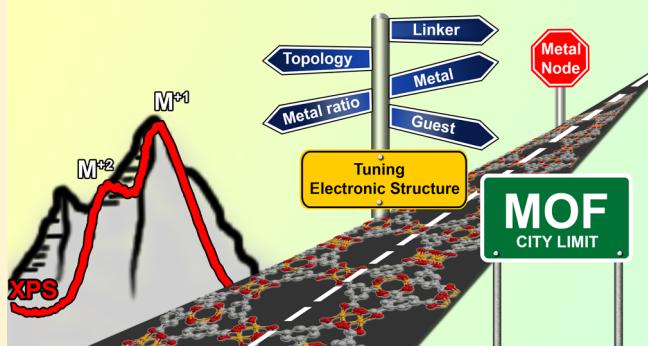


1 Electronic Properties of Bimetallic Metal–Organic Frameworks 2 (MOFs): Tailoring the Density of Electronic States through MOF 3 Modularity

4 Ekaterina A. Dolgopolova,[†] Amy J. Brandt,[†] Otega A. Ejegbabwo,[†] Audrey S. Duke,[†]
5 Thathsara D. Maddumapatabandi,[†] Randima P. Galhenage,[†] Bryon W. Larson,[‡] Obadiah G. Reid,^{‡,§}
6 Salai C. Ammal,^{||} Andreas Heyden,^{||} Mvs Chandrashekhar,^{||} Vitalie Stavila,[#] Donna A. Chen,^{*,†,||}
7 and Natalia B. Shustova^{*,†,||}

8 [†]Department of Chemistry and Biochemistry, ^{||}Department of Chemical Engineering, [‡]Department of Electrical Engineering,
9 University of South Carolina, Columbia, South Carolina 29208, United States


10 [‡]Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States

11 [§]Renewable and Sustainable Energy Institute, University of Colorado at Boulder, Boulder, Colorado 80309, United States

12 [#]Sandia National Laboratories, Livermore, California 94551, United States

13 Supporting Information

14 **ABSTRACT:** The development of porous well-defined hybrid
15 materials (e.g., metal–organic frameworks or MOFs) will add
16 a new dimension to a wide number of applications ranging
17 from supercapacitors and electrodes to “smart” membranes
18 and thermoelectrics. From this perspective, the understanding
19 and tailoring of the electronic properties of MOFs are key
20 fundamental challenges that could unlock the full potential of
21 these materials. In this work, we focused on the fundamental
22 insights responsible for the electronic properties of three
23 distinct classes of bimetallic systems, $M_{x-y}M'_y$ -MOFs, $M_xM'_y$ -
24 MOFs, and M_x (ligand- M'_y)-MOFs, in which the second metal
25 (M') incorporation occurs through (i) metal (M) replacement
26 in the framework nodes (type I), (ii) metal node extension
27 (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray
28 photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic
29 emission spectroscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the
30 tunability of MOF electronic structures. Experimental prescreening of MOFs was performed based on changes in the density of
31 electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we
32 demonstrated that the tailoring of MOF electronic properties could be performed as a function of metal node engineering,
33 framework topology, and/or the presence of unsaturated metal sites while preserving framework porosity and structural integrity.
34 These studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to
35 semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic
36 structures.

37 ■ INTRODUCTION

38 Electronic properties of well-defined metal–organic materials
39 (e.g., metal–organic frameworks or MOFs) have recently
40 become a cutting-edge area of research due to potential
41 transformative effects on the development of semiconductor
42 and supercapacitor technologies, high surface area conductors,
43 thermoelectrics, coatings in electronic engineering, photo-
44 catalysts, and sensitive artificial “noses”.^{1–24} One of the main
45 driving forces for these studies is to complement the intrinsic
46 porosity of MOFs with desirable electronic behavior. The first
47 steps in this direction have clearly demonstrated a very
48 promising start, which includes the development of chemir-

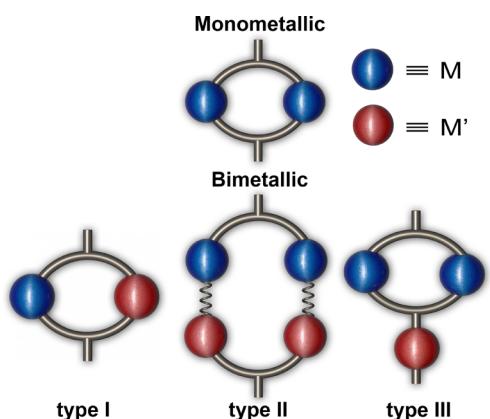
49 esistive sensors, crystalline materials with a high charge
50 mobility, and porous electrodes.^{11,25–33} However, there are a
51 number of challenges that must be overcome for further
52 successful advancement in this area. One of them is the
53 preparation of conductive hybrid materials that preserve
54 framework crystallinity without blocking MOF pores. Metal
55 node engineering is one of the strategies for the preservation of
56 MOF porosity while tuning MOF electronic structure. As
57 previously shown, a MOF matrix can accommodate a second

Received: February 4, 2017

Published: March 18, 2017

58 metal without loss of crystallinity.^{34–41} Tailoring of electronic
59 properties could therefore be performed through “guest metal”
60 immobilization inside MOF metal nodes. Thus, the objective of
61 the presented studies is fundamental understanding of key
62 parameters, which may impact the tailoring of electronic
63 structure in bimetallic MOFs through framework modularity.

64 Very recently, it was shown that the electrical conductivity of
65 MOF samples is affected by many factors including grain
66 boundaries and anisotropy, which hinder screening and
67 comparison of different MOF samples, especially without
68 access to their single crystals.⁴² From this perspective, we
69 present a comprehensive approach that allows one to
70 experimentally prescreen the changes in the electronic
71 structures of complex bimetallic systems while simultaneously
72 monitoring changes in metal oxidation states occurring on the
73 metal nodes. These studies can then guide the selection of the
74 most promising candidates for further detailed investigations. In
75 this work, we utilized three distinct types of bimetallic systems
76 shown in **Scheme 1**: $M_{x-y}M'_y$ -MOFs (type I), $M_xM'_y$ -MOFs

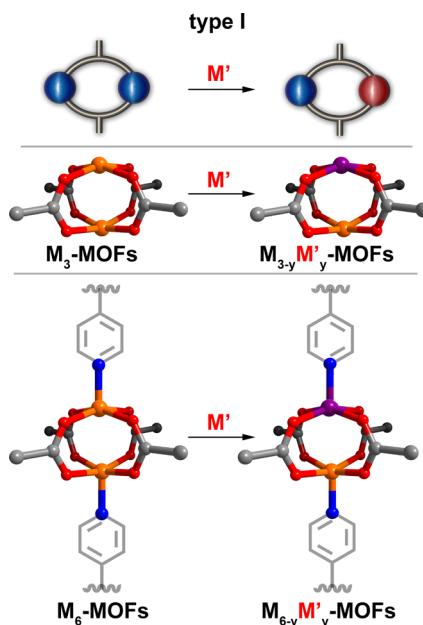

96 possible changes in the electronic structure that appear after the
97 incorporation of the second metal; (ii) crystallinity, which
98 permits comprehensive structural analysis of MOF topology
99 and metal node geometry; and (iii) porosity, which provides an
100 opportunity to study the electronic structure as a function of
101 substrate dynamics.

102 We have applied these advantages to studying the effect of a
103 second metal on the electronic structure of three distinct
104 bimetallic systems shown in **Scheme 1** (types I–III). The type-I
105 $M_{x-y}M'_y$ -MOFs consists of bimetallic nodes, which are
106 isostructural to monometallic analogues. In this case, the
107 incorporation of the second metal, M' , occurs through the
108 replacement of M , and therefore both M and M' possess the
109 same coordination environment (**Scheme 1**, type I). One of the
110 most studied examples of the type-I platform is IRMOF-1.^{43–48}
111 Type II of the bimetallic $M_xM'_y$ -MOFs also contains bimetallic
112 nodes, but M' incorporation results in metal node extension
113 instead of M substitution (**Scheme 1**, type II) and therefore
114 significant changes in the local environment of M' versus M . An
115 example of such node extension was recently reported by the
116 Zhou group who extended the hexameric Zr-based nodes to
117 decameric $Zr_5M'_4$.⁴⁹ Type III $M_x(\text{ligand}-M'_y)$ -MOFs consist of
118 monometallic nodes, and M' coordinates to the organic linker
119 as shown in **Scheme 1**. One example of $M_x(\text{ligand}-M'_y)$ -MOFs
120 was recently prepared by Lin and co-workers through
121 utilization of organic linkers in the Zr-based framework as an
122 anchor for a second metal incorporation.⁵⁰

123 Our initial studies were focused on type I bimetallic $M_{x-y}M'_y$ -
124 MOFs due to a wide range of M/M' metal pairs already being
125 incorporated into the MOF matrix^{40,51–55} and therefore
126 available for systematic studies. The major criterion imposed
127 on the selection of $M_{x-y}M'_y$ -MOFs was the possibility of
128 solvent removal with preservation of the framework's structural
129 integrity. This property is crucial for the initial prescreening of
130 MOF electronic properties by X-ray photoelectron spectroscopy
131 (XPS). Our previous investigations⁵⁶ of monometallic
132 frameworks demonstrated that mixed-valence metals such as
133 copper could significantly affect the density of states near the
134 Fermi edge. For instance, we observed that presence of Cu^{1+} /
134 Cu^{2+} sites resulted in significant changes in the valence band
135 structure.⁵⁶ Consequently, we have focused on $M_{3-y}M'_y(BTC)_2$
136 ($M = Cu$, $H_3BTC = benzene-1,3,5-tricarboxylic$ acid) as a first
137 model system for type-I bimetallic MOFs based on potential
138 tunability of the valence band structure through the presence of
139 mixed valence metal sites, as well as required thermal stability
140 (**Figure 1**). As a Cu (M) counterpart, we have chosen Co and
141 Zn for three main reasons. The first reason is that the
142 introduction of both Zn and Co inside the Cu-MOF could be
143 performed by a relatively straightforward synthetic approach,
144 which resulted in bimetallic systems isostructural to mono-
145 metallic analogues. This also allowed us to prepare bimetallic
146 MOFs with a different M/M' ratio and study the electronic
147 properties as a function of the metal ratio. Second, these metals
148 will allow us to test the effect on electronic structure of divalent
149 zinc versus cobalt, which could exhibit +2 and +3 oxidation
150 states. Finally, recent theoretical studies focusing on electronic
151 structure elucidation of bimetallic systems suggest that Co-
152 incorporation into IRMOF-1 could result in appearance of
153 metallic behavior in the insulating zinc-based MOF.⁴⁴

154 Solid-state metathesis was chosen as a synthetic method for
155 preparation of bimetallic MOFs with different M/M' ratios (M
156 = Cu, $M' = Co, Zn$). For preparation of $Cu_{3-y}Co_y(BTC)_2$,
157 freshly synthesized $Cu_3(BTC)_2$ was introduced into N,N' -
158

Scheme 1. A Schematic Representation of Monometallic and Bimetallic MOFs^a



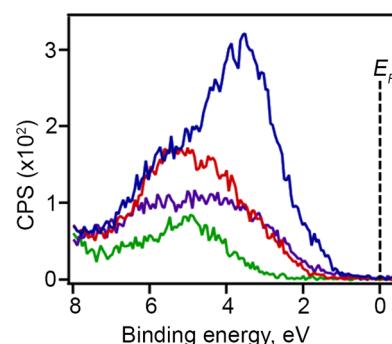
^aSemiovals with sandwiched metals and grey sticks represent the metal nodes and organic linkers, respectively. Type I $M_{x-y}M'_y$ -MOFs: incorporation of M' occurs through the replacement of M . Type II $M_xM'_y$ -MOFs: M' incorporation extends metal nodes. Type III $M_x(\text{ligand}-M'_y)$ -MOFs: M' coordinates to an organic linker.

77 (type II), and $M_x(\text{ligand}-M'_y)$ -MOFs (type III). In particular,
78 our approach couples: (i) state-of-the-art surface science
79 techniques to prescreen changes in the density of electronic
80 states (DOS) near the Fermi edge while monitoring changes in
81 the metal oxidation states; (ii) material design including
82 utilization of MOF modularity through incorporation of the
83 second metal into the metal node as well as its coordination to
84 the organic linker; (iii) microwave conductivity measurements
85 to estimate intrinsic conductance of the selected MOF samples;
86 and (iv) theoretical modeling. We attempt to shed light on the
87 fundamental understanding of how metal node composition
88 and geometry and/or MOF topology could affect the electronic
89 structure, thereby establishing a pathway for tuning the
90 conductivity of MOFs that are normally insulating.

91 ■ RESULTS AND DISCUSSION

92 In the presented approach, we utilize a number of advantages
93 offered by the MOF platform including: (i) modularity, which
94 allows us to prepare isostructural monometallic and bimetallic
95 frameworks for detailed understanding and comparison of

Figure 1. Paddle-wheel metal nodes of $M_{3-y}M'_y$ -MOFs with unsaturated metal sites (middle) and $M_{6-y}M'_y(BTB)_4(BP)_3$ with metal sites blocked by the BP ligand. Only one phenyl ring of the BP ligand is shown (bottom). The gray, red, orange, and purple spheres in the metal nodes represent carbon, oxygen, M, and M', respectively.


159 dimethylformamide (DMF) solutions with different $CoCl_2$
 160 concentrations, which were heated at 90 °C for 24 h. The
 161 $Cu_{3-y}Zn_y(BTC)_2$ samples were prepared by soaking
 162 $Zn_3(BTC)_2$ in a saturated solution of $Cu(NO_3)_2$ for 9–18 h
 163 at room temperature.⁴⁰ Each sample of prepared bimetallic
 164 $M_{3-y}M'_y$ -MOFs was characterized by powder X-ray diffraction
 165 (PXRD), Fourier transform infrared spectroscopy, and
 166 thermogravimetric analysis, and the M/M' ratio was
 167 determined by inductively coupled plasma atomic emission
 168 spectroscopy. As a result, the following compositions for type I
 169 BTC-containing MOFs were studied: $Cu_{3-y}Zn_y(BTC)_2$ ($y = 0.75$ and 1.05) and $Cu_{3-y}Co_y(BTC)_2$ ($y = 0.18, 0.60$, and 1.5).
 170 The prepared BTC-containing bimetallic MOFs are isostruc-
 171 tural to monometallic $M_3(BTC)_2$ ($M = Cu$ and Zn , Figures
 172 S1–S7). The $Cu_{3-y}Co_y(BTC)_2$ and $Cu_{3-y}Zn_y(BTC)_2$ samples
 173 were evacuated at 120–150 °C (48 h) and at 100–160 °C (48
 174 h) on the Schlenk line, respectively, before the XPS studies. In
 175 addition, some MOF samples were pretreated by heating at
 176 100–225 °C in a specialized cell under an argon atmosphere
 177 before introduction into the XPS chamber. PXRD was used for
 178 confirmation of framework crystallinity after evacuation and
 179 additional heating in the inert atmosphere. More detailed
 180 procedures used for each set of samples are given in Table 1
 181 (vide infra).

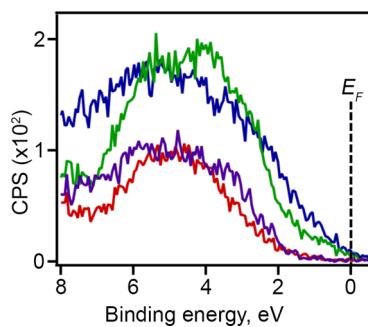
182 XPS valence band spectra provide information about the
 183 electronic properties of the MOFs since the signal intensities
 184 reflect the densities of states near the Fermi level (E_F , binding
 185 energy = 0 eV). As shown in Figure 2, the valence band spectra
 186 of the evacuated monometallic M-MOFs ($M = Cu$ and Zn) and
 187 bimetallic $M_{3-y}M'_y$ -MOFs ($M = Cu$, $M' = Zn$) exhibit zero
 188 intensity near the Fermi level, and this absence of electronic
 189 states around E_F is characteristic of insulators. Furthermore,
 190 there is a distinct change in the DOS for $Cu_3(BTC)_2$ after
 191 heating under an argon atmosphere at 225 °C, given that the
 192 valence band spectrum shows a significant increase in intensity
 193

Table 1. Thermal Treatment Procedures for Prepared Monometallic and Bimetallic MOFs

MOF systems	evacuation procedure temp., time	additional thermal treatment ^a
$Cu_3(BTC)_2$	160 °C, 48 h	225 °C, 14 h
$Zn_3(BTC)_2$	100 °C, 24 h	100 °C, 4 h
$Cu_3(BTB)_2$	100 °C, 4 h	100 °C, 1 h
$Cu_6(BTB)_4(BP)_3$	100 °C, 24 h	
$Co_6(BTB)_4(BP)_3$	130 °C, 6 h	
$Co_6(BTC)_2(HCO_2)_6(DMF)_6$	100 °C, 8 h	
$Zn_{0.75}Cu_{2.25}(BTC)_2$	160 °C, 48 h	130 °C, 4 h
$Zn_{1.05}Cu_{1.95}(BTC)_2$	160 °C, 48 h	225 °C, 14 h
$Cu_{2.82}Co_{0.18}(BTC)_2$	160 °C, 48 h	225 °C, 14 h
$Cu_{2.4}Co_{0.6}(BTC)_2$	120 °C, 48 h	
$Co_{1.5}Cu_{1.5}(BTC)_2$	120 °C, 48 h	160 °C, 14 h
$Cu_{2.34}Co_{3.66}(BTB)_4(BP)_3$	130 °C, 24 h	
Zr_6Co_4 -MOF	rt ^b , 1 h	
$Zr_6O_4(OH)_4$ (sal-TPD-Co)	rt, 2 h	
Zr_6 -MOF	rt, 1 h	
$Zr_6O_4(OH)_4$ (sal-TPD)	rt, 2 h	

^aAdditional treatment was performed in the specialized cell under an argon atmosphere before sample transfer into the XPS chamber. ^brt = room temperature.

Figure 2. XPS data for the valence band region for: $Cu_3(BTC)_2$ (red), $Cu_3(BTC)_2$ (additional heating at 225 °C for 14 h under argon, blue), $Zn_3(BTC)_2$ (green), and $Cu_{2.25}Zn_{0.75}(BTC)_2$ (purple). A sample treatment is given in Table 1.


at the Fermi edge after heating. In our previous work, we have attributed this change in electronic structure to the coexistence of mixed valence Cu^{1+} and Cu^{2+} sites.⁵⁶

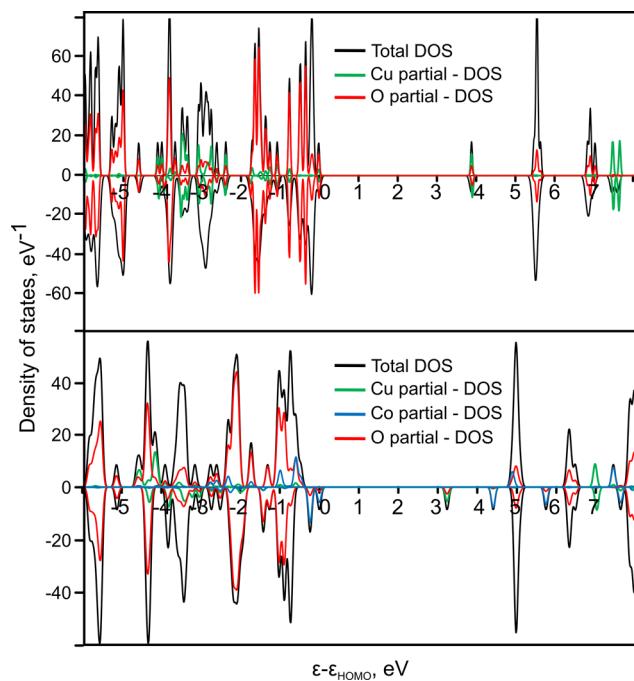
While the pure $Cu_3(BTC)_2$ sample contains mixed valence sites, the zinc-based analogue $Zn_3(BTC)_2$ exhibits a single $Zn(2p_{3/2})$ peak at 1022.4 eV, which is consistent with the metal nodes in only the +2 oxidation state.^{57,58} Similarly, for bimetallic $Cu_{3-y}Zn_y$ -MOFs, Cu is found in both the +1 and +2 oxidation states, whereas Zn exists exclusively as +2 (Figure S8). The assignment of the Cu^{1+} and Cu^{2+} oxidation states are based on both the $Cu(2p_{3/2})$ and $Cu(LMM)$ regions; these assignments are discussed in the Supporting Information (SI) section and have also been described in detail in a previous manuscript.⁵⁶ Moreover, heating the bimetallic sample containing 35% zinc ($Cu_{1.95}Zn_{1.05}(BTC)_2$) to 215 °C for 14 h under an argon atmosphere resulted in an increase in the Cu^{1+} intensity and an increase in DOS near the valence band edge (Figure S9). Thus, the presence of Zn^{2+} does not prevent the reduction of Cu^{2+} to Cu^{1+} or prevent changes in the valence band spectrum after MOF heating.

In contrast to zinc-incorporated frameworks, we have observed significant differences in the electronic structure for the series of cobalt-substituted bimetallic MOFs. Specifically, the XPS valence band region for $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$ samples ($y = 0.18$ and 1.5) show nonzero intensity near E_F , demonstrating that electronic states exist in this region, and a cobalt content of only 6% ($y = 0.18$) is sufficient to facilitate this change (Figure S10). As mentioned above, the appearance of electronic states near E_F in the valence band spectrum is behavior characteristic of semiconductors. As a control experiment, we also investigated the valence band region of the CoCl_2 salt used for the preparation of bimetallic frameworks. As expected, DOS for CoCl_2 near E_F is zero, unlike what is observed for $\text{Cu}_{3-y}\text{Co}_y$ MOFs (Figure S11).

In terms of the oxidation of the metals, the $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$ ($y = 0.18$ and 1.5) samples exhibit both Cu^{1+} and Cu^{2+} oxidation states (Figure S10). For the $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$ MOFs, the $\text{Co}(2p)$ region is consistent with Co^{2+} , based on the presence of strong satellite features, the splitting of the $2p_{3/2}$ and $2p_{1/2}$ peaks, and the $\text{Co}(2p_{3/2})$ binding energy (see Supporting Information for more details). Similar to bimetallic $\text{Cu}_{3-y}\text{Zn}_y(\text{BTC})_2$, heating of $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$ induces the reduction of Cu^{2+} to Cu^{1+} , and therefore the presence of cobalt in the MOF structure does not prevent Cu^{2+} reduction.

Since there are no synthetic reports of a pure $\text{Co}_3(\text{BTC})_2$ phase isostructural to bimetallic $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$, we attempted to analyze a different Co-BTC-containing phase consisting of hexanuclear metal nodes connected by BTC^{3-} linkers (Figures S12 and S13).⁵⁹ However, the loss of MOF structural integrity was observed. XPS measurements performed on the degraded sample did not reveal any similarities with the electronic structure of $\text{Cu}_{3-y}\text{Co}_y$ -MOFs. To better understand the unique electronic structure of $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$, we prepared a $\text{M}_6(\text{BTB})_4(\text{BP})_3$ (H_3BTB = benzene-1,3,5-tribenzoate, BP = 4,4'-bipridyl) series, which consists of paddle-wheel metal nodes similar to $\text{M}_{3-y}\text{M}'(\text{BTC})_2$, and integration of the second metal without loss of framework integrity was achieved (Figures S14–S18). Notably, attempts to prepare bimetallic $\text{Cu}_{3-y}\text{M}'(\text{BTB})_2$ without the presence of the second BP linker were not successful despite the existing straightforward synthetic procedure for isostructural monometallic $\text{Cu}_3(\text{BTB})_2$. The latter was successfully prepared, and valence spectra showed no electronic states near E_F (Figure S19). However, for the BTB-containing systems, we were able to prepare isostructural monometallic $\text{Co}_6(\text{BTB})_4(\text{BP})_3$ by heating $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ in the presence of H_3BTB and BP at 100°C for 4 days.⁶⁰ The $\text{Cu}_{6-y}\text{Co}_y(\text{BTB})_4(\text{BP})_3$ system was prepared by direct synthesis through heating of cobalt and copper nitrates in the presence of H_3BTB and BP linkers at 100°C for 96 h. Surprisingly, the valence band spectra demonstrate that electronic properties of $\text{Cu}_{2.34}\text{Co}_{3.66}(\text{BTB})_4(\text{BP})_3$ are unlike $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$ but instead are closer to those observed for insulating $\text{Zn}_3(\text{BTC})_2$ or $\text{Zn}_{3-y}\text{Cu}_y(\text{BTC})_2$ (Figure 3). Monometallic $\text{Cu}_3(\text{BTB})_2$ (without BP) contains Cu^{1+} / Cu^{2+} metal sites and exhibits DOS like that of the $\text{Cu}_3(\text{BTC})_2$ (Figure S19). Electronic properties resembling $\text{Cu}_3(\text{BTC})_2$ were also observed for monometallic $\text{Co}_6(\text{BTB})_4(\text{BP})_3$. Therefore, MOF topology and/or presence of unsaturated metal sites result in different DOS near E_F for $\text{M}_{3-y}\text{M}'(\text{BTC})_2$ versus $\text{M}_{3-y}\text{M}'(\text{BTB})_2$ despite the similar metal node geometries. To summarize, the $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$ system possesses an electronic structure like that of a semiconductor near E_F , while the lack of DOS around E_F for $\text{Cu}_3(\text{BTC})_2$, $\text{Zn}_3(\text{BTC})_2$,

Figure 3. XPS data for the valence band region of $\text{Cu}_{1.05}\text{Zn}_{1.95}(\text{BTC})_2$ (red), $\text{Cu}_{1.5}\text{Co}_{1.5}(\text{BTC})_2$ (blue), $\text{Cu}_{2.82}\text{Co}_{0.18}(\text{BTC})_2$ (green), and $\text{Cu}_{2.34}\text{Co}_{3.66}(\text{BTB})_4(\text{BP})_3$ (purple). A sample treatment is given in Table 1.


$\text{Cu}_{3-y}\text{Zn}_y(\text{BTC})_2$, $\text{Cu}_3(\text{BTB})_2$, and $\text{Cu}_{6-y}\text{Co}_y(\text{BTB})_4(\text{BP})_3$ is characteristic of insulators.

To shed light on the changes of the electronic structure near E_F observed by XPS for bimetallic $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$, we have performed conductivity measurements on the MOF pressed pellets and microwave conductivity experiments on MOF powders, as well as employed diffuse reflectance spectroscopic studies in combination with theoretical calculations. As a starting point, we measured bulk conductivity on the pressed pellets prepared from evacuated bimetallic $\text{Cu}_{2.4}\text{Co}_{0.6}(\text{BTC})_2$ and monometallic $\text{Cu}_3(\text{BTC})_2$, for which the conductivities were found to be 1.4×10^{-8} S/cm and 2.0×10^{-10} S/cm, respectively. Thus, the observed values for $\text{Cu}_y\text{Co}_{3-y}$ -MOF conductivity are about 2 orders of magnitude higher in comparison with monometallic isostructural $\text{Cu}_3(\text{BTC})_2$, which is in line with the higher DOS at E_F for $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$ shown by the XPS studies.

Since we expected that bulk conductivity would be greatly affected by factors such as grain boundary resistances and/or by highly randomized orientation of individual grains within a MOF pellet,⁴² we performed microwave absorption measurements on $\text{Cu}_y\text{Co}_{3-y}$ -MOF powders to estimate intrinsic conductivity. The main advantage of this technique is a quantitative measure of the effective conductivity of a sample without the need to fabricate a device, deposit contacts of any kind, or even prepare compact films. Instead, a sample powder can be mounted on a substrate (in our case—quartz) and be positioned within a characterized microwave cavity to maximize interaction with the field, thus providing a high degree of sensitivity to changes in the sample composition and properties. We have measured the change in cavity characteristics as a function of each MOF sample, and we use finite-element calculations to quantify the sample properties from these observations. Figure S20 shows the measured resonance curves for $\text{Cu}_{2.4}\text{Co}_{0.6}(\text{BTC})_2$ with baseline measurements of the substrate and mounting tape, as well as the moisture dependence of $\text{Cu}_3(\text{BTC})_2$. Each resonance is characterized by its position, width, and depth, which jointly encode the change in sample properties from one resonance to the next. By measuring the change in these parameters between an empty cavity, the cavity with a quartz substrate, with a quartz substrate with double-sided mounting tape, and the substrate/tape/MOF powder, we have determined the effective conductivity of each component of the total sample. Similar contactless microwave absorption measurements have been used to estimate the photoconductivity of other MOFs after laser excitation.^{25,61–63} Since photoinduced charge generation processes are not yet

324 well-understood for MOFs, we have measured the “dark”
 325 effective conductivity for $\text{Cu}_3(\text{BTC})_2$ and $\text{Cu}_{2.4}\text{Co}_{0.6}(\text{BTC})_2$ by
 326 combining microwave absorption data with electromagnetic
 327 simulations of the cavity response. As mentioned above, each
 328 sample was mounted in a microwave cavity, and the reflection
 329 coefficient of the cavity was measured as a function of
 330 frequency about its resonance; the characteristics of the
 331 resonance curve are used to calculate the effective conductivity
 332 of each material (full experimental details can be found the
 333 [Experimental Section](#) and [Supporting Information](#)). Under a
 334 dry nitrogen atmosphere, the effective conductivities were $0.1 \times$
 335 10^{-4} S/cm for $\text{Cu}_3(\text{BTC})_2$ compared to 3.5×10^{-4} S/cm for
 336 $\text{Cu}_{2.4}\text{Co}_{0.6}(\text{BTC})_2$, which is consistent with the XPS results.
 337 Interestingly for $\text{Cu}_3(\text{BTC})_2$, the effective conductivity
 338 increases upon exposure to moisture in air to 4.3×10^{-4} S/
 339 cm after 1 h and eventually to 5.8×10^{-4} S/cm after several
 340 hours, accompanied by a color change from deep royal blue to
 341 light blue ([Figure S21](#)). We use the term effective conductivity
 342 here since this measurement is sensitive to both dielectric
 343 contributions (i.e., rotating dipoles or solvent molecules) and
 344 intrinsic electrical conductivity. Therefore, the observed
 345 increase in measured effective conductivity in the $\text{Cu}_3(\text{BTC})_2$
 346 after exposure to moisture is likely due to dielectric interactions
 347 of water molecules in the framework with the microwaves and
 348 may suggest that the 0.1×10^{-4} S/cm value reported here is a
 349 conservative upper estimate of the true intrinsic conductivity,
 350 further supporting a drastic increase in conductivity going from
 351 the monometallic to bimetallic framework.

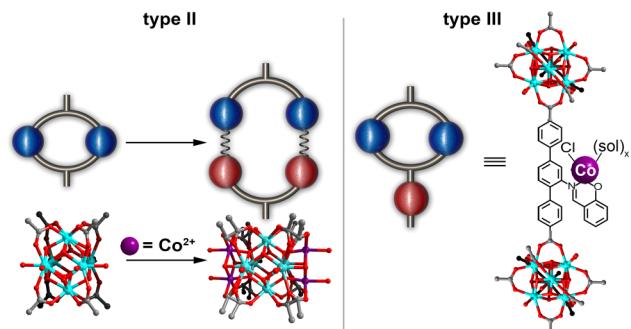

352 To rationalize the changes observed in the valence band
 353 region of the $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$ system, we have carried out
 354 theoretical calculations on the truncated model of a bimetallic
 355 MOF, $\text{MM}'(\text{BTC})_4$. The optimized structure of $\text{Cu}_2(\text{BTC})_4$
 356 and $\text{CuCo}(\text{BTC})_4$ are shown in [Figure S22](#). Density functional
 357 theory (DFT) calculations reveal that the substitution of
 358 copper with cobalt in $\text{Cu}_2(\text{BTC})_4$ results in changes in the
 359 electronic structure near E_F . The energy of the highest occupied
 360 molecular orbital (HOMO) increases from -7.78 eV to -7.22
 361 eV, and the lowest unoccupied molecular orbital (LUMO)
 362 energy decreases from -3.89 eV to -3.99 eV due to the
 363 replacement of copper by cobalt. These results are further
 364 supported by DOS calculations ([Figure 4](#)), which predicted a
 365 wide band gap of 3.8 eV for the $\text{Cu}_2(\text{BTC})_4$ structure, which is
 366 consistent with insulator properties of this material. The partial
 367 DOS shown in [Figure 4](#) were obtained by adding up the atomic
 368 projected DOS over different groups of elements such as Cu,
 369 Co, and O. Although these plots include contribution from all
 370 orbitals, the orbital-projected DOS suggest that the partial DOS
 371 near E_F originate mainly from the oxygen p-orbitals, whereas
 372 DOS above E_F (conduction band) are composed of copper d-
 373 orbitals. When copper is substituted with cobalt, the DOS near
 374 E_F are dominated by contributions from cobalt d-orbitals, and
 375 the band gap is reduced to 3.2 eV. These results suggest that
 376 the electronic structure of the copper-based framework can be
 377 tuned by metal substitution in the metal nodes, and higher
 378 conductivity should be achieved through cobalt incorporation
 379 into the Cu-BTC matrix. For an experimental estimation of
 380 optical band gaps in both monometallic $\text{Cu}_3(\text{BTC})_2$ and
 381 bimetallic $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$, we utilized diffuse reflectance
 382 spectroscopy. For better correlation with theoretical values, we
 383 have prepared a sample in which 50% of Cu^{2+} ($y = 1.5$) was
 384 substituted by Co^{2+} . The optical band gap values in the
 385 $\text{Cu}_3(\text{BTC})_2$ and $\text{Cu}_{1.5}\text{Co}_{1.5}(\text{BTC})_2$ for allowed direct transi-
 386 tions were derived from the Tauc plot by extrapolation of the

Figure 4. Total and partial density of states (DOS) of: (a) $\text{Cu}_2(\text{BTC})_4$ and (b) $\text{CuCo}(\text{BTC})_4$ truncated models computed using the B3LYP-D3//def2-TZVPP level of theory.

straight line to the photon energy axis.^{64,65} As a result, band gap values of 3.7 and 3.8 eV were roughly estimated for $\text{Cu}_{1.5}\text{Co}_{1.5}(\text{BTC})_2$ and $\text{Cu}_3(\text{BTC})_2$, respectively ([Figure S23](#)). The small decrease of the optical band gap in case of the bimetallic cobalt-containing MOF calculated is consistent with the theoretically predicted decreased band gap.

To gain further insights on the significant changes observed in DOS of type I $\text{Cu}_y\text{Co}_{3-y}$ -MOFs, we have studied the type II and III bimetallic systems also containing cobalt ([Figure 5](#)). For

Figure 5. (left) Metal nodes $\text{Zr}_6\text{O}_4(\text{OH})_8$ extended by the incorporation of Co^{2+} to $\text{Zr}_6\text{Co}_4\text{O}_8(\text{OH})_8$. Turquoise, purple, red, and gray spheres represent zirconium, cobalt, oxygen, and carbon, respectively. (right) Coordination of the second metal, cobalt, occurs through coordination to the organic linker, $\text{H}_2\text{sal-TPD}$, instead of the Zr -based metal node.

the preparation of type II bimetallic MOFs, we utilized the approach reported by Zhou and co-workers,⁴⁹ in which the Zr -based metal nodes, $\text{Zr}_6\text{O}_4(\text{OH})_8$, were extended through cobalt incorporation to $\text{Zr}_6\text{Co}_4\text{O}_8(\text{OH})_8$ ([Figure 5](#)). For synthesis of Zr_6Co_4 -MOF, the prepared Zr -based MOF (PCN-700) was heated in the presence of $\text{Co}(\text{NO}_3)_2$ salt at 85°C for 48 h

402 (Figure S24).⁴⁹ The excess of $\text{Co}(\text{NO}_3)_2$ was removed by
403 thoroughly washing with DMF.

404 For the type III MOFs, cobalt was coordinated to the organic
405 linker (Figure 5) using the approach reported by Lin and co-
406 workers.⁵⁰ The prepared salicylaldimine-based linker ($\text{H}_2\text{sal}-$
407 TPD, TPD = terphenyldicarboxylic acid) was heated in the
408 presence of ZrCl_4 , which resulted in the formation of
409 monometallic $\text{Zr}_6\text{O}_4(\text{OH})_4(\text{sal-TPD})_6$.⁵⁰ The coordination of
410 the second metal (Co) was performed by stirring of
411 $\text{Zr}_6\text{O}_4(\text{OH})_4(\text{sal-TPD})_6$ in a solution of CoCl_2 in DMF for
412 24 h at room temperature (Figure S25). Despite both systems
413 containing the same Co and Zr metals, the XPS valence band
414 spectra demonstrate a significant difference in the electronic
415 properties of the Co-containing type II and III systems (Figure
416 6). In the case of the Co-containing type II MOF, DOS exist

447 in an electronic structure and material properties. These 447
448 experimental data are consistent with theoretical calculations, 448
449 which indicate that the incorporation of the second metal (M') 449
450 inside the MOF matrix could result in significant changes in the 450
451 DOS. In particular we found that, in the monometallic Cu-BTC 451
452 system, the DOS near E_F originate mainly from the oxygen p- 452
453 orbitals, and the DOS above E_F (conduction band) is 453
454 composed of copper d-orbitals. However, due to cobalt 454
455 incorporation into the framework matrix, the DOS near E_F is 455
456 dominated by contributions from cobalt d-orbitals, and the 456
457 estimated decrease in the band gap was calculated to be 0.6 eV. 457
458 Thus, the presented studies begin to elucidate the key factors 458
459 responsible for tunability of MOF electronic structure as a 459
460 function of second metal incorporation, while preserving the 460
461 main inherent property of MOFs—porosity.

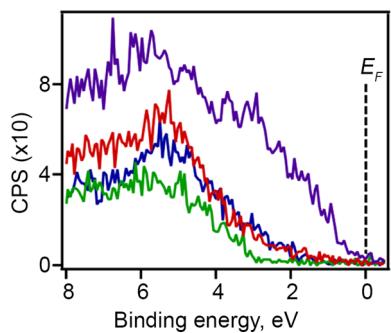


Figure 6. Valence band XPS data for: $\text{Zr}_6\text{O}_4(\text{OH})_4(\text{sal-TPD})_6$ (red), $\text{Zr}_6\text{O}_4(\text{OH})_4(\text{sal-TPD-Co})_6$ (blue), $\text{Zr}_6\text{-MOF}$ (green), and $\text{Zr}_6\text{Co}_4\text{-MOF}$ (purple). A sample treatment is given in Table 1.

417 near E_F as also observed for the bimetallic $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$. In
418 contrast, the type III MOF shows no DOS near E_F , which is
419 similar to the insulating behavior of $\text{Cu}_{3-y}\text{Zn}_y(\text{BTC})_2$. Notably,
420 the type II MOF in the absence of Co also exhibits a lack of
421 intensity in the valence band region near E_F . Therefore, these
422 results illustrate that DOS for the Co-containing type II MOF
423 is similar to the $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})$ despite the fact that the
424 bimetallic MOFs possess different topology, metal node
425 geometry, and nature of the primary metal.

CONCLUSION

426 In this work, we studied the fundamental properties responsible
427 for the electronic behavior of three distinct classes of bimetallic
428 systems, $\text{M}_{x-y}\text{M}'_y$ -MOFs (replacement of M by M' in metal
429 nodes), $\text{M}_x\text{M}'_y$ -MOFs (node extension through M' incorpo-
430 ration), and M_x (ligand-M'_y)-MOFs (coordination of M' to the
431 organic linker). We showed that, in addition to metal node
432 engineering, the presence of unsaturated metal sites as well as
433 framework topology can potentially affect the density of
434 electronic states near the Fermi edge. In particular, for the
435 example of bimetallic Zr/Co-containing frameworks (type II
436 and III), we demonstrated that changes in the MOF electronic
437 structure depend on the site chosen for second metal
438 coordination (i.e., a metal node versus an organic linker). We
439 also showed that the valence band spectra of evacuated
440 monometallic M-MOFs (M = Cu and Zn) and bimetallic
441 $\text{M}_{3-y}\text{M}'_y$ -MOFs (M = Cu, M' = Zn) exhibit zero intensity near
442 the Fermi level, which is characteristic of insulators, while
443 bimetallic cobalt-containing type-I and type-II MOFs exhibit
444 semiconductor behavior. Microwave conductivity measure-
445 ments demonstrated the correlation of the changes observed

EXPERIMENTAL SECTION

462 **Materials.** $\text{Cu}(\text{NO}_3)_2 \cdot 2\text{H}_2\text{O}$ (98.3%, Mallinckrodt AR), $\text{Cu}-$
463 (OAc)₂ $\cdot \text{H}_2\text{O}$ (>95%, TCI America), $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$ (>98.0%, TCI
464 America), $\text{Zn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ (technical grade, Ward's Science), $\text{Co}-$
465 (NO_3)₂ $\cdot 6\text{H}_2\text{O}$ (99%, STREM Chemicals, Inc.), ZrCl_4 (99.5%, Alfa
466 Aesar), CsF (99%, Oakwood Chemical), K_2CO_3 (lab grade, Ward's
467 Science), NaOH (ACS grade, Fisher Chemical), NaCl (ACS grade,
468 BDH), KOH (ACS grade, Fisher Chemical), MgSO_4 (reagent grade,
469 Oakwood Chemical), 1,3,5-benzenetricarboxylic acid (98%, Alfa
470 Aesar), 1,3,5-tribromobenzene (>95%, Matrix Scientific), 4-methox-
471 ycarbonyl phenylboronic acid (>97%, Boronic Molecular), palladium-
472 (II) acetate (>95+, Ox-Chem), polyethylene glycol 400 (lab grade,
473 Merck Millipore), methyl 4-iodo-3-methylbenzoate (98%, BeamTown
474 Chemical), 4,4',4'',5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane)
475 (>98%, Ark Pharm), bis(triphenylphosphine)palladium(II) chloride
476 (96%, Oakwood Chemical), 2,5-dibromoaniline (97%, Oakwood
477 Chemical), triphenylphosphine (99%, Sigma-Aldrich), 4,4'-bipyridyl
478 (98%, Sigma-Aldrich), salicylaldehyde (99% Alfa Aesar), pyridine (99+
479 %, Alfa Aesar), $\text{N}_i\text{N}'$ -dimethylformamide (ACS grade, BDH),
480 methanol (>99.8%, HPLC grade, Fisher Scientific), ethyl acetate
481 (ACS grade, Merck Millipore), hexane (ACS grade, Macromine
482 Chemicals), ethanol (200 proof, Decon Laboratories, Inc.), tetrahy-
483 drofuran (ACS grade, Macromine Chemicals), chloroform (ACS
484 grade, Macromine Chemicals), dimethyl sulfoxide (ACS grade, Fisher
485 Scientific), dichloromethane (ACS grade, Oakwood Chemical),
486 trifluoroacetic acid (99%, Oakwood Chemical), glacial acetic acid
487 (ACS grade, BDH), hydrochloric acid (ACS grade, Sigma-Aldrich),
488 chloroform-d (Cambridge Isotope Laboratories, Inc.), and DMSO-d_6
489 (Cambridge Isotope Laboratories, Inc.) were used as received.

490 **Synthesis.** The compounds $\text{Cu}_3(\text{BTC})_2$,⁶⁶ $\text{Zn}_3(\text{BTC})_2$,⁴⁰
491 $\text{Co}_6(\text{BTC})_2(\text{HCO}_2)_6(\text{DMF})_6$ ⁵⁹ (HCO_2 = formate), $\text{Cu}_3(\text{BTB})_2$,⁶⁷
492 $\text{Cu}_6(\text{BTB})_4(\text{BP})_3$,⁶⁰ $\text{Co}_6(\text{BTB})_4(\text{BP})_3$,⁶⁰
493 $\text{Zr}_6\text{O}_4(\text{OH})_8(\text{H}_2\text{O})_4(\text{Me}_2\text{BPDC})_4$ (Me_2BPDC = 2,2'-dimethylbiphen-
494 yl-4,4'-dicarboxylic acid), [Zr₆-MOF],⁴⁹ $\text{Zr}_6\text{Co}_4\text{O}_8(\text{OH})_8(\text{H}_2\text{O})_8(\text{Me}_2\text{BPDC})_4$,⁴⁹ $[\text{Zr}_6\text{Co}_4\text{-MOF}]$,⁴⁹
495 $\text{Zr}_6\text{O}_4(\text{OH})_4(\text{sal-TPD})_6$ ⁵⁰ (sal-TPD = salicylaldimine terphenyl
496 dicarboxylate), $\text{Zr}_6\text{O}_4(\text{OH})_4(\text{sal-TPD-Co})_6$,⁵⁰ $\text{H}_2(\text{sal-TPD})_6$,⁵⁰
497 H_3BTB ,⁶⁸ and $\text{H}_2\text{Me}_2\text{BPDC}$,⁶⁹ were prepared according to the
498 reported procedures.
499

500 **Preparation of $\text{Cu}_{3-y}\text{Co}_y(\text{BTC})_2$ Systems.** In a 20 mL vial, freshly
501 prepared $\text{Cu}_3(\text{BTC})_2$ (0.135 g, 0.203 mmol) and a solution of CoCl_2
502 (10 mL DMF) were heated at 90 °C for 24 h in an isothermal oven.
503 For the preparation of $\text{Cu}_{2.82}\text{Co}_{0.18}(\text{BTC})_2$, $\text{Cu}_{2.4}\text{Co}_{0.6}(\text{BTC})_2$, and
504 $\text{Cu}_{1.5}\text{Co}_{1.5}(\text{BTC})_2$, the concentrations of CoCl_2 were 0.147, 0.294, and
505 0.441 M, respectively. After 24 h heating, the reaction mixture was
506 cooled down to room temperature, and the resulting green powder
507 was washed thoroughly with DMF to remove excess cobalt chloride.
508 After DMF washing, the powder was soaked in dichloromethane at
509 room temperature. The solvent was replaced twice a day over 72 h
510 before further characterization.
511

512 **Preparation of $\text{Cu}_{3-y}\text{Zn}_y(\text{BTC})_2$ Systems.** The crystals of
513 $\text{Zn}_3(\text{BTC})_2$ (1.00 g, 0.533 mmol) were soaked in 2 mL of saturated
513

514 copper nitrate solution in ethanol (1.01 M) at room temperature. For 515 the preparation of $\text{Cu}_{1.05}\text{Zn}_{1.95}(\text{BTC})_2$ and $\text{Cu}_{2.25}\text{Zn}_{0.75}(\text{BTC})_2$, the 516 reaction time was chosen as 9 and 18 h, respectively. The resulting 517 blue crystals were washed thoroughly with DMF to remove excess 518 copper nitrate and stored under DMF until further characterization. 519 **Preparation of $\text{Cu}_{6-y}\text{Co}_y(\text{BTB})_4(\text{BP})_3$ Systems.** The 520 $\text{Cu}_{2.34}\text{Co}_{3.66}(\text{BTB})_4(\text{BP})_3$ sample was synthesized by heating a mixture 521 of H_3BTB (44.7 mg, 0.102 mmol), BP (8.90 mg, 0.0570 mmol), 522 $\text{Cu}(\text{NO}_3)_2 \cdot 2\text{H}_2\text{O}$ (15.9 mg, 0.0685 mmol), and $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ 523 (19.9 mg, 0.0685 mmol) in 5 mL of DMF at 100 °C for 96 h. To 524 remove an excess of the reagents, the synthesized MOF was 525 thoroughly washed by DMF. The washing procedure was repeated 526 three times a day with fresh DMF for 3 days.

527 **X-ray Photoelectron Spectroscopy Studies.** XPS data were 528 collected using a Kratos AXIS Ultra DLD system equipped with a 529 hemispherical analyzer and monochromatic Al $K\alpha$ source; this vacuum 530 system has been described in detail elsewhere.⁵⁶ The base pressure of 531 the vacuum chamber was 2×10^{-9} Torr before sample introduction 532 and $\leq 2 \times 10^{-8}$ Torr during experiments. A charge neutralizer was used 533 to compensate for charging by bombarding the sample with low- 534 energy electrons, and binding energies were set according to the 535 position of adventitious carbon at 284.8 eV. A step size of 0.06 eV and 536 dwell times of 600 ms for O(1s), 800 ms for C(1s), N(1s), and 537 Cl(2p), and 1600 ms for Cu(2p), Co(2p), Zn(2p), and Zr(3d) the 538 $\text{Cu}(\text{L}_3\text{M}_5\text{M}_5)$ region, and the valence band region were used. Survey 539 scans were also collected to ensure there were no contaminants 540 introduced during sample preparation. Samples could be directly 541 transferred to a catalysis cell without exposure to air. In the catalysis 542 cell, the samples were treated at temperatures ranging from room 543 temperature to 225 °C under a pure gas flow of Ar (Airgas, UHP 544 99.999%). The samples were heated by means of a shielded boron 545 nitride button heater, and the sample temperature was measured by a 546 type K thermocouple pin on which the sample holder was positioned 547 in the catalysis cell.

548 **Microwave Conductivity Measurements.** Our microwave 549 conductivity measurements consist of observing the change in 550 resonance characteristics induced in a microwave cavity by the sample 551 of interest. This experiment was carried out using a custom-built 552 microwave circuit in an X-band waveguide. A voltage-controlled 553 oscillator (Sievers V03262X/00) provided a frequency-tunable micro- 554 wave power source with an output of ~100 mW, which was computer 555 controlled via a programmable voltage source (Keithley 230). The 556 sample was mounted on a fused quartz slide near one of the electric- 557 field maxima inside a custom-built TE_{102} microwave resonator, with a 558 natural resonance frequency of ~8.9 GHz and a quality factor of ~200. 559 The power reflection coefficient from the cavity was measured as a 560 function of microwave frequency using a Schottkey barrier diode 561 (1N23C) mounted inside a waveguide short, the (50 ohm terminated) 562 voltage output of which was digitized through a source-measure unit 563 (Keithley 236). The power reflection coefficient was calculated from 564 the detector voltage by converting voltage into microwave power using 565 a previously determined calibration curve (acquired using a pyro- 566 electric power meter), and taking the ratio of power reflected from the 567 cavity to that reflected from a brass plate mounted at the same 568 position. The interpretation of the acquired data was done through 569 explicit electromagnetic simulations of the cavity response to sample 570 properties, as we describe in the [Supporting Information](#).

571 **Inductively Coupled Plasma Atomic Emission Spectroscopy 572 (ICP-AES).** ICP-AES analysis was conducted using a Finnigan 573 ELEMENT XR double focusing magnetic sector field inductively 574 coupled plasma-mass spectrometer (SF-ICP-MS) with Ir and/or Rh as 575 internal standards. A Micromist U-series nebulizer (0.2 mL/min, GE, 576 Australia), quartz torch, and injector (Thermo Fisher Scientific, USA) 577 were used for sample introduction. The sample gas flow was 1.08 mL/ 578 min, and the forwarding power was 1250 W. The samples were 579 digested in Teflon vessels with nitric and hydrochloric acids and then 580 heated at 180 °C for 4 h.

581 **Computational Details.** DFT calculations were performed using a 582 finite size cluster model cut out from the crystallographically 583 determined structure of $\text{Cu}_3(\text{BTC})_2$, which contains a Cu^{2+} dimer

584 surrounded by four BTC units with the carboxylates saturated with H 585 atoms. The bimetallic Co–Cu–BTC model was created by replacing 585 one of the Cu atoms with Co in our $\text{Cu}_2(\text{BTC})_4$ cluster model which 586 corresponds to 50% substitution of the second metal. Geometry 587 optimizations were carried out employing the hybrid B3LYP 588 method^{70–72} (Becke's three-parameter exchange functional and the 589 correlation functional from Lee, Yang, and Parr) and the def2-TZVPP 590 basis set^{73,74} (Ahrlrichs' split-valence triple- ζ basis set with polarization 591 functions on all atoms with additional polarization functions) using the 592 TURBOMOLE 6.6 program package.⁷⁵ Grimme's DFT-D3 method⁷⁶ 593 was used for including the dispersion corrections for the nonbonding 594 van der Waals interactions and the density of states for the clusters 595 were obtained using Gaussian smearing of the Kohn–Sham orbital 596 energies.

597 **Other Physical Measurements.** Powder X-ray diffraction 598 patterns were recorded on a Rigaku Miniflex II diffractometer with 599 accelerating voltage and current of 30 kV and 15 mA, respectively. 600 Diffuse reflectance spectra were collected from pressed pellets on a 601 PerkinElmer Lambda 4S UV/vis spectrometer referenced to 602 Spectralon or potassium bromide.

603 The conductivity on MOF pressed pellets was performed using a 604 source meter (Keithley Instruments GmbH, Germering, Germany, 605 model 2400). The connection between the two electrodes was 606 established with a Signatone Mount Stand (model S-302-4) and a two- 607 point probe (Head Inc., model SP4-62045STBY). The set up was 608 calibrated using a VLSI Standard (100 mA, 0.011 Ohm) at 2.1 V and 609 100 mA.

■ ASSOCIATED CONTENT

● Supporting Information

613 The Supporting Information is available free of charge on the 613 ACS Publications website at DOI: [10.1021/jacs.7b01125](https://doi.org/10.1021/jacs.7b01125).

615 MOF crystal structures, secondary building units, XPS 615 spectra, description of assignment of cobalt oxidation 616 states from XPS, PXRD patterns, microwave conductivity 617 data, and diffuse reflectance data ([PDF](#))

■ AUTHOR INFORMATION

Corresponding Authors

[*CHEND@mailbox.sc.edu](mailto:CHEND@mailbox.sc.edu)
[*shustova@sc.edu](mailto:shustova@sc.edu)

ORCID

623 Andreas Heyden: [0000-0002-4939-7489](https://orcid.org/0000-0002-4939-7489)
624 Donna A. Chen: [0000-0003-4962-5530](https://orcid.org/0000-0003-4962-5530)
625 Natalia B. Shustova: [0000-0003-3952-1949](https://orcid.org/0000-0003-3952-1949)

Notes

626 The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

630 Acknowledgement is made to the Donors of the American 630 Chemical Society Petroleum Research Fund for support of this 631 research. N.B.S. gratefully acknowledges support from the NSF 632 CAREER Award (DMR-1553634) and a Cottrell Scholar 633 Award from the Research Corporation for Science Advance- 634 ment. D.A.C. also acknowledges financial support from the 635 NSF (CHE-300227), and A.J.B. acknowledges funding from an 636 NSF IGERT grant (DGE-1250052). N.B.S. and D.A.C. are 637 grateful for support from the Savannah River National 638 Laboratory/Department of Energy Program. B.W.L. and 639 O.G.R. thank the Solar Photochemistry Program, Division of 640 Chemical Sciences, Geosciences, and Biosciences, Office of 641 Basic Energy Sciences, U.S. Department of Energy under 642 Contract DE-AC36-08-GO28308 with the National Renewable 643 Energy Laboratory for financial support. We also acknowledge 644

the University of South Carolina College of Engineering and Computing X-ray Photoelectron Spectroscopy Facility for use of the instrument. A.H. acknowledges support from the NSF (CBET-1254352). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

- (1) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. *Chem. Rev.* **2012**, *112*, 673–674.
- (2) Sun, L.; Campbell, M. G.; Dincă, M. *Angew. Chem., Int. Ed.* **2016**, *55*, 3566–3579.
- (3) Horike, S.; Umeyama, D.; Kitagawa, S. *Acc. Chem. Res.* **2013**, *46*, 2376–2384.
- (4) Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A. *Chem. - Eur. J.* **2011**, *17*, 11372–11388.
- (5) Zhang, T.; Lin, W. *Chem. Soc. Rev.* **2014**, *43*, 5982–5993.
- (6) Zhou, H.-C.; Kitagawa, S. *Chem. Soc. Rev.* **2014**, *43*, 5415–5418.
- (7) Leong, C. F.; Usov, P. M.; D’Alessandro, D. M. *MRS Bull.* **2016**, *41*, 858–864.
- (8) Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R. *J. Am. Chem. Soc.* **2015**, *137*, 15703–15711.
- (9) Zeng, M.-H.; Wang, Q.-X.; Tan, Y.-X.; Hu, S.; Zhao, H.-X.; Long, L.-S.; Kurmoo, M. *J. Am. Chem. Soc.* **2010**, *132*, 2561–2563.
- (10) Zhai, Q.-G.; Mao, C.; Zhao, X.; Lin, Q.; Bu, F.; Chen, X.; Bu, X.; Feng, P. *Angew. Chem., Int. Ed.* **2015**, *54*, 7886–7890.
- (11) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. *Chem. Rev.* **2012**, *112*, 1105–1125.
- (12) Nouar, F.; Eubank, J. F.; Bousquet, T.; Wojtas, L.; Zaworotko, M. J.; Eddaoudi, M. *J. Am. Chem. Soc.* **2008**, *130*, 1833–1835.
- (13) Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O’Keeffe, M.; Yaghi, O. M. *Chem. - Eur. J.* **2012**, *18*, 10595–10601.
- (14) Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M. *ACS Nano* **2014**, *8*, 7451–7457.
- (15) Stavila, V.; Talin, A. A.; Allendorf, M. D. *Chem. Soc. Rev.* **2014**, *43*, 5994–6010.
- (16) Silva, C. G.; Corma, A.; García, H. *J. Mater. Chem.* **2010**, *20*, 3141–3156.
- (17) Komatsu, T.; Taylor, J. M.; Kitagawa, H. *Inorg. Chem.* **2016**, *55*, 546–548.
- (18) Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H. *Inorg. Chem.* **2009**, *48*, 9048–9050.
- (19) Guo, Z.; Panda, D. K.; Maity, K.; Lindsey, D.; Parker, T. G.; Albrecht-Schmitt, T. E.; Barreda-Esparza, J. L.; Xiong, P.; Zhou, W.; Saha, S. *J. Mater. Chem. C* **2016**, *4*, 894–899.
- (20) Hendon, C. H.; Tiana, D.; Walsh, A. *Phys. Chem. Chem. Phys.* **2012**, *14*, 13120–13132.
- (21) Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. *Angew. Chem., Int. Ed.* **2015**, *54*, 4349–4352.
- (22) Lee, Y.; Kim, S.; Kang, J. K.; Cohen, S. M. *Chem. Commun.* **2015**, *51*, 5735–5738.
- (23) Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. *Coord. Chem. Rev.* **2016**, *307*, 361–381.
- (24) Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P.; Léonard, F.; Allendorf, M. D. *Science* **2014**, *343*, 66–68.
- (25) Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M. *J. Am. Chem. Soc.* **2012**, *134*, 12932–12935.
- (26) Zhang, Z.; Awaga, K. *MRS Bull.* **2016**, *41*, 883–889.
- (27) Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M. *J. Am. Chem. Soc.* **2015**, *137*, 1774–1777.
- (28) Liu, D.; Lu, K.; Poon, C.; Lin, W. *Inorg. Chem.* **2014**, *53*, 1916–1924.
- (29) Lu, G.; Hupp, J. T. *J. Am. Chem. Soc.* **2010**, *132*, 7832–7833.
- (30) Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dincă, M. *J. Am. Chem. Soc.* **2015**, *137*, 6164–6167.
- (31) Diaz, R.; Orcajo, M. G.; Botas, J. A.; Calleja, G.; Palma, J. *Mater. Lett.* **2012**, *68*, 126–128.
- (32) Huang, Z.-F.; Song, J.; Li, K.; Tahir, M.; Wang, Y.-T.; Pan, L.; Wang, L.; Zhang, X.; Zou, J. *J. Am. Chem. Soc.* **2016**, *138*, 1359–1365.
- (33) Wu, G.; Huang, J.; Zang, Y.; He, J.; Xu, G. *J. Am. Chem. Soc.* **2017**, *139*, 1360–1363.
- (34) Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. *J. Am. Chem. Soc.* **2012**, *134*, 18082–18088.
- (35) Deria, P.; Mondloch, J. E.; Karagiari, O.; Bury, W.; Hupp, J. T.; Farha, O. K. *Chem. Soc. Rev.* **2014**, *43*, 5896–5912.
- (36) Lalonde, M.; Bury, W.; Karagiari, O.; Brown, Z.; Hupp, J. T.; Farha, O. K. *J. Mater. Chem. A* **2013**, *1*, 5453–5468.
- (37) Zhai, Q.-G.; Bu, X.; Mao, C.; Zhao, X.; Feng, P. *J. Am. Chem. Soc.* **2016**, *138*, 2524–2527.
- (38) Zhang, Z.; Zhang, L.; Wojtas, L.; Nugent, P.; Eddaoudi, M.; Zaworotko, M. *J. Am. Chem. Soc.* **2012**, *134*, 924–927.
- (39) Brozek, C. K.; Dincă, M. *Chem. Soc. Rev.* **2014**, *43*, 5456–5467.
- (40) Song, X.; Jeong, S.; Kim, D.; Lah, M. S. *CrystEngComm* **2012**, *14*, 5753–5756.
- (41) Cohen, S. M. *J. Am. Chem. Soc.* **2017**, *139*, 2855–2863.
- (42) Sun, L.; Park, S. S.; Sheberla, D.; Dincă, M. *J. Am. Chem. Soc.* **2016**, *138*, 14772–14782.
- (43) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. *Nature* **1999**, *402*, 276–279.
- (44) Choi, J. H.; Choi, Y. J.; Lee, J. W.; Shin, W. H.; Kang, J. K. *Phys. Chem. Chem. Phys.* **2009**, *11*, 628–631.
- (45) Brozek, C. K.; Dincă, M. *J. Am. Chem. Soc.* **2013**, *135*, 12886–12891.
- (46) Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. *J. Am. Chem. Soc.* **2007**, *129*, 14176–14177.
- (47) Brozek, C. K.; Michaelis, V. K.; Ong, T.-C.; Bellarosa, L.; López, N.; Griffin, R. G.; Dincă, M. *ACS Cent. Sci.* **2015**, *1*, 252–260.
- (48) Zhang, S.-Y.; Li, D.; Guo, D.; Zhang, H.; Shi, W.; Cheng, P.; Wojtas, L.; Zaworotko, M. *J. Am. Chem. Soc.* **2015**, *137*, 15406–15409.
- (49) Yuan, S.; Chen, Y.-P.; Qin, J.; Lu, W.; Wang, X.; Zhang, Q.; Bosch, M.; Liu, T.-F.; Lian, X.; Zhou, H.-C. *Angew. Chem., Int. Ed.* **2015**, *54*, 14696–14700.
- (50) Manna, K.; Zhang, T.; Carboni, M.; Abney, C. W.; Lin, W. *J. Am. Chem. Soc.* **2014**, *136*, 13182–13185.
- (51) Jee, B.; Eisinger, K.; Gul-E-Noor, F.; Bertmer, M.; Hartmann, M.; Hims, D.; Pöppl, A. *J. Phys. Chem. C* **2010**, *114*, 16630–16639.
- (52) Gul-E-Noor, F.; Jee, B.; Mendt, M.; Hims, D.; Pöppl, A.; Hartmann, M.; Haase, J.; Krautscheid, H.; Bertmer, M. *J. Phys. Chem. C* **2012**, *116*, 20866–20873.
- (53) Gotthardt, M. A.; Schoch, R.; Wolf, S.; Bauer, M.; Kleist, W. *Dalton. Trans.* **2015**, *44*, 2052–2056.
- (54) Parkes, M. V.; Sava Gallis, D. F.; Greathouse, J. A.; Nenoff, T. M. *J. Phys. Chem. C* **2015**, *119*, 6556–6567.
- (55) Sahiner, N.; Demirci, S.; Yildiz, M. *J. Electron. Mater.* **2017**, *46*, 790–801.
- (56) Duke, A. S.; Dolgopolova, E. A.; Galhenage, R. P.; Ammal, S. C.; Heyden, A.; Smith, M. D.; Chen, D. A.; Shustova, N. B. *J. Phys. Chem. C* **2015**, *119*, 27457–27466.
- (57) Liu, J.; Zhu, R.; Xu, T.; Xu, Y.; Ge, F.; Xi, Y.; Zhu, J.; He, H. *Chemosphere* **2016**, *144*, 1148–1155.
- (58) Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F. *Handbook of X-Ray Photoelectron Spectroscopy*; Perkin Elmer Corporation: Eden Prairie, MN, 1979.
- (59) He, J.; Zhang, Y.; Pan, Q.; Yu, J.; Ding, H.; Xu, R. *Microporous Mesoporous Mater.* **2006**, *90*, 145–152.
- (60) Song, X.; Kim, T. K.; Kim, H.; Kim, D.; Jeong, S.; Moon, H. R.; Lah, M. S. *Chem. Mater.* **2012**, *24*, 3065–3073.
- (61) Nasalevich, M. A.; Goesten, M. G.; Savenije, T. J.; Kapteijn, F.; Gascon, J. *Chem. Commun.* **2013**, *49*, 10575–10577.

780 (62) Sun, L.; Miyakai, T.; Seki, S.; Dincă, M. *J. Am. Chem. Soc.* **2013**,
781 *135*, 8185–8188.

782 (63) Grozema, F. C.; Siebbeles, L. D. A.; Warman, J. M.; Seki, S.;
783 Tagawa, S.; Scherf, U. *Adv. Mater.* **2002**, *14*, 228–231.

784 (64) Usman, M.; Mendiratta, S.; Batjargal, S.; Haider, G.; Hayashi,
785 M.; Rao Gade, N.; Chen, J.-W.; Chen, Y.-F.; Lu, K.-L. *ACS Appl.*
786 *Mater. Interfaces* **2015**, *7*, 22767–22774.

787 (65) López, R.; Gómez, R. *J. Sol-Gel Sci. Technol.* **2012**, *61*, 1–7.

788 (66) Liu, J.; Wang, Y.; Benin, A. I.; Jakubczak, P.; Willis, R. R.; LeVan,
789 M. D. *Langmuir* **2010**, *26*, 14301–14307.

790 (67) Chen, B.; Eddaaoudi, M.; Hyde, S. T.; O’Keeffe, M.; Yaghi, O. M.
791 *Science* **2001**, *291*, 1021–1023.

792 (68) Bednáříková, T.; Tošner, Z.; Horský, J.; Jindřich, J. *J. Inclusion*
793 *Phenom. Macrocyclic Chem.* **2015**, *81*, 141–152.

794 (69) Burrows, A. D.; Frost, C. G.; Mahon, M. F.; Richardson, C.
795 *Chem. Commun.* **2009**, 4218–4220.

796 (70) Becke, A. D. *Phys. Rev. A: At., Mol., Opt. Phys.* **1988**, *38*, 3098–
797 3100.

798 (71) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648–5652.

799 (72) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B: Condens. Matter*
800 *Mater. Phys.* **1988**, *37*, 785–789.

801 (73) Schäfer, A.; Huber, C.; Ahlrichs, R. *J. Chem. Phys.* **1994**, *100*,
802 5829–5835.

803 (74) Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* **2005**, *7*,
804 3297–3305.

805 (75) *Turbomole V6.6 2014*, a development of University of Karlsruhe
806 and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBO-
807 MOLE GmbH; available from <http://www.turbomole.com>.

808 (76) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.*
809 **2010**, *132*, 154104–154122.