
Analytical Performance Modeling and Validation of Intel’s Xeon
Phi Architecture

Sudheer Chunduri†, Prasanna Balaprakash†, Vitali Morozov†, Venkatram Vishwanath†,

Kalyan Kumaran†

Argonne National Laboratory†
{sudheer, pbalapra, morozov, venkat, kumaran}@anl.gov

Argonne National Laboratory
Lemont, IL 60439

ABSTRACT
Modeling the performance of scienti�c applications on emerging
hardware plays a central role in achieving extreme-scale comput-
ing goals. Analytical models that capture the interaction between
applications and hardware characteristics are a�ractive because
even a reasonably accurate model can be useful for performance
tuning before the hardware is made available. In this paper, we
develop a hardware model for Intel’s second-generation Xeon Phi
architecture code-named Knights Landing (KNL) for the SKOPE
framework. We validate the KNL hardware model by projecting
the performance of minibenchmarks and application kernels. �e
results show that our KNL model can project the performance with
prediction errors of 10% to 20%. �e hardware model also provides
informative recommendations for code transformations and tuning.

KEYWORDS
KNL, performance, projection, benchmark, analytical modeling

1 INTRODUCTION
Evaluating the performance of scienti�c applications on a wide
range of hardware plays a central role in many areas of high-
performance computing. �is is challenging and time-consuming
since it requires signi�cant human e�ort. �e di�culty is exacer-
bated by the constantly growing scale of complexity in the hard-
ware design and adoption of new hardware-speci�c algorithms for
the scienti�c applications. So�ware development cycles have be-
come relatively long, hindering scienti�c productivity. Furthermore,
studying the performance of scienti�c applications on emerging
architectures is even challenging when they are not yet available.

Performance modeling is one the most important approaches
in performance evaluation. �e models are used to capture vari-
ous facets of an application on a target system. Approaches for
modeling the performance range from discrete-event simulations
to queuing models. Analytical modeling is encapsulating vary-
ing degrees of interactions between applications, system so�ware,
and architecture by using closed-form expressions for predicting
performance metrics. Performance pro�ling tools, (e.g., TAU [7],
HPCToolkit [5]) focus mostly on the performance characteristics
of a given implementation. �ese tools rely on the actual execu-
tion of the workload on the hardware. Architecture simulators

are able to reveal performance responses of various hardware con-
�gurations, but they treat workloads as black boxes and are time
consuming. Application performance models [3, 9] summarize the
asymptotic performance characteristics. �ey can estimate perfor-
mance bounds at a coarse granularity; however, they express only
the characteristics of a given implementation without capturing
the internal relationship between the control and the data �ow.

Recently, performance projection frameworks have been used to
reduce the amount of human e�ort and to streamline performance
projection process [6, 8]. �ey try to overcome the limitations of
general-purpose performance tools and adhoc modeling practices.
�ese frameworks abstract the workload’s behavioral properties
and the hardware characteristics and combine both to project per-
formance. �ese properties are data �ow, control �ow, computation
intensity, concurrency, and communication pa�erns. �e hardware
characteristics are available execution units, instruction set, order
of executions, memory hierarchy, network, and I/O.

In this paper, we focus on the SKOPE [1] performance projec-
tion framework. Given a formalized description of the workload’s
performance behavior, SKOPE automatically analyzes, tunes, and
projects the workload’s performance for a given parameterized tar-
get hardware. �e frontend of SKOPE is a code skeletons language,
a uniform description of the semantic behavior of a workload. Ac-
cording to the semantics and the structures in the code skeleton,
the backend explores various transformations, synthesizes perfor-
mance characteristics of each transformation, and evaluates the
transformation with various hardware models.

�e SKOPE hardware models perform incremental instruction
scheduling. �is was su�cient to model in-order architectures such
IBM Power A2 or Nvidia GPUs; however, most current-generation
processors schedule instructions out of order and execute them
using multiple, not necessarily symmetric, instruction pipelines.
In this paper, we present the SKOPE extension to model these
architectural features. We will present the KNL hardware model as
a case study for validation. Our key contributions are:
• We extend the SKOPE language de�nition and its parser to enable

data dependency speci�cation at the control statement level.
• We develop a data dependency analysis and a scheduling algo-

rithm. �e analysis produces a dependency graph by identifying

write-a�er-read, read-a�er-write, and write-a�er-write depende-
cies. �e scheduling algorithm adopts a critical path algorithm
graph and schedules the instructions on mutiple pipelines.

• We develop a KNL analytical hardware model using the publicly
available data on KNL processor.

• We demonstrate the e�ectiveness of the new models by project-
ing the performance of minibenchmarks and of microkernels.
We achieved prediction accuracy between 80% and 90%.

• We describe the procedure to measure the latency at the granu-
larity of a few cycles, which can be used on other architectures.

�e paper is organized as follows. An overview of SKOPE and the
extensions to the SKOPE hardware model are described in Section 2.
In Section 3, the KNL-speci�c parameters used for the projection
are discussed and the hardware model is validated by comparing
the performance on the hardware. In Section 4, we summarize the
work and then discuss future work.

2 BENCHMARKS AND SKOPE EXTENSIONS
FOR KNL

�e HACC framework uses N-body techniques to simulate the
formation of structures under the in�uence of gravity in universe.
HACCmk is a key routine that calculates the particle force with an
O(N2) algorithm. �e source code and the skeleton of the HACCmk
are shown in Listings 1 and 2 repsectively. Nek5000 is a high-
order, incompressible Navier-Stokes solver based on the spectral
element method. For our study, we use the two kernels mxf12 and
glsc3i from Nekbone, a simpli�ed version of Nek5000 �ese are
matrix multiplication with a 12x12 size inner product and vector
dot product kernels, respectively.

2.1 SKOPE
SKOPE is a performance projection framework. Given a formalized
description of the workload’s performance behavior, SKOPE auto-
matically analyzes, tunes, and projects the workload’s performance
for a target hardware. �e SKOPE language [1] is the front-end
of the framework. Its syntax allows the modeler to specify how
input data may a�ect the control and data �ow. �e key aspect
of the SKOPE language is to express what the workload needs to
do algorithmically, without specifying how it is done in the cur-
rent implementation. �e resulting description, referred to as a
code skeleton. �e SKOPE framework has been used to model not
only parallel applications and parallel architectures [2] but also
distributed work�ows [4].

To model KNL architecture that uses out-of-order execution on
multiple instruction pipelines, we have extended SKOPE with data
dependency analysis and a scheduling algorithm.

�e dependency analysis module checks for read-a�er-write,
write-a�er-read, write-a�er-write dependencies. In fp, xp, and fma
statements, the dependencies are expressed as 3-tuples (dependent
variable, “:”, a list of independent variables). For each BST, based
on the dependencies, the module creates a directed acyclic graph
G, where the nodes and edges represent statements and their de-
pendencies. �e module starts with a graph G, where each node
ni represents a statement si , and processes the statements in the
BST in order. For each variable vj in sj , the immediate previous
statement si is found, where vj is used as a dependent variable. A

Listing 1: HACCmk’s source code.
1 void Step10 ()

{

3 const float ma0 , ma1 , ma2 , ma3 , ma4 , ma5;

float dxc , dyc , dzc , m, r2, f;

5 float xi, yi, zi;

int j;

7 xi = 0.; yi = 0.; zi = 0.;

for (j = 0; j < count1; j++)

9 {

dxc = xx1[j] - xxi;

11 dyc = yy1[j] - yyi;

dzc = zz1[j] - zzi;

13 r2 = dxc * dxc + dyc * dyc + dzc * dzc;

15 f = pow(r2 + mp_rsm2 , -1.5) \\

-(ma0 + r2*(ma1 + r2*(ma2 \\

17 + r2*(ma4 + r2*(ma4 + r2*ma5)))));

19 m = (r2 < fsrrmax2) ? mass1[j] : 0.0f;

f = (r2 > 0.0f) ? m * f : 0.0f;

21 xi = xi + f * dxc;

yi = yi + f * dyc;

23 zi = zi + f * dzc;

}

25 *dxi = xi;

*dyi = yi;

27 *dzi = zi;

}

Listing 2: HACCmk’s code skeleton.
def main ()

2 {

:count = 327

4 :nt = 4000

for i = 0:count

6 {

f o r a l l j = 0:nt

8 {

ld xx1

10 ld yy1

ld zz1

12 fp dxc: xx1 , xxi

fp dyc: yy1 , yyi

14 fp dzc: zz1 , zzi

fp r2: dzc

16 fma r2: r2, dyc

fma r2: r2, dxc

18 fp f: r2, mp_rsm2

fp f1: f

20 fp f: f1, f

fp f: f // 1/(sqrt(f*f*f))

22 fma r1: r2, ma4 , ma5

fma r1: r1, r2, ma3

24 fma r1: r1, r2, ma2

fma r1: r1, r2, ma1

26 fma r1: r1, r2, ma0

fp f: f, r1

28 ld m

fp f: f, m

30 fp m1: r2, fsr

fp f: z, f, m1

32 fp m2: r2, z

fp f: z, f, m2

34 fma xi: xi, f, dxc

fma yi: yi, f, dyc

36 fma zi: zi, f, dzc

}

38 }

}

directed edge ei j from si to sj is created. Figure 1 illustrates the
dependency graph for the HACCmk.

For out-of-order scheduling with multiple pipelines, we use the
dependency analysis graphG , the latency of each node ni inG , and

2

17 | fma r1: r1, r2, ma1

18 | fma r1: r1, r2, ma0

19 | fp f: f, r1

13 | fp f: f

21 | fp f: f, m

2 | ld yy1

5 | fp dyc: yy1, yyi

8 | fma r2: r2, dyc

27 | fma yi: yi, f, dyc

12 | fp f: f1, f

15 | fma r1: r1, r2, ma3

16 | fma r1: r1, r2, ma2

23 | fp f: z, f, m1

25 | fp f: z, f, m2

10 | fp f: r2, mp_rsm2

11 | fp f1: f

6 | fp dzc: zz1, zzi

28 | fma zi: zi, f, dzc

7 | fp r2: dzc

9 | fma r2: r2, dxc

14 | fma r1: r2, ma4, ma5

22 | fp m1: r2, fsr

24 | fp m2: r2, z

1 | ld xx1

4 | fp dxc: xx1, xxi

26 | fma xi: xi, f, dxc

3 | ld zz1

20 | ld m

Figure 1: Date dependency graph for HACCmk.
the number of execution units on the hardware. First, unweighted
G is converted to weightedG by assigning a weightwi j to edge ei j
equal to the latency of execution the node ni . �e source ni and
the destination nj of an edge ei j are called the parent node and the
child node, respectively; a node without a parent is called an entry
node; a node without a child is called an exit node. A node cannot
start execution before all parent nodes have �nished execution.
�e objective is to assign the nodes of G to the execution units
such that the total schedule time is minimized without violating
the dependencies. A schedule is e�cient if the execution units are
used without idle cycles. We adopt critical path and list scheduling
heuristics on G for out-of-order scheduling on multiple pipelines.

3 VALIDATION ON THE KNL HARDWARE
We use the KNL hardware model in SKOPE to project the perfor-
mance of compute kernels. �e �rst challenge involves validating
the results when KNL is not yet available. Since the architecture
simulator is not public, we validated the model on the KNL hard-
ware once it became available. �e second challenge is related
to the accurate benchmarking. Since a singe call of a compute
kernel consumes a few thousand cycles, accurately measuring the
time is important. We developed a low-overhead microbenchmark-
ing methodology to accurately measure the cycle and instruction
counts. We validated the hardware model using microbenchmarks
�rst and then using the HACCmk and Nekbone compute kernels.

3.1 HACCmk and Nekbone Kernel Validation
We use the code skeletons of the HACCmk and Nekbone kernels
as input to the KNL hardware model to derive performance pro-
jections. We validate the projected performance by running these
benchmarks on the KNL hardware.

-24

-22

-20

-18

-16

-14

-12

-10

-8
 500 1000 1500 2000 2500 3000 3500 4000

%
 o

f
p

re
d

ic
ti

o
n

 e
rr

o
r

HACCmk problem size

Figure 2: Percentage of prediction error for the HACCmk
with di�erent problem sizes

For a given code skeleton, the abstract executionmodel in SKOPE
experiments with di�erent code transformations and picks the best
code transformation heuristically. One such code transformation is
loop unrolling. Table 1 shows the projected cycles for the HACCmk
microkernel with three input sizes using di�erent unroll factors
from 1 to 16. �e hardware model picks four as the best unroll
factor based on the analysis of number of stalled cycles in the exe-
cution and the number of data elements (representing the registers
on the hardware) saved. Next, we compare the cycles projected
by the hardware model using the unroll factor of four with the
measurement on the hardware.

Table 1: HACCmk - projection of execuyion cycles
Code transform. N=2000 N=3000 N=4180

Unroll:1 3678750 5518125 7688587
Unroll:2 1859812 2789718 3887008
Unroll:4 960562 1440843 2007575
Unroll:8 608015 912023 1270752
Unroll:16 585023 877535 1222698

Table 2: HACCmk - Projected vs. Measured cycles
N=2000 N=3000 N=4180

Unroll:4 960562 1440843 2007575
Cycles on hardware 1149040 1727047 2407385

% of error -16.40 -10.42 -9.81

Table 2 shows the cycles measured on the hardware and the
corresponding prediction error. In Figure 2, we show the percentage
of prediction error as a function of the problem size. We observe
that the error starts 21.5% for a smaller problem size to 9.8% for a
larger problem size. �ese reasonably high prediction accuracies
validate the KNL hardware model, where the unroll factor predicted
by the hardware model concurs with the loop unroll factor selected
by the compiler/hardware.

3

�e model extensions discussed in Section 2 focus primarily on
the instruction scheduling and out-of-order execuction. Intuitively,
this information should be su�cient to project the performance
with reasonable accuracy for compute-intensive kernels such as
HACCmk. �e primitive memorymodel that is part of the hardware
model would be crucial to the memory-intensive kernels such as
the Nekbone kernels. �e memory model accounts for the latency
of a memory operation for the �rst touch, and it accounts for the
locality in the stride-1 memory access streams.

We now use the hardware model to project the performance of
the Nekbone microkernels mxf12 and glsc3i. Tables 3 and 4 respec-
tively show the prediction errors for the projection of kernelsmxf12
and glsc3i as -10.33% and -8.30%. �e hardware model was able
to project the performance well even for these kernels. �ese rea-
sonably good prediction accuracies validate the memory modeling
aspects of the hardware model.

Table 3 shows the validation for the mxf12 kernel with three
matrix sizes. While the prediction error for the smallest matrix size
is relatively high compared with the bigger matrix sizes, the overall
prediction accuracy is reasonably good. Also, the instructions pro-
jected by the hardware model match closely with the instructions
retired as measured on the hardware. As shown in Table 4, the
hardware model selects 4 as the best unroll factor for the glsc3i
kernel as well.

Table 3: mxf12 - Projection of number of cycles
mxf12
Size

Cycles
Measured

Cycles
Projected

Instructions
Measured

Instructions
Projected

(144, 12, 12) 23582 21456 42642 44352
(12, 12, 12) 2223 1788 3567 3696
(12, 144, 12) 22425 20004 40001 41712

Total 48230 43248 86210 89760
%of error: - -10.33 - 4.12

Table 4: glsc3i - Projection of number of cycles
Code
Transform

Cycles
Projected

Cycles
Measured

Reference
Cycles

Instructions
Measured

unroll:1 18579456 5309343 4930055 5308435
unroll:2 9289728
unroll:4 4866048
unroll:8 2875392

4 CONCLUSION AND FUTUREWORK
We have developed a hardware model for the second-generation
Intel Xeon Phi architecture code named Knights Landing, by extend-
ing the SKOPE execution model to support out-of-order instruction
scheduling and pipelining. �e model was used to project the per-
formance of HACCmk and Nekbone kernels that are derived from
critical regions of two exascale applications, HACC and Nek5000,
respectively and was validated by using the runs on the hardware.
�e model can be used to project application performance and sug-
gest e�ective code transformations on the target hardware even
before the production runs. �e model can help performance engi-
neers and hardware designers set performance-tuning goals, select

code optimizations, and, above all, identify which hardware fea-
tures are more suitable for their applications. �is information can
help them advocate for certain proposed hardware features by the
vendors in future microarchitectures such as Knights Hill.

Future work includes extending the SKOPE framework to sup-
port a wider selection of hardware models so that it can be used
to study various computer architectures. We also plan to extend
the skeleton language to model applications with a speci�c focus
on data-�ow-based optimizations, asymmetric pipelines, and more
code transformations such as loop spli�ing and loop fusion.

AcknowledgmentsWe thank the ALCF application and opera-
tions support sta� for their help. �is research used resources of
the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the O�ce of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357 and
the RAMSES project under the Next Generation Networking for
Science Program.

REFERENCES
[1] J. Meng, X. Wu, V. Morozov, V. Vishwanath, K. Kumaran, and Valerie Taylor.

2014. SKOPE: A framework for modeling and exploring workload behavior. In
11th ACM Conference on Computing Frontiers.

[2] Jichi, Guo and Jiayuan, Meng and Qing, Yi and Vitali, Morozov and Kalyan, Ku-
maran. 2014. Analytically modeling application execution for so�ware-hardware
co-design. In IEEE 28th International Parallel & Distributed Processing Symposium.

[3] Darren J. Kerbyson, Henry J. Alme, Adolfy Hoisie, Fabrizio Petrini, Harvey J.
Wasserman, and M. Gi�ings. 2001. Predictive performance and scalability mod-
eling of a large-scale application. In SC.

[4] Maheshwari Ketan, Jung Eun-Sung, Meng Jiayuan, Vishwanath Venkatram, and
Ke�imuthu Rajkumar. 2016. Improving multisite work�ow performance using
model-based scheduling. In Future Generation Computer Systems.

[5] L. Adhianto and S. Banerjee and M. Fagan and M. Krentel and G. Marin and J.
Mellor-Crummey. 2010. HPCToolkit: Tools for performance analysis of optimized
parallel programs.. In Concurr. Comput.

[6] Meng, J. and Morozov, V. A. and Kumaran, K. and Vishwanath, V. and Uram, T.
D. 2011. GROPHECY: GPU performance projection from CPU code skeletons. In
SC.

[7] Sameer S., Shende and Allen D., Malony. 2006. �e TAU parallel performance
system.. In International Journal of High Performance Computing Applications. 20,
no.2,287–311.

[8] Sameh, Sharkawi and Don, DeSota and Raj, Panda and Stephen, Stevens and
Valerie, Taylor and Xingfu, Wu. 2012. SWAPP: A framework for performance
projections of HPC applications. In IEEE IPDPS2012 Workshop on Large-Scale
Parallel Processing.

[9] K. L. Spa�ord and J. S. Ve�er. 2012. Aspen - A domain speci�c language for
performance modeling. In SC.

4

	Abstract
	1 Introduction
	2 Benchmarks and SKOPE extensions for KNL
	2.1 SKOPE

	3 Validation on the KNL hardware
	3.1 HACCmk and Nekbone Kernel Validation

	4 Conclusion and Future Work
	References

