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ABSTRACT

NOVEL METHODS FOR THE TIME-DEPENDENT MAXWELL’S
EQUATIONS AND THEIR APPLICATIONS

by
Sidney Shields
Dr. Jichun Li, Examination Committee Chair

Professor, Mathematics
University of Nevada, Las Vegas, USA

This dissertation investigates three different mathematical models based on the
time-domain Maxwell’s equations using three different numerical methods: a Yee
scheme using a non-uniform grid, a nodal discontinuous Galerkin (nDG) method,
and a newly developed discontinuous Galerkin method named the weak Galerkin
(WG) method. The non-uniform Yee scheme is first applied to an electromagnetic
metamaterial model. Stability and superconvergence error results are proved for the
method, which are then confirmed through numerical results. Additionally, a numeri-
cal simulation of backwards wave propagation through a negative-index metamaterial
is given using the presented method. Next, the nDG method is used to simulate sig-
nal propagation through a corrugated coaxial cable through the use of axisymmetric
Maxwell’s equations. Stability and error analysis are performed for the semi-discrete
method, and are verified through numerical results. The nDG method is then used to
simulate signal propagation through coaxial cables with a number of different corruga-
tions. Finally, the WG method is developed for the standard time-domain Maxwell’s
equations. Similar to the other methods, stability and error analysis are performed

on the method and are verified through a number of numerical experiments.
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CHAPTER 1

INTRODUCTION

One field of physics that benefits greatly from numerical methods is electromag-
netics. The behavior of electric field E and magnetic field B can be described by
a set of PDEs called Maxwell’s equations. Maxwell’s equations are a set of coupled
partial differential equations describing the wave propagation in a specific material
with permittivity ¢ and permeability p:

0B oD .
VXE——E, VXH—E—FJ, (11&)

V-D=p, V-B=0 , (1.1b)

supplemented with the following constitutive relations:

B=,H, j=0E, D=cE. (1.2)

Here E models the electric field, B describes the magnetic flux density, H represents
the magnetic field, D is the displacement current density, o is the electric conductiv-
ity, and p is the charge density. Because this set of PDEs is dependent on time as well
as space, it is often converted to the frequency domain through a Fourier transform
to reduce the complexity of them. However, if these PDEs are left in the time do-
main when being solved numerically, the divergence free conditions are then enforced
implicitly and can be ignored. The following chapters will only concern numerical
methods for solving Maxwell’s equations in the time domain, though methods for
solving the equations in the frequency domain do exist.
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Often, under certain conditions, numerical methods will converge faster than ex-
pected; this phenomena is called superconvergence. The superconvergence study of
finite element methods (FEMs) started in the early 1970s, over the years many inter-
esting results have been proved mainly for a variety of equations such as elliptic Bank
and Xu (2004a,b); Cao (2014); Celiker et al. (2012); Li and Wheeler (2000), parabolic
Chen et al. (1998), hyperbolic Adjerid and Baccouch (2007); Guo et al. (2015), KdV
Arnold and Winther (1982), and Stokes equations Wang and Ye (2001). More details
on superconvergence can be found in classic books such as Chen and Huang (1995);
Krizek et al. (1998); Lin and Yan (1996); Wahlbin (1995). As for Maxwell’s equa-
tions in vacuum, in 1994 Monk carried out the first superconvergence analysis for
FEMs Monk (1994), and for finite difference method together with Siili Monk and
Siili (1994). Later more superconvergence results have been obtained on Cartesian
grids solved with edge elements Lin and Yan (1999); Lin and Li (2008), nonconform-
ing FEMs Qiao et al. (2011); Shi and Pei (2009), discontinuous Galerkin methods
Chung et al. (2013), and finite volume methods Chung et al. (2003); Nicolaides and
Wang (1998).

Inspired by the many exotic potential applications of metamaterials (cf. Craster
and Guenneau (2013); Engheta and Ziolkowski (2006); Li and Huang (2013) and
references therein), the study of metamaterials has been of significant interest as
of late in the field of electromagnetics. The term “metamaterial” is a broad term
that describes any material with special properties that are not found in nature.
Because these materials are not natural, they must be specially engineered to have
these properties. One specific type of metamaterial that is of interest is the negative-
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index metamaterial. This material is characterized by having frequency dependent
permittivitty and permeability, resulting in a negative index of refraction. To model
this frequency dependent permittivitty and permeability, one can employ either the
Drude model, Lorenz model, or a mixture of the two. Additionally, these definitions
can be converted into the time-domain as shown in (Li and Huang (2013)).

In the chapter 2 of this dissertation we extend this superconvergence analysis to
the Yee finite difference time-domain (FDTD) method with a non-uniform rectan-
gular grid for the time-domain Drude model for metamaterials. To the best of our
knowledge, superconvergence analysis for FDTD methods for Maxwell’s equations
are restricted to uniform rectangular grids (cf. Bokil and Gibson (2012); Chen et al.
(2008); Gao and Zhang (2011); Hong et al. (2014); Li et al. (2013)). However, in Monk
and Siili (1994) they extend this superconvergence result to an FDTD method with
a non-uniform grid. As a continuation of their work with superconvergence analysis
on FDTD methods with non-uniform grids, we extend their technique to the more
complicated Drude metamaterial model found in Li (2007).

The next application that was solved through the use of Maxwell’s equations is
the corrugated coaxial cable model. Due to the long standing and widespread usage
of coaxial cables, there are many published papers on modeling wave and signal prop-
agation through coaxial cables. Various methods Sen and Wheeler (1998); Schiippert
(1988), ranging from using experimental data to mathematical models, have been de-
veloped for transmission lines. For coaxial cables the two most common methods of
mathematically modeling signal and wave propagation through the cables are to solve

either the telegrapher’s equations Ramo et al. (1994) (developed by Oliver Heaviside
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in the 1880s) or Maxwell’s equations.

The telegrapher’s equations treat the conductors in the coaxial cable as an infinite
series of two-port elementary components, each representing an infinitesimally short
segment of the transmission line. Each segment of the line is modeled by a circuit
with four elementary components: a resistor and inductor in series, a shunt capac-
itor between the two conductors, and a shunt resistor between the two conductors
Ulaby (2007). The following telegrapher’s equations are used to model the voltage
V' and current I of the transmitted signal on a transmission line with resistance R,

inductance L, capacitance C', and conductance G:

oV ol
ol oV

Note that the telegrapher’s equations are a coupled system of two one-dimensional
partial differential equations (PDEs), making them quite simple and efficient to solve.
However, since the telegrapher’s equations are a one-dimensional representation of the
coaxial cable, they do not take into account the geometry of the cable. Hence if the
cable’s cross section changes at different locations such as the corrugated cable, then
the effects of the corrugation cannot be accounted for without adding in an artificial
term. In Imperiale and Joly (2014), Imperiale and Joly derived the telegrapher’s
model via an asymptotic analysis from 3-D Maxwell’s equations for a lossy coaxial
cable whose cross section is not homogeneous.

To account for the variable cross section cables, we resort to solving the Maxwell’s

equations in three-dimensional (3-D) space. However, this PDE system is much more



complex and computationally intensive to solve than the telegrapher’s equations. To
reduce the computational cost and consider notions of the fact that many coaxial ca-
bles of interest have rotational symmetry about the z-axis (i.e. the angular component
has no effect on the electric or magnetic fields), we often reduce the 3-D problem to
a 2-D problem whose domain is the length-wise cross-section (the red part in Figure

1.1).

Figure 1.1. (Left) A 3-D view of a coaxial cable. Red rectangle: cross-sectional do-
main; Green cylinder: inner conductor; Grey cylinder: outer conductor.
(Right) A 3-D view of a corrugated coaxial cable. Red rectangle: cross-
sectional domain.

Although there has been previous work concerning the numerical modeling of
corrugated coaxial cables Bocklin et al. (2009); Blank et al. (2013); Imperiale and Joly
(2014), we aim to explore the effects of these corrugations in more detail in chapter
3. Following the work of Blank et al. (2013), we consider the axisymmetric Maxwell’s
equations in cylindrical coordinates, and extend their work to the corrugated cable

model. Similar to their work, we solve these equations using a nodal Discontinuous



Galerkin method (cf. Hesthaven and Warburton (2008); Li and Hesthaven (2014); Li
et al. (2012)). However, because they do not perform any analysis on their proposed
scheme, we provide stability and error analysis for the semi-discrete scheme.

Finally, a new numerical method for PDEs, named the weak Galerkin (WG)
method, was developed to spatially solve Maxwell’s equations. The Weak Galerkin
(WG) finite element method was initially developed by Wang and Ye Wang and Ye
(2013, 2014) for solving the second order elliptic equations. The main idea is to ap-
proximate the differential operators in partial differential equations (PDEs) through
the use of a new notion of discrete weak derivatives, which will be defined later (in
Section 4.2. This concept offers a new paradigm for solving various PDEs, and ap-
plications have been extended to the biharmonic equations Mu et al. (2014); Wang
and Wang (2015), Stokes equations Wang and Ye (2016), parabolic equations Li and
Wang (2013), and time-harmonic Maxwell’s equations Mu et al. (2015a), etc. The
WG method is a newcomer to the ever growing family of various popular discon-
tinuous Galerkin (DG) methods Oden et al. (1998); Babuska et al. (1999); Arnold
et al. (0102), such as the hybridizable discontinuous Galerkin method (HDG) Cock-
burn et al. (2009), the discontinuous Pertrov-Galerkin (DPG) method Demkowicz
and Gopalakrishnan (2011); Chan et al. (2014), and the local discontinuous Galerkin
(LDG) method Cockburn and Shu (1998). Some DG methods are closely related,
for example, many differences and similarities between HDG and WG methods have
been addressed in Chen et al. (2015); Mu et al. (2015b).

Since this method had only been applied to Maxwell’s equations once, in the fre-

quency domain Mu et al. (2015a), we decided to extend it to the standard set of
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time-dependent Maxwell’s equations. The goal here was to lay down a framework of
analysis for the new method before continuing on to more difficult models. There-
fore, in chapter 4 we propose a semi-discrete and a fully-discrete WG scheme for the
time-dependent Maxwell’s equations. In addition to this, we provide stability and
convergence results for each of these schemes.

The rest of this dissertation is organized as follows. In chapter 2, we first propose
semi-discrete and fully-discrete finite difference schemes on non-uniform rectangular
meshes. Then we prove the discrete stability, and the second order convergence rate in
space (which is superconvergent) for all field variables for both schemes in the discrete
Ly norm. Afterwards, we provide numerical results to confirm the superconvergence
and solve a benchmark backwards wave propagation problem. In chapter 3 we extend
the nodal Discontinuous Galerkin method for the axisymmetric Maxwell’s equations
proposed in Blank et al. (2013) to the cable model. Then we prove a stability and
a convergence result for the aforementioned semi-discrete scheme. After, we support
our results with numerical tests, in addition to providing a benchmark problem for
signal propagation through corrugated coaxial cables. In chapter 4 we propose a semi-
discrete and a fully-discrete weak Galerkin scheme for the time-domain Maxwell’s
equations. For each scheme we provide stability and convergence results. Then,
we support our results with numerical tests. Finally, in chapter 5 we conclude and

summarize the results provided in this dissertation.



CHAPTER 2

THE YEE SCHEME FOR METAMATERIAL
MAXWELL’S EQUATIONS ON NON-UNIFORM
RECTANGULAR MESHES

2.1 Introduction

In Li (2009), Li developed a finite element time-domain (FETD) method for solv-
ing the Drude metamaterial model (2.1)-(2.4) shown below, and proved that the
scheme has an optimal error estimate O(h) + O(7?) in the L?-norm for the lowest-
order edge element, i.e., converges first order in space, and second order in time. But
numerical results of Li (2009) showed the superconvergence rate O(h?) on non-uniform
rectangular grids. The observed superconvergence phenomena were proved later for
both 2D and 3D models solved by the FETD method on non-uniform rectangular
and cubic grids in Huang et al. (2012) and Huang et al. (2011), respectively.

Compared to the superconvergence results obtained for Maxwell’s equations by
FEMSs, some superconvergences have also proved for the finite difference time-domain
(FDTD) methods (cf. Bokil and Gibson (2012); Chen et al. (2008); Gao and Zhang
(2011); Hong et al. (2014); Li et al. (2013)). However, all papers except Monk and
Siili Monk and Siili (1994) are restricted to uniform rectangular grids. In this chapter,
we extend Monk and Siili’s technique to the more complicated Maxwell’s equations
in metamaterials. First, we prove that similar superconvergence results hold true for

the metamaterial Maxwell’s equations solved by the FDTD method on staggered non-



uniform rectangular grids. Our proof is more succinct than Monk and Siili (1994).
Second, we present the complete proofs for both the semi- and fully-discrete schemes
(i.e, the true Yee scheme), while Monk and Siili (1994) only showed the proof for the
semi-discrete scheme. To our best knowledge, this is the first superconvergence result
obtained on Yee scheme for Maxwell’s equations in metamaterial.

The rest of this chapter is organized as follows. In Sect. 2, we first derive a semi-
discrete finite difference scheme on non-uniform rectangular meshes from a variational
form, which will be used late in the error analysis. Then we prove the discrete
stability, and the second order convergence rate in space (which is superconvergent)
for all field variables in the discrete Ly norm. In Sect. 3, we consider the fully-
discrete scheme on non-uniform rectangular meshes. Detailed analysis is present for
the discrete stability, and the error estimate which is second order in both time and
spatial variables. Numerical results are presented in Sect. 4 to support our theoretical
analysis. We conclude the chapter in Sect. 5. The research presented in this chapter

was previously published as Li and Shields (2016) where I was the 2nd author.

2.2 The semi-discrete scheme

Consider the metamaterial model Li (2007):

OF

GOE:VXH—J (21)
oH

MQE =-VxFE-K (22)
1 oJ I,

J=E (2.3)

2 2
€owp, Ot eowy,



1 0K n | .
foWpy O pows,,

K=H (2.4)

supplemented with the perfect conduct (PEC) boundary condition

nxE=0 ondQ, (2.5)

and the initial conditions

E(x,0) = Eo(x), H(x,0)=Hy(x), J(x,0)=J(x), K(x,0)=Ky(x), (2.6)

where n denotes the outward unit normal vector, Eq(x), Ho(x), Jo(x) and Ko(x)
are some given proper functions.
To avoid the technicality of the proof for 3D problems, below we only consider the

2D case of (2.1)-(2.6), in which EF = (E,,E,),H =H, :=H,J = (J,, J,), K = K,

and the curls V x E = % — %Ex and V x H = (%—H, —%—H)’. Here the subindices
Y y x
r,y and z denote the components in the x,y and z directions, respectively. For

simplicity, we consider the rectangular domain Q = [a, b] X [, d], which is discretized

by a non-uniform grid
a=z9g<zT1<--<zTN,=b, c=y<y < <yn, =d.

We like to emphasize that our proof and the obtained results can be similarly extend
to 3D problem.

Following the classic FDTD scheme, we choose the unknowns F, (and J,) at
the mid-points of the horizontal edges, E, (and J,) at the mid-points of the vertical
edges, and H (and K) at the element centers (cf. Fig.2.1). Hence we can denote the
corresponding approximate solutions (we suppress the explicit dependence on time

10
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L1 .
'T:’L+§’.77

Z.:07”'7]\]:E_17 jzov"'aNgu
j:0>"'7Ny_17 iZO,"',Nx,

Eyigryr Jyigrds

H. K.

gty Dikgaty

t=0,--+,N, -1, j=0,--- ,N, — 1.
For convenience, we denote the following three types of rectangles
Tij = (i, vir1) X (Y5, Yjr1), T, = (2,

ir@j—% = (xi7$i+1) X (yj—lvyj+l)7

| and |T; ._1]|, respectively. To distinguish

and the corresponding areas |71}, |Ti_% i1

J
the role of non-uniform mesh, we denote h, = maxo<j<n,—1(z;+1 — ;) and h, =
maxo<j<n,—1(Yj+1 — ¥;) for the maximal mesh sizes in the = and y directions, respec-
tively. The global mesh size will be denoted by h = max(h,, hy).

Integrating the z-component of (2.1) on Tm-_% (forany 0 <i < N, —1,1<j <

N, — 1), we obtain

Ti41 Y., 1 8Ex Tit+1 Ti+1 Y., 1
[ [y = [ e -ty - [ [P )
T yj_ Z; x; Y.

Nl

Approximating those integrals in (2.7) by the mid-point quadrature rule, we have

oE,
€0|Tz‘7j—%| ’ Wh-‘r%,j = (Tit1 — fi)(Hz‘+§,j+% - Hi+%,j—%) - |T;,j—%|‘]z,i+%,j' (2.8)

Similarly, integrating the y-component of (2.1) on Ti_%’j (for any 1 < i < N, —

1,0<j <N, —1) yields

Tl (Yt HF Yj+1 e
/ +t3 / 60_8_ty — — / [H(Il+%, y, t) —_ _[v—_,(xi_%7 y, t)]dy . / +3 / Jy'
T, Yj Y - :
1— »
(2.9)

(ST
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Figure 2.1. The exemplary grid for solving 2D Maxwell’s equations.

Approximating those integrals in (2.9) by the mid-point quadrature rule, we have

oF
€0|Ti—é,j| ) a_ty|z‘,j+% = —(Yj+1 — yj)(Hi-i-%,j—f—% - Hi—%,j—‘r%) - |Ti—%,j|‘]y,i,j+%~ (2.10)

By the same technique, integrating (2.2) on T;; (for any 0 <i < N, — 1,0 < j <

N, — 1) yields

Titl  fYj+1 Titl Y41 (‘)E Titl  LYj+1
/ / uo / / - / K. (211)
Yj T Yj

Further application of the mid-point quadrature rule leads to

H’O’ ‘ at |z+2,]+2 (y]-i-l Y; )(Ey,z—i-l,J-i-Q Ey,i,j—i—%)

+(w1+1 i )(Ex Z+27j+1 a;H— ) | | 7j+ (212)

Integrating the z-component of (2.3) on Ty (forany 0 <i< N, —1,1<;<

12



N, — 1), we obtain

Ti4+1 yj+l Ti+1 Ti41
Jx— 2.13
A= ) / ey | / (21
)

Approximating (2.13) by the mid-point quadrature rule, we have

1 I'.
T, 0Ja +1|T; J =T, .|-E,,

z,j—%| ’ m ot |z+ 5.3 | z,j—%| ’ Eo—wge xitij | hi—5 zitd g (214)

Integrating the y-component of (2.3) on 7; 1 . (forany 1 <¢ < N, —1,0< 5 <

1=5,]

N, — 1), and using the mid-point quadrature rule, we obtain

1 0/J r
Y e
| —— o+ T —d =T 1. FE

| z 27]| €t ,ge ot 1,J+3 | 1—=5,] €o 7]%(5 Y07+ 5 | z 27J|

(2.15)

Yigtg
Similarly, integrating (2.4) on T;; (for any 0 <i < N, — 1,0 < j < N, — 1), and

using the mid-point quadrature rule, we obtain

1 0K
|z+ 1+ +| | 2 Z+2J+l = | | it+1,+1 (216)

" pwpm ot Wi,

The stability analysis

We define the following mesh-dependent energy norms

IBAG = D0 [Tyl 1Bl
1SN,

WENE =D |Tioiyl- 1Bl

1<i<Np—1
0<j<Ny—1

| HI[F = Z Tl - | Hypn g

0<i<Ngz—1
0<j<Ny—1

115 = > 1Tl aars il

0<i<Ny—1
1<j<Ny—1

1LI5= > Ty,

1<i<Ny—1
0<j<Ny—1

’ |Jy,i,j+% |2’
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IKIG = > Tyl K141l
0<i<N;—1
0<j<N,—1

First, we can prove the following energy conservation for our semi-discrete scheme.

Theorem 2.21. The solution of the semi-discrete scheme (2.8)-(2.16) satisfies the

global energy identity:

1 1
Sl Bl + B E) + ol I + — (113 + [1,113)

Ope

1 2 ! Fe 2 2 Fm 2
+MT||K||K](75) +/0 [7(||J:c||J + [ Jyl[5) + MTHKHK]C”

pm 0%pe 0%pm

1 1
= SleollE:NE + |1 Eyl1E) + moll H Il + —5 (17115 + [14][7)
60wpe

1

+
[ow?,

[1K11%1(0) (2.17)

holds true for any ¢ € [0, T].

Proof. Multiplying (2.8) by E,

L1
7Z+§y]’

(2.10) by By 541, (212) by Hypa oo, (2.14)

by Jz,i+%,j> (2.15) by J,

yig+l, and (2.16) by K141, summing up each over its

corresponding rectangular elements, then adding all results together, we obtain the

sum of the right hand side as

RHS = E (@it1 — l'i)(H¢+§,j+§ - HH%,J;%)ELH%J
0<i<Nz—1
1<j<Ny—1

- E (Y1 — yj)(HH%,jJr% - Hz‘—%,ﬁ%)Ey,i,ﬂ%
1<i<N,—1
0<j<Ny -1

N Z (Y01 = yj)(EW-H’H% - Ey,i7j+%>Hi+%7j+%
0<i<Np—1
0<j<Ny—1

+ § (l’i+1 - xi)<Ex,i+%,j+1 - E:Jc,i—i—%,j)Hi—i-%,j—i—%
0<i<Np—1
0<<Ny—1

= § (Tigy1 — ) E [Hi—l-%,j—&-%Ex,i—i-%,j—H - Hi+%,j—%Ez,i+%,j]

0<i<Ny—1 0<j<Ny,—1

14



- E (W41 — ¥3) E [Hi+%,j+% yitli+s Hif%,jJr%Ey,i,jJr%]

0<j<Ny—1 0<i<Ng—1
- E : (i1 — $i)[Hi+%,Ny—% zit+i N, T Hi+%,—§Ez,i+%,o]
0<i<Ng—1
- E (Y41 — yj)[HNf%,jJr% Y, Nusj+5 Hf%,j#%Ey,O,jJr%]
0<j<Ny—1
— 0, (2.18)

where we used the PEC boundary condition (2.5), which in our 2D case is equivalent
to

Boirin, = Eaivio=0, Eyn, vt = Eyojry =0, (2.19)
for all ¢ and j.

Using the above defined energy norms, the sum of the left hand side corresponding

to the above operation is given as

1
(o1 Ball + 1By [[5) + pol [z + —5- (11 Tall5 + [14115)

0 pe

| =

LHS =

N |
Q

t

]_ Fe Fm
o KNG+ —5 (A5 + 11]15) + —5— K[k (2.20)

0%pm 0%pe 0Wpm
Equating (2.18) and (2.20), and integrating the resultant leads to the global con-
servation identity. O
Dropping the non-negative terms on the left hand side of (2.17), we can easily

obtain the stability for our semi-discrete scheme.

Lemma 2.21. For any ¢t € [0, 7], the solution of the semi-discrete scheme (2.8)-(2.16)

satisfies the following stability:

(1 EE + 1B 12) + mol HI
R+ 1B + — 1K)
€ow? d vils w?

0%pe 0%“pm

15



< leo(|Eallf + 1By I%) + pol | H 7
1

: (||Jz||3+||Jy||3)+;2||K|I§<](0)' (2.21)

0%pe 0%pm

_|_

The error estimate

To make the error analysis easy to follow, we denote the errors by their corre-
sponding script letters. For example, the error of E, at point (x, 1Y t) is denoted
by & iv1; = Ea(@iy1,y5,t) — Ey i1 5, where Eg(x;,1,y;,t) and E, ;1 ; denote the
exact and numerical solutions of E, at point (z, +15 Y t), respectively. Similarly, we

denote errors
5y,z‘,j+$ - Ey(“”wyﬁ%v t) — Ey,z‘,j+§> Hi+%,j+% = H(%‘Jr%: yj+§»t) - H¢+%7j+§7
Toirts = Je@ip¥5:8) = Joietys Tyaget = So(@i¥ia1st) = gt
’Ci+%,j+% = K<xi+%7 yj+%7t) - Ki+%,j+%-

By the definition of errors, and from (2.7) and (2.8), we obtain

o0F,
E0| z]—7| 6t z+2,j = // H—%’yj’t) - |7}7j—%| ) Wb-ﬁ-%,j)
5E
— alf / Ty / / )

x'H»l
+/ (H(l’,yj+%,t>—H<ZC,y]7 dl'—// x y7
x; _1

7 EY

— (i1 — mi)(Hi+l,j+% o Hz+2,]ff> +1T; ]7—‘ z,it+1,j

w0 [ 5
= € Ly 7y7 7t
of] s )

Ti41
@i = 20) (Higy gog = Higs 1)+ / - (H(zyypy 1) — Hz gy 1)de

K\)

—(Tiy1 — l’i)(H(%r%’ Z/j+%7t) - H(xH%, yj—%vt)) - |71i,jf%’ ’ jx,i+%,j

16



+// Jo( ZJr1,yj, // L(T,y,t)
T . 4
HLI— g

which leads to the error equation for F,:

0&,

eo|T; ]77’ ot ‘i+%,j (Tip1 — 55)(%1+2,]+2 HiJr%,jf%) "L]ff|

0F, oF,
+e &, L 1,Y5,1) — x,y,t
o<//M<8t< i t) = S @)

Ti41
[ 0 - Heg, )
I;Ez#»l
[ g vy 1) - Ho s

+// <J1<xi+%ayjat> - Jx(xvyat))
T

= (T — )(ng,ﬁf Hi+%,jf%) - u—;,jf%| 'ja:,zdr%,j

15+ T2, 1 T35

Similarly, we can obtain the error equation for E,:

agy

GO‘Tz",J‘ ij+i = —(yj+1 — yj)(Hi+%,j+% - %sz,]JrQ) |Tifl,j| 'jy,i,jJr%

2

OE,
v | / 1y t) — )

T 1,

Yj+1
7 Hy0 — gty

Yj

Yji+1
= g 0 = He g0

// ey 1) )

i— 5]

= (y]+1 y])(H%F%JJF% - H’L**,]“r2> ’T7%7.7| ) jyvlvj+%

+7“472'j + 7“571'3‘ + Tﬁ’ij.

By the same technique, we can obtain the error equation for H:

,LL()| | 875 |Z+2 g+ 1= (yj+1 y )(gy i+1 ]—‘,—7 gy,i,j—k%)

2

17

Il+2,]

(2.22)

(2.23)



H(Tigp1 — Ii)(gac,i—f—%,j—&-l - 5x,¢+%,j) - |sz| "Ci+%,j+%

0H OH
+M0 //TZ](W(xz-t,-;ay]_;_;,t) — E(x’y7t))

Yj+1
_[/ (Ey(-ri-l-layat) - Ey<xl>yat))dy

Yj

- /ym(E (@ir1, Yj41,) — By (@i y541,1))dy]
// (21,0500 D) — K(2,9,1))
= y]—i-l Y )(gy,z—i-l,]—i-l - gy,i,j%)
+(zi41 — xz’)(gx,wé,jﬂ - gm,i+%,j) — |1 - ]CH%,H%
745 + 185 + 79,5 (2.24)

The error equations for J and K are easily obtained and given respectively by:

1 NS I,

|ﬂ,j—%‘ 60(,&) ot |z+2,j €o w | j—f| xz+2,j

0J,
- |Ti,j,%| Epr / / O (e 1) — o .1)
60(4)2 // H-lay]a >_Jx(m7yat))
// z+ 7y]7t) - Ex($7y7t))

1
-2
= |T” | &, i+l T 065 g+ T2, (2.25)
1 97, T,
|T‘i*%v]" at ’,J+2 €o wg ‘ 177,]| jy, ,]+2

0Jy
= ’E—%,j"gy,i,jﬂ-z 60(/02 //T ) 8t xzayﬂ_ ) )_E(xﬂﬁt))
—3.J
y(Ti,yj1,t) — Jy(w,y,t
r v bl ) = )
=g

_//T (By(oigyyt) = Byfay.0)

1—§7j

18



= |T;—%,j| : 5y7¢,j+% + 711345 + T4 + 71505, (2.26)

and

1 oK ',

— 5 |l ipl T ——
foWhy, O ’HQ’HQ Hows |

pm
1 0K oK
— T M - (@1, Y1, ) — (7, y,
Tl Hosgsoy + g [ G g0 = o)
I'm

K -1 -1 t _K t
’uowgm //I:”( (xz+§7y]+§a ) (xay? ))
[ ey - Hew)

Tij

T, Tl K

i+5.0+3

+

= [Tyl - i1 a1 + 1665 T T1rg + 11850 (2.27)
With the above preparations, we can obtain the following superconvergence result.

Theorem 2.22. Suppose that the solution of the model problem (2.1)-(2.6) possesses

the following regularity property:

B, By, H € C([0,T]; C*(Q)) n CH([0, T]; C*(2)),

To, Iy, K € C([0,T);C*(Q)) N C([0, T]; C*()).
Under the assumption that if the following initial error

1 1
[eo(llEx11% + 11€,11) + ol M1z + — (17115 + [17115) + WIIKH?&(O)

0Wpe 0Wpm
2 212
< C(hi + h,)%, (2.28)
holds true, then we have
g 2 8 2 7_[ 2 1 j 2 ._7 2 1 ,C 2 t
nax [eo (|||l + [1€y][) + ol Hﬁr@(l! 27+ ””"Huowgmu |17 (2)]
< CT(h + h2)*. (2.29)
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Proof. By the Taylor expansion, for any function f we can easily prove that

/] (F(@,,8) = F(2,01,5, ) ddy

_ // gf@*)+(y—yﬁg—gmn%@‘%QZ%W
(x— )(y ?/J)@aaf(p2)+1 T

IA

2(?/ yj) By 2(193)]
// cmo s @+#\f N

1
2

(2.30)

where we denote p, = (z,, 1, Y5, t), and py, po and p3 for some midpoints between p,
and (z,y,t).

Applying (2.30) to f = 8(.%, we obtain

PE, PE,
T1Lij = (O(hiﬂmho O(hi)\whﬁ T 1.

2

It is easy to see that for any function f, we have

I/ M Sy 1)dyl
Yj+1 af Yy an
= I/yj [(y—yj+;)a—y(yj+;)+/yj+%(y—n)@( n)dn]dy|
Yj+1 Y 32
!/' [/ (y—n)a—;;(n)dn]dy!

Yi+1 A2 2
< o [ 15 Lo < cn

=3 (M)]oo; (2.31)
T " Oy
which leads to
Yji+1 82
)OI SRl V0 B O T [Eye/ e A0 I X
0<i<Ny—10<j<Ny,—1 “Yi

Applying (2.32) to each single integral in (2.22)-(2.27), we will only obtain O(h)
convergence rate. This was pointed out by Monk and Siili in Monk and Stli (1994)

20



They managed to prove the O(h?) rate by using a special structure of the local errors.
Here we will use a simpler method to prove O(h?) error estimate.

Note that

Tit1
[ 0 = B, 0
LTi4+1
_/ (H( 7,+1ay]+%>t) - H("Ei+%>yj—%at))dm

Tit+1 it3 1 6H OH 83
-/ / Gy @t = o ) dilde = O 11T,

l\.’)

which leads to
BH
..

T2 = O(h2)|a 8x2|°° T

We like to remark that we can reduce the regularity requirement if we use the integral
residue as shown in (2.30).

Applying (2.30) to f = J,, we obtain

0%, 0%

rasy = (O 55 e+ O G - oy

By carrying out the above technique to the £, error equation, we have

PE, PE
OH PH
i = // G ) = G 0) = OB T
82 0%J,
T6,i5 = (O<h‘326)| 81,2?! ’00 + O(hz)‘ a ) |°0) ’ |CF’L'*%,]'"

Using the same technique to the H error equation, we have

O H O H
iy = (O | 4 O S ) - T,
Dt Dty

8E 0E, O*E,
o == [ Gt = G, 1) = O g T

82
mmaguwuﬂ

7“971"7‘ = (O(h2)| a 2 |OO

21



Similarly, we can obtain the following estimates for the J,, J, and K error equa-

tions, respectively,

0%, 03,
T10,45 = (O<h )‘8?58 2|00 (h2)’ata 2‘00) ’ ‘ zg—§|
0%, 0%,
1145 = (O(h) 55 oo + O(h) |55 |oo) - | T -1,
Ox oy 2
0*FE, 0*E,
ri245 = (O(R2)| 52 oo + O(R32)] o5 ~loo) 1T -1l
3J 03J
0*J 0%J
a5 = (O(3)] axgyloo +O(hy)] oy 2y|oo) AT 41,
O’FE 0*F
ri545 = (O(h3)] ax2y|oo +O(hy)] 8y2y\oo) ATz 41,
and
o BK o PK
T16,ij = (O(hz)‘WLm + O(h ”W‘“) [Tl
’K ’K
i = (O(h3) |5 o2 1o T O | 05 o) - T4,
0*H 0*H
risss = (OU2) G g o+ OU)| S o) 1251,

Denote the error energy

1
— (1% + 175 +

Q(t) = [eo(ll€: 1% + 1€, I15) + pollH|[7 + -
pe
Multiplying &, ;1 ; to (2.22), Eyijrd O

(2:25), Ty 501 to (2.26), Kyp1 i1 to (227), s

using estimates such as the following:

Z Tl,ij‘?’t,i«#%,j S Z [ ’ 1,0 — 7’ ’
0<i<Nz;—1 0<i<Nz;—1
1<G<Ny-1 1<j<Ny-1
1
< Q&N+ 5

22

(2.23), Hip1 41 to (2.24), Tpip1; to

umming up the results for all 7 and j,

it 3 (O02) + OR)PIT, ]

(O(hz) + O(hy))?,



and using the estimate (2.18) with £ and H replaced by £ and H, respectively, we

obtain
1d I, | . )
§@Q@+QMJMZﬁ+M%ﬁH7@;MU@SCW&+@V+§Q@,
pe pm

where 6 > 0 is a small constant.

Integrating the above inequality from 0 to ¢, we have

Q(t) < Q(0) + C(h2 + hi)*t +6 /Ot Q(s)ds. (2.33)

Suppose that ¢, achieves the maximum of Q(s) on the interval [0, ], i.e.,

max Q(s) = Q(t.)

0<s<t

. Using t = t, in (2.33), we obtain
Q(t.) < Q(0) 4 C(ha + hi)*t. + 6t.Q(t.). (2.34)

Choosing § small enough such that 0t, < 1, and using the assumption (2.81), we

complete the proof. 0

2.3 The fully discrete scheme

To construct a fully discrete scheme, we divide the time interval [0, 7] into N; + 2
uniform intervals, i.e., we have discrete times 0 =ty < t; < -+ < tn,40 =T.
Approximating those time directives properly in the semi-discrete schemes (2.8),
(2.10), (2.12), (2.14), (2.15), and (2.16), we can obtain the following fully-discrete
1 1 1
. . . o, . . . 0 0 5 E 5
scheme: Given initial approximations Ex7i+%7j, Ey,z‘,j+%’ Hi—i—%,j—&-%’ J%H%’j, Jy,z}j+é’
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3 3 3
1 n+1 nts nts nts
K1 for any 0 < n < N, solve E"', 1 H 2 ., J 2. ,.
+5.ty) yu=n= M vty g’ Yty itgaty’ Caitgd’ Tyigty]
n+2 f .
S rom:
i+3.0+3
1 1
nt+l n+t3 _ H”"’
€ it 5, witz,d i+ i+3,5— n+i (2.35)
o _ z,it+i, :
T yj+% yj77 2]
n+l  _ pmn ntg _ H”+l
Yty yiits ikt —3:0+3 n+1 (2.36)
0 = ] )
_ KN e
T Tyl =1 o
H”+% . "H'% n+1 n+1 n+1 o+l
i+3.0+3 it+3.0+3 yitlits Yoty it 3.5+1 @it 3.
,LL[) 2 2 2 2 — 2 2 2 2
T Tit1 — Zi Yj+1 — Yj
il 2.37
) (2.37)
3 3 1
J”+ 2 J”+ 2 J"+ 2 4 J"+ 2
1 a:z+2,j $’L+2,] + Fe xz+2,] xz+2,j _ n+11 (2 38)
T1 .
w2, T w2, 2 ,it3.]
n+% n+% Jn+2 + Jn—l-%
2 2 = il :
E0Wpe T E0Wpe 2 Yrita
n+2 o n+1 Kn+2 Kn+1
Z+%7.]+% 7‘+%’]+% + Fm Z+27 +% + Z+2,] P H (2 40)
oWy, T oWy, 2 7’+2’]+2 '
= € wave pr ion in fr . r any gri
Let C, 1 ofto be the wave propagation speed in free space. For a d

function w; j, let us denote the backward difference operators V, and V,:

Uitl,j — Uiy
quiJrl,j =
Tit1 — T4

Furthermore, we denote the constant Cy,, > 0 satisfying the inverse inequality

IVaull < Cinohg llull,  [[Vyull < Cinohy lull, (2.41)

for any energy norm defined earlier.
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The stability analysis

Theorem 2.31. Assume that the time step size 7 satisfies the constraint

Oirwhy Cinvhx 1 1
2C, 7 2C, " 2wpe’ 2wy,

7 < min( ), (2.42)

then the solution of the fully discrete scheme (2.35)-(2.40) satisfies the following

stability: For any 1 < n < N,

n n n 3
eo(|| B I + 1By %) + pol [H™ 2]

R ) 2
oW fow?
1
< Claol|EY + [|EZ) + ol 3|15
T2+ 117211 K% 2.43
(12113 + 17112 + I1EYI2], (2.43)
6Uwpe 0 pm

where the constant C' > 0 is independent of 7, h, and h,,.

Proof. Multiplying (2.35) by 7|T} ;_1 y(E”“ +E ), (2.36) by

a:z—i— ,J
3
T’Tz——j|(E;’+’J1+;+E"’ 1), (2.37) by 7|T3|(H;, 1+H+2’+2) (2.38) by
T|T,J—1|(J:jf ﬁJHQ ), (2.39) by 7| 1—7]|(Jy”+1+(];+72 1), (2.40) by

7|T; \(K”“]Jrl + KZ":l 1), then summing up the results, we obtain the sum of the
2

right hand side as

RHS = v 3 [(wi—a)(H 2 —HZ )

tt+3.0+3 i+3.0-%
0<i<N;—1
1<j<Ny—1

_J;‘jﬁ A|T- L ](En+1 ; + E" )

+%,J 17]'—5‘ +1, xz+2,j

+3 +3
1> [y ) HE - HE )
1<i<Ny—1 22
0<j<Ny—1

n+y +1
_Jy,i,jQJr% |71*%’J|](E;, i j+3 + Ey,z,ﬁ-g)
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+7 Z [_(y]+1 - yJ)(EZjJiLJJrQ EnJrl )

OSZSNzi 20 7]+2
0<j<N,—1
+(xi+1 o xi)(En-i-l En+l )

xz+2,j+1 x,i—&-%,j

TL 3 n
K T HE )

+3.0+5% i+5.0+s i+5.0+5
1 Y B, AT T )
:cz+2,] J—* a:z—f— xz+2,j
0<i<Ny—1
1<j<Ny—1
3 1
§ : +1 nts nts
T Y j+a | “é’JK y,z,J+%+ y,z,ﬁ%)
1<i<Nz—
0<j<Ny—1
3
n+y n+2 n+1
T E H 2 - |T: /(K K .
T i+t IZ351( i+ +1+ z+%g+$)
0<i<N,—1
0<j<Ny—1

Regrouping those terms in RHS, we rewrite RHS as

RS = 7 Y () 3 (R, -

Z‘,’L+§,j
0<i<Ny—1 1<j<Ny—1
mn
+Em’+é,j)
HEMY, B ETE )]
T,it 3,541 it 5, +3.5+3 i+3.0+3
DI )OS T Y (E
Yit1 = Y; i—3gtt T Tirbgrd \Vyigrd
0<j<Ny—1 1<i<N,—
B
+ yvm-ﬁ-%)

n+1 _ m+l n+3 ”+§
+(Ey,i,j+% Ey,i+1,j+§)(H+2, i+3 + H+2,J+2)]

+r Y Tl A (BN A+ EN )

CC77'+§7] -7:77/"1'57] Iﬂ""ﬁ)]
0<i<Np—1
1<j<Ny—1
En+1
+<Jz i+ 3.7 t Jw z+2,g> z,z‘+%,j]
S TS (B B )
ziﬁ’j y717.7+§ Yyt 7.7+2 Y, 7j+
1<i<Nz—
0<j<Ny—1
n+3 nt2 n+1
+(J 2,4+ J 2 O)E"
( UENER Y j+a 1) y7173+%]

- n+1 n+3 n+3
+TO<1§ 1|7—1L]H K+ + (H+2’]+1+H+27]+ )
=t = T

0<j<Ny—1
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To evaluate the

that

Ny
>
n=0

n+3 n+2 n+1
+H+; i+3 (K+2, i+3 + K +30+3 ]
Z ($i+1 - %’)Rl
0<i<Nz—1
+ Z (yj—H - yj)RQ + R?, + R4 + R5 (244)
0<j<Ny—1

above RHS, below we evaluate each term separately. First, note

1
n+ 1 n
E E —H E™t E
1+2,]+2 z+2,]7—)( xz+2,j+ xz+2,])
n=0 0<j<Ny—1
n+3
Frtl _ gl H H
+ @it g.5+1 m’+$,j>( +2,a+§+ z+2,3+%)]
E E +% n n+3 n+1
E H 1 -,1 .1 )
7‘+2»]+2 $Z+27] 7‘+§7]+§ m7’£+§7]
n=0 0<j<Ny—1
7L+l 1 n+l 1
H "2 n+ _ 2 n+
i i+%7j+% @it g.g+1 i+3.5— x,i+%,j)]
3 1
H' 2 n+1 nty  pm
T H— i+L 41 il i1l +1)
2,]""2 zi+5,J+ i+5.+5 50J
n= OOSJSNy—l
n+% n n+% n
L By sy = HL 2 B )]
S (HE, LB HYE pNet
i+3,5+3 ity i+3.5+3 it
OSJSNy—l
1 n+1
E BT H E
+ z+2,Ny+2 xz+2,Ny S,—= :Ez+2,>
Nt+ N1 1 0
- Z lJr E o ; 1, lE i+ ‘+1)
2’j+2 Il+2,j+1 7’+27]+2 Z,0 13,7
USJSNy 1
+§ YR B, ) - HYE B )
1+27Ny+2 $7i+%7Ny z+5,7— CEZ+ 0
E (H2, . E° HYE pNe )
i+ L gt it g, ir Ll Tl
0<j<Ny—1
3 1
+ Nt+2 Ne+1 . 2 EO ) )
Z Z+2,j+, ,it+5,j+1 i+ 3+ it 5,41
0<j<Ny—1
§ : Nt+3 Nt+1
(y]+1 - y])(HZ+ +2v $l+2,j+1
0<j<Ny—1
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—H2 ,\V,E°

i+3.5+3 :err%,jJrl)’ (2.45)

where we used the PEC boundary condition (2.19) in the second last step, and the

backward difference operator V, in the last step. Note that in the first step, we

1

extended the original sum of 1 < j < N, —1to 0 < j < N, —1. Even though H 2

+1
+3

N |=

has subindex out of the original bound, its product with E;L:i + E:Z t1o=0 (by
) 27 27

the PEC boundary condition (2.19)) is still zero.

The term Ry can be evaluated as follows:

_H'"Jri )(En—H ) + E"

Z+%7]+% Y 7.7+2 ’1]—"_1)

N

Nt Nt 1
Smo= Y Y e,
n=0

n=0 0<i<Nz—1

’VL3 n*
HE BT HE A HP )]

UENEE yitLi+5/ N it 5,0+ i+3.J+3
1
1 n+ts n+1
= N ETTE : AT Dl n
ZO(K; H,_ 2,J+2 RN i+3.+3 y,z+1,y+%>
n SUSINg
n+%

+(—-H /* E" + H : JETT
( A WA EANES i+3.+3 y,w—i—%)]

t
n+ i n+i
E g H > E" —H ?* E" .
+ [< 7/_%,]“1‘% yﬂ,]“l’% l“l‘%d‘f’% y,z+1,]+%)

n=0 0<i<Np—1

n+i n+2 1
H 2 E" - H 7 B
+( i+d g+ d Tyl i+3.0+3 y,i+1,j+%)]
N )
= > (@ BT —HY, BT )
0 7%7]""’2 y07j+2 z ]+2 yvNI7.7+%
n=
+ S (-HE, L EY L+ HE BN
0<i<Ny—1 i3ty vidty i+5.d+5 Yty
SIS Ng—
Ny )
+N H" B —Hy 7 BN )
75,]“1’5 y707]+2 2,]+2 y7N337.7+§
n=0
+ S (HL, LB Y N
A N AR WA i+3.0+5 vitli+s
0<i<Nz—1
Ne+3 Ni+1
= E H2 L E° H 2 B
0<i<N. ( it+3.0+3 yw"'%—i_ i+3.0+3 ym-i-z)
_l_ xr
1 3
3 Nety Ni+1
H? E°  ,—H ' EMt
+0<<XN: X +§ +1 7y i+ 15+5 i+3.9+3 y,i+1,j+§)
SIS Ng—
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- Z (Tit1 —$z‘)(—HNt+2 | VBN

it+5.0+% y,itl,j+2
0<i<N,—1
1
2 0
HHE 3 VeEy i) (2.46)

where the PEC boundary condition (2.19) was used in the second last step, and
the backward difference operator V, was used in the last step. Here similarly to
Ry, in the first step we extended the original sum of 1 < i < N, —1to 0 <1 <

N, — 1. Even though o't

10 e has subindex out of the original bound, its product
27 2

with E" | + E»

0+ 0g+l = = 0 (by the PEC boundary condition (2.19)) is still zero.

Similarly, we can evaluate the rest terms in RHS (2.44) as follows.

Nt Nt +1
_ _ g3 n+1 n
DB = 3 > ITll= L B By )
n=0 n=0 0<i<Ny—1
0<j<Ny—1
n+ n+ 1
J 2 J 2 )BT
_ |T |(JNt+% ENH—l J% EO ) (2 47)
= E: =3\t i il witl g it i) :
0<i<N,—1
0<j<Ny—1
N N 1
o n+ty n+1
ZR4 - Z Z ’Ti*%JH ‘]y,i,j+%(Ey,z,J+§+Eyw+)
n=0 n=0 0<i<N,—1
0<j<Ny—1
n+3 ntg n+1
+(J .24+ J 2 )R
( ysig+1 yij+a 1) y,w+$]
Ne+3 N1 0
= T _1.|(J 2 BT J2 B 2.48
Z | Z—aﬂl( v gty yhits Y,i+3 yv’vﬁ%)’ ( )
0<i<Nz—1
0<j<Ny—1
and
Nt Nt
n+ ’fl-‘r*
§ :E: Ej Tyll-K!' . (H H
R5 ’ l]|[ ]+2( l+2,J+; + Z+2,j+2>
n=0 n=0 0<i<Ny—1
0<j<Ny—1
n+ 2 1
+H, 12' (Kn+ ) +Kn+ )]
Z+§7]+2 +27]+2 +27]+2
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_ Nt+2 Ni+2 o 2 1
N 0<‘<z]\; 1| il (H i+5.0+5 K+ i+3 H+2,J+ Kz+2,y+2) (2.49)
SIS Ng—

0<j<Ny—1

Summing up (2.44) from n = 0 to Ny, then substituting the estimates (2.45)-(2.49),

and using the energy norm notations, we have

3 1
el B % — 1EIIE) + 60(||E35Vt+1||%? — 1EyI[E) + mo(IH™ 2[5 — | H2[[)

J t+2 Iy Nt+2 Iy
g (2 = 1) + o 310 = 1 )
1
+ KNtJrZ 2 Kl 2
—uowgm(u i — (1K)
Nt+ Ne+1 0
s 7 Z T3] (H it3 +2v Ex§+2,g+1—Hi2,+2v Em+27y+1)
0<i<N,—1
0<j<Ny—1
Nt+ ENi+1
+T Z | |( 2 1V y,zt—‘rlj—i—l +H2+27 +1v y2+17]+2)
0<i<N,—1
0<j<Ny—1
Nz+ Ni+1 3 0
+T Z |T J**|( :1:2+2,,7Ex,lt'+%,j - J;,iJr%,jEx,i-i-%,j)
0<i<Nz—1
0<j<Ny—1
Net3 N1 0
+7 Z |ﬂ_%vj|(‘]y,i7j-i%Ey,;,j+2 J;Z,J+2Eyﬂ}j+%)
0<i<N,—1
0<j<Ny—1
Nt-‘r Ni+2 1
T Y |Tyl(HE, Y —I{;;TMKWJ+ ). (2.50)
0<i<N,—1
0<j<Ny—1

Now we just need to bound those right hand side terms of (2.50). Using the

Cauchy-Schwarz inequality and the inverse estimate (2.41), we have

D DR CHIRN fee M o

iti g+t T Y il i

0<i<N.—1
0<j<Ny—1
Ni+3
< v Y Tl IHLELPYRC YD ATl IV, ENE )Y
0<i<N,—1 0<i<N,—1
0<j<Ny—1 0<j<Ny—1

3 3
= 7| HY 2|V B e < ol [HY 2]

1 (TC’Z-mh;l)Q
_— . ENetL 12, 2.51
T L @51)
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Similarly, we can obtain

Ne+3
T Z T35 Hz‘:%jJr%vﬂﬁEgﬁll,H%
0<i<Np—1
0<j<Ny—1
1 C.. .h-1)?
< suoll N 4 L TGt ) N (o 59)

40 Ho€o

By the similar technique, we can prove that

Net+3  oN+1
T Z u—’iv]'*%’ ) Jx,i+§,jEz,zt'+%,j
s
SIS Ny —
Ny+3 TW. 1 Ne+3
< Tl LI e < TR I all BN ), (259
Gowpe
Ne+3 N1
T Z ’E*%:j’.Jy,i,jj%Ey,;,jJr%
e
SISNy—
Ny+3 TW. 1 Ne+3
< AR THIEY e < T IR+ al B, (254)
pe

and

3
TN Tl K

i+3.0+5 it+5.0+s

0<i<Nz—1
0<j<Ny—1
TW.
< T|[HNEE || [ KN e < 2 (o [HN R |3+ ——— | [N (2.55)
pm

Substituting the estimates (2.51)-(2.55) into (2.50), then choosing ¢ and 7 small
enough so that the left hand side terms of (2.50) can control those corresponding

terms on the right hand side. A specific choice can be

1 Cim)hy Ozm;h:r; 1 1
K y T S y T S , T S .
4 20, 2C, 2pe 2y

This completes the proof. O
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The error estimate

To make the error analysis easy to follow, we denote the errors by their corre-
sponding script letters. For example, the error of E, at point (x;, 1Y), t,) is denoted

by "

denote the
x 7’+ 2 7.]

= Ex(xH%,yj,tn) - E:;H%J., where Ex(:cH%,yJ, n) and B pny
exact and numerical solutions of £, at point (z,, 1, Yjs t,), respectively. Similar error

notations given below will be used for other variables:

en H”‘*‘% j”‘*‘% jn—i-% ntl

XNES ittty Yaitzd’ Yyigty’ ity

The error equation for FE,

Multiplying (2.35) by |T” 1| (the area of rectangle T; ; ), we can rewrite (2.35) as

follows:
€0|j—;,jfl‘ +1 n+i nt+l
%wz”%,j = Frivgg) = @i - xi)(HH;ﬂ% B HH;F%) — T z,it+1.50

from which we can easily obtain the error equation for E,:

co| T ;1]
J T3 (gn—‘s—l _gn )

T zit+ij zits.]

= (zip1 — ) (M2 (A )= Tyt | T+ R, (2.56)

ityaty g

where the local truncation error term R; is given by

€0|T ]_7|
Ry = f(Ex(xz—&-%v Yjstnt1) — Ex(%-}-%a Yj,tn))

_(xz-‘rl_‘rl)(H( z—i— 7yj+ ) n+ ) H( z+1’y] 5 7l+ >>

+|T J—*|‘] ( H—%’yj?tn—l-%)‘ (257)
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Integrating (2.7) from t = ¢, to t,,; and dividing the resultant by 7, we have
// (2,9, tn1) — Ex(w,y,tn))dody (2.58)
n+1 Ti+1
_/ / (H(x’yj+l7t) - H(If,y]_%,t))dxdt

tn+1
——/ // (x,y,t)dxdydt.
tn

Subtracting (2.58) from (2.57), we can rewrite R as follows:
// Tipl >yj7tn+1) E.(z,y,thi1))
_(Ex(xi+%7yja n) - Ez(x,y,tn))] d:}:dy
Ti4+1
Ayt~ Bl gt
1 Ztn+1 Tit1
_ ;/t /x (H(x,yj+%,t) — H(x,yjfé,t))dxdt}
tn41
// 7,+ 1, Yj,1 n+3 dib’dy— _/ // iL‘ Y, t dxdydt
tn
= Ru+ Ria+ R13- (2.59)

Following the same technique used for deriving (2.30), for any function f we can

prove that

// (P9 tusn) = F(@iy g0y, b)) dady

// f(@y,tn) = fwig 1,5, tn) ) dody
o f o

// (x— ) (g J;(thnﬂ) axé(%,tn))
(y y;)° ((3 5 (q2, tuy1) — 9 5 (@2, tn))]dzdy
// { 926?8; (@,%)
+2(y y;)° @?aj;?(% )} dxdy, (2.60)

[\DI = w\»—‘
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where we denote ¢; and ¢ for some points between (z, +%,yj) and (z,y), and t,
for some point between ¢, and t,,1. In the last step we used the following Taylor

expansion

) — 9(ta) = 722 (1)

with g = % and g = 3275, respectively.

Applying (2.60) with f = E,, we can bound Ry; as follows:

Rny = ?//T B {5@ ~ T 1) T s ant) + 5y —y) TW(Q2’t*) dxdy
/L,]—g
PE, PE,

— 2\| 2 Tw 2\| 2 v L

Similarly, by the Taylor expansion, we can estimate R, as follows:

B Uy OH
Ry = —/v / a—y(%%,y’tm%)dydff

n+1 xz+1 H
/ / /]+§ 0 (x,y,t)dydzdt

.7

Tit+1 H aH
— / /y\ 1 |: z+%7y7tn+%) - 8_y(«r,y,tn+é):| dydx

=3

Tit1 i+l tn+1
/ / v 1/ {aH Y t) — %Zl(flf Yilpys )} dtdydx

1 OPH
- // B

ntl 1 *H
// / — )281528 (x,y,t,)dtdydz
3

8 O*H
)| 28 |OO ( )|8t28 |OO>| 2]f§|

l\?\

w

(O(h2

where , is some number between x; 1 and z, and ¢, is some number between ¢, 1
2

and t.
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Using exactly the same argument, we can estimate R;3 as follows:
-/ / (it i ) = T3 Tyl

n+l

- <0<h2>\%22|oo <h2>|%221m <>|8;t2 T,

The error equation for £,

Multiplying (2.36) by |TF%’ ;l, we can easily derive the error equation for E,:

€0|T‘_%’j| 5n+1 gn
7( ylj+2 - le+2)
n+3 n+3
_(yj+1 - y])(HZ+%27]+% - %i,;jJr%) | zf§ j|*—7 /L]Jrl + R27 (2 61)
where the local truncation error R, is given by
€0| z—fj|
R2 = 7(Ey(xza yj+%7tn+1) - Ey(xia y]+%7tn)) (262)

+<yj+1_yj)(H( 1—0— 7y]+17tn+ ) H( z——?yj+ 7tn+2)>

‘HT 1 ’J (:cl,yj+1,tn+2)
Integrating (2.9) from ¢ = ¢, to t,,1 and dividing the resultant by 7, we have

/ / (@29, tuss) — By (2, ) dedy (2.63)
lnt1l  LYj+1

- - / [ Hy.0) — oy 0)dude
tn yj

1 [int
——/ // Jy(x,y, t)dxdydt.
T Jtn Ty
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Subtracting (2.63) from (2.62), we can rewrite Ry as follows:

// xzvyj+17tn+1> Ey(x7y7tn+1))

5.

_(Ey<xiayj+%atn) —F (CU Y, t )) dl‘dy
Yj+1

A H Gy ty) ~ Bt )y
i

1 tny1 LYj+1
tn Yj

tn+1
// Jy(avz-,yj+ A 1 )dxdy — —/ // y(z,y, t)dedydt
Ti,%d T, 1

= Ry + Ry + Rys. (2.64)

Following exactly the same technique developed above for R;, we can show that

DE, O*F
_ 2 2 Y .
R21 - (O<hx)|at8 2 100 (h )‘ata 2 |OO)‘711'7§,]‘7
PH O*H
Ryy = (O<h’2)’a 201 |00 ( )’atga |00>’ 1—53’
0%, 0%, 0%,
Rax = (O02)| 52 o + OUR)| 5o e + O G T,y

The error equation for H

Multiplying (2.37) by |T; |, we can easily obtain the error equation for H:

po| T 5] n+t3
T~ ( Z-‘r ]_|_, Hi—i—;j—&—%) = _(yj+1 - y])(g;jj1’]+% - g;j:]l_;'_%)
+<Ii+1 )(g:j_:z 41 S;l:r—i j> - |E,]|K:L_:r%1’]+% + R37 (265)

where the local truncation error Rj3 is given by

M0| il
Ry = T ( (@ Z+1’y1+17tn+ :) — H(z Tiyl 7y]+17tn+ 1))

(W1 — yi) (By(@ita, Yjrds tn1) — Ey(x, Yirls tni1)) (2.66)
—(Tiq1 — xi)(Ew(xiJr%vijrlv tny1) — Ez(37¢+§a Yj> tni1))
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+|T;7j|K(xi+%7 yj-f-%a tn+1>-

Integrating (2.11) from t = ¢, citot, s and dividing the resultant by 7, we obtain

// (€,Y, tnys) = H(z,y,t,,1))dody

___/ f// (ﬂ_
= T tn+% T, 8ZE

1 [t
——/ / K(x,y,t)dzdydt. (2.67)
TJe, T

OF
’” t)d
oy )(z,y, t)dxdydt

Subtracting (2.67) from (2.66), we can rewrite Rz as follows:

RS = // { z+ 7y]+ 9 n+ ) H<m7y7tn+%))

H( z—i— ’y]—i—l? n+1>_H(x y7 n+ ))}dxdy

8E 0F,
+{// (@, g5 10 tnrt) — 5 (Tip1, Y, ) )dady

a
2 O, OF
_;/t //T (G @ut) =5 — (2, y,t))dadydt}
n+d i,
1 tn+%
+{// it gy )ody = / / K (z,y,t)dzdydt}
T;,; tn+% I,

= Rz + R + Ras. (2.68)

By the Taylor expansion, we can obtain

P H o OPH
WR +O(h )|W|oo)|Tz‘,j|,
OB, 63Ey : a3E
PLE,
+0<72)!at2—ayloo)m,j|,
*K K ’K
Raz = (O(h3)| 55 oo T (hf,)la—y2|oo+ (™) 55 gz 1) | Til-

Ry1 = (O(h3)]

R3y = (O(h2)]
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The error equation for J,

Multiplying (2.38) by |Ti,j7%\, we easily derive the error equation for J,:
T.|T,

T 1l +3 +1 _7| 3 1
1, 3 n+3 . n %,J n+2 n+2
Tegw2, ( sivkd s ’L+2’J) 2€0w3, (j“‘féd' + jx,ﬂ‘%’j)

= [Ty s &7+ Ba, (2.69)
where the local truncation error R, is given by

|Ti,j—%‘
Ry = 7'600)2 (Jx(xH-%’ yj7tn+%) - Jx(xi+%7yj>tn+%))
r. |T7]_7|
260%%@ (Jx(xwév yj7tn+g) + Jw($¢+%7yj,tn+%))
|T ]—7|E ( z+%7yj7tn+1)- (270)

Integrating (2.13) from t = tn+% to tn+% and dividing the resultant by 7, we have

—izy // y (@9, g s) — Jal@,y, 8,y 1)) dady
5 / // (z,y,t)dzdydt
Tﬁow
/ // (x,y,t)dxdydt. (2.71)

Subtracting (2.71) from (2.70), we can rewrite R, as follows:

R == t _Jx ) at 3
4 Teow // z-i- 1, Yj, n+3) (x Yy n—i—g))

_(‘]CC( i+l’yj7 n+l) - Jx(ﬂf,y,tn_;'_%))}d{['dy

60&)2 // z+ 7y]’ n+s )+Jx<xz+%’y]’tn+%))dl’dy

——/ // » Jo(z,y, t)dxdydt}
—{// Tit1: Yjs tngr)dady — —/ // (z,y,t)drdydt}

= R41 + R42 + R43. (272)
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By the Taylor expansion, we easily have

03 J, 3.,
— 2 2
Ry = (O(hx”ata gloo (hy)|ata =) T,
e = ow,%e // Tird Y tnsd) + Jo(@ig g, st 1)

_Jx(xay7 n+§) - J:C<J],y,tn+%>>dl’dy}

// / (@9, tpys) + Jo(@,y, b, 1)) — Jolz, y, 1) bdidzdy

- <0<h2>|%21w O >|%2\oo O T2 )Ty

where in the last step we used the property: For any function f € C?([0,T]),

l/t"Jr%{%(f(tn-i-g) + f(tn_i_%)) _ f(t)}dt _ ( )|gt§|

n+%

Similarly, it is easy to show that

O*E, O*E, O*E,

Ry = (O(2)| G e + OU)| oo + O G ) Ty |

The error equation for J,

Following exactly the same technique used for the J, equation, we easily obtain the

error equation for J, from (2.39):

Tiosgl s , LT 2. s .
25J n—+ . n+ 7 ] +2 n+2
rew, Dot T Tuiint) t e s T i)
= Ty )lE)7 0 + Bs, (2.73)

where the local truncation error Rj is given by

|T;—%7j|
RS = W(Jy(xi7yj+%a n—i—%)_‘] (Iz7yj+latn+ ))
P | z—fj|
+2€0T(J (xlﬂy]-i-l? n+3) + ‘] (xl7yj+17tn+ ))
pe
_|Ti—%,j‘Ey(xi7ijr%;thrl)- (274)
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Integrating the y-component of (2.3) on 7;_ 1 then integrating the resultant from

t=t,.1tot, s and dividing the resultant by 7, we have
Teowpe //T I IE y’ n+ ) Jy(x,y,tn+%))dxdy
— 9]
+ 62 /“ 3 // Jy(x,y, t)dzdydt
Teowpe Ji -
/ / / (2, y,t)drdyt. (2.75)
T, 1
2 ¥

Subtracting (2.75) from (2.74), we can rewrite R as follows:

RS = // mzay]+1> n+5) - Jy(xayathr%))
T 1

TE()wpe

(‘] (x“y]-&-l’tn-i- ) J, (ilj’ y? n+ ))}d:vdy

€0w2 //T :L"L7yj+ ) n+ )+J (x“y]-l- ) n+ ))dl’dy
%j

__/nJrg // Jy(z,y,t)dxdydt}
T t 1 T. 1.
— 5]
1 [T+
_{// .T“yj+1,tn+1)d$dy — ;/ // E,(z,y,t)dzdydt}
t T

n+% i*%;]

- R51 + R52 + R53. (276)

By the Taylor expansion, we can obtain

%, d%J,
2 2
= T 1.

Ror = (O(12) 5t oo + O 55 5 I Ty
0%, 0%, 0%,

Rsz = (00| 5 oo + 00 5 oo + O G LI Tioy
0*FE O*E O*FE

R53 = (O(hi” any |OO + O(h§)| 8y2y |00 + O(T )| 8t2y |OO)| z—f j|

The error equation for K

Similarly, we can obtain the error equation for K from (2.40):

‘ ’ n+2 n+1 m‘ ’ n—+2 n+1
Tuow;%m (K”%ﬁ a ,C“rg Jt3 Dt 2uow2 (ICHQ Jt3 +]CZ+2 gt 3 1)
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=T, |H”+2 1+ Re. (2.77)

where the local truncation error Ry is given by

i1
Rg = _TMO 32 (K<$i+%,yj+%>tn+2)_K( i+l ,y]+1,tn+1))
LlTiyl
2410w> ( (@i 15 Y 1o tnya) + K(2i0 1, Y5115 b))
_’,Ti,j|H<xi+%ayj+%7 ntd)- (2.78)

Integrating (2.4) on 7; ;, then integrating the resultant from ¢ = ¢, to ¢,1 and

dividing the resultant by 7, we have

// (2,9, tuss) — K (2,9, tusr))dady

Tuowpm

tn+2
+ m2 / / K(:L', y, t)dxdydt
Tuowpm tnil

tn+2
/ / H(z,y,t)dzdydt. (2.79)
tnt1

Subtracting (2.79) from (2.78), we can rewrite Rg as follows:

Re = // { H—%a yj+%7tn+2) - K($7yatn+2))

T,uow2

<K<xi+;, Uyototuss) — K (0,9, b)) Ydady

sz {// z+%7 Yjrls tn+2) + K(xzq-%: yj+%7tn+1>)dxdy

tnso
——/ / K(x,y,t)dzdydt}
T Jtnia T
n+2
—{// H(xH%,ijr b3 dxdy——/ / ny, Ydxdydt}
Tiyj tnt1

= R + Rez + Res. (2.80)
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By the Taylor expansion, we can obtain

PK PK
— 2 2 -
82 PK PK
Rex = (O(h3)| 5 |0 + O(hy)| o7 oo + O | Zz 10 Ti,

0*H 0*H 0*H
Res = (O02) 7 e + ORI G s + O G ) Tl

The final error estimate
With the above preparations, we can now prove the major error estimate result.

Theorem 2.32. Suppose that the solution of (2.1)-(2.6) possesses the following reg-

ularity property:

E,, B, H € C(0,T);C*(@)) n C*((0,T}; C*(Q)) N C*((0, T); C' (),

Jo, Jy, K € C([0,T]; C*(€)) N C*([0, T); C*()) N C*([0, T]; C(Q2)).
If the initial error
€1 + 1€ + 13 e+ T2 1L+ T L+ I e < (2 4 B2 +7%), (281)
holds true, then for any 1 < n < N; we have

n n n+3 1 n+3 n+3
eo([1€:7 15 + 116 1) + ol P 215 + — (172115 + 117 115)

0 pe

1K™ 1%

pm

< C(hZ+hi+ 7%, (2.82)
where the constant C' > 0 is independent of 7, h, and h,,.

Proof. Note that the error equations (2.56), (2.61), (2.65), (2.69), (2.73) and
(2.77) have exactly the same form as (2.35)-(2.40) with extra right hand side terms
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representing the errors introduced by time discretization and space discretization.

Hence we can follow exactly the same technique developed in the proof of Theorem

2.3 to obtain (cf. (2.50)):

3 1
60(||53§Vt“||% —[1&211%) + eo(ll€ M5 — ||<‘55H%) + po([[HY 2| — 1H2][5)

IN

Ne+3 N+
(17" R - 117213) + (I! THE 7R IR)
0 p €ow
1
]CNtJrQ 2 ICl 2
+M0w§m(H 7 — 171 %)
Nt+ Ni+1 3 0
T Z I7; ‘( ; 1V gxzt+2,]+1_7_[i2+%j %V 5a:z+2,y+1)
0<i<Ny—1
0SSNy -1
Nt+ Ni+1 0
T Z Tl (=H 2+1v gyzt+1,]+1+Hz+2,j+lvmg ,i+1,j+§>
0<i<Nz—1
0<j<Ny—1
S Tl g g )
2% A7 x,iJr%,j :c,i+%,] :cz+2,] Il+2]
0<i<Ny—1
0SSNy —1

3 1
Y LT TR ENE g g0 )

Y g+ Ty +a y,ig+3 ity

0<i<Nz—1
0<j<Ny—1
Ni+3 Nit2 1
T E Til(H. 12 K —H? K.
+ | Z]‘<H1+%,j+2 i+3.0+3 H+2,J+2 i+5.0+5 1)
0<i<Nz—1
0<5<Ny—1
Nt
+1 n n+1 n
T E g Ri(E" & T E E Ry (E E
+ xz+2,g+ xz+2,j + ”]_:,_l—*— yz’3+2)
n=0 0<i<Ny—1 n=0 0<i<N,—1
0<j<Ny—1 0<j<Ny—1

Nt
n+% n—i—%
+TZ Z R3(Hz’+%,j+%+Hi+§,j+é)

n=0 0<i<Ny—1
0<j<Ny—1

+TZ Z Ra(J, m+ j;iéﬂ

n=0 0<i<Ny—1
0<j<Ny—1

n+ n+
+TZ Z Rs(J, i 732+1 +‘7y7 732+ )

n=0 0<i<Nz—1
0<j<Ny—1

+TZ Z R ( /C"+2 gl —i—/C" R 1) (2.83)

n=0 0<i<N,—1
0<j<Ny—1
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All terms except those containing R; on the RHS of (2.83) can be bounded as in the
proof of Theorem 2.31. The R; terms can be easily bounded by the Cauchy-Schwarz

inequality. For example, we have

TZ Z 5;7'::: ]+g;1+2’1)

n=0 0<i<N,—1
0<j<Ny—1

Ny
<Y MG R, € )
n=0 0<i<Ny—1
0<j<Ny—1

: C 5, .
< TZ Z ’ 1]‘*| |:E(h3: + h32/ +T2)2 (‘Sx:i ]’2 + ‘gxz—i- J’ )
n=0 0<i<N.—1
0<G<Ny—1
cT N s
< R+ Ty S(llEt I e LI,
n=0

acH— ]

J

where we used the inequality ab < }a* + 2b?, where the constant § > 0.
Choosing § small enough so that HS;V:iJH% etc can be bounded by the corre-
b 27
sponding terms on the left hand side of (2.83). The proof is completed by using the

discrete Gronwall inequality. O

2.4 Numerical results

In this section, we present two numerical examples. The first one is used to justify
our theoretical analysis with an exact solution. The second one is a classic example
showing the backward wave propagation phenomenon in metamaterial.

Example 1. In this example, we solve the 2D version of our model (2.1)-(2.4).

More specifically, the governing equations are (with added source terms g,, g,, and
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OE, OH,
€05, oy +y9 (2.84)
OFE OH.,
eoa—ty =~ Jy + 9y, (2.85)
OH., OE, O0FE,
= — - K.+ f, 2.
o™t Ox N dy +J (2.86)
1 0J, I,
. —J, = Ej, (2.87)
€ows. Ot €ows,
1 dJ, I,
J,=E 2.88
cowZ, Ot * cow2, v (2.88)
1 0K, Ly,

Kz = Hz- 2.89
foWpy, O powp, (289)

To rigorously check the convergence rate, we choose the physical domain ) =

0,1]?, and coefficients as follows:
EOZ/LO:L 1—‘m:l—‘e:'ﬂ-a Wpm = Wpe = T

such that (2.84)—(2.89) has the exact solution:

o= ()= ().

H, = cos(mx) cos(my)e ™,

Jo. \ [ wtcos(mz)sin(mry)e ™
J, )\ —m%tsin(rx) cos(ry)e ™ |
K, = 7t cos(mx) cos(my)e ™.

J

The corresponding source terms are

ge = Tt cos(mx) sin(ry)e ™,

g, = —mtsin(rx) cos(my)e ™,

f = (=37 + 7*t) cos(mx) cos(my)e ™.
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We build the 1D non-uniform mesh in the X-direction as [0 : dz : 0.5 — dz,0.5 :
dz2 : 1], where dz2 = dz/2, and the 1D non-uniform mesh in the y-direction as
0:dy:05—dy,05: dy2 : 1], where dy2 = dy/2. The 2D non-uniform mesh is

obtained by extending both 1D meshes to cover the whole domain Q (see Fig. 2.2).

0 s L L A A A
0 01 02 03 04 05 06 07 08 09 1

Figure 2.2. A non-uniform mesh with dx = dy = 1/32.

We solve the 2D problem (2.84)-(2.89) by our scheme (2.35)-(2.40) on a series of
non-uniform meshes with dx = dy = h varying from 1/4 to 1/128, with a fixed time
step 7 = 107°, and ran for a total of 1000 time steps. The obtained errors for the main
fields E,, F, and H, at the 1000th time step in discrete energy norms are presented
in Table 2.1, which shows clearly that they all converge in O(h?). This confirms our
theoretical superconvergence rates O(h2 + h2).

Example 2. In this example, we solve a classic example of wave propagation in
metamaterial originally introduced by Ziolkowski Ziolkowski (2003) and lately solved

by Huang, Li, and Yang with edge elements Huang et al. (2013). This example
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Mesh HHZ — Hz,h“H Rate ||E‘ac — Ez,hHEz Rate ||Ey — Ey,h”Ey Rate
h=1/4 5.283211E-04 — 2.824375E-04  — 2.824375E-04  —
h=1/8 1.326984E-04  1.9933 7.266416E-05  1.9586 7.266416E-05  1.9586
h=1/16 3.321344E-05 1.9983 1.839161E-05  1.9822 1.839161E-05  1.9822
h=1/32 8.306978E-06 1.9994 4.622600E-06  1.9923 4.622600E-06  1.9923
h=1/64 2.077415E-06 1.9995 1.158079E-06  1.9970 1.158079E-06  1.9970
h=1/128 5.194356E-07 1.9998 2.897430E-07  1.9989 2.897430E-07  1.9989

Table 2.1. The errors of E,, E,, H, obtained with 7 = 10~° on non-uniform meshes.

assumes that a metamaterial slab of size [0.024,0.054]m x [0.002, 0.062]m is located
inside a vacuum of size [0,0.07]m x [0,0.064]m. An incident source wave is imposed
as H, field and is excited at x = 0.004m and y € [0.025,0.035]m. The source wave

(—0.03)?/(50h)?

varies in space as e~ and in time as:

0, for t <0,
g1(t) sin(wot), for 0 <t <mi,,
f(t) =< sin(wpt), for mT, <t < (m+ k)L,
go(t) sin(wot), for (m+ k)T, <t < (2m+ k)T,
0, for t> (2m+ k)T,

where the functions ¢; and g9 are

g1(t) = 1023 — 1521 + 623, a1 =t/mT,,

g2(t) = 1 — (1023 — 1525 + 623), a3 = (t — (m + k)T,) /mT,.

Here we denote T, = 1/fy and wy = 27 f;. In our simulation, we use m = 2,k =
100, fo = 30GHz.

We solved this model with our scheme (2.35)-(2.40) on a non-uniform mesh uni-
formly refined from a coarse mesh demonstrated in Fig. 2.3 (Top left). Here, we used
time step size 7 = 10713s = 0.1ps (peco second), and 12 perfectly matched layers
(PML) around the physical domain (cf. Huang et al. (2013)). The obtained H, fields
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at various time steps are presented in Fig. 2.3, which matches with what we obtained
in Huang et al. (2013). The simulation shows that as wave enters into the metama-
terial slab, the wave propagates backward due to the negative refractive index of the

metamaterial.

2.5 Conclusions

In this chapter, we first develop the Yee scheme for solving the Maxwell’s equations
in metamaterials on nonuniform rectangular grids from the variational point of view.
Then we show that the scheme achieves a second order superconvergence rate in
space for both semi- and fully-discrete schemes. A numerical example supporting the
theoretical analysis is presented first, then a popular backward wave propagation in
metamaterial is simulated by Yee scheme on nonuniform rectangular grids. Similar
techniques can be extended to more complicated metamaterial Maxwell’s equations

Li and Huang (2013), and detailed results will be presented in our future work.
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fime step = 1000

0.9
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time step = 2000 time step = 3000

002

fime step = 4000 fime step=5000
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0)));(((000 |
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0 001 0.02 003 0.04 005 0.06 0.07

Figure 2.3. Example 2. A coarse mesh (the red rectangle shows the metamaterial
slab), and contour plots of |H,| obtained with 7 = 0.1ps at 1000, 2000, 3000, 4000,
and 5000 time steps.
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CHAPTER 3

A NODAL DISCONTINUOUS GALERKIN METHOD
FOR THE STUDY OF SIGNAL PROPAGATION IN
CORRUGATED COAXIAL CABLES

3.1 Introduction

Mathematical analysis of finite elements for axisymmetric Maxwell equations has
been attracting an increasing interest since 2000. Ciarlet et al. initiated the study
of axisymmetric Maxwell equations Ciarlet et al. (2000); Assous et al. (2002). Later,
in 2006, a least-squares method for axisymmetric div-curl systems was analyzed
D.M.Copeland and J.E.Pasciak (2006). In that same timeframe, multigrid meth-
ods were proposed and analyzed for axisymmetric Maxwell equations S.Borm and
R.Hiptmair (2002); D.M.Copeland et al. (2010). Subsequently, finite element methods
were developed and analyzed for solving time-dependent axisymmetric eddy current
models Bermudez et al. (2015, 2010).

The goal of this chapter is to explore the effect of corrugated coaxial cables on
the electric pulse propagation in more detail than others Bocklin et al. (2009); Blank
et al. (2013); Imperiale and Joly (2014). Here we estimate the effects of corrugation by
solving Maxwell’s equations in cylindrical coordinates to model the wave propagation
between the two conductors of the corrugated coaxial cable. In Blank et al. (2013),
the nodal discontinuous Galerkin method (e.g., Hesthaven and Warburton (2008); Li

and Hesthaven (2014); Li et al. (2012)) was extended to solve the 2-D cylindrical
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cooridinate Maxwell equations. However, Blank et al. (2013) does not provide any
stability analysis nor error estimate of the method. Here, we first develop a similar
method for our corrugated cable model, then we present a stability analysis and
error estimate for the semi-discrete scheme. Finally, we use our algorithm to solve
various corrugations and compare with the results obtained by the finite difference
time domain (FDTD) method.

The rest of the chapter is organized as follows. In Section 2, we present the
axisymmetric Maxwell equations and show that the energy of the system is conserved.
In Section 3, we introduce the nodal discontinuous Galerkin (nDG) method in both
semi- and fully-discrete forms. Stability and convergence of the semi-discrete scheme
is established rigorously. In Section 4, we present extensive numerical results verifying
the theoretical analysis and applying the method to the wave propagation problem
in various corrugated coaxial cables. Conclusions are in Section 5. The research
presented in this chapter was previously published as Li et al. (2017) where Jichun

Li, Eric Machorro, and I were all equally contributing authors.

3.2 The governing equations

Replacing the curl operator in cartesian coordinates by that in cylindrical coordi-
nates (r, 6, z), we can easily obtain the Maxwell’s equations in cylindrical coordinates

(cf. Blank et al. (2013)):

OE" 10B* 0B’

o r o0 os (3.1)
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OE’  9B* 0B _

o " or o (3.2)

aab;z - % (% (rB%) — a(f;) =0 (3.3)
r z 0

AL A o

a;e_aiz+a£rzo (3.5)

aaB; + % (% (re?) — %) =0, (3.6)

where (E", E, E%) and (B", B, B*) denote the electric and magnetic fields, respec-
tively. For simplicity, we assume that the permittivity and permability both equal
1.

Below we only consider the 2-D cylindrical coordinate Maxwell’s equations, which

have three non-zero variables (E”, E*, BY), i.e., the non-zero varaibles are:
E’=DB"=DB=0. (3.7)

Furthermore, we assume that variables (E", E#, B?) are independent of the azimuth

angle 0, i.e.,

OE" OF* 0B’
o0~ o0 o0 (3:8)

Finally, plugging (3.7) and (3.8) into equations (3.1)-(3.6) gives the following 2-D

cylindrical coordinate formulation of Maxwell’s equations for the problem of interest:

OE" 0B

o os (39)
oE* 1 oBY

o :;BMW (3.10)
oB? OE* OE"

o or 0z (3.11)

For simplicity, we assume that the model equations (3.9)-(3.11) satisfy the perfect
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conducting (PEC) boundary condition
7-E=0 on 0, (3.12)

for E = (E#, E"). Here and below 7 = (n,, —n,)" and n. = (n,,n,)" denote the unit
tangential and normal vectors on the physical boundary OS2, respectively.

First, we would like to show that the model equations (3.9)-(3.11) conserve energy.

Lemma 3.21. The energy
£ = /(\E’"|2 B + | BY?) rdrd=, (3.13)
Q

is conserved for the solution (E?*, E", B%) of (3.9)-(3.11) with the PEC boundary

condition (3.12).

Proof. Multiplying (3.9)-(3.11) by E", E#, B?, respectively, integrating over do-
main ) under cylindrical coordinate system, and then adding the results together,
we obtain

1d
- Er? EZ2 B92
i | [OEE & B+ |8 v

z r

OFE* oE"
0 _ o
+/Q(B o B 5 Yrdrdz

r RO z RO
= — / OB D) ez + / OEB) e + / E*B’drdz
QO 0z Q or Q

= / (=n.E" 4 n,E*)B’rdr — / EBYdrdz + / EB%drdz
o0 Q Q

BY BY
= —/ ETa—Tdrdz—l—/(EzBe+1"E'Za—)drdz
o 0 0 0

=0,

where we used integration by parts in the second last step, and the PEC boundary
condition (3.12) in the last step. O

53



3.3 The DG method

To apply a nodal discontinuous Galerkin method discretization Hesthaven and
Warburton (2008), it can be helpful to informally write equations (3.9)-(3.11) in

conservation form Blank et al. (2013):

1
Ou+ V- F(u) = -Cu, (3.14)
r
E? 9 0 —B 00 1
where u = | E" ,V:[%],F(u): B 0 |[,andC= |0 0 0].
BY or E" —FE7 0 00

Like other finite element methods Li and Huang (2013), the computational do-
main, €2, is triangulated by a collection of K elements DF that only overlap on their
boundaries, D", such that Q = U,{;l D*. Since the boundaries of the elements
overlap, there are no longer unique solutions at the boundary of every element. The
solution chosen at the boundaries of each element is derived by the numerical flux,

F*, whose calculation is shown later. The finite element space is then given by:
Vi o= {uf € L®(Q) : uf|pr € PY(D*), k=1,..., K}, (3.15)

where PV (Dk ) are locally defined 3-tuple polynomials of order N with two indepen-
dent variables.
The local approximation to u, uf(r,t) = (E7, E;, BY)T € (V,)® can then be

expressed using Lagrange interpolation:
NP
reDFrup(rt) = up(r, )0 (r) (3.16)
i=1

where ¢¥(r) is the 2-D Lagrange polynomial defined at grid point 7; = (2;, ;) on the

element D*, and N, = w is the number of grid points.
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The residual Ry, := Oyup, + V - F(uy) — %Cuh is then required to be orthogonal
to all test functions ¢y € Vj, which results in the following requirement Blank et al.
(2013):

R, - pprdr = —/ (F(u}) — F*(uy))n - oprdr, (3.17)

D* oDk

where F* is the numerical flux that is introduced to assist coupling between neigh-
boring elements, and the test functions have been chosen such that ¢;, = ¢¥. Note
that here the integral is computed in cylindrical coordinates, requiring the integrand
to be multiplied by r. Because of this, the implementation of the scheme becomes
considerably different from the Cartesian coordinate problem from this point on. One
example showing the big difference can be seen in Machorro’s work on the discontin-
uous Galerkin method for solving 1-D spherical neutron transport equation Machorro
(2007).

Following the same procedure originally outlined in Hesthaven and Warburton
(2008) and extended to cylindrical coordinate in Blank et al. (2013), the general 3-D

numerical flux is calculated by taking the Rankine-Huginoit conditions to be

(Fie — Fg)ivs = — s x (([B]] — o x [[E]), (318)

(Fi — Fgi = s x ([E] + oy  [[B])). (3.19)

where ns is the 3-D normal unit vector to the current interface between elements.
Here, o can be taken to be any value between 0 and 1, with o = 0 resulting in
a nondissipative central flux and o = 1 resulting in the classic upwind flux. The
notation [[E]] is defined as the jump across an element face, which is [[E]] = E~ —
E*, where E- and E* denote the E values from the underlying element and its
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neighboring element, respectively.

Converting equations (3.18) and (3.19) into two dimensional cylindrical coordi-
nates, we let E = (E* E",0)', B = (0,0, B%), and fi3 = (n.,n,,0) in equations
(3.18) and (3.19). Note that because 73 is a unit vector we now have that n?+n? = 1.
Equation (3.18) then gives us:

) 1 nr[[Be]g] o [ rlET]] = nlE7])
(Fe— oy = —5 [ B | + 2 [ el —nliE]) | 320)
0

| [ —nllB) + o (n, [[E7) + n.[[E7]) -
=5 | Bl o (2 () = B+ )

Taking the z and r components of this gives us:
(F — F)a). = 5 (~n,[B) + oo B - [E])),  (321)
(Fi — Fyas), = 5 (n-[1B] + aln, [l - B]] - [E'])). (3.22)
Equation (3.19) then gives us:

O L
(Fs — Fp)ns = 5 0 +3 0 . (3.23)
n:[[ET]] — n.[[E7]] —[[B°))(n +n?)

So taking only the 6 component of this flux gives us:

—_

[(Fp — Fi)nslo = 5 (n:[[E7]] = n,[[E7]] - o[[B"]]) . (3.24)

2
Combining these results together gives us the following fluxes used in the imple-

mentation of our DG scheme:

—n,[[B] + a(n.[[n - E]] - [[E7])) )
’ (3.25)



Substituting this into (3.17) gives the following semi-discrete scheme: For any test

functions wuy, vy, wy, € Vi, find (E7, E;, BY) such that,

dE? 1 BY
/Dk dth uprdrdz = /D (-BY + —aarh)uhrdrdz

kT
= N " z
s / [on (B + atn.l[f - B4]) ~ [(B])} wirdr, (326)
Dk
dL, B 0B
/Dk o7 vprdrdz = —/Dk 5 vprdrdz

+% /am {nz[[BZH +a(n[n- By - [[E;;]])} vprdr,  (3.27)

dB} B OE; OF;
/Dk thrdrdz = /Dk( 5 " o Ywprdrdz

+% oDk {nz[[EIZH - nr[[EZ” - 05[[32”} wprdr. (3_28)

To discretize in time, we use the low-storage five-stage fourth-order explicit Runge-
Kutta method as Hesthaven and Warburton (2008).

First, we would like to show that the numerical scheme (3.26)-(3.28) is stable.

Lemma 3.31. Denote the energy
En(t) = /(|E;;|2 LB+ | BYP) rdrdz. (3.20)
Q

Then the solution (E}, E7, Bf)) of (3.26)-(3.28) satisfy the following stability: For
any t > 0,

En(t) < &r(0).

Proof. Choosing u;, = Ef,v, = Ef w, = BY in (3.26)-(3.28), respectively, sum-
ming up the results, and integrating by parts, we obtain the LHS (Left Hand Side)

and RHS (Right Hand Side) terms:

LHS = i

1 T z
G || gUBP + B + | B rards. (3:30)
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and

RHS = /D]C TEhd’f’dZ — o WEth’I“dZ
1 ) Z z
oDk
1 A T T
+§ /é)Dk {nz[[BZ]] + a(n,[[R- By — [[E}])} Eprdr
OE; OEr. _,
* ol Or B )Byrdrdz

w5 [ AndED (57 ol BN} B

- / ”T'TBZ'EidZ—/ n. - By - Eprdr
aDk

oDk
*% - {—n,[[B)] + a(n.[[n - Ey)) - [[EF))} Eirdr
+% oDk {%HBZH + a(n,[[n- E)] — HE}ZH)} Elrdr
% /a L {n.A1E5]] — n l[EZ]] — a[[BY)]} Birdr, (3.31)

where all volume integrals cancel out after integration by parts.
Recalling that n - Ej, = n.Ej + n,E}, and summing up the contributions of all

elements D*, we have

RHS, = a(n,[[n- EL)| — [[EF]])Efrdr

|
] =
DN | =
S~

X
Il
—
>
ES

+
N | —

a(n([n - Ep]] = [[ER]]) Eyrdr

g
e

I
[M] >
ol 2

/@Dk ([n- Enlln - By = [[ER]IE;, — [ER]]ER) rdr

i
= =
~
I
o)

o
»

N O
g
S
S|

Q=

([[7v - Bwl]? = [B;])? - [EB}])?) rdr

=

=
o |l
4]
V)

Il
(Ll ge
@\

. (e ((ER]] + n:[[ER))? — (nf + n) ([ E5])°

—(ng + n)[[E}])) rdr

@
I
—
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N faces

-y /W—(nr[[EZH—nz[[E};H)%dr, (3.32)

where we used the fact that n?+n? = 1 and the notation N faces for the total number
of element faces (counted once per element face) in the mesh.
Similarly, by summing up the contributions of those terms involving BY in (3.30)

over all elements, we obtain

K
1
RHS, = Y 5 ) (=B Ef; + [[Bplln. B, + n[[E4)]) By, — n,[[E}]| By } rdr
k=1
K K o
0 z 0 T 0 4
+ ; /aDk (By -n.E; — By -n,E})rdr — ; 5 /aDk[[Bh]]Bhrdr
51
= Z 5 {—[[Bz]](ani —n.EBy) +[[n.Ej, — aniHBz} rdr
k=1 2 Jopr
N faces N faces a
+ / Bl (n,E? — n, ED)|rdr — —/ B ?rdr
; aDiH n(n-Ej Wl ; 5 aDiH 0]
N faces
= > [ B E; B
=1 JoD
N faces N faces a
+ / Bl (n,E? — n ED)|rdr — —/ BOrdr
DRI Y

N faces

- -2 /8Di[[Bz]]2rdr. (3.33)

Summing up (3.30) and (3.31) over all elements D*, and using the estimates (3.32)

and (3.33), we obtain

N faces

dggit(t) - Z - {(n:[[E}]] = na[[ER)])? + [B))? } rdr <0,

which concludes the proof. O

Finally, we present the error analysis for the semi-discrete scheme. Let us intro-
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duce the weighted L? projection operator II, on each element D*:
/ (Iyu — w)wprdrdz =0 ¥ wy, € PY(D"). (3.34)
Dk

Furthermore, we denote L?(f2) for the weighted Lebesgue space of all measurable
function u defined in € for which ||ul[75q) = [, |ul*rdrdz < oo. Thanks for those
pioneering work Belhachmi et al. (2006), all the standard approximation results have

been proved to be true in the corresponding weighted spaces, e.g.,

[[Mpu — ul|r2) + AV IThu — u)||r2@) + W2\ Mu — ul|z2(00)
< CPNHul g g, (3.35)
where we denote the weighted Sobolev semi-norm [u| () = (34—, ||aq~kazl Fllr2) Y2
Theorem 3.31. Let (E", E%, BY) and (E}, E7, BY) be the solutions of (3.9)-(3.11) and
(3.26)-(3.28), respectively. Then for any ¢ > 0 we have
(15" = Ejllcaw + 1E* = Ejllea + 1B” = Byllez2o)()
CUMLE" — Byllrae) + ML E* — Eill1a@ + [T B — Byll12)(0) + ChY.

Proof. Using the projection definition to the governing equations (3.9)-(3.11), we

have: For any wu,, v, w, € Vj,

d 1 BY
/ — (I, E)uprdrdz = / Hh(—Bz + h)uhral?"dz (3.36)
Dk dt Dk or
d oB!
/ — (Il E )oprdrdz = —/ I, (—=2)vprdrdz (3.37)
Dk dt Dk 0z
d 0 B OE; O0FE;
/Dk ﬁ(ﬂ"B Jwprdrdz —/ I, ( 5 o Ywprdrdz. (3.38)

Denote 2 55 = 1 8 . Subtracting (3.26) from (3.36) and using the definition of projection
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operator 11, we can obtain the error equation for E~*:

/D k %(HhEZ — Epyuyrdrdz
= /Dk {Hh(%(r(HhBe — B))) + Hh(%(r(Be — 11, B))) | uprdrdz
_% oD {=n B, = .B]] + a(n:[[nv - (Bn — TLE)]] — B}, — L E?]]) } uprdr
5 [ Al + o TE] — [0E]) } s
— /D k Hh(%(r(HhBe — B uprdrdz (3.39)
% . {—n,[[1,B’ — B)]] + a(n.[[n - I, E — E)]| — [I,E* — E;]]) } uprdr
+(Sp=, un) pr,
where the local truncation error
(Spertn) e = /D k Hh(%(r(Be 0, B%)))uprdrd= (3.40)

1
2

- /8Dk {_nr[[HhBQH + Oé(nz[[’fl, . HhEH _ [[HhEzH)} Uh?“d’l".

Similarly, subtracting (3.27) from (3.37), we can obtain the error equation for E":

d T '
/Dk E(HhE — Ep)oprdrdz
= — /D k [Hh%(HhBG — B+ Hh%(B" — ,B%) | vyrdrdz
_% /aDk {n-[[B) = ,B%]] + a(n, ([ (B — ILE)]| - [[E], — TLE"]]) } vprdr
_% /a  AnlMaB) + o, [ E) = (11,7} vrdr
= —/Dk Hh%(HhBe — B))vyrdrdz (3.41)
% oD {n[L,B° = By]] + a(n, ([ - (L E — Ey)]] — [ E" — Bi]]) } vardr

+(Sgr, o) pr,
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where the local truncation error

(Sgr,vp)pe = —/th%(Be — 11, B uprdrdz (3.42)
D

1

_5 /aDk {nz[[HhB H + a(nr[[fh . HhEH _ [[HhETH)} Uth'r'.

By the same argument, we can obtain the error equation for B?:

d
/ — (11, B — B )wyrdrdz
D

K dt
= /Dk {Hh(%(HhEz — E}) + Hh(%(EZ — HhEz))} wprdrdz
— /Dk [Hh(%(HhET - E]Z)) + Hh(%(Er - HhET)):| whrdrdz
* % / {nAILE" = B}]] = n, [, E* — E}]] — of[1,B° — By] } wyrdr
aDk
! "1—n N — « M wyrdr
5 [ Al B = (0]~ al[ 5] e
- /Dk {Hh(%(HhEZ - Ep)) - Hh(%(HhE’" - EZ))] wprdrdz (3.43)
43 [ nliE = B = n[E* ~ Ef)) - allllB’ - B{)} wnrdr
oDk

+(SBgv wh)Dka

0 0
{Hh(a_<Ez — I E?)) — Hh(a (E" = TLE")) | wyrdrdz

T z

—% - {n-(0LE"]] = n, [T, E7)] — o[, B]]} wyrdr.  (3.44)

Choosing v, = I, E" — E} uy, = U, E* — EF and wy, = 11, B — BY in (3.39), (3.41)
and (3.43), respectively, then adding the results together, and following the stability

analysis, we have

d R -
%(HHhE - Eh”%%(ﬂ) + [ B* — Eh”%%(ﬁ) + ([, B% — BzH%z(Q))

N —
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N faces
= —a ) {(n [ E* = B} = n. [ E" = ER)))* + ([0, B° — By)J*} rdr
i=1 “ODF
K
+> [(Spr, ILE" — Ep) pr + (Sp=, L E* — Ef) pe
k=1
+(Spe, B — By) pr ] - (3.45)

By the definition (3.41), we have

%)
(Sgr, II,E" — E)pr = —/ Hh(&(Be —11,B%) - (I,E" — E})rdrdz
Dk
1

aln{[A- TL,E]) — [[I,E7 )} (B — Ef)rdr

2
= > Err. (3.46)
=1

By the Cauchy-Schwarz inequality and the projection property (3.35), we have

Erry = — / (3(39 —10,B%) - (II,E" — E})rdrdz
Dk 82
< CWN|B?| yyver iy [T E” — Ej | 12k (3.47)

Similarly, by the trace inequality with weighted inner product [, (-,-)rdrdz, we have

1
Erry = —= {n.[1,B’ — BY]|
2 ODF

+a(n. [ - (LB — B)]] - [L,E" — E'))} (IL,E" — E})rdr

IN

ChN(|BG‘H£v+1(Q) + |ET|H7{V+1(D1€)

FE* v (piy |NR E™ — Ej[|12(pr)- (3.48)
Substituting (3.47) and (3.48) into (3.46), we obtain

K

> (Spr WE" — Ep)pe < CAN|[TILE" — Ej||r2(0)- (3.49)

k=1
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By the same technique, we can prove that

]~

(Sp=, I E* — E})pr < ChY||ILE” — Ef||12(0)- (3.50)

=
Il
—

and

]~

(Spe, 1, B? — By)pr < CRN||IL,B® — By 12(0)- (3.51)

i
I

Substituting the estimates (3.49)-(3.51) into (3.45), dropping the negative term
on the right hand side of (3.45), then using the Gronwall inequality, the triangle
inequality and the estimate (3.35), we conclude the proof. O

Theorem 3.3l shows that we can have the following error estimate
(1E" = Billza@ + 11E° = Ejlla) + 1B’ — Byllraw)(t) < CRY,
under the standard initial approximation
E4(0) =TILE"(0), E;(0) = ,E*(0), By(0) = I1,B°(0).

This is confirmed by our numerical results presented in the next section.

3.4 Numerical results
Convergence rate test for the DG method

Here we consider solving the 2-D rotationally symmetric Maxwell’s equations

(3.9)-(3.11) with source terms fi, fa, f3 added to the right hand side of (3.9)-(3.11),
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respectively. More specifically we pick the source functions to be:

fi = (1 —7) cos(nr) sin(mz) cos(t) (3.52)
fa = (1 + ) sin(nr) cos(mz) cos(t) — %cos(m“) cos(mz) cos(t) (3.53)
f3 = cos(mr) cos(mz) sin(t) (3.54)

such that the analytic solution to the system of equations is:

E" = cos(7r) sin(7z) sin(?) (3.55)
E* = sin(7r) cos(7z) sin(t) (3.56)
B? = cos(nr) cos(mz) cos(t). (3.57)

All simulations were ran for 1000 time steps with a constant time step of 7 =
0.0001 and up to a final time of 7' = 0.1 on a domain of (r, z) € [0, 1] x [0, 1]. For the
boundary we imposed the PEC boundary condition (3.12). To test convergence rate
of our scheme, we calculated the sum of the L? errors of each solution component by
solving the problem on a series of uniformly refined meshes. The coarsest mesh has
a mesh size of h = 0.01 shown in Fig. 3.1.

The obtained convergence rates for the L? error
llenllzz == ||E;, — E"llr2) + 1B — E*|lr2) + 1B, — B’l|r2(0)
and for the L> error
lenl | = (1B} — E"||peo(@) + | Bf; — E*|[1=() + || By — BY| |10

are presented in Tables 3.1 and 3.2, respectively. Table 3.1 showes clearly O(h)
convergence rate in the L? norm, which is consistent with our theoretical analysis.
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Figure 3.1. The exemplary coarse mesh used in the error convergence analysis.

The numerical results in Table 3.2 show O(h") convergence rate in the L norm,

though its rigorous proof is still open.

Table 3.1. The L? error convergence rates for e;, obtained with basis functions of
order N =1 to 4.

en en/o Rates en/4 Rates en/s Rates
3.1915E-03 1.3789E-03 1.2107 6.6663E-04 1.0485 3.3308E-04 1.0010
4.4756E-05 8.6212E-06 2.3761 1.9635E-06 2.1344 4.7913E-07 2.0349
5.4792E-07 5.9657E-08 3.1992 7.1527E-09 3.0601 8.7891E-10 3.0246
4.1907E-09 2.2624E-10 4.2112 1.3373E-11 4.0804 8.2221E-13 4.0236

NN P

Comparison between the DG method and the FDTD method

Because there is not a known exact solution for corrugated domains, the solution of
the DG method was compared with the (much simpler to implement) FDTD method
in order to verify results of the DG method. Because of the limitation of the FDTD

method, we used a square corrugation to test the DG method against the FDTD
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Table 3.2. The L error convergence rates for e, obtained with basis functions of

order N =1 to 4.

Rates

€h/8

Rates

€h/4
1.4549E-03

Rates
1.6566E-04 2.9603E-05 2.4844 6.0339E-06 2.2946

€h/2

7.6057E-03 3.1592E-03

€h

1.0612

1.1186 6.9724E-04

1.2675

1
2
3
4

1.3729E-06 2.1358

1.2390E-08 3.0243

1.0080E-07  3.0506

7.0750E-06 2.1158E-09 4.3458 1.1399E-10 4.2142 6.5732E-12 4.1162

5.4792E-07 8.3520E-07 3.0825

In the following simulation both methods were run on a domain with 2

method.

each 1 unit wide and 0.1 units deep. In order to get a better visual

)

corrugations;

—($— 2
L exp( éil)?;) ) was

result for comparison a much narrower pulse defined by f(t)

Both domains are

SR OO0 VD OLHR O OPRE O RO CNOD B LOD OB
e

e

=== _ =t

=== 0
== St — et o

Figure 3.2. The meshes used in the DG and FDTD methods.

the same, their images just have different aspect ratios.

To make the results comparable, not only was the same domain used, but also

For the DG simulation a polynomial order of

similar time steps and mesh sizes.

1, and a mesh size of approximately h = 1072 were used. The time step was

N =
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automatically calculated to be At = 0.0026 based on the mesh size to avoid violating
the CFL condition. For the FDTD simulation the parameters used were: a mesh
size of Az = 0.0250 x Ar = 0.0125 with a time step of At = 0.0031. Plots of
some snapshots of E” at different times are put in Fig. 3.3 side-by-side for a clear
comparison of the FDTD method verses the DG method. Fig. 3.3 shows that our

solutions obtained by these two different methods are indistinguishable by eyes.

Modeling of corrugated cables by the DG method

To make sure that our code worked correctly, we carried out many tests for various
corrugated domains with different meshes, time step sizes, and wave sources. The
corrugated domains used in these examples are related to the dimensions of RF-
19 corrugated coaxial cable which was provided by NSTec. The below results were

obtained by using the Gaussian wave source:

where 0 = 2.5 mean(h(z)), and h(z) is the function describing the height of the cable
from the central axis.

The first simulation is done for a “sawtooth” corrugation, since our DG method
can discretize this corrugated domain exactly by triangular elements. Snapshots of
E" are plotted in Figure 3.4.

To see the effects of corrugated cables on the signal propagation, we finally simu-

lated both an un-corrugated cable (see Fig. 3.61 (Right Column)), and a corrugated

cable (see Fig. 3.61 (Left Column)) described by function h(z) = 7+ cos(%%2) (based
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on the RF-19 cable parameters) under almost the same conditions. Snapshots of E”
are plotted in Figure 11, which shows that the corrugated cable has limited effects on

the signal propagation.

3.5 Conclusions

In this chapter we focused on solving the two-dimensional (2-D) time-dependent
Maxwell’s equations in both Cartesian and cylindrical coordinate systems. Since no
experimental data was available to compare, we simulated the pulse propagation by
using both the FDTD and DG methods. Both our FDTD and DG implementations
have been rigorously tested to ensure they work correctly from a numerical analysis
point of view. Many cases with different wave sources, different corrugated domains,
various mesh sizes and different basis functions for the DG methods have simulated.

Our study found that the corrugated coaxial cable has effects on the pulse propa-
gation in the cable depending on the depth of the corrugation and its periodicity. Of
course, many challenges still remain, for example, how to implement simulations for a
very long distance (over 1000 feet long), and how to model real 3-D corrugated coaxial

cables. These challenges will inspire our continuous investigation in this subject.
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Figure 3.3. (Left) DG method at ¢t = 1,2,3,4; (Right) FDTD method at ¢
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(a) Mesh with color labeled boundaries generated using measurements from images of RF-
19 cable.

Plot of E, at: t="5.0002 Plot of E, at: t=10.0003
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(b) t = 5. (c) t = 10.
Plot of E, at: t=15.0005 Plot of E, at: t=20.0006
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Figure 3.4. Mesh and snapshots of E” for a “sawtooth” corrugation. Maximum
element size of 0.251, and polynomial basis function of order N = 10.

Figure 3.5. Corrugated and non-corrugated meshes with color labeled boundaries
generated using measurements from images of RF-19 cable.
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Plot of E’ at: t = 29.9999 Plot of E, at: t=30.0023
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(c) t = 60. (d) t = 60.
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(e) t = 90. (f) t = 90.

Plot of E, at: t=119.9997 Plot of E, at:t=120.0031
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(g) t = 120. (h) ¢ = 120.

Plot of E' at: t = 149.9997 Plot of E_at: t = 149.9992
02 " 02
5 L 0 5 0
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
: z

(i) t = 150. () t = 150.

Plot of E, at: t = 179.9996 Plot of E_at: t = 180.0015
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(k) t = 180. (1) t = 180.

Figure 3.6. Mesh and snapshots of E” for a corrugation function of h(z) = 7 +

008(2”72) which models the RF-19 cable, compared to mesh and snapshots of E" for

a non-corrugated version of the RF-19 cable side by side. Maximum element size of
0.38, minimum element size of 0.06, and polynomial order of N = 3.
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CHAPTER 4

A WEAK GALERKIN FOR THE TIME-DEPENDENT
MAXWELL’S EQUATIONS

4.1 Introduction

In Mu et al. extension of the WG method to the time-harmonic Maxwell’s equa-
tions Mu et al. (2015a), optimal order convergence was proved in various norms.
Three dimensional numerical results show that WG method is capable of solving
Maxwell’s equations. Inspired by their 2015 paper, here we develop the WG method
to solve the time-dependent Maxwell’s equations. We like to remark that there are
many excellent works on DG methods for solving Maxwell’s equations in free space
Fezoui et al. (2005); Grote et al. (2007) and in dispersive media Demkowicz and Li
(2013); Li and Hesthaven (2014); Li et al. (2012); Lu et al. (2004); Scheid and Lanteri
(2013); Wang et al. (2010, 2015). More details and references on DG methods for
Maxwell’s equations can be found in books Hesthaven and Warburton (2008) and (Li
and Huang, 2013, Ch.4).

Under the assumptions that € and p are constants, and o and p are zero, we can

solve for the electric field E from (1.2) and (1.1) to get:

1 O’E
- i -E=0. 4.1
MEVX(VXE)+8t2 0, V-E=0 (4.1)
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This leads to the model problem in d = 2,3 dimensions:

0*u

1
—Vx(Vxu)+— = in 2 x (0,7,
VRVt g = ] 0,7] )

uxng=d¢ onodf

where we discard the divergence free condition since the solution is naturally diver-
gence free if the given initial field is divergence free. Here, ng is taken to be the
outwards normal unit vector to the boundary of the domain 0). To generalize the
problem an arbitrary source term, f € [H(div;2)]? (where V - f = 0 in ), and a
Dirichlet boundary condition, ¢ € [L*(92)]¢, were added. Additionally, if ¢ is taken
to be 0, then we arrive at the standard perfect electric conductor (PEC) boundary
conditions. Here and below the physical domain 2 is a bounded Lipschitz polyhedral
domain in R? with connected boundary 9.

This chapter is organized as follows. In Section 4.2 we introduce the concept of a
weak curl, along with other definitions necessary for the weak Galerkin scheme. In
Section 4.3 the semi-discrete scheme is defined, and stability and error analysis are
provided. In Section 4.4 a 2nd order fully-discrete scheme is proposed, and stability
and error analysis are provided. Section 4.%then provides an example implementation
of the scheme in 2-D with the lowest order element. Then Section 4.6provides nu-
merical results from the implementation that confirm the error analysis provided in
earlier sections. Finally, Section 4.7concludes the chapter. The research presented in
this chapter was submitted to be published as Shields et al. (view) where I was the

leading author and Jichun Li and Eric Machorro were contributing authors.
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4.2 Preliminaries and Notations
The Weak Curl

The concept of a weak curl was discussed in Mu et al. (2015a), however, it is
presented here for completeness. Let K be any polyhedral domain in R? with bound-
ary OK. A weak function on K refers to a function defined by the ordered pair:
v = {vq, vy} such that vo € [L*(K)]? and v, € [L*(0K)]¢. The first component vy
can be understood as the value of v in K, and the second component v, represents

v on the boundary of K. We denote the space of weak functions on K as:
V(K) :={v = {vo, s} : vo € [L*(K)]?, vy x ng € [L*(OK)]*} (4.3)

And we denote nx to be the outward unit normal vector to 0K.

Definition 1: Weak curl For any v € V(K), the weak curl of v is defined as a

continuous linear functional V,, x v € [H'(K)]? whose action on each ¢ € [H'(K)]?

is given by

(vw XV, SO)K = (V07v X ‘P)K - <Vb X nK?‘p>8K (44)

where (-, -)x is the L? inner product on K and (-, -)s is the L? inner product on 9K.

The Weak Formulation

The space H (curl; Q) is defined as the set of vector-valued functions on € which,
together with their curl, are square integrable, i.e.:
H(curl; Q) = {v:v e [L*(Q)]%,V x v € [L*(Q)]*}.
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Additionally, we define the subspace of H(curl;{2) as follows:
Ho(curl; Q) ={v € H(curl;Q) : vxng =0 on 0Q}.

With the above definitions and letting v = i, we consider the weak formulation for
(4.2): Find u € H(curl; Q) such that u x ng = ¢ on 99 and

0*u

(vV xu,V xv)g+ <ﬁ,v

> =(f,v)a, Vv e Hy(curl;Q). (4.5)

The Weak Galerkin Finite Element Spaces

Let IC;, be the partition of the domain 2 with mesh size h. Denote the set of all

faces of elements of K, to be &, and let £ = &, \ 99 be the set of all interior faces.

Definition 2: Discrete weak curl The discrete weak curl operator, denoted by
Vuwk-1X, is definited as the unique polynomial (V11 X v) € [Py_1(K)]¢ that satis-

fies:

(Vw,k_l XV, QO)K = (Vo, V X QO)K — <Vb X Ny, QO)@K, V€ [Pk_l(K)]d (46)

Without confusion, below we simply denote V,, ;_1x as V,, X .

Similar to what was found in Mu et al. (2015a); Wang and Ye (2014), let d = 3
and K be any polyhedral element in I, with boundary 0K (a similar argument can
be done for the d = 2 case). For each face e C OK, let t; and ty be two assigned
unit vectors on the face e, and let mg be the unit normal vector to e such that tq,
ty, and mg are all orthogonal to each other for v, € [L*(OK)]®. Thus, we have

Vi|e = v1t1 + vato + v,k for some constants vy, vy, v,. Define Vi, = v1t; 4 vt as the
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projection of v, in the tangential plane. It is clear that v, X ng = v, X ng. Since
the weak curl only uses v, X ng, it is advantageous to use the value of ¥}, instead of
v, to reduce the number of unknowns. Therefore, throughout the rest of this chapter
we will let v, = V. This will be quite useful in the definition of the numerical scheme
in subsequent sections.

Let e € &, and let t; and t, be two linearly independent tangential unit vectors

on e. For k > 1, define WG finite element spaces associated with C, as:

Vi = {vi = {von, vin} : Voulx € [Pi(K))%, v, = 01ty + vato,

vy, v € Pr(e),e COKY}, (4.7)

and V! = {v, € V}, i vi x ng = 0 on 90} .

Note that due to the definition of vy, = {vop, Vin} € Vi, vor and vy, do not
have any continuity constraints. In fact, vg, in neighboring elements do not have
any continuity enforced between them. However, as in Mu et al. (2015a), we enforce

tangential continuity between vy;,’s that share the same face:

Vbh\Kl XNk, = _Vbh|K2 X Nk, (4-8)

Here ng, = —ng, is the normal vector to the shared face of elements K; and Kj.

We are then able to define a stability term which will be used later:

s(v,w) = >l {(vo — i) X 1, (wo — W) X )k (4.9)

where hg denotes the diameter of element K, defined by: hg := diam(K).

7



In addition, as in Mu et al. (2015a) the following semi-norm is defined for weak

functions in the finite element space, v, = {vop, Vpn} € Vi:

1/2
Vil = < > hil(von = van) x nKH%?(aK)) = (s(va, va)"/? (4.10)
KeK,

For simplicity and convenience the following notation is used throughout the rest of

the chapter. The standard L? norm over an element K, ||-||12(x), is written as || - ||k,
and the induced standard L? norm over its boundary, || - || 2ok, is Written as || - [|ox.
Additionally, the L? norm over the entire domain, || - ||12(q) is just denoted as || - ||.

4.3 The Semi-discrete Scheme

Semi-discrete Weak Galerkin Algorithm. Find u, = {ug,, wpn} € Vj, satisfying

Wy, X ng = Qpe on 02 and

02 0
(va X Up, Vw X Vh)Q + (%,V0h> + S(%,V}L> = (f,VOh)Q (411)
Q

Vv, € Vho,

where Q¢ € [PL(0K N 0N)]% is the standard L? projection of the boundary value ¢

on each boundary segment.

Stability of the semi-discrete scheme

Theorem 4.31. For any 7 € (0, 7],

2

v 1 8u0h 2 T 8uh
fa— 2 — —
2||Vw><uh(7)]| —|—2‘ g (1) +/0 o 17halt
v 1[[0u 2 T
< C|5IVu x w )P + 5 \ 5 (0) +/ |\f|l2dt], (4.12)
0
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where the constant C' = exp (7) is independent of time ¢ and the mesh size h. Hence,

the semi-discrete weak Galerkin scheme (4.11) is unconditionally stable.

Proof. Let v;, = {0pup, 0pup} in (4.11) to get
auh 62110h 8u0h (911h 8uh
vaxumvwx7ﬁ>9+(i%ffzr e o

This can be rewritten as

I
VRS
o

o5
=
>
N————
2

8uh
ot

2
0u0h

ot

v o , 10
gor Vel o

1

i — < f %) (4.14)
1,h Lot ) g '
We then integrate both sides over time from 0 to 7 to arrive at
v Ju Ju 2
ngwxmvm%wwwxmmm%+§<]a?w> a?w>>

? T OJugp,
dt:/ (f—) dt. (4.15)
Lh 0 ot Jq

Then, using Young’s inequality along with the Cauchy-Schwarz inequality gives us

)

dt. (4.16)

| ‘

0u0h

5 (0

8110h

uwwxmvm%wwwxmmm%+§O 20 (r)

T 2 1 [7 1 [T
- ar<y [N [
0 Lh 0 0

Finally, rearranging terms and using Gronwall’s inequality concludes the proof. O

| ’

v
2
Ougy,

ot

8uh

ot

Error analysis for the semi-discrete scheme

For each element K € Kj, and each face e C 0K, denote Q, to be the L?
projection onto [Py(K)]? and let @Q, be the L? projection onto Pj(e). Then the

following projection onto the finite element space V}, is defined to be:

Qv ={Qyv, Qvv = Qp(v1)t1 + Qp(v2)t2},
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where t;, and t, are two linearly independent unit tangential vectors on the face. In
addition, Qy, is defined to be the local L? projection onto [P_;(K)]%. The following
property of the projection operator and the weak curl was proved in Mu et al. (2015a),

but is included here for the sake of completion.

Lemma 4.31.

Vu X (Quu) = Qnp(V x u) (4.17)

Proof. Using the definition of weak curl, integration by parts, and the definition

of Q, and Qy, we have: For any w € [P,_;(K)]%,

(Vw X (Qhu>’W)K = (Qou’ V x W)K - <(Qbu) X n, W>8K
=(u,VXWwW)g—{(uxnw)yg

= (Vxuw)g=(QpV xu),w)g,

which concludes the proof. O

Define the error function at time ¢ as follows:

en = {eo, &} = {Qou(t) — uon(t), Quu(t) — wpn(t)} (4.18)

For simplicity and clarity in the proof, PEC boundary conditions are assumed. How-
ever, this result can extend to the more general Dirichlet boundary condition pre-

sented in the initial problem.

Lemma 4.32. Let u;, be the semi-discrete WG finite element solution arising from
(4.11) with the PEC boundary condition ¢ = 0, and &, be the error between the
semi-discrete WG finite element solution and the L? projection of the exact solution
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as defined in (4.18). Then the following error equation is satisfied:

0%e Oe
(VVy X €h, Vi X Vi)a + (W;,VO)Q + S(a—th,Vh)

=l(u,vp) + s(thu,vh),

ot

where

w,vi) =Y (I —Qu)V X w,v(viy — Vor) X P )ox-

KeK

(4.19)

Proof. Using Lemma 4.31, the definition of Q,,, the definition of weak curl, and

integration by parts, we have

(va X (Qhu)7vw X Vh)K = (VQh(V X U),Vw X Vh)K

= (Voh,v X (V@(V X u)))K — <Vbh X Ng, l/@h(v X u)>3K

= (V x von, vQ(V x u))g

- <(Vbh - VOh) XN, VQh(V X u)>8K

= (I/v X u,V X VOh)K

—(Qu(V x u), (v, — Von) X ng)ok.

Using the definition of Q,, again, and summing over all elements,

Pu N (g (#Qu
a1527"0h Q— 08t27V0h Q— o2 » Von Q-

(4.20)

(4.21)

We then multiply the governing equation (4.2) by vg, and integrate over the domain

to get

0*u
(V x (vV xu),von)o + ﬁ,VOh = (f,von)a-
Q
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If we use the continuity condition, (4.8), we can see that all integrals of the interior

edges cancel. This in addition with the PEC boundary condition ¢ = 0 gives:

Z <Vbh X Ny, vV x u>aK =0.

KeKy,
Hence, through integration by parts we have
(V x (vV xu),vop) =

D WV XV xve) = Y w(vin — von) X ng, V X W)ag. (4.23)

KeKy Kekp
Observe from that by summing (4.20) over all elements
(Vv X u, V x VOh)Q = (va X (Qhu), Vu, X Vh)Q

+ Z<@h<v X ), v(Ven — Von) X k) o (4.24)
KeK

Therefore, combining (4.24) and (4.23) we get

(V x (vV xu),von) = (¥Vy X (Quu), Vy X Vi)

= > AT = Qu)V X w, (Vi — Vou) X nc)ox (4.25)

KeKy,

Plugging (4.25) and (4.21) into (4.22), adding s(agfu,vh), and subtracting the

scheme (4.11) then gives the desired result:

d%e Oep,
(VV X &n, Vi X Vi) + (W,Voh> + s<ﬁ,vh)

=Il(u,vy)+s <8(§_£Lu7 Vh). (4.26)

The following lemma provides a spatial error bound for the scheme. Its proof can
be found in Mu et al. (2015a).
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Lemma 4.33. Let w € [H?*1(Q)] and v), € V), with 3 < p < k. Then we have

15(Quw, Va)| < CH7|[wllpet Vil (4.27)
1w, va)| < CR?| Wil Valine (4.28)

With this, we are now ready to present the error bound for the weak Galerkin

semi-discrete scheme.

Theorem 4.32. The semi-discrete weak Galerkin scheme (4.11) with PEC boundary

condition, ¢ = 0, satisfies the following error estimate: For any 7 € (0,77,

deo(T)||? ™ |0ey, |2
mvwxqvm%ﬂ v [ %]
ol T
Oeo(0) ]2
< vV x enO)ff + |20
o [ Ju
von [l + dat (4.29)
; o

where the constant C' > 0 is independent of time ¢ and the mesh size h. In conclusion,
assuming no initial errors, the semi-discrete weak Galerkin scheme’s error is of order

O(h?) in the energy norm.

Proof. 1f we let v, = {0;€0, 0sep} in Lemma 4.3, we get

850 2 2 . 8€h thu 8€h

ot

@i
ot

v o (9‘

55t Vu x el + 55

We then apply Lemma 4.33, to obtain

10 ||9eo oey, |?
g Ve el + 52|15 am
Ju Oey,
< P —_— .
<Ch (!Iul\p+1+‘ e ) o |, (4.31)
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By Young’s inequality, and rearranging terms we see that

2 1 2
2

ou
Ch2P (||u||f,+1 + HE

v o 2 12 880

ot

den
ot

1,h

2 > . (4.32)

<

N | —

Integration from ¢t = 0 to 7 completes the proof. O

4.4 The Fully-discrete Scheme

To discretize (4.11) further in time, we divide [0,7] by N + 1 uniformly spaced
points #/,j = 0,--- , N, where the time step size At = T/N. Define u} = u,(t") as

the value of uy at t". We propose the following fully-discrete scheme.

Fully-discrete Weak Galerkin Algorithm. Find u}™ = {u};"', u};''} € V, sat-

isfying uit! x ng = Q"™ on 9§ and

n+1 n—1 n+1 n n—1
u +u u —2ul, +u
0h
(Z/Vw X M —h , Vi X Vh) + ( Ok Oh , Voh
Q 0

2 At?
un+1 o unfl
Fo(Ma ) = (e (033)

Vv, € V,?,

where Q,¢""" is an approximation of the boundary value ¢(¢t"*!) in the polynomial

space [Py (0K NON))¢, defined in Section 4.3
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Stability of the implicit, fully-discrete scheme

Theorem 4.41. Under the assumption that At < 1, the following stability result

holds for our fully-discrete weak Galerkin finite element scheme (4.33):

2

1 uN _uNfl
N2 N—-1|2 Z || Z0h __TOR
V(|[V xw' ||* + ||V x uy, H)_'_Q At
N—1| pi1 n—12
u —u
+ 2At L VA
ut —ul |2
< Cexp (N -At) | v(||Vw x up| 2 + ||V x u)|?) + OhTtOh
N-1
Ay ||f”||2] - (434)
n=1

where the constant C' is independent of the mesh size h and time step size At. In

conclusion, the scheme is unconditionally stable.

Proof. We begin by letting v, = u}*t! —u~! in (4.33) to get

n+1 n—1
u +u _
(va x b TTh gk (at - 1))

2
<u82_1 — 2ugh + ugﬁl ut! — un_l)
At2 » 2 0h 0
n+1 n—1
um —u . . . .
+S<%’uh“ — 1) = (f" ug " — g, (4.35)
which can be rewritten as follows:
’ 1|2 112 uy, ' — ug, i ug, — ug, ’
~ vw X un — vw X un_ —0Oh  ™0h Uop, — Uop
5l no 1=l noI)+ N —
un—i—l o un—l 2
) VAN 7 P = (f", ug};&-l - 1161{1). (4.36)
2At Lh

Applying the Cauchy-Schwarz, and Young’s inequalities to the right hand side, we

have

n+1 n—112
Uy,  — Ugy,

At

(£t — ) < 280 7P+ S
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n n—1
Ug, — Ugy,

At

n+1 n
Yon — Uon

At

At
<20+ = ( +

) (3)

If we substitute this into (4.36) and sum the result from n =1ton =N — 1 we get

that
v N2 N—1{2 1112 012 ué\;l—ué\;l_l ’
§(||Vw Xy [P+ Ve x w7 = [V x w||” = [V x w[[7) + — Ar
1 0 (2 N-1y n+1 n—112
Uy, — Ugp u, —u,
e C— 2A¢t EUEE—— R
A || TR TR
TL:1 )
N-1 N-1 2 2
At syt — uy, —u !
= g;“f”+'4g;< At A
N-1 N-1 2
At ut—un
ng|WW+7§ J%gﬁ (4.38)
n=1 n=0

N _ . N—1
Yonr —Yon

2
N H from both sides to get

Assuming that % < %, we can subtract %

v _
2 U1V X a2 4 [V w2 = [V w2 = [V < w)[?)

2

_ 2 N-1| n ne1 (2
_|_1 ugy, —ug _ Uy, — Ugy, +2Atz wptt — !
2 At At | oAt |,
N-—1 N—-2 2
At st —ur
g?AtZIIf”|I2+72 OhTtOh (4.39)
n=1 n=0

The proof is complete by applying the discrete Gronwall’s inequality to the above

inequality. O

Error analysis for the fully-discrete scheme

Define the error function at time step n to be

en, = {e0, €} = {Qou(t") — ugy,, Quu(t") — uy, }. (4.40)

The following error equations then hold for the fully-discrete WG scheme.
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Lemma 4.41. Let uZ“ be the fully-discrete WG finite element solution arising from
(4.33) with PEC boundary condition ¢ = 0, and €} be the error as defined in (4.40).

Then the following error equation is satisfied:

n+1 n—1 n+1 n n—1
g, teg, gy — 25 + g
vVy X ———— Vy, X vy, | + , Voh

2 At?
n+1 n—1
g — &

2At
— l(u(t"), Vh) +s (Qhu(thrl)Q;tQhu(tnl) : Vh)
Q thrl _ 2Q ") + Q tnfl 62Q .
4 < ou( ) Z‘;g ) ou( ) _ 3t20u(t )7V0h)

+ <1/Vw X (Qhu(tnﬂ) —;— Quu(t") - Qhu(t”)) , Vi X vh) .

Proof. Evaluating (4.21), (4.22), and (4.25) at ¢ = t" results in the following 3

equations:
o*u, B o*u, ~ (9*Qou,,
<W(t );VOh>Q = <Qow(t ),VOh)Q = ( 22 (t ),VOh)Q, (4.41)
82
(V X (VV X u(t”)),th)Q + <a—tl2l(tn),V0h) = (fn,VOh)Q, (442)
Q
and

(V x (vV xu(t),vorn)a = (¥V X (Quu(t™)), Vi X vi)a

- Z (I = Qn)V xu(t"), v(von — Von) X Nrc)ox - (4.43)

Keky,

If we add a stabilization term, s (Qh“(th;;?h"(tnfl) , Vh), to both sides of (4.42), plug

in (4.43) and (4.41), and subtract the scheme (4.33), we obtain
n—1
(VV X (Quu(t™)), Vi X Vi)o — (va M T g vh>
Q
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9’Quu st —2ul, +u ! gntl — gn-l
+( ! (tn)a"Oh) - ( i O~ Oh vop ) +s| et vy,
Q Q

ot? At? 2At
u tn+1 _ u tn—l
=1l(u(t"),vs) + S(Qh ( )QAtQh ( ),vh>, (4.44)
by definition of {(-,-) in lemma 4.3.
Adding (Qou(tnﬂ)72Q°A?§tn)+qou(tnil) , V0h> 0 to both sides of (4.44), and rearranging
terms gives us
n+1 n—1
PV X (Quut™), Vo X vi)o — (Ve x 2T g vy,
)
n+1 n n—1 n+1 n—1
gy — 2e( + ¢ g, —€&y
(), ()
tn+l . tnfl
—iufrr) v (BTN )
Quu(t™) — 2Quu(t™) + Quu(t™!)  PQu(t”)
+ ( : e ! — gz Vo) - (4.45)
Q

Finally, we add (l/Vw X Qhu(twl);Qhu(tn—l),Vw X Vh>Q to both sides, and rearrange
some terms to arrive at the desired result. O

The following lemma will be used to provide a time error estimate for the fully-
discrete weak Galerkin scheme. Its proof is a straightforward consequence of Taylor’s

remainder theorem, and so it will not be included here.

Lemma 4.42. Forany 1 <n < N — 1,

u(t™™) —2u(t®) + u(t" ')  G*u A8 U0t
— " < — —1| dt 4.46
At? 81&2( || = 126 Jin-r || Ot ’ (4.46)
and
u(tn+1> + u(tn—l) 2 A8 T 162ull?
—u(t" < — — || dt. 4.47
2 at =5 | ||ae (447)

With these results, we are now ready for the error estimate for the fully-discrete

weak Galerkin scheme.
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Theorem 4.42. For At < 1, the fully-discrete weak Galerkin scheme (4.33) with

PEC boundary condition, ¢ = 0, satisfies the following error estimate:

2 —

m m— n n— 2
<||v x e + ||V x e Y?) + e +At2 s e
At 20t |y,
v 81—80 2
< Cexp (D5 IV x eIP +11V0 x ) + || =5
T 84u 2 T 82u 2
4

m—1

DY (Hu(t")llpﬂ ¥

n=1

u(t"t) —u(t" )
2At

1) ]7

where, m > 2, and the constant C' > 0 is independent of the time step At and the

mesh size h. In conclusion, assuming there are no initial errors, the fully-discrete

weak Galerkin scheme’s error is of order O(At? + h?) in the energy norm.

Proof. Letting vy, = &:ZH — €, !in Lemma 4.41, and applying Lemma 4.33, we
have
o |lentt —en en —en1|?
n+1 n—1 0 ol _||€o 0
SV x e = S [V x 7P+ || 2 A7
8n+1 — e 12
LAt | Th
2At Lh
< Ch” ||u(tn)||p+1 ‘€n+1 - 52_1}1@
u(t"™h) —u(" ") ntl _ _n—1
+ Ch? A7 " |s — &) ’Lh (4.48)
I Qou(t"™!) —2Qqu(t") + Quu(t" ) _ 82Q0u(tn) ntl _ gn—1
At? o2 ),
tn+1 tnfl
+ <va % (Qhu( );’Qhu( ) . Qhu(tn>> V, X ( n+1 EZ 1)) '
Q

Then, if we apply Lemma 4.31, Young’s inequality and the definition of the Q, and
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Qp, projections, we get

2

n+1 n n n—1
v nt1||2 Y n—11(2 € —&p )
19 x e = 29 e [| S| - ||
€n—i—l o 6:n—l 2
+2At|-h_—h
AL |,
2 2
u(tn—H) _ u(tn—l) 8n-i-l _ 8n—l
< Ch* At t" At |1 h
— C (Hu( )||p+1+ 2At i1 + 2At o
tn+1 —2ut® tn—l 82
+ (Ll( ) u( _ ) + U( ) . g(tn)7€g+1 o 68—1)
At ot o

' (uv » (“W” ) u(tn>) Y x (e sz—1>)9. (4.49)

Using the definition of the weak curl operator, the fact that all boundary integrals

cancel out due to the unique boundary definition, and the PEC boundary condition

gives us
n+1 n 2 n n—1 2
v ntl]|2 VY n—1]|2 € — & € — &p
3 Ve x et " =S [IVe x &7 [ + || =% ol |y
€n+1 - €nfl 2
OAt|Zh—_Zh
* ™E |,
u(tn+1> u(tn—1> 2 gntl _ gn—l 2
< Ch* At " — At |[=h——=h
= (Hu( >||p+1 + 2At p+1> + 2At L
u(t"th) = 2u(t") +u(t"t) 9*u L .
+( =Ty et e
At? ot? Q
tn-‘,—l 75n—1
+ (V X UV X (u( ) ;ru( ) _ u(t”)) Lentl egl) . (4.50)
Q

Applying the Cauchy-Schwarz and Young’s inequalities and rearranging terms, we

further have

v v ~ gl _ gn on _ gn-1
§va><€Z+1H2—§HVwX€Z 1H2_|_ OTtO _||&0 Ato
€Z+1 —82_1 2
+ At N .
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u(tn+1) o u(tnfl)
2At

2
p+1>

< Ch* At (IIU(t”)|!p+1 +

2

n n n— 2 n n—
N u(t"t) = 2u(t") +u("l) aQu(tn) At |leg™ — e
At? ot? 16 At
u(t"™) + u(tn ) At ||entt — et 2
4At —u(t" —
! HVXNX( 2 U BT At
2 2
u(tn+1) _ u(tnfl) At €n+1 —en
< Ch*PAt t" — || U
< () + || 2 T et
p+1
AL u(t"t) = 2u(t") +u("l) 82u(tn) At |lef —ep
At? ot? 4 At
+4AL Hv x UV x (“( )‘2“‘( ) _ u(t”)> (4.51)
If we sum the resulting terms from n = 1 to m — 1, we obtain
v ml (2 1112 2 2
2 (119 5 1+ 119 5 71 = 9 3] = |19 x 3]
m m—112 1 0|2 m—1 _nt1 n—1 |2
bl U Y At Zh — Fh
T A A || T ; AL |y,
m—1 n+1 n—1 2
2 n u (") —u(t")
<cnrar S (Il + [0
n=1 p+1
m—1 2
tn+1 tn_l
+4aty 'v < UV X (u( );u( ) _ u(t”))
n=1
m—1 2
u(t"t) = 2u(t") + (")  o0*u,,
+AALY A — 5z ")
n=1
At T |ertt —en||?
+ - 0 %0 A7 0 (4.52)
n=0
o m—1]|2
Under the assumption of % < %, we can subtract % % from both sides to
obtain
v m||2 m—1|2 1112 012
(119 % 1+ 11 x 1 =9 bl = |9 x €3]
m m—1|2 2 m—1| n n—112
I e | +Atz en’ —ep
2 At A — 2At m
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u(tn+1) _ u(tnfl)
2At

m—1
< ChALY (Hu Np+1 +

n=1

2
p+1>

m—1 n+1 n—1 2
+aat Y ‘v X UV X (“(t ) ;“(t ) _ u(t"))
n=1
Ly Atz u(t*) — 2u(t") +ut"l)  P*u(t")||”
At? o2
A E2|eptt — ||
. N (4.53)

Then, after applying the discrete Gronwall’s inequality and Lemmas 4.4 and 4.42,

2
v - . 9 1 €6n o EgL_l n+1 n—l
2 (19 19| | s D
v 1(12 012 8(1)_88 ?
< Cexp (D) [5([[Vuw x &yl " + IV x ) + || =%
m—1 2
N u(tn-‘rl) _u<tn—1)
+hPALY (IIu(t Mp+1 + AL
n=1 p+1
otul? T o*u||?
At — || at — || at 4.54
i (0 o +/0 quantz ], (4.54)

which concludes the proof. O

4.5 Implementation of the WG method

Choosing the finite element space and respective basis functions

Even though we have proved the convergence and stability results for 3-D, we
can extend the theoretical analysis directly to 2-D by using a 2-D version of the curl
operator. Though practical problems are in 3-D, for simplicity, we currently focus on
a 2-D implementation of the scheme. Hence the numerical results for this chapter are

done in 2-D only.

92



The test and trial spaces that we chose for our implementation are of the lowest
order in order to simplify calculations and to show how to implement the method
more clearly. Thus, our finite element spaces that we used are composed of linear
elements, which give an order of accuracy of O(h) in the energy norm according to
our error analysis. Denote &, to be the set of all element edges in the domain, and 7;
to be the tangential vector for each element edge e; C K. Our finite element spaces
are defined as follows. Given a triangulation, 7y, of the domain €, for each K € Tj:

Vo(K) = {vo : vo|i € [P1(K)]*} (4.55)

3

Vo(K) =A{vy : vy = Z(UU + v9,;8)T;, and vy, v9; € Po(e;),e; COK}  (4.56)

i=1

The total finite element space is then formally defined as follows:
Vi = {'Uh = {vo,vb} : UOlK € %,Ub|K eV, VK € 'ﬁb} (457)

In addition to these two spaces used in the creation of our finite element space, a
third space is needed for the construction of the discrete weak curl operator on each
element K. By the definition of the discrete weak curl operator, the space used must
be one degree less than the spaces used to approximate the solution, i.e. Py(K).

After the spaces are chosen, a suitable basis must be chosen as well. The following

bases were used in this specific implementation due to their simplicity:

Vo(K) = span{¢y,; : i = 1...(No = 6)}

{60 men o

Vi(K) = span{¢,; : i = 1...(N, = 6)

—

= span{Ty, sTi, Ty, STy, T3, ST3}, s € [0, |e;]] (4.59)

93



Py(K) =span{y; : i = 1...(V, = 1)} = span{1} (4.60)

Note that ¢,; and ¢, are only defined on e;, and likewise for the other 2 pairs of

basis functions.

Construction of the linear system

Given the basis functions, we can represent the numerical solution u, as:

No Np
Uyl = E uo,isoo,ia§ Up,i%Ph,i
i=1 i=1

We substitute this into the fully-discrete scheme, then let our test functions be each

basis function:
vh:goj,h:{soo,jvsob,j}v jzl"'(N0+Nb>
where we have ¢, ; = 0 for j = 1... Ny, and ¢, ; = 0 for j = Ng+1,..., No + N;.

This gives us the following linear system for our fully discrete scheme on each K:

—»‘n-i—l —n—1 —n+1 —n —n—1
+u U —2ult 4+ u
C h 0 0 0
K (—2 ) + My ( NE

Sn+l _ —n—1
+ Sk (—uh Y ) = by, (4'61>

where @' = [ug 1...uo Ny, Up1---tp n,]* - Or, if we solve for the (n + 1)th time step:

+ Uu
2' K t K KUWp

ﬁ:JFl ( Ck+— 5A

1 1 1 1 1 1

INE 2A INE 2A
1 —1
+ ( O + 53 Mic + 2—N5K> b (4.62)

where Ci, Mk, and Sk are the curl, mass and stability matrices respectively, and

bi] = |:(fn7Q00,j)K:|

ONb><1
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Note that since this is discretized with a second order finite difference scheme in
time, we need two initial conditions, @ and ;. To implement this we must find the
projection of our initial condition at the first two time steps onto our interior and

boundary finite element spaces.

Constructing the matrices

Following the steps outlined in Mu et al. (2013) we see that each of the 3 matrices

can be written in the form:

Coo Cop } (4.63)

O = [ Coo Chyp

Following the paper once again we arrive at the following analogous definitions

for the 4 blocks of the curl matrix:

C0,0 = Z%DI_(tAKDI_(IZ]Q 0071) = —Z;(D[_(tAKD[_{lTKy

Cho=—TKDy' Ak D' Zye, Cyp = T D! Ax D Tk (4.64)
where Zg, Tk, D, and Ag are defined as:

(V X Xi) - g jdA, t=1...N,,7 = 1...Ny,

~

[Tkl /asz @y X NgdS, i=1.N,j=1.N,
Xi * X;dA, i,j =1..N,,

[Axlij = | vxi-x;dA, i,j=1..N,. (4.65)

x\x\

Using the basis functions chosen earlier, we have the following values for Zy, Tk,
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Dy, and Ag:

1 1 1
Zg=1[000000], Tk = |lel §|€1|2 |es] §|€2|2 |es] §|€3|2] ;

Using these values and the formulas from (4.64), we have:

Coo = Cop = Cpo = Opxe

and
[ |€1|2 %|€1|3 le1][ea] %|€1||€2|2 lex|[es] %|€1H63’2 |
%|€1|3 }L|€1|4 %|€1|2|€2| i|€1|2|€2|2 %|€1|2|€3| }1|€1|2|€3|2
Chp = L le1][ea %|€1|2|€2| [ %|€2|3 €2 |es) %|€2||€3|2
POKE | slelleal? FleiPlea*  Fleaf? ileal®  SlealPles|  ileal?les]?
le1|[es] %!€1|2|€3! |eal|es] %\62\2’€3| |es|? %|€3’3
L %|€1||€3|2 }1|€1|2’€3|2 %|€2H€3’2 i\€2|2|€3|2 %|€3|3 i|€3’4

which completes the construction of the curl matrix.

The mass matrix can then be computed in a similar blockwise fashion:

MK _ |: MO,O MO,b :|

Myo My

where

Moy = Mpo = Mpp = Opx6

from the lack of boundary term in the scheme and

(Moo = / o PojdA, i,j = 1...INp.
K

Computing My o with our chosen basis functions yields the nonzero entries to be:
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[Mooli1 = [Moglaa =1,

[Mool2,1 = [Mooli2 = [Moolsa = [Moolas = %(561 + 29 + 73),
[Moo]s1 = [Mooli,3 = [Mooles = [Moolas = %(yl + Y2 + y3),
[Mool2,2 = [Mooss = %(ﬁ + (21 + 22) (22 + 23) + 23),

1
[Moo)2,3s = [Mools2 = [Mooles = [Moolse = 5@1(291 + Y2 + ys3)

+ zo(y1 + 2y2 + y3) + x3(v1 + y2 + 2y3)),

1
[Moolss = [Mooles = g(yf + (y1 + y2) (Y2 + y3) + 43),

which completes the construction of the mass matrix.

To compute the stability matrix we must first compute the L2-projection onto
the boundary of each element of the interior basis functions. To do this we first
use the fact that the L2-projection of the interior basis function @, must be a linear

combination of the boundary basis functions, i.e.

Ny
Qvpo; = Zci,jipb,j for i = 1...N,.

J=1

Additionally, by definition of L2-projection we have:

<Qb90o,z" ‘Pb,j>6K = <900,ia ‘Pb,j>8K for j = 1...Ny.
Using both of these definitions on the first edge of the triangle we can get a system
of linear equations for ¢; and cy:

Qb(‘PO,i|€1 = Ci,1Pp1 T Ci2Pp 2s

(Ci1®Pp1 T Ci2Ppa, Po1)ox = (Poir Po1)oK,
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<Ci,1‘Pb,1 + Ci2$p 25 ¢b,2>8K = <900,¢7 Qob,2>3K‘
We can then rewrite this as the following linear system:

[ <Q0b,17(Pb,1>8K (‘Pb,17‘Pb,2>8K } {Ci,l} _ {<900,i790b,1>3K:| .
(Po2Po1)orx (Ppo Pra)ox | |Ci2 (®o.i> Ppa)aK

A similar process can be used for the other 2 edges to find ¢; 3, ¢; 4, ¢; 5 and ¢;g:

[ <30b,3790b,3>8K (‘Pb,37<Pb,4>8K } [%3] _ |:<900,i790b,3>3K:|

<90b,4790b,3>3K <90b,4:‘Pb,4>8K Cia <900,ia90b,4>8K 7

[ <90b,57‘Pb,5>3K <90b,5a<Pb,6>8K } {%5} _ [<900,ia90b,5>3K:| .
<30b,67 ‘Pb,5>6K <‘Pb,67 ‘Pb,6>8K Ci6 <800,z‘a ‘Pb,6>BK

Combining these into a block matrix system, and computing the components

directly, we get 6 linear systems to solve for our 6 interior basis functions:

B e1|? 1T - _ -
||:;1‘2| :efs X 0 0 0 Ci (Po,i> Pp1) oK
2 3 0 0 0 0 Ci2 <‘Po,m %,2)61{
0 0 e '63‘2 0 0 ciz| _ (o Prz)ok
0 0 |e§‘2 |e§‘3 0 0 cia|l | {Pois Poaox
0 0 0 0 |eg 2| [cs (Po.i> P50
2 3 - .
0 0 0 0 % leg\ | | Ci 6 _<‘Pom Sob,6>aK_

Here, the 6 right hand side vectors for the 6 interior basis functions cannot be
directly calculated by hand for an arbitrary element. Because the right hand side
vectors are computed using boundary integrals, we must consider the neighboring
elements since tangential continuity is enforced along the boundary elements. In order
to keep consistency with the direction of integration, if we have two elements with a
shared boundary, the boundary integrals must be integrated in opposite directions.
To enforce this, we must choose one of the two elements, and replace the basis function
sT; with (|e;| —s)7;. Since the choice of the element here is somewhat arbitrary (albeit
it must still be a consistent choice throughout the whole domain) it is not easy to list
a generalized formula for the right hand side vectors for each element.
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Once we have solved for the ¢;;, and therefore found the L?-projection, we can
then use them to compute the boundary integrals used for the entries in the stability

matrix. Starting with the definition of the stabilizing term on each element we have:

s(un, Soh,j)|K = h;}l<(QbU0 —uy) X Ng, (Qb‘Po,j - <Pb,j) X Nk )oK
= hi ((Qetto - Tie, Quipo j - Tie)or — (Qutho - T, Py - Tie) o
—(up - Tr, QP - Ti)or + (Uy T, Py, * Tk ) oK)

No
= I Y w0 ((Qupo, - Tic, Qupoj - Tichor — (QuiPo - Tic, Py + Tic)orc)
i=1

Np
+hy Zub,i(_<¢b,i Ti, Qupo - Ti)ok + (Pyi - Tk, Poj - TK)oK)
=1

where Tx is the tangential unit vector to K. This finally gives us:

Soo S
g, — =1 | P00 Pop
S { Sbo  Sbp
where
[Soolij = [ @vpo;- Tk - Qupo, - TrdS,
oK
[SO,b]i,j == Qb‘PO,i "TK “$b,j - TrdS,
oK

[Sholij = _/ Poi Ti - Quepo ;- TS,
oK

[Sbp)ij = / Ppi " TK Py TrdS. (4.67)
oK

It should be noted that Sy, = Slf o> and Sp o and Sy, are symmetric, therefore making

Sk symmetric.. Now using the L?-projection to compute Spo we have:

[S0,0)ij = Qvdo,i - T Qoo - TdS

0K
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= / (CiaPva + Ciobp2) - T1 - (Cjadyy + Cj2pp2) - T1dS
edgel
+ / (CizPv3 + Ciabpa) - To - (Cj3Pb3 + Cjadpa) - T2dS
edge2
+ / (CisPvs + CiPr6) - T3 - (CjsPvs + CiePre) - T3dS
edge3
= / (C@l -+ CinS) . (Cj’l -+ ngS)dS + / (Ci’g -+ 61'748) . (Cj73 -+ Cj’45)d8
edgel edge2
+ / (Ci75 + Ci,gs) . (Cj75 + CjﬁS)dS
edge3
1
= 6|€1|(3Ci,1(20j,1 + cjaler]) + cialen| (3¢ + 2¢50]en]))
1
+ g|€2|(30i,3(20j,3 + cjalea|) + cialea|(3¢j3 + 2¢j4lea]))

1
+ 6|63|(3Ci’5(20j’5 + Cj’6|63|) + Cz’,6|€3|(3cj,5 + 20j,6’63|))' (468)

Likewise for Sy and Spo = S,

[SO,b]i,l = - Qb%,i c T ¢b,1 -TdS = —/ (Ci,1¢b,1 + Ci,2¢b,2) * T ¢b,1 -7 dS
0K edgel
1
= —/ (Ci71 + Ci,QS)dS = —ci,l\el\ — §Ci72|€1|2, (469)
edgel
[SO,b]i,2 = - Qb%,z‘ * T ¢b,2 -TdS = —/ (Ci,1¢b,1 + Ci,2¢b,2) * T ¢b,2 -7 dS
0K edgel
2 1 2 1 3
= — (CZ'JS + Ci728 )dS = ——ciyl\el\ — —Ci72’€1’ s (470)
edgel 2 3
[So,b]i,3 = - Qb(b(],i ©T <Z5b,3 -TdS = —/ (Ci,3¢b,3 + Ci,4¢b,4) tT2 - ¢b,3 - TodS
0K edge2
1
= —/ (01'73 -+ CZ‘,4S)d8 = —Ci’3|€2‘ — §Ci74|€2|2 (471)
edge2
[SO,b]iA = - Qb%,i © T ¢b,4 -TdS = —/ (Ci,3¢b,3 + Cz’,4¢b,4) TT2 ¢b,4 - TodS
0K edge2
2 1 2 1 3
= — (CZ'738 + Ci4S )dS = ——Ci’3|€2‘ — —Ci’4’€2| s (472)
edge2 2 3
[Soplis = — QvPo,i T~ Qo5 TAS = —/ (CisPbs + CisPu6) * T3 - P - T3dS
0K edge3
1
= —/ (Cz',5 + CZ"GS)dS = —Ci’5|€3| - 502‘,6|€3|2, (473)
edge3
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[SO,b]i,G = - Qb%,@ * T ¢b,6 -TdS = —/ (Ci,5¢>b,5 + Ci,6¢b,6) * T3 ¢b,6 - 13dS

oK edge3
1 1
= — /d 3(02‘758 + Ci’682>d8 = _56i75|€3|2 — gCi’6|63|3. (474)
edge
Finally, Sy, can be directly calculated to be:
eaa] 85 0 0 0 0 ]
lalf e 9 0 0 o0
e 2
G| 0 0 ‘]ezll ;:3 0 0
0 0 =5 = 0 02
0 0 0 0 e =l
0 0 0 0 &b |
L 2 3

Assembling the global matrices

Once we have the local matrices defined and constructed on every element we
must assemble them into the global matrix. Tangential continuity is only enforced on
the element boundaries. Expanding u, in terms of its basis functions on each element

edge, in 2D problems, we have:

(ub,iSOb,z' + ub,z’+1‘Pb,z‘+1) T = (ub,jSOb,j + ub,j+190b,j+1) T,

(Ub,m' + Ub,i+1$7'z') T = (Ub,jTj + Ub,j+157'j) T,

where 7; is the tangential vector for the shared edge of element K; and 7; is the
tangential vector for the shared edge of element Ks. Since the two vectors share
the same edge, but point in opposite directions we have from our current definitions:

T; = —7; = 7. This gives us:
Upi + Spit1 = —(Upj + SUpj+1),

that is, the w;; are equal to the negative of each other across each element edge. This
means that instead of enforcing equality across the element edges to ensure continuity,
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we must enforce the two values to be opposite signs at a shared edge.

4.6 Numerical results

Following the steps provided above for the implementation of the scheme, we have
provided convergence results for our scheme that agree with the proved results in a
previous section. The convergence results that have been proven show the convergence
of a so-called weak curl norm, defined by: ||up|2. = ||V X unl|2s + [|uol|22, to be
O(h? + At?). In addition to showing the convergence of the weak curl norm of the
scheme, we have also provided the convergence results for the L? and L* norms.
Although these results imply that the L? and L® norms are an order higher in space,
with a rate of convergence of O(hP*! + At?), this has yet to be proven.

To test the convergence rate of the spatial error we consider the following 2D

version of (4.2):

1 *u .
/;VX (VX’U;)—FW—]‘. in 2 x [O,T] (475)
uXxn=¢ ondfd (4.76)

72 cos(mx) sin(my )t
where e = = 1,0 =0, f = — 72 sin(mr) COS(Wy)t2
Uy
Uy |

Along with the necessary initial conditions, these assumptions give the exact so-

. =10,1] x [0,1], and u =

lution:

o= ] -

The rectangular domain, €2, was then discretized into a structured mesh of trian-
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gles of equal size (see Figure 4.1). Each subsequent refinement kept the same structure

to ensure consistency of the mesh throughout the convergence rates tests.

Figure 4.1. Exemplary mesh for h = 1/4
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Table 4.1. Mesh size convergence rates in various norms for 7' = 1, p = 1, and
At = .0001

h= |lleoll« Rate: | ||eo||r2 Rate: | |len]|we Rate:
1/4 | 1.0909E-01 | — 8.8990E-02 | — 7.4883E-01 | —

1/8 | 3.0025E-02 | 1.8613 | 2.4674E-02 | 1.8507 | 3.5480E-01 | 1.0776
1/16 | 7.6767E-03 | 1.9676 | 6.3395E-03 | 1.9606 | 1.7373E-01 | 1.0302
1/32 | 1.9300E-03 | 1.9919 | 1.5959E-03 | 1.9900 | 8.6353E-02 | 1.0085
1/64 | 4.8318E-04 | 1.9980 | 3.9968E-04 | 1.9975 | 4.3111E-02 | 1.0022

4.7 Conclusions

We developed a weak Galerkin finite element method for the time-dependent

Maxwell’s equations. Stability and error convergence results were proved for both
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Table 4.2. Mesh size convergence rates in various norms for T = 1, p = 2, and
At =.0001

h=1|leollso Rate: | ||eo]|r2 Rate: | ||en]|we Rate:
1/4 | 1.3579E-02 7.5105E-03 | — 5.6149E-02 | —

1/8 | 1.7486E-03 | 2.9571 | 9.7734E-04 | 2.9420 | 1.3996E-02 | 2.0042
1/16 | 2.1656E-04 | 3.0134 | 1.2296E-04 | 2.9907 | 3.4970E-03 | 2.0008
1/32 | 2.6888E-05 | 3.0097 | 1.5374E-05 | 2.9996 | 8.7413E-04 | 2.0002
1/64 | 3.3515E-06 | 3.0041 | 1.9206E-06 | 3.0009 | 2.1853E-04 | 2.0000

Table 4.3. Mesh size convergence rates in various norms for T = 1, p = 3, and
At = .0001

h= |lleoll« Rate: | ||eo||z2 Rate: | |len||we Rate:
1/4 | 5.5154E-04 | — 5.3120E-04 | — 4.0012E-03 | —
1/8 | 3.7533E-05 | 3.8772 | 3.3526E-05 | 3.9859 | 4.9760E-04 | 3.0074
1/16 | 2.3819E-06 | 3.9780 | 2.0929E-06 | 4.0017 | 6.2121E-05 | 3.0018
1/32 | 1.3661E-07 | 4.1240 | 1.3013E-07 | 4.0075 | 7.7628E-06 | 3.0004

a semi-discrete scheme and a fully-discrete scheme were demonstrated with a few
examples for p = 1,2 and 3. The WG method is characterized by the usage of two
main concepts, the discrete weak curl and the stabilization term.

The use of the discrete weak curl approximates the curl of the solution through a
separate function space. This allows the scheme to be more flexible, allows for solu-
tions that are discontinuous across elements, and better accommodates common prob-
lems such as nonconforming meshes. Similar to other discontinuous Galerkin meth-
ods, this scheme needs a way to transmit information across discontinuities through
a flux-like term. The stabilization term fills that role in this scheme, computing a
type of flux between each element interior and its associated boundary.

The numerical results for the WG scheme show that the scheme has the standard
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Table 4.4. Time step convergence rates in various norms for 7" = 1, p = 4, and

h=1/8
At = l|l€o]| oo Rate: | ||eo||r2 Rate: | ||en]|we Rate:
0.02 1.2121E-01 | — 6.9579E-02 | - 8.7562E-02 | —

0.01 2.5733E-02 | 2.2358 | 1.3366E-02 | 2.3801 | 1.6468E-02 | 2.4106
0.005 6.5050E-03 | 1.9840 | 3.1227E-03 | 2.0977 | 3.8431E-03 | 2.0993
0.0025 | 1.7991E-03 | 1.8543 | 7.6889E-04 | 2.0219 | 9.4510E-04 | 2.0237
0.00125 | 5.4699E-04 | 1.7177 | 1.9558E-04 | 1.9750 | 2.3882E-04 | 1.9845

Figure 4.2. Convergence plots for the WG method in time and space.

) ) ) (b) Spatial error in the weak curl norm

(a) Time convergence in various norms. ¢ p=1,2,3.
optimal order of convergence in the L?, L®, and appropriate energy norms. Addi-
tionally, the scheme is shown to have the expected second order convergence in time
in all three norms.

However, all of this added flexibility in the scheme does not come without its
costs. The WG scheme requires substantially more degrees of freedom when solving
the system. Although the global matrix that is fairly sparse, it still can slow down the
algorithm considerably while time stepping. This can be reduced through the use of

the Schur complement, whose implementation is outlined in Mu et al. (2015a). With
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the Schur complement, we can simplify the scheme to only solve for the boundary
degrees of freedom, reducing the computational costs drastically.

Although the WG method for Maxwell’s equations does not provide any advantage
in computational costs, it has the benefit of being a fairly flexible and unconditionally
stable scheme while keeping an optimal order of error convergence. Future work
for this scheme will include reducing time error, investigating the possibilities of
superconvergence, showing the optimal convergence rate in the L? and L* norms,

and increasing the computational efficiency.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

This dissertation focused on the development and analysis of three different nu-
merical methods for three different formulations of the time-dependent Maxwell’s
equations. For each model, an appropriate numerical method was chosen to solve the
application at hand. In chapter 2, a Yee scheme finite difference time-domain (FDTD)
method was used to simulate the backwards wave propagation through negative-index
metamaterials due to the rectangular shape of the domain. Additionally, the non-
uniform grid was utilized to simulate the metamaterial slab with a finer mesh than the
surrounding vacuum. Chapter 3 then focuses on the modeling of signal propagation
in corrugated coaxial cables. Because the domain in this application is more complex,
and therefore more difficult to model with an FDTD method, a nodal discontinuous
Galerkin (nDG) method was used to solve the axisymmetric Maxwell’s equations on a
2-D cross-section of the dielectric of the cable. The nDG has an advantage over FDTD
methods for applications such as this one due to the ability to spatially discretize the
domain into triangles instead of rectangles. Finally, in chapter 4 we developed a new
type of discontinuous Galerkin method named the weak Galerkin (WG) method. Be-
cause this method is still in its infancy, we decided to create a framework for future

applications by developing this method for the standard Maxwell’s equations.
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Stability analysis as well as various error convergence rates were then performed
on each of these three schemes. For the fully-discrete non-uniform Yee scheme we
were able to find the necessary conditions for stability as well as prove optimal order
convergence for space and time in the L? norm. In the case of the cable model, we
proved stability in the semi-discrete scheme and the optimal order of convergence for
space in the L? norm. Finally, we proved that the fully-discrete WG method for the
standard time-domain Maxwell’s equations was unconditionally stable. Additionally,
we showed that this scheme achieved optimal order of convergence in the so-called dis-
crete weak curl norm. These results were subsequently confirmed through numerical

experiments for all three schemes.

5.2 Future Work

For each of the chapters presented in this dissertation there are many potential
avenues to explore. Because many cloaking metamaterial models are very similar in
nature to the metamaterial model presented in chapter 2, the method and analysis of
chapter 2 could potentially be extended to cloaking models. Additionally, the cable
model in chapter 3 is far from complete. This cable assumed ideal, perfect conductors
and a lossless dielectric. A future, more comprehensive model might attempt to model
skin effect losses in the conductor as well as dielectric losses. The model presented
also assumes homogeneity in all materials used in the cable, where this is often not the
case. Another potential avenue from the cable model would be to perform uncertainty

quantification on the cable in the form of uncertainty added to the dielectric and the
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conductors.

Since little to no work has been done with weak Galerkin methods on time-
dependent problems, there are many possible extensions of the work done in chapter
4. For example, the method could be applied to the time-domain metamaterial and
cable models presented in chapters 2 and 3. While at a first glance the WG methods
looks to be computationally less efficient than the nDG methods with the same ac-
curacy, the WG method might have some other unexplored advantages over the nDG
method. An interesting comparison between the WG method and the nDG method
on various Maxwell’s equations models might give more insight as to any potential

usage of the WG method.
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APPENDIX

COPYRIGHTS

Chapter 2 reprinted from Numerische Mathematik, 134, J. Li and S. Shields, “Su-
perconvergence analysis of Yee scheme for metamaterial Maxwell’s equations on non-
uniform rectangular meshes” | 741-781, Copyright (2016), with permission from Springer,

license number 4052701271733.

Chapter 3 reprinted from Journal of Computational and Applied Mathematics, 309,
J. Li, E. A. Machorro and S. Shields, “Numerical study of signal propagation in
corrugated coaxial cables”, 230-243, Copyright (2017), with permission from Elsevier,

license number 4052720454260.
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