+ 1

2
,j denote the

exact and numerical solutions of Ex at point (xi+ 1
2
, yj, t), respectively. Similarly, we

denote errors

Ey,i,j+ 1
2

= Ey(xi, yj+ 1
2
, t)− Ey,i,j+ 1

2
, Hi+ 1

2
,j+ 1

2
= H(xi+ 1

2
, yj+ 1

2
, t)−Hi+ 1

2
,j+ 1

2
,

Jx,i+ 1
2
,j = Jx(xi+ 1

2
, yj, t)− Jx,i+ 1

2
,j, Jy,i,j+ 1

2
= Jy(xi, yj+ 1

2
, t)− Jy,i,j+ 1

2
,

Ki+ 1
2
,j+ 1

2
= K(xi+ 1

2
, yj+ 1

2
, t)−Ki+ 1

2
,j+ 1

2
.

By the definition of errors, and from (2.7) and (2.8), we obtain

ε0|Ti,j− 1
2
| · ∂Ex

∂t
|i+ 1

2
,j = ε0(

∫ ∫
T
i,j− 1

2

∂Ex
∂t

(xi+ 1
2
, yj, t)− |Ti,j− 1

2
| · ∂Ex

∂t
|i+ 1

2
,j)

= ε0(

∫ ∫
T
i,j− 1

2

∂Ex
∂t

(xi+ 1
2
, yj, t)−

∫ ∫
T
i,j− 1

2

∂Ex
∂t

(x, y, t))

+

∫ xi+1

xi

(H(x, yj+ 1
2
, t)−H(x, yj− 1

2
, t))dx−

∫ ∫
T
i,j− 1

2

Jx(x, y, t)

−(xi+1 − xi)(Hi+ 1
2
,j+ 1

2
−Hi+ 1

2
,j− 1

2
) + |Ti,j− 1

2
| · Jx,i+ 1

2
,j

= ε0(

∫ ∫
T
i,j− 1

2

∂Ex
∂t

(xi+ 1
2
, yj, t)−

∫ ∫
T
i,j− 1

2

∂Ex
∂t

(x, y, t))

+(xi+1 − xi)(Hi+ 1
2
,j+ 1

2
−Hi+ 1

2
,j− 1

2
) +

∫ xi+1

xi

(H(x, yj+ 1
2
, t)−H(x, yj− 1

2
, t))dx

−(xi+1 − xi)(H(xi+ 1
2
, yj+ 1

2
, t)−H(xi+ 1

2
, yj− 1

2
, t))− |Ti,j− 1

2
| · Jx,i+ 1

2
,j

16



+

∫ ∫
T
i,j− 1

2

Jx(xi+ 1
2
, yj, t)−

∫ ∫
T
i,j− 1

2

Jx(x, y, t),

which leads to the error equation for Ex:

ε0|Ti,j− 1
2
| · ∂Ex

∂t
|i+ 1

2
,j = (xi+1 − xi)(Hi+ 1

2
,j+ 1

2
−Hi+ 1

2
,j− 1

2
)− |Ti,j− 1

2
| · Jx,i+ 1

2
,j

+ε0(

∫ ∫
T
i,j− 1

2

(
∂Ex
∂t

(xi+ 1
2
, yj, t)−

∂Ex
∂t

(x, y, t))

+[

∫ xi+1

xi

(H(x, yj+ 1
2
, t)−H(x, yj− 1

2
, t))dx

−
∫ xi+1

xi

(H(xi+ 1
2
, yj+ 1

2
, t)−H(xi+ 1

2
, yj− 1

2
, t))dx]

+

∫ ∫
T
i,j− 1

2

(Jx(xi+ 1
2
, yj, t)− Jx(x, y, t))

:= (xi+1 − xi)(Hi+ 1
2
,j+ 1

2
−Hi+ 1

2
,j− 1

2
)− |Ti,j− 1

2
| · Jx,i+ 1

2
,j

+r1,ij + r2,ij + r3,ij. (2.22)

Similarly, we can obtain the error equation for Ey:

ε0|Ti− 1
2
,j| ·

∂Ey
∂t
|i,j+ 1

2
= −(yj+1 − yj)(Hi+ 1

2
,j+ 1

2
−Hi− 1

2
,j+ 1

2
)− |Ti− 1

2
,j| · Jy,i,j+ 1

2

+ε0

∫ ∫
T
i− 1

2 ,j

(
∂Ey
∂t

(xi, yj+ 1
2
, t)− ∂Ey

∂t
(x, y, t))

−[

∫ yj+1

yj

(H(xi+ 1
2
, y, t)−H(xi− 1

2
, y, t))dy

−
∫ yj+1

yj

(H(xi+ 1
2
, yj+ 1

2
, t)−H(xi− 1

2
, yj+ 1

2
, t))dy]

+

∫ ∫
T
i− 1

2 ,j

(Jy(xi, yj+ 1
2
, t)− Jy(x, y, t))

:= −(yj+1 − yj)(Hi+ 1
2
,j+ 1

2
−Hi− 1

2
,j+ 1

2
)− |Ti− 1

2
,j| · Jy,i,j+ 1

2

+r4,ij + r5,ij + r6,ij. (2.23)

By the same technique, we can obtain the error equation for H:

µ0|Tij| ·
∂H
∂t
|i+ 1

2
,j+ 1

2
= −(yj+1 − yj)(Ey,i+1,j+ 1

2
− Ey,i,j+ 1

2
)
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+(xi+1 − xi)(Ex,i+ 1
2
,j+1 − Ex,i+ 1

2
,j)− |Tij| · Ki+ 1

2
,j+ 1

2

+µ0

∫ ∫
Tij

(
∂H

∂t
(xi+ 1

2
, yj+ 1

2
, t)− ∂H

∂t
(x, y, t))

−[

∫ yj+1

yj

(Ey(xi+1, y, t)− Ey(xi, y, t))dy

−
∫ yj+1

yj

(Ey(xi+1, yj+ 1
2
, t)− Ey(xi, yj+ 1

2
, t))dy]

+

∫ ∫
Tij

(K(xi+ 1
2
, yj+ 1

2
, t)−K(x, y, t))

:= −(yj+1 − yj)(Ey,i+1,j+ 1
2
− Ey,i,j+ 1

2
)

+(xi+1 − xi)(Ex,i+ 1
2
,j+1 − Ex,i+ 1

2
,j)− |Tij| · Ki+ 1

2
,j+ 1

2

+r7,ij + r8,ij + r9,ij. (2.24)

The error equations for J and K are easily obtained and given respectively by:

|Ti,j− 1
2
| · 1

ε0ω2
pe

∂Jx
∂t
|i+ 1

2
,j +

Γe
ε0ω2

pe

|Ti,j− 1
2
| · Jx,i+ 1

2
,j

= |Ti,j− 1
2
| · Ex,i+ 1

2
,j +

1

ε0ω2
pe

∫ ∫
T
i,j− 1

2

(
∂Jx
∂t

(xi+ 1
2
, yj, t)−

∂Jx
∂t

(x, y, t))

+
Γe
ε0ω2

pe

∫ ∫
T
i,j− 1

2

(Jx(xi+ 1
2
, yj, t)− Jx(x, y, t))

−
∫ ∫

T
i,j− 1

2

(Ex(xi+ 1
2
, yj, t)− Ex(x, y, t))

:= |Ti,j− 1
2
| · Ex,i+ 1

2
,j + r10,ij + r11,ij + r12,ij, (2.25)

|Ti− 1
2
,j| ·

1

ε0ω2
pe

∂Jy
∂t
|i,j+ 1

2
+

Γe
ε0ω2

pe

|Ti− 1
2
,j| · Jy,i,j+ 1

2

= |Ti− 1
2
,j| · Ey,i,j+ 1

2
+

1

ε0ω2
pe

∫ ∫
T
i− 1

2 ,j

(
∂Jy
∂t

(xi, yj+ 1
2
, t)− ∂Jy

∂t
(x, y, t))

+
Γe
ε0ω2

pe

∫ ∫
T
i− 1

2 ,j

(Jy(xi, yj+ 1
2
, t)− Jy(x, y, t))

−
∫ ∫

T
i− 1

2 ,j

(Ey(xi, yj+ 1
2
, t)− Ey(x, y, t))

18



:= |Ti− 1
2
,j| · Ey,i,j+ 1

2
+ r13,ij + r14,ij + r15,ij, (2.26)

and

|Tij| ·
1

µ0ω2
pm

∂K
∂t
|i+ 1

2
,j+ 1

2
+

Γm
µ0ω2

pm

|Tij| · Ki+ 1
2
,j+ 1

2

= |Tij| · Hi+ 1
2
,j+ 1

2
+

1

µ0ω2
pm

∫ ∫
Tij

(
∂K

∂t
(xi+ 1

2
, yj+ 1

2
, t)− ∂K

∂t
(x, y, t))

+
Γm

µ0ω2
pm

∫ ∫
Tij

(K(xi+ 1
2
, yj+ 1

2
, t)−K(x, y, t))

+

∫ ∫
Tij

(H(xi+ 1
2
, yj+ 1

2
, t)−H(x, y, t))

:= |Tij| · Hi+ 1
2
,j+ 1

2
+ r16,ij + r17,ij + r18,ij. (2.27)

With the above preparations, we can obtain the following superconvergence result.

Theorem 2.2.2. Suppose that the solution of the model problem (2.1)-(2.6) possesses

the following regularity property:

Ex, Ey, H ∈ C([0, T ];C3(Ω)) ∩ C1([0, T ];C2(Ω)),

Jx, Jy, K ∈ C([0, T ];C2(Ω)) ∩ C1([0, T ];C2(Ω)).

Under the assumption that if the following initial error

[ε0(||Ex||2E + ||Ey||2E) + µ0||H||2H +
1

ε0ω2
pe

(||Jx||2J + ||Jy||2J) +
1

µ0ω2
pm

||K||2K ](0)

≤ C(h2
x + h2

y)
2, (2.28)

holds true, then we have

max
0≤t≤T

[ε0(||Ex||2E + ||Ey||2E) + µ0||H||2H +
1

ε0ω2
pe

(||Jx||2J + ||Jy||2J) +
1

µ0ω2
pm

||K||2K(t)]

≤ CT (h2
x + h2

y)
2. (2.29)
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Proof. By the Taylor expansion, for any function f we can easily prove that

∫ ∫
T
i,j− 1

2

(f(x, y, t)− f(xi+ 1
2
, yj, t))dxdy

=

∫ ∫
T
i,j− 1

2

[(x− xi+ 1
2
)
∂f

∂x
(p∗) + (y − yj)

∂f

∂y
(p∗) +

1

2
(x− xi+ 1

2
)2∂

2f

∂x2
(p1)

+(x− xi+ 1
2
)(y − yj)

∂2f

∂x∂y
(p2) +

1

2
(y − yj)2∂

2f

∂y2
(p3)]

≤
∫ ∫

T
i,j− 1

2

C[h2
x|
∂2f

∂x2
|∞ + h2

y|
∂2f

∂y2
|∞], (2.30)

where we denote p∗ = (xi+ 1
2
, yj, t), and p1, p2 and p3 for some midpoints between p∗

and (x, y, t).

Applying (2.30) to f = ∂Ex
∂t

, we obtain

r1,ij = (O(h2
x)|

∂3Ex
∂t∂x2

|∞ +O(h2
y)|

∂3Ex
∂t∂y2

|∞) · |Ti,j− 1
2
|.

It is easy to see that for any function f , we have

|
∫ yj+1

yj

(f(y)− f(yj+ 1
2
)dy|

= |
∫ yj+1

yj

[(y − yj+ 1
2
)
∂f

∂y
(yj+ 1

2
) +

∫ y

y
j+1

2

(y − η)
∂2f

∂y2
(η)dη]dy|

= |
∫ yj+1

yj

[

∫ y

y
j+1

2

(y − η)
∂2f

∂y2
(η)dη]dy|

≤ Ch2
y

∫ yj+1

yj

|∂
2f

∂y2
(η)|dη ≤ Ch3

y|
∂2f

∂y2
(η)|∞, (2.31)

which leads to

∑
0≤i≤Nx−1

∑
0≤j≤Ny−1

|
∫ yj+1

yj

(f(y)− f(yj+ 1
2
)dy| ≤ Ch|∂

2f

∂y2
(η)|∞. (2.32)

Applying (2.32) to each single integral in (2.22)-(2.27), we will only obtain O(h)

convergence rate. This was pointed out by Monk and Süli in Monk and Süli (1994).
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They managed to prove the O(h2) rate by using a special structure of the local errors.

Here we will use a simpler method to prove O(h2) error estimate.

Note that∫ xi+1

xi

(H(x, yj+ 1
2
, t)−H(x, yj− 1

2
, t))dx

−
∫ xi+1

xi

(H(xi+ 1
2
, yj+ 1

2
, t)−H(xi+ 1

2
, yj− 1

2
, t))dx

=

∫ xi+1

xi

[

∫ y
j+1

2

y
j− 1

2

(
∂H

∂y
(x, y, t)− ∂H

∂y
(xi+ 1

2
, y, t))dy]dx = O(h2

x)|
∂3H

∂y∂x2
|∞|Ti,j− 1

2
|,

which leads to

r2,ij = O(h2
x)|

∂3H

∂y∂x2
|∞ · |Ti,j− 1

2
|.

We like to remark that we can reduce the regularity requirement if we use the integral

residue as shown in (2.30).

Applying (2.30) to f = Jx, we obtain

r3,ij = (O(h2
x)|
∂2Jx
∂x2
|∞ +O(h2

y)|
∂2Jx
∂y2
|∞) · |Ti,j− 1

2
|.

By carrying out the above technique to the Ey error equation, we have

r4,ij = (O(h2
x)|

∂3Ey
∂t∂x2

|∞ +O(h2
y)|

∂3Ey
∂t∂y2

|∞) · |Ti− 1
2
,j|,

r5,ij = −
∫ ∫

T
i− 1

2 ,j

(
∂H

∂x
(x, y, t)− ∂H

∂x
(x, yj+ 1

2
, t)) = O(h2

y)|
∂3H

∂x∂y2
|∞|Ti− 1

2
,j|,

r6,ij = (O(h2
x)|
∂2Jy
∂x2
|∞ +O(h2

y)|
∂2Jy
∂y2
|∞) · |Ti− 1

2
,j|.

Using the same technique to the H error equation, we have

r7,ij = (O(h2
x)|

∂3H

∂t∂x2
|∞ +O(h2

y)|
∂3H

∂t∂y2
|∞) · |Tij|,

r8,ij = −
∫ ∫

Tij

(
∂Ey
∂x

(x, y, t)− ∂Ey
∂x

(x, yj+ 1
2
, t)) = O(h2

y)|
∂3Ey
∂x∂y2

|∞|Tij|,

r9,ij = (O(h2
x)|
∂2K

∂x2
|∞ +O(h2

y)|
∂2K

∂y2
|∞) · |Tij|.
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Similarly, we can obtain the following estimates for the Jx, Jy and K error equa-

tions, respectively,

r10,ij = (O(h2
x)|

∂3Jx
∂t∂x2

|∞ +O(h2
y)|

∂3Jx
∂t∂y2

|∞) · |Ti,j− 1
2
|,

r11,ij = (O(h2
x)|
∂2Jx
∂x2
|∞ +O(h2

y)|
∂2Jx
∂y2
|∞) · |Ti,j− 1

2
|,

r12,ij = (O(h2
x)|
∂2Ex
∂x2
|∞ +O(h2

y)|
∂2Ex
∂y2
|∞) · |Ti,j− 1

2
|,

r13,ij = (O(h2
x)|

∂3Jy
∂t∂x2

|∞ +O(h2
y)|

∂3Jy
∂t∂y2

|∞) · |Ti− 1
2
,j|,

r14,ij = (O(h2
x)|
∂2Jy
∂x2
|∞ +O(h2

y)|
∂2Jy
∂y2
|∞) · |Ti− 1

2
,j|,

r15,ij = (O(h2
x)|
∂2Ey
∂x2
|∞ +O(h2

y)|
∂2Ey
∂y2
|∞) · |Ti− 1

2
,j|,

and

r16,ij = (O(h2
x)|

∂3K

∂t∂x2
|∞ +O(h2

y)|
∂3K

∂t∂y2
|∞) · |Tij|,

r17,ij = (O(h2
x)|
∂2K

∂x2
|∞ +O(h2

y)|
∂2K

∂y2
|∞) · |Tij|,

r18,ij = (O(h2
x)|
∂2H

∂x2
|∞ +O(h2

y)|
∂2H

∂y2
|∞) · |Tij|.

Denote the error energy

Q(t) = [ε0(||Ex||2E + ||Ey||2E) + µ0||H||2H +
1

ε0ω2
pe

(||Jx||2J + ||Jy||2J) +
1

µ0ω2
pm

||K||2K ](t).

Multiplying Ex,i+ 1
2
,j to (2.22), Ey,i,j+ 1

2
to (2.23), Hi+ 1

2
,j+ 1

2
to (2.24), Jx,i+ 1

2
,j to

(2.25), Jy,i,j+ 1
2

to (2.26), Ki+ 1
2
,j+ 1

2
to (2.27), summing up the results for all i and j,

using estimates such as the following:

∑
0≤i≤Nx−1
1≤j≤Ny−1

r1,ijEx,i+ 1
2
,j ≤

∑
0≤i≤Nx−1
1≤j≤Ny−1

[δ|Ti,j− 1
2
| · |Ex,i+ 1

2
,j|2 +

1

4δ
(O(h2

x) +O(h2
y))

2|Ti,j− 1
2
|]

≤ δ||Ex||2E +
1

4δ
(O(h2

x) +O(h2
y))

2,
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and using the estimate (2.18) with E and H replaced by E and H, respectively, we

obtain

1

2

d

dt
Q(t) +

Γe
ε0ω2

pe

(||Jx||2J + ||Jy||2J) +
Γm

µ0ω2
pm

||K||2K ≤ C(h2
x + h2

y)
2 +

δ

2
Q(t),

where δ > 0 is a small constant.

Integrating the above inequality from 0 to t, we have

Q(t) ≤ Q(0) + C(h2
x + h2

y)
2t+ δ

∫ t

0

Q(s)ds. (2.33)

Suppose that t∗ achieves the maximum of Q(s) on the interval [0, t], i.e.,

max
0≤s≤t

Q(s) = Q(t∗)

. Using t = t∗ in (2.33), we obtain

Q(t∗) ≤ Q(0) + C(h2
x + h2

y)
2t∗ + δt∗Q(t∗). (2.34)

Choosing δ small enough such that δt∗ < 1, and using the assumption (2.81), we

complete the proof.

2.3 The fully discrete scheme

To construct a fully discrete scheme, we divide the time interval [0, T ] into Nt + 2

uniform intervals, i.e., we have discrete times 0 = t0 < t1 < · · · < tNt+2 = T.

Approximating those time directives properly in the semi-discrete schemes (2.8),

(2.10), (2.12), (2.14), (2.15), and (2.16), we can obtain the following fully-discrete

scheme: Given initial approximations E0
x,i+ 1

2
,j
, E0

y,i,j+ 1
2

, H
1
2

i+ 1
2
,j+ 1

2

, J
1
2

x,i+ 1
2
,j
, J

1
2

y,i,j+ 1
2

,
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K1
i+ 1

2
,j+ 1

2

, for any 0 ≤ n ≤ Nt, solve En+1
x,i+ 1

2
,j
, En+1

y,i,j+ 1
2

, H
n+ 3

2

i+ 1
2
,j+ 1

2

, J
n+ 3

2

x,i+ 1
2
,j
, J

n+ 3
2

y,i,j+ 1
2

,

Kn+2
i+ 1

2
,j+ 1

2

from:

ε0
En+1
x,i+ 1

2
,j
− En

x,i+ 1
2
,j

τ
=
H
n+ 1

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j− 1

2

yj+ 1
2
− yj− 1

2

− Jn+ 1
2

x,i+ 1
2
,j
, (2.35)

ε0
En+1
y,i,j+ 1

2

− En
y,i,j+ 1

2

τ
= −

H
n+ 1

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i− 1
2
,j+ 1

2

xi+ 1
2
− xi− 1

2

− Jn+ 1
2

y,i,j+ 1
2

, (2.36)

µ0

H
n+ 3

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j+ 1

2

τ
= −

En+1
y,i+1,j+ 1

2

− En+1
y,i,j+ 1

2

xi+1 − xi
+
En+1
x,i+ 1

2
,j+1
− En+1

x,i+ 1
2
,j

yj+1 − yj

−Kn+1
i+ 1

2
,j+ 1

2

, (2.37)

1

ε0ω2
pe

J
n+ 3

2

x,i+ 1
2
,j
− Jn+ 1

2

x,i+ 1
2
,j

τ
+

Γe
ε0ω2

pe

J
n+ 3

2

x,i+ 1
2
,j

+ J
n+ 1

2

x,i+ 1
2
,j

2
= En+1

x,i+ 1
2
,j
, (2.38)

1

ε0ω2
pe

J
n+ 3

2

y,i,j+ 1
2

− Jn+ 1
2

y,i,j+ 1
2

τ
+

Γe
ε0ω2

pe

J
n+ 3

2

y,i,j+ 1
2

+ J
n+ 1

2

y,i,j+ 1
2

2
= En+1

y,i,j+ 1
2

, (2.39)

1

µ0ω2
pm

Kn+2
i+ 1

2
,j+ 1

2

−Kn+1
i+ 1

2
,j+ 1

2

τ
+

Γm
µ0ω2

pm

Kn+2
i+ 1

2
,j+ 1

2

+Kn+1
i+ 1

2
,j+ 1

2

2
= H

n+ 3
2

i+ 1
2
,j+ 1

2

.(2.40)

Let Cv = 1/
√
ε0µ0 be the wave propagation speed in free space. For any grid

function ui,j, let us denote the backward difference operators ∇x and ∇y:

∇xui+1,j =
ui+1,j − ui,j
xi+1 − xi

, ∇yui,j+1 =
ui,j+1 − ui,j
yj+1 − yj

.

Furthermore, we denote the constant Cinv > 0 satisfying the inverse inequality

||∇xu|| ≤ Cinvh
−1
x ||u||, ||∇yu|| ≤ Cinvh

−1
y ||u||, (2.41)

for any energy norm defined earlier.
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The stability analysis

Theorem 2.3.1. Assume that the time step size τ satisfies the constraint

τ ≤ min(
Cinvhy

2Cv
,
Cinvhx

2Cv
,

1

2ωpe
,

1

2ωpm
), (2.42)

then the solution of the fully discrete scheme (2.35)-(2.40) satisfies the following

stability: For any 1 ≤ n ≤ Nt,

ε0(||En+1
x ||2E + ||En+1

y ||2E) + µ0||Hn+ 3
2 ||2H

+
1

ε0ω2
pe

(||Jn+ 3
2

x ||2J + ||Jn+ 3
2

y ||2J) +
1

µ0ω2
pm

||Kn+2||2K

≤ C[ε0(||E0
x||2E + ||E0

y ||2E) + µ0||H
1
2 ||2H

+
1

ε0ω2
pe

(||J
1
2
x ||2J + ||J

1
2
y ||2J) +

1

µ0ω2
pm

||K1||2K ], (2.43)

where the constant C > 0 is independent of τ, hx and hy.

Proof. Multiplying (2.35) by τ |Ti,j− 1
2
|(En+1

x,i+ 1
2
,j

+ En
x,i+ 1

2
,j

), (2.36) by

τ |Ti− 1
2
,j|(En+1

y,i,j+ 1
2

+ En
y,i,j+ 1

2

), (2.37) by τ |Tij|(H
n+ 3

2

i+ 1
2
,j+ 1

2

+H
n+ 1

2

i+ 1
2
,j+ 1

2

), (2.38) by

τ |Ti,j− 1
2
|(Jn+ 3

2

x,i+ 1
2
,j

+ J
n+ 1

2

x,i+ 1
2
,j

), (2.39) by τ |Ti− 1
2
,j|(J

n+ 3
2

y,i,j+ 1
2

+ J
n+ 1

2

y,i,j+ 1
2

), (2.40) by

τ |Tij|(Kn+2
i+ 1

2
,j+ 1

2

+ Kn+1
i+ 1

2
,j+ 1

2

), then summing up the results, we obtain the sum of the

right hand side as

RHS = τ
∑

0≤i≤Nx−1
1≤j≤Ny−1

[(xi+1 − xi)(H
n+ 1

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j− 1

2

)

−Jn+ 1
2

x,i+ 1
2
,j
|Ti,j− 1

2
|](En+1

x,i+ 1
2
,j

+ En
x,i+ 1

2
,j

)

+τ
∑

1≤i≤Nx−1
0≤j≤Ny−1

[−(yj+1 − yj)(H
n+ 1

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i− 1
2
,j+ 1

2

)

−Jn+ 1
2

y,i,j+ 1
2

|Ti− 1
2
,j|](En+1

y,i,j+ 1
2

+ En
y,i,j+ 1

2
)
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+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

[−(yj+1 − yj)(En+1
y,i+1,j+ 1

2

− En+1
y,i,j+ 1

2

)

+(xi+1 − xi)(En+1
x,i+ 1

2
,j+1
− En+1

x,i+ 1
2
,j

)

−Kn+1
i+ 1

2
,j+ 1

2

|Tij|](H
n+ 3

2

i+ 1
2
,j+ 1

2

+H
n+ 1

2

i+ 1
2
,j+ 1

2

)

+τ
∑

0≤i≤Nx−1
1≤j≤Ny−1

En+1
x,i+ 1

2
,j
· |Ti,j− 1

2
|(Jn+ 3

2

x,i+ 1
2
,j

+ J
n+ 1

2

x,i+ 1
2
,j

)

+τ
∑

1≤i≤Nx−1
0≤j≤Ny−1

En+1
y,i,j+ 1

2

· |Ti− 1
2
,j|(J

n+ 3
2

y,i,j+ 1
2

+ J
n+ 1

2

y,i,j+ 1
2

)

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

H
n+ 3

2

i+ 1
2
,j+ 1

2

· |Tij|(Kn+2
i+ 1

2
,j+ 1

2

+Kn+1
i+ 1

2
,j+ 1

2

).

Regrouping those terms in RHS, we rewrite RHS as

RHS = τ
∑

0≤i≤Nx−1

(xi+1 − xi)
∑

1≤j≤Ny−1

[(H
n+ 1

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j− 1

2

)(En+1
x,i+ 1

2
,j

+En
x,i+ 1

2
,j

)

+(En+1
x,i+ 1

2
,j+1
− En+1

x,i+ 1
2
,j

)(H
n+ 3

2

i+ 1
2
,j+ 1

2

+H
n+ 1

2

i+ 1
2
,j+ 1

2

)]

+τ
∑

0≤j≤Ny−1

(yj+1 − yj)
∑

1≤i≤Nx−1

[(H
n+ 1

2

i− 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j+ 1

2

)(En+1
y,i,j+ 1

2

+En
y,i,j+ 1

2
)

+(En+1
y,i,j+ 1

2

− En+1
y,i+1,j+ 1

2

)(H
n+ 3

2

i+ 1
2
,j+ 1

2

+H
n+ 1

2

i+ 1
2
,j+ 1

2

)]

+τ
∑

0≤i≤Nx−1
1≤j≤Ny−1

|Ti,j− 1
2
|[−Jn+ 1

2

x,i+ 1
2
,j

(En+1
x,i+ 1

2
,j

+ En
x,i+ 1

2
,j

)

+(J
n+ 3

2

x,i+ 1
2
,j

+ J
n+ 1

2

x,i+ 1
2
,j

)En+1
x,i+ 1

2
,j

]

+τ
∑

1≤i≤Nx−1
0≤j≤Ny−1

|Ti− 1
2
,j|[−J

n+ 1
2

y,i,j+ 1
2

(En+1
y,i,j+ 1

2

+ En
y,i,j+ 1

2
)

+(J
n+ 3

2

y,i,j+ 1
2

+ J
n+ 1

2

y,i,j+ 1
2

)En+1
y,i,j+ 1

2

]

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij|[−Kn+1
i+ 1

2
,j+ 1

2

(H
n+ 3

2

i+ 1
2
,j+ 1

2

+H
n+ 1

2

i+ 1
2
,j+ 1

2

)
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+H
n+ 3

2

i+ 1
2
,j+ 1

2

(Kn+2
i+ 1

2
,j+ 1

2

+Kn+1
i+ 1

2
,j+ 1

2

)]

:= τ

[ ∑
0≤i≤Nx−1

(xi+1 − xi)R1

+
∑

0≤j≤Ny−1

(yj+1 − yj)R2 +R3 +R4 +R5

 . (2.44)

To evaluate the above RHS, below we evaluate each term separately. First, note

that

Nt∑
n=0

R1 =
Nt∑
n=0

∑
0≤j≤Ny−1

[(H
n+ 1

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j− 1

2

)(En+1
x,i+ 1

2
,j

+ En
x,i+ 1

2
,j

)

+(En+1
x,i+ 1

2
,j+1
− En+1

x,i+ 1
2
,j

)(H
n+ 3

2

i+ 1
2
,j+ 1

2

+H
n+ 1

2

i+ 1
2
,j+ 1

2

)]

=
Nt∑
n=0

∑
0≤j≤Ny−1

[(H
n+ 1

2

i+ 1
2
,j+ 1

2

En
x,i+ 1

2
,j
−Hn+ 3

2

i+ 1
2
,j+ 1

2

En+1
x,i+ 1

2
,j

)

+(H
n+ 1

2

i+ 1
2
,j+ 1

2

En+1
x,i+ 1

2
,j+1
−Hn+ 1

2

i+ 1
2
,j− 1

2

En+1
x,i+ 1

2
,j

)]

+
Nt∑
n=0

∑
0≤j≤Ny−1

[(H
n+ 3

2

i+ 1
2
,j+ 1

2

En+1
x,i+ 1

2
,j+1
−Hn+ 1

2

i+ 1
2
,j+ 1

2

En
x,i+ 1

2
,j+1

)

+(H
n+ 1

2

i+ 1
2
,j+ 1

2

En
x,i+ 1

2
,j+1
−Hn+ 1

2

i+ 1
2
,j− 1

2

En
x,i+ 1

2
,j

)]

=
∑

0≤j≤Ny−1

(H
1
2

i+ 1
2
,j+ 1

2

E0
x,i+ 1

2
,j
−HNt+

3
2

i+ 1
2
,j+ 1

2

ENt+1

x,i+ 1
2
,j

)

+
Nt∑
n=0

(H
n+ 1

2

i+ 1
2
,Ny+ 1

2

En+1
x,i+ 1

2
,Ny
−Hn+ 1

2

i+ 1
2
,− 1

2

En+1
x,i+ 1

2
,0

)

+
∑

0≤j≤Ny−1

(H
Nt+

3
2

i+ 1
2
,j+ 1

2

ENt+1

x,i+ 1
2
,j+1
−H

1
2

i+ 1
2
,j+ 1

2

E0
x,i+ 1

2
,j+1

)

+
Nt∑
n=0

(H
n+ 1

2

i+ 1
2
,Ny+ 1

2

En
x,i+ 1

2
,Ny

)−Hn+ 1
2

i+ 1
2
,− 1

2

En
x,i+ 1

2
,0

)

=
∑

0≤j≤Ny−1

(H
1
2

i+ 1
2
,j+ 1

2

E0
x,i+ 1

2
,j
−HNt+

3
2

i+ 1
2
,j+ 1

2

ENt+1

x,i+ 1
2
,j

)

+
∑

0≤j≤Ny−1

(H
Nt+

3
2

i+ 1
2
,j+ 1

2

ENt+1

x,i+ 1
2
,j+1
−H

1
2

i+ 1
2
,j+ 1

2

E0
x,i+ 1

2
,j+1

)

=
∑

0≤j≤Ny−1

(yj+1 − yj)(H
Nt+

3
2

i+ 1
2
,j+ 1

2

∇yE
Nt+1

x,i+ 1
2
,j+1
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−H
1
2

i+ 1
2
,j+ 1

2

∇yE
0
x,i+ 1

2
,j+1

), (2.45)

where we used the PEC boundary condition (2.19) in the second last step, and the

backward difference operator ∇y in the last step. Note that in the first step, we

extended the original sum of 1 ≤ j ≤ Ny−1 to 0 ≤ j ≤ Ny−1. Even though H
n+ 1

2

i+ 1
2
,− 1

2

has subindex out of the original bound, its product with En+1
x,i+ 1

2
,0

+ En
x,i+ 1

2
,0

= 0 (by

the PEC boundary condition (2.19)) is still zero.

The term R2 can be evaluated as follows:

Nt∑
n=0

R2 =
Nt∑
n=0

∑
0≤i≤Nx−1

[(H
n+ 1

2

i− 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j+ 1

2

)(En+1
y,i,j+ 1

2

+ En
y,i,j+ 1

2
)

+(En+1
y,i,j+ 1

2

− En+1
y,i+1,j+ 1

2

)(H
n+ 3

2

i+ 1
2
,j+ 1

2

+H
n+ 1

2

i+ 1
2
,j+ 1

2

)]

=
Nt∑
n=0

∑
0≤i≤Nx−1

[(H
n+ 1

2

i− 1
2
,j+ 1

2

En+1
y,i,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j+ 1

2

En+1
y,i+1,j+ 1

2

)

+(−Hn+ 1
2

i+ 1
2
,j+ 1

2

En
y,i,j+ 1

2
+H

n+ 3
2

i+ 1
2
,j+ 1

2

En+1
y,i,j+ 1

2

)]

+
Nt∑
n=0

∑
0≤i≤Nx−1

[(H
n+ 1

2

i− 1
2
,j+ 1

2

En
y,i,j+ 1

2
−Hn+ 1

2

i+ 1
2
,j+ 1

2

En
y,i+1,j+ 1

2
)

+(H
n+ 1

2

i+ 1
2
,j+ 1

2

En
y,i+1,j+ 1

2
−Hn+ 3

2

i+ 1
2
,j+ 1

2

En+1
y,i+1,j+ 1

2

)]

=
Nt∑
n=0

(H
n+ 1

2

− 1
2
,j+ 1

2

En+1
y,0,j+ 1

2

−Hn+ 1
2

Nx− 1
2
,j+ 1

2

En+1
y,Nx,j+

1
2

)

+
∑

0≤i≤Nx−1

(−H
1
2

i+ 1
2
,j+ 1

2

E0
y,i,j+ 1

2
+H

Nt+
3
2

i+ 1
2
,j+ 1

2

ENt+1

y,i,j+ 1
2

)

+
Nt∑
n=0

(H
n+ 1

2

− 1
2
,j+ 1

2

En
y,0,j+ 1

2
−Hn+ 1

2

Nx+ 1
2
,j+ 1

2

En
y,Nx,j+

1
2
)

+
∑

0≤i≤Nx−1

(H
1
2

i+ 1
2
,j+ 1

2

E0
y,i+1,j+ 1

2
−HNt+

3
2

i+ 1
2
,j+ 1

2

ENt+1

y,i+1,j+ 1
2

)

=
∑

0≤i≤Nx−1

(−H
1
2

i+ 1
2
,j+ 1

2

E0
y,i,j+ 1

2
+H

Nt+
3
2

i+ 1
2
,j+ 1

2

ENt+1

y,i,j+ 1
2

)

+
∑

0≤i≤Nx−1

(H
1
2

i+ 1
2
,j+ 1

2

E0
y,i+1,j+ 1

2
−HNt+

3
2

i+ 1
2
,j+ 1

2

ENt+1

y,i+1,j+ 1
2

)
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=
∑

0≤i≤Nx−1

(xi+1 − xi)(−H
Nt+

3
2

i+ 1
2
,j+ 1

2

∇xE
Nt+1

y,i+1,j+ 1
2

+H
1
2

i+ 1
2
,j+ 1

2

∇xE
0
y,i+1,j+ 1

2
), (2.46)

where the PEC boundary condition (2.19) was used in the second last step, and

the backward difference operator ∇x was used in the last step. Here similarly to

R1, in the first step we extended the original sum of 1 ≤ i ≤ Nx − 1 to 0 ≤ i ≤

Nx − 1. Even though H
n+ 1

2

− 1
2
,j+ 1

2

has subindex out of the original bound, its product

with En+1
y,0,j+ 1

2

+ En
y,0,j+ 1

2

= 0 (by the PEC boundary condition (2.19)) is still zero.

Similarly, we can evaluate the rest terms in RHS (2.44) as follows.

Nt∑
n=0

R3 =
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

|Ti,j− 1
2
|[−Jn+ 1

2

x,i+ 1
2
,j

(En+1
x,i+ 1

2
,j

+ En
x,i+ 1

2
,j

)

+(J
n+ 3

2

x,i+ 1
2
,j

+ J
n+ 1

2

x,i+ 1
2
,j

)En+1
x,i+ 1

2
,j

]

=
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Ti,j− 1
2
|(JNt+

3
2

x,i+ 1
2
,j
ENt+1

x,i+ 1
2
,j
− J

1
2

x,i+ 1
2
,j
E0
x,i+ 1

2
,j

), (2.47)

Nt∑
n=0

R4 =
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

|Ti− 1
2
,j|[−J

n+ 1
2

y,i,j+ 1
2

(En+1
y,i,j+ 1

2

+ En
y,i,j+ 1

2
)

+(J
n+ 3

2

y,i,j+ 1
2

+ J
n+ 1

2

y,i,j+ 1
2

)En+1
y,i,j+ 1

2

]

=
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Ti− 1
2
,j|(J

Nt+
3
2

y,i,j+ 1
2

ENt+1

y,i,j+ 1
2

− J
1
2

y,i,j+ 1
2

E0
y,i,j+ 1

2
), (2.48)

and

Nt∑
n=0

R5 =
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

|Tij|[−Kn+1
i+ 1

2
,j+ 1

2

(H
n+ 3

2

i+ 1
2
,j+ 1

2

+H
n+ 1

2

i+ 1
2
,j+ 1

2

)

+H
n+ 3

2

i+ 1
2
,j+ 1

2

(Kn+2
i+ 1

2
,j+ 1

2

+Kn+1
i+ 1

2
,j+ 1

2

)]
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=
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij|(H
Nt+

3
2

i+ 1
2
,j+ 1

2

KNt+2

i+ 1
2
,j+ 1

2

−H
1
2

i+ 1
2
,j+ 1

2

K1
i+ 1

2
,j+ 1

2
). (2.49)

Summing up (2.44) from n = 0 toNt, then substituting the estimates (2.45)-(2.49),

and using the energy norm notations, we have

ε0(||ENt+1
x ||2E − ||E0

x||2E) + ε0(||ENt+1
y ||2E − ||E0

y ||2E) + µ0(||HNt+
3
2 ||2H − ||H

1
2 ||2H)

+
1

ε0ω2
pe

(||JNt+
3
2

x ||2J − ||J
1
2
x ||2J) +

1

ε0ω2
pe

(||JNt+
3
2

y ||2J − ||J
1
2
y ||2J)

+
1

µ0ω2
pm

(||KNt+2||2K − ||K1||2K)

≤ τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij|(H
Nt+

3
2

i+ 1
2
,j+ 1

2

∇yE
Nt+1

x,i+ 1
2
,j+1
−H

1
2

i+ 1
2
,j+ 1

2

∇yE
0
x,i+ 1

2
,j+1

)

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij|(−H
Nt+

3
2

i+ 1
2
,j+ 1

2

∇xE
Nt+1

y,i+1,j+ 1
2

+H
1
2

i+ 1
2
,j+ 1

2

∇xE
0
y,i+1,j+ 1

2
)

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Ti,j− 1
2
|(JNt+

3
2

x,i+ 1
2
,j
ENt+1

x,i+ 1
2
,j
− J

1
2

x,i+ 1
2
,j
E0
x,i+ 1

2
,j

)

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Ti− 1
2
,j|(J

Nt+
3
2

y,i,j+ 1
2

ENt+1

y,i,j+ 1
2

− J
1
2

y,i,j+ 1
2

E0
y,i,j+ 1

2
)

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij|(H
Nt+

3
2

i+ 1
2
,j+ 1

2

KNt+2

i+ 1
2
,j+ 1

2

−H
1
2

i+ 1
2
,j+ 1

2

K1
i+ 1

2
,j+ 1

2
). (2.50)

Now we just need to bound those right hand side terms of (2.50). Using the

Cauchy-Schwarz inequality and the inverse estimate (2.41), we have

τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij| ·H
Nt+

3
2

i+ 1
2
,j+ 1

2

∇yE
Nt+1

x,i+ 1
2
,j+1

≤ τ(
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij| · |H
Nt+

3
2

i+ 1
2
,j+ 1

2

|2)1/2(
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij| · |∇yE
Nt+1

x,i+ 1
2
,j+1
|2)1/2

= τ ||HNt+
3
2 ||H ||∇yE

Nt+1
x ||E ≤ δµ0||HNt+

3
2 ||2H

+
1

4δ
·

(τCinvh
−1
y )2

µ0ε0
· ε0||ENt+1

x ||2E. (2.51)
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Similarly, we can obtain

τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij| ·H
Nt+

3
2

i+ 1
2
,j+ 1

2

∇xE
Nt+1

y,i+1,j+ 1
2

≤ δµ0||HNt+
3
2 ||2H +

1

4δ
· (τCinvh

−1
x )2

µ0ε0
· ε0||ENt+1

y ||2E. (2.52)

By the similar technique, we can prove that

τ
∑

0≤i≤Nx−1
1≤j≤Ny−1

|Ti,j− 1
2
| · JNt+

3
2

x,i+ 1
2
,j
ENt+1

x,i+ 1
2
,j

≤ τ ||JNt+
3
2

x ||J ||ENt+1
x ||E ≤

τωpe
2

(
1

ε0ω2
pe

||JNt+
3
2

x ||2J + ε0||ENt+1
x ||2E), (2.53)

τ
∑

1≤i≤Nx−1
0≤j≤Ny−1

|Ti− 1
2
,j| · J

Nt+
3
2

y,i,j+ 1
2

ENt+1

y,i,j+ 1
2

≤ τ ||JNt+
3
2

y ||J ||ENt+1
y ||E ≤

τωpe
2

(
1

ε0ω2
pe

||JNt+
3
2

y ||2J + ε0||ENt+1
y ||2E), (2.54)

and

τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij| ·H
Nt+

3
2

i+ 1
2
,j+ 1

2

KNt+2

i+ 1
2
,j+ 1

2

≤ τ ||HNt+
3
2 ||H ||KNt+2||K ≤

τωpm
2

(µ0||HNt+
3
2 ||2H +

1

µ0ω2
pm

||KNt+2||2K).(2.55)

Substituting the estimates (2.51)-(2.55) into (2.50), then choosing δ and τ small

enough so that the left hand side terms of (2.50) can control those corresponding

terms on the right hand side. A specific choice can be

δ =
1

4
, τ ≤ Cinvhy

2Cv
, τ ≤ Cinvhx

2Cv
, τ ≤ 1

2ωpe
, τ ≤ 1

2ωpm
.

This completes the proof.
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The error estimate

To make the error analysis easy to follow, we denote the errors by their corre-

sponding script letters. For example, the error of Ex at point (xi+ 1
2
, yj, tn) is denoted

by En
x,i+ 1

2
,j

= Ex(xi+ 1
2
, yj, tn)−En

x,i+ 1
2
,j

, where Ex(xi+ 1
2
, yj, tn) and En

x,i+ 1
2
,j

denote the

exact and numerical solutions of Ex at point (xi+ 1
2
, yj, tn), respectively. Similar error

notations given below will be used for other variables:

En
y,i,j+ 1

2
, Hn+ 1

2

i+ 1
2
,j+ 1

2

, J n+ 1
2

x,i+ 1
2
,j
, J n+ 1

2

y,i,j+ 1
2

, Kn+1
i+ 1

2
,j+ 1

2

.

The error equation for Ex

Multiplying (2.35) by |Ti,j− 1
2
| (the area of rectangle Ti,j− 1

2
), we can rewrite (2.35) as

follows:

ε0|Ti,j− 1
2
|

τ
(En+1

x,i+ 1
2
,j
− En

x,i+ 1
2
,j

) = (xi+1 − xi)(H
n+ 1

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j− 1

2

)− |Ti,j− 1
2
|Jn+ 1

2

x,i+ 1
2
,j
,

from which we can easily obtain the error equation for Ex:

ε0|Ti,j− 1
2
|

τ
(En+1
x,i+ 1

2
,j
− En

x,i+ 1
2
,j

)

= (xi+1 − xi)(H
n+ 1

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j− 1

2

)− |Ti,j− 1
2
|J n+ 1

2

x,i+ 1
2
,j

+R1, (2.56)

where the local truncation error term R1 is given by

R1 =
ε0|Ti,j− 1

2
|

τ
(Ex(xi+ 1

2
, yj, tn+1)− Ex(xi+ 1

2
, yj, tn))

−(xi+1 − xi)(H(xi+ 1
2
, yj+ 1

2
, tn+ 1

2
)−H(xi+ 1

2
, yj− 1

2
, tn+ 1

2
))

+|Ti,j− 1
2
|Jx(xi+ 1

2
, yj, tn+ 1

2
). (2.57)
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Integrating (2.7) from t = tn to tn+1 and dividing the resultant by τ , we have

ε0
τ

∫∫
T
i,j− 1

2

(Ex(x, y, tn+1)− Ex(x, y, tn))dxdy (2.58)

=
1

τ

∫ tn+1

tn

∫ xi+1

xi

(H(x, yj+ 1
2
, t)−H(x, yj− 1

2
, t))dxdt

−1

τ

∫ tn+1

tn

∫∫
T
i,j− 1

2

Jx(x, y, t)dxdydt.

Subtracting (2.58) from (2.57), we can rewrite R1 as follows:

R1 =
ε0
τ

∫∫
T
i,j− 1

2

[
(Ex(xi+ 1

2
, yj, tn+1)− Ex(x, y, tn+1))

−(Ex(xi+ 1
2
, yj, tn)− Ex(x, y, tn))

]
dxdy

− {
∫ xi+1

xi

(H(xi+ 1
2
, yj+ 1

2
, tn+ 1

2
)−H(xi+ 1

2
, yj− 1

2
, tn+ 1

2
))dx

− 1

τ

∫ tn+1

tn

∫ xi+1

xi

(H(x, yj+ 1
2
, t)−H(x, yj− 1

2
, t))dxdt}

+

∫∫
T
i,j− 1

2

Jx(xi+ 1
2
, yj, tn+ 1

2
)dxdy − 1

τ

∫ tn+1

tn

∫∫
T
i,j− 1

2

Jx(x, y, t)dxdydt


= R11 +R12 +R13. (2.59)

Following the same technique used for deriving (2.30), for any function f we can

prove that ∫∫
T
i,j− 1

2

(f(x, y, tn+1)− f(xi+ 1
2
, yj, tn+1))dxdy

−
∫∫

T
i,j− 1

2

(f(x, y, tn)− f(xi+ 1
2
, yj, tn))dxdy

=

∫∫
T
i,j− 1

2

[
1

2
(x− xi+ 1

2
)2(
∂2f

∂x2
(q1, tn+1)− ∂2f

∂x2
(q1, tn))

+
1

2
(y − yj)2(

∂2f

∂y2
(q2, tn+1)− ∂2f

∂y2
(q2, tn))]dxdy

= τ

∫∫
T
i,j− 1

2

[
1

2
(x− xi+ 1

2
)2 ∂3f

∂t∂x2
(q1, t∗)

+
1

2
(y − yj)2 ∂3f

∂t∂y2
(q2, t∗)

]
dxdy, (2.60)
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where we denote q1 and q2 for some points between (xi+ 1
2
, yj) and (x, y), and t∗

for some point between tn and tn+1. In the last step we used the following Taylor

expansion

g(tn+1)− g(tn) = τ
∂g

∂t
(t∗)

with g = ∂2f
∂x2

and g = ∂2f
∂y2

, respectively.

Applying (2.60) with f = Ex, we can bound R11 as follows:

R11 =
ε0
τ

∫∫
T
i,j− 1

2

[
1

2
(x− xi+ 1

2
)2τ

∂3Ex
∂t∂x2

(q1, t∗) +
1

2
(y − yj)2τ

∂3Ex
∂t∂y2

(q2, t∗)

]
dxdy

= (O(h2
x)|

∂3Ex
∂t∂x2

|∞ +O(h2
y)|

∂3Ex
∂t∂y2

|∞)|Ti,j− 1
2
|.

Similarly, by the Taylor expansion, we can estimate R12 as follows:

R12 = −
∫ xi+1

xi

∫ y
j+1

2

y
j− 1

2

∂H

∂y
(xi+ 1

2
, y, tn+ 1

2
)dydx

+
1

τ

∫ tn+1

tn

∫ xi+1

xi

∫ y
j+1

2

y
j− 1

2

∂H

∂y
(x, y, t)dydxdt

= −
∫ xi+1

xi

∫ y
j+1

2

y
j− 1

2

[
∂H

∂y
(xi+ 1

2
, y, tn+ 1

2
)− ∂H

∂y
(x, y, tn+ 1

2
)

]
dydx

+

∫ xi+1

xi

∫ y
j+1

2

y
j− 1

2

1

τ

∫ tn+1

tn

[
∂H

∂y
(x, y, t)− ∂H

∂y
(x, y, tn+ 1

2
)

]
dtdydx

=

∫∫
T
i,j− 1

2

1

2
(x− xi+ 1

2
)2 ∂3H

∂x2∂y
(x∗, y, tn+ 1

2
)dxdy

+

∫∫
T
i,j− 1

2

1

τ

∫ tn+1

tn

1

2
(t− tn+ 1

2
)2 ∂

3H

∂t2∂y
(x, y, t∗)dtdydx

= (O(h2
x)|

∂3H

∂x2∂y
|∞ +O(τ 2)| ∂

3H

∂t2∂y
|∞)|Ti,j− 1

2
|,

where x∗ is some number between xi+ 1
2

and x, and t∗ is some number between tn+ 1
2

and t.
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Using exactly the same argument, we can estimate R13 as follows:

R13 =

∫∫
T
i,j− 1

2

(Jx(xi+ 1
2
, yj, tn+ 1

2
)− Jx(x, y, tn+ 1

2
))dxdy

+
1

τ

∫ tn+1

tn

∫∫
T
i,j− 1

2

(Jx(x, y, tn+ 1
2
)− Jx(x, y, t))dxdydt

= (O(h2
x)|
∂2Jx
∂x2
|∞ +O(h2

y)|
∂2Jx
∂y2
|∞ +O(τ 2)|∂

2Jx
∂t2
|∞)|Ti,j− 1

2
|.

The error equation for Ey

Multiplying (2.36) by |Ti− 1
2
,j|, we can easily derive the error equation for Ey:

ε0|Ti− 1
2
,j|

τ
(En+1
y,i,j+ 1

2

− En
y,i,j+ 1

2
)

= −(yj+1 − yj)(H
n+ 1

2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i− 1
2
,j+ 1

2

)− |Ti− 1
2
,j|J

n+ 1
2

y,i,j+ 1
2

+R2, (2.61)

where the local truncation error R2 is given by

R2 =
ε0|Ti− 1

2
,j|

τ
(Ey(xi, yj+ 1

2
, tn+1)− Ey(xi, yj+ 1

2
, tn)) (2.62)

+(yj+1 − yj)(H(xi+ 1
2
, yj+ 1

2
, tn+ 1

2
)−H(xi− 1

2
, yj+ 1

2
, tn+ 1

2
))

+|Ti− 1
2
,j|Jy(xi, yj+ 1

2
, tn+ 1

2
).

Integrating (2.9) from t = tn to tn+1 and dividing the resultant by τ , we have

ε0
τ

∫∫
T
i− 1

2 ,j

(Ey(x, y, tn+1)− Ey(x, y, tn))dxdy (2.63)

= −1

τ

∫ tn+1

tn

∫ yj+1

yj

(H(xi+ 1
2
, y, t)−H(xi− 1

2
, y, t))dydt

−1

τ

∫ tn+1

tn

∫∫
T
i− 1

2
,j

Jy(x, y, t)dxdydt.
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Subtracting (2.63) from (2.62), we can rewrite R2 as follows:

R2 =
ε0
τ

∫∫
T
i− 1

2 ,j

[
(Ey(xi, yj+ 1

2
, tn+1)− Ey(x, y, tn+1))

−(Ey(xi, yj+ 1
2
, tn)− Ey(x, y, tn))

]
dxdy

− {
∫ yj+1

yj

(H(xi+ 1
2
, yj+ 1

2
, tn+ 1

2
)−H(xi− 1

2
, yj+ 1

2
, tn+ 1

2
))dy

− 1

τ

∫ tn+1

tn

∫ yj+1

yj

(H(xi+ 1
2
, y, t)−H(xi− 1

2
, y, t))dydt}

+

∫∫
T
i− 1

2
,j

Jy(xi, yj+ 1
2
, tn+ 1

2
)dxdy − 1

τ

∫ tn+1

tn

∫∫
T
i− 1

2 ,j

Jy(x, y, t)dxdydt


= R21 +R22 +R23. (2.64)

Following exactly the same technique developed above for R1, we can show that

R21 = (O(h2
x)|

∂3Ey
∂t∂x2

|∞ +O(h2
y)|

∂3Ey
∂t∂y2

|∞)|Ti− 1
2
,j|,

R22 = (O(h2
y)|

∂3H

∂y2∂x
|∞ +O(τ 2)| ∂

3H

∂t2∂x
|∞)|Ti− 1

2
,j|,

R23 = (O(h2
x)|
∂2Jy
∂x2
|∞ +O(h2

y)|
∂2Jy
∂y2
|∞ +O(τ 2)|∂

2Jy
∂t2
|∞)|Ti− 1

2
,j|.

The error equation for H

Multiplying (2.37) by |Ti,j|, we can easily obtain the error equation for H:

µ0|Ti,j|
τ

(Hn+ 3
2

i+ 1
2
,j+ 1

2

−Hn+ 1
2

i+ 1
2
,j+ 1

2

) = −(yj+1 − yj)(En+1
y,i+1,j+ 1

2

− En+1
y,i,j+ 1

2

)

+(xi+1 − xi)(En+1
x,i+ 1

2
,j+1
− En+1

x,i+ 1
2
,j

)− |Ti,j|Kn+1
i+ 1

2
,j+ 1

2

+R3, (2.65)

where the local truncation error R3 is given by

R3 =
µ0|Ti,j|
τ

(H(xi+ 1
2
, yj+ 1

2
, tn+ 3

2
)−H(xi+ 1

2
, yj+ 1

2
, tn+ 1

2
))

+(yj+1 − yj)(Ey(xi+1, yj+ 1
2
, tn+1)− Ey(xi, yj+ 1

2
, tn+1)) (2.66)

−(xi+1 − xi)(Ex(xi+ 1
2
, yj+1, tn+1)− Ex(xi+ 1

2
, yj, tn+1))

36



+|Ti,j|K(xi+ 1
2
, yj+ 1

2
, tn+1).

Integrating (2.11) from t = tn+ 1
2

to tn+ 3
2

and dividing the resultant by τ , we obtain

µ0

τ

∫∫
Ti,j

(H(x, y, tn+ 3
2
)−H(x, y, tn+ 1

2
))dxdy

= −1

τ

∫ t
n+3

2

t
n+1

2

∫∫
Ti,j

(
∂Ey
∂x
− ∂Ex

∂y
)(x, y, t)dxdydt

−1

τ

∫ t
n+3

2

t
n+1

2

∫∫
Ti,j

K(x, y, t)dxdydt. (2.67)

Subtracting (2.67) from (2.66), we can rewrite R3 as follows:

R3 =
µ0

τ

∫∫
Ti,j

{(H(xi+ 1
2
, yj+ 1

2
, tn+ 3

2
)−H(x, y, tn+ 3

2
))

−(H(xi+ 1
2
, yj+ 1

2
, tn+ 1

2
)−H(x, y, tn+ 1

2
))}dxdy

+{
∫∫

Ti,j

(
∂Ey
∂x

(x, yj+ 1
2
, tn+1)− ∂Ex

∂y
(xi+ 1

2
, y, tn+1))dxdy

−1

τ

∫ t
n+3

2

t
n+1

2

∫∫
Ti,j

(
∂Ey
∂x

(x, y, t)− ∂Ex
∂y

(x, y, t))dxdydt}

+{
∫∫

Ti,j

K(xi+ 1
2
, yj+ 1

2
, tn+1)dxdy − 1

τ

∫ t
n+3

2

t
n+1

2

∫∫
Ti,j

K(x, y, t)dxdydt}

= R31 +R32 +R33. (2.68)

By the Taylor expansion, we can obtain

R31 = (O(h2
x)|

∂3H

∂t∂x2
|∞ +O(h2

y)|
∂3H

∂t∂y2
|∞)|Ti,j|,

R32 = (O(h2
y)|

∂3Ey
∂y2∂x

|∞ +O(τ 2)| ∂
3Ey

∂t2∂x
|∞ +O(h2

x)|
∂3Ex
∂x2∂y

|∞

+O(τ 2)| ∂
3Ex

∂t2∂y
|∞)|Ti,j|,

R33 = (O(h2
x)|
∂2K

∂x2
|∞ +O(h2

y)|
∂2K

∂y2
|∞ +O(τ 2)|∂

2K

∂t2
|∞)|Ti,j|.
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The error equation for Jx

Multiplying (2.38) by |Ti,j− 1
2
|, we easily derive the error equation for Jx:

|Ti,j− 1
2
|

τε0ω2
pe

(J n+ 3
2

x,i+ 1
2
,j
− J n+ 1

2

x,i+ 1
2
,j

) +
Γe|Ti,j− 1

2
|

2ε0ω2
pe

(J n+ 3
2

x,i+ 1
2
,j

+ J n+ 1
2

x,i+ 1
2
,j

)

= |Ti,j− 1
2
|En+1
x,i+ 1

2
,j

+R4, (2.69)

where the local truncation error R4 is given by

R4 =
|Ti,j− 1

2
|

τε0ω2
pe

(Jx(xi+ 1
2
, yj, tn+ 3

2
)− Jx(xi+ 1

2
, yj, tn+ 1

2
))

+
Γe|Ti,j− 1

2
|

2ε0ω2
pe

(Jx(xi+ 1
2
, yj, tn+ 3

2
) + Jx(xi+ 1

2
, yj, tn+ 1

2
))

−|Ti,j− 1
2
|Ex(xi+ 1

2
, yj, tn+1). (2.70)

Integrating (2.13) from t = tn+ 1
2

to tn+ 3
2

and dividing the resultant by τ , we have

1

τε0ω2
pe

∫∫
T
i,j− 1

2

(Jx(x, y, tn+ 3
2
)− Jx(x, y, tn+ 1

2
))dxdy

+
Γe

τε0ω2
pe

∫ t
n+3

2

t
n+1

2

∫∫
T
i,j− 1

2

Jx(x, y, t)dxdydt

=
1

τ

∫ t
n+3

2

t
n+1

2

∫∫
T
i,j− 1

2

Ex(x, y, t)dxdydt. (2.71)

Subtracting (2.71) from (2.70), we can rewrite R4 as follows:

R4 =
1

τε0ω2
pe

∫∫
T
i,j− 1

2

{(Jx(xi+ 1
2
, yj, tn+ 3

2
)− Jx(x, y, tn+ 3

2
))

−(Jx(xi+ 1
2
, yj, tn+ 1

2
)− Jx(x, y, tn+ 1

2
))}dxdy

+
Γe
ε0ω2

pe

{
∫∫

T
i,j− 1

2

1

2
(Jx(xi+ 1

2
, yj, tn+ 3

2
) + Jx(xi+ 1

2
, yj, tn+ 1

2
))dxdy

−1

τ

∫ t
n+3

2

t
n+1

2

∫∫
T
i,j− 1

2

Jx(x, y, t)dxdydt}

−{
∫∫

T
i,j− 1

2

Ex(xi+ 1
2
, yj, tn+1)dxdy − 1

τ

∫ t
n+3

2

t
n+1

2

∫∫
T
i,j− 1

2

Ex(x, y, t)dxdydt}

= R41 +R42 +R43. (2.72)
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By the Taylor expansion, we easily have

R41 = (O(h2
x)|

∂3Jx
∂t∂x2

|∞ +O(h2
y)|

∂3Jx
∂t∂y2

|∞)|Ti,j− 1
2
|,

R42 =
Γe
ε0ω2

pe

{
∫∫

T
i,j− 1

2

1

2
(Jx(xi+ 1

2
, yj, tn+ 3

2
) + Jx(xi+ 1

2
, yj, tn+ 1

2
)

−Jx(x, y, tn+ 3
2
)− Jx(x, y, tn+ 1

2
))dxdy}

+

∫∫
T
i,j− 1

2

1

τ

∫ t
n+3

2

t
n+1

2

{1

2
(Jx(x, y, tn+ 3

2
) + Jx(x, y, tn+ 1

2
))− Jx(x, y, t)}dtdxdy

= (O(h2
x)|
∂2Jx
∂x2
|∞ +O(h2

y)|
∂2Jx
∂y2
|∞ +O(τ 2)|∂

2Jx
∂t2
|∞)|Ti,j− 1

2
|,

where in the last step we used the property: For any function f ∈ C2([0, T ]),

1

τ

∫ t
n+3

2

t
n+1

2

{1

2
(f(tn+ 3

2
) + f(tn+ 1

2
))− f(t)}dt = O(τ 2)|∂

2f

∂t2
|∞.

Similarly, it is easy to show that

R43 = (O(h2
x)|
∂2Ex
∂x2
|∞ +O(h2

y)|
∂2Ex
∂y2
|∞ +O(τ 2)|∂

2Ex
∂t2
|∞)|Ti,j− 1

2
|.

The error equation for Jy

Following exactly the same technique used for the Jx equation, we easily obtain the

error equation for Jy from (2.39):

|Ti− 1
2
,j|

τε0ω2
pe

(J n+ 3
2

y,i,j+ 1
2

− J n+ 1
2

y,i,j+ 1
2

) +
Γe|Ti− 1

2
,j|

2ε0ω2
pe

(J n+ 3
2

y,i,j+ 1
2

+ J n+ 1
2

y,i,j+ 1
2

)

= |Ti− 1
2
,j|En+1

y,i,j+ 1
2

+R5, (2.73)

where the local truncation error R5 is given by

R5 =
|Ti− 1

2
,j|

τε0ω2
pe

(Jy(xi, yj+ 1
2
, tn+ 3

2
)− Jy(xi, yj+ 1

2
, tn+ 1

2
))

+
Γe|Ti− 1

2
,j|

2ε0ω2
pe

(Jy(xi, yj+ 1
2
, tn+ 3

2
) + Jy(xi, yj+ 1

2
, tn+ 1

2
))

−|Ti− 1
2
,j|Ey(xi, yj+ 1

2
, tn+1). (2.74)
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Integrating the y-component of (2.3) on Ti− 1
2
,j, then integrating the resultant from

t = tn+ 1
2

to tn+ 3
2

and dividing the resultant by τ , we have

1

τε0ω2
pe

∫∫
T
i− 1

2 ,j

(Jy(x, y, tn+ 3
2
)− Jy(x, y, tn+ 1

2
))dxdy

+
Γe

τε0ω2
pe

∫ t
n+3

2

t
n+1

2

∫∫
T
i− 1

2 ,j

Jy(x, y, t)dxdydt

=
1

τ

∫ t
n+3

2

t
n+1

2

∫∫
T
i− 1

2 ,j

Ey(x, y, t)dxdydt. (2.75)

Subtracting (2.75) from (2.74), we can rewrite R5 as follows:

R5 =
1

τε0ω2
pe

∫∫
T
i− 1

2 ,j

{(Jy(xi, yj+ 1
2
, tn+ 3

2
)− Jy(x, y, tn+ 3

2
))

−(Jy(xi, yj+ 1
2
, tn+ 1

2
)− Jy(x, y, tn+ 1

2
))}dxdy

+
Γe
ε0ω2

pe

{
∫∫

T
i− 1

2 ,j

1

2
(Jy(xi, yj+ 1

2
, tn+ 3

2
) + Jy(xi, yj+ 1

2
, tn+ 1

2
))dxdy

−1

τ

∫ t
n+3

2

t
n+1

2

∫∫
T
i− 1

2 ,j

Jy(x, y, t)dxdydt}

−{
∫∫

T
i− 1

2 ,j

Ey(xi, yj+ 1
2
, tn+1)dxdy − 1

τ

∫ t
n+3

2

t
n+1

2

∫∫
T
i− 1

2 ,j

Ey(x, y, t)dxdydt}

= R51 +R52 +R53. (2.76)

By the Taylor expansion, we can obtain

R51 = (O(h2
x)|

∂3Jy
∂t∂x2

|∞ +O(h2
y)|

∂3Jy
∂t∂y2

|∞)|Ti− 1
2
,j|,

R52 = (O(h2
x)|
∂2Jy
∂x2
|∞ +O(h2

y)|
∂2Jy
∂y2
|∞ +O(τ 2)|∂

2Jy
∂t2
|∞)|Ti− 1

2
,j|,

R53 = (O(h2
x)|
∂2Ey
∂x2
|∞ +O(h2

y)|
∂2Ey
∂y2
|∞ +O(τ 2)|∂

2Ey
∂t2
|∞)|Ti− 1

2
,j|.

The error equation for K

Similarly, we can obtain the error equation for K from (2.40):

|Ti,j|
τµ0ω2

pm

(Kn+2
i+ 1

2
,j+ 1

2

−Kn+1
i+ 1

2
,j+ 1

2

) +
Γm|Ti,j|
2µ0ω2

pm

(Kn+2
i+ 1

2
,j+ 1

2

+Kn+1
i+ 1

2
,j+ 1

2

)
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= |Ti,j|H
n+ 3

2

i+ 1
2
,j+ 1

2

+R6, (2.77)

where the local truncation error R6 is given by

R6 =
|Ti,j|
τµ0ω2

pm

(K(xi+ 1
2
, yj+ 1

2
, tn+2)−K(xi+ 1

2
, yj+ 1

2
, tn+1))

+
Γm|Ti,j|
2µ0ω2

pm

(K(xi+ 1
2
, yj+ 1

2
, tn+2) +K(xi+ 1

2
, yj+ 1

2
, tn+1))

−|Ti,j|H(xi+ 1
2
, yj+ 1

2
, tn+ 3

2
). (2.78)

Integrating (2.4) on Ti,j, then integrating the resultant from t = tn+1 to tn+2 and

dividing the resultant by τ , we have

1

τµ0ω2
pm

∫∫
Ti,j

(K(x, y, tn+2)−K(x, y, tn+1))dxdy

+
Γm

τµ0ω2
pm

∫ tn+2

tn+1

∫∫
Ti,j

K(x, y, t)dxdydt

=
1

τ

∫ tn+2

tn+1

∫∫
Ti,j

H(x, y, t)dxdydt. (2.79)

Subtracting (2.79) from (2.78), we can rewrite R6 as follows:

R6 =
1

τµ0ω2
pm

∫∫
Ti,j

{(K(xi+ 1
2
, yj+ 1

2
, tn+2)−K(x, y, tn+2))

−(K(xi+ 1
2
, yj+ 1

2
, tn+1)−K(x, y, tn+1))}dxdy

+
Γm

µ0ω2
pm

{
∫∫

Ti,j

1

2
(K(xi+ 1

2
, yj+ 1

2
, tn+2) +K(xi+ 1

2
, yj+ 1

2
, tn+1))dxdy

−1

τ

∫ tn+2

tn+1

∫∫
Ti,j

K(x, y, t)dxdydt}

−{
∫∫

Ti,j

H(xi+ 1
2
, yj+ 1

2
, tn+ 3

2
)dxdy − 1

τ

∫ tn+2

tn+1

∫∫
Ti,j

H(x, y, t)dxdydt}

= R61 +R62 +R63. (2.80)
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By the Taylor expansion, we can obtain

R61 = (O(h2
x)|

∂3K

∂t∂x2
|∞ +O(h2

y)|
∂3K

∂t∂y2
|∞)|Ti,j|,

R62 = (O(h2
x)|
∂2K

∂x2
|∞ +O(h2

y)|
∂2K

∂y2
|∞ +O(τ 2)|∂

2K

∂t2
|∞)|Ti,j|,

R63 = (O(h2
x)|
∂2H

∂x2
|∞ +O(h2

y)|
∂2H

∂y2
|∞ +O(τ 2)|∂

2H

∂t2
|∞)|Ti,j|.

The final error estimate

With the above preparations, we can now prove the major error estimate result.

Theorem 2.3.2. Suppose that the solution of (2.1)-(2.6) possesses the following reg-

ularity property:

Ex, Ey, H ∈ C([0, T ];C3(Ω)) ∩ C1([0, T ];C2(Ω)) ∩ C2([0, T ];C1(Ω)),

Jx, Jy, K ∈ C([0, T ];C2(Ω)) ∩ C1([0, T ];C2(Ω)) ∩ C2([0, T ];C(Ω)).

If the initial error

||E0
x ||E + ||E0

y ||E + ||H
1
2 ||H + ||J

1
2
x ||J + ||J

1
2
y ||J + ||K1||K ≤ C(h2

x + h2
y + τ 2), (2.81)

holds true, then for any 1 ≤ n ≤ Nt we have

ε0(||En+1
x ||2E + ||En+1

y ||2E) + µ0||Hn+ 3
2 ||2H +

1

ε0ω2
pe

(||J n+ 3
2

x ||2J + ||J n+ 3
2

y ||2J)

+
1

µ0ω2
pm

||Kn+2||2K

≤ C(h2
x + h2

y + τ 2)2, (2.82)

where the constant C > 0 is independent of τ, hx and hy.

Proof. Note that the error equations (2.56), (2.61), (2.65), (2.69), (2.73) and

(2.77) have exactly the same form as (2.35)-(2.40) with extra right hand side terms
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representing the errors introduced by time discretization and space discretization.

Hence we can follow exactly the same technique developed in the proof of Theorem

2.3.1 to obtain (cf. (2.50)):

ε0(||ENt+1
x ||2E − ||E0

x ||2E) + ε0(||ENt+1
y ||2E − ||E0

y ||2E) + µ0(||HNt+
3
2 ||2H − ||H

1
2 ||2H)

+
1

ε0ω2
pe

(||J Nt+
3
2

x ||2J − ||J
1
2
x ||2J) +

1

ε0ω2
pe

(||J Nt+
3
2

y ||2J − ||J
1
2
y ||2J)

+
1

µ0ω2
pm

(||KNt+2||2K − ||K1||2K)

≤ τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij|(H
Nt+

3
2

i+ 1
2
,j+ 1

2

∇yENt+1

x,i+ 1
2
,j+1
−H

1
2

i+ 1
2
,j+ 1

2

∇yE0
x,i+ 1

2
,j+1

)

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij|(−H
Nt+

3
2

i+ 1
2
,j+ 1

2

∇xENt+1

y,i+1,j+ 1
2

+H
1
2

i+ 1
2
,j+ 1

2

∇xE0
y,i+1,j+ 1

2
)

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Ti,j− 1
2
|(J Nt+

3
2

x,i+ 1
2
,j
ENt+1

x,i+ 1
2
,j
− J

1
2

x,i+ 1
2
,j
E0
x,i+ 1

2
,j

)

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Ti− 1
2
,j|(J

Nt+
3
2

y,i,j+ 1
2

ENt+1

y,i,j+ 1
2

− J
1
2

y,i,j+ 1
2

E0
y,i,j+ 1

2
)

+τ
∑

0≤i≤Nx−1
0≤j≤Ny−1

|Tij|(H
Nt+

3
2

i+ 1
2
,j+ 1

2

KNt+2

i+ 1
2
,j+ 1

2

−H
1
2

i+ 1
2
,j+ 1

2

K1
i+ 1

2
,j+ 1

2
)

+τ
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

R1(En+1
x,i+ 1

2
,j

+ En
x,i+ 1

2
,j

) + τ
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

R2(En+1
y,i,j+ 1

2

+ En
y,i,j+ 1

2
)

+τ
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

R3(Hn+ 3
2

i+ 1
2
,j+ 1

2

+Hn+ 1
2

i+ 1
2
,j+ 1

2

)

+τ
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

R4(J n+ 3
2

x,i+ 1
2
,j

+ J n+ 1
2

x,i+ 1
2
,j

)

+τ
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

R5(J n+ 3
2

y,i,j+ 1
2

+ J n+ 1
2

y,i,j+ 1
2

)

+τ
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

R6(Kn+2
i+ 1

2
,j+ 1

2

+Kn+1
i+ 1

2
,j+ 1

2

). (2.83)
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All terms except those containing Ri on the RHS of (2.83) can be bounded as in the

proof of Theorem 2.3.1. The Ri terms can be easily bounded by the Cauchy-Schwarz

inequality. For example, we have

τ

Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

R1(En+1
x,i+ 1

2
,j

+ En
x,i+ 1

2
,j

)

≤ τ

Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

|Ti,j− 1
2
|C(h2

x + h2
y + τ 2)(|En+1

x,i+ 1
2
,j

+ En
x,i+ 1

2
,j
|)

≤ τ
Nt∑
n=0

∑
0≤i≤Nx−1
0≤j≤Ny−1

|Ti,j− 1
2
|
[
C

δ
(h2

x + h2
y + τ 2)2 +

δ

2
(|En+1

x,i+ 1
2
,j
|2 + |En

x,i+ 1
2
,j
|2)

]

≤ CT

δ
(h2

x + h2
y + τ 2)2 + τ

Nt∑
n=0

δ

2
(||En+1

x,i+ 1
2
,j
||2E + ||En

x,i+ 1
2
,j
||2E),

where we used the inequality ab ≤ 1
δ
a2 + δ

4
b2, where the constant δ > 0.

Choosing δ small enough so that ||ENt+1

x,i+ 1
2
,j
||2E etc can be bounded by the corre-

sponding terms on the left hand side of (2.83). The proof is completed by using the

discrete Gronwall inequality.

2.4 Numerical results

In this section, we present two numerical examples. The first one is used to justify

our theoretical analysis with an exact solution. The second one is a classic example

showing the backward wave propagation phenomenon in metamaterial.

Example 1. In this example, we solve the 2D version of our model (2.1)-(2.4).

More specifically, the governing equations are (with added source terms gx, gy, and
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f):

ε0
∂Ex
∂t

=
∂Hz

∂y
− Jx + gx, (2.84)

ε0
∂Ey
∂t

= −∂Hz

∂x
− Jy + gy, (2.85)

µ0
∂Hz

∂t
= −∂Ey

∂x
+
∂Ex
∂y
−Kz + f, (2.86)

1

ε0ω2
pe

∂Jx
∂t

+
Γe
ε0ω2

pe

Jx = Ex, (2.87)

1

ε0ω2
pe

∂Jy
∂t

+
Γe
ε0ω2

pe

Jy = Ey, (2.88)

1

µ0ω2
pm

∂Kz

∂t
+

Γm
µ0ω2

pm

Kz = Hz. (2.89)

To rigorously check the convergence rate, we choose the physical domain Ω =

[0, 1]2, and coefficients as follows:

ε0 = µ0 = 1, Γm = Γe = π, ωpm = ωpe = π

such that (2.84)–(2.89) has the exact solution:

E ≡
(
Ex
Ey

)
=

(
cos(πx) sin(πy)e−πt

− sin(πx) cos(πy)e−πt

)
,

Hz = cos(πx) cos(πy)e−πt,

J ≡
(
Jx
Jy

)
=

(
π2t cos(πx) sin(πy)e−πt

−π2t sin(πx) cos(πy)e−πt

)
,

Kz = π2t cos(πx) cos(πy)e−πt.

The corresponding source terms are

gx = π2t cos(πx) sin(πy)e−πt,

gy = −π2t sin(πx) cos(πy)e−πt,

f = (−3π + π2t) cos(πx) cos(πy)e−πt.
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We build the 1D non-uniform mesh in the X-direction as [0 : dx : 0.5 − dx, 0.5 :

dx2 : 1], where dx2 = dx/2, and the 1D non-uniform mesh in the y-direction as

[0 : dy : 0.5 − dy, 0.5 : dy2 : 1], where dy2 = dy/2. The 2D non-uniform mesh is

obtained by extending both 1D meshes to cover the whole domain Ω (see Fig. 2.2).

Figure 2.2. A non-uniform mesh with dx = dy = 1/32.

We solve the 2D problem (2.84)-(2.89) by our scheme (2.35)-(2.40) on a series of

non-uniform meshes with dx = dy = h varying from 1/4 to 1/128, with a fixed time

step τ = 10−5, and ran for a total of 1000 time steps. The obtained errors for the main

fields Ex, Ey and Hz at the 1000th time step in discrete energy norms are presented

in Table 2.1, which shows clearly that they all converge in O(h2). This confirms our

theoretical superconvergence rates O(h2
x + h2

y).

Example 2. In this example, we solve a classic example of wave propagation in

metamaterial originally introduced by Ziolkowski Ziolkowski (2003) and lately solved

by Huang, Li, and Yang with edge elements Huang et al. (2013). This example
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Mesh ||Hz −Hz,h||H Rate ||Ex − Ex,h||Ex Rate ||Ey − Ey,h||Ey Rate
h = 1/4 5.283211E-04 — 2.824375E-04 — 2.824375E-04 —
h = 1/8 1.326984E-04 1.9933 7.266416E-05 1.9586 7.266416E-05 1.9586
h = 1/16 3.321344E-05 1.9983 1.839161E-05 1.9822 1.839161E-05 1.9822
h = 1/32 8.306978E-06 1.9994 4.622600E-06 1.9923 4.622600E-06 1.9923
h = 1/64 2.077415E-06 1.9995 1.158079E-06 1.9970 1.158079E-06 1.9970
h = 1/128 5.194356E-07 1.9998 2.897430E-07 1.9989 2.897430E-07 1.9989

Table 2.1. The errors of Ex, Ey, Hz obtained with τ = 10−5 on non-uniform meshes.

assumes that a metamaterial slab of size [0.024, 0.054]m × [0.002, 0.062]m is located

inside a vacuum of size [0, 0.07]m× [0, 0.064]m. An incident source wave is imposed

as Hz field and is excited at x = 0.004m and y ∈ [0.025, 0.035]m. The source wave

varies in space as e−(x−0.03)2/(50h)2 and in time as:

f(t) =


0, for t < 0,
g1(t) sin(ω0t), for 0 < t < mTp,
sin(ω0t), for mTp < t < (m+ k)Tp,
g2(t) sin(ω0t), for (m+ k)Tp < t < (2m+ k)Tp,
0, for t > (2m+ k)Tp,

where the functions g1 and g2 are

g1(t) = 10x3
1 − 15x4

1 + 6x5
1, x1 = t/mTp,

g2(t) = 1− (10x3
2 − 15x4

2 + 6x5
2), x2 = (t− (m+ k)Tp) /mTp.

Here we denote Tp = 1/f0 and ω0 = 2πf0. In our simulation, we use m = 2, k =

100, f0 = 30GHz.

We solved this model with our scheme (2.35)-(2.40) on a non-uniform mesh uni-

formly refined from a coarse mesh demonstrated in Fig. 2.3 (Top left). Here, we used

time step size τ = 10−13s = 0.1ps (peco second), and 12 perfectly matched layers

(PML) around the physical domain (cf. Huang et al. (2013)). The obtained Hz fields
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at various time steps are presented in Fig. 2.3, which matches with what we obtained

in Huang et al. (2013). The simulation shows that as wave enters into the metama-

terial slab, the wave propagates backward due to the negative refractive index of the

metamaterial.

2.5 Conclusions

In this chapter, we first develop the Yee scheme for solving the Maxwell’s equations

in metamaterials on nonuniform rectangular grids from the variational point of view.

Then we show that the scheme achieves a second order superconvergence rate in

space for both semi- and fully-discrete schemes. A numerical example supporting the

theoretical analysis is presented first, then a popular backward wave propagation in

metamaterial is simulated by Yee scheme on nonuniform rectangular grids. Similar

techniques can be extended to more complicated metamaterial Maxwell’s equations

Li and Huang (2013), and detailed results will be presented in our future work.
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Figure 2.3. Example 2. A coarse mesh (the red rectangle shows the metamaterial
slab), and contour plots of |Hz| obtained with τ = 0.1ps at 1000, 2000, 3000, 4000,
and 5000 time steps.
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CHAPTER 3

A NODAL DISCONTINUOUS GALERKIN METHOD
FOR THE STUDY OF SIGNAL PROPAGATION IN

CORRUGATED COAXIAL CABLES

3.1 Introduction

Mathematical analysis of finite elements for axisymmetric Maxwell equations has

been attracting an increasing interest since 2000. Ciarlet et al. initiated the study

of axisymmetric Maxwell equations Ciarlet et al. (2000); Assous et al. (2002). Later,

in 2006, a least-squares method for axisymmetric div-curl systems was analyzed

D.M.Copeland and J.E.Pasciak (2006). In that same timeframe, multigrid meth-

ods were proposed and analyzed for axisymmetric Maxwell equations S.Borm and

R.Hiptmair (2002); D.M.Copeland et al. (2010). Subsequently, finite element methods

were developed and analyzed for solving time-dependent axisymmetric eddy current

models Bermúdez et al. (2015, 2010).

The goal of this chapter is to explore the effect of corrugated coaxial cables on

the electric pulse propagation in more detail than others Böcklin et al. (2009); Blank

et al. (2013); Imperiale and Joly (2014). Here we estimate the effects of corrugation by

solving Maxwell’s equations in cylindrical coordinates to model the wave propagation

between the two conductors of the corrugated coaxial cable. In Blank et al. (2013),

the nodal discontinuous Galerkin method (e.g., Hesthaven and Warburton (2008); Li

and Hesthaven (2014); Li et al. (2012)) was extended to solve the 2-D cylindrical
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cooridinate Maxwell equations. However, Blank et al. (2013) does not provide any

stability analysis nor error estimate of the method. Here, we first develop a similar

method for our corrugated cable model, then we present a stability analysis and

error estimate for the semi-discrete scheme. Finally, we use our algorithm to solve

various corrugations and compare with the results obtained by the finite difference

time domain (FDTD) method.

The rest of the chapter is organized as follows. In Section 2, we present the

axisymmetric Maxwell equations and show that the energy of the system is conserved.

In Section 3, we introduce the nodal discontinuous Galerkin (nDG) method in both

semi- and fully-discrete forms. Stability and convergence of the semi-discrete scheme

is established rigorously. In Section 4, we present extensive numerical results verifying

the theoretical analysis and applying the method to the wave propagation problem

in various corrugated coaxial cables. Conclusions are in Section 5. The research

presented in this chapter was previously published as Li et al. (2017) where Jichun

Li, Eric Machorro, and I were all equally contributing authors.

3.2 The governing equations

Replacing the curl operator in cartesian coordinates by that in cylindrical coordi-

nates (r, θ, z), we can easily obtain the Maxwell’s equations in cylindrical coordinates

(cf. Blank et al. (2013)):

∂Er

∂t
− 1

r

∂Bz

∂θ
+
∂Bθ

∂z
= 0 (3.1)
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∂Eθ

∂t
+
∂Bz

∂r
− ∂Br

∂z
= 0 (3.2)

∂Ez

∂t
− 1

r

(
∂

∂r

(
rBθ

)
− ∂Br

∂θ

)
= 0 (3.3)

∂Br

∂t
+

1

r

∂Ez

∂θ
− ∂Eθ

∂z
= 0 (3.4)

∂Bθ

∂t
− ∂Ez

∂r
+
∂Er

∂z
= 0 (3.5)

∂Bz

∂t
+

1

r

(
∂

∂r

(
rEθ

)
− ∂Er

∂θ

)
= 0, (3.6)

where (Er, Eθ, Ez) and (Br, Bθ, Bz) denote the electric and magnetic fields, respec-

tively. For simplicity, we assume that the permittivity and permability both equal

1.

Below we only consider the 2-D cylindrical coordinate Maxwell’s equations, which

have three non-zero variables (Er, Ez, Bθ), i.e., the non-zero varaibles are:

Eθ = Br = Bz = 0. (3.7)

Furthermore, we assume that variables (Er, Ez, Bθ) are independent of the azimuth

angle θ, i.e.,

∂Er

∂θ
=
∂Ez

∂θ
=
∂Bθ

∂θ
= 0. (3.8)

Finally, plugging (3.7) and (3.8) into equations (3.1)-(3.6) gives the following 2-D

cylindrical coordinate formulation of Maxwell’s equations for the problem of interest:

∂Er

∂t
= −∂B

θ

∂z
(3.9)

∂Ez

∂t
=

1

r
Bθ +

∂Bθ

∂r
(3.10)

∂Bθ

∂t
=
∂Ez

∂r
− ∂Er

∂z
. (3.11)

For simplicity, we assume that the model equations (3.9)-(3.11) satisfy the perfect
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conducting (PEC) boundary condition

τ̂ ·E = 0 on ∂Ω, (3.12)

for E = (Ez, Er). Here and below τ̂ = (nr,−nz)′ and n̂ = (nz, nr)
′ denote the unit

tangential and normal vectors on the physical boundary ∂Ω, respectively.

First, we would like to show that the model equations (3.9)-(3.11) conserve energy.

Lemma 3.2.1. The energy

E :=

∫
Ω

(|Er|2 + |Ez|2 + |Bθ|2) rdrdz, (3.13)

is conserved for the solution (Ez, Er, Bθ) of (3.9)-(3.11) with the PEC boundary

condition (3.12).

Proof. Multiplying (3.9)-(3.11) by Er, Ez, Bθ, respectively, integrating over do-

main Ω under cylindrical coordinate system, and then adding the results together,

we obtain

1

2

d

dt

[∫
Ω

(|Er|2 + |Ez|2 + |Bθ|2) rdrdz
]

= −
∫

Ω

Er ∂B
θ

∂z
rdrdz +

∫
Ω

(EzBθ + rEz ∂B
θ

∂r
)drdz

+

∫
Ω

(Bθ ∂E
z

∂r
−Bθ ∂E

r

∂z
)rdrdz

= −
∫

Ω

∂(ErBθ)

∂z
rdrdz +

∫
Ω

∂(EzBθ)

∂r
rdrdz +

∫
Ω

EzBθdrdz

=

∫
∂Ω

(−nzEr + nrE
z)Bθrdr −

∫
Ω

EzBθdrdz +

∫
Ω

EzBθdrdz

= 0,

where we used integration by parts in the second last step, and the PEC boundary

condition (3.12) in the last step.
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3.3 The DG method

To apply a nodal discontinuous Galerkin method discretization Hesthaven and

Warburton (2008), it can be helpful to informally write equations (3.9)-(3.11) in

conservation form Blank et al. (2013):

∂tu+∇ · F (u) =
1

r
Cu, (3.14)

where u =

Ez

Er

Bθ

, ∇ =

[
∂
∂z
∂
∂r

]
, F (u) =

 0 −Bθ

Bθ 0
Er −Ez

, and C =

0 0 1
0 0 0
0 0 0

.

Like other finite element methods Li and Huang (2013), the computational do-

main, Ω, is triangulated by a collection of K elements Dk that only overlap on their

boundaries, ∂Dk, such that Ω =
⋃K
k=1 Dk. Since the boundaries of the elements

overlap, there are no longer unique solutions at the boundary of every element. The

solution chosen at the boundaries of each element is derived by the numerical flux,

F ∗, whose calculation is shown later. The finite element space is then given by:

Vh := {ukh ∈ L∞(Ω) : ukh|Dk ∈ PN(Dk), k = 1, ..., K}, (3.15)

where PN(Dk) are locally defined 3-tuple polynomials of order N with two indepen-

dent variables.

The local approximation to u, ukh(r, t) = (Ez
h, E

r
h, B

θ
h)
T ∈ (Vh)

3 can then be

expressed using Lagrange interpolation:

r ∈ Dk : ukh(r, t) =

Np∑
i=1

ukh(ri, t)`
k
i (r) (3.16)

where `ki (r) is the 2-D Lagrange polynomial defined at grid point ri = (zi, ri) on the

element Dk, and Np = (N+1)(N+2)
2

is the number of grid points.
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The residual Rh := ∂tuh +∇ · F (uh) − 1
r
Cuh is then required to be orthogonal

to all test functions ϕh ∈ Vh, which results in the following requirement Blank et al.

(2013): ∫
Dk

Rh · ϕhrdr = −
∫
∂Dk

(F (ukh)− F ∗(uh))n̂ · ϕhrdr, (3.17)

where F ∗ is the numerical flux that is introduced to assist coupling between neigh-

boring elements, and the test functions have been chosen such that ϕh = `ki . Note

that here the integral is computed in cylindrical coordinates, requiring the integrand

to be multiplied by r. Because of this, the implementation of the scheme becomes

considerably different from the Cartesian coordinate problem from this point on. One

example showing the big difference can be seen in Machorro’s work on the discontin-

uous Galerkin method for solving 1-D spherical neutron transport equation Machorro

(2007).

Following the same procedure originally outlined in Hesthaven and Warburton

(2008) and extended to cylindrical coordinate in Blank et al. (2013), the general 3-D

numerical flux is calculated by taking the Rankine-Huginoit conditions to be

(FE − F ∗E)n̂3 = −1

2
n̂3 × ([[B]]− αn̂3 × [[E]]), (3.18)

(FB − F ∗B)n̂3 =
1

2
n̂3 × ([[E]] + αn̂3 × [[B]]), (3.19)

where n̂3 is the 3-D normal unit vector to the current interface between elements.

Here, α can be taken to be any value between 0 and 1, with α = 0 resulting in

a nondissipative central flux and α = 1 resulting in the classic upwind flux. The

notation [[E]] is defined as the jump across an element face, which is [[E]] = E− −

E+, where E− and E+ denote the E values from the underlying element and its
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neighboring element, respectively.

Converting equations (3.18) and (3.19) into two dimensional cylindrical coordi-

nates, we let E = (Ez, Er, 0)′, B = (0, 0, Bθ)′, and n̂3 = (nz, nr, 0)′ in equations

(3.18) and (3.19). Note that because n̂3 is a unit vector we now have that n2
z+n2

r = 1.

Equation (3.18) then gives us:

(FE − F ∗E)n̂3 = −1

2

 nr[[B
θ]]

−nz[[Bθ]]
0

+
α

2

 nr(nz[[E
r]]− nr[[Ez]])

−nz(nz[[Er]]− nr[[Ez]])
0

 (3.20)

=
1

2

 −nr[[Bθ]] + αnz(nr[[E
r]] + nz[[E

z]])− α[[Ez]](n2
r + n2

z)
nz[[B

θ]] + αnr(nr[[E
r]] + nz[[E

z]])− α[[Er]](n2
r + n2

z)
0

 .

Taking the z and r components of this gives us:

[(FE − F ∗E)n̂3]z =
1

2

(
−nr[[Bθ]] + α(nz[[n̂ · Ê]]− [[Ez]])

)
, (3.21)

[(FE − F ∗E)n̂3]r =
1

2

(
nz[[B

θ]] + α(nr[[n̂ · Ê]]− [[Er]])
)
. (3.22)

Equation (3.19) then gives us:

(FB − F ∗B)n̂3 =
1

2

 0
0

nz[[E
r]]− nr[[Ez]]

+
α

2

 0
0

−[[Bθ]](n2
z + n2

r)

 . (3.23)

So taking only the θ component of this flux gives us:

[(FB − F ∗B)n̂3]θ =
1

2

(
nz[[E

r]]− nr[[Ez]]− α[[Bθ]]
)
. (3.24)

Combining these results together gives us the following fluxes used in the imple-

mentation of our DG scheme:

(F − F ∗)n̂ =

[(FE − F ∗E)n̂3]z
[(FE − F ∗E)n̂3]r
[(FB − F ∗B)n̂3]θ


=

1

2

 −nr[[Bθ]] + α(nz[[n̂ · Ê]]− [[Ez]])

nz[[B
θ]] + α(nr[[n̂ · Ê]]− [[Er]])

nz[[E
r]]− nr[[Ez]]− α[[Bθ]]

 . (3.25)
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Substituting this into (3.17) gives the following semi-discrete scheme: For any test

functions uh, vh, wh ∈ Vh, find (Ez
h, E

r
h, B

θ
h) such that,

∫
Dk

dEz
h

dt
uhrdrdz =

∫
Dk

(
1

r
Bθ
h +

∂Bθ
h

∂r
)uhrdrdz

+
1

2

∫
∂Dk

{
−nr[[Bθ

h]] + α(nz[[n̂ · Êh]]− [[Ez
h]])
}
uhrdr, (3.26)∫

Dk

dEr
h

dt
vhrdrdz = −

∫
Dk

∂Bθ
h

∂z
vhrdrdz

+
1

2

∫
∂Dk

{
nz[[B

θ
h]] + α(nr[[n̂ · Êh]]− [[Er

h]])
}
vhrdr, (3.27)∫

Dk

dBθ
h

dt
whrdrdz =

∫
Dk

(
∂Ez

h

∂r
− ∂Er

h

∂z
)whrdrdz

+
1

2

∫
∂Dk

{
nz[[E

r
h]]− nr[[Ez

h]]− α[[Bθ
h]]
}
whrdr. (3.28)

To discretize in time, we use the low-storage five-stage fourth-order explicit Runge-

Kutta method as Hesthaven and Warburton (2008).

First, we would like to show that the numerical scheme (3.26)-(3.28) is stable.

Lemma 3.3.1. Denote the energy

Eh(t) :=

∫
Ω

(|Er
h|2 + |Ez

h|2 + |Bθ
h|2) rdrdz. (3.29)

Then the solution (Er
h, E

z
h, B

θ
h)) of (3.26)-(3.28) satisfy the following stability: For

any t ≥ 0,

Eh(t) ≤ Eh(0).

Proof. Choosing uh = Ez
h, vh = Er

h, wh = Bθ
h in (3.26)-(3.28), respectively, sum-

ming up the results, and integrating by parts, we obtain the LHS (Left Hand Side)

and RHS (Right Hand Side) terms:

LHS :=
d

dt

∫
Dk

1

2
(|Er

h|2 + |Ez
h|2 + |Bθ

h|2) rdrdz, (3.30)
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and

RHS :=

∫
Dk

∂(rBθ
h)

∂r
Ez
hdrdz −

∫
Dk

∂Bθ
h

∂z
Er
hrdrdz

+
1

2

∫
∂Dk

{
−nr[[Bθ

h]] + α(nz[[n̂ ·Eh]]− [[Ez
h]])
}
Ez
hrdr

+
1

2

∫
∂Dk

{
nz[[B

θ
h]] + α(nr[[n̂ ·Eh]]− [[Er

h]])
}
Er
hrdr

+

∫
Dk

(
∂Ez

h

∂r
− ∂Er

h

∂z
)Bθ

hrdrdz

+
1

2

∫
∂Dk

{
nz[[E

r
h]]− nr[[Ez

h]]− α[[Bθ
h]]
}
Bθ
hrdr

=

∫
∂Dk

nr · rBθ
h · Ez

hdz −
∫
∂Dk

nz ·Bθ
h · Er

hrdr

+
1

2

∫
∂Dk

{
−nr[[Bθ

h]] + α(nz[[n̂ ·Eh]]− [[Ez
h]])
}
Ez
hrdr

+
1

2

∫
∂Dk

{
nz[[B

θ
h]] + α(nr[[n̂ ·Eh]]− [[Er

h]])
}
Er
hrdr

+
1

2

∫
∂Dk

{
nz[[E

r
h]]− nr[[Ez

h]]− α[[Bθ
h]]
}
Bθ
hrdr, (3.31)

where all volume integrals cancel out after integration by parts.

Recalling that n̂ · Eh = nzE
z
h + nrE

r
h, and summing up the contributions of all

elements Dk, we have

RHS1 :=
K∑
k=1

1

2

∫
∂Dk

α(nz[[n̂ ·Eh]]− [[Ez
h]])Ez

hrdr

+
1

2

∫
∂Dk

α(nr[[n̂ ·Eh]]− [[Er
h]])E

r
hrdr

=
K∑
k=1

α

2

∫
∂Dk

([[n̂ ·Eh]]n̂ ·Eh − [[Ez
h]]Ez

h − [[Er
h]]E

r
h) rdr

=
α

2

Nfaces∑
i=1

∫
∂Di

(
[[n̂ ·Eh]]

2 − [[Ez
h]]2 − [[Er

h]]
2
)
rdr

=
α

2

Nfaces∑
i=1

∫
∂Di

(
(nr[[E

r
h]] + nz[[E

z
h]])2 − (n2

r + n2
z)[[E

z
h]]2

−(n2
r + n2

z)[[E
r
h]]

2
)
rdr
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=
α

2

Nfaces∑
i=1

∫
∂Di
− (nr[[E

z
h]]− nz[[Er

h]])
2 rdr, (3.32)

where we used the fact that n2
r+n2

z = 1 and the notation Nfaces for the total number

of element faces (counted once per element face) in the mesh.

Similarly, by summing up the contributions of those terms involving Bθ
h in (3.30)

over all elements, we obtain

RHS2 :=
K∑
k=1

1

2

∫
∂Dk

{
−[[Bθ

h]]nrE
z
h + [[Bθ

h]]nzE
r
h + nz[[E

r
h]])B

θ
h − nr[[Ez

h]]Bθ
h

}
rdr

+
K∑
k=1

∫
∂Dk

(Bθ
h · nrEz

h −Bθ
h · nzEr

h)rdr −
K∑
k=1

α

2

∫
∂Dk

[[Bθ
h]]B

θ
hrdr

=
K∑
k=1

1

2

∫
∂Dk

{
−[[Bθ

h]](nrE
z
h − nzEr

h) + [[nzE
r
h − nrEz

h]]Bθ
h

}
rdr

+

Nfaces∑
i=1

∫
∂Di

[[Bθ
h(nrE

z
h − nzEr

h)]]rdr −
Nfaces∑
i=1

α

2

∫
∂Di

[[Bθ
h]]

2rdr

=

Nfaces∑
i=1

∫
∂Di
−[[Bθ

h]][[nrE
z
h − nzEr

h]]rdr

+

Nfaces∑
i=1

∫
∂Di

[[Bθ
h(nrE

z
h − nzEr

h)]]rdr −
Nfaces∑
i=1

α

2

∫
∂Di

[[Bθ
h]]

2rdr

= −α
2

Nfaces∑
i=1

∫
∂Di

[[Bθ
h]]

2rdr. (3.33)

Summing up (3.30) and (3.31) over all elements Dk, and using the estimates (3.32)

and (3.33), we obtain

dEh(t)
dt

= −α
Nfaces∑
i=1

∫
∂Di

{
(nr[[E

z
h]]− nz[[Er

h]])
2 + [[Bθ

h]]
2
}
rdr ≤ 0,

which concludes the proof.

Finally, we present the error analysis for the semi-discrete scheme. Let us intro-
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duce the weighted L2 projection operator Πh on each element Dk:

∫
Dk

(Πhu− u)whrdrdz = 0 ∀ wh ∈ PN(Dk). (3.34)

Furthermore, we denote L2
r(Ω) for the weighted Lebesgue space of all measurable

function u defined in Ω for which ||u||2L2
r(Ω) :=

∫
Ω
|u|2rdrdz < ∞. Thanks for those

pioneering work Belhachmi et al. (2006), all the standard approximation results have

been proved to be true in the corresponding weighted spaces, e.g.,

||Πhu− u||L2
r(Ω) + h||∇(Πhu− u)||L2

r(Ω) + h1/2||Πhu− u||L2
r(∂Ω)

≤ ChN+1|u|HN+1
r (Ω), (3.35)

where we denote the weighted Sobolev semi-norm |u|Hl
r(Ω) = (

∑l
k=0 ||

∂lu
∂rk∂zl−k

||L2
r(Ω))

1/2.

Theorem 3.3.1. Let (Er, Ez, Bθ) and (Er
h, E

z
h, B

θ
h) be the solutions of (3.9)-(3.11) and

(3.26)-(3.28), respectively. Then for any t > 0 we have

(||Er − Er
h||L2

r(Ω) + ||Ez − Ez
h||L2

r(Ω) + ||Bθ −Bθ
h||L2

r(Ω))(t)

≤ C(||ΠhE
r − Er

h||L2
r(Ω) + ||ΠhE

z − Ez
h||L2

r(Ω) + ||ΠhB
θ −Bθ

h||L2
r(Ω))(0) + ChN .

Proof. Using the projection definition to the governing equations (3.9)-(3.11), we

have: For any uv, vh, wh ∈ Vh,

∫
Dk

d

dt
(ΠhE

z)uhrdrdz =

∫
Dk

Πh(
1

r
Bθ
h +

∂Bθ
h

∂r
)uhrdrdz (3.36)∫

Dk

d

dt
(ΠhE

r)vhrdrdz = −
∫
Dk

Πh(
∂Bθ

h

∂z
)vhrdrdz (3.37)∫

Dk

d

dt
(ΠhB

θ)whrdrdz =

∫
Dk

Πh(
∂Ez

h

∂r
− ∂Er

h

∂z
)whrdrdz. (3.38)

Denote ∂
∂r̃

= 1
r
∂
∂r

. Subtracting (3.26) from (3.36) and using the definition of projection
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operator Πh, we can obtain the error equation for Ez:

∫
Dk

d

dt
(ΠhE

z − Ez
h)uhrdrdz

=

∫
Dk

[
Πh(

∂

∂r̃
(r(ΠhB

θ −Bθ
h))) + Πh(

∂

∂r̃
(r(Bθ − ΠhB

θ)))

]
uhrdrdz

−1

2

∫
∂Dk

{
−nr[[Bθ

h − ΠhB
θ]] + α(nz[[n̂ · (Eh − ΠhE)]]− [[Ez

h − ΠhE
z]])
}
uhrdr

−1

2

∫
∂Dk

{
−nr[[ΠhB

θ]] + α(nz[[n̂ · ΠhE]]− [[ΠhE
z]])
}
uhrdr

=

∫
Dk

Πh(
∂

∂r̃
(r(ΠhB

θ −Bθ
h)))uhrdrdz (3.39)

+
1

2

∫
∂Dk

{
−nr[[ΠhB

θ −Bθ
h]] + α(nz[[n̂ · (ΠhE −Eh)]]− [[ΠhE

z − Ez
h]])
}
uhrdr

+(SEz , uh)Dk ,

where the local truncation error

(SEz , uh)Dk =

∫
Dk

Πh(
∂

∂r̃
(r(Bθ − ΠhB

θ)))uhrdrdz (3.40)

−1

2

∫
∂Dk

{
−nr[[ΠhB

θ]] + α(nz[[n̂ · ΠhE]]− [[ΠhE
z]])
}
uhrdr.

Similarly, subtracting (3.27) from (3.37), we can obtain the error equation for Er:

∫
Dk

d

dt
(ΠhE

r − Er
h)vhrdrdz

= −
∫
Dk

[
Πh

∂

∂z
(ΠhB

θ −Bθ
h) + Πh

∂

∂z
(Bθ − ΠhB

θ)

]
vhrdrdz

−1

2

∫
∂Dk

{
nz[[B

θ
h − ΠhB

θ]] + α(nr[[n̂ · (Eh − ΠhE)]]− [[Er
h − ΠhE

r]])
}
vhrdr

−1

2

∫
∂Dk

{
nz[[ΠhB

θ]] + α(nr[[n̂ · ΠhE]]− [[ΠhE
r]])
}
vhrdr

= −
∫
Dk

Πh
∂

∂z
(ΠhB

θ −Bθ
h)vhrdrdz (3.41)

+
1

2

∫
∂Dk

{
nz[[ΠhB

θ −Bθ
h]] + α(nr[[n̂ · (ΠhE −Eh)]]− [[ΠhE

r − Er
h]])
}
vhrdr

+(SEr , vh)Dk ,
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where the local truncation error

(SEr , vh)Dk = −
∫
Dk

Πh
∂

∂z
(Bθ − ΠhB

θ)vhrdrdz (3.42)

−1

2

∫
∂Dk

{
nz[[ΠhB

θ]] + α(nr[[n̂ · ΠhE]]− [[ΠhE
r]])
}
vhrdr.

By the same argument, we can obtain the error equation for Bθ:

∫
Dk

d

dt
(ΠhB

θ −Bθ
h)whrdrdz

=

∫
Dk

[
Πh(

∂

∂r
(ΠhE

z − Ez
h)) + Πh(

∂

∂r
(Ez − ΠhE

z))

]
whrdrdz

−
∫
Dk

[
Πh(

∂

∂z
(ΠhE

r − Er
h)) + Πh(

∂

∂z
(Er − ΠhE

r))

]
whrdrdz

+
1

2

∫
∂Dk

{
nz[[ΠhE

r − Er
h]]− nr[[ΠhE

z − Ez
h]]− α[[ΠhB

θ −Bθ
h]]
}
whrdr

−1

2

∫
∂Dk

{
nz[[ΠhE

r]]− nr[[ΠhE
z]]− α[[ΠhB

θ]]
}
whrdr

=

∫
Dk

[
Πh(

∂

∂r
(ΠhE

z − Ez
h))− Πh(

∂

∂z
(ΠhE

r − Er
h))

]
whrdrdz (3.43)

+
1

2

∫
∂Dk

{
nz[[ΠhE

r − Er
h]]− nr[[ΠhE

z − Ez
h]]− α[[ΠhB

θ −Bθ
h]]
}
whrdr

+(SBθ , wh)Dk ,

where

(SBθ , wh)Dk =

∫
Dk

[
Πh(

∂

∂r
(Ez − ΠhE

z))− Πh(
∂

∂z
(Er − ΠhE

r))

]
whrdrdz

−1

2

∫
∂Dk

{
nz[[ΠhE

r]]− nr[[ΠhE
z]]− α[[ΠhB

θ]]
}
whrdr. (3.44)

Choosing vh = ΠhE
r − Er

h, uh = ΠhE
z − Ez

h and wh = ΠhB
θ − Bθ

h in (3.39), (3.41)

and (3.43), respectively, then adding the results together, and following the stability

analysis, we have

1

2

d

dt
(||ΠhE

r − Er
h||2L2

r(Ω) + ||ΠhE
z − Ez

h||2L2
r(Ω) + ||ΠhB

θ −Bθ
h||2L2

r(Ω))
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= −α
Nfaces∑
i=1

∫
∂Dk

{
(nr[[ΠhE

z − Ez
h]]− nz[[ΠhE

r − Er
h]])

2 + [[ΠhB
θ −Bθ

h]]
2
}
rdr

+
K∑
k=1

[(SEr ,ΠhE
r − Er

h)Dk + (SEz ,ΠhE
z − Ez

h)Dk

+(SBθ ,ΠhB
θ −Bθ

h)Dk
]
. (3.45)

By the definition (3.41), we have

(SEr ,ΠhE
r − Er

h)Dk = −
∫
Dk

Πh(
∂

∂z
(Bθ − ΠhB

θ)) · (ΠhE
r − Er

h)rdrdz

−1

2

∫
∂Dk

{
nz[[ΠhB

θ]]

+α(nr[[n̂ · ΠhE]]− [[ΠhE
r]])} (ΠhE

r − Er
h)rdr

:=
2∑
i=1

Erri. (3.46)

By the Cauchy-Schwarz inequality and the projection property (3.35), we have

Err1 = −
∫
Dk

(
∂

∂z
(Bθ − ΠhB

θ)) · (ΠhE
r − Er

h)rdrdz

≤ ChN |Bθ|HN+1
r (Dk)||ΠhE

r − Er
h||L2

r(D
k). (3.47)

Similarly, by the trace inequality with weighted inner product
∫

Ω
(·, ·)rdrdz, we have

Err2 = −1

2

∫
∂Dk

{
nz[[ΠhB

θ −Bθ]]

+α(nr[[n̂ · (ΠhE −E)]]− [[ΠhE
r − Er]])} (ΠhE

r − Er
h)rdr

≤ ChN(|Bθ|HN+1
r (Ω) + |Er|HN+1

r (Dk)

+|Ez|HN+1
r (Dk)||)ΠhE

r − Er
h||L2

r(D
k). (3.48)

Substituting (3.47) and (3.48) into (3.46), we obtain

K∑
k=1

(SEr ,ΠhE
r − Er

h)Dk ≤ ChN ||ΠhE
r − Er

h||L2
r(Ω). (3.49)
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By the same technique, we can prove that

K∑
k=1

(SEz ,ΠhE
z − Ez

h)Dk ≤ ChN ||ΠhE
z − Ez

h||L2
r(Ω). (3.50)

and
K∑
k=1

(SBθ ,ΠhB
θ −Bθ

h)Dk ≤ ChN ||ΠhB
θ −Bθ

h||L2
r(Ω). (3.51)

Substituting the estimates (3.49)-(3.51) into (3.45), dropping the negative term

on the right hand side of (3.45), then using the Gronwall inequality, the triangle

inequality and the estimate (3.35), we conclude the proof.

Theorem 3.3.1 shows that we can have the following error estimate

(||Er − Er
h||L2

r(Ω) + ||Ez − Ez
h||L2

r(Ω) + ||Bθ −Bθ
h||L2

r(Ω))(t) ≤ ChN ,

under the standard initial approximation

Er
h(0) = ΠhE

r(0), Ez
h(0) = ΠhE

z(0), Bθ
h(0) = ΠhB

θ(0).

This is confirmed by our numerical results presented in the next section.

3.4 Numerical results

Convergence rate test for the DG method

Here we consider solving the 2-D rotationally symmetric Maxwell’s equations

(3.9)-(3.11) with source terms f1, f2, f3 added to the right hand side of (3.9)-(3.11),
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respectively. More specifically we pick the source functions to be:

f1 = (1− π) cos(πr) sin(πz) cos(t) (3.52)

f2 = (1 + π) sin(πr) cos(πz) cos(t)− 1

r
cos(πr) cos(πz) cos(t) (3.53)

f3 = cos(πr) cos(πz) sin(t) (3.54)

such that the analytic solution to the system of equations is:

Er = cos(πr) sin(πz) sin(t) (3.55)

Ez = sin(πr) cos(πz) sin(t) (3.56)

Bθ = cos(πr) cos(πz) cos(t). (3.57)

All simulations were ran for 1000 time steps with a constant time step of τ =

0.0001 and up to a final time of T = 0.1 on a domain of (r, z) ∈ [0, 1]× [0, 1]. For the

boundary we imposed the PEC boundary condition (3.12). To test convergence rate

of our scheme, we calculated the sum of the L2
r errors of each solution component by

solving the problem on a series of uniformly refined meshes. The coarsest mesh has

a mesh size of h = 0.01 shown in Fig. 3.1.

The obtained convergence rates for the L2 error

||eh||L2
r

:= ||Er
h − Er||L2

r(Ω) + ||Ez
h − Ez||L2

r(Ω) + ||Bθ
h −Bθ||L2

r(Ω)

and for the L∞ error

||eh||L∞ := ||Er
h − Er||L∞(Ω) + ||Ez

h − Ez||L∞(Ω) + ||Bθ
h −Bθ||L∞(Ω)

are presented in Tables 3.1 and 3.2, respectively. Table 3.1 showes clearly O(hN)

convergence rate in the L2
r norm, which is consistent with our theoretical analysis.
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Figure 3.1. The exemplary coarse mesh used in the error convergence analysis.

The numerical results in Table 3.2 show O(hN) convergence rate in the L∞ norm,

though its rigorous proof is still open.

Table 3.1. The L2
r error convergence rates for eh obtained with basis functions of

order N = 1 to 4.

N eh eh/2 Rates eh/4 Rates eh/8 Rates

1 3.1915E-03 1.3789E-03 1.2107 6.6663E-04 1.0485 3.3308E-04 1.0010
2 4.4756E-05 8.6212E-06 2.3761 1.9635E-06 2.1344 4.7913E-07 2.0349
3 5.4792E-07 5.9657E-08 3.1992 7.1527E-09 3.0601 8.7891E-10 3.0246
4 4.1907E-09 2.2624E-10 4.2112 1.3373E-11 4.0804 8.2221E-13 4.0236

Comparison between the DG method and the FDTD method

Because there is not a known exact solution for corrugated domains, the solution of

the DG method was compared with the (much simpler to implement) FDTD method

in order to verify results of the DG method. Because of the limitation of the FDTD

method, we used a square corrugation to test the DG method against the FDTD
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Table 3.2. The L∞ error convergence rates for eh obtained with basis functions of
order N = 1 to 4.

N eh eh/2 Rates eh/4 Rates eh/8 Rates

1 7.6057E-03 3.1592E-03 1.2675 1.4549E-03 1.1186 6.9724E-04 1.0612
2 1.6566E-04 2.9603E-05 2.4844 6.0339E-06 2.2946 1.3729E-06 2.1358
3 5.4792E-07 8.3520E-07 3.0825 1.0080E-07 3.0506 1.2390E-08 3.0243
4 7.0750E-06 2.1158E-09 4.3458 1.1399E-10 4.2142 6.5732E-12 4.1162

method. In the following simulation both methods were run on a domain with 2

corrugations; each 1 unit wide and 0.1 units deep. In order to get a better visual

result for comparison a much narrower pulse defined by f(t) = 1
r

exp(−(t−.3)2

2(.1)2
) was

used.

Figure 3.2. The meshes used in the DG and FDTD methods. Both domains are
the same, their images just have different aspect ratios.

To make the results comparable, not only was the same domain used, but also

similar time steps and mesh sizes. For the DG simulation a polynomial order of

N = 1, and a mesh size of approximately h = 10−2 were used. The time step was
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automatically calculated to be ∆t = 0.0026 based on the mesh size to avoid violating

the CFL condition. For the FDTD simulation the parameters used were: a mesh

size of ∆z = 0.0250 × ∆r = 0.0125 with a time step of ∆t = 0.0031. Plots of

some snapshots of Er at different times are put in Fig. 3.3 side-by-side for a clear

comparison of the FDTD method verses the DG method. Fig. 3.3 shows that our

solutions obtained by these two different methods are indistinguishable by eyes.

Modeling of corrugated cables by the DG method

To make sure that our code worked correctly, we carried out many tests for various

corrugated domains with different meshes, time step sizes, and wave sources. The

corrugated domains used in these examples are related to the dimensions of RF-

19 corrugated coaxial cable which was provided by NSTec. The below results were

obtained by using the Gaussian wave source:

u(0, r, t) =
1

r
exp

(
−(t− 5σ)2

2(σ)2

)

where σ = 2.5 mean(h(z)), and h(z) is the function describing the height of the cable

from the central axis.

The first simulation is done for a “sawtooth” corrugation, since our DG method

can discretize this corrugated domain exactly by triangular elements. Snapshots of

Er are plotted in Figure 3.4.

To see the effects of corrugated cables on the signal propagation, we finally simu-

lated both an un-corrugated cable (see Fig. 3.6l (Right Column)), and a corrugated

cable (see Fig. 3.6l (Left Column)) described by function h(z) = 7 + cos(2πz
7

) (based
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on the RF-19 cable parameters) under almost the same conditions. Snapshots of Er

are plotted in Figure 11, which shows that the corrugated cable has limited effects on

the signal propagation.

3.5 Conclusions

In this chapter we focused on solving the two-dimensional (2-D) time-dependent

Maxwell’s equations in both Cartesian and cylindrical coordinate systems. Since no

experimental data was available to compare, we simulated the pulse propagation by

using both the FDTD and DG methods. Both our FDTD and DG implementations

have been rigorously tested to ensure they work correctly from a numerical analysis

point of view. Many cases with different wave sources, different corrugated domains,

various mesh sizes and different basis functions for the DG methods have simulated.

Our study found that the corrugated coaxial cable has effects on the pulse propa-

gation in the cable depending on the depth of the corrugation and its periodicity. Of

course, many challenges still remain, for example, how to implement simulations for a

very long distance (over 1000 feet long), and how to model real 3-D corrugated coaxial

cables. These challenges will inspire our continuous investigation in this subject.
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Figure 3.3. (Left) DG method at t = 1, 2, 3, 4; (Right) FDTD method at t =
1, 2, 3, 4.
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(a) Mesh with color labeled boundaries generated using measurements from images of RF-
19 cable.

(b) t = 5. (c) t = 10.

(d) t = 15. (e) t = 20.

Figure 3.4. Mesh and snapshots of Er for a “sawtooth” corrugation. Maximum
element size of 0.251, and polynomial basis function of order N = 10.

Figure 3.5. Corrugated and non-corrugated meshes with color labeled boundaries
generated using measurements from images of RF-19 cable.
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(a) t = 30. (b) t = 30.

(c) t = 60. (d) t = 60.

(e) t = 90. (f) t = 90.

(g) t = 120. (h) t = 120.

(i) t = 150. (j) t = 150.

(k) t = 180. (l) t = 180.

Figure 3.6. Mesh and snapshots of Er for a corrugation function of h(z) = 7 +
cos(2πz

7
) which models the RF-19 cable, compared to mesh and snapshots of Er for

a non-corrugated version of the RF-19 cable side by side. Maximum element size of
0.38, minimum element size of 0.06, and polynomial order of N = 3.
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CHAPTER 4

A WEAK GALERKIN FOR THE TIME-DEPENDENT
MAXWELL’S EQUATIONS

4.1 Introduction

In Mu et al. extension of the WG method to the time-harmonic Maxwell’s equa-

tions Mu et al. (2015a), optimal order convergence was proved in various norms.

Three dimensional numerical results show that WG method is capable of solving

Maxwell’s equations. Inspired by their 2015 paper, here we develop the WG method

to solve the time-dependent Maxwell’s equations. We like to remark that there are

many excellent works on DG methods for solving Maxwell’s equations in free space

Fezoui et al. (2005); Grote et al. (2007) and in dispersive media Demkowicz and Li

(2013); Li and Hesthaven (2014); Li et al. (2012); Lu et al. (2004); Scheid and Lanteri

(2013); Wang et al. (2010, 2015). More details and references on DG methods for

Maxwell’s equations can be found in books Hesthaven and Warburton (2008) and (Li

and Huang, 2013, Ch.4).

Under the assumptions that ε and µ are constants, and σ and ρ are zero, we can

solve for the electric field E from (1.2) and (1.1) to get:

1

µε
∇× (∇× E) +

∂2E

∂t2
= 0, ∇ · E = 0. (4.1)
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This leads to the model problem in d = 2, 3 dimensions:

1

µε
∇× (∇× u) +

∂2u

∂t2
= f in Ω× [0, T ],

u× nΩ = φ on ∂Ω,

(4.2)

where we discard the divergence free condition since the solution is naturally diver-

gence free if the given initial field is divergence free. Here, nΩ is taken to be the

outwards normal unit vector to the boundary of the domain ∂Ω. To generalize the

problem an arbitrary source term, f ∈ [H(div; Ω)]d (where ∇ · f = 0 in Ω), and a

Dirichlet boundary condition, φ ∈ [L2(∂Ω)]d, were added. Additionally, if φ is taken

to be 0, then we arrive at the standard perfect electric conductor (PEC) boundary

conditions. Here and below the physical domain Ω is a bounded Lipschitz polyhedral

domain in Rd with connected boundary ∂Ω.

This chapter is organized as follows. In Section 4.2, we introduce the concept of a

weak curl, along with other definitions necessary for the weak Galerkin scheme. In

Section 4.3, the semi-discrete scheme is defined, and stability and error analysis are

provided. In Section 4.4, a 2nd order fully-discrete scheme is proposed, and stability

and error analysis are provided. Section 4.5then provides an example implementation

of the scheme in 2-D with the lowest order element. Then Section 4.6provides nu-

merical results from the implementation that confirm the error analysis provided in

earlier sections. Finally, Section 4.7concludes the chapter. The research presented in

this chapter was submitted to be published as Shields et al. (view) where I was the

leading author and Jichun Li and Eric Machorro were contributing authors.
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4.2 Preliminaries and Notations

The Weak Curl

The concept of a weak curl was discussed in Mu et al. (2015a), however, it is

presented here for completeness. Let K be any polyhedral domain in Rd with bound-

ary ∂K. A weak function on K refers to a function defined by the ordered pair:

v = {v0,vb} such that v0 ∈ [L2(K)]d and vb ∈ [L2(∂K)]d. The first component v0

can be understood as the value of v in K, and the second component vb represents

v on the boundary of K. We denote the space of weak functions on K as:

V(K) := {v = {v0,vb} : v0 ∈ [L2(K)]d,vb × nK ∈ [L2(∂K)]d} (4.3)

And we denote nK to be the outward unit normal vector to ∂K.

Definition 1: Weak curl For any v ∈ V(K), the weak curl of v is defined as a

continuous linear functional ∇w × v ∈ [H1(K)]d whose action on each ϕ ∈ [H1(K)]d

is given by

(∇w × v,ϕ)K := (v0,∇×ϕ)K − 〈vb × nK ,ϕ〉∂K (4.4)

where (·, ·)K is the L2 inner product on K and 〈·, ·〉∂K is the L2 inner product on ∂K.

The Weak Formulation

The space H(curl; Ω) is defined as the set of vector-valued functions on Ω which,

together with their curl, are square integrable, i.e.:

H(curl; Ω) = {v : v ∈ [L2(Ω)]d,∇× v ∈ [L2(Ω)]d}.
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Additionally, we define the subspace of H(curl; Ω) as follows:

H0(curl; Ω) = {v ∈ H(curl; Ω) : v× nΩ = 0 on ∂Ω}.

With the above definitions and letting ν = 1
µε

, we consider the weak formulation for

(4.2): Find u ∈ H(curl; Ω) such that u× nΩ = φ on ∂Ω and

(ν∇× u,∇× v)Ω +

(
∂2u

∂t2
,v

)
Ω

= (f ,v)Ω, ∀v ∈ H0(curl; Ω). (4.5)

The Weak Galerkin Finite Element Spaces

Let Kh be the partition of the domain Ω with mesh size h. Denote the set of all

faces of elements of Kh to be Eh and let E0
h = Eh \ ∂Ω be the set of all interior faces.

Definition 2: Discrete weak curl The discrete weak curl operator, denoted by

∇w,k−1×, is definited as the unique polynomial (∇w,k−1× v) ∈ [Pk−1(K)]d that satis-

fies:

(∇w,k−1 × v,ϕ)K := (v0,∇×ϕ)K − 〈vb × nK ,ϕ〉∂K , ∀ ϕ ∈ [Pk−1(K)]d. (4.6)

Without confusion, below we simply denote ∇w,k−1× as ∇w × .

Similar to what was found in Mu et al. (2015a); Wang and Ye (2014), let d = 3

and K be any polyhedral element in Kh with boundary ∂K (a similar argument can

be done for the d = 2 case). For each face e ⊂ ∂K, let t1 and t2 be two assigned

unit vectors on the face e, and let nK be the unit normal vector to e such that t1,

t2, and nK are all orthogonal to each other for vb ∈ [L2(∂K)]3. Thus, we have

vb|e = v1t1 + v2t2 + vnnK for some constants v1, v2, vn. Define vb = v1t1 + v2t2 as the
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projection of vb in the tangential plane. It is clear that vb × nK = vb × nK . Since

the weak curl only uses vb × nK , it is advantageous to use the value of vb instead of

vb to reduce the number of unknowns. Therefore, throughout the rest of this chapter

we will let vb = vb. This will be quite useful in the definition of the numerical scheme

in subsequent sections.

Let e ∈ Eh, and let t1 and t2 be two linearly independent tangential unit vectors

on e. For k ≥ 1, define WG finite element spaces associated with Kh as:

Vh =
{
vh = {v0h,vbh} : v0h|K ∈ [Pk(K)]d,vbh = v1t1 + v2t2,

v1, v2 ∈ Pk(e), e ⊂ ∂K} , (4.7)

and V 0
h = {vh ∈ Vh : vbh × nΩ = 0 on ∂Ω} .

Note that due to the definition of vh = {v0h,vbh} ∈ Vh, v0h and vbh do not

have any continuity constraints. In fact, v0h in neighboring elements do not have

any continuity enforced between them. However, as in Mu et al. (2015a), we enforce

tangential continuity between vbh’s that share the same face:

vbh|K1 × nK1 = −vbh|K2 × nK2 (4.8)

Here nK1 = −nK2 is the normal vector to the shared face of elements K1 and K2.

We are then able to define a stability term which will be used later:

s(v,w) :=
∑
K∈Kh

h−1
K 〈(v0 − vb)× n, (w0 −wb)× n〉∂K (4.9)

where hK denotes the diameter of element K, defined by: hK := diam(K).
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In addition, as in Mu et al. (2015a) the following semi-norm is defined for weak

functions in the finite element space, vh = {v0h,vbh} ∈ Vh:

|vh|1,h :=

(∑
K∈Kh

h−1
K ||(v0h − vbh)× nK ||2L2(∂K)

)1/2

= (s(vh,vh))
1/2 (4.10)

For simplicity and convenience the following notation is used throughout the rest of

the chapter. The standard L2 norm over an element K, || · ||L2(K), is written as || · ||K ,

and the induced standard L2 norm over its boundary, || · ||L2(∂K), is written as || · ||∂K .

Additionally, the L2 norm over the entire domain, || · ||L2(Ω) is just denoted as || · ||.

4.3 The Semi-discrete Scheme

Semi-discrete Weak Galerkin Algorithm. Find uh = {u0h,ubh} ∈ Vh satisfying

ubh × nΩ = Qbφ on ∂Ω and

(ν∇w × uh,∇w × vh)Ω +

(
∂2u0h

∂t2
,v0h

)
Ω

+ s

(
∂uh
∂t

,vh

)
= (f ,v0h)Ω (4.11)

∀vh ∈ V 0
h ,

where Qbφ ∈ [Pk(∂K ∩ ∂Ω)]d is the standard L2 projection of the boundary value φ

on each boundary segment.

Stability of the semi-discrete scheme

Theorem 4.3.1. For any τ ∈ (0, T ],

ν

2
||∇w × uh(τ)||2+

1

2

∣∣∣∣∣∣∣∣∂u0h

∂t
(τ)

∣∣∣∣∣∣∣∣2 +

∫ τ

0

∣∣∣∣∂uh
∂t

∣∣∣∣2
1,h

dt

≤ C

[
ν

2
||∇w × uh(0)||2 +

1

2

∣∣∣∣∣∣∣∣∂u0h

∂t
(0)

∣∣∣∣∣∣∣∣2 +

∫ τ

0

||f ||2dt

]
, (4.12)
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where the constant C = exp (τ) is independent of time t and the mesh size h. Hence,

the semi-discrete weak Galerkin scheme (4.11) is unconditionally stable.

Proof. Let vh = {∂tu0, ∂tub} in (4.11) to get(
ν∇w × uh,∇w ×

∂uh
∂t

)
Ω

+

(
∂2u0h

∂t2
,
∂u0h

∂t

)
Ω

+ s

(
∂uh
∂t

,
∂uh
∂t

)
=

(
f ,
∂u0h

∂t

)
Ω

.

(4.13)

This can be rewritten as

ν

2

∂

∂t
||∇w × uh||2 +

1

2

∂

∂t

∣∣∣∣∣∣∣∣∂u0h

∂t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∂uh
∂t

∣∣∣∣2
1,h

=

(
f ,
∂u0h

∂t

)
Ω

. (4.14)

We then integrate both sides over time from 0 to τ to arrive at

ν

2
(||∇w × uh(τ)||2 − ||∇w × uh(0)||2) +

1

2

(∣∣∣∣∣∣∣∣∂u0h

∂t
(τ)

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣∂u0h

∂t
(0)

∣∣∣∣∣∣∣∣2
)

+

∫ τ

0

∣∣∣∣∂uh
∂t

∣∣∣∣2
1,h

dt =

∫ τ

0

(
f ,
∂u0h

∂t

)
Ω

dt. (4.15)

Then, using Young’s inequality along with the Cauchy-Schwarz inequality gives us

ν

2
(||∇w × uh(τ)||2 − ||∇w × uh(0)||2) +

1

2

(∣∣∣∣∣∣∣∣∂u0h

∂t
(τ)

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣∂u0h

∂t
(0)

∣∣∣∣∣∣∣∣2
)

+

∫ τ

0

∣∣∣∣∂uh
∂t

∣∣∣∣2
1,h

dt ≤ 1

2

∫ τ

0

||f ||2dt+
1

2

∫ τ

0

∣∣∣∣∣∣∣∣∂u0h

∂t

∣∣∣∣∣∣∣∣2 dt. (4.16)

Finally, rearranging terms and using Grönwall’s inequality concludes the proof.

Error analysis for the semi-discrete scheme

For each element K ∈ Kh, and each face e ⊂ ∂K, denote Q0 to be the L2

projection onto [Pk(K)]d and let Qb be the L2 projection onto Pk(e). Then the

following projection onto the finite element space Vh is defined to be:

Qhv = {Q0v, Qbv = Qb(v1)t1 +Qb(v2)t2},
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where t1, and t2 are two linearly independent unit tangential vectors on the face. In

addition, Qh is defined to be the local L2 projection onto [Pk−1(K)]d. The following

property of the projection operator and the weak curl was proved in Mu et al. (2015a),

but is included here for the sake of completion.

Lemma 4.3.1.

∇w × (Qhu) = Qh(∇× u) (4.17)

Proof. Using the definition of weak curl, integration by parts, and the definition

of Qh and Qh, we have: For any w ∈ [Pk−1(K)]d,

(∇w × (Qhu),w)K = (Q0u,∇×w)K − 〈(Qbu)× n,w〉∂K

= (u,∇×w)K − 〈u× n,w〉∂K

= (∇× u,w)K = (Qh(∇× u),w)K ,

which concludes the proof.

Define the error function at time t as follows:

εh = {ε0, εb} = {Q0u(t)− u0h(t), Qbu(t)− ubh(t)} (4.18)

For simplicity and clarity in the proof, PEC boundary conditions are assumed. How-

ever, this result can extend to the more general Dirichlet boundary condition pre-

sented in the initial problem.

Lemma 4.3.2. Let uh be the semi-discrete WG finite element solution arising from

(4.11) with the PEC boundary condition φ = 0, and εh be the error between the

semi-discrete WG finite element solution and the L2 projection of the exact solution
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as defined in (4.18). Then the following error equation is satisfied:

(ν∇w × εh,∇w × vh)Ω +

(
∂2ε0

∂t2
,v0

)
Ω

+ s

(
∂εh
∂t

,vh

)
(4.19)

= l(u,vh) + s

(
∂Qhu

∂t
,vh

)
,

where

l(u,vh) =
∑
K∈K

〈(I −Qh)∇× u, ν(vbh − v0h)× nK〉∂K .

Proof. Using Lemma 4.3.1, the definition of Qh, the definition of weak curl, and

integration by parts, we have

(ν∇w × (Qhu),∇w × vh)K = (νQh(∇× u),∇w × vh)K

= (v0h,∇× (νQ(∇× u)))K − 〈vbh × nK , νQh(∇× u)〉∂K

= (∇× v0h, νQ(∇× u))K

− 〈(vbh − v0h)× nK , νQh(∇× u)〉∂K

= (ν∇× u,∇× v0h)K

− 〈Qh(∇× u), ν(vbh − v0h)× nK〉∂K . (4.20)

Using the definition of Qh again, and summing over all elements,

(
∂2u

∂t2
,v0h

)
Ω

=

(
Q0

∂2u

∂t2
,v0h

)
Ω

=

(
∂2Q0u

∂t2
,v0h

)
Ω

. (4.21)

We then multiply the governing equation (4.2) by v0h and integrate over the domain

to get

(∇× (ν∇× u),v0h)Ω +

(
∂2u

∂t2
,v0h

)
Ω

= (f ,v0h)Ω. (4.22)
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If we use the continuity condition, (4.8), we can see that all integrals of the interior

edges cancel. This in addition with the PEC boundary condition φ = 0 gives:

∑
K∈Kh

〈vbh × nK , ν∇× u〉∂K = 0.

Hence, through integration by parts we have

(∇× (ν∇× u),v0h) =∑
K∈Kh

(ν∇× u,∇× v0h)−
∑
K∈Kh

〈ν(vbh − v0h)× nK ,∇× u〉∂K . (4.23)

Observe from that by summing (4.20) over all elements

(ν∇× u,∇× v0h)Ω = (ν∇w × (Qhu),∇w × vh)Ω

+
∑
K∈K

〈Qh(∇× u), ν(vbh − v0h)× nK〉∂K . (4.24)

Therefore, combining (4.24) and (4.23) we get

(∇× (ν∇× u),v0h) = (ν∇w × (Qhu),∇w × vh)

−
∑
K∈Kh

〈(I −Qh)∇× u, ν(vbh − v0h)× nK〉∂K . (4.25)

Plugging (4.25) and (4.21) into (4.22), adding s
(
∂Qhu
∂t

,vh

)
, and subtracting the

scheme (4.11) then gives the desired result:

(ν∇w × εh,∇w × vh) +

(
∂2ε0

∂t2
,v0h

)
+ s

(
∂εh
∂t

,vh

)
= l(u,vh) + s

(
∂Qhu

∂t
,vh

)
. (4.26)

The following lemma provides a spatial error bound for the scheme. Its proof can

be found in Mu et al. (2015a).
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Lemma 4.3.3. Let w ∈ [Hp+1(Ω)]d and vh ∈ Vh with 1
2
< p ≤ k. Then we have

|s(Qhw,vh)| ≤ Chp||w||p+1|vh|1,h, (4.27)

|l(w,vh)| ≤ Chp||w||p+1|vh|1,h. (4.28)

With this, we are now ready to present the error bound for the weak Galerkin

semi-discrete scheme.

Theorem 4.3.2. The semi-discrete weak Galerkin scheme (4.11) with PEC boundary

condition, φ = 0, satisfies the following error estimate: For any τ ∈ (0, T ],

ν||∇w × εh(τ)||2 +

∣∣∣∣∣∣∣∣∂ε0(τ)

∂t

∣∣∣∣∣∣∣∣2 +

∫ τ

0

∣∣∣∣∂εh∂t
∣∣∣∣2
1,h

dt

≤ ν ||∇w × εh(0)||2 +

∣∣∣∣∣∣∣∣∂ε0(0)

∂t

∣∣∣∣∣∣∣∣2
+ Ch2p

∫ τ

0

(
||u||2p+1 +

∣∣∣∣∣∣∣∣∂u

∂t

∣∣∣∣∣∣∣∣2
p+1

)
dt (4.29)

where the constant C > 0 is independent of time t and the mesh size h. In conclusion,

assuming no initial errors, the semi-discrete weak Galerkin scheme’s error is of order

O(hp) in the energy norm.

Proof. If we let vh = {∂tε0, ∂tεb} in Lemma 4.3.2, we get

ν

2

∂

∂t
||∇w × εh||2 +

1

2

∂

∂t

∣∣∣∣∣∣∣∣∂ε0

∂t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∂εh∂t
∣∣∣∣2
1,h

= l

(
u,
∂εh
∂t

)
+ s

(
∂Qhu

∂t
,
∂εh
∂t

)
. (4.30)

We then apply Lemma 4.3.3, to obtain

ν

2

∂

∂t
||∇w × εh||2 +

1

2

∂

∂t

∣∣∣∣∣∣∣∣∂ε0

∂t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∂εh∂t
∣∣∣∣2
1,h

≤ Chp

(
||u||p+1 +

∣∣∣∣∣∣∣∣∂u

∂t

∣∣∣∣∣∣∣∣
p+1

)∣∣∣∣∂εh∂t
∣∣∣∣
1,h

. (4.31)
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By Young’s inequality, and rearranging terms we see that

ν

2

∂

∂t
||∇w × εh||2 +

1

2

∂

∂t

∣∣∣∣∣∣∣∣∂ε0

∂t

∣∣∣∣∣∣∣∣2 +
1

2

∣∣∣∣∂εh∂t
∣∣∣∣2
1,h

≤ 1

2
Ch2p

(
||u||2p+1 +

∣∣∣∣∣∣∣∣∂u

∂t

∣∣∣∣∣∣∣∣2
p+1

)
. (4.32)

Integration from t = 0 to τ completes the proof.

4.4 The Fully-discrete Scheme

To discretize (4.11) further in time, we divide [0, T ] by N + 1 uniformly spaced

points tj, j = 0, · · · , N, where the time step size ∆t = T/N . Define unh = uh(t
n) as

the value of uh at tn. We propose the following fully-discrete scheme.

Fully-discrete Weak Galerkin Algorithm. Find un+1
h = {un+1

0h ,un+1
bh } ∈ Vh sat-

isfying un+1
bh × nΩ = Qbφ

n+1 on ∂Ω and

(
ν∇w ×

un+1
h + un−1

h

2
,∇w × vh

)
Ω

+

(
un+1

0h − 2un0h + un−1
0h

∆t2
,v0h

)
Ω

+ s

(
un+1
h − un−1

h

2∆t
,vh

)
= (fn,v0h)Ω (4.33)

∀vh ∈ V 0
h ,

where Qbφ
n+1 is an approximation of the boundary value φ(tn+1) in the polynomial

space [Pk(∂K ∩ ∂Ω)]d, defined in Section 4.3.
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Stability of the implicit, fully-discrete scheme

Theorem 4.4.1. Under the assumption that ∆t < 1, the following stability result

holds for our fully-discrete weak Galerkin finite element scheme (4.33):

ν(||∇w × uNh ||2 + ||∇w × uN−1
h ||2) +

1

2

∣∣∣∣∣∣∣∣uN0h − uN−1
0h

∆t

∣∣∣∣∣∣∣∣2
+ 2∆t

N−1∑
n=1

∣∣∣∣un+1
h − un−1

h

2∆t

∣∣∣∣2
1,h

≤ C exp (N ·∆t)

[
ν(||∇w × u1

h||2 + ||∇w × u0
h||2) +

∣∣∣∣∣∣∣∣u1
0h − u0

0h

∆t

∣∣∣∣∣∣∣∣2
+∆t

N−1∑
n=1

||fn||2
]
. (4.34)

where the constant C is independent of the mesh size h and time step size ∆t. In

conclusion, the scheme is unconditionally stable.

Proof. We begin by letting vh = un+1
h − un−1

h in (4.33) to get(
ν∇w ×

un+1
h + un−1

h

2
,∇w × (un+1

h − un−1
h )

)
+

(
un+1

0h − 2un0h + un−1
0h

∆t2
,un+1

0h − un−1
0

)
+ s

(
un+1
h − un−1

h

2∆t
,un+1

h − un−1
h

)
= (fn,un+1

0h − un−1
0h ), (4.35)

which can be rewritten as follows:

ν

2
(||∇w × un+1

h ||2 − ||∇w × un−1
h )||2) +

∣∣∣∣∣∣∣∣un+1
0h − un0h

∆t

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣un0h − un−1
0h

∆t

∣∣∣∣∣∣∣∣2
+2∆t

∣∣∣∣un+1
h − un−1

h

2∆t

∣∣∣∣2
1,h

= (fn,un+1
0h − un−1

0h ). (4.36)

Applying the Cauchy-Schwarz, and Young’s inequalities to the right hand side, we

have

(fn,un+1
0h − un−1

0h ) ≤ 2∆t||fn||2 +
∆t

8

∣∣∣∣∣∣∣∣un+1
0h − un−1

0h

∆t

∣∣∣∣∣∣∣∣2
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≤ 2∆t||fn||2 +
∆t

4

(∣∣∣∣∣∣∣∣un+1
0h − un0h

∆t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣un0h − un−1
0h

∆t

∣∣∣∣∣∣∣∣2
)
. (4.37)

If we substitute this into (4.36) and sum the result from n = 1 to n = N − 1 we get

that

ν

2
(||∇w × uNh ||2+||∇w × uN−1

h ||2 − ||∇w × u1
h||2 − ||∇w × u0

h||2) +

∣∣∣∣∣∣∣∣uN0h − uN−1
0h

∆t

∣∣∣∣∣∣∣∣2
−
∣∣∣∣∣∣∣∣u1

0h − u0
0h

∆t

∣∣∣∣∣∣∣∣2 + 2∆t
N−1∑
n=1

∣∣∣∣un+1
h − un−1

h

2∆t

∣∣∣∣2
1,h

≤ 2∆t
N−1∑
n=1

||fn||2 +
∆t

4

N−1∑
n=1

(∣∣∣∣∣∣∣∣un+1
0h − un0h

∆t

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣un0h − un−1
0h

∆t

∣∣∣∣∣∣∣∣2
)

≤ 2∆t
N−1∑
n=1

||fn||2 +
∆t

2

N−1∑
n=0

∣∣∣∣∣∣∣∣un+1
0h − un0h

∆t

∣∣∣∣∣∣∣∣2 . (4.38)

Assuming that ∆t
2
< 1

2
, we can subtract ∆t

2

∣∣∣∣∣∣uN0h−uN−1
0h

∆t

∣∣∣∣∣∣2 from both sides to get

ν

2
(||∇w × uNh ||2 + ||∇w × uN−1

h ||2 − ||∇w × u1
h||2 − ||∇w × u0

h)||2)

+
1

2

∣∣∣∣∣∣∣∣uN0h − uN−1
0h

∆t

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣u1
0h − u0

0h

∆t

∣∣∣∣∣∣∣∣2 + 2∆t
N−1∑
n=1

∣∣∣∣un+1
h − un−1

h

2∆t

∣∣∣∣2
1,h

≤ 2∆t
N−1∑
n=1

||fn||2 +
∆t

2

N−2∑
n=0

∣∣∣∣∣∣∣∣un+1
0h − un0h

∆t

∣∣∣∣∣∣∣∣2 . (4.39)

The proof is complete by applying the discrete Grönwall’s inequality to the above

inequality.

Error analysis for the fully-discrete scheme

Define the error function at time step n to be

εnh = {εn0 , εnb } = {Q0u(tn)− un0h, Qbu(tn)− unbh}. (4.40)

The following error equations then hold for the fully-discrete WG scheme.
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Lemma 4.4.1. Let un+1
h be the fully-discrete WG finite element solution arising from

(4.33) with PEC boundary condition φ = 0, and εnh be the error as defined in (4.40).

Then the following error equation is satisfied:

(
ν∇w ×

εn+1
h + εn−1

h

2
,∇w × vh

)
+

(
εn+1

0 − 2εn0 + εn−1
0

∆t2
,v0h

)
+ s

(
εn+1
h − εn−1

h

2∆t
,vh

)
= l(u(tn),vh) + s

(
Qhu(tn+1)−Qhu(tn−1)

2∆t
,vh

)
+

(
Q0u(tn+1)− 2Q0u(tn) + Q0u(tn−1)

∆t2
− ∂2Q0u

∂t2
(tn),v0h

)
+

(
ν∇w ×

(
Qhu(tn+1) + Qhu(tn−1)

2
−Qhu(tn)

)
,∇w × vh

)
.

Proof. Evaluating (4.21), (4.22), and (4.25) at t = tn results in the following 3

equations:

(
∂2u

∂t2
(tn),v0h

)
Ω

=

(
Q0

∂2u

∂t2
(tn),v0h

)
Ω

=

(
∂2Q0u

∂t2
(tn),v0h

)
Ω

, (4.41)

(∇× (ν∇× u(tn)),v0h)Ω +

(
∂2u

∂t2
(tn),v0h

)
Ω

= (fn,v0h)Ω, (4.42)

and

(∇× (ν∇× u(tn)),v0h)Ω = (ν∇w × (Qhu(tn)),∇w × vh)Ω

−
∑
K∈Kh

〈(I −Qh)∇× u(tn), ν(vbh − v0h)× nK〉∂K . (4.43)

If we add a stabilization term, s
(

Qhu(tn+1)−Qhu(tn−1)
2∆t

,vh

)
, to both sides of (4.42), plug

in (4.43) and (4.41), and subtract the scheme (4.33), we obtain

(ν∇w × (Qhu(tn)),∇w × vh)Ω −
(
ν∇w ×

un+1
h + un−1

h

2
,∇w × vh

)
Ω
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+

(
∂2Q0u

∂t2
(tn),v0h

)
Ω

−
(

un+1
0h − 2un0h + un−1

0h

∆t2
,v0h

)
Ω

+ s

(
εn+1
h − εn−1

h

2∆t
,vh

)
= l(u(tn),vh) + s

(
Qhu(tn+1)−Qhu(tn−1)

2∆t
,vh

)
, (4.44)

by definition of l(·, ·) in lemma 4.3.2.

Adding
(

Q0u(tn+1)−2Q0u(tn)+Q0u(tn−1)
∆t2

,v0h

)
Ω

to both sides of (4.44), and rearranging

terms gives us

(ν∇w × (Qhu(tn)),∇w × vh)Ω −
(
ν∇w ×

un+1
h + un−1

h

2
,∇w × vh

)
Ω

+

(
εn+1

0 − 2εn0 + εn−1
0

∆t2
,v0h

)
Ω

+ s

(
εn+1
h − εn−1

h

2∆t
,vh

)
= l(u(tn),vh) + s

(
Qhu(tn+1)−Qhu(tn−1)

2∆t
,vh

)
+

(
Q0u(tn+1)− 2Q0u(tn) + Q0u(tn−1)

∆t2
− ∂2Q0u(tn)

∂t2
,v0h

)
Ω

. (4.45)

Finally, we add
(
ν∇w × Qhu(tn+1)+Qhu(tn−1)

2
,∇w × vh

)
Ω

to both sides, and rearrange

some terms to arrive at the desired result.

The following lemma will be used to provide a time error estimate for the fully-

discrete weak Galerkin scheme. Its proof is a straightforward consequence of Taylor’s

remainder theorem, and so it will not be included here.

Lemma 4.4.2. For any 1 ≤ n ≤ N − 1,∣∣∣∣∣∣∣∣u(tn+1)− 2u(tn) + u(tn−1)

∆t2
− ∂2u

∂t2
(tn)

∣∣∣∣∣∣∣∣2 ≤ ∆t3

126

∫ tn+1

tn−1

∣∣∣∣∣∣∣∣∂4u

∂t4

∣∣∣∣∣∣∣∣2 dt, (4.46)

and ∣∣∣∣∣∣∣∣u(tn+1) + u(tn−1)

2
− u(tn)

∣∣∣∣∣∣∣∣2 ≤ ∆t3

6

∫ tn+1

tn−1

∣∣∣∣∣∣∣∣∂2u

∂t2

∣∣∣∣∣∣∣∣2 dt. (4.47)

With these results, we are now ready for the error estimate for the fully-discrete

weak Galerkin scheme.
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Theorem 4.4.2. For ∆t < 1, the fully-discrete weak Galerkin scheme (4.33) with

PEC boundary condition, φ = 0, satisfies the following error estimate:

ν

2
(||∇w × εmh ||2 + ||∇w × εm−1

h ||2) +
1

2

∣∣∣∣∣∣∣∣εm0 − εm−1
0

∆t

∣∣∣∣∣∣∣∣2 + ∆t
m−1∑
n=1

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h

≤ C exp (T )[
ν

2
(||∇w × ε1

h||2 + ||∇w × ε0
h||2) +

∣∣∣∣∣∣∣∣ε1
0 − ε0

0

∆t

∣∣∣∣∣∣∣∣2
+ ∆t4

(∫ T

0

∣∣∣∣∣∣∣∣∂4u

∂t4

∣∣∣∣∣∣∣∣2 dt+

∫ T

0

∣∣∣∣∣∣∣∣∇× ν∇× ∂2u

∂t2

∣∣∣∣∣∣∣∣2 dt
)

+ h2p∆t
m−1∑
n=1

(
||u(tn)||p+1 +

∣∣∣∣∣∣∣∣u(tn+1)− u(tn−1)

2∆t

∣∣∣∣∣∣∣∣
p+1

)2

],

where, m ≥ 2, and the constant C > 0 is independent of the time step ∆t and the

mesh size h. In conclusion, assuming there are no initial errors, the fully-discrete

weak Galerkin scheme’s error is of order O(∆t2 + hp) in the energy norm.

Proof. Letting vh = εn+1
h − εn−1

h in Lemma 4.4.1, and applying Lemma 4.3.3, we

have

ν

2

∣∣∣∣∇w × εn+1
h

∣∣∣∣2 − ν

2

∣∣∣∣∇w × εn−1
h

∣∣∣∣2 +

∣∣∣∣∣∣∣∣εn+1
0 − εn0

∆t

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣εn0 − εn−1
0

∆t

∣∣∣∣∣∣∣∣2
+ 2∆t

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h

≤ Chp ||u(tn)||p+1

∣∣εn+1
h − εn−1

h

∣∣
1,h

+ Chp
∣∣∣∣∣∣∣∣u(tn+1)− u(tn−1)

2∆t

∣∣∣∣∣∣∣∣
p+1

∣∣εn+1
h − εn−1

h

∣∣
1,h

(4.48)

+

(
Q0u(tn+1)− 2Q0u(tn) + Q0u(tn−1)

∆t2
− ∂2Q0u

∂t2
(tn), εn+1

0 − εn−1
0

)
Ω

+

(
ν∇w ×

(
Qhu(tn+1) + Qhu(tn−1)

2
−Qhu(tn)

)
,∇w × (εn+1

h − εn−1
h )

)
Ω

.

Then, if we apply Lemma 4.3.1, Young’s inequality and the definition of the Q0 and
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Qh projections, we get

ν

2

∣∣∣∣∇w × εn+1
h

∣∣∣∣2 − ν

2

∣∣∣∣∇w × εn−1
h

∣∣∣∣2 +

∣∣∣∣∣∣∣∣εn+1
0 − εn0

∆t

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣εn0 − εn−1
0

∆t

∣∣∣∣∣∣∣∣2
+ 2∆t

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h

≤ Ch2p∆t

(
||u(tn)||p+1 +

∣∣∣∣∣∣∣∣u(tn+1)− u(tn−1)

2∆t

∣∣∣∣∣∣∣∣
p+1

)2

+ ∆t

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h

+

(
u(tn+1)− 2u(tn) + u(tn−1)

∆t2
− ∂2u

∂t2
(tn), εn+1

0 − εn−1
0

)
Ω

+

(
ν∇×

(
u(tn+1) + u(tn−1)

2
− u(tn)

)
,∇w × (εn+1

h − εn−1
h )

)
Ω

. (4.49)

Using the definition of the weak curl operator, the fact that all boundary integrals

cancel out due to the unique boundary definition, and the PEC boundary condition

gives us

ν

2

∣∣∣∣∇w × εn+1
h

∣∣∣∣2 − ν

2

∣∣∣∣∇w × εn−1
h

∣∣∣∣2 +

∣∣∣∣∣∣∣∣εn+1
0 − εn0

∆t

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣εn0 − εn−1
0

∆t

∣∣∣∣∣∣∣∣2
+ 2∆t

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h

≤ Ch2p∆t

(
||u(tn)||p+1 +

∣∣∣∣∣∣∣∣u(tn+1)− u(tn−1)

2∆t

∣∣∣∣∣∣∣∣
p+1

)2

+ ∆t

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h

+

(
u(tn+1)− 2u(tn) + u(tn−1)

∆t2
− ∂2u

∂t2
(tn), εn+1

0 − εn−1
0

)
Ω

+

(
∇× ν∇×

(
u(tn+1) + u(tn−1)

2
− u(tn)

)
, εn+1

0 − εn−1
0

)
Ω

. (4.50)

Applying the Cauchy-Schwarz and Young’s inequalities and rearranging terms, we

further have

ν

2

∣∣∣∣∇w × εn+1
h

∣∣∣∣2 − ν

2

∣∣∣∣∇w × εn−1
h

∣∣∣∣2 +

∣∣∣∣∣∣∣∣εn+1
0 − εn0

∆t

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣εn0 − εn−1
0

∆t

∣∣∣∣∣∣∣∣2
+ ∆t

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h
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≤ Ch2p∆t

(
||u(tn)||p+1 +

∣∣∣∣∣∣∣∣u(tn+1)− u(tn−1)

2∆t

∣∣∣∣∣∣∣∣
p+1

)2

+ 4∆t

∣∣∣∣∣∣∣∣u(tn+1)− 2u(tn) + u(tn−1)

∆t2
− ∂2u

∂t2
(tn)

∣∣∣∣∣∣∣∣2 +
∆t

16

∣∣∣∣∣∣∣∣εn+1
0 − εn−1

0

∆t

∣∣∣∣∣∣∣∣2
+ 4∆t

∣∣∣∣∣∣∣∣∇× ν∇× (u(tn+1) + u(tn−1)

2
− u(tn)

)∣∣∣∣∣∣∣∣2 +
∆t

16

∣∣∣∣∣∣∣∣εn+1
0 − εn−1

0

∆t

∣∣∣∣∣∣∣∣2
≤ Ch2p∆t

(
||u(tn)||p+1 +

∣∣∣∣∣∣∣∣u(tn+1)− u(tn−1)

2∆t

∣∣∣∣∣∣∣∣
p+1

)2

+
∆t

4

∣∣∣∣∣∣∣∣εn+1
0 − εn0

∆t

∣∣∣∣∣∣∣∣2
+ 4∆t

∣∣∣∣∣∣∣∣u(tn+1)− 2u(tn) + u(tn−1)

∆t2
− ∂2u

∂t2
(tn)

∣∣∣∣∣∣∣∣2 +
∆t

4

∣∣∣∣∣∣∣∣εn0 − εn−1
0

∆t

∣∣∣∣∣∣∣∣2
+ 4∆t

∣∣∣∣∣∣∣∣∇× ν∇× (u(tn+1) + u(tn−1)

2
− u(tn)

)∣∣∣∣∣∣∣∣2 . (4.51)

If we sum the resulting terms from n = 1 to m− 1, we obtain

ν

2

(∣∣∣∣∇w × εmh
∣∣∣∣2 +

∣∣∣∣∇w × εm−1
h

∣∣∣∣2 − ∣∣∣∣∇w × ε1
h

∣∣∣∣2 − ∣∣∣∣∇w × ε0
h

∣∣∣∣2)
+

∣∣∣∣∣∣∣∣εm0 − εm−1
0

∆t

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣ε1
0 − ε0

0

∆t

∣∣∣∣∣∣∣∣2 + ∆t
m−1∑
n=1

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h

≤ Ch2p∆t
m−1∑
n=1

(
||u(tn)||p+1 +

∣∣∣∣∣∣∣∣u(tn+1)− u(tn−1)

2∆t

∣∣∣∣∣∣∣∣
p+1

)2

+ 4∆t
m−1∑
n=1

∣∣∣∣∣∣∣∣∇× ν∇× (u(tn+1) + u(tn−1)

2
− u(tn)

)∣∣∣∣∣∣∣∣2
+ 4∆t

m−1∑
n=1

∣∣∣∣∣∣∣∣u(tn+1)− 2u(tn) + u(tn−1)

∆t2
− ∂2u

∂t2
(tn)

∣∣∣∣∣∣∣∣2
+

∆t

2

m−1∑
n=0

∣∣∣∣∣∣∣∣εn+1
0 − εn0

∆t

∣∣∣∣∣∣∣∣2 . (4.52)

Under the assumption of ∆t
2
< 1

2
, we can subtract ∆t

2

∣∣∣∣∣∣εm0 −εm−1
0

∆t

∣∣∣∣∣∣2 from both sides to

obtain

ν

2

(∣∣∣∣∇w × εmh
∣∣∣∣2 +

∣∣∣∣∇w × εm−1
h

∣∣∣∣2 − ∣∣∣∣∇w × ε1
h

∣∣∣∣2 − ∣∣∣∣∇w × ε0
h

∣∣∣∣2)
+

1

2

∣∣∣∣∣∣∣∣εm0 − εm−1
0

∆t

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣ε1
0 − ε0

0

∆t

∣∣∣∣∣∣∣∣2 + ∆t
m−1∑
n=1

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h
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≤ Ch2p∆t
m−1∑
n=1

(
||u(tn)||p+1 +

∣∣∣∣∣∣∣∣u(tn+1)− u(tn−1)

2∆t

∣∣∣∣∣∣∣∣
p+1

)2

+ 4∆t
m−1∑
n=1

∣∣∣∣∣∣∣∣∇× ν∇× (u(tn+1) + u(tn−1)

2
− u(tn)

)∣∣∣∣∣∣∣∣2
+ 4∆t

m−1∑
n=1

∣∣∣∣∣∣∣∣u(tn+1)− 2u(tn) + u(tn−1)

∆t2
− ∂2u(tn)

∂t2

∣∣∣∣∣∣∣∣2
+

∆t

2

m−2∑
n=0

∣∣∣∣∣∣∣∣εn+1
0 − εn0

∆t

∣∣∣∣∣∣∣∣2 . (4.53)

Then, after applying the discrete Grönwall’s inequality and Lemmas 4.4.2 and 4.4.2,

ν

2

(∣∣∣∣∇w × εmh
∣∣∣∣2 +

∣∣∣∣∇w × εm−1
h

∣∣∣∣2)+
1

2

∣∣∣∣∣∣∣∣εm0 − εm−1
0

∆t

∣∣∣∣∣∣∣∣2 + ∆t
m−1∑
n=1

∣∣∣∣εn+1
h − εn−1

h

2∆t

∣∣∣∣2
1,h

≤ C exp (T )[
ν

2
(||∇w × ε1

h||2 + ||∇w × ε0
h||2) +

∣∣∣∣∣∣∣∣ε1
0 − ε0

0

∆t

∣∣∣∣∣∣∣∣2
+ h2p∆t

m−1∑
n=1

(
||u(tn)||p+1 +

∣∣∣∣∣∣∣∣u(tn+1)− u(tn−1)

2∆t

∣∣∣∣∣∣∣∣
p+1

)2

+ ∆t4

(∫ T

0

∣∣∣∣∣∣∣∣∂4u

∂t4

∣∣∣∣∣∣∣∣2 dt+

∫ T

0

∣∣∣∣∣∣∣∣∇× ν∇× ∂2u

∂t2

∣∣∣∣∣∣∣∣2 dt
)

], (4.54)

which concludes the proof.

4.5 Implementation of the WG method

Choosing the finite element space and respective basis functions

Even though we have proved the convergence and stability results for 3-D, we

can extend the theoretical analysis directly to 2-D by using a 2-D version of the curl

operator. Though practical problems are in 3-D, for simplicity, we currently focus on

a 2-D implementation of the scheme. Hence the numerical results for this chapter are

done in 2-D only.
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The test and trial spaces that we chose for our implementation are of the lowest

order in order to simplify calculations and to show how to implement the method

more clearly. Thus, our finite element spaces that we used are composed of linear

elements, which give an order of accuracy of O(h) in the energy norm according to

our error analysis. Denote Eh to be the set of all element edges in the domain, and τi

to be the tangential vector for each element edge ei ⊂ ∂K. Our finite element spaces

are defined as follows. Given a triangulation, Th, of the domain Ω, for each K ∈ Th:

V0(K) = {v0 : v0|K ∈ [P1(K)]2} (4.55)

Vb(K) = {vb : vb|K =
3∑
i=1

(v1,i + v2,is)τi, and v1,i, v2,i ∈ P0(ei), ei ⊂ ∂K} (4.56)

The total finite element space is then formally defined as follows:

Vh = {vh = {v0,vb} : v0|K ∈ V0,vb|K ∈ Vb,∀K ∈ Th} (4.57)

In addition to these two spaces used in the creation of our finite element space, a

third space is needed for the construction of the discrete weak curl operator on each

element K. By the definition of the discrete weak curl operator, the space used must

be one degree less than the spaces used to approximate the solution, i.e. P0(K).

After the spaces are chosen, a suitable basis must be chosen as well. The following

bases were used in this specific implementation due to their simplicity:

V0(K) = span{φ0,i : i = 1...(N0 = 6)}

= span

{(
1
0

)
,

(
x
0

)
,

(
y
0

)
,

(
0
1

)
,

(
0
x

)
,

(
0
y

)}
, (x, y) ∈ K (4.58)

Vb(K) = span{φb,i : i = 1...(Nb = 6)}

= span{τ1, sτ1, τ2, sτ2, τ3, sτ3}, s ∈ [0, |ei|] (4.59)
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P0(K) = span{χi : i = 1...(Nv = 1)} = span{1} (4.60)

Note that φb1 and φb2 are only defined on e1, and likewise for the other 2 pairs of

basis functions.

Construction of the linear system

Given the basis functions, we can represent the numerical solution uh as:

uh|K =

{
N0∑
i=1

u0,iϕ0,i,

Nb∑
i=1

ub,iϕb,i

}

We substitute this into the fully-discrete scheme, then let our test functions be each

basis function:

vh = ϕj,h = {ϕ0,j,ϕb,j}, j = 1...(N0 +Nb)

where we have ϕb,j = 0 for j = 1...N0, and ϕ0,j = 0 for j = N0 + 1, ..., N0 +Nb.

This gives us the following linear system for our fully discrete scheme on each K:

CK

(
~un+1
h + ~un−1

h

2

)
+MK

(
~un+1

0 − 2~un0 + ~un−1
0

∆t2

)
+ SK

(
~un+1
h − ~un−1

h

2∆t

)
= bk (4.61)

where ~unh = [u0,1...u0,N0 , ub,1...ub,Nb ]
T . Or, if we solve for the (n+ 1)th time step:

~un+1
h =

(
1

2
CK +

1

∆t2
MK +

1

2∆t
SK

)−1

2MK~u
n
h

−
(

1

2
CK +

1

∆t2
MK +

1

2∆t
SK

)−1(
1

2
CK +

1

∆t2
MK −

1

2∆t
SK

)
~un−1
h

+

(
1

2
CK +

1

∆t2
MK +

1

2∆t
SK

)−1

bK (4.62)

where CK ,MK , and SK are the curl, mass and stability matrices respectively, and

[bK ] =

[
(fn,ϕ0,j)K

0Nb×1

]
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Note that since this is discretized with a second order finite difference scheme in

time, we need two initial conditions, ~u 0
h and ~u 1

0 . To implement this we must find the

projection of our initial condition at the first two time steps onto our interior and

boundary finite element spaces.

Constructing the matrices

Following the steps outlined in Mu et al. (2013) we see that each of the 3 matrices

can be written in the form:

CK =

[
C0,0 C0,b

Cb,0 Cb,b

]
(4.63)

Following the paper once again we arrive at the following analogous definitions

for the 4 blocks of the curl matrix:

C0,0 = Zt
KD

−t
K AKD

−1
K ZK , C0,b = −Zt

KD
−t
K AKD

−1
K TK ,

Cb,0 = −T tKD−tK AKD
−1
K ZK , Cb,b = T tKD

−t
K AKD

−1
K TK . (4.64)

where ZK , TK , DK , and AK are defined as:

[ZK ]i,j =

∫
K

(∇× χi) ·ϕ0,jdA, i = 1...Nv, j = 1...N0,

[TK ]i,j =

∫
∂K

χi ·ϕb,j × nKdS, i = 1...Nv, j = 1...Nb,

[DK ]i,j =

∫
K

χi · χjdA, i, j = 1...Nv,

[AK ]i,j =

∫
K

νχi · χjdA, i, j = 1...Nv. (4.65)

Using the basis functions chosen earlier, we have the following values for ZK , TK ,
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DK , and AK :

ZK = [0 0 0 0 0 0], TK =

[
|e1|

1

2
|e1|2 |e2|

1

2
|e2|2 |e3|

1

2
|e3|2]

]
,

DK = |K|, AK = ν|K|. (4.66)

Using these values and the formulas from (4.64), we have:

C0,0 = C0,b = Cb,0 = 06×6

and

Cb,b =
1

|K|


|e1|2 1

2
|e1|3 |e1||e2| 1

2
|e1||e2|2 |e1||e3| 1

2
|e1||e3|2

1
2
|e1|3 1

4
|e1|4 1

2
|e1|2|e2| 1

4
|e1|2|e2|2 1

2
|e1|2|e3| 1

4
|e1|2|e3|2

|e1||e2| 1
2
|e1|2|e2| |e2|2 1

2
|e2|3 |e2||e3| 1

2
|e2||e3|2

1
2
|e1||e2|2 1

4
|e1|2|e2|2 1

2
|e2|3 1

4
|e2|4 1

2
|e2|2|e3| 1

4
|e2|2|e3|2

|e1||e3| 1
2
|e1|2|e3| |e2||e3| 1

2
|e2|2|e3| |e3|2 1

2
|e3|3

1
2
|e1||e3|2 1

4
|e1|2|e3|2 1

2
|e2||e3|2 1

4
|e2|2|e3|2 1

2
|e3|3 1

4
|e3|4

 ,

which completes the construction of the curl matrix.

The mass matrix can then be computed in a similar blockwise fashion:

MK =

[
M0,0 M0,b

Mb,0 Mb,b

]

where

M0,b = Mb,0 = Mb,b = 06×6

from the lack of boundary term in the scheme and

[M0,0]i,j =

∫
K

ϕ0,i ·ϕ0,jdA, i, j = 1...N0.

Computing M0,0 with our chosen basis functions yields the nonzero entries to be:
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[M0,0]1,1 = [M0,0]4,4 = 1,

[M0,0]2,1 = [M0,0]1,2 = [M0,0]5,4 = [M0,0]4,5 =
1

3
(x1 + x2 + x3),

[M0,0]3,1 = [M0,0]1,3 = [M0,0]6,4 = [M0,0]4,6 =
1

3
(y1 + y2 + y3),

[M0,0]2,2 = [M0,0]5,5 =
1

6
(x2

1 + (x1 + x2)(x2 + x3) + x2
3),

[M0,0]2,3 = [M0,0]3,2 = [M0,0]6,5 = [M0,0]5,6 =
1

12
(x1(2y1 + y2 + y3)

+ x2(y1 + 2y2 + y3) + x3(y1 + y2 + 2y3)),

[M0,0]3,3 = [M0,0]6,6 =
1

6
(y2

1 + (y1 + y2)(y2 + y3) + y2
3),

which completes the construction of the mass matrix.

To compute the stability matrix we must first compute the L2-projection onto

the boundary of each element of the interior basis functions. To do this we first

use the fact that the L2-projection of the interior basis function Qb must be a linear

combination of the boundary basis functions, i.e.

Qbϕ0,i =

Nb∑
j=1

ci,jϕb,j for i = 1...N0.

Additionally, by definition of L2-projection we have:

〈Qbϕ0,i,ϕb,j〉∂K = 〈ϕ0,i,ϕb,j〉∂K for j = 1...Nb.

Using both of these definitions on the first edge of the triangle we can get a system

of linear equations for c1 and c2:

Qbϕ0,i|e1 = ci,1ϕb,1 + ci,2ϕb,2,

〈ci,1ϕb,1 + ci,2ϕb,2,ϕb,1〉∂K = 〈ϕ0,i,ϕb,1〉∂K ,
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〈ci,1ϕb,1 + ci,2ϕb,2,ϕb,2〉∂K = 〈ϕ0,i,ϕb,2〉∂K .

We can then rewrite this as the following linear system:[
〈ϕb,1,ϕb,1〉∂K 〈ϕb,1,ϕb,2〉∂K
〈ϕb,2,ϕb,1〉∂K 〈ϕb,2,ϕb,2〉∂K

] [
ci,1
ci,2

]
=

[
〈ϕ0,i,ϕb,1〉∂K
〈ϕ0,i,ϕb,2〉∂K

]
.

A similar process can be used for the other 2 edges to find ci,3, ci,4, ci,5 and ci,6:[
〈ϕb,3,ϕb,3〉∂K 〈ϕb,3,ϕb,4〉∂K
〈ϕb,4,ϕb,3〉∂K 〈ϕb,4,ϕb,4〉∂K

] [
ci,3
ci,4

]
=

[
〈ϕ0,i,ϕb,3〉∂K
〈ϕ0,i,ϕb,4〉∂K

]
,[

〈ϕb,5,ϕb,5〉∂K 〈ϕb,5,ϕb,6〉∂K
〈ϕb,6,ϕb,5〉∂K 〈ϕb,6,ϕb,6〉∂K

] [
ci,5
ci,6

]
=

[
〈ϕ0,i,ϕb,5〉∂K
〈ϕ0,i,ϕb,6〉∂K

]
.

Combining these into a block matrix system, and computing the components

directly, we get 6 linear systems to solve for our 6 interior basis functions:

|e1| |e1|2
2

0 0 0 0
|e1|2

2
|e1|3

3
0 0 0 0

0 0 |e2| |e2|2
2

0 0

0 0 |e2|2
2

|e2|3
3

0 0

0 0 0 0 |e3| |e3|2
2

0 0 0 0 |e3|2
2

|e3|3
3




ci,1
ci,2
ci,3
ci,4
ci,5
ci,6

 =


〈ϕ0,i,ϕb,1〉∂K
〈ϕ0,i,ϕb,2〉∂K
〈ϕ0,i,ϕb,3〉∂K
〈ϕ0,i,ϕb,4〉∂K
〈ϕ0,i,ϕb,5〉∂K
〈ϕ0,i,ϕb,6〉∂K

 .

Here, the 6 right hand side vectors for the 6 interior basis functions cannot be

directly calculated by hand for an arbitrary element. Because the right hand side

vectors are computed using boundary integrals, we must consider the neighboring

elements since tangential continuity is enforced along the boundary elements. In order

to keep consistency with the direction of integration, if we have two elements with a

shared boundary, the boundary integrals must be integrated in opposite directions.

To enforce this, we must choose one of the two elements, and replace the basis function

sτi with (|ei|−s)τi. Since the choice of the element here is somewhat arbitrary (albeit

it must still be a consistent choice throughout the whole domain) it is not easy to list

a generalized formula for the right hand side vectors for each element.
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Once we have solved for the ci,j, and therefore found the L2-projection, we can

then use them to compute the boundary integrals used for the entries in the stability

matrix. Starting with the definition of the stabilizing term on each element we have:

s(uh,ϕh,j)|K = h−1
K 〈(Qbu0 − ub)× nK , (Qbϕ0,j −ϕb,j)× nK〉∂K

= h−1
K (〈Qbu0 · τK , Qbϕ0,j · τK〉∂K − 〈Qbu0 · τK ,ϕb,j · τK〉∂K

− 〈ub · τK , Qbϕ0,j · τK〉∂K + 〈ub · τK ,ϕb,j · τK〉∂K)

= h−1
K

N0∑
i=1

u0,i(〈Qbϕ0,i · τK , Qbϕ0,j · τK〉∂K − 〈Qbϕ0,i · τK ,ϕb,j · τK〉∂K)

+ h−1
K

Nb∑
i=1

ub,i(−〈ϕb,i · τK , Qbϕ0,j · τK〉∂K + 〈ϕb,i · τK ,ϕb,j · τK〉∂K)

where τK is the tangential unit vector to ∂K. This finally gives us:

SK = h−1
K

[
S0,0 S0,b

Sb,0 Sb,b

]

where

[S0,0]i,j =

∫
∂K

Qbϕ0,i · τK ·Qbϕ0,j · τKdS,

[S0,b]i,j = −
∫
∂K

Qbϕ0,i · τK ·ϕb,j · τKdS,

[Sb,0]i,j = −
∫
∂K

ϕb,i · τK ·Qbϕ0,j · τKdS,

[Sb,b]i,j =

∫
∂K

ϕb,i · τK ·ϕb,j · τKdS. (4.67)

It should be noted that S0,b = STb,0, and S0,0 and Sb,b are symmetric, therefore making

SK symmetric.. Now using the L2-projection to compute S0,0 we have:

[S0,0]i,j =

∫
∂K

Qbφ0,i · τ ·Qbφ0,j · τdS
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=

∫
edge1

(ci,1φb,1 + ci,2φb,2) · τ1 · (cj,1φb,1 + cj,2φb,2) · τ1dS

+

∫
edge2

(ci,3φb,3 + ci,4φb,4) · τ2 · (cj,3φb,3 + cj,4φb,4) · τ2dS

+

∫
edge3

(ci,5φb,5 + ci,6φb,6) · τ3 · (cj,5φb,5 + cj,6φb,6) · τ3dS

=

∫
edge1

(ci,1 + ci,2s) · (cj,1 + cj,2s)ds+

∫
edge2

(ci,3 + ci,4s) · (cj,3 + cj,4s)ds

+

∫
edge3

(ci,5 + ci,6s) · (cj,5 + cj,6s)ds

=
1

6
|e1|(3ci,1(2cj,1 + cj,2|e1|) + ci,2|e1|(3cj,1 + 2cj,2|e1|))

+
1

6
|e2|(3ci,3(2cj,3 + cj,4|e2|) + ci,4|e2|(3cj,3 + 2cj,4|e2|))

+
1

6
|e3|(3ci,5(2cj,5 + cj,6|e3|) + ci,6|e3|(3cj,5 + 2cj,6|e3|)). (4.68)

Likewise for S0,b and Sb,0 = ST0,b:

[S0,b]i,1 = −
∫
∂K

Qbφ0,i · τ · φb,1 · τdS = −
∫
edge1

(ci,1φb,1 + ci,2φb,2) · τ1 · φb,1 · τ1dS

= −
∫
edge1

(ci,1 + ci,2s)ds = −ci,1|e1| −
1

2
ci,2|e1|2, (4.69)

[S0,b]i,2 = −
∫
∂K

Qbφ0,i · τ · φb,2 · τdS = −
∫
edge1

(ci,1φb,1 + ci,2φb,2) · τ1 · φb,2 · τ1dS

= −
∫
edge1

(ci,1s+ ci,2s
2)ds = −1

2
ci,1|e1|2 −

1

3
ci,2|e1|3, (4.70)

[S0,b]i,3 = −
∫
∂K

Qbφ0,i · τ · φb,3 · τdS = −
∫
edge2

(ci,3φb,3 + ci,4φb,4) · τ2 · φb,3 · τ2dS

= −
∫
edge2

(ci,3 + ci,4s)ds = −ci,3|e2| −
1

2
ci,4|e2|2 (4.71)

[S0,b]i,4 = −
∫
∂K

Qbφ0,i · τ · φb,4 · τdS = −
∫
edge2

(ci,3φb,3 + ci,4φb,4) · τ2 · φb,4 · τ2dS

= −
∫
edge2

(ci,3s+ ci,4s
2)ds = −1

2
ci,3|e2|2 −

1

3
ci,4|e2|3, (4.72)

[S0,b]i,5 = −
∫
∂K

Qbφ0,i · τ · φb,5 · τdS = −
∫
edge3

(ci,5φb,5 + ci,6φb,6) · τ3 · φb,5 · τ3dS

= −
∫
edge3

(ci,5 + ci,6s)ds = −ci,5|e3| −
1

2
ci,6|e3|2, (4.73)
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[S0,b]i,6 = −
∫
∂K

Qbφ0,i · τ · φb,6 · τdS = −
∫
edge3

(ci,5φb,5 + ci,6φb,6) · τ3 · φb,6 · τ3dS

= −
∫
edge3

(ci,5s+ ci,6s
2)ds = −1

2
ci,5|e3|2 −

1

3
ci,6|e3|3. (4.74)

Finally, Sb,b can be directly calculated to be:

Sb,b =



|e1| |e1|2
2

0 0 0 0
|e1|2

2
|e1|3

3
0 0 0 0

0 0 |e2| |e2|2
2

0 0

0 0 |e2|2
2

|e2|3
3

0 0

0 0 0 0 |e3| |e3|2
2

0 0 0 0 |e3|2
2

|e3|3
3


.

Assembling the global matrices

Once we have the local matrices defined and constructed on every element we

must assemble them into the global matrix. Tangential continuity is only enforced on

the element boundaries. Expanding ub in terms of its basis functions on each element

edge, in 2D problems, we have:

(ub,iϕb,i + ub,i+1ϕb,i+1) · τ = (ub,jϕb,j + ub,j+1ϕb,j+1) · τ ,

(ub,iτi + ub,i+1sτi) · τ = (ub,jτj + ub,j+1sτj) · τ ,

where τi is the tangential vector for the shared edge of element K1 and τj is the

tangential vector for the shared edge of element K2. Since the two vectors share

the same edge, but point in opposite directions we have from our current definitions:

τi = −τj = τ . This gives us:

ub,i + sub,i+1 = −(ub,j + sub,j+1),

that is, the ub,i are equal to the negative of each other across each element edge. This

means that instead of enforcing equality across the element edges to ensure continuity,

101



we must enforce the two values to be opposite signs at a shared edge.

4.6 Numerical results

Following the steps provided above for the implementation of the scheme, we have

provided convergence results for our scheme that agree with the proved results in a

previous section. The convergence results that have been proven show the convergence

of a so-called weak curl norm, defined by: ||uh||2wc = ||∇w × uh||2L2 + ||u0||2L2 , to be

O(hp + ∆t2). In addition to showing the convergence of the weak curl norm of the

scheme, we have also provided the convergence results for the L2 and L∞ norms.

Although these results imply that the L2 and L∞ norms are an order higher in space,

with a rate of convergence of O(hp+1 + ∆t2), this has yet to be proven.

To test the convergence rate of the spatial error we consider the following 2D

version of (4.2):

1

µε
∇× (∇× u) +

∂2u

∂t2
= f in Ω× [0, T ] (4.75)

u× n = φ on ∂Ω (4.76)

where ε = µ = 1, φ = 0,f =

[
π2 cos(πx) sin(πy)t2

−π2 sin(πx) cos(πy)t2

]
,Ω = [0, 1] × [0, 1], and u =[

ux
uy

]
.

Along with the necessary initial conditions, these assumptions give the exact so-

lution:

u =

[
ux
uy

]
=

[
cos(πx) sin(πy)t2

− sin(πx) cos(πy)t2

]
.

The rectangular domain, Ω, was then discretized into a structured mesh of trian-
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gles of equal size (see Figure 4.1). Each subsequent refinement kept the same structure

to ensure consistency of the mesh throughout the convergence rates tests.

Figure 4.1. Exemplary mesh for h = 1/4

Table 4.1. Mesh size convergence rates in various norms for T = 1, p = 1, and
∆t = .0001

h = ||e0||∞ Rate: ||e0||L2 Rate: ||eh||wc Rate:
1/4 1.0909E-01 – 8.8990E-02 – 7.4883E-01 –
1/8 3.0025E-02 1.8613 2.4674E-02 1.8507 3.5480E-01 1.0776
1/16 7.6767E-03 1.9676 6.3395E-03 1.9606 1.7373E-01 1.0302
1/32 1.9300E-03 1.9919 1.5959E-03 1.9900 8.6353E-02 1.0085
1/64 4.8318E-04 1.9980 3.9968E-04 1.9975 4.3111E-02 1.0022

4.7 Conclusions

We developed a weak Galerkin finite element method for the time-dependent

Maxwell’s equations. Stability and error convergence results were proved for both
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Table 4.2. Mesh size convergence rates in various norms for T = 1, p = 2, and
∆t = .0001

h = ||e0||∞ Rate: ||e0||L2 Rate: ||eh||wc Rate:
1/4 1.3579E-02 – 7.5105E-03 – 5.6149E-02 –
1/8 1.7486E-03 2.9571 9.7734E-04 2.9420 1.3996E-02 2.0042
1/16 2.1656E-04 3.0134 1.2296E-04 2.9907 3.4970E-03 2.0008
1/32 2.6888E-05 3.0097 1.5374E-05 2.9996 8.7413E-04 2.0002
1/64 3.3515E-06 3.0041 1.9206E-06 3.0009 2.1853E-04 2.0000

Table 4.3. Mesh size convergence rates in various norms for T = 1, p = 3, and
∆t = .0001

h = ||e0||∞ Rate: ||e0||L2 Rate: ||eh||wc Rate:
1/4 5.5154E-04 – 5.3120E-04 – 4.0012E-03 –
1/8 3.7533E-05 3.8772 3.3526E-05 3.9859 4.9760E-04 3.0074
1/16 2.3819E-06 3.9780 2.0929E-06 4.0017 6.2121E-05 3.0018
1/32 1.3661E-07 4.1240 1.3013E-07 4.0075 7.7628E-06 3.0004

a semi-discrete scheme and a fully-discrete scheme were demonstrated with a few

examples for p = 1, 2 and 3. The WG method is characterized by the usage of two

main concepts, the discrete weak curl and the stabilization term.

The use of the discrete weak curl approximates the curl of the solution through a

separate function space. This allows the scheme to be more flexible, allows for solu-

tions that are discontinuous across elements, and better accommodates common prob-

lems such as nonconforming meshes. Similar to other discontinuous Galerkin meth-

ods, this scheme needs a way to transmit information across discontinuities through

a flux-like term. The stabilization term fills that role in this scheme, computing a

type of flux between each element interior and its associated boundary.

The numerical results for the WG scheme show that the scheme has the standard
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Table 4.4. Time step convergence rates in various norms for T = 1, p = 4, and
h = 1/8

∆t = ||e0||∞ Rate: ||e0||L2 Rate: ||eh||wc Rate:
0.02 1.2121E-01 – 6.9579E-02 – 8.7562E-02 –
0.01 2.5733E-02 2.2358 1.3366E-02 2.3801 1.6468E-02 2.4106
0.005 6.5050E-03 1.9840 3.1227E-03 2.0977 3.8431E-03 2.0993
0.0025 1.7991E-03 1.8543 7.6889E-04 2.0219 9.4510E-04 2.0237
0.00125 5.4699E-04 1.7177 1.9558E-04 1.9750 2.3882E-04 1.9845

Figure 4.2. Convergence plots for the WG method in time and space.
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optimal order of convergence in the L2, L∞, and appropriate energy norms. Addi-

tionally, the scheme is shown to have the expected second order convergence in time

in all three norms.

However, all of this added flexibility in the scheme does not come without its

costs. The WG scheme requires substantially more degrees of freedom when solving

the system. Although the global matrix that is fairly sparse, it still can slow down the

algorithm considerably while time stepping. This can be reduced through the use of

the Schur complement, whose implementation is outlined in Mu et al. (2015a). With
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the Schur complement, we can simplify the scheme to only solve for the boundary

degrees of freedom, reducing the computational costs drastically.

Although the WG method for Maxwell’s equations does not provide any advantage

in computational costs, it has the benefit of being a fairly flexible and unconditionally

stable scheme while keeping an optimal order of error convergence. Future work

for this scheme will include reducing time error, investigating the possibilities of

superconvergence, showing the optimal convergence rate in the L2 and L∞ norms,

and increasing the computational efficiency.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

This dissertation focused on the development and analysis of three different nu-

merical methods for three different formulations of the time-dependent Maxwell’s

equations. For each model, an appropriate numerical method was chosen to solve the

application at hand. In chapter 2, a Yee scheme finite difference time-domain (FDTD)

method was used to simulate the backwards wave propagation through negative-index

metamaterials due to the rectangular shape of the domain. Additionally, the non-

uniform grid was utilized to simulate the metamaterial slab with a finer mesh than the

surrounding vacuum. Chapter 3 then focuses on the modeling of signal propagation

in corrugated coaxial cables. Because the domain in this application is more complex,

and therefore more difficult to model with an FDTD method, a nodal discontinuous

Galerkin (nDG) method was used to solve the axisymmetric Maxwell’s equations on a

2-D cross-section of the dielectric of the cable. The nDG has an advantage over FDTD

methods for applications such as this one due to the ability to spatially discretize the

domain into triangles instead of rectangles. Finally, in chapter 4 we developed a new

type of discontinuous Galerkin method named the weak Galerkin (WG) method. Be-

cause this method is still in its infancy, we decided to create a framework for future

applications by developing this method for the standard Maxwell’s equations.
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Stability analysis as well as various error convergence rates were then performed

on each of these three schemes. For the fully-discrete non-uniform Yee scheme we

were able to find the necessary conditions for stability as well as prove optimal order

convergence for space and time in the L2 norm. In the case of the cable model, we

proved stability in the semi-discrete scheme and the optimal order of convergence for

space in the L2 norm. Finally, we proved that the fully-discrete WG method for the

standard time-domain Maxwell’s equations was unconditionally stable. Additionally,

we showed that this scheme achieved optimal order of convergence in the so-called dis-

crete weak curl norm. These results were subsequently confirmed through numerical

experiments for all three schemes.

5.2 Future Work

For each of the chapters presented in this dissertation there are many potential

avenues to explore. Because many cloaking metamaterial models are very similar in

nature to the metamaterial model presented in chapter 2, the method and analysis of

chapter 2 could potentially be extended to cloaking models. Additionally, the cable

model in chapter 3 is far from complete. This cable assumed ideal, perfect conductors

and a lossless dielectric. A future, more comprehensive model might attempt to model

skin effect losses in the conductor as well as dielectric losses. The model presented

also assumes homogeneity in all materials used in the cable, where this is often not the

case. Another potential avenue from the cable model would be to perform uncertainty

quantification on the cable in the form of uncertainty added to the dielectric and the
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conductors.

Since little to no work has been done with weak Galerkin methods on time-

dependent problems, there are many possible extensions of the work done in chapter

4. For example, the method could be applied to the time-domain metamaterial and

cable models presented in chapters 2 and 3. While at a first glance the WG methods

looks to be computationally less efficient than the nDG methods with the same ac-

curacy, the WG method might have some other unexplored advantages over the nDG

method. An interesting comparison between the WG method and the nDG method

on various Maxwell’s equations models might give more insight as to any potential

usage of the WG method.
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APPENDIX

COPYRIGHTS

Chapter 2 reprinted from Numerische Mathematik, 134, J. Li and S. Shields, “Su-

perconvergence analysis of Yee scheme for metamaterial Maxwell’s equations on non-

uniform rectangular meshes”, 741-781, Copyright (2016), with permission from Springer,

license number 4052701271733.

Chapter 3 reprinted from Journal of Computational and Applied Mathematics, 309,

J. Li, E. A. Machorro and S. Shields, “Numerical study of signal propagation in

corrugated coaxial cables”, 230–243, Copyright (2017), with permission from Elsevier,

license number 4052720454260.
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