.

ldaho National
Laboratory

INL/EXT-16-40755
Revision 0

NSR&D Program Fiscal Year 2015

Funded Research

Stochastic Modeling of
Radioactive Material
Releases Final Report

Idaho National Laboratory & ldaho State

University

December 2016

INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

DISCLAIMER

This information was prepared as an account of work sponsored by
an agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

NSR&D Program Fiscal Year 2015 Funded Research

Stochastic Modeling of Radioactive Material Releases

Final Report

Revision O
December 2016

Idaho National Laboratory & Idaho State University

Prepared for the
U.S. Department of Energy
Assistant Secretary for Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-051D14517

INL/EXT-16-40755
Revision 0 Page 4 of 249

EXECUTIVE SUMMARY

Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy
use unmitigated hazard evaluations to determine if potential radiological doses associated with design
basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that
sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or
workers, merit selection of safety structures, systems, or components or other controls to prevent or

mitigate the hazard.

Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and
simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically
calculates the radiation dose distribution associated with hypothetical radiological material release
scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution
result to allow a deeper understanding of the dose potential. SODA allows users to select the
distribution type and parameter values for all of the input variables used to perform the dose
calculation. Users can also specify custom distributions through a user defined distribution option.
SODA then randomly samples each distribution input variable and calculates the overall resulting dose
distribution. In cases where an input variable distribution is unknown, a traditional single point value can
be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and
can be installed on both Windows and Mac computers. SODA is a standalone software application and
does not require MATLAB to function.

SODA provides improved risk understanding leading to better informed decision making associated
with establishing nuclear facility material-at-risk limits and safety structure, system, or component
selection. It is important to note that SODA does not replace or compete with codes such as MACCS or
RSAC,; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and
support better informed decisions. The SODA development project was funded through a grant from

the DOE Nuclear Safety Research and Development Program.

INL/EXT-16-40755

Revision 0 Page 5 of 249
Contents
L. INTRODUCTION ...t e e e e e e e e e e e et e e e e e e e e e e e e e e e e e e 8
N = 7 N 1 [€1 2 (@ 1 | PSSR 8
T 1 @] B PP 11
3.1, CodiNg FrameWOTKcooiiiiiiiiiiiiiii ettt 15
K €1 | PP 16
3.3, Monte Carlo MethOd..........cooo i 20
3.4. Distribution MatN@MALICSuuiiieeei e e e e et e e e e e e eeaet e e e e e e eeeenane 21
3.5. Bayesian INformation CHEEIIONooiiiiiiii e 29
4. COMPARISON WITH RSAC ...coettiiiiiiiiiieitieeeeeeeeeeeteeeeeeaeassasasaassnssnssnnnnnns 30
B, CONCLUSION. ..ttt ettt et e et e e e s baeeseaeeaenaennnes 31
APPENDIX A: SODA USEI MANUAIuuuueiiiiiiiiiiiiiiiiiiiiiissss s s s s s s s s s s s s s s s s aaaasaaasaaasaaaasaaasaaeens 33
APPENDIX B: MATLAB COUR.....uuuutuiiiiiiiiiiiiiiiiiiiiiiii a0 s s a s s s s e s e e e e e e e e e e e e e e e e e aaeaaaaeeeeeas 68
APPENDIX C: Damage Ratio EXPeriment DAtuuuuummmmimiiiiiiii s 240
Figures
FIgure 1. PIUME ISPEISION.uuuiii et e e e et e e e e e e e et e e e e e e e e ettt e e e e e e e e e earaa e eeeeas 10
Figure 2. SODA INPUL OPLIONS. ... e e e e e e et e e e e e e e e e e et a s e e e e e eesabra e e aeeeeees 12
Figure 3. x/Q values from random SAMPIING..........ccouiiiiiiiiiiiiie e 13
Figure 4. Adult male breathing rate. oo e e e e 14
FIGUIE 5. SODA GUI SCIEEN. ..uuuii it e e e e e e et e e e e e e e e e aa e s e e e e e ee ettt e eeeeeeees 15
Figure 6. MATLAB GUI QUICK SEAIM.......ouuiiiiieeiiieiiiiee et e e e e et s e e e e e e e eaeean e e e e eeeeas 16
Figure 7. Default GUI figure wWindow in MATLAB.i i 17
Figure 8. SODA ADOUL WINTGOW.uuiiiiiiiiiiiiiiiii s a e s e s e aaaaaaaaaeeas 18
Figure 9. SODA MaIN WINAOW.uuiiiiiiiiiiiiiiiii s a s e e s e s e aaaaaaaaaaaaaaeas 19
Figure 10. The MAR SEIECHON TOO0L.ccoeii i e e e e et e et e e e e ae e eeenes 20
Figure 11. Normal distriDULIONS.oooiiiiiiii ettt e e e e e e e ab e e e e eeeas 21
Figure 12. Log-NoOrmal diStriDULION.uuueiii e 22
Figure 13. Beta diStriDULION.ci i e e e e e e e e e e e e e a b e 23
Figure 14. Uniform distriDULION.ooooiiiii e e e e e e e e e e 23
Figure 15. Exponential diStrIDULION.u s a e e e e e e e e e 24
Figure 16. SODA user defined distribution GUIL..........cccooiiiiiiiiii e 26
Figure 17. Notice received when user defined distribution is inappropriate.cccccceeeiiieeeirieiiiinnnnnn. 27
Figure 18. User defined distribution VerifiCation...............cooiriiiiiii e e 28
Figure 19. User defined distribution typed €NtrY.coii i e 29

Figure 20. BeSt fit @XAMIPIE.u et e e e e et e e e e e eara e e eeeas 30

INL/EXT-16-40755

Revision 0 Page 6 of 249
Tables

Table 1. Breathing RAE DaAta...........cciiieiiiiiiiiiiii e e e e e ettt e s s e e e e e e et s e e e e e eeeasanaaes 24

Table 2. Verification Case INPUL DAtA.............iiiiieeiiiiiii e e e e e e e e e s 31

Table 3. Verification ReSUItS COMPAIISONcciiiiiiiiiiiiiiiee e e e e e e eeaea s 31

INL/EXT-16-40755

Revision 0 Page 7 of 249
ACROYNMS

ARF Airborne Release Fraction

BIC Bayesian Information Criterion

BR Breathing Rate

CED Committed Effective Dose

DBE Design Basis Event

DCF Dose Conversion Factor

DOE Department of Energy

DR Damage Ratio

GUI Graphical User Interface

GUIDE Graphical User Interface Development Environment

ICRP International Commission on Radiological Protection

IDE Integrated Development Environment

INL Idaho National Laboratory

ISU Idaho State University

LPF Leak Path Factor

MACCS MELCOR Accident Consequence Code System

MAR Material-at-Risk

NSRD Nuclear Safety Research and Development

PDC Probability Density Curve

PDF Probability Density Function

RF Respirable Fraction

RSAC Radiological Safety Analysis Computer

SODA Stochastic Objective Decision Aide

SSC System, Structure, or Component

ST Source Term

INL/EXT-16-40755
Revision 0 Page 8 of 249

1. INTRODUCTION

Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy
(DOE) use unmitigated hazard evaluations to determine if potential radiological doses associated with
design basis events (DBESs) challenge dose evaluation guidelines. Unmitigated DBEs that sufficiently
challenge dose evaluation guidelines for members of the public or workers merit selection of safety

structures, systems, or components (SSCs) or other controls to prevent or mitigate the hazard.

Idaho State University (ISU), in collaboration with ldaho National Laboratory (INL), has developed a
portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that
utilizes a Monte Carlo based code system to stochastically calculate the radiation dose distribution of
hypothetical radiological material release scenarios. Rather than producing a point estimate of the
dose, SODA produces a dose distribution to allow a deeper understanding of the dose potential. Thus,
SODA provides improved risk understanding leading to better informed decision making associated
with establishing material-at-risk (MAR) limits and safety SSC selection. It is important to note that
SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an
easy to use supplemental tool to help improve risk understanding and support better informed

decisions.
2. BACKGROUND

Radioactive material release modeling codes typically provide a bounding single point estimate of
receptor dose. While this approach attempts to bound the dose estimate, at least in the context of the
atmospheric dispersion model, it falls short in providing quantification of the expected value and the
uncertainty associated with the dose estimate. This is particularly problematic when one considers the
lack of governing distribution identification for input parameters. Thus, potential doses to workers and
members of the public can be overstated, leading to potentially excessive MAR limits and over

selection of safety SSCs.
DBE dose consequence calculations traditionally use the “five-factor” formula:
ST =MAR:-DR- ARF -RF - LPF 1)

where ST is the source term (Bg), MAR is the total available material-at-risk (Bq), DR is the damage
ratio (no units), ARF is the airborne release fraction (no units), RF is the respirable fraction (no units),

and LPF is the leak path factor (no units).

INL/EXT-16-40755
Revision 0 Page 9 of 249

Potential radiation doses are then calculated using:
CED=y/Q-BR-ST-DCF (2

where CED is the committed effective dose (Sv), x/Q is the plume dispersion (s/m®), BR is the

breathing rate (m?s), ST is the source term (Bq), and DCF is the dose conversion factor (Sv/Bq).

The ST is defined as the amount of radioactive or hazardous material released to the environment
following an accident. Quantifying the radiation source term goes beyond the determination of the
different radionuclides involved. Understanding how the radionuclide reacts with the environment is vital
if the source term is to be accurate. The effect of barriers and containers plays a significant role in
decreasing the uncertainties. Considering the uncertainties involved, obtaining an accurate value for
the ST is challenging. Most ST values are usually bounding or worst case scenarios; this means that
MAR, DR, ARF, RF and LPF are selected based on bounding estimates to produce a very bounding
ST. This method of estimation, while conservative, lacks detailed information about the overall dose

distribution.

MAR is the amount of radioactive material available to be acted upon as a result of a physical
disturbance such as a spill, shock or fire. The MAR can also be defined as the value representing a
maximum quantity of radioactive material present or anticipated to be effected from the analysis of a
structure. Thus, the MAR associated with a facility explosion would be different from the MAR during
the spill of a radioactive material powder. For instance, if an earthquake were to occur at a nuclear
facility the MAR would be everything in the nuclear facility, because the earthquake impacts the entire
facility.

DR is the fraction of the MAR that is effected by the accident scenario. For example, if a facility holds
many containers of radioactive material and a seismic event occurs, a DR could be applied indicating
that only a portion of the containers are subjected to enough seismic impact to result in the release of

radioactive material.

ARF is employed in the estimation of the fraction of radioactive materials suspended in air as an

aerosol, thus available for transport due to physical stress from a specific accident.

RF refers to the quantity of released material that has an aerosol particle size such that it can penetrate
into the alveolar region of the lungs and be deposited. Large particles tend to deposit before they get

deep into the lung, where they can be expelled through normal body processes. Very small particles

INL/EXT-16-40755
Revision 0 Page 10 of 249

will get into the alveolar region of the lung, but they tend to remain in air suspension rather than being
deposited into the lung. These particles are typically expelled in later breaths. Particles of intermediate
size are able to get into the alveolar region, but are heavy enough to deposit deep in the lung. The

fraction of the material that is suspended in air, having this particle size, is given by the RF.

Chi over Q (¥/Q) is a normalized air concentration term, expressed in seconds per cubic meter. This

is used to quantify the effect of diffusion on a plume as it propagates downwind. As calculated, it is an
expression of radioactivity per cubic meter, per radioactivity per second. Q is the material release rate
term (radioactivity per second). Since Chi depends on Q, dividing out Q normalizes to the release rate,
allowing the term to describe the rate of plume dispersion, independent of release rate. Figure 1 shows
how radioactive material can disperse as it transports away from the event site. Independent
parameters affecting the concentration profile can be stochastically sampled and used in the x/Q

portion of the dose calculation.

+y

Figure 1. Plume dispersion.

BR allows the model to account for the difference in respiration rate of a person who is exposed
depending on their activity state. Over a day, a given person spends some time sleeping, some time

awake and inactive, and some time active. Using this 24-hour data for typical respiration rate, and

INL/EXT-16-40755
Revision 0 Page 11 of 249

sampling this data, the distribution of the resulting dose is influenced. This allows decision makers to

ascertain the full range of potential doses to a population.

DCF is the multiplicative factor relating activity to absorbed dose. A person exposed to material of some
activity is going to receive a different absorbed dose dependent upon the type of radiation, where in or
on the body that the exposure is occurring, and other factors. The traditional point values used are
obtained from the ICRP.

Conservative single value input parameters are typically used to represent ARF, RF, LPF and BR. The
traditional methodology, while conservative, can lead to skewed conclusions in the balance between
cost and risk reduction resulting in over engineered systems with greater design, construction and
operating costs. Rather than using a bounding single point value for each parameter in the dose

consequence calculation, distributions for some or all of the parameters can be used.

Each parameter distribution can be stochastically sampled and the resulting dose consequence
calculation can be repeated many times to develop a dose consequence distribution. The resulting
dose distribution can then be used by decision makers to make a better informed decision about how a

particular DBE challenges dose evaluation guidelines.
3. SODA

The SODA software application is not intended to replace or even compete with traditional radioactive
material release modeling codes such as the MELCOR Accident Analysis Code System (MACCS) or
Radiological Safety Analysis Computer (RSAC) code, rather it is viewed as a simple to use supplement
to help improve risk understanding. The application was developed using MATLAB computing
environment and programming language and it incorporates use of Monte Carlo techniques as well as
a graphical user interface (GUI). The code system also utilizes MATLAB vectorization to provide
execution time reduction. The application includes user selection of the governing distribution for
parameters; MAR, DR, ARF, RF, LPF, BR, and DCF. While MATLAB was used for the development
work, the application is distributed as a self-contained executable program. As seen in Figure 2,
features of the application include pull down menus with available distributions for the various

parameters.

INL/EXT-16-40755
Revision 0 Page 12 of 249

4. Stochastic Objective Decision Aide

File Help

T L i"fp
Number of Sample
() Select MAR

b
Material at Risk (Becquerel)

Single Input Select Distribution Shaow Plot

Damage Ratio

Distribution Input Select Distribution w Show Plot

Airborne Release Fraction

Distribution Input | | Select Distribution w Show Plot

Respirable Fraction

Distribution Input | | Select Distribution w Show Plot

Leak Path Factor

Distribution Input | Select Distribution ~ Show Plot

Chi/Q (s/m*3)

Distribution Input Select Terrain ~ Select Stability
Downwind Distance (m) Crosswind Distance (m) Stack Height (m)
Height

Wind Speed (m/s)

Select Distribution w Show Plot

Figure 2. SODA input options.

The user has the option to plot the input parameter distribution that results from the random sampling
process. For example, Figure 3 shows a sample distribution of x/Q values resulting from five million
random samples. Plume dispersion is the concept that as particles are transferred through the air, their
concentration decreases. As the concentration is reduced, the size of the area reached by the particles
will increase, but the number of particles reaching a specific area will be lower than the original number
of particles released due to the dispersion. The x/Q value depends on the terrain, the atmospheric
stability class, the downwind and crosswind distances, the stack height, and the wind speed. The
dependency of the plume dispersion on each of these parameters varies greatly. Parametric study of
these parameters is included in the User Manual (Appendix A) to help guide users in the selection of

input parameters.

INL/EXT-16-40755
Revision 0 Page 13 of 249

x1Q distribution plot with;;=9.93e-06 s/m*® ,c =3.68e-06 s/m®
T T | T T T

s

Probability Density
W

r

ChilQ <1078

Figure 3. x/Q values from random sampling.

Selecting the appropriate input parameter distribution is the most challenging aspect of performing a
Monte Carlo based calculation of the potential dose. For example, Figure 4 shows the breathing rate
distribution for an adult male over a hypothetical 24-hour period with breathing rates for sleep,
sedentary activity, light physical activity, and heavy physical activity (ICRP-89). The traditional
approach suggested by DOE-STD-3009-2014, is to select a value of 3.3 x 102 m%hr, corresponding to
light activity for an adult male. However, it is clear that there are periods where the breathing rate is
significantly lower and higher. SODA can randomly sample the distribution shown in Figure 4 when
performing the dose calculation, thereby influencing the distribution of the resulting dose which helps
inform decision makers by more clearly showing the range of potential dose result values.

INL/EXT-16-40755
Revision 0 Page 14 of 249

6.00E-02
5.00E-02
4.00E-02

3.00E-02

2.00E-02
- IIIIIIII

0.00E+00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

Breathing Rate m3/hr

Figure 4. Adult male breathing rate.

The SODA GUI interface with an accompanying x/Q distribution plot is shown in Figure 5. The user can
select the pre-defined distribution for each input variable along with the associated distribution key
parameters such as the mean value and variance. Individual input parameter sampled distribution plots
can be requested. The user also selects the number of Monte Carlo calculations to execute. The
resulting dose distribution is then displayed for the user. SODA allows the user to save the input

selections as well as export the resulting dose distribution plot.

INL/EXT-16-40755
Revision 0 Page 15 of 249

4 Stochastic Objective Decision Aide - [m} X

File Help »

o
Number of Sample @ MAR 1 O Marz O MAR3 O MAR4
S DA LEEELR 566 Dose Conversion Factor (Siverts/Becquerel)

Material at Risk (Becquerel) Single Input 239Pu v 0.00012 Show Plot
Distribution Input | Normal v 37e+10 379 | Show Plot | Breathing Rate(m*3/s)
Distribution Input Show Plot
Damage Ratio
Distribution Input | Select Distribution ~ Show Plat Show Plot Show All Fit Distribution

Airborme Release Fraction

. MﬁR distribution plot with Normal distribution with;;=3.70e+10 Bq ,o =3.70e+09 Bq
T T T T T T T T

Distribution Input = Select Distribution ~ Show Plot

Respirable Fraction

Distribution Input = Select Distribution ~ Show Plot

Leak Path Factor

Distribution Input = Select Distribution v Show Plot

ChilQ (s/m3)

Probability Density

Distribution Input Select Terrain ~ Select Stability

Downwind Distance (m}) Crosswind Distance (m) Stack Height (m)
Height

Wind Speed (mis)

Select Distribution v Show Plot

2 25 3 as 4 45 5 55
MAR «1010

Figure 5. SODA GUI Screen.

3.1. Coding Framework

One objective for this project was to develop a GUI based on intuitive functions. GUI applications are
easy to use and require little memorization of command or syntax structure. As such, the SODA
application needs little training to use. Help File instructions are provided to further support rapid use.
Furthermore, placing the mouse pointer over a button will display tips. The application was prepared in
MATLAB, created by Math Works Inc. MATLAB contains a large standard library with an easy to use
Integrated Development Environment (IDE). MATLAB is a high level programming language; thus it is
easy to use. For example, a simple addition of variables in MATLAB is straightforward whereas in low
level language the user has to declare the variable type before doing any mathematical operations.
High level languages such as MATLAB are prevalent, because they allow focus on the problem rather
than the command syntax and code. With the advent of high speed processors, and ample memory

sizes, high level languages are convenient for developing prototype codes.

MATLAB was the choice for the application development because of the many built-in functions and
libraries that come standard with the MATLAB package; the use of which greatly reduced the time
needed to create the application. Importantly, the MATLAB statistical toolbox as well as the MATLAB
compiler toolbox was used to help develop the application. The statistical toolbox is used to fit
probability distributions to data and generate random numbers for Monte Carlo simulations of various

probability distributions. The MATLAB compiler toolbox is used for compilation of the code to a

INL/EXT-16-40755
Revision 0 Page 16 of 249

standalone application for Mac and Windows computers. The entire MATLAB code for SODA is
provided in Appendix B.

3.2. GUI

MATLAB utilizes the Graphical User Interface Development Environment (GUIDE). GUIDE was used to
design SODA. Using the GUIDE layout editor, the user can graphically design the User Interface.
GUIDE then automatically generates the MATLAB code for constructing the user interface, and the
event driven functions which are called when user input is made. This allows the programmer to focus
on the code that solves the problem rather than visual cosmetics of the application. GUIDE is
accessible by typing guide in the MATLAB command window which activated the quick start menu

shown in Figure 6.

@ & GUIDE Quick Start

t}pen Existing GUI |

CUIDE templates Preview

-} Blank GUI (Default)

4 GUI with Uicontrols
4 CUI with Axes and Menu
4\ Modal Question Dialog

BLANK

| | Save new figure as: Users/bKushal/Desktop
Help | | Cancel | | 0K |

Figure 6. MATLAB GUI Quick Start.

The user has a choice to select from various GUI templates. To create SODA, a blank GUI (Default)
was selected which reveals the window shown in Figure 7 where the user can drag and drop all the
necessary tools required in the application. Here, the user is creating the visual and cosmetic aspects

of the application by deciding which tools are required for the application.

INL/EXT-16-40755
Revision 0 Page 17 of 249

0@ untitled.fig
File Edit View Layout Tools Help
NEHE £ R 9o & BHhg 5 H% b

)

(o || =

Le)(=]

[)]
B
=)
B8O
()

Tag: figurel Current Point: [210, 322] Position: [624, 351, 672, 388]

Figure 7. Default GUI figure window in MATLAB.

On the side panel shown in Figure 7, there are list of tools that can be used in the layout window.
These includes Push Button, Slider, Radio Button, Checkbox, Edit Text, Static Text, Pop-up Menu, List
Box, Toggle Button, Table, Axes, Panel, and Button Group. In the SODA application, the Push Button,
Edit Text, Static Text, Pop-up Menu, Toggle Button, Axes, Radio Button and Panel tools were used.
The SODA application uses four figures created using the GUI figure window: the Main Window, the
About Window, The MAR Selection window, and the User Defined Distribution window. First the About
Window, shown in Figure 8, provides the logo of DOE and ISU as well as static text identifying the

names of the people involved in the project.

INL/EXT-16-40755
Revision 0 Page 18 of 249

4 - *

About

Idaho State

UMNIVERSITY

Dr. Chad Pope, P.E_, Idaho State University
Jason Andrus, Idaho National Lab

Graduate Student
Kushal Bhattarai, Idaho State University

Andrew Maas, Idaho State University
Mary Toston, Idaho State University

Undergraduate Student
Abdullah Alomani
Abraham Chupp

Mason Jaussi
Taobi Okediran

Figure 8. SODA About window.

The main SODA window, shown in Figure 9, uses the Edit Text option for user input. All user input on
the SODA application is numeric. For example, 1.5*10"5, 1.5E5, 1.5e5 are acceptable inputs for the
same value. The Panel option is used to group input parameters. The Toggle Button option is used to
switch between single value input and distribution input. The Popup Menu option is used to select from
the list of various probability distributions. The Push Button option makes it possible to execute code
when the user presses those buttons. A Push Button is also used to run the program as well as to plot
each parameter probability distribution plot. An Axes option is used to display the Probability Density
Curve (PDC) of parameters as well as compute the PDC of the CED. In addition, a push button is used
to find the best fit for the resultant distribution of CED using the Bayesian Information Criterion (BIC).

Radio Buttons are used to select between available MARS.

INL/EXT-16-40755

Revision 0 Page 19 of 249
4| Stochastic Objective Decision Aide - [m] X
File Help
Number of Sample @ MAR1 O uar2 O MAR3 O MAR4
a SeClA Dose Conversion Factor (Siverts/Becquerel)
Material at Risk (Becquerel) Single Input Select Isatope i Show Plot
Single Input Select Distribution Show Plot Breathing Rate(m*3/s)
Distribution Input Show Plot
Damage Ratio
Distribution Input | Select Distribution v Show Plot Show Plot Show Al Fit Distribution
Airbome Release Fraction q
Distribution Input | Select Distribution ~ Show Plot
08
Respirable Fraction
08
Distribution Input Select Distribution ~ Show Plot
07
Leak Path Factor
Distribution Input Select Distribution v Show Plot 06|
05
Chi/Q (s/m*3)
9 < o 04
Distribution Input Select Terrain v Select Stability
03
Downwind Distance (m) Crosswind Distance (m) Stack Height (m)
Height 0z}l
Wind Speed (m/s) 01k
Select Distribution v St
0 1 1 1 I I I I I 1 1
(1] 01 02 03 04 05 06 0.7 08 09 1

Figure 9. SODA main window.

The SODA application includes a menu and toolbar. In the toolbar there are three functions, zoom in,
zoom out and pan. In the main menu there are two options, File and Help. Each of them has a further
detailed sub-menu. The File menu consists of five sub-menu options which are Load Workspace, Save
Workspace, Save Image, Reset Random Number and Exit. Load Workspace lets the user load a file
which contains all the input parameters from a *.mat file. Save Workspace is used to save all the input
parameters so that the user does not have to re-type the input data to run the program. Save Image will
let the user save the plot image into a *.jpg, *.tif, or *.png image file. Reset Random Number menu will
reset the Mersenne Twister random number algorithm so that calculations can be performed using
different computers (or repeated) to get same result. The Exit menu will let user exit the application with

a confirmation to make sure that the user is ready to exit the application.

The MAR Selection window, shown in Figure 10, gives the user the option to select MAR guantities and
their associated DCF values from an easy to use GUI interface. Styled Push Buttons are used in a
periodic table arrangement, allowing the user to select an element which has available isotope data.
Once again, Radio Buttons let the user select between available MARs. Additional push buttons are

used to export the entered MAR data to the main SODA window.

INL/EXT-16-40755

Revision 0 Page 20 of 249
(4] MAR_Selection - *
S4&DA MAR Selection Tool Gusi Owsz Ows: Owsns
Select an Element to populate the isotope fields. Select an isotope by clicking the relevant Selected Isotope:
button. Export to SODA

Grayed out Elements have no isotopes in the database.
Once exported, the isotope’s Dose Conversion Factor (DCF) and quantitiy (in Bq) will be

Use the Control in the Upper Right to switch between multiple MAR selections.
Hitting Export will send all Selected MAR data to SODA and Close this window.

Isotopes

Iso1 Iso1 Iso1 Iso1 Iso1 Iso1 Iso1

T

Ac

e

Figure 10. The MAR selection tool.

The MAR selection tool is easily accessed from the SODA main window (Figure 9 for reference) by
clicking Select MAR, or using the dropdown menu in the DCF section of SODA and clicking Select
Isotope. This tool allows a user to select an element, of those not grayed out, and display the available
isotope data. These available isotopes will populate the buttons in the Isotopes panel, seen in Figure
10. Once an isotope is selected, this is reflected in the selected isotope field in the upper right hand
region of the MAR selection tool. Once this is selected, the user can input the MAR quantity and export
the data to the SODA main window. The option to select multiple MARs is present, and is accessible
from the radio buttons in the top right hand corner of the tool.

3.3. Monte Carlo Method

SODA uses Monte Carlo techniques in which the application uses repeated random sampling to
compute the CED distribution. SODA can handle up to 10° samples depending on the available
computer memory (additional information on this topic is contained in the User's Manual, Appendix A).
For each input parameter, the user can select from up to five different probability distributions; Normal,

INL/EXT-16-40755
Revision 0 Page 21 of 249

Uniform, Beta, Exponential, and Log Normal, or the user can define their own custom distribution. The
user can verify the resulting input parameter distribution by clicking the show plot button for each
parameter. Based on the distribution selection, different user input values are required. For a normal
distribution, the user is required to input the mean and standard deviation, for the Beta distribution, the
user is required to input the alpha and beta parameter. For a uniform distribution, the user is required to
input the upper and lower limit. For the exponential distribution, the user is required to input the mean.
Finally, for the Log Normal distribution, the user is required to input the mode and scale parameter (also
known as the normal standard deviation.) Once user provides the input parameter values, SODA

creates a string of random numbers to sample the specified distributions.

3.4. Distribution Mathematics

The normal distribution, also known as Gaussian distribution, is a common distribution in which the

probability density function (PDF) has a bell shaped curve. The PDF equation of a normal distribution is

1 z—p)”

= ——— ¢ In
flz | p,o) o € o

where U is the mean or expected value and o is standard deviation. Examples of normal distributions

using different mean and standard deviation values are provided in Figure 11.

T T T T T —— ™ T T T
10 1 1

=0, 0%=(Q32, =
=0, 0%=z10, —
a3 , O=50,—"]
,03=p5, —
= G
S
—
T
& os
az
1] —=d
1 1 1 1 1 1 L
-3 -4 3 -2 -1 a 1 2 3 4 =]

Figure 11. Normal distributions.

INL/EXT-16-40755
Revision 0 Page 22 of 249

The probability distribution in which the logarithm of a variable is normally distributed is log normal

distribution. The PDF equation of a log normal distribution is:

_ (log(z)—p)*
1 € 252
n:f.'\/%
flx],po)= x>0
0 Otherwise

A Log-Normal distribution plot is shown in Figure 12. Discussion of the SODA specific treatment of this

distribution (use of mode instead of location parameter etc.) is made in the user’'s manual.

0=0.25, n1=0

0 0.5 1.0 1.5 2.0 2.0

Figure 12. Log-Normal distribution.

The beta distribution, plotted in Figure 13, is defined over the interval of zero to one with two positive

shape parameters, alpha and beta. The PDF equation of a beta distribution is
Ia—l(l _ I)_ﬂ—l
B(a, §) 4)

where B is beta function. Since beta distribution is defined between zero and one it can be used for

damage ratio and leak path factor.

INL/EXT-16-40755

Revision 0 Page 23 of 249
2.5 -."‘ a=p=05 —
% a=5f=1 —
_\ am], f=3 —
3 a=2,f=2 —
1\1 a=2,F=5
\
\'-\.
15 b L

POF
e

Figure 13. Beta distribution.

The uniform distribution is uniform continuous distribution in which all possible values between the

minimum and maximum value are equally probable. The PDF equation of a uniform distribution is

— for x € [a, b]

b
0 otherwise
©)
where b is the maximum value and a is minimum value. A uniform distribution plot is shown in Figure
14
flx
1 — o
b-a
T
0 a b X

Figure 14. Uniform distribution.

The exponential distribution describes a process in which events occur continuously and independently
at a constant average rate lambda, see Figure 15. The exponential distribution equation is
Ae ™ 1 >0,

F@A =1, r <0

(6)

INL/EXT-16-40755
Revision 0 Page 24 of 249

1.6 r -
14k A=05 |

1.2
1.0]
X 0.8}]
0.6}]
0.4]
0.2]
0.0 : :

Figure 15. Exponential distribution.

In addition to the distributions described above, a specialized BR distribution is available in SODA. The
distribution is intended to be more representative than a single point value. It is applicable for scenarios
where the event can occur at any time throughout a 24-hour period. A 24-hour period was used with an
adult male BR consisting of eight hours per day resting, eight hours per day sitting, four hours per day
of light exercise, and four hours per day of heavy exercise. The distribution is sampled by scaling the
random number generator and selecting the breathing rate reflected in Table 1 which uses data from
ICRP 89.

Table 1. Breathing rate data.

Status Breathing rate(m?s)
Resting 1.25e-4
Sitting 1.5e-4
Light Exercise 4.17e-4
Heavy Exercise 8.33e-4

The resting BR and sitting breathing rate are sufficiently similar to allow using the sitting BR for both.
The sampling strategy results in the 1.5e-4 value being selected 66% of the time and the light exercise

value, 4.17e-4, and the heavy exercise vale, 8.33e-4, each being selected 17% of the time.

A simplified damage ratio experiment was performed to support a rudimentary estimate for the damage

ratio distribution that could be applied to certain scenarios. The experiment investigated the damage

INL/EXT-16-40755
Revision 0 Page 25 of 249

ratio for dropped radioactive material containers. The damage ratio experiment involved both 1-m and
3-m drop tests onto a concrete surface. The containers involved in the experiment were one-pint
capacity and one-quart capacity. The containers used press fit lids similar to paint cans. Each container
was filled 3/4 full with rock salt to simulate radioactive material. Twelve containers of each capacity
were used in the experiment. The one-pint capacity containers were initially dropped from the 1 m
height. A total of 100 drop tests with one-pint capacity containers was performed from the 1 m height.
After each container was dropped, it was visually examined to qualitatively determine if the container
had breached. Containers that were not breached were subjected to additional drop testing. Containers
that breached were photographed, the amount of salt that escaped from the container was quantified,
the salt was returned to the container, the lid was reinstalled, and the container was reused for

subsequent drop testing.

A similar approach was used for the 3 m drop testing. The 3 m drop testing involved both the one-pint
capacity containers and the one-quart capacity containers. A total of 300 container drop test were
performed. No container failure mode other than lid failure was observed. Approximately 20% of the

container drops resulted in damage sufficient to allow release of radioactive material.

The drop testing experiment provides a rudimentary understanding of the likelihood of container
breaching due to a drop event which can help understand the appropriate damage ratio distribution to
select for a dose consequence calculation associated with a particular accident scenario. Since the
containers used in the experiment have no quality assurance pedigree and are very thin walled, the
experiment is intended to provide some rudimentary insight into a reasonable, but conservative,
damage ratio distribution for accident scenarios involving multiple radioactive material containers.

Appendix C contains the drop test results data.

To make SODA more user friendly and applicable in more situations, a user defined distribution option
was added. SODA offers a clickable plot for the user to “draw” the desired distribution and also allows a
typed entry option. This feature was created using GUIDE in MATLAB. A GUI allows the user to select
the entry method to be used for inputting the distribution values. The selection is made from a drop
down menu. More information and instruction for use of the user defined distribution feature can be
found in the SODA User Manual (Appendix A). The user defined distribution GUI can be seen in
Figure 16.

INL/EXT-16-40755
Revision 0

Page 26 of 249

Select Input Method from Dropdown List Below S@DA

Click to generate b

Enter Distribution

Number of Bi in Wi
umoer otHins Number of Bins ECd Bin Width

Bin 1 Bin &

1k] Bin 3 Bin &

05

The current fotal is:

05
Current Total

Figure 16. SODA user defined distribution GUI.

Bin 2 Bin 7

Bin 4 Bin 9

Bin 5 Bin 10

With the method selected, the user then must enter the number of bins to be used and the bin width.

The user defined distribution feature currently only allows constant width bins, and variation in bin size

is not permitted. If the entry method selected is the clickable plot option, the user may then begin to

click the positions on the axes provided on the GUI. The application sums the values clicked and

determines if the total probability for the entire distribution sums to one. If the sum does not equal one,

the feature will give the user a notice indicating that the probabilities must sum to one and the axes will

clear allowing the user to make another attempt. Four attempts are allowed before the user will be

returned to the main SODA screen. The notice for a distribution not summing to one can be seen in

Figure 17.

INL/EXT-16-40755

Revision 0 Page 27 of 249
Select Input Method from Dropdown List Below 5@ DA
Click to generate ~
Start

Number of Bins 10 by _ 5%
Bin 1 Bin 6

The probabiliies must sum to one. Please try again.
Bin 2 Bin 7
Bin 3 Bin 8
Bin 4 Bin 9
Bin 5 Bin 10

The current total is:

54

Figure 17. Notice received when user defined distribution is inappropriate.

If the distribution does sum to one, then the application will show the user a plot of what they have

clicked and ask if it is correct, see Figure 18.

INL/EXT-16-40755
Revision 0 Page 28 of 249

Select Input Method from Dropdown List Below S@ DA

Click to generate v ‘

Start

Number of Bins = 4 CheckDi.. — X

Bin 1 Bin
’ Does this look comect?
T T T T B |

Bin2 Bin 7

08k ‘ ’ i Bin 3 Bin 3

Bin 4 Bin 9

Bin 5 Bin 10

The current total is:

0.2f 7
1

Figure 18. User defined distribution verification.

If correct, then the distribution entered is passed back to SODA. If the user determines the distribution
is not correct, then they are allowed another chance to enter the distribution. This situation also allows
four attempts before returning to the main SODA screen.

If the typed entry method is selected, then the user still must enter the number of bins and the
bin width. If the number of bins entered is greater than 10, the application will give the user a message
indicating the most bins allowed for this distribution entry method is 10 and the bin number will be set to
10. Again, as with the clickable entry option, variations in bin width cannot be accounted for in this
distribution option. At this point, the GUI will enable the textboxes for the distribution typed entry. The
application is set up to only enable a specific number of textboxes based on the number of bins entered
in the number of bins textbox. This is a safeguard to prevent the user from entering the distribution
numbers for bins not being used and is used as check to ensure the user has entered the correct
number of bins for the number of distribution values that will be entered. Once all of the distribution
values have been typed into the respective textboxes, the user will select the start button. The start
button will generate a plot of the distribution entered by the user in the textboxes and the application will

perform a check to ensure the distribution values sum to one, see Figure 19.

INL/EXT-16-40755
Revision 0

Page 29 of 249

4| CheckDin. — X

Select Input Method fr @ _ 5®DA
Does this look comect?

Type distribution values ~
YE& icki
Enter Values Below Before Clicking

Number of Bins Bin Width

2

32

2

20

Figure 19. User defined distribution typed entry.

Bin &

Bin &

Bin 7

Bin &

Bin 9

Bin 10

The current total is:

If the sum is one, then the application will ask the user if the plot looks correct, as in the figure above,

and if yes, the data will be stored as the distribution. If it does not look correct, or if the distribution

values do not sum to one, then the user will be notified of the issue and given a chance to fix the typed

distribution values.

3.5. Bayesian Information Criterion

The Bayesian Information Criterion (BIC) method is used by SODA to find the best possible probability

distribution for the resultant CED distribution. The BIC value is computed using a likelihood function of

the estimated model. A likelihood function is the probability or probability density for the occurrence of a

sample configuration x1, x2, x3,..., XN given that the probability density f(x , alpha) with parameter

alpha is known. The smaller the BIC value indicates a better model fit. An example best fit plot is

provided in Figure 20.

INL/EXT-16-40755
Revision 0 Page 30 of 249

Probability Density Function with p =0.0038702 o=0.0030004

O I . E R N 1. L
2200 : : : i | ==—Random Generated 1
: : : : neneralized exdreme value
; i i i tHacationscale
UUTE o) 1 A frommmmrmrmne e R R i inverse gaussian I
: : : loglogistic
1800 {fHh-----oeeeeereeesenne s Fornen s fresmn s frerrnen s rann s e -
1 : : : : :
1600 t- k- oo fromm g fromen e oo ~
1400 J .- -------------------------- [] BestFit ..o .- --------------------------- --------------- o
= Generalized Extreme Yalue
% ; k=1.3603 : :
IR 1 | R i Mean=0.002188 [meeseesesee fromensnessnsese frosseneenanees -
= ; Sigrna =0.00032251 : :
-] OK i i
8 1000 oo ed e e o e -
o : :
I R 1| R O cco: e ————— === Fromreseossnesn s brreseassneneas -
BO0 g oo frommm g oo rooemeeeeneees ~
a0 e\ o - e o — -
200 fo] o A S N — A— A— .
| — "
2 4 [i 10 12
Caornrit e d Eff ective Dose [rem) win™

Figure 20. Best fit example.

4. COMPARISON WITH RSAC

SODA was verified by comparing results obtained using RSAC 7.2.0 calculations for a simplified
scenario involving the release of 1 Ci of Pu-239. Fixed parameters used for the verification case are
provided in Table 2. Results obtained from RSAC, SODA, and a hand calculation are provided in Table

3 and show good agreement using fixed parameters in SODA.

INL/EXT-16-40755
Revision 0 Page 31 of 249

Table 2. Verification case input data.

Parameter Value
ARF 2.00e-3
RF 0.3
Wind Speed, mixing height, release
. 1m/s,400m,0m
height
Pasquill Class F
Meteorology Hillsmier-Gifford Sigmas
Downwind distance 5000 m
Calculated X/Q 5.925E-5
Breathing Rate 3.33E-04 m®/sec
Pu — DCF Clearance Class F
Table 3. Verification results comparison.
RSAC 7.2.0 SODA Hand calculation
Total CED
5.26E-3 5.256E-3 5.256E-3
(rem)

5. CONCLUSION

A Monte Carlo based code system has been developed to stochastically analyze radiological material
release scenarios providing potential dose distribution results. The computer code, named Stochastic
Objective Decision-Aide, provides a portable and simple to use tool to better inform decision making
associated with establishing nuclear facility material-at-risk limits and safety SSC selection. Traditional
radioactive material release modeling codes typically provide a bounding single point estimate of
receptor dose. While this approach attempts to bound the dose estimate, it falls short in providing
guantification of the expected value and the uncertainty associated with the dose estimate. This is
particularly problematic when one considers the lack of governing distribution identification for input
parameters. Thus, decisions regarding potential doses are frequently overstated, leading to excessively
conservative material-at-risk limits and potentially over selection of safety-systems structures, or

components.

Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow

a deeper understanding of the dose potential. SODA allows users to select the distribution type and

INL/EXT-16-40755
Revision 0 Page 32 of 249

parameter values for all of the input variables used to perform the dose calculation. SODA then
randomly samples each distribution input variable and calculates the overall resulting dose distribution.
In cases were an input variable distribution is unknown, a traditional single point value can be used.
SODA was developed using the MATLAB coding framework. The software application has a graphical
user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB

to function.

It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC,
rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support

better informed decisions.

INL/EXT-16-40755
Revision 0 Page 33 of 249

APPENDIX A:

SODA User Manual

Appendix A

Revision 0

SODA USER
MANUAL

Appendix A

INL/EXT-16-40755
Revision 0

Page 35 of 249

Contents
1. INSTALLATION INSTRUCTIONSottt e eeeees 36
1.1 WINDOWS INSTALLATION INSTRUCTIONS ..ot 36
1.2 MAC INSTALLATION INSTRUCTIONS ..ot 42
2. LOADING AND SAVINGottt ettt e e 46
2.1 FILE LOADING ...ttt bbbt bbb sb e e 46
2.2 SAVING ..o bbb bbbt bbbt n e 47
2.2. 1 FILE SAVING w.vvvtirisiieteteteestesssete st sssssessse s sss e sese s s st ses et ss st e st et ses s s sesesesanses 47
2.2.2 IMAGE SAVING.......ooitiiiiiieiisi ettt 48
3. ENTERING VALUES FOR PARAMETERS ... 49
3.IDISTRIBUTION TYPES ...ttt s 49
3.1.1 NORMAL DISTRIBUTIONcutieiiisesiiessstsssesssesesessssssssesesasassssssssssesessssssssesssesesssssssesens 49
3. 1.2 BETADISTRIBUTIONouvuiiititinieesesesesetsssesssesesesessssssesssasassssssssesesssessssssesesssassssssssesens 50
3.1.3 UNIFORM DISTRIBUTION ...cutiuiiiiiiisiisiiitisie st 51
3.1.4 EXPONENTIAL DISTRIBUTIONvuiuiuiietiisiesssesetesessssssesesssssssssssesesesessssssesesesessssssssesees 52
3.1.5 LOG-NORMAL DISTRIBUTIONcutiutiiiiiiiiiiiiiierieiisiise s 53
3.1.6 USER DEFINED DISTRIBUTIONcuvuiuetiiriisesesesesessssssesssssassssssssessssssssssssesesesesssssssesees 55
3.1.7 VALUES NEEDED FOR DISTRIBUTION OPTIONScoitiiiiiiiiriiiiieieisies s 57
3.2 VALUES FOR PARAMETERS ...ttt 58
3.2.1 MATERIAL AT RISK (IMAR)oeiie ittt sttt ettt sreenaenne s 58
3.2.2DR, ARF, RF, LPF ...ttt nne 61
3.2.3. ENTERING VALUES FOR X/Q . .ecutiiteitieiieieeie sttt sttt seeseeenae e 62
3.2.4. ENTERING VALUES FOR NUMBER OF SAMPLEc.cciiiiiiiiiniiireieeses s 64
T O B 1 PPN 64
4.1 HOW TO PLOT L.ttt bbbttt b bbb e n e 64
S LIMIT ATIONS L ettt ettt e e e et e e e e et e e e e tba e e aeaaa s aaeenes 66

Appendix A

INL/EXT-16-40755
Revision 0 Page 36 of 249

1. INSTALLATION INSTRUCTIONS

The latest version of the MATLAB runtime environment, which is required to use the SODA program,
requires a 64-bit operating system on all platforms.

1.1 WINDOWS INSTALLATION INSTRUCTIONS

To begin, download the program. The download file will be at the bottom of your browser, or located in
your default download directory. Click to open the installation program.

The install application may take a few minutes to load. When it is done, the SODA installer window will
open.

Appendix A

INL/EXT-16-40755
Revision 0 Page 37 of 249

2 SODA Installer — O *

Connection Settings

SODA 1.0
Stochastic Objective Decision Aide

Developed at |daho State University, Nuclear Science and Engineering Department by Dr. Chad
Pope's Graduate Research Group, and in collaboration with ldaho National Laboratory.

Dr. C. Pope, K. Bhattari A. Maas M. Tosten

Cancel

Click the ‘Next’ button to continue installation.

@ Contacting MathWorks g

Preparing for installation

Please wait for MathWorks to prepare the installation then you will see the installation options window.

Appendix A

INL/EXT-16-40755
Revision 0 Page 38 of 249

2 Installation Options - O *

Choose installation folder:

C:\Program Files SLNSODA Browse...

Restore Default Folder

Add a shortcut to the desktop

Click on the browse button to set a location for the program to be installed. You may check the box if
you would like a shortcut to SODA added to your desktop. Click the *‘Next’ button to continue
installation. If you selected to install the application to a folder that does not yet exist, you will see the
following pop up window.

The destination folder C:\Program Files\ISUNMSRDN does not exist. Would you like to

create it?

Click “Yes’ if you would like to create the folder or “No’ to change the location for installation. Once
‘Yes’ is selected, if MATLAB Compiler Runtime is not yet installed on the machine, the installer will
then ask for the folder to install it.

Appendix A

INL/EXT-16-40755
Revision 0 Page 39 of 249

% Required Software - O X

MATLAE Runtime is required.

Choose installation folder: MATLABK

ram Files\MATLAB\MATLAB Runtime| Browse... 2016

Restore Default Folder

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. Please see
mathworks.com/tradernarks for a list of additional trademarks, Other product or brand names may
be trademarks or registered trademarks of their respective holders.

WARMING: This program is protected by copyright law and international treaties, Copyright
1984-2016, The MathWaorks, Inc. Protected by U.5. and other patents. See MathWorks.com/patents

<) MathWorks*

Select the folder for this to be installed and then click ‘Next’. If MATLAB Compiler Runtime was
already installed on the machine, you will see the following window. Click “‘Next’ to continue.

2 Required Software — | et

MATLAB Runtime is already installed in:
C\Program Files\MATLAB\MATLAB Runtime

MATLAB

2016

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. Please see
mathworks.com/trademarks for a list of additional trademarks, Cther product or brand names may
be trademarks or registered trademarks of their respective holders.

WARNIMG: This program is protected by copyright law and international treaties. Copyright
1984-2016, The MathWorks, Inc. Protected by U.5. and other patents. See MathWorks.com/patents

<} MathWorks*

Check “Yes’ or “No’ to accept or decline the License Agreement, then click ‘Next’.
(Note: If you check ‘No’ the program will cancel.)

Appendix A

INL/EXT-16-40755

Revision 0 Page 40 of 249
g License Agreement - O >
The MathWarks, Inc. ~

MATLAB RUNTIME LICEMSE

IMPORTAMT NOTICE
BY CLICKIMG THE "YES" BUTTOM BELOW, ¥OU ACCEPT THE TERMS OF THIS LICENSE. IF YOU ARE NOT WILLING TO DO
50, SELECT THE "NO" BUTTON AND THE INSTALLATION WILL BE ABORTED.

1. LICENSE GRANT, Subject to the restrictions below, The MathWorks, Inc. ("MathWerks") hereby grants to you, whether
you are an individual or an entity, a license to install and use the MATLAB Runtime ("Runtime"), sclely and expressly for
the purpese of running software created with the MATLAB Compiler (the "Application Software"), and for no other
purpose, This license is personal, nonexclusive, and nontransferable,

2. LICENSE RESTRICTIONS. You shall not madify or adapt the Runtime for any reasen. You shall not disassemble,
decompile, or reverse engineer the Runtime. You shall not alter or remove any proprietary or other legal notices on or in
copies of the Runtime. Unless used to run Application Software, you shall not rent, lease, or loan the Runtime, time share

the Runtime, provide service bureau use, or use the Runtime for supporting any other party's use of the Runtime. You o

Do you accept the terms of the license agreement? ® ¥es () No

<) MathWorks*

The Confirmation window will show up. Click ‘Install’ to start downloading the program.

2 Confirmation — O pd

SODA will be installed in:
C:A\Program Files\|SUNSODA

SODA requires MATLAB Runtime R2016a.

MATLABE Runtime R2016a will be installed in:
C:\Program Files\MATLAB\MATLAE Runtime\w301

Cancel

The download will then show a window keeping track of the percentage downloaded 0%-100%. If you
need to pause the program for any reason, you may click ‘Pause’. When the program reaches 100%, the
‘Installation Complete’ window will show.

Appendix A

INL/EXT-16-40755
Revision 0 Page 41 of 249

2 Installation Complete - O *

Installation completed successfully.

Click “Finish’ on this window to complete the installation process. At this time, the program can be
found in several places. It will be located in the start menu as pictured below.

Appendix A

INL/EXT-16-40755
Revision 0 Page 42 of 249

w SODA
@ Word 2013

% Remote Desktop Connection

Sticky Motes

aﬁﬂ KPS Viewer

» All Programs

e G TiEs

Search programs es

It will also be located on the desktop if you selected to allow a desktop icon to be created, and finally it
will be located in the folder that you specified during the installation.

1.2 MAC INSTALLATION INSTRUCTIONS

Download the program and the file will be located in the download folder. Click to open the installation
program. The install application will take a few minutes to load. Please wait then put in your name and
password.

Appendix A

INL/EXT-16-40755
Revision 0 Page 43 of 249

N java wants to make changes. Type your
password to allow this.

Name: ||

Password:

| cancel | @

When you see the SODA installer window, click “‘Next’ to continue the installation.

8086 SODA Installer

| Connection Settings |

SODA 1.0

Stochastic Objective Decision Aide|

Kushal Bhattarai, Chad Pope,P.E,Phd
bhatkush@isu.edu

Please wait for MathWorks to prepare the installation, when it is ready, you will see the ‘Installation
Options’ window.

‘@00 Installation Options }

Enter the full path to the installation folder

!jAppIications,fISLl,l’SDDA ‘ | Browse... |

| Restore Default Folder |

Click ‘Browse’ to set a location for the program to be installed.

Appendix A

INL/EXT-16-40755

Revision 0

Page 44 of 249

Installation Options
Enter the full path to the installation folder

/Applications /ISU/SODA | Browse...

| Restore Default Folder |

Folder Selection

The destination folder /Applications/ISU/SODA/ does not exist. Would
you like to create it?

[

Cancel

Click “Next’ to continue installation.

The ‘Required Software” window will show up. Click ‘Browse’ again to set a location for the program

to be installed.

Click “Next’ to continue installation and the “License Agreement” window will come up.

8 00 Required Software

MATLAB Compiler Runtime is required.

Install MATLAB Compiler Runtime in: MATLABw

|_IAppIi(aticns,rMATLAB,'MATLAB_CGmpiIel_Runtime | [Browse.. |

2014

Download Size: 0 MB | Restore Default Folder |

MATLAB and Simulink are registered trademarks of The MathWarks, Inc. Please see
www.mathworks.com/trademarks for a list of additional trademarks. Other product or
brand names may be trademarks or registered trademarks of their respective holders.

WARNING: This program is protected by copyright law and international treaties. Copyright

1984-2014, The MathWorks, Inc. Protected by U.S. and other patents. See
MathWorks.com/patents

Cancel

_| MathWorks:

Check “Yes’ or “No’ to accept or decline the License Agreement, then click ‘Next’.
(Note: If you check ‘No’ the program will cancel.)

Appendix A

INL/EXT-16-40755

Revision 0

Page 45 of 249

-HsNs) License Agreement

The MathWorks, Inc.
MATLAB COMPILER RUNTIME (MCR) LIBRARIES LICENSE

IMPORTANT NOTICE
BY CLICKING THE "YES" BUTTON BELOW, YOU ACCEPT THE TERMS OF THIS LICENSE. IF YOU ARE NOT WILLING
TO DO SO, SELECT THE "NO" BUTTON AND THE INSTALLATION WILL BE ABORTED.

1. LICENSE GRANT. Subject to the restrictions below, The MathWorks, Inc. ("MathWorks") hereby grants to you,
whether you are an individual or an entity, a license to install and use the MATLAB Compiler Runtime Libraries
("MCR"), solely and expressly for the purpose of running software created with the MATLAB Compiler (the

"Application Software"), and for no other purpose. This license is personal, nonexclusive, and nontransferable.

2. LICENSE RESTRICTIONS. You shall not modify or adapt the MCR for any reason. You shall not disassemble,
decompile, or reverse engineer the MCR. You shall not alter or remove any proprietary or other legal notices on
or in copies of the MCR. Unless used to run Application Software, you shall not rent, lease, or loan the MCR,
time share the MCR, provide service bureau use, or use the MCR for supporting any other party's use of the
MCR. You shall not sublicense, sell, or otherwise transfer the MCR to any third party. You shall not republish
any documentation which may be provided in connection with the MCR. All rights not granted, including

Do you accept the terms of the license agreement? @ Yes () No

) MathWorks

The Confirmation window will show up. Click “Install’ to start downloading the program.

80060 Confirmation

SODA will be installed in:
fApplications /ISU/SODA

SODA reguires MATLAB Compiler Runtime R2014a.

MATLAB Compiler Runtime R2014a will be installed in:
fApplications /MATLAB/MATLAB_Compiler_Runtime/v83

stai >

The download will then show a window keeping track of the percentage downloaded 0%-100%. If
you need to pause the download for any reason, you may click ‘Pause’.

Appendix A

INL/EXT-16-40755

Revision 0 Page 46 of 249
8 00 9% Complete
Removing files for MATLAB Compiler Runtime 8.3
— T

[Pause

Cancel

When the program reaches 100%, the ‘Installation Complete” window will show. Click ‘Finish’ on this
window to complete the installation process. At this time, the program can be found in the folder

specified during installation.

2. LOADING AND SAVING

2.1 FILE LOADING

To load a workspace, click “File’ at the upper left hand corner of the SODA application. Then select
‘Load Workspace’ as shown below. This will allow you to select from saved files on the machine you

are using.

orkpace:
Save Workspace
. _m.m Number of Sample B AR 1 MaR 2
Ve g Sedect MAR . 3 kT
| Reset Random Murmber Generator L Dose Comversion Factor (SrvertsBecquand)
Bit Material st Risk (Becquerel) Select Isntope z
Sefect Dstnbution Breathing Rate{m*3's)
Distribution Input
Damage Hatio
Select Distnbution » B
Dhgtnbatson Input e =
Aabome Release Fraction :
Distribution input | Sebect Distnbution
: : 08t
Respirable Fraction
| 08
Distribetion input | Select Distribution -

Leak Path Factor

Appendix A

MaR 3 UAR 4

INL/EXT-16-40755
Revision 0 Page 47 of 249

2.2 SAVING

2.2.1 FILE SAVING

To save the workspace that you are currently work on within the SODA application, click the “File’
button in the upper left hand corner of the program. Then select ‘Save Workspace’. This will allow you
to save the workspace to any location on the machine that you are using.

174" Skt iyt D - ==

([Fie | bietp
i Load Workspice
Save Werk
Sa ghu 5P“=¢ Humber of Sample & uant usR? iR usR 4
e -
7 SHsLe Dase Comersion Factor (Saew/Becquene)
Reset Random Numbes Genesates
Bat Materisl 3t Risk (Becqursl] Select Isctope
Singla input Selact Distribut 1 Bevathing Rate{me3is)
I Destributian input Shew Plet
Damage Rato
Distribution Input | Select Distritution =
Airbome Relsass Fraction :
r
Dnstnbution Input | Select Distnbutian
oot
Respirable Fraction
[et
Distribution inpat | | Select Distritution
o7}
Leak Path Factor
Distribution input | | Salect Distribution 08 -
05}
Cha'D (a/m3) |
| = |
Distribution Ingat Sedect Terain
I 03
Downwind Distance (m) Crosswi ind Distance (m) Stack Haight (m)
I Height 0z}
Wind Speed (m/s) 01
' Select Dstobution -
ol L
0] 2 03 0 08 06 0T 8 09 1
L —

When saving the workspace, a MATLAB file will be saved. This file contains the parameters that were
specified in the SODA application when the workspace was saved. An example of a saved workspace
can be seen below.

Appendix A

INL/EXT-16-40755
Revision 0

Page 48 of 249

@ Editor - Projectl.m

| userinput |

[Variables - userinput

®

*

1 struct with 37 fields

Field Value
EE num_sample_text 1000000 -
33 mar_togglebutton 1 B
mar_popup_dist 1
tH mar_textt 370000000
[mar_text2 i
33 dr_tegglebutton 1
dr_popup_dist 1
HH dr_text1 0.5000
HH dr_text2 1
33 arf_togglebutton 1
| arf_popup_dist 1 =
L arf _textl 0.4000
L arf _text2 1
33 f_togglebutton 1
33 f_popup_dist 1
f_textl 0.3000
L of text2 1
| Ipf_togglebutton 1
| Ipf_popup_dist 1
L 1ef _textl 0.3000 4
L 1ef _text2 1
| br_tegglebutton 0
HH br_tedtl 1
{1 def_togglebutton 1
dcf_popup_dist 1
L def _text1 1.2000e-04
L def_text2 [i
=

2.2.2 IMAGE SAVING

To save the image that has been generated by the SODA application in the plot space, click ‘File’ in the

upper left hand corner of the program. Then select ‘Sav
to any location on the machine that you are using.

e Image’. This will allow you to save the image

Load Workspace
:Iw: : i Humber of Sample & AR 1 uan 3 MAR D uAR &
il Select MAR Dose Comversion Factor (SnensBecquerel)
|| Reset Randem Number Generstor .
Ll Material at Risk (Bacquerel) Swgle lnpdl, | Select lsotops
Single Input | Select Braathing Rate{m*3/s)
Distribution Ingat
| - Damage Rat Shaw Pt
Distribution Input | Select Distribution - —
Aisbome Relsase Fraction 7
Distritation Input | Select Distribution -
- - 08
Resprable Fraction
08
Distribnition Input | Select Distribation -
or
Leak Path Factor
Distribution lnput | | Select Distribution - 0.8
= = 05
ChifQ {sfm#3)
l : ; <
Distrbution input Select Teram
l > 03
Demmwind Distance (m) Cronswind Distance (m) Stack Height (m)
Haight 02
' Wind Spaed {mis) o
' Select Drstribution
0 \ " " | |
0 0.1 02 03 04 0.5 08 07 08 08 1

This will save the plot portion of the screen as a JPEG image. An example of a saved image can be seen

below.

Appendix A

INL/EXT-16-40755
Revision 0 Page 49 of 249

Mean Value of CED = 2.354e+01 rem with std devitation= 1.821e+01 rem

0.25

0.2

0.15

Probability Density

0.1

0.05

20 30 40 50 60 70 80
Commited Effective Dose (rem)

3. ENTERING VALUES FOR PARAMETERS

3.1 DISTRIBUTION TYPES

The type of distribution selected for each of the parameters within SODA will depend on the data
available to the user for input into the application. The distribution options within the program include
normal, beta, exponential, uniform, log normal, and user-defined distributions. The other option for a
user without distribution information is a single input value.

3.1.1 NORMAL DISTRIBUTION

The normal distribution, also known as Gaussian distribution, is a common distribution in which the
PDF has a bell shaped curve. The PDF equation of a normal distribution is

1 _(@=w)?
fo—p)

c 20
oV 2T

f@|po)=

Appendix A

INL/EXT-16-40755
Revision 0 Page 50 of 249

where u is the mean or expected value and o is standard deviation. Below are examples of normal
distributions using different mean and standard deviation values. In SODA, a normal distribution is
specified by its mean and standard deviation.

10—

T2 7, w—
T2 10, ——|
O7=510, =]
,0*=05, ——

-N-N-T

agr—

=EE=EtEE |

fa

az

ag

3.1.2 BETA DISTRIBUTION

The beta distribution, plotted in Figure 2.11, is defined over the interval of 0 to 1 with two positive
shape parameters, alpha and beta. The PDF equation of a beta distribution is

2o (1—2f ! O0<x<l1
Blad)

flx],a8)=
0 Otherwise

where B is the beta function. Since the beta distribution is defined between 0 and 1 it can be used for the
damage ratio, leak path factor, respirable fraction, and airborne release fraction. In SODA, the beta
distribution is specified by its alpha and beta values.

Appendix A

INL/EXT-16-40755
Revision 0 Page 51 of 249

2.5

P
ﬂ'ﬂ'ﬂﬂﬁ
oy
el el -7
T ||
nmnminos
LR R L= LA

1.5 F

PDF

0 i I 1 i S

1) 0.2 0.4 .o 0.8 1

Figure 2.11: Beta Distribution.

3.1.3 UNIFORM DISTRIBUTION

The uniform distribution is a uniform, continuous distribution in which all possible values between the

minimum and maximum value are equally probable. The PDF equation
of a uniform distribution is
1
. b—a
f(x],a,b) = for x € [a,b]
0 Otherwise

where b is the maximum value and a is the minimum value. These upper and lower limits are specified
by a user in SODA to define a uniform distribution. A uniform distribution plot is shown in Figure 2.12.

Appendix A

INL/EXT-16-40755
Revision 0 Page 52 of 249

0 3 b X

Figure 2.12: Uniform Distribution.

3.1.4 EXPONENTIAL DISTRIBUTION

The exponential distribution describes a process in which events occur continuously and independently
at a constant average rate 4 (see Figure 2.13). The exponential distribution PDF equation is

A plot of Exponential distributions with varying lambdas is shown below. In SODA, a user specifies an
exponential distribution by its mean value.

Appendix A

INL/EXT-16-40755
Revision 0 Page 53 of 249

[
B
T
S
|
=
cn
1

=
Pt
T
1

o o
Pd
T T

Figure 2.13: Exponential Distribution.

3.1.5 LOG-NORMAL DISTRIBUTION

The probability distribution in which the logarithm of a variable is normally distributed is log normal
distribution. The PDF equation of a log normal distribution

is
1 _Ung{;:.—u}g x>0
oy 2T
fla| po)= l
0 Otherwise

A Log-Normal distribution plot is shown in Figure 2.14.

Appendix A

INL/EXT-16-40755
Revision 0 Page 54 of 249

0=0.25, n=0

0 0.5 1.0 1.5 2.0 2.5

Figure 2.14: Log-Normal Distribution.

In the SODA application, the Log-Normal Distribution is defined by the mode of the distribution, also
known as the most probable value, rather than the location parameter. If a different value is to be
selected to locate the distribution, such as the location parameter (shown above as 1) or the median, then
mathematical relationships may be used to convert to the mode. Given the usual p=location parameter, ¢
=scale parameter:

Mode(X) = gh=o’
Mode(X) = Median(X) * e

The mode was selected for specifying peak location in SODA, so that when a user specifies a known (or
accepted) value to locate the distribution, that the known value is the most probable value. (For example,
when a tabulated DCF is specified, it should be the most probable value when sampling for the DCF)

Appendix A

INL/EXT-16-40755
Revision 0 Page 55 of 249

3.1.6 USER DEFINED DISTRIBUTION

For the user defined distribution option, the mean, standard deviation, or type of distribution for the
values do not need to be known. The user is able to select values and their probabilities based on known
data rather than a distribution type. The two options for this type of entry are clicked entry and typed
value entry. The entry method can be selected from the drop down box on the User Defined Distribution
page as shown below.

4 UserDefinedGUI X

Select Input Method from Dropdown List
Then, specify the desired number of bins, and the width of each bin.
Next, Click "Enter Distribution™ to unlock manual entry, or enable clicked

entry on the axes.

Click to generate ~ ‘

Enter Distribution
Type distribution values

Bin 1 Bin 6

Bin 2 Bin 7

05

Bin 5 Bin 10

The current fotal is:
asf

Current Total

The number of bins and bin width must be specified by the user. The maximum number of bins for this
entry method is 10. If a number greater than 10 is entered in the ‘Bins’ textbox, the program will
automatically change it to 10.

3.1.6.1 Clicked Entry

If the entry method selected is “Click to generate’, then after entering the number of bins and the bin
width, please click the ‘Start’ button. At this time, the program is ready for the clicked values to be
entered. To do this, begin by clicking in the first bin located to the left hand side of the axes. Continue
clicking until you have entered the number of values for the number of bins specified. The ‘Current
Total’ box on the bottom right hand side of the window will update as the total increases. This value
must add to 1. If the distribution values entered add to 1 and all of the bin values have been entered, the
application will display the distribution and confirm that it is correct.

Appendix A

INL/EXT-16-40755
Revision 0 Page 56 of 249

Select Input Method from Dropdown List
Then, specify the desired number of bins, and the width of each bin.
Next, Click "Enter Distribution” to unlock manual entry, or enable clicked

entry on the axes.

|4 Check Distri.. — X Start

Click te generate ~
Number of Bins

< Does this look comect?

1 T T T 1
Bin 1 Bin &
Bin 2 Bin7
08 B
07 b Bin 3 Bin &
06 b
Bin 4 Bin 9
05 b
Bin 5 Bin 10
04 b
0.3 b
The current total is:
0.2 b
0.1 1
o
o 0.1 02 03 04 05 06 07 08 09 1

If the distribution looks correct, select “Yes’ here and the values will be passed back to SODA. If it does
not look correct, select “No’ and you will be given the option to try again. If the values to not sum to 1,
the application will display the following message.

-

Select Input Method from Dropdown List

Then, specify the desired number of bing, and the width of each bin.

Next, Click "Enter Distribution” to unlock manual entry, or enable clicked

entry on the axes.

Click to generate ~

Number of Bins b - X Start

10
The probabilities must sum to one. Please try again.
0.6 T T T
Bin 1 Bin 6

Bin 2 Bin
Bin Bin 8
Bin Bin
Bin Bin 10

The current total is:

3.15

You will then be given the opportunity to reenter the values.

Appendix A

INL/EXT-16-40755
Revision 0

Page 57 of 249

3.1.6.2 Typed Entry

When the typed entry option is selected from the drop down menu the bin and bin width boxes still must
be filled. The limit of 10 bins applies to this entry option as well and again the application will
automatically correct any bin value over 10 to the maximum value of 10. Once the number of bins and
the bin width has been entered, you must type the values for each probability into the text boxes on the
right side of the window. When all of the values are entered, click ‘Enter Values below before Clicking’.
The program will create a plot of the typed distribution values and ask you if it looks correct if
everything summed to 1. If it did not sum to 1, it will notify you and you will be given the opportunity to

try again.

4

Select Input Method from Dropdown List

Then, specify the desired number of bins, and the width of each bin.
Mext, Click “Enter Distribution” to unlock manual entry, or enable clicked
entry on the axes.

Type distribution values

4| Check Distri.. —
Number of Bins

Does this look corect?

3.1.7 VALUES NEEDED FOR DISTRIBUTION OPTIONS

SDA

Enter Values Below, Then Click ‘

0.012 0.02

0.008 025

0.030 025

012 0.05

011 0.15

The current total 1s:

1

Values Needed for Distribution Option

Distribution Type Value 1 Value 2

Normal Mean Standard Deviation
Beta Alpha Beta

Uniform Upper Limit Lower Limit
Exponential Mean N/A

Log Normal Mode Scale Parameter

Appendix A

INL/EXT-16-40755
Revision 0 Page 58 of 249

3.2 VALUES FOR PARAMETERS

3.2.1 MATERIAL AT Risk (MAR)

To enter the MAR, click “‘Select MAR’ at the top of the screen.

] Stchastic Ohjective Decition Aide =T

Humber of Sample & uant % uana O uany 7 uan e
Dase Conversion Factor [Swerts/Bacquere])
Slect Isntope . Shaw ot
Shew Plat Breathing Rate{m"Xs)
; Shepisim o [St Pl |
| Distrbutinn Input | Setet Drslnbution & Shew Plat Sheow Fiol Show All Fit Drstritaation
Airbome Release Fraction
e : 1
Distribution Input | Selact Distribution - Show Piot
08
Resguable Fraction

08

IDestribution Input ‘ Sebect Distribution

This will bring up the periodic table of elements window where you can select materials for the CED
calculation.

S&DA MAR Selection Tool Swsi Owwa Cwes Owss
Select an Element to populate the isotope fields. Select an isotope by clicking the relevant Selected Isotope:
button. Export to SODA

Grayed out Elements have no isotopes in the database.
Once exported, the isotope’s Dose Conversion Factor (DCF) and quantitiy (in Bq) will be

Use the Control in the Upper Right to switch between multiple MAR selections.

Hitting Export will send all Selected MAR data to SODA and Close this window.
Th Pa{ U | Np Pu{Am{Cm Bk Cf{ Es | Fm | Md

Isotopes

Iso1 Iso1 Iso1 Iso1 Iso1 Iso1 Iso1

Ac

Appendix A

INL/EXT-16-40755
Revision 0 Page 59 of 249

Any elements in this table that are grayed out do not have available isotope data. The green, yellow, and
blue elements are available for selection. If your desired isotope is not in the database, you can input the
MAR quantity and corresponding DCF value in the SODA main screen. Many of the elements have
multiple isotopes that will show up in the Isotopes section in the middle of the window when the
element is selected. An example of the isotopes that show when plutonium is selected can be seen
below.

S@ DA MAR Selection TOOI @ MAR1 © MAR 2 ©) MAR 3) MAR 4
Select an Element to populate the isotope fields. Select an isotope by clicking the relevant Selected Isotope:
button. Export to SODA

Grayed out Elements have no isotopes in the database.
Once exported, the isotope’s Dose Conversion Factor (DCF) and quantitiy (in Bg) will be

Use the Control in the Upper Right to switch between multiple MAR selections.
Hitting Export will send all Selected MAR data to SODA and Close this window.
243PUD4PU
Ac
ﬂﬂﬂﬂﬂﬂaﬁﬂaﬂm

When one of the isotopes is selected it will appear in the ‘Selected Isotope’ box in the upper right hand
corner of the window. At this time the quantity of the material must be specified. Type the quantity in
Becquerels. Once this has been done, you may select another MAR or you can click ‘Export to SODA’
to continue with the MAR that has been specified. In the example below, the quantity has been entered.
At this point if only a single MAR is needed, then the user would click the ‘Export to SODA’ button. If

multiple MARs need to be entered, the user would first perform these same steps after selecting another
MAR.

|sotopes

238Pu| 239Pu| 240Pu| 241Pu| 242Pu

Appendix A

INL/EXT-16-40755
Revision 0

Page 60 of 249

[4 MAR Selection

= 2 |

Once exported. the isotope’s Dose Conversion Factor (DCF) and quantitiy (in Bq) will be
sent to SODA. 370000000
Use the Control in the Upper Right to switch between multiple MAR selections.

Hitting Export will send all Selected MAR data to SODA and Close this window.

|sotope: s

238Pu| 239Pu 240Pu 241Pu 242Pu| 243Pu| 244Pu

S&DA MAR Selection Tool war Ouwaz Owns
Select an Element to populate the isotope fields. Select an isotope by clicking the relevant Selgcted Isotope:
button.
Grayed out Elements have no isotopes in the database. 239Pu

) MAR 4

In the multiple MAR case, repeat this process for MAR 2 and then click the MAR 3 radio button.
Finally, after repeating the process for MAR 3, the MAR 4 radio button can be selected and the selection
process can be completed for the fourth MAR. Any number of MAR’s may be selected; it is not
necessary to enter information for all of the available four. When all of the MAR information necessary
has been entered, click the ‘Export to SODA’ button to send the data back to the SODA application.

In the main SODA window, you will see the Material at Risk (Becquerel) section and the Dose
Conversion Factor (Sieverts/Becquerel) section have been populated. These are based on the isotope and

the quantity provided in the MAR Selection Tool.

4] Stechastic bjective Decision Aude
File Help

| Humiber of Sample & AR A2
.—mj Dose Conversion Factor (Siveris/Becguerel)

Material at Risk (Bocqueral) % > | go0012
S ey - | ates = ;
| Custbution Input |

!Dianibmiank?:! Salect Distnbution - I P, [showat

Airborne Release Fraction

| Distribution Ingut | | See<t Distribution

Respirable Fraction
| Distibation ingut | | Select Distribution

Leak Path Factor

Distrbusion Input | Selact Distrbution

Chird (s/rm3)

Distribation Input Seloct Tormain «| |Select Stabiny

Derarrwing Distance (m) Croszwing Clistanca {m) Stack Height (m)
Haight 0zt

Wind Spaed (mis) 01
Seloct Distribution

Appendix A

INL/EXT-16-40755
Revision 0 Page 61 of 249

3.2.2 DAMAGE RATIO, AIRBORNE RELEASE FRACTION, RESPIRABLE FRACTION, LEAK PATH
FACTOR

To enter the values for DR, ARF, RF, and LPF, first select ‘Single Input’ or ‘Distribution Input’ by
clicking the button next to the parameter you are working on. If “‘Single Input’ is selected, you may enter
the single point value in the textbox that has been enabled. This will give you less information about the
CED, but may be appropriate if the uncertainty for the parameter being entered is not understood. DR
and LPF selections are universal across MAR selections, while ARF and RF are specific to the selected
MAR. An example of this type of entry can be seen for the DR below.

Number of Sample @ MAR1 MAR 2 MAR 3 MAR &
SakecubiaR Dose Conversion Factor (Siverts/Becquerel)

Single Input 239Pu - 0.00012

Material at Risk (Becquerel)

Single Input. Select Distribution 3.7E8 Show Plot Breathing Rate(m*3/s)

Distribution Input Show Plot
Damage Ratio
Select Distribution Sjo ot
Single Input 03 3 TS Show Plot Show Al Fit Distribution

I

it}

TTe-RETEERE [raction

1
Distribution Input| | Select Distribution P
0.9
Respirable Fraction
08
Distribution Input| | Select Distribution - Show Plot
07
Leak Path Factor
- o 0.6
Distribution Input| | Select Distribution - Show Plot
0.5
ChifQ (s/m3)
. - - N 04F
Distribution Input Select Terrain he Select Stability
03
Downwin d Distance (m) Crosswind Distance (m) Stack Height (m)
Height 02}
Wind Speed (m/s) 0.1f
Select Distribution - S P
) L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

If a distribution of values is known for the parameter, the ‘Distribution Input’ option should be selected.
When this option is selected, the drop down menu for the types of available distribution inputs is
displayed. This menu can be seen in the figure below.

Appendix A

INL/EXT-16-40755
Revision 0 Page 62 of 249

98 &
Number of Sample ® Mar1 O uarz
Select MAR Dose Conversion Factor (Siverts/Becquere
Material at Risk (Becquerel) Single Input 239Pu h 0.00012

Single Input Select Distribution 3.7e+08 Show Plot Breathing Rate(m"3/s)
g

Distribution Input

Distribution Inpui Select Distribution

Show Plot Show All
Select Distribution

MNormal

Beta - i
Uniform
Exponential 0.9
Log Marmal
User Defined

Distribution Rput

08
Distribution Input
0.7
Leak Path Factor
Distribution Input | | Select Distribution v Show Plot 03]
05

ChilQ (s/ma3)

: = - 04
Distribution Input Select Terrain v Select Stability

03

Downwind Distance (m) Crosswind Distance (m) Stack Height (m)
Height nok

From this drop down list, the distribution type is selected. With the distribution type selected, the
textboxes for the parameter autofill with the type of information that you will need to provide. For
example, if Normal distribution is selected from the drop down menu, the textboxes will indicate that
you must enter the mean and standard deviation for the distribution. If Beta distribution is selected, the
textboxes will show text indicating that you must enter alpha and beta values. If Uniform distribution is
selected, you will need to enter the lower and upper limits. If Exponential distribution is selected, you
will see text in one box indicating that you need to enter just the mean.

3.2.3. ENTERING VALUES FOR X/Q

When entering values for the plume dispersion parameter, a single value can be selected or a distribution
option is available. If you choose to use the distribution option, you must know the type of terrain, the
stability class, the downwind and crosswind distances, the stack height, and the wind speed. The wind
speed must be entered as a distribution. The terrain types available are rural and urban terrain. Rural
terrain is terrain that has less than 50% developed area, and urban terrain is terrain that has greater than
50% developed area. The stability classes available range from A to F with A being the least stable of
the classes, with a rating of “Very Unstable’ and F being the most stable with a rating of ‘Stable’. In the
urban terrain option, stability classes A and B are grouped together and classes E and F are grouped
together. The stability classes are used to determine the dispersion from the centerline of the plume, and
the calculations are the same for A and B stability classes and E and F stability classes when using urban
terrain. In rural terrain, all six stability classes are separate. An example of the ¥/Q section of SODA
filled out can be seen below.

Appendix A

INL/EXT-16-40755
Revision 0 Page 63 of 249

Chi/Q (s/m3)

Distribution Input Urban Area - D -

Downwind Distance (m) Crosswind Distance (m) Stack Height (m)
5000 5000 20

Wind Speed (m/s)

Mormal - 3 03 Show Plot

When entering the values for plume dispersion, if you are unsure of which distribution to use for wind
speed, it is more conservative to use normal distribution than uniform distribution when using rural
terrain. Both distributions give values that are virtually the same when using urban terrain.
If you are unsure of the terrain type in the scenario you are interested in, the rural terrain option will give
a higher CED estimation, therefore giving more conservative information than urban terrain. A less
stable atmospheric stability class will provide a more conservative distribution for the CED also. The
¥/Q parameter suggestions are as follows:
e Terrain
o0 For downwind distances less than 1000m the urban terrain option will give the most
conservative dose
o For downwind distances greater than 1000m the rural option will the most conservative
dose when used with stability classes A, B, or C
o0 For downwind distances greater than 1000m the urban option will give the most
conservative dose when used with stability classes D, E, or F
e Stability Class
o For downwind distances less than 1000m, the stability class should be known with
certainty
0 The use of stability class A at low downwind distances will give the most conservative
estimate if the class is unknown
e Crosswind Distance
0 The crosswind distance should be known with certainty when the terrain is rural and the
atmospheric stability class used is D, E, or F
0 The crosswind distance can be estimated when the stability class is A, B, or C
0 The crosswind distance can be estimated when the terrain is urban
e Stack Height
o If downwind distance is less than 1000m, the exact effective stack height should be
known
o If downwind distance is greater than 1000m, the stack height can be estimated

Appendix A

INL/EXT-16-40755
Revision 0 Page 64 of 249

e Wind speed and distribution
0 The wind speed and the distribution used to represent the variation in wind speeds does
not have a significant effect on the overall CED
o If the exact wind speed is unknown, a lower speed will give a more conservative estimate

3.2.4. ENTERING VALUES FOR NUMBER OF SAMPLE

The value entered in the number of samples textbox will be used to determine how many samples of
each parameter to take and how many CED calculations to complete. The greater the number in the box,
the more accurate the distribution generated will be. However, if a number is entered that is too large it
can cause the program to run very slowly or even freeze and it then defeats the purpose of having a
quick and easy tool. A warning will show if you select a sample number larger than 100 million (1ES).
A good number to use for this parameter is between 1 and 10 million (1E6 to 1E7). For more details on
sample count and ram usage, look in the Limitations section of this document.

4. PLOTS

4.1. HOW TO PLOT

Once values have been entered for all variables, the CED distribution can be calculated and plotted. In
order to plot the CED distribution, click the ‘Show Plot’ button above the axis.

Humbar of Sampls & UAR 1 MARZ MAR 2 MAR 4
Select MAR 1000000 Duse Comersion Factor (SwertsBecquerel)
[ey

Material at Risk Becquarsl) Single input] 235Fu - 0.00012

Singlo boput | 5 3 Te+0 Brasthing Rate{m*3s)

dribution Input Show Plot

Drstribution input | | Normal = 05 02 Show Plot

Distibution Input. | Uniform - 06 04 Show Plot

Raspirable Fraction
Distribution Input | | Mormal = 04 03 Show Plot
Leak Path Factor
Dvstnbution input | Normal = 03 0.05 Show Flot
ChifQ {s/m*3)
Destribution Input Uran Asea - AD

Downwind Distance {m) Crozswind Distance {m) Sack Hewght {m)

100 50 o

Wind Speed (mis)
Hiormmal . 3 03 Show Plot

Appendix A

INL/EXT-16-40755
Revision 0 Page 65 of 249

Once the *Show Plot’ button has been clicked, please wait without clicking anything else for the
distribution plot to be generated. This can take a moment depending on your machine. Once the plotting
is complete you will see a distribution like the one below.

Mean Value of CED = 2.580e-03 rem with std devitation= 4.135e-03 rem

I I Random Generated

450

400 -

350 -

300 -

Probability Density
M P
s &

-

o

=)
|

100 -

50 -

0 L 1 I I I I I
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Commited Effective Dose (rem)

The SODA application will provide the mean value and standard deviation in rem in addition to the
plotted distribution. The mean and standard deviation give a quick idea of where the dose value lies,
while the plotted distribution gives more detail. As can be seen from the figure above, the mean value
for this example is 2.580*107 with a standard deviation of 4.135*10°°,

In the event that multiple MARs have been selected, and a calculation incorporating all of these
selections is desired, Show All should be selected. Note that the information for each MAR entry must
be complete. An incomplete entry will not be used in the calculation of the CED, and a message will be
directed at the user to inform them of this. The show all button becomes usable once a second MAR is
selected with the radio buttons on the SODA main GUI. After clicking Show All, the resulting CED is
for all of the selected MARs.

Appendix A

INL/EXT-16-40755

Revision 0 Page 66 of 249
Number of Sample & Mag 1 MARZ WAR Y MAR 4
s '» DA Select MAR 1000000 Dose Conversion Factor (SnertaBecquersl)
Material at Risk (Decquered) Singie input J PPu & 0.00012
Singlo nput J 3 Tes0d Breathing Rate(m*3a}

Chstnbuben bpul Show Plat

Camage Ratio
Destribution Ingut | Nermal s 0.5 0z Show Fiol = ‘
|
Axtame Rebeage Fraction

Dvstrbution Input | Uiniferm - 06 04 Show Plol

Respirable Fraction

Distribution Input | Mormal - (7] 03 Shew Plat

5. LIMITATIONS

SODA does not account for wet or dry deposition. When using Show All to perform a multiple MAR
CED calculation, the model assumes that the various MARs are well mixed and are inhaled in the
proportions of their original quantity. This may not always be the case, depending on the material
properties of each MAR, but is generally a good assumption. This tool is meant to be used as a guideline
for decision making, but will not supply a single yes or no answer for decision makers. This tool may be
used to gain an understanding of possible dose values from a hypothetical accident scenario and to make
a decision regarding the necessity of safety structures in that specific scenario.

SODA uses Monte Carlo methods to perform its calculations. As is typical when using MC methods for
calculations, a higher sample count will take longer to compute, but achieve a better answer. Due to the
nature of this calculation, very high sample counts will result in a memory usage penalty. 1E8 samples,
if all available distribution inputs are selected, can result in a usage in excess of 10GB of memory.
Typically, 1E6 samples are sufficient for a general answer, while 5E6 to 1E7 can be used for a final
answer. Higher counts can of course be employed on powerful machines, containing larger memory
sizes. The reason for the sizable memory usage is how SODA computes a CED from distribution inputs.
Each distribution will be sampled as many times as specified in the same count. Each of these results
take up a sizable amount of memory when a large sample count is specified. The distribution for each
input must be saved until they are multiplied to get a ST or CED result. It is the point just before
calculation of the CED result where the memory usage reaches its peak. In the case of a multi-MAR
calculation, the CED result for each individual material is saved until the final multi-MAR CED result is
computed. As a result, the peak usage in a multi-MAR problem will be higher than it would be in a
single MAR calculation.

The MAR Database, which is a file included in the SODA distribution, contains the isotope data that is
accessed in the MAR Selection GUI. If the information contained in this file becomes outdated, or an
application user wishes to include more isotopes in the file, there are some limitations which must be
known. The format of the file must be preserved, which means that only 7 isotopes per element are
accommodated, with 7 columns for isotope A number, and 7 columns for the corresponding DCF values.
The actinide portion of the original file will make for a good example. The CSV file may be viewed in

Appendix A

INL/EXT-16-40755
Revision 0

Page 67 of 249

excel, but changes must be saved in csv format, not xlIs format. The program is setup to read a csv file,
not an xls file.

Appendix A

INL/EXT-16-40755
Revision 0 Page 68 of 249

APPENDIX B:

MATLAB Code

Appendix B

INL/EXT-16-40755
Revision 0 Page 69 of 249

File 1, Projectl.m: Main Code file for SODA.

function varargout = Projectl(varargin)

% TO understand this code and follow the work it is essential that

% you open project figure file in Matlab GUIDE and get the tag name of each object.
% Tag name is esssentially the functions in project.m file

% PROJECT1 MATLAB code for Projectl.fig

% PROJECT1, by itself, creates a new PROJECT1 or raises the existing

% singleton*.

%

% H = PROJECT1 returns the handle to a new PROJECT1 or the handle to

% the existing singleton*.

%

% PROJECT1("CALLBACK" ,hObject,~,handles,...) calls the local

% function named CALLBACK in PROJECT1.M with the given input arguments.

%

% PROJECT1("Property®,“"Value®,...) creates a new PROJECT1 or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Projectl OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application
% stop- All inputs are passed to Projectl OpeningFcn via varargin.

%

% *See GUI Options on GUIDE"s Tools menu. Choose "'GUI allows only one

% instance to run (singleton)".

%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Projectl
% Last Modified by GUIDE v2.5 23-Jan-2016 13:55:46

% Begin initialization code - DO NOT EDIT
% This portion is generated by Matlab GUide. It is to make sure figure file
% worl

gui_Singleton = 1;

gui_State = struct("gui_Name~", mfilename, ...
"gui_Singleton®, gqui_Singleton, ...
"gui_OpeningFcn®, @Projectl OpeningFcn, ...
"gui_OutputFcn®, @Projectl OutputFcn, ...
"gui_LayoutFcn®, [] , .
"gui_Callback"®, [D:

ifT nargin && ischar(varargin{l})
gui_State.gui_Callback = str2func(varargin{l});

end

iT nargout

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

end

% --- Executes just before Projectl is made visible.

% This function is loaded in the begineing of the Soda first run.

Appendix B

INL/EXT-16-40755
Revision 0 Page 70 of 249

% IN this function i set the default settings for all the push button and
% turn on and off push button and toggle button.

function Projectl_OpeningFcn(hObject, ~, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Projectl (see VARARGIN)

=S

=S

% Choose default command line output for Projectl
handles.output = hObject;
axes(handles.logo_axes);

imshow("sodalLogol.png®);

% Update handles structure

guidata(hObject, handles);

%disable show plot button for all parameter when program starts
set(handles.fit_dist, "Enable”, "off")
set(handles.mar_pushbutton, "Enable”, "off");
set(handles.dr_pushbutton, "Enable®, "off");
set(handles.arf_pushbutton, "Enable”, "off");
set(handles.rf _pushbutton, "Enable”, "off");
set(handles. Ipf_pushbutton, "Enable”, "off");
set(handles.br_pushbutton, "Enable”, "on");
set(handles.dcf_pushbutton, "Enable”, "off");
set(handles.cq_pushbutton, "Enable”, "off");
set(handles.runall_pushbutton, "Enable®,"off");

%disable textl all parameter when program starts
set(handles.mar_textl, "Enable”,"on");
set(handles.mar_popup_dist, "Enable”, "off");
set(handles.dr_textl, "Enable®, "off");
set(handles.arf_textl, "Enable”, "off");
set(handles.rf _textl, "Enable”, "off");
set(handles. Ipf_textl, "Enable”, "off");
set(handles.br_textl,"Enable®, "off");
set(handles.dcf_textl, "Enable”, "off");
set(handles.cq_textl, "Enable®, "off");

%disable text2 for all parameter when program starts
set(handles.mar_text2,"Enable”, "off");
set(handles.dr_text2,"Enable”, "off");
set(handles.arf_text2,"Enable”, "off");
set(handles.rf_text2,"Enable”, "off");
set(handles.Ipf_text2,“"Enable”, "off");
set(handles.dcf_text2,"Enable”, "off");

%disable chi/q section distribution input and show plot button
set(handles.windspeed_textl, "Enable”, "off")
set(handles.windspeed_text2,"Enable”, "off")
set(handles.cq_pushbutton, "Enable”, "off")

set(handles.stability popup, "Enable”, "off","String” ,{"Select Stability"});
%set MAR toggle button pressed (to single input) when program starts

Appendix B

INL/EXT-16-40755
Revision 0 Page 71 of 249

set(handles.mar_togglebutton, "Value®,1);
set(handles.mar_togglebutton, "String”, "Single Input®);
set(handles.dcf_togglebutton, "string”, "Single Input®);
set(handles.dcf_togglebutton, "Value®,1);
set(handles.dcf _popup _dist,"String”,{"Sellect Isotope"}...
, Value®,1,"Enable”,"on");
set(handles.dcf_textl, "Enable”,"on");
set(handles.dcf_textl, "String”,"");
set(handles.dcf_text2,"String”,"");
set(handles.dcf_text2,"Enable”,"off") ; %
set(handles.dcf _pushbutton, "Enablle”,"off"); %

global Parameters

global CurrentMAR

CurrentMAR = 1;

Parameters = SODA Parameters();
end

% —--- Outputs from this function are returned to the command line.
function varargout = Projectl_OutputFcn(hObject, ~, handles)

4 varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

XX

% Get default command line output from handles structure
varargout{l} = handles.output;
end

function num_sample_text Callback(hObject, ~, handles)

% hObject handle to num_sample_text (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject,"String”) returns contents of num_sample_ text as text

% str2double(get(hObject, "String")) returns contents of num_sample_text as a
double

% --- Executes during object creation, after setting all properties.
function num_sample_text CreateFcn(hObject, ~, handles)

% hObject handle to num_sample_text (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

X

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor™, "white");
end
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 72 of 249

% --- Executes on button press in rf_pushbutton.

%This function is exceuted when user presses RF show plot button
function rf_pushbutton_Callback(hObject, ~, handles)

% hObject handle to rf _pushbutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%when user press RF Show plot button these command are exceuted.
% grab number from number of samples box.

% grab number from textl and text2 box.

% grab what kind of distribution user has selected.

% iFf normal distribution is selected than generate random normal
% distribution with given paramter and plot histogram in is axes.
global Parameters;

global CurrentMAR;

sample = get(handles.num_sample_text, "String”);%grab number from number of sample
box

samplesize = str2double(sample);

if strcmp(sample,™™) == 1 || samplesize < 0
errordlg("Please enter number of samples®, "Sample Number®, "modal*);
return;

end

col = get(handles.rf_pushbutton, "backg™);
set(handles.rf _pushbutton, "str”, "RUNNING...","backg",[-2 .6 .6]);
pause(eps);
numl = str2double(get(handles.rf_textl,"String”)); %grab number from number of text
box 1
num2 = str2double(get(handles.rf_text2,"String~)); %grab number from number of text
box 2
% Find what kind of distribution user has selected.
contents = get(handles.rf_popup_dist,"String”);
popupmenuvalue = contents{get(handles.rf_popup_dist, "Value®)};
cla(handles.axesl, "reset”);
switch popupmenuvalue
case “Normal*
result = InputlsValid(handles.rf_textl, "RF", ""); %check for valid input,
report to user
result2 = InputlsvValid(handles.rf_text2, "RF", "Sig"); %if input is
invalid.
if result && result2
pd = makedist("Normal®,"mu”,numl, "sigma”,num2);
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin(“base”,"rfxi", xi);

assignin(“base", "rffi2", fi);

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[-2 .6 .6], "BarWidth",1);
axis tight;

% hist(n,50);

ylabel ("Probability Density®);

xlabel ("RF™);

Appendix B

INL/EXT-16-40755
Revision 0 Page 73 of 249

str = sprintf("\\fontsize{12} RF distribution plot with Normal
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units®, "normalized®, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
else
if ~result && ~result2
errordig("Problem in rf_textl, rf_text2, invalid input.”,"Invalid
Input®, "modal ") ;
elseif ~result && result2
errordig("Problem in rf_textl, invalid input.”,"Invalid
Input®, "modal ™) ;
else
errordlg("Problem in rf_text2, invalid input.”,"Invalid
Input®, "modal ") ;
end
end
case "Log Normal*
result = InputlsValid(handles.rf_textl, "RF", "7);
result2 = InputlsvValid(handles.rf_text2, "RF", "Sig");
if result && result2
pd = makedist("Lognormal™, "mu”, log(numl)+num2°2, "sigma”,num2);
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(fi)./dx;

assignin("base”, "drxi", Xxi);
assignin(“base”, "drfi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
axis tight;
ylabel ("Probability Density”);
xlabel ("RF™);
str = sprintf("\\fontsize{12} RF distribution plot with Log Normal
distribution with Mean=%0.2e , Stdev=%0.2e", ...
mean(n),std(n));
title(str,"Units", "normalized”, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)
else
if ~result && ~result2
errordig("Problem in rf_textl, rf _text2, invalid input.”,"Invalid
Input®, "modal ™) ;
elseif ~result && result2
errordlg("Problem in rf_textl, invalid input.”®,"Invalid
Input®, "modal ™) ;
else
errordig("Problem in rf_text2, invalid input.”,"Invalid
Input®, "modal ®);
end
end
case "Beta“
result = InputlsValid(handles.rf _textl, "RF", "ab");

Appendix B

INL/EXT-16-40755
Revision 0 Page 74 of 249

result2 = InputlsvValid(handles.rf_text2, "RF", "ab");
if result && result2
pd = makedist("Beta","a",numl, "b",num2);

t = truncate(pd,0,1);

n = random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = fi./sum(fi)./dx;

assignin("base”,"rfxi", xi);
assignin(“base", "rffi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[-.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density”);
xlabel ("RF™);
str = sprintf("\\fontsize{12} RF distribution plot with Beta
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units", "normalized”, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center"®)
else
if ~result && ~result2
errordig("Problem in rf_textl, rf _text2, invalid input.”,"Invalid
Input®, "modal ™) ;
elseif ~result && result2
errordlg("Problem in rf_textl, invalid input.”®,"Invalid
Input®, "modal ") ;
else
errordlg("Problem in rf_text2, invalid input.”,"Invalid
Input®, "modal ") ;
end
end
case “Uniform*
result = InputlsValid(handles.rf_textl, "RF", "7);
result2 = InputlsvValid(handles.rf_text2, "RF", °“LL");
if result && result2
if numl < num2;
% In unifrom distribution upper limt must be greater than lower
% Bimit, if not show the error message
errordlg("Upper Limit is less than lower limt®,*Uniform
Distribution®, "modal *)
set(handles.rf_pushbutton, “str*, "Show Plot", "backg”,col);
return;
else
pd = makedist(“Uniform®, “Upper®,numl, “Lower",num2);
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = fi./sum(fi)./dx;

assignin("base”,"rfxi", xi);

Appendix B

INL/EXT-16-40755
Revision 0

Page 75 of 249

assignin(“base”, "rffi2", fi);

bar(xi,fi,"FaceColor”,[.2 .6 .6], "EdgeColor",[.2 .6 .6],
"BarWidth®,1);

axis tight;

% % hist(n,50);

ylabel ("Probability Density®);
xlabel ("RF™);

str = sprintf("\\fontsize{12} RF distribution plot with Uniform

distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units®, "normalized®, ...

"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)

end
else
if ~result && -result2

errordig("Problem in rf_textl, rf_text2, invalid input.”,"Invalid

Input®, "modal ") ;
elseif ~result && result2
errordlg("Problem in rf_textl, invalid input.”®,"Invalid
Input®, "modal ") ;
else
errordlg("Problem in rf_text2, invalid input.”,"Invalid
Input®, "modal ") ;
end
end
case "Exponential*
result = InputlsValid(handles.rf_textl, "RF", "7");
if result
pd = makedist("Exponential®,*mu”,numl);
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin("base”,"rfxi", xi);
assignin(“base®, "rffi2", fi);

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1)

axis tight;

% % hist(n,50);
ylabel ("Probability Density”);
xlabel ("RF™);

str = sprintf("\\fontsize{12} RF distribution plot with Exponential

distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units", "normalized®, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center"®)
else
errordig("Problem in rf_textl, invalid input.”®,"Invalid
Input®, "modal ") ;
end
case "User Defined”

[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "RF"); %Get UDD data from

object

Appendix B

INL/EXT-16-40755

Revision 0 Page 76 of 249
n = zeros(l,samplesize);
for e = l:samplesize; %Sample the saved probability distribution
num_rand=rand;
ter = size(X);
for i = 1:ter(2)
iSum = 0;
for j = 1:i
iSum = 1Sum + Y(J);
end
if num_rand < iSum
ifi==1
n(e) = rand*(X(1+1)-X(1))+X(i);
else
n(e) = rand*(X(1)-X(1-1))+X(i1);
end
break;
end
end
end
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin("base”, "drxi", Xxi);
assignin(“base”, "drfi2", fi)

bar(xi,fi,"FaceColor®,[-2 .6 .6], EdgeColor®,[-2 .6 .6],

axis tight;

% hist(n,50);

ylabel ("Probability Density”
xlabel ("RF™);

str =

)

Distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...

mean(n),std(n));
title(str, "Units”,
"Position”, [0.5 1.02],

end

"normalized”,

"HorizontalAlignment”®,

set(handles.rf _pushbutton, "str-, "Show Plot”", "backg”,col);

end

function rf_text2_Callback(hObject,
% hObject
% ~ reserved - to be defined
% handles

~, handles)

handle to rf_text2 (see GCBO)
in a future version of MATLAB
structure with handles and user data (see GUIDATA)

"center")

"BarWidth®,1);

sprintfF("\\fontsize{12} RF distribution plot with User Defined

end

% Hints: get(hObject,"String®) returns contents of rf_text2 as text

% str2double(get(hObject, "String")) returns contents of rf_text2 as a double
% --- Executes during object creation, after setting all properties.

function rf_text2_CreateFcn(hObject,
% hObject

~, handles)

handle to rf_text2 (see GCBO)

Appendix B

INL/EXT-16-40755

Revision 0 Page 77 of 249
% ~ reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor™, "white");
end
end

function rf_textl_ Callback(hObject, ~, handles)
% hObject handle to rf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject,"String®) returns contents of rf_textl as text

% str2double(get(hObject, "String")) returns contents of rf_textl as a double
% --- Executes during object creation, after setting all properties.

function rf_textl CreateFcn(hObject, ~, handles)

% hObject handle to rf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor™, "white");
end
end

% --- Executes on selection change in rf_popup_dist.

%This function is executed when user selects from a drop down menu a list
% of distribution and ask for respective parameter in the text box.
function rf_popup_dist_Callback(hObject, ~, handles)

% hObject handle to rf _popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

X

% This function is executes when a Respirable fraction popup menu distribution
» is choosen.

=4

%Find the string the user have selected.
global Parameters;

global CurrentMAR;

contents = cellstr(get(hObject, "String"));
rfpopchoice = contents{get(hObject, "Value™)};

switch rfpopchoice
case "Normal*
%if normal is selected enable input text box and also display parameter

Appendix B

INL/EXT-16-40755

Revision 0

Page 78 of 249

case

case

%required in those text box.
set(handles.rf_textl, "Enable”, "inactive®)
set(handles.rf_text2,“Enable”, "inactive®)
set(handles.rf_pushbutton, "Enable”, "on")
set(handles.rf_textl,"String”, "Mean");
set(handles.rf_text2,"String”, "Std Deviation®);
set(handles.rf_textl, "TooltipString~," ")
set(handles.rf_text2, "TooltipString~, ")

"Beta”
%if Beta is selected enable input text box and also display parameter
%required in those text box.
set(handles.rf_textl, "Enable”, "inactive®)
set(handles.rf_text2,“Enable”, "inactive®)
set(handles.rf_pushbutton, "Enable”, "on")
set(handles.rf_textl,"String”,"a");
set(handles.rf_text2,"String”,"b");
set(handles.rf_textl, "TooltipString”, "shape parameter™)
set(handles.rf_text2, " TooltipString”, "shape parameter®)

Uniform
%if Uniform is selected enable input text box and also display parameter
%required in those text box.
set(handles.rf_textl, "Enable”, "inactive®)
set(handles.rf_text2,“Enable”, "inactive®)
set(handles.rf_pushbutton, "Enable”, "on")
set(handles.rf_textl,"String”, "Upper Limit")
set(handles.rf_text2,"String”, "Lower Limit")
set(handles.rf_textl, "TooltipString~," ")
set(handles.rf_text2, "TooltipString~, ")

case "Exponential*

%if Exponential is selected enable input text box and also display

parameter

case

%required in those text box.
set(handles.rf_textl, "Enable”, "inactive®)
set(handles.rf_text2,"Enable”, "off")
set(handles.rf_pushbutton, "Enable”, "on")
set(handles.rf_textl,"String”, "Mean");
set(handles.rf_text2,"String","");
set(handles.rf_textl, "TooltipString”,"")
set(handles.rf_text2, "TooltipString”,"")
"Select Distribution®
%if Select distribution is selected disable input text box and also
%disable show plot button.
set(handles.rf_textl,"String®,"");
set(handles.rf_text2,"String","");
set(handles.rf_textl, "Enable”, "off")
set(handles.rf_text2,"Enable”, "off")
set(handles.rf_pushbutton, "Enable”, "off")
set(handles.rf_textl, "TooltipString”,"")
set(handles.rf_text2, "TooltipString”,"")

case "Log Normal*®

%if Log Normal is selected enable input text box and also display parameter
%required in those text box.

set(handles.rf_textl, "Enable”, "inactive™) %

set(handles.rf_text2,"Enable”, "inactive™) %

set(handles.rf_pushbutton, "Enable”,"on") %

set(handles.rf_textl, "String”,{"Mode"});
set(handles.rf_text2,"String”,{"Scale Param."});

Appendix B

INL/EXT-16-40755
Revision 0 Page 79 of 249

set(handles.rf_textl, "TooltipString~," ")
set(handles.rf_text2, "TooltipString~," ")
case "User Defined”

%if Select distribution is selected disable input text box and also
%enable show plot button.
set(handles.rf_textl, "Enable”, "off")
set(handles.rf_text2,"Enable”, "off")
set(handles.rf_pushbutton, "Enable”,"on")
set(handles.rf_textl, "String”, "User");
set(handles.rf_text2,"String”, "Defined™);
set(handles.rf_textl, "TooltipString~," ")
set(handles.rf_text2, "TooltipString~,"")
Parameters = UserDefined(Parameters);
[Parameters, msg, flag] = Parameters.CheckUDD("RF"); %Check UDD for

correctness

if flag == %1¥ problem, do not
save, and reset.
msgbox(msg) ;

set(Parameters, "UDtempX”,0);
set(Parameters, "UDtempY~,0);
set(hObject, "Value®, 1);
rf_popup_dist _Callback(hObject, "", handles);
else
Parameters = Parameters.SaveUDD(CurrentMAR, "RF");
end
end
end
% Hints: contents = cellstr(get(hObject,"String")) returns rf _popup_dist contents
as cell array
% contents{get(hObject, "Value®)} returns selected item from rf _popup dist

% --- Executes during object creation, after setting all properties.
function rf_popup_dist_CreateFcn(hObject, ~, handles)

% hObject handle to rf _popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

=4

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end
end

% --- Executes on selection change in dr_popup_dist.

%This function is executed when user selects from a drop down menu a list
% of distribution and ask for respective parameter in the text box.
function dr_popup_dist_Callback(hObject, ~, handles)

% hObject handle to dr_popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global Parameters;

global CurrentMAR;

contents = cellstr(get(hObject, "String"));

Appendix B

INL/EXT-16-40755

Revision 0

Page 80 of 249

drpopcho
switch d
case

case

case

ice = contents{get(hObject, "Value®)};

rpopchoice
"Normal *

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

"Beta”

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

Uniform

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

dr_textl,"Enable”, "inactive®)
dr_text2,"Enable”, "inactive”)
dr_pushbutton, "Enable”,"on")
dr_textl,"String”, "Mean");

dr_textl, "TooltipString”,"")
dr_text2,"TooltipString®," ")

dr_textl, "Enable”, "inactive”)
dr_text2,"Enable”, "inactive®)
dr_pushbutton, "Enable”,"on")
dr_textl,"String”,"a");
dr_text2,"String”,"b");

dr_textl,"Enable”, "inactive®)
dr_text2,"Enable”, "inactive®)
dr_pushbutton, "Enable”,"on")

dr_textl, "TooltipString®," ")
dr_text2,"TooltipString®," ")

case "Exponential”

case

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

dr_textl,"Enable”, "inactive®)
dr_text2,"Enable”, "off")
dr_pushbutton, "Enable”,"on")
dr_textl,"String”, "Mean");
dr_text2,"String”,"");
dr_textl, "TooltipString®,"")
dr_text2,"TooltipString®,"")

"Select Distribution”

set(handles
set(handles
set(handles
set(handles
set(handles
set(handles
set(handles

.dr_textl,"String”,"");
.dr_text2,"String","");
.dr_textl,"Enable”, "off")
.dr_text2,"Enable”, "off")
.dr_pushbutton, "Enable”, "off")
.dr_textl, "TooltipString~," ")
.dr_text2, "TooltipString~," ")

case "Log Normal*

case

set(handles
set(handles
set(handles
set(handles
set(handles
set(handles
set(handles

.dr_textl,“Enable”, "inactive®)
.dr_text2,"Enable”, "inactive®)
.dr_pushbutton, "Enable”, "on")
.dr_textl,"String”,{"Mode"});

-dr_text2,°String”,{"Scale Param."});

.dr_textl, "TooltipString”,"")
.dr_text2,"TooltipString”,"")

"User Defined”

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

dr_textl, "Enable”, "off")
dr_text2,"Enable”, "off")
dr_pushbutton, "Enable”,"on")
dr_textl,"String”, "User");
dr_text2,"String”, "Defined");
dr_textl,"TooltipString”,"")

Appendix B

dr_textl,"String”, "Upper Limit")
dr_text2,"String”, "Lower Limit")

dr_text2,"String”, "Std Deviation®);

dr_textl,"TooltipString”, "shape parameter®)
dr_text2,"TooltipString~, "shape parameter®)

INL/EXT-16-40755

Revision 0 Page 81 of 249

set(handles.dr_text2, "TooltipString~," ")
Parameters = UserDefined(Parameters);
[Parameters, msg, flag] = Parameters.CheckUDD("DR");
if flag ==

msgbox(msg) ;

set(Parameters, "UDtempX”,0);

set(Parameters, "UDtempY~,0);

set(hObject, "Value®, 1);

dr_popup_dist_Callback(hObject, "", handles);
else

Parameters = Parameters.SaveUDD(CurrentMAR, "DR");
end

end
end

%

Hints: contents = cellstr(get(hObject, "String”)) returns dr_popup_dist contents

as cell array

%

%

contents{get(hObject, "Value®)} returns selected item from dr_popup_dist

-—- Executes during object creation, after setting all properties.

function dr_popup_dist_CreateFcn(hObject, ~, handles)

X

0
%
%

%
%

hObject handle to dr_popup_dist (see GCBO)
~ vreserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundCollor™))

set(hObject, "BackgroundColor™, "white");

end
end

function dr_textl Callback(hObject, ~, handles)

X

0
%
%

%
%

hObject handle to dr_textl (see GCBO)
~ vreserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get(hObject,"String®) returns contents of dr_textl as text
str2double(get(hObject, "String")) returns contents of dr_textl as a double

end

%

-—- Executes during object creation, after setting all properties.

function dr_textl CreateFcn(hObject, ~, handles)

X

0
%
%

%
%

hObject handle to dr_textl (see GCBO)
~ vreserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundCollor™))

set(hObject, "BackgroundColor™, "white");

end

Appendix B

INL/EXT-16-40755
Revision 0 Page 82 of 249

end

function dr_text2_Callback(hObject, ~, handles)

% hObject handle to dr_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,"String®) returns contents of dr_text2 as text

% str2double(get(hObject, "String")) returns contents of dr_text2 as a double

=4

end

% --- Executes during object creation, after setting all properties.
function dr_text2_CreateFcn(hObject, ~, handles)

% hObject handle to dr_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor™, "white");

end

end

% --- Executes on button press in dr_pushbutton.

%This function is executed when user press DR show plot button
function dr_pushbutton_Callback(hObject, ~, handles)

% hObject handle to dr_pushbutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
global Parameters;

global CurrentMAR;

sample = get(handles.num_sample_text, "String”);

samplesize = str2double(sample);

if strcmp(sample,®®) == 1 || samplesize < 0
errordlg("Please enter number of samples®, "Sample Number®, "modal*);
return;

end

col = get(handles.dr_pushbutton, "backg®);
set(handles.dr_pushbutton, "str”, "RUNNING. .. ", "backg",[-2 .6 .6]);
pause(eps);
numl = str2double(get(handles.dr_textl,"String”));
num2 = str2double(get(handles.dr_text2,"String”));
contents = get(handles.dr_popup_dist,"String”);
popupmenuvalue = contents{get(handles.dr_popup_dist, "Value®)};
cla(handles.axesl, "reset”);
switch popupmenuvalue
case “Normal*
result = InputlsValid(handles.dr_textl, "DR", "%)
result2 = InputlsvValid(handles.dr_text2, "DR", °S
it result && result2
pd = makedist("Normal ",

i@J');

mu®,numl, "sigma”,num2);

Appendix B

INL/EXT-16-40755

Revision 0

Page 83 of 249

t = truncate(pd,0,1);

n random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = fi./sum(fi)./dx;

assignin(“base”, "drxi", xi);
assignin(“base”, "drfi2", fi);

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);

axis tight;

% hist(n,50);

axis tight;

ylabel ("Probability Density”);

xlabel ("DR™);

str = sprintf("\\fontsize{12} DR distribution plot with Normal

distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...

Input”,”

Input”,”

Input”,”

mean(n),std(n));
title(str,"Units", "normalized”, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
else
if ~result && ~result2

errordig("Problem in dr_textl, dr_text2, invalid input.”,"Invalid

modal ") ;
elseif ~result && result2
errordig("Problem in dr_textl, invalid input.”,"Invalid
modal *);
else
errordlg("Problem in dr_text2, invalid input.”,"Invalid
modal ") ;
end
end

case "Log Normal*

result = InputlsValid(handles.dr_textl, "DR", "7);
result2 = InputlsvValid(handles.dr_text2, "DR", "Sig");
if result && result2
pd = makedist("Lognormal®,"mu”, log(numl)+num2°2,"sigma”,num2);
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin("base”, "drxi", Xxi);
assignin(“base®, "drfi2", fi);

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[.2 .6 .6], "BarWidth",1)

axis tight;

% hist(n,50);

axis tight;

ylabel ("Probability Density®);

xlabel ("DR");

str = sprintf("\\fontsize{12} DR distribution plot with Log Normal

distribution with Mean=%0.2e , Stdev=%0.2e", ...

mean(n),std(n));

Appendix B

INL/EXT-16-40755
Revision 0 Page 84 of 249

title(str, "Units", "normalized”, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
else
if ~result && ~result2
errordig("Problem in dr_textl, dr_text2, invalid input.”,"Invalid
Input®, "modal ™) ;
elseif ~result && result2
errordlg("Problem in dr_textl, invalid input.”®,"Invalid
Input®, "modal ") ;
else
errordlg("Problem in dr_text2, invalid input.”,"Invalid
Input®, "modal ™) ;
end
end

case "Beta”
result = InputlsValid(handles.dr_textl, "DR", "ab®);
result2 = InputlsvValid(handles.dr_text2, "DR", "ab");
if result && result2
pd = makedist("Beta","a",numl, "b",num2);

t = truncate(pd,0,1);

n = random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = fi./sum(fi)./dx;

assignin("base”, "drxi", Xxi);
assignin(“base”, "drfi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density”);
xlabel ("DR");
str = sprintf("\\fontsize{12} DR distribution plot with Beta
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units", "normalized”, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)
else
if ~result && ~result2
errordig("Problem in dr_textl, dr_text2, invalid input.”,"Invalid
Input®, "modal ™) ;
elseif ~result && result2
errordlg("Problem in dr_textl, invalid input.”,"Invalid
Input®, "modal ") ;
else
errordig("Problem in dr_text2, invalid input.”,"Invalid
Input®, "modal ") ;
end
end
case “Uniform*
result = InputlsValid(handles.dr_textl, "DR", "7);
result2 = InputlsvValid(handles.dr_text2, "DR", "LL");
if result && result2
if numl < num2;

Appendix B

INL/EXT-16-40755
Revision 0 Page 85 of 249

% In unifrom distribution upper limt must be greater than lower

% Bimit, if not show the error message

errordlg("Upper Limit is less than lower limt®, *Uniform
Distribution®, "modal *)

set(handles.dr_pushbutton, “str*, "Show Plot", "backg”,col);

return;

else

pd = makedist(“Uniform®, “"Upper®,numl, “Lower",num2);

t = truncate(pd,0,1);

n = random(t,samplesize,l);

axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin("base”, "drxi", Xxi);

assignin(“base®, "drfi2", fi);

bar(xi,fi,"FaceColor®,[-2 .6 .6], EdgeColor",[.-2 .6 .6],
"BarWidth",1);

axis tight;

% hist(n,50);

ylabel ("Probability Density”);
xlabel ("DR");
str = sprintf("\\fontsize{12} DR distribution plot with Uniform
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units”, "normalized®, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)
end
else
if ~result && -~result2
errordig("Problem in dr_textl, dr_text2, invalid input.”,"Invalid
Input®, "modal *);
elseif ~result && result2
errordlg("Problem in dr_textl, invalid input.”,"Invalid
Input®, "modal ") ;
else
errordlg("Problem in dr_text2, invalid input.”®,"Invalid
Input®, "modal ") ;
end
end
case "Exponential”
result = InputlsValid(handles.dr_textl, "DR", "%);
if result
pd = makedist("Exponential”®,

mu®,numl);

t = truncate(pd,0,1);

n = random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = fi./sum(fi)./dx;

assignin(“base®, "drxi", xi);
assignin(“base”, "drfi2", fi);

Appendix B

INL/EXT-16-40755
Revision 0 Page 86 of 249

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density®);
xlabel ("DR™);
str = sprintf("\\fontsize{12} DR distribution plot with Exponential
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units®, "normalized®, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
else
errordig("Problem in dr_textl, invalid input.”,"Invalid
Input®, "modal ") ;
end
case "User Defined”
[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "DR");
n = zeros(l,samplesize);
for e = 1:samplesize;
num_rand=rand;
ter = size(X);
for i = 1:ter(2)

iSum = 0;
for j = 1:i
iSum = 1Sum + Y(J);
end
if num_rand < iSum
ifi==
n(e) = rand*(X(1+1)-X(1))+X(i1);
else
n(e) = rand*(X(1)-X(i-1))+X(i);
end
break;

end
end
end
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = Fi./sum(Fi)./dx;

assignin("base”, "drxi", Xxi);
assignin(“base®, "drfi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density”);
xlabel (*DR");
str = sprintf("\\fontsize{12} DR distribution plot with User Defined
Distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units", "normalized”, ...
"Position®, [0.5 1.02], "HorizontalAlignment®, “center®)
end
set(handles.dr_pushbutton, "str-, "Show Plot", "backg”,col);
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 87 of 249

% --- Executes on button press in run_pushbutton.

%This function is executed when user press Run

% THis is the main function where the CED is computed

function run_pushbutton_Callback(hObject, ~, handles)

% hObject handle to run_pushbutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
tic

global Parameters

SaveMARSpecificData(handles); % Save current inputs on the selected mar to the
class object.
if CheckSamples(handles) %Check for sample count, report if problem
col = get(handles.run_pushbutton, "backg™);
%disable show plot button for all parameter when running ced plot
set(handles.fit_dist, "Enable”, "off")
if strcmp(get(handles.mar_pushbutton, "Enable®),"on") %Disable buttons that are
active, and save their original state.
set(handles.mar_pushbutton, "Enable”, "off");
marbutton = 1;
else
marbutton = O;
end
if strcmp(get(handles.dr_pushbutton, "Enable®),"on")
set(handles.dr_pushbutton, "Enable”, "off");
drbutton = 1;
else
drbutton = 0;
end
if strcmp(get(handles.arf _pushbutton, "Enable®),"on")
set(handles.arf_pushbutton, "Enable”, "off");
arfbutton = 1;
else
arfbutton = O;
end
if strcmp(get(handles.rf_pushbutton, "Enable®),"on")
set(handles.rf_pushbutton, "Enable”, "off");
rfbutton = 1;
else
rfbutton = 0;
end
if strcmp(get(handles. Ipf_pushbutton, "Enable®),"on")
set(handles. Ipf_pushbutton, "Enable”, "off");
Ipfbutton = 1;
else
Ipfbutton = 0O;
end
if strcmp(get(handles.br_pushbutton, "Enable®),"on")
set(handles.br_pushbutton, "Enable”, "off");
brbutton = 1;
else
brbutton = 0;
end
if strcmp(get(handles.dcf pushbutton, "Enable®),"on")
set(handles.dcf_pushbutton, "Enable”, "off");
dcfbutton = 1;
else

Appendix B

INL/EXT-16-40755
Revision 0 Page 88 of 249

dcfbutton = 0O;

end

if strcmp(get(handles.cq_pushbutton, "Enable®),"on")
set(handles.cq_pushbutton, "Enable®, "off");
cgbutton = 1;

else
cgbutton = 0;

end

%disable textl all parameter

if strcmp(get(handles.mar_textl,"Enable®),"on")
set(handles.mar_textl, "Enable”, "off");
martextl = 1;

else
martextl = O;

end

if strcmp(get(handles.dr_textl,"Enable®),"on")
set(handles.dr_textl, "Enable”, "off");
drtextl = 1;

else
drtextl = O;

end

if strcmp(get(handles.arf _textl, "Enable®),"on")
set(handles.arf_textl, "Enable”, "off");
arftextl = 1;

else
arftextl = 0O;

end

if strcmp(get(handles.rf_textl,"Enable®),"on")
set(handles.rf_textl, "Enable”, "off");
rftextl = 1;

else
rftextl = O;

end

if strcmp(get(handles.Ipf_textl,"Enable®),"on")
set(handles.Ipf_textl, "Enable”, "off");
Ipftextl = 1;

else
Ipftextl = O;

end

if strcmp(get(handles.dcf _textl,"Enable®),"on")
set(handles.dcf_textl,"Enable”, "off");
dcftextl = 1;

else
dcftextl = O;

end

if strcmp(get(handles.cq_textl, "Enable®),"on")
set(handles.cq_textl, "Enable”, "off");
cqtextl = 1;

else
cqtextl = O;

end

%disable text2 for all parameter
if strcmp(get(handles.mar_text2,"Enable®),"on")
set(handles.mar_text2,"Enable”, "off");

Appendix B

INL/EXT-16-40755
Revision 0 Page 89 of 249

martext2
else
martext2 = 0O;

1;

end

if strcmp(get(handles.dr_text2,"Enable®),"on")
set(handles.dr_text2,"Enable”, "off");
drtext2 = 1;

else
drtext2 = 0;

end

if strcmp(get(handles.arf_text2,"Enable®),"on")
set(handles.arf_text2,"Enable”, "off");
arftext2 = 1;

else
arftext2 = 0;

end

if strcmp(get(handles.rf_text2, "Enable”),"on")
set(handles.rf_text2,“Enable”, "off");
rftext2 = 1;

else
rftext2 = 0;

end

if strcmp(get(handles.Ipf_text2,"Enable®), "on")
set(handles.Ipf_text2, "Enable”, “"off");
Ipftext2 = 1;

else
Ipftext2 = O;

end

if strcmp(get(handles.dcf_text2,"Enable®),"on")
set(handles.dcf _text2,"Enable”, "off");
dcftext2 = 1;

else
dcftext2 = 0;

end

%Disable radio buttons before run

set(handles.radioMAR1, "Enable”, "off")
set(handles.radioMAR2, "Enable”, "off")
set(handles.radioMAR3, "Enable”, "off")
set(handles.radioMAR4, "Enable”, "off")

Diditwork = 1;
cla(handles.axesl, "reset”);
if MARxisValid(handles) %Try catch, in case of error due to invalid input
selection.
try
GetResults(handles); %Run to get results
catch
msgbox("Failed to Create Plot, incomplete or invalid inputs.”);
Diditwork = O;
end
if strcmp(get(handles.num_sample_text, "str"),"") ==
Diditwork = 0O;
end
else

Appendix B

INL/EXT-16-40755
Revision 0 Page 90 of 249

Diditwork = O;
errordig("Invalid input detected. Calculation not performed.", "Invalid
Input®, "modal ") ;
end
if Diditwork
I = GetCurrentMARQ);
switch 1 %Plot the correct result, then release the memory.
case 1

bar(handles.axesl,Parameters.XResultl,Parameters.YResultl, "FaceColor®,[.2 .6
.6], "EdgeColor®,[-2 .6 .6], "BarWidth",1);

bar(handles.axesl,Parameters.XResultl,Parameters.YResultl, "FaceColor®,"m", "EdgeColo
r*,"m","BarWidth", 1);
Parameters.CED1 = O;
case 2

bar(handles.axesl,Parameters.XResult2,Parameters.YResult2, "FaceColor®,[.2 .6
.6], "EdgeColor",[-2 .6 .6], "BarWidth",1);

bar(handles.axesl,Parameters.XResult2,Parameters.YResult2, "FaceColor®, "m", "EdgeColo
r*,"m","BarWidth", 1);
Parameters.CED2 = O;
case 3

bar(handles.axesl,Parameters.XResult3,Parameters.YResult3, "FaceColor",[.2 .6
.6], "EdgeColor®,[-2 .6 .6], "BarWidth",1);

bar(handles.axesl,Parameters.XResult3,Parameters.YResult3, "FaceColor®, "m", "EdgeColo
r*,"m","BarWidth", 1);
Parameters.CED3 = O;
case 4

bar(handles.axesl,Parameters.XResult4,Parameters.YResult4, "FaceColor®,[.2 .6
.6], "EdgeColor®,[-2 .6 .6], "BarWidth",1);

bar(handles.axesl,Parameters.XResult4,Parameters.YResult4, "FaceColor®, "m", "EdgeColo
r*,"m","BarWidth", 1);
Parameters.CED4 = O;
case 0O
msgbox("MAR State Exclusivity Error; SODA will close.", "Fatal
Error™)
delete(handles.Soda_Main);
end
str = sprintf("\\fontsize{l11}CED, Mean = %0.3e rem, Median= %0.3e rem, 95
Percentile = %0.3e
rem” ,Parameters.AvgCED(l) ,Parameters.MedCED(l),Parameters.Ninty_ Ffifth(l));
title(handles.axesl,str, "Units®, "normalized”, ...

"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)
xlabel(handles.axesl, "Commited Effective Dose (rem)")
ylabel(handles.axesl, "Probability Density")
legend(handles.axesl, "Random Generated”, "Location®™,"NE")
axis tight;
grid on;
set(handles.fit _dist,"Enable”,"on");

end

Appendix B

INL/EXT-16-40755

Revision 0

Page 91 of 249

set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
%Enable show plot button for all parameter when running ced plot

if marbutton == 1 %Reenable those buttons which were active before

pressing show plot.
set(handles.mar_pushbutton, "Enable”,"on");

end
if drbutton == 1

set(handles.dr_pushbutton, "Enable”, "on")

end
if arfbutton == 1

set(handles.arf_pushbutton, "Enable”,"on")

end
if rfbutton ==

set(handles.rf_pushbutton, "Enable”, "on")

end
if Ipfbutton == 1

set(handles. Ipf_pushbutton, "Enable”,"on")

end
it dcfbutton == 1

set(handles.dcf_pushbutton, "Enable”,"on")
end

if cqgbutton == 1

set(handles.cq_pushbutton, "Enable”, "on")

end

%Enable textl all parameter
if martextl ==

set(handles.mar_textl,"Enable”,"on")

end
if drtextl == 1

set(handles.dr_textl, "Enable”,"on")

end
ifT arftextl ==

set(handles.arf_textl,“Enable”,"on")

end
if rftextl ==

set(handles.rf_textl,“Enable”,"on")

end
if Ipftextl ==

set(handles. Ipf_textl,"Enable”,"on")

end
iT dcftextl ==

set(handles.dcf_textl,"Enable”,"on")

end
if cqtextl == 1

set(handles.cq_textl, "Enable”,"on")

end

%Enable text2 for all parameter
it martext2 ==

set(handles.mar_text2,"Enable”,"on")

end
if drtext2 == 1

set(handles.dr_text2,"Enable”,"on")

end

Appendix B

INL/EXT-16-40755
Revision 0 Page 92 of 249

if arftext2 ==
set(handles.arf_text2,"Enable”,"on");

end

if rftext2 ==
set(handles.rf_text2,"Enable”,"on");

end

if Ipftext2 == 1
set(handles.Ipf_text2,"Enable”,"on");

end

if dcftext2 ==
set(handles.dcf_text2,"Enable”,"on");

end

%Enable radio buttons after run

set(handles.radioMARL, "Enablle”,"on")
set(handles.radioMAR2, "Enable”,"on")
set(handles.radioMAR3, "Enable”,"on")
set(handles.radioMAR4, "Enablle”,"on")

else
return
end
toc;
end
% --- Executes on button press in runall_pushbutton.

function runall_pushbutton_Callback(hObject, eventdata, handles)

% hObject handle to runall_pushbutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global Parameters
global CurrentMAR

result = SaveMARSpecificData(handles); %Similar to the show plot routine.
if CheckSamples(handles)
col = get(handles.run_pushbutton, "backg™);
if result == 0;
if strcmp(get(handles.num_sample_text, "str"),"") == 0

%disable show plot button for all parameter when running ced plot

set(handles.fit_dist, "Enable”, "off")

if strcmp(get(handles.mar_pushbutton, "Enable®),"on")
set(handles.mar_pushbutton, "Enable”, "off");
marbutton = 1;

else
marbutton = 0;

end

if strcmp(get(handles.dr_pushbutton, "Enable®),"on")
set(handles.dr_pushbutton, "Enable”, "off");
drbutton = 1;

else
drbutton = O;

end

if strcmp(get(handles.arf _pushbutton, "Enable®),"on")
set(handles.arf_pushbutton, "Enable”, "off");
arfbutton = 1;

else

Appendix B

INL/EXT-16-40755

Revision 0

Page 93 of 249

arfbutton = O;

end

if strcmp(get(handles.rf_pushbutton, "Enable®),"on")
set(handles.rf_pushbutton, "Enable®, "off");
rfbutton = 1;

else
rfbutton = O;

end

if strcmp(get(handles.Ipf_pushbutton, "Enable®),"on")
set(handles. Ipf_pushbutton, "Enable”, "off");
Ipfbutton = 1;

else
Ipfbutton = O;

end

if strcmp(get(handles.br_pushbutton, "Enable®),"on")
set(handles.br_pushbutton, "Enable”, "off");
brbutton = 1;

else
brbutton = 0;

end

if strcmp(get(handles.dcf pushbutton, "Enable®),"on")
set(handles.dcf _pushbutton, "Enable”, "off");
dcfbutton = 1;

else
dcfbutton = O;

end

if strcmp(get(handles.cq_pushbutton, "Enable®), "on")
set(handles.cq_pushbutton, "Enable®, "off");
cgbutton = 1;

else
cgbutton = 0;

end

%disable textl all parameter

if strcmp(get(handles.mar_textl,“Enable®),"on")
set(handles.mar_textl, "Enable”,"off");
martextl = 1;

else
martextl = O;

end

if strcmp(get(handles.dr_textl, "Enable®),"on")
set(handles.dr_textl, "Enable”, "off");
drtextl = 1;

else
drtextl = 0;

end

if strcmp(get(handles.arf _textl,"Enable®),"on")
set(handles.arf_textl,"Enable”, "off");
arftextl = 1;

else
arftextl = 0;

end

if strcmp(get(handles.rf_textl,"Enable®),"on")
set(handles.rf_textl, "Enable”, "off");
rftextl = 1;

else
rftextl = O;

Appendix B

INL/EXT-16-40755

Revision 0

Page 94 of 249

end

if strcmp(get(handles. Ipf_textl, "Enable®),"on")
set(handles.Ipf_textl,"Enable”,"off");
Ipftextl = 1;

else
Ipftextl = O;

end

if strcmp(get(handles.dcf_textl,"Enable®),"on")
set(handles.dcf_textl, "Enable”,“"off");
dcftextl = 1;

else
dcftextl = O;

end

if strcmp(get(handles.cq_textl,"Enable®),"on")
set(handles.cq_textl, "Enable”, "off");
cqtextl = 1;

else
cqtextl = O;

end

%disable text2 for all parameter

if strcmp(get(handles._mar_text2,"Enable®),"on")
set(handles.mar_text2,"Enable”, "off");
martext2 = 1;

else
martext2 = 0;

end

if strcmp(get(handles.dr_text2,"Enable®),"on")
set(handles.dr_text2,"Enable”, "off");
drtext2 = 1;

else
drtext2 = 0;

end

if strcmp(get(handles.arf_text2,"Enable®),"on")
set(handles.arf_text2,"Enable”, "off");
arftext2 = 1;

else
arftext2 = 0;

end

if strcmp(get(handles.rf_text2,"Enable”), "on")
set(handles.rf_text2,“Enable”, "off");
rftext2 = 1;

else
rftext2 = 0;

end

if strcmp(get(handles.Ipf_text2,"Enable®),"on")
set(handles.Ipf_text2,"Enable”, “"off");
Ipftext2 = 1;

else
Ipftext2 = O;

end

if strcmp(get(handles.dcf_text2,"Enable®),"on")
set(handles.dcf _text2,"Enable”, "off");
dcftext2 = 1;

else
dcftext2 = 0;

end

Appendix B

INL/EXT-16-40755
Revision 0 Page 95 of 249

%Disable radio buttons after run

set(handles.radioMAR1, "Enable”, "off")
set(handles.radioMAR2, "Enable”, "off")
set(handles.radioMAR3, "Enable”, "off")
set(handles.radioMAR4, "Enable”, "off")

%Use GetResults on all complete entries.
OriginState = CurrentMAR;

WasSuccessful = [1,1,1,1];
ChangeMARState(handles.radioMAR1, handles);
cla(handles.axesl, "reset”);

if MARxisValid(handles) %Check each MAR for valid result, leave
out invalid results and report to user.
try
GetResults(handles); %Run to get results
catch

if Parameters.MAR(1) ~= 0 && Parameters.DCF(1) ~= 0
waitfor(errordlg("Problem in MAR1 Result. Skipping. Check
your input for invalid or missing entries."))
end
WasSuccessful (1) = 0;
Parameters.CED1 =
zeros(str2double(get(handles.num_sample_text, "String")),1);
end
else
if Parameters.MAR(1) ~= 0 && Parameters.DCF(1) ~= 0
waitfor(errordlg("Problem in MAR1 Result. Skipping. Check your
input for invalid or missing entries. "))
end
WasSuccessful (1) = 0;
Parameters.CED1 =
zeros(str2double(get(handles.num_sample_text, "String")),1);
end
ChangeMARState(handles.radioMAR2, handles);
if MARxisValid(handles)
try
GetResults(handles);
catch
if Parameters.MAR(2) ~= 0 && Parameters.DCF(2) ~= 0
waitfor(errordlg("Problem in MAR2 Result. Skipping. Check
your input for invalid or missing entries."))
end
WasSuccessful (2) = 0;
Parameters.CED2 =
zeros(str2double(get(handles.num_sample_text, "String®)),1);
end
else
if Parameters.MAR(2) ~= 0 && Parameters.DCF(2) ~= 0
waitfor(errordlg("Problem in MAR2 Result. Skipping. Check your
input for invalid or missing entries."))
end
WasSuccessful (2) = 0;
Parameters.CED2 =
zeros(str2double(get(handles.num_sample_text, "String®)),1);

Appendix B

INL/EXT-16-40755
Revision 0 Page 96 of 249

end
ChangeMARState(handles.radioMAR3, handles);
if MARxisValid(handles)
try
GetResults(handles);
catch
if Parameters.MAR(3) ~= 0 && Parameters.DCF(3) ~= 0
waitfor(errordlg("Problem in MAR3 Result. Skipping. Check
your input for invalid or missing entries."))
end
WasSuccessful (3) = 0;
Parameters.CED3 =
zeros(str2double(get(handles.num_sample_text, "String®)),1);
end
else
if Parameters.MAR(3) ~= 0 && Parameters.DCF(3) ~= 0
waitfor(errordlg("Problem in MAR3 Result. Skipping. Check your
input for invalid or missing entries."))
end
WasSuccessful (3) = 0;
Parameters.CED3 =
zeros(str2double(get(handles.num_sample_text, "String")),1);
end
ChangeMARState(handles.radioMAR4, handles);
if MARxisValid(handles)
try
GetResults(handles);
catch
if Parameters.MAR(4) ~= 0 && Parameters.DCF(4) ~= 0
waitfor(errordlg("Problem in MAR4 Result. Skipping. Check
your input for invalid or missing entries."))
end
WasSuccessful(4) = 0;
Parameters.CED4 =
zeros(str2double(get(handles.num_sample_text, "String”)),1);
end
else
if Parameters.MAR(4) ~= 0 && Parameters.DCF(4) ~= 0
waitfor(errordlg("Problem in MAR4 Result. Skipping. Check your
input for invalid or missing entries. "))
end
WasSuccessful (4) = 0;
Parameters.CED4 =
zeros(str2double(get(handles.num_sample_text, "String®)),1);
end
switch OriginState %Change MAR state back to what it was before show
all was clicked.
case 1
ChangeMARState(handles.radioMAR1, handles);
case 2
ChangeMARState(handles.radioMAR2, handles);
case 3
ChangeMARState(handles.radioMAR3, handles);
case 4
ChangeMARState(handles.radioMAR4, handles);
end

Appendix B

INL/EXT-16-40755
Revision 0

Page 97 of 249

if any(WasSuccessful) %If any MAR was successful

plot the result.
Parameters = SumFinal (Parameters);

in getting a result,

bar(handles.axesl,Parameters.SumX,Parameters.SumY, "FaceColor®,[-2

.6 .6],"EdgeColor",[.2 .6 .6], "BarWidth",1);

bar(handles.axesl,Parameters.SumX,Parameters.SumY, "FaceColor®, "m", "EdgeColor®,"m", "

BarWidth®, 1);

str = sprintf("\\fontsize{11}CED, Mean

rem, 95 Percentile = %0.3e

rem” ,Parameters.SumAvgCED, Parameters.SumMed,Parameters.Sum95Cl);
title(handles.axesl,str, "Units", "normalized”,
"Position®, [0.5 1.02], "HorizontalAlignment-®,

%0.3e rem,

Median= %0.3e

"center”®)

xlabel (handles.axesl, "Commited Effective Dose (rem)®)

ylabel(handles.axesl, "Probability Density"®)

legend(handles.axesl, "Random Generated”®, "Location”™,"NE")

axis tight;
grid on;

assignin(“base”, "cedxi”, Parameters.SumX);
assignin(“base”, "cedfi2”, Parameters.SumY);
assignin(“base”, "ced”, Parameters.SumCED);
setappdata(0, "ced” ,Parameters.SumCED) ;
set(handles.fit _dist,"Enable”,"on");

Parameters.SumCED

Parameters.CED1

Parameters.CED2

Parameters.CED3

Parameters.CED4
else

= O;
0;
0;
O-
0

msgbox(*No Complete/Valid Data Entries, no Data to be displayed.*®)

end

%Enable show plot button for all parameter when running ced plot

if marbutton ==

set(handles.mar_pushbutton, "Enable”, "on");

end
iT drbutton ==

set(handles.dr_pushbutton, "Enable”, "on")

end
if arfbutton == 1

set(handles.arf_pushbutton, "Enable”,"on")

end
if rfbutton ==

set(handles.rf_pushbutton, "Enable”, "on")

end
if Ipfbutton == 1

set(handles. Ipf_pushbutton, "Enable”,"on")

end
if dcfbutton == 1

set(handles.dcf _pushbutton, "Enable”,"on")

end
if cqbutton ==

set(handles.cq_pushbutton, "Enable”, "on")

Appendix B

INL/EXT-16-40755

Revision 0

Page 98 of 249

else

else

end

end

%Enable textl all parameter
if martextl ==

set(handles.mar_textl, "Enable”,"on")

end
if drtextl ==

set(handles.dr_textl, "Enable”,"on")

end
if arftextl ==

set(handles.arf_textl,"Enable”,"on")

end
if rftextl ==

set(handles.rf_textl, "Enable”,"on")

end
if Ipftextl ==

set(handles.Ipf_textl,“Enable”,"on")

end
if dcftextl == 1

set(handles.dcf_textl,"Enable”,"on")

end
if cqtextl ==

set(handles.cq_textl, "Enable”,"on")

end

%Enable text2 for all parameter
if martext2 ==

set(handles.mar_text2,"Enable”,"on")

end
if drtext2 ==

set(handles.dr_text2,"Enable”,"on")

end
iT arftext2 ==

set(handles.arf_text2,"Enable”,"on")

end
if rftext2 ==

set(handles.rf_text2,"Enable”,"on")

end
if Ipftext2 ==

set(handles.Ipf_text2,"Enable”,"on")

end
if dcftext2 == 1

set(handles.dcf_text2,"Enable”,"on")

end

%Enable radio buttons after run
set(handles.radioMAR1, "Enable”, "on
set(handles.radioMAR2, "Enable”, "on

set(handles.radioMAR3, "Enable”, "on”
set(handles.radioMAR4, "Enable”,"on")

errordlg("Please enter number of samples®,"Sample Number®, "modal*);

msgbox("Error in selected MAR Data. Please Correct.”, "Input Invalid®);

Appendix B

INL/EXT-16-40755
Revision 0

Page 99 of 249

end
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
else

return
end
end
% --- Executes on button press in rf_togglebutton.

% When the toggle button of RF is pressed this codes are exceuted.
% Toggle button can be on on and off postion ON mean "Single Input"
% OFF means "Distribution Input"

function rf_togglebutton_Callback(hObject, ~, handles)

% hObject handle to rf _togglebutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

X

% Hint: get(hObject, "Value®) returns toggle state of rf_togglebutton
ispushed = get(hObject, "Value™);

if ispushed
set(hObject, "string”, "Single Input®);
set(handles.rf_textl, "Enable”,"on");
set(handles.rf_textl, "String”,"");
set(handles.rf_text2,"String","");
set(handles.rf_text2,"Enable”,"off") %
set(handles.rf_pushbutton, "Enable”,"off") %
set(handles.rf_popup_dist, "Enable”,"off") %
set(handles.rf_popup_dist, "Value®,1)

else
set(hObject, "string”, "Distribution Input®);
set(handles.rf_textl,"String","");
set(handles.rf_text2,"String","");
set(handles.rf_textl, "Enable”, "off")
set(handles.rf_text2, "Enable”,"off") %
% set(handles.rf _pushbutton, "Enable”,"on") %
set(handles.rf_popup_dist, "Enable”,"on") %

end

end

% --- Executes on button press in dr_togglebutton.
% When the toggle button of DR is pressed this codes are exceuted.
% Toggle button can be on on and off postion ON mean *'Single Input"
% OFF means "Distribution Input"

function dr_togglebutton_Callback(hObject, ~, handles)

% hObject handle to dr_togglebutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, "Value®) returns toggle state of dr_togglebutton
ispushed = get(hObject, "Value™);

if ispushed

set(hObject, "string”, "Single Input®);
set(handles.dr_textl, "Enable”,"on");

Appendix B

INL/EXT-16-40755
Revision 0 Page 100 of 249

set(handles.dr_textl, "String”,"");
set(handles.dr_text2,"String”,"");
set(handles.dr_text2,“Enable”,"off") ; %
set(handles.dr_pushbutton, "Enable”, "off"); %
set(handles.dr_popup_dist, "Enable”,"off"); %
set(handles.dr_popup_dist, "Value®,1)

else
set(hObject, "string”, "Distribution Input®);
set(handles.dr_textl, "String”,"");
set(handles.dr_text2,"String","");
set(handles.dr_textl, “Enable”, "off");
set(handles.dr_text2,"Enable”,"off"); %
set(handles.dr_popup_dist, "Enable”,"on"); %

end
end

% --- Executes on button press in cg_pushbutton.

% THis function computes Chi/Q Using gaussian approxmiation
function cq_pushbutton_Callback(hObject, ~, handles)

% hObject handle to cq_pushbutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

sample = get(handles.num_sample_text, "String”);
samplesize = str2double(sample);

if strcmp(sample,™™) == 1 || samplesize < 0
errordlg("Please enter number of samples®, "Sample Number®, "modal*);
return;

end

col = get(handles.cq_pushbutton, "backg™);
set(handles.cq_pushbutton, "str”, "RUNNING. .. ", "backg",[-2 .6 .6]);
distance = str2double(get(handles.distance_textl, "String-));
distancel = str2double(get(handles.distance_text2,"String”));

pd = makedist("Normal®,"mu®,0, "sigma”,distancel);

crossdistance = random(pd,samplesize,l);

numl
num2

str2double(get(handles.windspeed_textl, "String”));
str2double(get(handles.windspeed_text2, "String”));

contents = get(handles.windspeed_popup_dist, "String”);
popupmenuvalue = contents{get(handles.windspeed popup_dist, "Value")};
switch popupmenuvalue
case “Normal*
pd = makedist("Normal®,"mu”,numl, "sigma”,num2);
t = truncate(pd,0.1,inf);
windS = random(t,samplesize,l);
case "Uniform®
if numl < num2;
% In unifrom distribution upper limt must be greater than lower
% Bimit, if not show the error message
errordlg("Upper Limit is less than lower limt","Uniform Distribution™)
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return;
else

Appendix B

INL/EXT-16-40755
Revision 0 Page 101 of 249

pd = makedist("Uniform®, "Upper"®,numl, "Lower",num2);
t = truncate(pd,0.1,inf);
windS = random(t,samplesize,l);
end
end

contents2 = get(handles.terrain_popup, "String”);
terrainvalue = contents2{get(handles.terrain_popup, "Value®)};

contents3
stability

get(handles.stability popup, "String”);
contents3{get(handles.stability popup, "Value®)};

height = str2double(get(handles._height_text, String"));

switch terrainvalue
case "Rural/Open Country*
switch stability

case "A"
sigma_y = 0.22*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.20*distance;
case "B"
sigma_y = 0.l16*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.12*distance;
case "C"
sigma_y = 0.l1ll1*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.08*distance*(1+0.0002*distance)”(-0.5);
case "D"
sigma_y = 0.08*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.06*distance*(1+0.0015*distance)”(-0.5);
case "E”"
sigma_y = 0.06*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.03*distance*(1+0.0003*distance)”(-1);
case "F"
sigma_y = 0.04*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.016*distance*(1+0.0003*distance)™(-1);

case "Select Stability Condition”
errordlg("Select Stability Conditions®, "Error®, "modal*);
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return;
end
case "Select Terrain*
switch stability
case "A"
errordlg("Select terrain®, "Error”, "modal™);
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return;
case "B"
errordlg("Select terrain®"Error®, "modal ")
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return;
case "C"

Appendix B

INL/EXT-16-40755
Revision 0 Page 102 of 249

errordlg("Select terrain”"Error”, "modal");
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return;

case "D"
errordlg("Select terrain”"Error”, "modal");
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return;

case "E"
errordlg("Select terrain®"Error®, "modal®);
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return;

case "F°
errordlg("Select terrain®"Error®, "modal");
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return

case "Select Stability Condition”
errordlg("Select Terrain & Stability Condition®""Error", "modal™);
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return;

end
case “Urban Area“
switch stability
case "A-B”

sigma_y = 0.32*distance*(1+0.0004*distance)”(-0.5);
sigma_z = 0.24*distance*(1+0.001*distance)”(0.5);
case "C"
sigma_y = 0.22*distance*(1+0.0004*distance)”(-0.5);
sigma_z = 0.2*distance;
case "D"
sigma_y = 0.l16*distance*(1+0.0004*distance)”(-0.5);
sigma_z = 0.l14*distance*(1+0.0003*distance)”(-0.5);
case "E-F-
sigma_y = 0.l1l1*distance*(1+0.0004*distance)”(-0.5);
sigma_z = 0.08*distance*(1+0.0015*distance)”(-0.5);

case "Select Stability Condition”
errordlg("Select Stability Conditions”"Error”, "modal");
set(handles.cq_pushbutton, “str*, "Show Plot", "backg”,col);
return;
end

end

c = (exp((-crossdistance.2/(2*(sigma_y)"2))-(height™2/(2*(sigma_z)"2)))./. ..
(pi*windS.*sigma_y*sigma_z));

n=c;

cla(handles.axesl, "reset”);

axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = fi./sum(fi)./dx;

assignin("base”, "cgxi”, Xi);
assignin("base”, "cqfi2”, fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[.2 .6 .6], BarWidth®, 1);

Appendix B

INL/EXT-16-40755
Revision 0

Page 103 of 249

axis tight;

% hist(c,50)

xlabel ("Chi/Q")

ylabel ("Probability Density”)

str = sprintf("\\fontsize{12} \\chi/Q distribution plot with\\mu=%0.2e s/m"3
,\\sigma =%0.2e s/m™3°, ...
mean(n),std(n));
title(str, "Units”, "normalized®, ...

"Position®, [0.5 1.02], "HorizontalAlignment®, “center”)
set(handles.cq_pushbutton, "str-, "Show Plot", "backg”,col);
assignin(“base”,"cq”, c);
end
function cq_textl_Callback(hObject, ~, handles)

% hObject handle to cq_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject,"String") returns contents of cq_textl as text

% str2double(get(hObject, "String")) returns contents of cq_textl as a double
% --- Executes during object creation, after setting all properties.
function cq_textl CreateFcn(hObject, ~, handles)

% hObject handle to cq_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor”®, "white®);

end

end

% --- Executes on selection change in cq_popup_dist.

% Executed when user select from a list of distribution in chi/Q
function cqg_popup_dist_Callback(hObject, ~, handles)

% hObject handle to cq_popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

contents = cellstr(get(hObject, "String"));
cqpopchoice = contents{get(hObject, "Value”)};
switch cqgpopchoice
case “Normal*
set(handles.cq_textl, "Enable”, "inactive™) %

Appendix B

INL/EXT-16-40755

Revision 0

Page 104 of 249

end
end

case

case

case

case

set(handles.cq_text2,"Enable”, "inactive™) %
set(handles.cq_pushbutton, "Enable”,"on") %
set(handles.cq_textl,"String”, "Mean®);

set(handles.cq_text2,"String”, "Std Deviation®);

set(handles.cq_textl, "TooltipString~,"")
set(handles.cq_text2, "TooltipString~," ")
"Beta"

set(handles.cq_textl, "Enable”, "inactive™) %
set(handles.cq_text2,"Enable”, "inactive™) %
set(handles.cq_pushbutton, "Enable”,"on") %
set(handles.cq_textl, "String”,"a");
set(handles.cq_text2,"String”,"b");

set(handles.cq_textl, "TooltipString”, "shape parameter®)
set(handles.cq_text2, "TooltipString”, "shape parameter®)

"Uniform*
set(handles.cq_textl, "Enable”, "inactive™) %
set(handles.cq_text2,"Enable”, "inactive™) %
set(handles.cq_pushbutton, "Enable®,"on") %
set(handles.cq_textl,"String”, "Upper Limit");
set(handles.cq_text2,"String”, "Lower Limit");
set(handles.cq_textl, "TooltipString~," ")
set(handles.cq_text2, "TooltipString~," ")

"Exponential”
set(handles.cq_textl, "Enable”, "inactive™) %
set(handles.cq_text2,"Enable”,"off") %
set(handles.cq_pushbutton, "Enable”,"on") %
set(handles.cq_textl,"String”, "Mean");
set(handles.cq_textl, "TooltipString~, ")
set(handles.cq_text2, "TooltipString~, ")

"Select Distribution”®
set(handles.cq_textl, "String”,"");
set(handles.cq_text2,"String”,"");
set(handles.cq_textl, "Enable”, "off") %
set(handles.cq_text2,"Enable”,"off") %
set(handles.cq_pushbutton, "Enable”, "off") %
set(handles.cq_textl, "TooltipString~," ")
set(handles.cq_text2, "TooltipString~," ")

% Hints: contents = cellstr(get(hObject,"String")) returns cq_popup_dist contents
as cell array
contents{get(hObject, "Value®)} returns selected item from cq_popup_dist

%

% --- Executes during object creation, after setting all properties.
function cq_popup_dist_CreateFcn(hObject,
% hObject handle to cq_popup_dist (see GCBO)
erved - to be defined in a future version of MATLAB

empty - handles not created until after all CreateFcns called

=S

0 ~

% handles

% Hint: popupmenu controls usually have a white background on Windows.

%

res

See ISPC and COMPUTER.

if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundCollor™))

end

set(

hObject, "BackgroundColor™, "white");

Appendix B

~, handles)

INL/EXT-16-40755

Revision 0

Page 105 of 249

end

% ——
% EX

function cq_togglebutton_Callback(hObject, ~, handles)

% hObject handle to cq_togglebutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
ispushed = get(hObject, "Value™);

if ispushed

else

- Executes on button press in cq_togglebutton.
ecuted for Chi/Q toggle button is pressed

set(hObject, "string”, "Single Input®);
set(handles.cq_textl, "Enable”,"on");
set(handles.cq_textl,"String®,"");
set(handles.windspeed_textl,"String","");
set(handles.windspeed_text2,"String”,"");
set(handles.windspeed_textl, "Enable”, "off");
set(handles.windspeed_text2,"Enable”, "off");
set(handles.height_text,"String”,"");
set(handles.height_text, "Enable”,"off") ; %
set(handles.cq_pushbutton, "Enable”, "off"); %
set(handles.terrain_popup, "Enable”, "off"); %
set(handles.terrain_popup, "Value®,1)
set(handles.stability popup, “Enable®, "off"); %
set(handles.stability popup, "Value®,1)
set(handles.windspeed popup_dist, "Enable”, "off");
set(handles.windspeed popup_dist, "Value®,1);
set(handles.distance_textl,"String”,"");
set(handles.distance_textl, "Enable”,"off") ; %
set(handles.distance_text2,"String”,"");
set(handles.distance_text2, "Enable”,"off") ; %

set(hObject, "string”, "Distribution Input®);
set(handles.cq_textl, "Enable”, "off");
set(handles.cq_textl,"String®,"");
set(handles.windspeed_textl, "String”,"");
set(handles.windspeed_textl, "Enable”,"on") ;
set(handles.windspeed_text2,"String”,"");
set(handles.windspeed_text2,"Enable”,"on") ; %
set(handles._height_text,"String”, "Height");
set(handles.height_text, "Enable”,"on") ; %
set(handles.cq_pushbutton, "Enable”, "off"); %
set(handles.terrain_popup, “Enable®,"on"); %
set(handles.terrain_popup, "Value®,1)
set(handles.stability popup, “Enable®, "off"); %
set(handles.stability popup, "Value®,1)
set(handles.distance_textl, "String”,"");
set(handles.distance_textl, "Enable”,"on") ; %
set(handles.distance_text2,"String”,"");
set(handles.distance_text2,"Enable”,"on") ; %
set(handles.windspeed popup_dist, "Enable”,"on"); %
set(handles.windspeed_popup_dist, "Value®,1)
set(handles.windspeed_textl,"String","");
set(handles.windspeed_textl, "Enable”, "off") ; %
set(handles.windspeed_text2,"String","");
set(handles.windspeed_text2,"Enable”,"off") ; %

Appendix B

%

INL/EXT-16-40755
Revision 0

Page 106 of 249

end
end
% Hint: get(hObject, "Value®) returns toggle state of cq_togglebutton

% --- Executes on selection change in dcf_popup_dist.

% exceuted when Dose conversion factor distribution is selected

function dcf_popup_dist_Callback(hObject, ~, handles)

% hObject handle to dcf _popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global Parameters;

global CurrentMAR;

contents cellstr(get(hObject, "String”));

dcfpopchoice contents{get(hObject, "Value®)};

switch dcfpopchoice

case “Normal*

set(handles.

set(handles.

set(handles.

set(handles.

set(handles.
"Beta”

set(handles.

set(handles.

set(handles.

set(handles.

set(handles.

set(handles.

set(handles.
“Uniform®

set(handles.

set(handles.

set(handles.

%
%
%

dcf_textl,"Enable”, "inactive”)
dcf_text2,"Enable”, "inactive”)
dcf_pushbutton, "Enable”, "on")
dcf_textl,"String”, "Mean®);

dcf_text2,"String”,"Std Deviation®);
case
%
%
%

dcf_textl,"Enable”, "inactive”)
dcf_text2,"Enable”, "inactive”)
dcf _pushbutton, "Enable”, "on")
dcf _textl,"String”,"a");
dcf_text2,"String","b");
dcf_textl, "TooltipString”, "shape parameter®)
dcf_text2, "TooltipString”, "shape parameter®)
case
dcf_textl, "Enable”, "inactive™) %
dcf_text2,"Enable”, "inactive”™) %
dcf_pushbutton, "Enable”,"on") %

set(handles.dcf_textl,"String”, "Upper Limit");

set(handles.dcf_text2,"String”, "Lower Limit");
case "Exponential”
set(handles.dcf_textl,"Enable”, "inactive®)
set(handles.dcf_text2,"Enable”, "off") %
set(handles.dcf_pushbutton, "Enable”,"on")
set(handles.dcf_textl,"String”, "Mean");
set(handles.dcf _text2,"String”," ")

"Select Distribution*
set(handles.dcf_textl,"String," ")
set(handles.dcf_text2,"String”,"");
set(handles.dcf _textl, "Enable”, "off") %
set(handles.dcf _text2,"Enable”,"off") %
set(handles.dcf_pushbutton, "Enable”, "off")
"User Defined”

%

%

case

%
case

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

dcf_textl,"Enable®, "off")
dcf_text2,"Enable”, "off")

dcf _pushbutton, "Enable”, "on")
dcf_textl,"String”, "User®);
dcf_text2,"String”, "Defined);
dcf_textl, "TooltipString~," ")
dcf_text2, "TooltipString~," ")

Appendix B

INL/EXT-16-40755
Revision 0 Page 107 of 249

Parameters = UserDefined(Parameters);
[Parameters, msg, flag] = Parameters.CheckUDD("DCF");
if flag ==
msgbox(msg) ;
set(Parameters, "UDtempX”,0);
set(Parameters, "UDtempY~,0);
set(hObject, "Value®, 1);
dcf_popup_dist_Callback(hObject, "", handles);
else
Parameters = Parameters.SaveUDD(CurrentMAR, "DCF");
end
case "U-238" %0Ild features code maintained, but not in use.
set(handles.dcf_textl, "String”, "5.0*10"-7%);
case "Select Isotope®™ %Repurposed as an alternative way to access the MAR
selection screen.
set(handles.dcf _textl,"String”,"");
MARbtn_Callback(handles.MARbtn, "" , handles);
case "Pu-239-
set(handles.dcf_textl,"String”,"1.2*10"-4%);
case "Pu-235-
set(handles.dcf_textl,"String”,"1.0*10M-12%);
case "U-239"
set(handles.dcf_textl, "String”,"1.0*10M-11");
end
end
% Hints: contents = cellstr(get(hObject,"String")) returns dcf _popup dist contents
as cell array
% contents{get(hObject, "Value®)} returns selected item from dcf _popup_dist

% --- Executes during object creation, after setting all properties.
function dcf_popup_dist CreateFcn(hObject, ~, handles)

% hObject handle to dcf_popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

=4

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end
end

function dcf_textl Callback(hObject, ~, handles)
% hObject handle to dcf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject, "String”) returns contents of dcf_textl as text

% str2double(get(hObject, "String")) returns contents of dcf_textl as a
double

Appendix B

INL/EXT-16-40755
Revision 0 Page 108 of 249

% --- Executes during object creation, after setting all properties.
function dcf_textl CreateFcn(hObject, ~, handles)

% hObject handle to dcf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundCollor®),
get(0, "defaultUicontrolBackgroundCollor™))
set(hObject, "BackgroundColor”, "white®);
end
end

function dcf_text2_Callback(hObject, ~, handles)
% hObject handle to dcf_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject,"String®) returns contents of dcf_text2 as text

% str2double(get(hObject, "String")) returns contents of dcf_text2 as a
double

% --- Executes during object creation, after setting all properties.
function dcf_text2 CreateFcn(hObject, ~, handles)

% hObject handle to dcf_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”, "white®);
end
end

% --- Executes on button press in dcf _pushbutton.

% Executed whn DCF show plot button is pressed

function dcf_pushbutton_Callback(hObject, ~, handles)

% hObject handle to dcf_pushbutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
global Parameters;

global CurrentMAR;

sample = get(handles.num_sample_text, "String”);

samplesize = str2double(sample);

if strcmp(sample,™™) == 1 || samplesize < 0
errordlg("Please enter number of samples”®, "Sample Number®, "modal™);
return;

end

col = get(handles.dcf_pushbutton, "backg®);
set(handles.dcf _pushbutton, "str”, "RUNNING...","backg”,[-2 .6 .6]);

Appendix B

INL/EXT-16-40755
Revision 0 Page 109 of 249

pause(eps);

numl = str2double(get(handles.dcf _textl, "String”));

num2 = str2double(get(handles.dcf_text2,"String"));

contents = get(handles.dcf_popup_dist,"String”);

popupmenuvalue = contents{get(handles.dcf popup_dist, "Value®)};

cla(handles.axesl, "reset");

switch popupmenuvalue

case “Normal*

result = InputlsValid(handles.dcf_textl, “DCF", "");
result2 = InputlsvValid(handles.dcf _text2, "DCF", "LL");
if result && result2

pd = makedist("Normal”,"mu”,numl, "sigma”,num2);

t = truncate(pd,0,1);

n = random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = fi./sum(fi)./dx;

assignin(“base”, "dcfxi”, xi);
assignin(“base”, "dcffi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[.2 .6 .6], BarWidth®, 1);
axis tight;
% hist(n,50);
ylabel ("Probability Density”);
xlabel ("DCF");
str = sprintf("\\fontsize{12} DCF distribution plot with Normal
distribution with\\mu=%0.2e Sv/Bg,\\sigma =%0.2e Sv/Bq-",
mean(n),std(n));
title(str,"Units”, "normalized”, .
"Position”, [0.5 1.02], 'HorlzontaIAllgnment "center")
else
if ~result && ~result2
errordlg("Problem in dcf_textl, dcf text2, invalid input.”,"Invalid
Input®, "modal ™) ;
elseif ~result && result2
errordig("Problem in dcf_textl, invalid input.®,"Invalid
Input®, "modal ") ;
else
errordlg("Problem in dcf_text2, invalid input.”, "Invalid
Input®, "modal ™) ;
end
end
case "Log Normal*
result = InputlsValid(handles.dcf textl, "DCF", "");
result2 = InputlsvValid(handles.dcf _text2, "DCF", "LL");
if result && result2
pd = makedist("Lognormal™,

mu*®,numl, "sigma®,num2);

t = truncate(pd,0,1);

n = random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = fi./sum(fi)./dx;

Appendix B

INL/EXT-16-40755

Revision 0 Page 110 of 249

assignin("base”, "drxi", Xxi);
assignin(“base”, "drfi2", fi);

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[-2 .6 .6], "BarWidth",1);

axis tight;

% hist(n,50);

axis tight;

ylabel ("Probability Density”);
xlabel (*DCF*);

str = sprintf("\\fontsize{12} DCF distribution plot with Log Normal

distribution with \\mu=%0.2e , \\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units", "normalized”, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center"®)
else
if ~result && ~result2

errordlg("Problem in dcf_textl, dcf _text2, invalid input.”,"Invalid

Input®, "modal ™) ;
elseif ~result && result2
errordig("Problem in dcf_textl, invalid input.®,"Invalid
Input®, "modal ™) ;
else
errordlg("Problem in dcf_text2, invalid input.”, "Invalid
Input®, "modal ") ;
end
end
case "Beta“
result = InputlsValid(handles.dcf textl, "DCF", "ab");
result2 = InputlsvValid(handles.dcf _text2, "DCF", "ab®);
if result && result2
pd = makedist("Beta","a",numl,"b",num2);

t = truncate(pd,0,1);

n = random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = fi./sum(fi)./dx;

assignin(“base”, "dcfxi", xi);
assignin(“base”, "dcffi2", fi);

bar(xi,fi,"FaceColor",[.2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth", 1)

axis tight;

% hist(n,50);

ylabel ("Probability Density®);

xlabel ("DCF");

str = sprintf("\\fontsize{l12} DCF distribution plot with Beta

distribution with\\mu=%0.2e Sv/Bqg,\\sigma =%0.2e Sv/Bq-, ...

mean(n),std(n));

title(str,"Units®, "normalized®, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)

else
if ~result && ~result2

errordlg("Problem in dcf_textl, dcf_text2, invalid input.”®,"Invalid

Input®, "modal ") ;
elseif ~result && result2
errordig("Problem in dcf_textl, invalid input.”, "Invalid
Input®, "modal ™) ;

Appendix B

INL/EXT-16-40755
Revision 0 Page 111 of 249

else
errordlg("Problem in dcf_text2, invalid input.”, "Invalid
Input®, "modal ") ;
end
end
case “Uniform”
result = InputlsValid(handles.dcf _textl, "DCF", "");
result2 = InputlsvValid(handles.dcf _text2, °"DCF", "LL");
if result && result2
if numl < num2;
% In unifrom distribution upper limt must be greater than lower
% limit, if not show the error message
errordlg("Upper Limit is less than lower limt®, *Uniform
Distribution®, "modal *)
set(handles.dcf _pushbutton, "str”, "Show Plot", "backg”,col);

return;
else
pd = makedist(“Uniform®, *Upper”,numl, "Lower" ,num2);
t = truncate(pd,0,1);
n = random(t,samplesize,l);

axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin(“base”, "dcfxi”, xi);

assignin(“base”, "dcffi2", fi);

bar(xi,fi,"FaceColor®,[-2 .6 .6], EdgeColor",[-2 .6 .6], BarWidth",
1);

axis tight;

% hist(n,50);

ylabel ("Probability Density”);
xlabel (*DCF*);
str = sprintf("\\fontsize{12} DCF distribution plot with Uniform
distribution with\\mu=%0.2e Sv/Bq,\\sigma =%0.2e Sv/Bq-,---
mean(n),std(n));
title(str, "Units”, "normalized®, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)
end
else
if ~result && -~result2
errordlg("Problem in dcf_textl, dcf text2, invalid input.”,"Invalid
Input®, "modal ") ;
elseif ~result && result2
errordig("Problem in dcf_textl, invalid input.®,"Invalid
Input®, "modal ") ;
else
errordlg("Problem in dcf_text2, invalid input.®,"Invalid
Input®, "modal ") ;
end
end
case "Exponential”
result = InputlsValid(handles.dcf_textl, “DCF", "%);
it result
pd = makedist("Exponential”®,

mu®,numl);

Appendix B

INL/EXT-16-40755
Revision 0 Page 112 of 249

t = truncate(pd,0,1);

n = random(t,samplesize,l);

axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = fi./sum(fi)./dx;

assignin(“base”, "dcfxi", xi);

assignin(“base”, "dcffi2", fi);

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);

axis tight;

% hist(n,50);

ylabel ("Probability Density®);

xlabel ("DCF");

str = sprintf("\\fontsize{12} DCF distribution plot with Exponential
distribution with\\mu=%0.2e Sv/Bqg,\\sigma =%0.2e Sv/Bq-, ...

mean(n),std(n));
title(str,"Units", "normalized”, -
"Position”, [0.5 1.02], "HorizontalAlignment®™, "center"®)
else

Input”, "mod
end
case °“U

errordlg("Problem in dcf _textl, invalid input.”, "Invalid
al™);

ser Defined”

[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "DCF");

n =
for

end
axe
nbi
X1
dx
fi
fi
ass
ass

zeros(1l,samplesize);
e = l:samplesize;
num_rand=rand;
ter = size(X);
for i = 1:ter(2)
iSum = 0;
for j = 1:i
iSum = 1Sum + Y(J);
end
if num_rand < iSum
ifi==1
n(e)
else
n(e)
end
break;

rand*(X(i+1)-X(1))+X(i);

rand*(X(i)-X(i-1))+X(i);

end
end

s(handles.axesl)

ns = max(min(length(n)./10,100),50);
linspace(min(n) ,max(n),nbins);
mean(diff(xi));

histc(n,xi-dx);

fi./sum(fi)./dx;

ignin("base”, "drxi", Xi);
ignin("base”, "drfi2", fi);

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[.2 .6 .6], "BarWidth",1);

axi
%

s tight;
hist(n,50);

ylabel ("Probability Density”);

Appendix B

INL/EXT-16-40755
Revision 0

Page 113 of 249

xlabel ("DCF");

str = sprintf("\\fontsize{12} DCF distribution plot with User Defined

Distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units", "normalized”, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
end
set(handles.dcf_pushbutton, “str*, "Show Plot", "backg®,col);
end

% --- Executes on button press in dcf_togglebutton.

function dcf_togglebutton_Callback(hObject, ~, handles)

% hObject handle to dcf_togglebutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
global Parameters;

global CurrentMAR;

ispushed = get(hObject, "Value™);

if ispushed
set(hObject, "string”, "Single Input®);

%set(handles.dcf _popup_dist,"String”,{"Select Isotope”;"U-238";"U-239"; "Pu-

2397 ;"Pu-235"}. ..
% , Value®,1,"Enable”,"on");
if ~strcmp(Parameters.Isotope{CurrentMAR} , ")

set(handles.dcf _popup_dist, "String” ,{Parameters. Isotope{CurrentMAR}, "Select

Isotope”}...
, Value®,1,"Enable®”,"on");
set(handles.dcf_textl, "String” ,Parameters.DCF(CurrentMAR));
else
set(handles.dcf _popup_dist, "String”,{"Select Isotope”}...
, Value®,1,"Enable”,"on");
set(handles.dcf_textl,"String”,"");
end
set(handles.dcf_textl,"Enable”,"on");

set(handles.dcf_text2,"String”,"");
set(handles.dcf_text2,"Enable”,"off") ; %
set(handles.dcf _pushbutton, "Enable”, "off"); %

else
set(hObject, "string”, "Distribution Input®);

set(handles.dcf _popup_dist, "String”,{"Select Distribution”;"Normal™;...

"Beta®; "Uniform®; "Exponential " ; "User Defined"}, "Value®,1);
set(handles.dcf_textl,"String”,"");
set(handles.dcf _text2,"String”,"");
set(handles.dcf _textl,"Enable”, "off");
set(handles.dcf _text2,"Enable”,"off"); %
set(handles.dcf_popup_dist, "Enable”,"on"); %

end
end

% Hint: get(hObject, "Value®) returns toggle state of dcf_togglebutton

Appendix B

INL/EXT-16-40755

Revision 0 Page 114 of 249
% --- Executes on button press in br_pushbutton.

% executed when Breathing rate push button is pressed

function br_pushbutton_Callback(hObject, ~, handles)

% hObject handle to br_pushbutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

sample = get(handles.num_sample_text, "String”);
samplesize = str2double(sample);

if strcmp(sample,®®) == 1 || samplesize < 0
errordlg("Please enter number of samples”®, "Sample Number®, "modal*);
return;

end

col = get(handles.br_pushbutton, "backg®);
set(handles.br_pushbutton, "str”, "RUNNING. .., "backg",[-2 .6 .6]);
pause(eps);

a = 8.33*10"-4;

b= 4.17*10"-4;

c= 1.5*10"-4;

d= 1.25*10"-4;

for e = 1:samplesize;
num_rand=rand;
if num_rand <= 0.17
n(e) = rand*(a-b)+b;
elseif num_rand > 0.17 && num_rand <= 0.34;
n(e) = rand*(b-c)+c;
elseif num_rand >0.34
n(e) = rand*(c-d)+d;
end
end
n=n-;
cla(handles.axesl, "reset”);
axes(handles.axesl);
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin(“base”, "brxi", xi);

assignin(“base®, "brfi2", fi);

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[.2 .6 .6], "BarWidth",1);

axis tight;

% hist(n,50);

xlabel ("Breathing Rate")

ylabel ("Probability Density")

str = sprintf("BR distribution plot with\\mu=%0.3e m"3/s ,\\sigma =%0.3e m"3/s", ...
mean(n),std(n));

%title(str); %Replaced with below to standardize between plots.

title(str,"Units", "normalized”, ...

"Position®, [0.5 1.02], "HorizontalAlignment®, “center®)
set(handles.br_pushbutton, "str*, "Show Plot”", "backg”,col);
assignin(“base®,"br", n);
end

function br_textl_ Callback(hObject, ~, handles)
% hObject handle to br_textl (see GCBO)

Appendix B

INL/EXT-16-40755

Revision 0 Page 115 of 249
% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject,"String") returns contents of br_textl as text

% str2double(get(hObject, "String")) returns contents of br_textl as a double
% --- Executes during object creation, after setting all properties.

function br_textl CreateFcn(hObject, ~, handles)

% hObject handle to br_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor”®, "white®);

end

end

% --- Executes on button press in br_togglebutton.

% Executed when Breathing rate toogle button is pressed
function br_togglebutton_Callback(hObject, ~, handles)

% hObject handle to br_togglebutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

ispushed = get(hObject, "Value™);

if ispushed
set(hObject, "string”, "Single Input®);
set(handles.br_textl, "Enable”,"on");
set(handles.br_textl, "String”,"");
set(handles.br_pushbutton, "Enable”, "off"); %

else
set(hObject, "string”, "Distribution Input®);
set(handles.br_textl, "Enable”,"off","String”,"");
set(handles._br_pushbutton, "Enable”,"on");

end

end

% Hint: get(hObject, "Value®) returns toggle state of br_togglebutton

% --- Executes on selection change in Ipf_popup dist.

% Executed when Leak path factor is pressed

function Ipf_popup_dist_Callback(hObject, ~, handles)

% hObject handle to Ipf _popup dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global Parameters;

global CurrentMAR;

contents = cellstr(get(hObject, "String”));
Ipfpopchoice = contents{get(hObject, "Value")};

Appendix B

INL/EXT-16-40755

Revision 0

Page 116 of 249

switch 1
case

case

case

pfpopchoice
"Normal *

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

"Beta”

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles. Ipf_textl, "FontName~®, "SymbolPi", "String”,
set(handles. Ipf_text2, "FontName®, "SymbolPi", "String”,

%
%
"Uniform®

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

Ipf_textl, "Enable”, "inactive®)
Ipf_text2,"Enable”, "inactive®)
Ipf_pushbutton, "Enable”, "on")
Ipf_textl,"String”, "Mean®);
Ipf_text2,"String”, "Std Deviation®);
Ipf_textl, "TooltipString®,"")
Ipf_text2,"TooltipString®,"")

Ipf_textl, "Enable”, "inactive®)
Ipf_text2,"Enable”, "inactive®)
Ipf_pushbutton, "Enable”, "on")
Ipf_textl,"String”,"a");
Ipf_text2,"String”,"b");

Ipf_textl, "TooltipString”, "shape parameter®)
Ipf_text2,"TooltipString”, "shape parameter®)

"a")
"b*);
Ipf_textl, "Enable”, "inactive
Ipf_text2,"Enable”, "inactive
Ipf_pushbutton, "Enable”, "on")
Ipf_textl,"String”, "Upper Limit")
Ipf_text2,"String”, "Lower Limit")
Ipf_textl, "TooltipString®,"")
Ipf_text2,"TooltipString®,"")

)
)

case "Exponential”

case

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

Ipf_textl, "Enable”, "inactive®)
Ipf_text2,"Enable”, "off")
Ipf_pushbutton, "Enable”, "on")
Ipf_textl,"String”, "Mean®™);
Ipf_text2,"String”,"");
Ipf_textl, "TooltipString®,"")
Ipf_text2,"TooltipString®," ")

"Select Distribution”

set(handles
set(handles
set(handles
set(handles
set(handles
set(handles
set(handles

-Ipf_textl,"String”,"")
Ipf_text2,"String”,"");
-Ipf_textl, "Enable”,"off")
.Ipf_text2,"Enable”, "off")

. Ipf_pushbutton, "Enable”, "off")
-Ipf_textl,"TooltipString®," ")
Ipf_text2, "TooltipString®, ")

case "Log Normal*

case

set(handles
set(handles
set(handles
set(handles
set(handles
set(handles
set(handles

%
%
%

.Ipf_textl,"Enable”, "inactive®)
.Ipf_text2,"Enable”, "inactive®)
. Ipf_pushbutton, "Enable”,"on")
-Ipf_textl,"String”,{"Mode"});
-Ipf_text2,"String”,{"Scale Param."});
. Ipf_textl, "TooltipString”,"")
Ipf_text2, "TooltipString”,"")

"User Defined”

set(handles.
set(handles.
set(handles.
set(handles.
set(handles.

Ipf_textl, "Enable”, "off")
Ipf_text2,"Enable”, "off")
Ipf_pushbutton, "Enable”, "on")
Ipf_textl,"String”, "User");
Ipf_text2,"String”, "Defined”);

Appendix B

INL/EXT-16-40755
Revision 0 Page 117 of 249

set(handles. Ipf_textl, "TooltipString”,"")
set(handles. Ipf_text2, "TooltipString”,"")
Parameters = UserDefined(Parameters);
[Parameters, msg, flag] = Parameters.CheckUDD("LPF");
if flag ==
msgbox(msg) ;
set(Parameters, "UDtempX”,0);
set(Parameters, "UDtempY~",0);
set(hObject, "Value®, 1);
Ipf_popup_dist_Callback(hObject, "", handles);
else
Parameters = Parameters.SaveUDD(CurrentMAR, "LPF");
end
end
end
% Hints: contents = cellstr(get(hObject, "String")) returns Ipf_popup dist contents
as cell array
% contents{get(hObject, "Value®)} returns selected item from Ipf_popup_dist

% --- Executes during object creation, after setting all properties.
function Ipf _popup_dist CreateFcn(hObject, ~, handles)

% hObject handle to Ipf_popup _dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundCollor®),
get(0, "defaultUicontrolBackgroundCollor™))
set(hObject, "BackgroundColor”®, "white®);
end
end

function Ipf_textl Callback(hObject, ~, handles)
% hObject handle to Ipf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject,"String®) returns contents of Ipf_textl as text

% str2double(get(hObject, "String")) returns contents of Ipf_textl as a
double

% --- Executes during object creation, after setting all properties.

function Ipf_textl CreateFcn(hObject, ~, handles)

% hObject handle to Ipf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

if ispc && isequal (get(hObject, "BackgroundCollor®),

get(0, "defaultUicontrolBackgroundColor™))

Appendix B

INL/EXT-16-40755
Revision 0 Page 118 of 249

set(hObject, "BackgroundColor™, "white");
end
end

function Ipf_text2 Callback(hObject, ~, handles)
% hObject handle to Ipf_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject,"String®) returns contents of Ipf_text2 as text

% str2double(get(hObject, "String")) returns contents of Ipf _text2 as a
double

% --- Executes during object creation, after setting all properties.

function Ipf_text2 CreateFcn(hObject, ~, handles)

% hObject handle to Ipf_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

X

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundCollor™))
set(hObject, "BackgroundColor™, "white");

end

end

% --- Executes on button press in Ipf_pushbutton.

% Excuted when leak path factor show plot button is pressed
function Ipf_pushbutton_Callback(hObject, ~, handles)

% hObject handle to Ipf_pushbutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
% samplesize = str2double(get(handles.num_sample_text, "String));
% samplesize = get(handles.num_sample_text,"String");

% 1IFf strcmp(samplesize,”™) || num2str(samplesize) < 1

%

global Parameters;

global CurrentMAR;

sample = get(handles.num_sample_text, "String”);

samplesize = str2double(sample);

if strcmp(sample,®®) == 1 || samplesize < 0
errordlg("Please enter number of samples”,"Sample Number®,"modal®);
return;

end

col = get(handles.Ipf_pushbutton, "backg™);

set(handles. Ipf_pushbutton, "str®, "RUNNING...", "backg",[-2 .6 .6]);
pause(eps);

numl = str2double(get(handles.Ipf_textl, "String”));

num2 = str2double(get(handles.Ipf_text2,"String”));

contents = get(handles.lpf _popup_dist, "String”);

popupmenuvalue = contents{get(handles.Ipf_popup_dist, "Value")};
cla(handles.axesl, "reset”);

switch popupmenuvalue

Appendix B

INL/EXT-16-40755
Revision 0 Page 119 of 249

case “Normal*
result = InputlsValid(handles.Ipf_textl, °"LPF", "%)
result2 = InputlsvValid(handles.Ipf_text2, °“LPF", *°S
if result && result2
pd = makedist("Normal",
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

i9');

mu®,numl, "sigma”,num2);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = fi./sum(fi)./dx;

assignin(“base”, "Ipfxi®, xi);
assignin(“base”, "Ipffi2”, fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density®);
xlabel ("LPF");
str = sprintf("\\fontsize{12} LPF distribution plot with Normal
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units®, "normalized®, ...
"Position”, [0.5 1.02], "HorizontalAlignment®™, "center"®)

else
if ~result && ~result2
errordig("Problem in Ipf_textl, Ipf _text2, invalid input.”, "Invalid
Input®, "modal ") ;
elseif ~result && result2
errordig("Problem in Ipf_textl, invalid input.®,"Invalid
Input®, "modal ™) ;
else
errordig("Problem in Ipf_text2, invalid input.®,"Invalid
Input®, "modal ") ;
end
end
case "Log Normal-*
result = InputlsValid(handles.Ipf_textl, “LPF", "%);
result2 = Inputlsvalid(handles.lIpf_text2, “LPF", °"Sig");
if result && result2
pd = makedist("Lognormal™, "mu”, log(numl)+num2°2, "sigma”,num2);

t = truncate(pd,0,1);

n = random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = fi./sum(fi)./dx;

assignin(“base®, "drxi", xi);

assignin(“base”, "drfi2", fi);

bar(xi,fi,"FaceColor",[.-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;

% hist(n,50);

axis tight;

Appendix B

INL/EXT-16-40755
Revision 0 Page 120 of 249

ylabel ("Probability Density”);
xlabel ("LPF");
str = sprintf("\\fontsize{12} LPF distribution plot with Log Normal
distribution with Mean=%0.2e , Stdev=%0.2e", ...
mean(n),std(n));
title(str, "Units", "normalized”, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
else
if ~result && ~result2
errordig("Problem in Ipf_textl, Ipf _text2, invalid input.”,"Invalid
Input®, "modal ™) ;
elseif ~result && result2
errordig("Problem in Ipf_textl, invalid input.®,"Invalid
Input®, "modal ") ;
else
errordig("Problem in Ipf_text2, invalid input.”, "Invalid
Input®, "modal ™) ;
end
end
case "Beta“
result = InputlsValid(handles.Ipf_textl, "LPF", "ab");
result2 = InputlsvValid(handles.Ipf_text2, °"LPF", "ab");
if result && result2
pd = makedist("Beta®,"a",numl, "b",num2);
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin(“base”, "Ipfxi®, xi);
assignin(“base”, "Ipffi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density®);
xlabel ("LPF");
str = sprintf("\\fontsize{l12} LPF distribution plot with Beta
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units®, "normalized®, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)
else
if ~result && -~result2
errordig("Problem in Ipf_textl, Ipf _text2, invalid input.”, "Invalid
Input®, "modal ") ;
elseif ~result && result2
errordig("Problem in Ipf_textl, invalid input.”, "Invalid
Input®, "modal ™) ;
else
errordig("Problem in Ipf_text2, invalid input.®,"Invalid
Input®, "modal ") ;
end
end
case “Uniform”

Appendix B

INL/EXT-16-40755
Revision 0

Page 121 of 249

result = InputlsValid(handles.Ipf_textl, "LPF", "");
result2 = InputlsvValid(handles.Ipf_text2, °"LPF", "LL");
if result && result2

if numl < num2;

% In unifrom distribution upper limt must be greater than lower

% Bimit, if not show the error message

errordlg("Upper Limit is less than lower limt®, "Uniform

Distribution®, "modal *)

set(handles. Ipf_pushbutton, "str”, "Show Plot", "backg”,col);

return;
else
pd = makedist("Uniform®, "Upper"®,numl, "Lower",num2);
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Ffi./sum(fi)./dx;

assignin("base”, "Ipfxi®, xi);
assignin(“base”, "Ipffi2”, fi);

bar(xi,fi,"FaceColor®,[-2 .6 .6], EdgeColor®,[.-2 .6 .6],

"BarWidth",1);
axis tight;
% hist(n,50);

ylabel ("Probability Density”);
xlabel ("LPF™);

str = sprintf("\\fontsize{12} LPF distribution plot with Uniform

distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units”, "normalized®, ...
"Position”, [0.5 1.02], "HorizontalAlignment-®,
end
else
if ~result && ~result2

"center")

errordig("Problem in Ipf_textl, Ipf _text2, invalid input.”,"Invalid

Input®, "modal ™) ;
elseif ~result && result2

errordig("Problem in Ipf_textl, invalid input.®,"Invalid

Input®, "modal ") ;
else

errordig("Problem in Ipf_text2, invalid input.”, "Invalid

Input®, "modal ") ;

end

end

case "Exponential”

result = InputlsValid(handles.Ipf_textl, "LPF", "");

if result
pd = makedist("Exponential”®,
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));

mu®,numl);

Appendix B

INL/EXT-16-40755
Revision 0 Page 122 of 249

fi histc(n,xi-dx);
fi fi./sum(fi)./dx;
assignin(“base”, "Ipfxi®, xi);
assignin(“base”, "Ipffi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density®);
xlabel ("LPF");
str = sprintf("\\fontsize{l12} LPF distribution plot with Exponential
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units", "normalized”, -
"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)

else
errordig("Problem in Ipf_textl, invalid input.”, "Invalid
Input®, "modal ™) ;
end
case "User Defined”
[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "LPF");
n = zeros(l,samplesize);
for e = 1l:samplesize;
num_rand=rand;
ter = size(X);
for i = 1:ter(2)

iSum = 0;
for j = 1:i
iSum = 1Sum + Y(J);
end
if num_rand < iSum
ifi==
n(e) = rand*(X(1+1)-X(1))+X(i);
else
n(e) = rand*(X(1)-X(1-1))+X(i1);
end
break;
end
end
end

axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin(“base”, "drxi", Xxi);
assignin(“base”, "drfi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density”);
xlabel ("LPF");
str = sprintf("\\fontsize{12} LPF distribution plot with User Defined
Distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units”, "normalized”, -
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)

Appendix B

INL/EXT-16-40755

Revision 0 Page 123 of 249
end

set(handles. Ipf_pushbutton, "str”, "Show Plot", "backg”,col);

end

% --- Executes during object creation, after setting all properties.

function mar_togglebutton_CreateFcn(hObject, eventdata, handles)

% hObject handle to mar_togglebutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called
end

% --- Executes on button press in Ipf_togglebutton.

% Executed when leak path factor toogle button is pressed
function Ipf_togglebutton_Callback(hObject, ~, handles)

% hObject handle to Ipf_togglebutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
ispushed = get(hObject, "Value™);

if ispushed
set(hObject, "string”, "Single Input™)
set(handles. Ipf_textl, "Enable”,"on")
set(handles. Ipf_textl, "String™,"");
set(handles. Ipf_text2,"String”,"");
set(handles. Ipf_text2,"Enable”,"off") ; %
set(handles. Ipf_pushbutton, "Enable”,"off"); %
set(handles.Ipf_popup_dist, "Enable”,"off"); %
set(handles.Ipf_popup_dist, "Value®,1)

else
set(hObject, "string”, "Distribution Input®);
set(handles. Ipf_textl, "String™,"");
set(handles. Ipf_text2,"String™,"");
set(handles. Ipf_textl, "Enable”, "off");
set(handles. Ipf_text2,"Enable”,"off"); %
% set(handles.dr_pushbutton, "Enable”,"on"); %

set(handles. Ipf_popup_dist, "Enable”,"on"); %

end
end
% Hint: get(hObject, "Value®™) returns toggle state of Ipf_togglebutton

% --- Executes on button press in arf_pushbutton.
% Executed when airbone release fraction show plot button is pressed
function arf_pushbutton_Callback(hObject, ~, handles)
% hObject handle to arf_pushbutton (see GCBO)
% ~ reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Parameters;
global CurrentMAR;
sample = get(handles.num_sample_text, "String”);
samplesize = str2double(sample);
it strcmp(sample,”™) == 1 || samplesize < 0O
errordlg("Please enter number of samples”®, "Sample Number®, "modal*);

Appendix B

INL/EXT-16-40755
Revision 0 Page 124 of 249

return;
end

col = get(handles.arf _pushbutton, "backg™);
set(handles.arf_pushbutton, "str”, "RUNNING...","backg”,[-2 -6 .6]);
pause(eps);
numl = str2double(get(handles.arf_textl,"String"));
num2 = str2double(get(handles.arf_text2,"String”));
contents = get(handles.arf _popup_dist,"String”);
popupmenuvalue = contents{get(handles.arf popup_dist, "Value®)};
cla(handles.axesl, "reset”);
switch popupmenuvalue
case “Normal*
result = InputlsValid(handles.arf _textl, "ARF", "%)
result2 = InputlsvValid(handles.arf _text2, "ARF", °S
if result && result2
pd = makedist(“Normal*®,
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

mu®,numl, "sigma®,num2);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = fi./sum(fi)./dx;

assignin(“base”,"arfxi", xi);
assignin(“base", "arffi2", fi);
bar(xi,fi,"FaceColor",[.-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density®);
xlabel ("ARF");
str = sprintf("\\fontsize{12} ARF distribution plot with Normal
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units®, "normalized®, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)
else
if ~result && -~result2
errordig("Problem in arf_textl, arf _text2, invalid input.®","Invalid
Input®, "modal ") ;
elseif ~result && result2
errordig("Problem in arf_textl, invalid input.”, "Invalid
Input®, "modal ™) ;
else
errordlg("Problem in arf_text2, invalid input.®,"Invalid
Input®, "modal ") ;
end
end
case "Log Normal*
result = InputlsValid(handles.arf_textl, “ARF", "%);
result2 = Inputlsvalid(handles.arf_text2, “ARF", °"Sig");
if result && result2
pd = makedist("Lognormal™, "mu”, log(numl)+num2°2, "sigma”,num2);
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)

Appendix B

INL/EXT-16-40755

Page 125 of 249

Revision 0
nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(fi)./dx;

assignin("base”, "drxi", Xxi);
assignin(“base”, "drfi2", fi);

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[-2 .6 .6], "BarWidth",1);

axis tight;

% hist(n,50);

axis tight;

ylabel ("Probability Density");
xlabel ("ARF");

str = sprintf("\\fontsize{12} ARF distribution plot with Log Normal

distribution with Mean=%0.2e , Stdev=%0.2e",...
mean(n),std(n));
title(str, "Units", "normalized”, ...
"Position®, [0.5 1.02], “HorizontalAlignment-®,
else
if ~result && ~result2

"center”®)

errordig("Problem in arf_textl, arf _text2, invalid input.”,"Invalid

Input®, "modal ™) ;
elseif ~result && result2
errordlg("Problem in arf_textl, invalid input.”
Input®, "modal ") ;
else
errordlg("Problem in arf_text2, invalid input.”
Input®, "modal ") ;
end
end

case "Beta”
result = InputlsValid(handles.arf_textl, "ARF", "ab");
result2 = InputlsvValid(handles.arf _text2, "ARF", "ab");
if result && result2
pd = makedist("Beta","a",numl, "b",num2);

t = truncate(pd,0,1);

n = random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = Fi./sum(Fi)./dx;

assignin(“base”,"arfxi", xi);
assignin(“base", "arffi2", fi);

, Invalid

, Invalid

bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[-2 .6 .6], "BarWidth",1);

axis tight;

% hist(n,50);

ylabel ("Probability Density®);
xlabel ("ARF");

str = sprintf("\\fontsize{12} ARF distribution plot with Beta

distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units®, "normalized®, ...
"Position®, [0.5 1.02], "HorizontalAlignment-®,
else

Appendix B

“center”®)

INL/EXT-16-40755
Revision 0 Page 126 of 249

if ~result && -~result2
errordig("Problem in arf_textl, arf _text2, invalid input.”,"Invalid
Input®, "modal ") ;
elseif ~result && result2
errordlg("Problem in arf_textl, invalid input.”, "Invalid
Input®, "modal ™) ;
else
errordlg("Problem in arf_text2, invalid input.®,"Invalid
Input®, "modal ") ;
end
end
case “Uniform”
result = InputlsValid(handles.arf_textl, “ARF", "%);
result2 = InputlsvValid(handles.arf _text2, "ARF", "LL");
if result && result2
ifT numl < num2;
% In unifrom distribution upper limt must be greater than lower
% limit, if not show the error message
errordlg("Upper Limit is less than lower limt®,*Uniform
Distribution®, "modal ™)
set(handles.arf _pushbutton, "str”, "Show Plot", "backg”,col);
return;
else
pd = makedist(“Uniform®, *Upper”,numl, "Lower" ,num2);
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin(“base”,"arfxi", xi);

assignin(“base", "arffi2", fi);

bar(xi,fi,"FaceColor”,[.2 .6 .6], "EdgeColor",[.2 .6 .6],
"BarWidth",1);

axis tight;

% hist(n,50);

ylabel ("Probability Density®);
xlabel ("ARF");
str = sprintf("\\fontsize{12} ARF distribution plot with Uniform
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str,"Units®, "normalized®, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)
end
else
if ~result && -~result2
errordlg("Problem in arf_textl, arf _text2, invalid input.®,"Invalid
Input®, "modal ") ;
elseif ~result && result2
errordig("Problem in arf _textl, invalid input.”, "Invalid
Input®, "modal ™) ;
else
errordlg("Problem in arf_text2, invalid input.®,"Invalid
Input®, "modal ") ;

Appendix B

INL/EXT-16-40755
Revision 0 Page 127 of 249

end

end

case "Exponential”

result = InputlsValid(handles.arf_textl, “ARF", "");

if result
pd = makedist("Exponential”,
t = truncate(pd,0,1);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

mu®,numl);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = fi./sum(fi)./dx;

assignin(“base”,"arfxi”, xi);
assignin(“base”, "arffi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density”);
xlabel ("ARF™);
str = sprintf("\\fontsize{l12} ARF distribution plot with Exponential
distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units”, "normalized”, -
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
else
errordlg("Problem in arf _textl, invalid input.®,"Invalid
Input®, "modal ") ;
end
case "User Defined”
[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "ARF");
n = zeros(l,samplesize);
for e = 1:samplesize;
num_rand=rand;
ter = size(X);
for i = 1:ter(2)

iSum = 0;
for j = 1:i
iSum = 1Sum + Y(J);
end
if num_rand < iSum
ifi==
n(e) = rand*(X(1+1)-X(1))+X(i1);
else
n(e) = rand*(X(1)-X(i-1))+X(i);
end
break;
end

end
end
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

Appendix B

INL/EXT-16-40755
Revision 0 Page 128 of 249

assignin("base”, "drxi", Xxi);
assignin(“base”, "drfi2", fi);
bar(xi,fi, "FaceColor",[.2 .6 .6],"EdgeColor”,[-2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density”);
xlabel ("ARF");
str = sprintf("\\fontsize{12} ARF distribution plot with User Defined
Distribution with\\mu=%0.2e ,\\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units", "normalized®, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
end
set(handles.arf_pushbutton, "str”, "Show Plot", "backg”,col);
end

function arf_text2_Callback(hObject, ~, handles)
% hObject handle to arf_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject,"String”) returns contents of arf_text2 as text

% str2double(get(hObject, "String")) returns contents of arf_text2 as a
double

% --- Executes during object creation, after setting all properties.

function arf_text2 CreateFcn(hObject, ~, handles)

% hObject handle to arf_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

X

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end
end

function arf_textl Callback(hObject, ~, handles)
% hObject handle to arf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% Hints: get(hObject, "String”) returns contents of arf_textl as text

% str2double(get(hObject, "String")) returns contents of arf_textl as a
double

% --- Executes during object creation, after setting all properties.

function arf_textl CreateFcn(hObject, ~, handles)

Appendix B

INL/EXT-16-40755

Revision 0 Page 129 of 249
% hObject handle to arf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor™, "white");

end

end

% --- Executes on selection change in arf_popup_dist.

% Executed when arf distributin is selected

function arf_popup_dist_Callback(hObject, ~, handles)

% hObject handle to arf _popup _dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
global Parameters;

global CurrentMAR;

contents = cellstr(get(hObject, "String"));

arfpopchoice = contents{get(hObject, "Value®)};

switch arfpopchoice

case “Normal*
set(handles.arf_textl,"Enable”, "inactive™) %
set(handles.arf_text2,"Enable”, "inactive™) %
set(handles.arf_pushbutton, "Enable”,"on") %
set(handles.arf_textl,"String”, "Mean");
set(handles.arf_text2,"String”, "Std Deviation®);
set(handles.arf_textl, "TooltipString®,"")
set(handles.arf_text2, "TooltipString®,"")

case "Beta”
set(handles.arf_textl,"Enable”, "inactive™) %
set(handles.arf_text2,"Enable”, "inactive™) %
set(handles.arf_pushbutton, "Enable”,"on") %
set(handles.arf_textl,"String","a");
set(handles.arf_text2,"String”,"b");
set(handles.arf_textl, "TooltipString”, "shape parameter”)
set(handles.arf _text2, "TooltipString”, "shape parameter”)

case "Uniform®
set(handles.arf_textl,"Enable”, "inactive™) %
set(handles.arf_text2,"Enable”, “"inactive™) %
set(handles.arf _pushbutton, "Enable”,"on") %
set(handles.arf_textl,"String”, "Upper Limit");
set(handles.arf_text2,"String”, "Lower Limit");
set(handles.arf_textl,"TooltipString®,"")
set(handles.arf_text2, "TooltipString”,"")

case "Exponential”
set(handles.arf_textl,"Enable”, "inactive™) %
set(handles.arf_text2,"Enable”, "off") %
set(handles.arf_pushbutton, "Enable”,"on") %
set(handles.arf_textl,"String”, "Mean®);
set(handles.arf_text2,"String”,"");
set(handles.arf_textl, "TooltipString”,"")
set(handles.arf_text2, "TooltipString®,"")

Appendix B

INL/EXT-16-40755
Revision 0 Page 130 of 249

case "Select Distribution”
set(handles.arf_textl,"String”,"");
set(handles.arf_text2,"String”,"");
set(handles.arf_textl,"Enable”, "off") %
set(handles.arf_text2,"Enable”,"off") %
set(handles.arf _pushbutton, "Enable”,"off") %
set(handles.arf_textl, "TooltipString”,"")
set(handles.arf_text2, "TooltipString®,"")
case "Log Normal*
set(handles.arf_textl, "Enable”, "inactive™) %
set(handles.arf_text2,"Enable”, "inactive™) %
set(handles.arf _pushbutton, "Enable”,"on") %
set(handles.arf_textl, "String”,{"Mode"});
set(handles.arf_text2,"String”,{"Scale Param."});
set(handles.arf_textl, "TooltipString”,"")
set(handles.arf_text2,"TooltipString”,"")
case "User Defined*®
set(handles.arf_textl, "Enable”, "off")
set(handles.arf_text2,"Enable”, "off")
set(handles.arf _pushbutton, "Enable”,"on")
set(handles.arf_textl,"String”, "User");
set(handles.arf_text2,"String”, "Defined");
set(handles.arf_textl, "TooltipString®,"")
set(handles.arf_text2, "TooltipString®,"")
Parameters = UserDefined(Parameters);
[Parameters, msg, flag] = Parameters.CheckUDD("ARF");
if flag ==
msgbox(msg) ;
set(Parameters, "UDtempX~®,0);
set(Parameters, "UDtempY~,0);
set(hObject, "Value®, 1);
arf _popup_dist_Callback(hObject, "", handles);
else
Parameters = Parameters.SaveUDD(CurrentMAR, "ARF");
end
end
end
% Hints: contents = cellstr(get(hObject,"String")) returns arf_popup_dist contents
as cell array
% contents{get(hObject, "Value®)} returns selected item from arf popup_dist

% --- Executes during object creation, after setting all properties.
function arf_popup_dist_CreateFcn(hObject, ~, handles)

% hObject handle to arf_popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor®))
set(hObject, "BackgroundColor™, "white");
end
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 131 of 249

% --- Executes on button press in arf_togglebutton.

% Ecectued when arf toggle button is pressed

function arf_togglebutton_Callback(hObject, ~, handles)

% hObject handle to arf_togglebutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
ispushed = get(hObject, "Value™);

if ispushed
set(hObject, "string”, "Single Input®);
set(handles.arf_textl,“Enable”,"on");
set(handles.arf_textl,"String”,"");
set(handles.arf_text2,"String”,"");
set(handles.arf_text2,"Enable”,"off") ; %
set(handles.arf _pushbutton, "Enable”,"off"); %
set(handles.arf_popup_dist, "Enable”,"off"); %
set(handles.arf_popup_dist, "Value®,1)

else
set(hObject, "string”, "Distribution Input®);
set(handles.arf_textl,"String”,"");
set(handles.arf_text2,"String”,"");
set(handles.arf_textl,“Enable”,"off");
set(handles.arf_text2,"Enable”,"off"); %
% set(handles.dr_pushbutton, "Enable”,"on"); %

set(handles.arf _popup_dist, "Enable”,"on"); %

end
end
% Hint: get(hObject, "Value®™) returns toggle state of arf_togglebutton

% --- Executes on selection change in mar_popup_dist.

function mar_popup_dist_Callback(hObject, ~, handles)

% hObject handle to mar_popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
contents = cellstr(get(hObject, "String-));

marpopchoice = contents{get(hObject, "Value®)};

switch marpopchoice

case "Log Normal*®
set(handles.mar_textl,"Enable”, "inactive™) %
set(handles.mar_text2,"Enable”, "inactive™) %
set(handles.mar_pushbutton, "Enable”,"on") %
set(handles.mar_textl,"String”,{"Mean"});
set(handles.mar_text2,"String”,{"Std Deviation"});
set(handles.mar_textl, "TooltipString”,"")
set(handles.mar_text2,"TooltipString®,"")

case “Normal*
set(handles.mar_textl,"Enable”, "inactive™) %
set(handles.mar_text2,"Enable”, "inactive™) %
set(handles.mar_pushbutton, "Enable”,"on") %
set(handles.mar_textl,"String”,{"Mean"});
set(handles.mar_text2,"String”,{"Std Deviation"});
set(handles.mar_textl, "TooltipString®,"")

Appendix B

INL/EXT-16-40755
Revision 0 Page 132 of 249

set(handles.mar_text2, "TooltipString”,"")

case "Beta“
set(handles.mar_textl,"Enable”, "inactive®) %
set(handles.mar_text2,"Enable”, "inactive™) %
set(handles.mar_pushbutton, "Enable”,"on") %
set(handles.mar_textl, "String”,"a");
set(handles.mar_text2,"String”,"b");
set(handles.mar_textl, "TooltipString~", "shape parameter®)
set(handles.mar_text2, "TooltipString~®, "shape parameter®)

case “Uniform”
set(handles.mar_textl,"Enable”, "inactive™) %
set(handles.mar_text2,"Enable”, "inactive™) %
set(handles.mar_pushbutton, "Enable”,"on") %
set(handles.mar_textl,"String”, "Upper Limit");
set(handles.mar_text2,"String”, "Lower Limit");
set(handles.mar_textl, "TooltipString”,"")
set(handles.mar_text2, "TooltipString”,"")

case "Exponential*
set(handles.mar_textl,"Enable”, "inactive™) %
set(handles.mar_text2,"Enable”,"off") %
set(handles.mar_pushbutton, "Enable”,"on") %
set(handles.mar_textl, "String”, "Mean");
set(handles.mar_text2,"String”,"");
set(handles.mar_textl, "TooltipString®,"")
set(handles.mar_text2, "TooltipString”,"")

case "Select Distribution”
set(handles.mar_textl,"String”,"");
set(handles.mar_text2,"String”,"");
set(handles.mar_textl, "Enable”, "off") %
set(handles.mar_text2,"Enable”, "off") %
set(handles.mar_pushbutton, "Enable”, "off") %
set(handles.mar_textl, "TooltipString”,"")
set(handles.mar_text2, "TooltipString®,"")

end

end

% Hints: contents = cellstr(get(hObject,"String")) returns mar_popup_dist contents
as cell array

% contents{get(hObject, "Value®)} returns selected item from mar_popup_dist

% --- Executes during object creation, after setting all properties.
function mar_popup_dist_CreateFcn(hObject, ~, handles)

% hObject handle to mar_popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor®))
set(hObject, "BackgroundColor™, "white");

Appendix B

INL/EXT-16-40755
Revision 0 Page 133 of 249

end
end

function mar_textl Callback(hObject, ~, handles)

% hObject handle to mar_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
% set(handles.mar_textl, "string”,{})

end

% Hints: get(hObject,"String®) returns contents of mar_textl as text

% str2double(get(hObject, "String")) returns contents of mar_textl as a
double

% --- Executes during object creation, after setting all properties.

function mar_textl CreateFcn(hObject, ~, handles)

% hObject handle to mar_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor™, "white");
end
end

function mar_text2_Callback(hObject, ~, handles)

% hObject handle to mar_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

X

% Hints: get(hObject, "String”) returns contents of mar_text2 as text

% str2double(get(hObject, "String")) returns contents of mar_text2 as a
double

end

% --- Executes during object creation, after setting all properties.

function mar_text2 CreateFcn(hObject, ~, handles)

% hObject handle to mar_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor™, "white");
end
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 134 of 249

% --- Executes on button press in mar_pushbutton.

% Excuted when mar show plot button is pressed

function mar_pushbutton_Callback(hObject, ~, handles)

% hObject handle to mar_pushbutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

sample = get(handles.num_sample_text,"String”);
samplesize = str2double(sample);

if strcmp(sample,™™) == 1 || samplesize < 0
errordlg("Please enter number of samples”®, "Sample Number®, "modal™);
return;

end

col = get(handles.mar_pushbutton, "backg®);
set(handles.mar_pushbutton, "str®, "RUNNING...","backg®,[-2 -6 .6]);
pause(eps);

numl = str2double(get(handles.mar_textl, "String”));

num2 = str2double(get(handles.mar_text2, "String”));

contents = get(handles.mar_popup_dist, "String”);

popupmenuvalue = contents{get(handles.mar_popup_dist, "Value®)};

cla(handles.axesl, "reset”);

switch popupmenuvalue

case “Normal*
result = InputlsValid(handles.mar_textl, “"MAR", "%)
result2 = InputlsvValid(handles.mar_text2, "MAR", ~°S
if result && result2
pd = makedist("Normal*®,

mu®,numl, "sigma®,num2);

t = truncate(pd,0,inf);

n = random(t,samplesize,l);
axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);
xi = linspace(min(n),max(n),nbins);

dx = mean(diff(xi));

fi = histc(n,xi-dx);

fi = Fi./sum(fi)./dx;

assignin(“base”, "marxi®, Xxi);
assignin(“base”, "marfi2”, fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density®);
xlabel ("MAR®);
str = sprintf("\\fontsize{12} MAR distribution plot with Normal
distribution with\\mu=%0.2e Bq ,\\sigma =%0.2e Bq~, --.
mean(n),std(n));
title(str,"Units®, "normalized®, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center"®)
else
if ~result && -~result2
errordig("Problem in mar_textl, mar_text2, invalid input.”,"Invalid
Input®, "modal ") ;
elseif ~result && result2

Appendix B

INL/EXT-16-40755
Revision 0 Page 135 of 249

errordlg("Problem in mar_textl, invalid input.”, "Invalid
Input®, "modal ") ;
else
errordlg("Problem in mar_text2, invalid input.®,"Invalid
Input®, "modal ") ;
end
end

case "Log Normal-*
result = InputlsValid(handles.mar_textl, "MAR", "");
result2 = Inputlsvalid(handles.mar_text2, °“MAR", °"Sig");
if result && result2
pd = makedist("Lognormal”,
t = truncate(pd,0,inf);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

mu®,numl, "sigma”,num2);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = fi./sum(fi)./dx;

assignin(“base®, "drxi", xi);
assignin(“base”, "drfi2", fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
axis tight;
ylabel ("Probability Density”);
xlabel ("MAR™);
str = sprintf("\\fontsize{12} MAR distribution plot with Log Normal
distribution with \\mu=%0.2e , \\sigma =%0.2e", ...
mean(n),std(n));
title(str, "Units", "normalized”, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
else
if ~result && ~result2
errordlg("Problem in mar_textl, mar_text2, invalid input.®,"Invalid
Input®, "modal ") ;
elseif ~result && result2
errordlg("Problem in mar_textl, invalid input.®,"Invalid
Input®, "modal ") ;
else
errordlg("Problem in mar_text2, invalid input.”, "Invalid
Input®, "modal ™) ;
end
end

case "Beta”

result = InputlsValid(handles.mar_textl, “"MAR", "ab");
result2 = InputlsvValid(handles.mar_text2, °"MAR", "ab®);
if result && result2

pd = makedist("Beta","a",numl,"b",num2);

t = truncate(pd,0,inf);

n = random(t,samplesize,l);

axes(handles.axesl)

nbins = max(min(length(n)./10,100),50);

Appendix B

INL/EXT-16-40755
Revision 0 Page 136 of 249

Xi linspace(min(n) ,max(n),nbins);

dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = fi./sum(fi)./dx;

assignin("base”, "marxi”, xi);
assignin("base”, "marfi2”, fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor”,[.2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density”);
xlabel ("MAR™);
str = sprintf("MAR distribution plot with Beta distribution
with\\mu=%0.3e Bqg ,\\sigma =%0.3e Bq-, ---
mean(n),std(n));
title(str, "Units", "normalized”, ...
"Position®, [0.5 1.02], "HorizontalAlignment®, "center"®)
else
if ~result && ~result2
errordlg("Problem in mar_textl, mar_text2, invalid input.®,"Invalid
Input®, "modal ™) ;
elseif ~result && result2
errordlg("Problem in mar_textl, invalid input.”, "Invalid
Input®, "modal ") ;
else
errordlg("Problem in mar_text2, invalid input.”, "Invalid
Input®, "modal ™) ;
end
end
case "Uniform®
result = InputlsValid(handles.mar_textl, "MAR", "%);
result2 = InputlsvValid(handles.mar_text2, "MAR", "LL");
if result && result2
if numl < num2;
% In uniform distribution upper limt must be greater than lower
% Bimit, if not show the error message
errordlg("Upper Limit is less than lower limt", "Uniform
Distribution®, "modal ™)
set(handles.mar_pushbutton, "str®, "Show Plot", "backg”,col);
return;
else
pd = makedist("Uniform®, "Upper®,numl, "Lower",num2);
t = truncate(pd,0,inf);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = fi./sum(fi)./dx;

assignin(“base”, "marxi”, xi);

assignin(“base”, "marfi2”, fi);

bar(xi,fi,"FaceColor”,[.2 .6 .6], "EdgeColor",[.2 .6 .6],
"BarWidth",1);

axis tight;

% hist(n,50);

ylabel ("Probability Density®);

Appendix B

INL/EXT-16-40755
Revision 0 Page 137 of 249

xlabel ("MAR™);
str = sprintf("MAR distribution plot with Uniform distribution
with\\mu=%0.3e Bqg ,\\sigma =%0.3e Bq-, ---
mean(n),std(n));
title(str, "Units", "normalized®, ...
"Position”, [0.5 1.02], "HorizontalAlignment®, "center"®)
end
else
if ~result && ~result2
errordig("Problem in mar_textl, mar_text2, invalid input.”,"Invalid
Input®, "modal ™) ;
elseif ~result && result2
errordlg("Problem in mar_textl, invalid input.®,"Invalid
Input®, "modal ") ;
else
errordlg("Problem in mar_text2, invalid input.”, "Invalid
Input®, "modal ™) ;
end
end
case "Exponential”
result = InputlsValid(handles.mar_textl, "MAR", "");
if result
pd = makedist("Exponential”®,
t = truncate(pd,0,inf);
n = random(t,samplesize,l);
axes(handles.axesl)
nbins = max(min(length(n)./10,100),50);

mu®,numl);

xi = linspace(min(n),max(n),nbins);
dx = mean(diff(xi));
fi = histc(n,xi-dx);
fi = Fi./sum(Fi)./dx;

assignin(“base”, "marxi®, xi);
assignin(“base”, "marfi2”, fi);
bar(xi,fi,"FaceColor",[-2 .6 .6], EdgeColor",[-2 .6 .6], "BarWidth",1);
axis tight;
% hist(n,50);
ylabel ("Probability Density”);
xlabel ("MAR®);
str = sprintf("MAR distribution plot with Exponential distribution
with\\mu=%0.3e Bqgq ,\\sigma =%0.3e Bq-, --.-
mean(n),std(n));
title(str,"Units", "normalized”, ...
"Position®, [0.5 1.02], “HorizontalAlignment®, “center®)
else
errordlg("Problem in mar_textl, invalid input.”,"Invalid
Input®, "modal ™) ;

end
end
set(handles.mar_pushbutton, "str*, "Show Plot", "backg®,col);
end
% --- Executes on button press in mar_togglebutton.
function mar_togglebutton_Callback(hObject, ~, handles)
% hObject handle to mar_togglebutton (see GCBO)
% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
ispushed = get(hObject, "Value™);

Appendix B

INL/EXT-16-40755
Revision 0

Page 138 of 249

if ispushed
%
set(hObject, "string”, "Single Input®)
set(handles.mar_textl, "Enable”,"on")
set(handles._mar_textl,"String™,"");
set(handles.mar_text2,"String™,"");
set(handles.mar_text2,"Enable”,"off") ; %
set(handles.mar_pushbutton, "Enablle”, "off"); %
set(handles.mar_popup_dist, "Enablle”,"off"); %
set(handles._mar_popup_dist, "Value®,1)

else

set(hObject, "string”, "Distribution Input®);
set(handles.mar_textl,"String™,"");
set(handles.mar_text2,"String”,"");
set(handles.mar_textl, "Enable”, "off");
set(handles.mar_text2,"Enable”,"off"); %
set(handles._mar_popup_dist, "Enable”,"on");

end

end

% Hint: get(hObject, "Value®™) returns toggle state of mar_togglebutton

O —— -

function file_menu_Callback(hObject, ~, handles)

% hObject handle to file _menu (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
end

O —— -

function help_menu_Callback(hObject, ~, handles)
% hObject handle to help_menu (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

0/(J __
function help_running_menu_Callback(hObject, ~, handles)

% hObject handle to help_running_menu (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%For windows system
if ispc
filename = "C:\Program Files\ISU\SODA\application\help.pdf";
it exist("help.pdf", "file") == 2
winopen(“help.pdf™);
else
winopen(filename);
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 139 of 249

elseif ismac || isunix %Not tested on Unix or mac, though mac code worked at a
previous time.
% mac system
if exist("help.pdf®, "file") == 2
system(“open help.pdf")
else
system("open /Applications/I1SU/SODA/application/help.pdf™)

end
end
end
) — — -
function about_menu_Callback(hObject, ~, handles)
% hObject handle to about menu (see GCBO)
% ~ reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
About;

% msgbox({"Dr. Chad Pope, ldaho State University® "Jason Andrus, ldaho

National Lab"...

% " " "Graduate Student®™ " " “Kushal Bhattarai, ldaho State University",...
% " " "Undergraduate Students® * ° "Abdullah Alomani® * * “Abraham Chupp”...
% " " "Mason Jaussi®}, "About®);

end

) ——— -
% This fucntion let user load saved *.mat file so that user does not have
% to type every parameter every single time he want to run SODA
function load_menu_Callback(hObject, ~, handles)
% hObject handle to load menu (see GCBO)
% ~ reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Parameters;
[filename,pathname] = uigetfile("*.mat", "Load Work Space®);
if isequal (filename,0)
return
end

load(Fullfile(pathname, filename), "userinput”);
Parameters = userinput.data;

set(handles.num_sample_text, "string”, (userinput.num_sample_text));

%load DR
set(handles.dr_togglebutton, "Value” ,userinput.dr_togglebutton);

if userinput.dr_togglebutton == 0;
set(handles.dr_togglebutton, "String”, "Distribution Input®);
set(handles.dr_popup_dist, "Enable”, "on", "Value” ,userinput._.dr_popup_dist);
if userinput.dr_popup_dist > 1 && userinput.dr_popup_dist < 5 ||

userinput._dr_popup_dist == 6;

set(handles.dr_textl, "Enable”,"on","String”,userinput.dr_textl);
set(handles.dr_text2,"Enable”,"on","String”,userinput.dr_text2);
set(handles.dr_pushbutton, "Enable”, "on");

Appendix B

INL/EXT-16-40755
Revision 0

Page 140 of 249

elseif userinput.dr_popup_dist == 5;

set(han
set(han

dles.dr_textl,"Enable”,"on","String”,userinput.dr_textl);
dles.dr_pushbutton, "Enable”, "on");

elseif userinput._dr_popup_dist ==

set(han
set(han
set(han
end
else
set(handles
set(handles
set(handles
set(handles
set(handles
end

%load LPF

dles.dr_textl, "Enable”, "off","String”, "User");
dles.dr_text2,"Enable”, "off","String”, "Defined");
dles.dr_pushbutton, "Enable”, "on");

.dr_togglebutton, "String~, "Single Input®);
.dr_popup_dist, "Enable”, "off", "Value®,1)
.dr_textl,"Enable”,"on","String”,userinput.dr_textl);
.dr_text2,“Enable”, "off","String","");
.dr_pushbutton, "Enable”, "off");

set(handles. Ipf_togglebutton, "Value® ,userinput. lpf_togglebutton);

if userinput.Ipf_togglebutton ==

set(handles
set(handles

. Ipf_togglebutton, "String”, "Distribution Input®);

- Ipf_popup_dist, "Enable”,"on", "Value® ,userinput.Ipf_popup_dist);

if userinput.lpf _popup_dist > 1 && userinput.lpf_popup_dist < 5 ||

userinput.Ipf p
set(han

opup_dist ==
dles.Ipf_textl,"Enable”,"on","String”,userinput.lpf_textl);

set(handles. Ipf_text2,"Enable”,"on", "String”,userinput. Ipf_text2);
set(handles. Ipf_pushbutton, "Enable”, "on");

elseif user

input._Ipf_popup_dist ==

set(handles.Ipf_textl,'Enable','6n','String',userinput.Ipf_textl);
set(handles. Ipf_pushbutton, "Enable”, "on");

elseif user

input.Ipf _popup_dist == 7

set(handles. Ipf_textl, "Enable”, "off","String”, "User");
set(handles.Ipf_text2, "Enable”, “"off", "String”, "Defined”);
set(handles. Ipf_pushbutton, "Enable”,"on");

end
else

set(handles.
set(handles.

set(handles

set(handles.
set(handles.

end

%load BR

Ipf_togglebutton, "String”, "Single Input®);
Ipf_popup_dist, "Enable”, "off","Value®,1);
-Ipf_text2,"Enable”, “"off","String”,"");
Ipf_textl,“Enable”,"on","String”,userinput.lpf_textl);
Ipf_pushbutton, "Enable”, "off");

set(handles.br_togglebutton, "Value” ,userinput.br_togglebutton);

if userinput.br_togglebutton == 0;

set(handles

set(handles
else

set(handles

set(handles

set(handles
end

%load cq

.br_togglebutton, "String”, "Distribution Input®);
-br_pushbutton, "Enable®, "on");

.br_togglebutton, "Value®,1,"String", "Single Input®);

.br_textl,"Enable”,"on","String”,userinput.br_textl);
.br_pushbutton, "Enable”, "off");

Appendix B

INL/EXT-16-40755
Revision 0 Page 141 of 249

%
set(handles.cq_togglebutton, "Value” ,userinput.cq_togglebutton);
if userinput.cq_togglebutton == 0;
set(handles.cq_togglebutton, "String”, "Distribution Input®);
set(handles.terrain_popup, “Enable®, "on", "Value” ,userinput.terrain_popup);
if userinput.terrain_popup == 2;
set(handles.stability popup, "Enable”,"on","String”,{"Select
Stability™;"A";"B";...
"C";"D";"E";"F"}, "Value®,userinput.stability_popup);
elseif userinput._terrain_popup == 3;
set(handles.stability popup, “Enable”,"on","String”,{"Select Stability"; "A-
B*;"C";...
"D";"E-F"}, "Value® ,userinput.stability popup);
else
set(handles.stability popup, "Enable®, "off""String”,{"Select Stability"});
end
set(handles.windspeed popup_dist, "Enable”, "on”
st);
set(handles.cq_textl, "Enable”, "off","String”,"");
set(handles.height_text,"String” ,userinput.height_text);
set(handles.distance_textl,"Enable”,"on","String”,userinput.distance_textl);
set(handles.distance_text2,"Enable”,"on","String”,userinput.distance_text2);
set(handles.cq_pushbutton, "Enable®, "off");
if userinput.windspeed_popup_dist > 1

, Value® ,userinput.windspeed_popup_di

set(handles.windspeed_textl,"Enable”,"on","String”,userinput.windspeed_textl);

set(handles.windspeed_text2,"Enable”,"on", "String”,userinput.windspeed_text2);
set(handles.cq_pushbutton, "Enable”, "on");
end

else
set(handles.cq_togglebutton, "Value®,1,"*String", "Single Input®);
set(handles.terrain_popup, "Enable”, "off","Value”,1);
set(handles.stability popup, "Enable”, "off","Value®,1);
set(handles.windspeed_popup_dist, “"Enable®, "off","Value®,1);
set(handles.cq_pushbutton, "Enable®, "off");
set(handles.cq_textl, "Enable”,"on","String”,userinput.cq_textl);
set(handles.distance_textl, "Enable”, "off","String”,"")
set(handles.distance_text2,"Enable”, "off","String”,"")
set(handles.height_text, "Enable”, "off","String","");
set(handles.windspeed_textl,"Enable®, "off","String”,
set(handles.windspeed_text2,"Enable®, "off","String”,

"7)s
"7)s

end

radioMAR4_Callback(handles.radioMAR4, "", handles); %Trick the code into resetting
the load info.

load(Fullfile(pathname, filename), "userinput”);

Parameters = userinput.data;

radioMAR1_Callback(handles.radioMAR1, "°, handles);
load(fullfile(pathname, filename), "userinput®);

Parameters = userinput.data; %The final result is a correct load of all data.

%The steps above are nessesary due to the fact that the code will erase the

Appendix B

INL/EXT-16-40755
Revision 0 Page 142 of 249

%loaded data in the currently selected MAR when the MAR state is changed to
%allow the others to load. Once the others are done, the parameters data
%that is saved is refresehed to the state that was saved, and the program
%is ready to be used.

end

O — — -

% This fucntion gather all the user iInput and saves it In *.mat file so

% that the user can load it in SODA for futur runs.

function save work menu_Callback(hObject, ~, handles)

% hObject handle to save work _menu (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global Parameters;

[Ffilename,pathname] = uiputfile("*.mat", "Save Work Space As");

if pathname == 0 %if the user pressed cancelled, then we exit this callback
return

end

userinput.num_sample_text = str2double(get(handles.num_sample_ text,"String”));

userinput.dr_togglebutton = get(handles.dr_togglebutton, "Value®);
userinput.dr_popup_dist = get(handles.dr_popup_dist, "Value®);

userinput.dr_textl = str2double(get(handles.dr_textl,"String"));
userinput.dr_text2 str2double(get(handles.dr_text2,"String”));

userinput. Ipf_togglebutton = get(handles. lpf_togglebutton, "Value®);
userinput. Ipf _popup dist = get(handles.lpf_popup_dist, "Value™);

userinput.Ipf_textl = str2double(get(handles.Ipf_textl, "String-));
userinput.Ipf_text2 = str2double(get(handles.Ipf_text2,"String-));

userinput.br_togglebutton = get(handles.br_togglebutton, "Value®);
userinput_br_textl = str2double(get(handles.br_textl,"String));

userinput.cq_togglebutton = get(handles.cq_togglebutton, "Value®);
userinput.distance_textl str2double(get(handles.distance_textl,"String-));
userinput.distance_text2 str2double(get(handles.distance_text2,"String"));
userinput.terrain_popup = get(handles.terrain_popup, "Value®);
userinput.stability popup = get(handles.stability_popup, "Value™);
userinput.windspeed_popup_dist = get(handles.windspeed_popup_dist, "Value®);
userinput.cq_textl= str2double(get(handles.cq_textl,"String”));

userinput_windspeed_textl= str2double(get(handles.windspeed_textl,"String-));
userinput_windspeed_text2= str2double(get(handles.windspeed_text2,"String-));
userinput.height_text = str2double(get(handles.height_text, "String"));

SaveMARSpeci ficData(handles);
userinput.data = Parameters;

save(fullfile(pathname, filename), "userinput®) %This may fail If too much data is
saved in the class object.

Appendix B

INL/EXT-16-40755

Revision 0 Page 143 of 249
end

D) e

function save_image_menu_Callback(hObject, ~, handles)

% hObject handle to save image menu (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[filename,pathname] = uiputfile("*.jpg;*.png;*.tif","Save as");

ifT pathname == 0 %if the user pressed cancelled, then we exit this callback
return

end

haxes=handles.axes1;

ftmp = figure(“visible™, "off");

set(ftmp, "Position”,[0 O 1024 576]);

new_axes = copyobj(haxes, ftmp);

set(new_axes, "fontsize",10);

set(new_axes, "Units”, "normalized”, "Position”,[0.06 0.12 0.90 0.80]);

saveas(ftmp, fullfile(pathname,filename));

delete(ftmp);

end

) ——— -
% when user wants to exit from exit menu
function exit_menu_Callback(hObject, ~, handles)
% hObject handle to exit _menu (see GCBO)
% ~ reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
exit_button = questdlg("Exit Now?","Exit SODA","Yes","No","No");
switch exit_button;
case "Yes”"
delete(handles.SodaMain);
case "No”
return
end
end

% --- Executes when mar_uipanel is resized.

function mar_uipanel_ResizeFcn(hObject, ~, handles)

% hObject handle to mar_uipanel (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
end

% --- Executes on button press in cq_togglebutton.

function togglebutton9_Callback(hObject, ~, handles)

% hObject handle to cq_togglebutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

Appendix B

INL/EXT-16-40755
Revision 0 Page 144 of 249

% Hint: get(hObject, "Value®) returns toggle state of cq_togglebutton
end

% --- Executes on button press in cqg_pushbutton.
function pushbuttonl0_Callback(hObject, ~, handles)
% hObject handle to cq_pushbutton (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
end

function cq_text Callback(hObject, ~, handles)

% hObject handle to cq_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

=4

X

» Hints: get(hObject, "String") returns contents of cq_textl as text

% str2double(get(hObject, "String")) returns contents of cq_textl as a double
end
% --- Executes during object creation, after setting all properties.

function cg_text_CreateFcn(hObject, ~, handles)

% hObject handle to cq_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor”®, "white®);

end

end

function distance_text2_Callback(hObject, ~, handles)

% hObject handle to distance_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,"String”) returns contents of distance_text2 as text

% str2double(get(hObject, "String")) returns contents of distance_text2 as a
double

end

% --- Executes during object creation, after setting all properties.
function distance_text2 CreateFcn(hObject, ~, handles)

% hObject handle to distance_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

it ispc && isequal(get(hObject, "BackgroundColor™),

get(0, "defaultUicontrolBackgroundColor ™))

Appendix B

INL/EXT-16-40755

Revision 0 Page 145 of 249
set(hObject, "BackgroundColor™, "white");

end

end

function distance_textl Callback(hObject, ~, handles)

% hObject handle to distance_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,"String®) returns contents of distance_textl as text

% str2double(get(hObject, "String")) returns contents of distance_textl as a
double

end

% --- Executes during object creation, after setting all properties.
function distance_textl CreateFcn(hObject, ~, handles)

% hObject handle to distance_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

X

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundCollor™))
set(hObject, "BackgroundColor™, "white");
end
end

% --- Executes on selection change in distance_popup_dist.
% Used by CHi/Q calucation for downwind distance.
% THis fuction is excuted when user selected downwind distance distribution
function distance_popup_dist_Callback(hObject, ~, handles)
% hObject handle to distance_popup_dist (see GCBO)
% ~ reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
contents = cellstr(get(hObject, "String"));
distance_popchoice = contents{get(hObject, "Value®)};
switch distance_popchoice
case “Normal*
set(handles.distance_textl, "Enable”, "inactive®) %
set(handles.distance_text2,"Enable”, "inactive™) %
set(handles.distance_textl, "String”, "Mean");
set(handles.distance_text2,"String”, "Std Deviation®);
set(handles.cq_pushbutton, "Enable”, "off")
set(handles.distance_textl, "TooltipString~,"")
set(handles.distance_text2, "TooltipString®,"")
case "Beta“
set(handles.distance_textl, "Enable”, "inactive®) %
set(handles.distance_text2,“Enable”, "inactive™) %
set(handles.distance_textl,"String","a");
set(handles.distance_text2,"String”, "b");
set(handles.distance_textl, "TooltipString”, "shape parameter”)
set(handles.distance_text2, " TooltipString”, "shape parameter™)
set(handles.cq_pushbutton, "Enable”, "off")
case "Uniform®

Appendix B

INL/EXT-16-40755
Revision 0 Page 146 of 249

set(handles.distance_textl, "Enable”, "inactive™) %
set(handles.distance_text2,"Enable”, "inactive™) %
set(handles.distance_textl, "String”, "Upper LImit");
set(handles.distance_text2,"String”, "Lower LImit");
set(handles.cq_pushbutton, "Enable”, "off")
set(handles.distance_textl, "TooltipString®,"")
set(handles.distance_text2, "TooltipString®,"")
case "Exponential*
set(handles.distance_textl, "Enable”, "inactive®) %
set(handles.distance_text2,"Enable”,"off") %
set(handles.distance_textl,"String”, "Mean®);
set(handles.cq_pushbutton, "Enable”, "off")
set(handles.distance_text2,"String™,"");
set(handles.distance_textl, "TooltipString~,"")
set(handles.distance_text2, "TooltipString®,"")
case "Select Distribution”

set(handles.distance_textl,"String”,"");
set(handles.distance_text2,"String™,"");
set(handles.distance_textl, "Enable”,"off") %
set(handles.distance_text2,"Enable”,"off") %
set(handles.cq_pushbutton, "Enable”, "off") %
set(handles.distance_textl, "TooltipString®,"")
set(handles.distance_text2, "TooltipString~,"")

end

end

% Hints: contents = cellstr(get(hObject, "String")) returns distance_popup_dist

contents as cell array

% contents{get(hObject, "Value®)} returns selected item from

distance_popup_dist

% --- Executes during object creation, after setting all properties.
function distance_popup_dist_CreateFcn(hObject, ~, handles)

% hObject handle to distance_popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end
end

function height_text_Callback(hObject, ~, handles)

% hObject handle to height_text (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

=4

X

» Hints: get(hObject, "String”) returns contents of height text as text

% str2double(get(hObject, "String”)) returns contents of height_text as a
double

end

Appendix B

INL/EXT-16-40755
Revision 0 Page 147 of 249

% --- Executes during object creation, after setting all properties.
function height_text CreateFcn(hObject, ~, handles)

% hObject handle to height text (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

X

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor™, "white");

end

end

% --- Executes on selection change in stability popup.-

function stability popup_Callback(hObject, ~, handles)

% hObject handle to stability popup (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,"String")) returns stability popup contents
as cell array

% contents{get(hObject, "Value®)} returns selected item from stability popup
end

% --- Executes during object creation, after setting all properties.

function stability_popup_CreateFcn(hObject, ~, handles)

% hObject handle to stability popup (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor™, "white");
end
end

% --- Executes on selection change in terrain_popup.

% Executed when terrain for CHi/Q is selected

function terrain_popup_Callback(hObject, ~, handles)

% hObject handle to terrain_popup (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

contents = cellstr(get(hObject, "String"));

terrain_popchoice = contents{get(hObject, "Value")};

switch terrain_popchoice

case "Urban Area*

set(handles.stability popup, "Enable”, "on")
set(handles.stability popup, "String”,{"Select Stability";"A-B";"C";...

Appendix B

INL/EXT-16-40755
Revision 0 Page 148 of 249

"D";"E-F"},"Value™, 1);
case "Rural/Open Country”
set(handles.stability_popup, "Enable”, "on")
set(handles.stability_popup, "String”,{"Select Stability"; "A";"B";...
"C*;"D";"E";"F"},"Value®, 1);
case "Select Terrain®
set(handles.stability popup, "Value®, 1,°String”, "Select
Stability", "Enable”, "off");
end
end

% Hints: contents = cellstr(get(hObject,"String®)) returns terrain_popup contents
as cell array
% contents{get(hObject, "Value®)} returns selected item from terrain_popup

% --- Executes during object creation, after setting all properties.
function terrain_popup_CreateFcn(hObject, ~, handles)

% hObject handle to terrain_popup (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor™, "white");
end
end

% --- Executes when SodaMain is resized.

function figurel ResizeFcn(hObject, ~, handles)

% hObject handle to SodaMain (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
end

function windspeed_text2_ Callback(hObject, ~, handles)

% hObject handle to windspeed_ text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

X

% Hints: get(hObject,"String”) returns contents of windspeed text2 as text

% str2double(get(hObject, "String")) returns contents of windspeed_text2 as a
double

end

% --- Executes during object creation, after setting all properties.
function windspeed_text2 CreateFcn(hObject, ~, handles)

% hObject handle to windspeed text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

Appendix B

INL/EXT-16-40755
Revision 0 Page 149 of 249

% See ISPC and COMPUTER.

if ispc && isequal (get(hObject, "BackgroundCollor®),

get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);

end

end

function windspeed_textl Callback(hObject, ~, handles)

» hObject handle to windspeed textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

X

=4

t» Hints: get(hObject, "String") returns contents of windspeed_textl as text

% str2double(get(hObject, "String")) returns contents of windspeed_textl as a
double

end

% --- Executes during object creation, after setting all properties.
function windspeed_textl CreateFcn(hObject, ~, handles)

% hObject handle to windspeed textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundCollor™))
set(hObject, "BackgroundColor™, "white");

end

end

% --- Executes on selection change in windspeed_popup_dist.
% for chi/q, when user selected a wind speed distribution
function windspeed_popup_dist _Callback(hObject, ~, handles)
% hObject handle to windspeed_popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,"String”)) returns windspeed_popup_dist
contents as cell array
% contents{get(hObject, "Value®)} returns selected item from
windspeed_popup_dist
contents = cellstr(get(hObject, "String"));
windspeed_popchoice = contents{get(hObject, "Value®)};
switch windspeed_popchoice
case “Normal*
set(handles.windspeed_textl, "Enable”, "inactive”) %
set(handles.windspeed_text2,"Enable”, "inactive®) %
set(handles.windspeed_textl, "String”, "Mean");
set(handles.windspeed_text2,"String”, "Std Deviation®);
set(handles.cqg_pushbutton, "Enable”,"on")
set(handles.windspeed_textl, "TooltipString~," ")
set(handles.windspeed_text2, "TooltipString~," ")
case "Beta”
set(handles.windspeed_textl, "Enable”, "inactive®) %
set(handles.windspeed_text2, "Enable”, "inactive®) %

Appendix B

INL/EXT-16-40755
Revision 0 Page 150 of 249

set(handles.windspeed_textl, "String”,"a");
set(handles.windspeed_text2,"String”,"b");
set(handles.windspeed_textl, "TooltipString”, “shape parameter®)
set(handles.windspeed_text2,"TooltipString”, "shape parameter®)
set(handles.cq_pushbutton, "Enable”, "on")

case “Uniform”
set(handles.windspeed_textl, "Enable”, "inactive”) %
set(handles.windspeed_text2,"Enable”, "inactive®) %
set(handles.windspeed_textl,"String”, "Upper Limit");
set(handles.windspeed_text2,"String”, "Lower Limit");
set(handles.cq_pushbutton, "Enable”, "on")
set(handles.windspeed_textl, "TooltipString~, ")
set(handles.windspeed_text2, "TooltipString®, ")

case "Exponential*
set(handles.windspeed_textl, "Enable”, "inactive®) %
set(handles.windspeed_text2, "Enable”, "off") %
set(handles.windspeed_textl, "String”, "Mean");
set(handles.cq_pushbutton, "Enable”, "on*)
set(handles.windspeed_text2,"String","");
set(handles.windspeed_textl, "TooltipString~," ")
set(handles.windspeed_text2, "TooltipString~, ")

case "Select Distribution”
set(handles.windspeed_textl,"String","");
set(handles.windspeed_text2,"String","");
set(handles.windspeed_textl, "Enable”,"off") %
set(handles.windspeed_text2, "Enable”, "off") %
set(handles.cq_pushbutton, "Enable”, "off") %
set(handles.windspeed_textl, "TooltipString®, ")
set(handles.windspeed_text2, "TooltipString~, ")

end

end

% --- Executes during object creation, after setting all properties.
function windspeed_popup_dist_CreateFcn(hObject, ~, handles)

% hObject handle to windspeed_popup_dist (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor®))
set(hObject, "BackgroundColor™, "white");

end

end

% --- Executes when user attempts to close SodaMain.

function SodaMain_CloseRequestFcn(hObject, ~, handles)

% hObject handle to SodaMain (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
exit_button = questdlg("Exit Now?","Exit SODA","Yes","No","Yes");
switch exit _button;

Appendix B

INL/EXT-16-40755
Revision 0 Page 151 of 249

case “Yes”
delete(hObject);
case “"No*"
return
end
end

) ——— -
function random_gen_Callback(hObject, ~, handles)

% hObject handle to random_gen (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
rng("default™);

msgbox("Random Number Generator has been reset”, "Reset");

end

% --- 1¥ Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over mar_textl.
function mar_textl ButtonDownFcn(hObject, ~, handles)

% hObject handle to mar_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% set(hObject,"String”,"","Enable®,"on")

set(hObject, "Enable”, "on");

set(handles._mar_textl, "string”,[1);

end

% --- 1T Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over mar_text2.
function mar_text2 ButtonDownFcn(hObject, ~, handles)

% hObject handle to mar_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”,"on");
set(handles.mar_text2,"string”,[1);

end

% --- 1¥ Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over dr_textl.
function dr_textl ButtonDownFcn(hObject, ~, handles)

% hObject handle to dr_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

set(hObject, "Enable”, "on");
set(handles.dr_textl, "string”,[1);

end
% --- 1T Enable == "on", executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over dr_text2.

function dr_text2 ButtonDownFcn(hObject, ~, handles)

% hObject handle to dr_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”,"on");

set(handles.dr_text2,"string”,[1);

end

Appendix B

INL/EXT-16-40755
Revision 0 Page 152 of 249

% --- 1T Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over arf_textl.
function arf_textl ButtonDownFcn(hObject, ~, handles)

% hObject handle to arf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

set(hObject, "Enable”,"on");

set(handles.arf_textl, "string”,[1);

end

% --- 1T Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over arf_text2.
function arf_text2 ButtonDownFcn(hObject, ~, handles)

% hObject handle to arf_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”, "on");
set(handles.arf _text2,"string”,[1);

end
% --- 1¥ Enable == "on", executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over rf_textl.

function rf_textl ButtonDownFcn(hObject, ~, handles)

% hObject handle to rf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”,"on");

set(handles.rf_textl, "string”,[1);

end

% --- 1T Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over rf_text2.
function rf_text2_ButtonDownFcn(hObject, ~, handles)

% hObject handle to rf_text2 (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”, "on");
set(handles.rf_text2,"string”,[1);

end

% --- 1¥ Enable == "on", executes on mouse press in 5 pixel border.

% --— Otherwise, executes on mouse press iIn 5 pixel border or over Ipf_textl.
function Ipf_textl ButtonDownFcn(hObject, ~, handles)

% hObject handle to Ipf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

set(hObject, "Enable”,"on");
set(handles. Ipf_textl, "string”,[D);

end

% --- 1T Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over Ipf_textl.
function Ipf_text2 ButtonDownFcn(hObject, ~, handles)

% hObject handle to Ipf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”,"on");

Appendix B

INL/EXT-16-40755

Revision 0 Page 153 of 249
set(handles. Ipf_text2,"string”,[1);

end

% --- 1¥ Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over height text.
function height_text ButtonDownFcn(hObject, ~, handles)

% hObject handle to height_text (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

set(hObject, "Enable”,"on");
set(handles.height_text, "string”,[1);

end
% --- 1T Enable == "on®", executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over windspeed_textl.

function windspeed_textl ButtonDownFcn(hObject, ~, handles)

% hObject handle to windspeed textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”, "on");

set(handles.windspeed_textl, "string”,[1);

end
% --- 1T Enable == "on", executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over windspeed_textl.

function windspeed_text2 ButtonDownFcn(hObject, ~, handles)

% hObject handle to windspeed textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”, "on");

set(handles._windspeed_text2, "string”,[1);

end

% --- 1T Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over dcf textl.
function dcf_textl ButtonDownFcn(hObject, ~, handles)

% hObject handle to dcf_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”,"on");
set(handles.dcf _textl, "string”,[1);

end

% --- 1T Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over dcf_textl.
function dcf_text2 ButtonDownFcn(hObject, ~, handles)

% hObject handle to dcf _textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”, "on");

set(handles.dcf _text2,"string”,[1);

end

% --- Executes during object deletion, before destroying properties.
function SodaMain_DeleteFcn(hObject, ~, handles)

% hObject handle to SodaMain (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
end

Appendix B

INL/EXT-16-40755

Revision 0 Page 154 of 249
% --- Executes during object deletion, before destroying properties.

function mar_textl DeleteFcn(hObject, ~, handles)

% hObject handle to mar_textl (see GCBO)

% ~ reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

% --- Executes on button press in fit_dist.

% Used to find best fit for the distribution
function Fit_dist _Callback(hObject, ~, handles)
% hObject handle to fit_dist (see GCBO)
% ~ reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
ced = getappdata(0,“ced”);
col = get(handles.fit _dist, "backg™);
set(handles.fit_dist, "str”, "RUNNING. ..","backg",[-2 .6 .6]);
pause(eps);
[~,PD]=allfitdistBICPDF(ced,handles);
set(handles.fit_dist,"str", "Fit Distribution”, "backg”,col);
% assignin(“base®,*PD", PD);
switch PD{1, 1}.DistributionName
case "Generalized Extreme Value®
msgbox({PD{1, 1}.DistributionName ["k =" num2str(PD{1, 1}.k)]--.-
["Mean= " num2str(PD{1, 1}.mu)] ["Sigma =" num2str(PD{1,
1}.sigma)]}, "Best Fit", "modal ™)
case "Inverse Gaussian-
msgbox({PD{1, 1}.DistributionName ["Mean =" num2str(PD{1, 1}.mu)]--.-
["Lambda= " num2str(PD{1, 1}.lambda)]}, "Best Fit", "modal*®)
case "Lognormal*®
msgbox({PD{1, 1}.DistributionName ["Mean =" num2str(PD{1, 1}.mu)]-..
[FSigma= " num2str(PD{l1l, 1}.sigma)] }, "Best Fit","modal")
case "Log-Logistic”
msgbox({PD{1, 1}.DistributionName ["Mean =" num2str(PD{1, 1}.mu)]---
[FSigma= ° num2str(PD{l1, 1}.sigma)] }, Best Fit","modal*)
case "t Location-Scale”
msgbox({PD{1, 1}.DistributionName ["Mean =" num2str(PD{1, 1}.mu)]-..
[FSigma= * num2str(PD{l1, 1}.sigma)] ["Nu= ° num2str(PD{1,
1}-nu)]}, "Best Fit", "modal*™)
case "Gamma®
msgbox({PD{1, 1}.DistributionName ["a =" num2str(PD{1, 1}.a)]--.
["b= " num2str(PD{1, 1}.b)] }, Best Fit","modal")
case "Beta”
msgbox({PD{1, 1}.DistributionName ["a =" num2str(PD{1, 1}.a)]---
[“b= " num2str(PD{1, 1}.b)] }, Best Fit","modal*)
case “Weibull®
msgbox({PD{1, 1}.DistributionName ["A =" num2str(PD{1, 1}.A)]--.
[B= " num2str(PD{1, 1}.B)] }, Best Fit","modal*)
case "Generalized Pareto”
msgbox({PD{1, 1}.DistributionName ["k =" num2str(PD{1, 1}.k)]--.-
[FSigma= " num2str(PD{1l, 1}.sigma)] ["Theta= " num2str(PD{1,
1}.theta)]}, "Best Fit", "modal ")
case "Exponential”
msgbox({PD{1, 1}.DistributionName ["Mean =" num2str(PD{1, 1}.mu)]}, "Best
Fit®,"modal ")
case "Rayleigh*

Appendix B

INL/EXT-16-40755
Revision 0 Page 155 of 249

msgbox({PD{1, 1}.DistributionName ["B =" num2str(PD{1, 1}.B)]}, "Best
Fit","modal ™)
case "Logistic”
msgbox({PD{1, 1}.DistributionName ["Mean =" num2str(PD{1, 1}.mu)]...
[FSigma= " num2str(PD{l1l, 1}.sigma)] }, "Best Fit","modal")
case “Normal*
msgbox({PD{1, 1}.DistributionName ["Mean =" num2str(PD{1, 1}.mu)]-..
["Sigma= " num2str(PD{1, 1}.sigma)] }, Best Fit", "modal™)
case "Extreme Value~
msgbox({PD{1, 1}.DistributionName ["Mean =" num2str(PD{1, 1}.mu)]-..
[FSigma= " num2str(PD{l1, 1}.sigma)] }, "Best Fit","modal")
end

end

% This function is used to find best fit distribution for the CED data
function [D, PD] = allfitdistBICPDF(data,handles)

WALLFITDIST Fit all valid parametric probability distributions to data.

% [D PD] = ALLFITDIST(DATA) fits all valid parametric probability

% distributions to the data in vector DATA by BIC method, and returns

% a struct D of fitted distributions and parameters and a struct of

% objects PD representing the fitted distributions. PD is an object

% in a class derived from the ProbDist class.

%

% [---1 = ALLFITDIST(...,"PDF*) or (...,"CDF") plots either the PDF or CDF
% of a subset of the fitted distribution. The distributions are plotted in
% order of fit, according to SORTBY.

%

% List of distributions it will try to fit

% Beta

% Exponential

% Gamma

% Inverse Gaussian
% Logistic

% Log-logistic

% Lognormal

% Normal

% EXAMPLE 1

% Given random data from an unknown continuous distribution, find the

% best distribution which fits that data, and plot the PDFs to compare

% graphically.

% data = normrnd(5,3,1e4,1); %Assumed From unknown distribution
% [D PD] = allfitdist(data, "PDF"); %Compute and plot results

% D(D) %Show output from best fit

% Mike Sheppard

% Last Modified: 17-Feb-2012
% Arr. Steffanie Nestor

% Last Modified: 31-Mar-2015

Appendix B

INL/EXT-16-40755
Revision 0 Page 156 of 249

% Arr. Kushal Bhattarai
% Last Modified: 04-02-2015

%% Check Inputs
vin={"pdf"};

distname={"beta”", “exponential®, ...
"extreme value®, "gamma®, "generalized extreme value®, ...
"inversegaussian®, "logistic®, "loglogistic™, ...
"lognormal®, "normal”,"rayleigh®, "tlocationscale”, “weibull"};

vin(1)=[1;

n=numel (data); %Number of data points
data = data(:);

D=[1:

%% Run through all distributions in FITDIST function
warning("off","all"); %Turn off all future warnings
for indx=1:length(distname)
try
dname=distname{indx};
PD = fitdist(data,dname,vin{:});

NLL=PD.NLogL; % -Log(L)
%1f NLL is non-finite number, produce error to ignore distribution
ifT ~isfinite(NLL)
error("non-finite NLL");
end
num=length(D)+1;
PDs(num) = {PD}; %#ok<*AGROW>
k=numel (PD.Params); %Number of parameters
% assigns response to return/plot variable
D(num) .DistName=PD.DistName;
D(num) .BIC=-2*(-NLL)+k*log(n);
D(num) . ParamNames=PD . ParamNames;
D(num) .ParamDescription=PD_ParamDescription;
D(num) .Params=PD.Params;
D(num) .Paramci=PD.paramci;
D(num) .ParamCov=PD.ParamCov;
D(num) . Support=PD.Support;
catch err %#ok<NASGU>
%lgnore distribution
end
end
warning(“on®,"all®); %Turn back on warnings
if numel(D)==
errordlg("No distributions were found®, "Error®);
return;
end

%% Sort distributions
% prepares distribution fits according to BIC best fit to data

Appendix B

INL/EXT-16-40755
Revision 0 Page 157 of 249

indx1=1:length(D); %ldentity Map
[~,indx1]=sort([D.BIC]);
D=D(indx1); PD = PDs(indxl);

% Plot
plotfigs(data,D,PD,handles);

end

function plotfigs(data,D,PD,handles)
%Plot functionality for continuous case due to Jonathan Sullivan
%Modified by author for discrete case

%Maximum number of distributions to include
%max_num_dist=Inf; %All valid distributions
max_num_dist=4;

cla(handles.axesl, "reset”);
axes(handles.axesl);

%% Probability Density / Mass Plot

%Continuous Data

nbins = max(min(length(data)./10,100),50);

xi = linspace(min(data),max(data),nbins);

dx = mean(diff(xi));

xi2 = linspace(min(data),max(data),nbins*10)";
fi = histc(data,xi-dx);

fi = Fi./sum(Fi)./dx;

assignin("base”,"fitxi", xi);

assignin(“base", "fitfi2", fi);

inds = 1:min([max_num_dist,numel(PD)]);

ys = cellfun(@(PD) pdf(PD,xi2),PD(inds), "UniformOutput”,0);
ys = cat(2,ys{:});

[r_gen,x gen] = ksdensity(data);

plot(x_gen,r_gen, “LineWidth",3, "color®,"k");

% hold on;
% bar(xi,fi, "FaceColor®,"m", "EdgeColor®,"m", "BarWidth", 1);
hold on;

plot(xi2,ys, "LineWidth",1.5)

axis tight;

legend(["Random Generated” ,{D(inds).DistName}], "Location®, "NE");

xlabel (*Commited Effective Dose (rem)");

ylabel ("Probability Density");

title(["Probability Density Function with \mu =" num2str(mean(data)) " \sigma =
num2str(std(data))]);

grid on;

Appendix B

INL/EXT-16-40755

Revision 0 Page 158 of 249
end

% --- Executes on key press with focus on mar_textl and none of its controls.
function mar_textl_KeyPressFcn(hObject, ~, handles)

X

% hObject handle to mar_textl (see GCBO)

% ~ structure with the following fields (see UICONTROL)

% Key: name of the key that was pressed, in lower case

% Character: character interpretation of the key(s) that was pressed

% Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed

% handles structure with handles and user data (see GUIDATA)

end

% --— 1¥ Enable == "on", executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over mar_pushbutton.

function mar_pushbutton_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to mar_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
end
% --- Executes when SodaMain is resized.

function SodaMain_SizeChangedFcn(hObject, eventdata, handles)

% hObject handle to SodaMain (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

end

% --- Executes on button press in radioMAR1.

function radioMAR1_Callback(hObject, eventdata, handles)

% hObject handle to radioMAR1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, "Value®) returns toggle state of radioMAR1
ChangeMARState(hObject, handles);
end

% --- Executes on button press in radioMAR2.

function radioMAR2_Callback(hObject, eventdata, handles)

% hObject handle to radioMAR2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, "Value®) returns toggle state of radioMAR2
ChangeMARState(hObject, handles);
end

% --- Executes on button press in radioMAR3.

function radioMAR3_Callback(hObject, eventdata, handles)

% hObject handle to radioMAR3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Appendix B

INL/EXT-16-40755
Revision 0 Page 159 of 249

% Hint: get(hObject, "Value®) returns toggle state of radioMAR3
ChangeMARState(hObject, handles);
end

% --- Executes on button press in radioMAR4.

function radioMAR4_Callback(hObject, eventdata, handles)

% hObject handle to radioMAR4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, "Value®) returns toggle state of radioMAR4
ChangeMARState(hObject, handles);
end

% --- Executes on button press in MARbtn.
function MARbtn_Callback(hObject, eventdata, handles)
% hObject handle to MARbtn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Parameters
global CurrentMAR
Parameters = MAR_Selection(Parameters); %lLet the user select their MAR
information.
CurrentMAR = GetCurrentMARQ);
if CurrentMAR ~= 0
if get(handles.dcf_togglebutton, "Value®) %check if DCF is set to single value.
%Set MAR boxes and DCF boxes after recieving output from MAR_Selection.
if Parameters.MAR(CurrentMAR)~= O
set(handles.mar_textl, °"String®, Parameters.MAR(CurrentMAR));
else
set(handles.mar_textl, °"String®, "");
end
if Parameters.DCF(CurrentMAR)~= 0O
set(handles.dcf_textl, °"String”, Parameters.DCF(CurrentMAR));
else
set(handles.dcf _textl, °"String”, "");
end
set(handles.dcf_popup_dist, "String” ,{Parameters. Isotope{CurrentMAR}, "Select
Isotope”}. ..
, Value®,1,"Enable”,"on");
else %if DCF is set to distribution input...
contents = get(handles.dcf popup_dist, "String”);
popupmenuvalue = contents{get(handles.dcf _popup_dist, "Value®)};
if strcmp(popupmenuvalue, “"User Defined®)
msgbox("User Defined Distribution is Selected, and will override the
DCF setting saved in MAR Selection.");
else
if Parameters.MAR(CurrentMAR)~= O
set(handles.mar_textl, °"String®, Parameters.MAR(CurrentMAR));
else
set(handles.mar_textl, °"String”, "");
end
if Parameters.DCF(CurrentMAR)~= O
set(handles.dcf_textl, °"String", Parameters.DCF(CurrentMAR));
else

Appendix B

INL/EXT-16-40755
Revision 0 Page 160 of 249

set(handles.dcf_textl, °"String”, "");
end
end

end
else

msgbox("MAR State Exclusivity Error; SODA will close.", "Fatal Error"®)

delete(handles.Soda Main);
end
end

%***

function ChangeMARState(hObject, handles)
global CurrentMAR
global Parameters

MARStr = get(hObject, °“String~");
SizeCheck = size(MARStr);

%1Ff this assertion is thrown, check Radiobutton that is clicked for having
%extra lines in its String property.
assert(SizeCheck(l) == 1, "MARStr does not have size 1xX, Property Error.")

MARStr = MARStr(5); %Get MAR Number from String
MARNum = str2double(MARStr);
result = SaveMARSpecificData(handles);

if result > 0

msgbox(*"Some entered data was invalid, and not saved. Please return to previous
MAR selection and input valid values. Show All will only use complete entries in
its calculation.”,"Invalid Property")
end

CurrentMAR = MARNum; %Set new CurrentMAR after saving old data.

if strcmp(Parameters.MARdist{CurrentMAR},"1") ||
strcmp(Parameters_MARdist{CurrentMAR}, " ")
if ~get(handles.mar_togglebutton, "Value®)
set(handles.mar_togglebutton, "Value®,1);
mar_togglebutton_Cal lback(handles.mar_togglebutton, "°, handles);
end
else
if get(handles.mar_togglebutton, "Value®)
set(handles.mar_togglebutton, "Value®,0);
mar_togglebutton_Cal lback(handles.mar_togglebutton, *°, handles);

end
contents = cellstr(get(handles.mar_popup_dist, "String”));
for i=1l:size(contents)
if strcmp(contents{i},Parameters.MARdist{CurrentMAR})
set(handles.mar_popup_dist, "Value®,i1);
mar_popup_dist_Callback(handles.mar_popup_dist, " " ,handles);
break;
end
end
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 161 of 249

if stremp(Parameters_ARFdist{CurrentMAR},"1")
if ~get(handles.arf _togglebutton, "Value®)
set(handles.arf_togglebutton, "Value®,1);
arf_togglebutton_Callback(handles.arf _togglebutton, ", handles);
end
elseif strcmp(Parameters.ARFdist{CurrentMAR}, " ")
set(handles.arf_togglebutton, "Value®,1);
arf_togglebutton_Callback(handles.arf _togglebutton, ", handles);
set(handles.arf_togglebutton, "Value®,0);
arf_togglebutton_Callback(handles.arf _togglebutton, "°, handles);
else
if get(handles.arf_togglebutton, "Value®)
set(handles.arf_togglebutton, "Value®,0);
arf_togglebutton_Callback(handles.arf _togglebutton, ", handles);
end
contents = cellstr(get(handles.arf_popup_dist, "String”));
for i=1l:size(contents)
if strcmp(contents{i},Parameters.ARFdist{CurrentMAR})
if strcmp(Parameters.ARFdist{CurrentMAR}, "User Defined®)
set(handles.arf_popup_dist, "Value®,1);
set(handles.arf_textl,"String”, "User");
set(handles.arf_text2,"String”, "Defined");
set(handles.arf_textl,"Enable”, "off");
set(handles.arf_text2,"Enable”, "off");
set(handles.arf_pushbutton, "Enable®, "on");
else
set(handles.arf _popup_dist, "Value®,1);
arf_popup_dist_Callback(handles.arf _popup_dist, " " ,handles);
end
break;
end
end
end

ifT strcmp(Parameters.RFdist{CurrentMAR}, "1%)
if ~get(handles.rf_togglebutton, "Value®)
set(handles.rf_togglebutton, "Value®,1);
rf_togglebutton_Callback(handles.rf_togglebutton, "", handles);
end
elseif strcmp(Parameters.RFdist{CurrentMAR}," ")
set(handles.rf_togglebutton, "Value®,1);
rf_togglebutton_Callback(handles.rf_togglebutton, "", handles);
set(handles.rf_togglebutton, "Value®,0);
rf_togglebutton_Callback(handles.rf_togglebutton, "", handles);
else
if get(handles.rf _togglebutton, "Value™)
set(handles.rf_togglebutton, "Value®,0);
rf_togglebutton_Callback(handles.rf_togglebutton, "", handles);
end
contents = cellstr(get(handles.rf _popup_dist, "String”));
for i=1l:size(contents)
if strcmp(contents{i},Parameters._RFdist{CurrentMAR})
if strcmp(Parameters.RFdist{CurrentMAR}, "User Defined")
set(handles.rf_popup_dist, "Value®,i);
set(handles.rf_textl,"String”, "User");

Appendix B

INL/EXT-16-40755
Revision 0 Page 162 of 249

set(handles.rf_text2,"String”, "Defined”);
set(handles.rf_textl, "Enable”, "off");
set(handles.rf_text2,“Enable”, "off");
set(handles.rf_pushbutton, "Enable®, "on");

else
set(handles.rf_popup_dist, "Value®,i);
rf_popup_dist _Callback(handles.rf _popup_dist, " ",handles);

end

break;

end
end
end

if strcmp(Parameters.DCFdist{CurrentMAR},"1") ||
strcmp(Parameters.DCFdist{CurrentMAR}, " ")
if ~get(handles.dcf_togglebutton, "Value®)
set(handles.dcf_togglebutton, "Value®,1);
dcf_togglebutton_Callback(handles.dcf _togglebutton, """, handles);
end
else
if get(handles.dcf_togglebutton, "Value®)
set(handles.dcf_togglebutton, "Value®,0);
dcf_togglebutton_Callback(handles.dcf _togglebutton, ", handles);
end
contents = cellstr(get(handles.dcf _popup_dist, "String”));
for i=1:size(contents)
if strcmp(contents{i},Parameters.DCFdist{CurrentMAR})
if strcmp(Parameters.DCFdist{CurrentMAR}, "User Defined")
set(handles.dcf _popup_dist, "Value®,i);
set(handles.dcf_textl,"String”, "User");
set(handles.dcf_text2,"String”, "“Defined”);
set(handles.dcf_textl, "Enable”, "off");
set(handles.dcf _text2,"Enable”, "off");
set(handles.dcf _pushbutton, "Enable”,"on");
else
set(handles.dcf_popup_dist, "Value®,i1);
dcf_popup_dist_Callback(handles.dcf _popup_dist, " " ,handles);
end
break;
end
end
end

if Parameters.MAR(CurrentMAR)~= O
set(handles.mar_textl, "String”, Parameters.MAR(CurrentMAR));
else
if get(handles.mar_togglebutton, "Value®)
set(handles.mar_textl, °“String", ");
else
contents = cellstr(get(handles.mar_popup_dist, "String”));
marpopchoice = contents{get(handles.mar_popup_dist, "Value®)};

switch marpopchoice
case “Normal*
%if normal is selected enable input text box and also display
parameter

Appendix B

INL/EXT-16-40755
Revision 0 Page 163 of 249

%required in those text box.
set(handles.mar_textl,"String”, "Mean");
set(handles._mar_textl, "TooltipString”,"")
case "Log Normal*
%if log normal is selected enable input text box and also display
parameter
%required in those text box.
set(handles._mar_textl, "String”, "Mode");
set(handles._mar_textl, "TooltipString”,"")
case "Beta“
%if Beta is selected enable input text box and also display
parameter
%required in those text box.
set(handles._mar_textl, "String”, "a");
set(handles.mar_textl, "TooltipString”, "shape parameter®)
case “Uniform”
%if Uniform is selected enable input text box and also display
parameter
%required in those text box.
set(handles.mar_textl,"String”, "Upper Limit");
set(handles.mar_textl, "TooltipString”,"")
case "Exponential”
%if Exponential is selected enable input text box and also display
parameter
%required in those text box.
set(handles.mar_textl, "String”, "Mean");
set(handles.mar_textl, "TooltipString”,"")
case "Select Distribution”®
%if Select distribution is selected disable input text box and also
%disable show plot button.
set(handles.mar_textl,"String”,"");
set(handles.mar_textl, "TooltipString”,"")
end
end
end
if Parameters.MAR2(CurrentMAR)~= 0O
set(handles.mar_text2, °"String”, Parameters.MAR2(CurrentMAR));
else
it get(handles.mar_togglebutton, "Value®)
set(handles.mar_text2, °"String", "");
else
contents = cellstr(get(handles.mar_popup_dist,"String”));
marpopchoice = contents{get(handles.mar_popup_dist, "Value®)};

switch marpopchoice
case "Normal®
%if normal is selected enable input text box and also display

parameter
%required in those text box.
set(handles._mar_text2,"String”, "Std Deviation®);
set(handles._mar_text2, "TooltipString”,"")
case "Log Normal*
%if log normal is selected enable input text box and also display
parameter

%required in those text box.
set(handles._mar_text2,"String”, “Scale Param.");
set(handles._mar_text2, "TooltipString”,"")

Appendix B

INL/EXT-16-40755
Revision 0 Page 164 of 249

case "Beta“
%if Beta is selected enable input text box and also display
parameter
%required in those text box.
set(handles.mar_text2,"String”,"b");
set(handles.mar_text2, "TooltipString”, "shape parameter”)
case “Uniform”
%if Uniform is selected enable input text box and also display
parameter
%required in those text box.
set(handles.mar_text2,"String”, "Lower Limit");
set(handles.mar_text2,"TooltipString”,"")
case "Exponential*
%if Exponential is selected enable input text box and also display
parameter
%required in those text box.
set(handles.mar_text2,"String”,"");
set(handles.mar_text2, "TooltipString®,"")
case "Select Distribution*
%if Select distribution is selected disable input text box and also
%disable show plot button.
set(handles.mar_text2,"String”,"");
set(handles.mar_text2, "TooltipString®,"")
end
end
end
if Parameters.DCF(CurrentMAR)~= 0O
if get(handles.dcf_togglebutton, "Value®)
set(handles.dcf_popup_dist, "String” ,{Parameters. Isotope{CurrentMAR}, "Select
Isotope”}...
, Value®,1,"Enable”,"on");
end
set(handles.dcf_textl, °"String®, Parameters.DCF(CurrentMAR));
else
if get(handles.dcf_togglebutton, "Value®)
set(handles.dcf_textl, °"String”, "");
set(handles.dcf _popup_dist, "String”,{"Select Isotope”}...
, Value®,1,"Enable®”,"on");
else
contents = cellstr(get(handles.dcf popup_dist,"String”));
dcfpopchoice = contents{get(handles.dcf popup_dist, "Value®)};

switch dcfpopchoice
case “Normal*
%if normal is selected enable input text box and also display

parameter
%required in those text box.
set(handles.dcf_textl,"String”, "Mean");
set(handles.dcf_textl, "TooltipString”,"")
case "Log Normal*
%if log normal is selected enable input text box and also display
parameter

%required in those text box.

set(handles.dcf _textl,"String”, "Mode");

set(handles.dcf_textl, "TooltipString”,"")
case "Beta”

Appendix B

INL/EXT-16-40755
Revision 0 Page 165 of 249

%if Beta is selected enable input text box and also display

parameter
%required in those text box.
set(handles.dcf_textl, "String”,"a");
set(handles.dcf _textl, "TooltipString”, "shape parameter®)
case “Uniform”
%if Uniform is selected enable input text box and also display
parameter
%required in those text box.
set(handles.dcf_textl,"String”, "Upper Limit");
set(handles.dcf_textl, "TooltipString”,"")
case "Exponential”
%if Exponential is selected enable input text box and also display
parameter
%required in those text box.
set(handles.dcf_textl,"String”, "Mean");
set(handles.dcf_textl, "TooltipString”,"")
case "Select Distribution*
%if Select distribution is selected disable input text box and also
%disable show plot button.
set(handles.dcf _textl,"String”,"");
set(handles.dcf_textl, "TooltipString”,"")
end
end
end

if Parameters.DCF2(CurrentMAR)~= 0
set(handles.dcf _text2, °"String”, Parameters.DCF2(CurrentMAR));
else
iT get(handles.dcf_togglebutton, "Value®)
set(handles.dcf_text2, °"String”, "");
else
contents = cellstr(get(handles.dcf popup_dist,"String”));
dcfpopchoice = contents{get(handles.dcf _popup_dist, "Value®)};

switch dcfpopchoice
case “Normal*
%if normal is selected enable input text box and also display
parameter
%required in those text box.
set(handles.dcf_text2,"String”, "Std Deviation®);
set(handles.dcf_text2, "TooltipString”,"")
case "Log Normal*
%if log normal is selected enable input text box and also display
parameter
%required in those text box.
set(handles.dcf_text2,"String”, “Scale Param.");
set(handles.dcf_text2, "TooltipString”,"")
case "Beta”
%if Beta is selected enable input text box and also display
parameter
%required in those text box.
set(handles.dcf_text2,"String”, "b");
set(handles.dcf _text2, "TooltipString”, "shape parameter”)
case “Uniform”
%if Uniform is selected enable input text box and also display
parameter
%required in those text box.

Appendix B

INL/EXT-16-40755
Revision 0 Page 166 of 249

set(handles.dcf_text2,"String”, "Lower Limit");
set(handles.dcf_text2,"TooltipString”,"")
case "Exponential*
%if Exponential is selected enable input text box and also display
parameter
%required in those text box.
set(handles.dcf _text2,"String”,"");
set(handles.dcf_text2, "TooltipString”,"")
case "Select Distribution*
%if Select distribution is selected disable input text box and also
%disable show plot button.
set(handles.dcf _text2,"String”,"");
set(handles.dcf_text2, "TooltipString”,"")
end
end
end
if Parameters.ARF(CurrentMAR)~= 0O
set(handles.arf_textl, "String", Parameters.ARF(CurrentMAR));
else
if get(handles.arf_togglebutton, "Value®)
set(handles.arf_textl, °"String”, "");
else
contents = cellstr(get(handles.arf_popup_dist, "String”));
arfpopchoice = contents{get(handles.arf _popup_dist, "Value®)};

switch arfpopchoice
case “Normal*
%if normal is selected enable input text box and also display
parameter
%required in those text box.
set(handles.arf_textl,"String”, "Mean®);
set(handles.arf_textl, "TooltipString”,"")
case "Log Normal*®
%if log normal is selected enable input text box and also display
parameter
%required in those text box.
set(handles.arf_textl,"String”, "Mode");
set(handles.arf_textl, "TooltipString”,"")
case "Beta”
%if Beta is selected enable input text box and also display
parameter
%required in those text box.
set(handles.arf_textl,"String”,"a");
set(handles.arf_textl, "TooltipString”, "shape parameter®)
case “Uniform*
%if Uniform is selected enable input text box and also display
parameter
%required in those text box.
set(handles.arf_textl,"String”, "Upper Limit");
set(handles.arf_textl, "TooltipString”,"")
case "Exponential*
%if Exponential is selected enable input text box and also display
parameter
%required in those text box.
set(handles.arf_textl,"String”, "Mean®);
set(handles.arf_textl, "TooltipString”,"")
case "Select Distribution*

Appendix B

INL/EXT-16-40755

Revision 0 Page 167 of 249
%if Select distribution is selected disable input text box and also
%disable show plot button.
set(handles.arf_textl, "String","");
set(handles.arf_textl, "TooltipString”,"")

end
end
end

it Parameters.ARF2(CurrentMAR)~= 0
set(handles.arf_text2, °"String", Parameters.ARF2(CurrentMAR));

else

if get(handles.arf_togglebutton, "Value®)
set(handles.arf_text2, °"String”, "");

else

contents = cellstr(get(handles.arf _popup_dist, "String”));
arfpopchoice = contents{get(handles.arf popup_dist, "Value®)};

switch arfpopchoice

parameter

parameter

parameter

parameter

parameter

end
end
end

case "Normal*
%if normal is selected enable input text box and also display

%required in those text box.
set(handles.arf_text2,"String”, "Std Deviation®);
set(handles.arf_text2,"TooltipString”,"")
case "Log Normal*®
%if log normal is selected enable input text box and also display

%required in those text box.
set(handles.arf_text2,"String”, "Scale Param.");
set(handles.arf_text2,"TooltipString”,"")

case "Beta”
%if Beta is selected enable input text box and also display

%required in those text box.
set(handles.arf_text2,"String”,"b");
set(handles.arf_text2, "TooltipString”, "shape parameter™)
case “Uniform*
%if Uniform is selected enable input text box and also display

%required in those text box.
set(handles.arf_text2,"String”, "Lower Limit");
set(handles.arf_text2, "TooltipString”,"")
case "Exponential*
%if Exponential is selected enable input text box and also display

%required in those text box.
set(handles.arf_text2,"String","");
set(handles.arf_text2, "TooltipString”,"")
case "Select Distribution”
%if Select distribution is selected disable input text box and also
%disable show plot button.
set(handles.arf_text2,"String","");
set(handles.arf_text2, "TooltipString”,"")

it Parameters.RF(CurrentMAR)~= 0O
set(handles.rf_textl, "String", Parameters.RF(CurrentMAR));

Appendix B

INL/EXT-16-40755

Revision 0

Page 168 of 249

else
ifg

else

paramete

paramete

paramete

paramete

paramete

end
end
iT Param

set(
else

if g

else

et(handles.rf _togglebutton, "Value®)
set(handles.rf_textl, "String", "");

contents = cellstr(get(handles.rf _popup_dist, "String”));
rfpopchoice = contents{get(handles.rf popup_dist, "Value®)};

switch rfpopchoice
case "Normal*
%if normal is selected enable input text box and also display
r
%required in those text box.
set(handles.rf_textl,"String”, "Mean");
set(handles.rf_textl, "TooltipString~," ")
case "Log Normal*®
%if log normal is selected enable input text box and also display
r
%required in those text box.
set(handles.rf_textl,"String”, "Mode");
set(handles.rf_textl, "TooltipString~, ")
case "Beta”
%if Beta is selected enable input text box and also display
r
%required in those text box.
set(handles.rf_textl,"String®,"a");
set(handles.rf_textl, "TooltipString”, "shape parameter®)
case “Uniform*
%if Uniform is selected enable input text box and also display
r
%required in those text box.
set(handles.rf_textl,"String”, "Upper Limit");
set(handles.rf_textl, "TooltipString~, ")
case "Exponential”
%if Exponential is selected enable input text box and also display
r
%required in those text box.
set(handles.rf_textl,"String”, "Mean®);
set(handles.rf_textl, "TooltipString~," ")
case "Select Distribution”
%if Select distribution is selected disable input text box and also
%disable show plot button.
set(handles.rf_textl,"String®,"");
set(handles.rf_textl, "TooltipString~," ")
end

eters_RF2(CurrentMAR)~= 0O
handles.rf_text2, "String", Parameters.RF2(CurrentMAR));

et(handles.rf_togglebutton, "Value®)
set(handles.rf_text2, "String", "");

contents = cellstr(get(handles.rf _popup_dist, "String”));
rfpopchoice = contents{get(handles.rf popup_dist, "Value®)};

switch rfpopchoice

Appendix B

INL/EXT-16-40755
Revision 0 Page 169 of 249

case "Normal*
%if normal is selected enable input text box and also display

parameter
%required in those text box.
set(handles.rf_text2,"String”, "Std Deviation®);
set(handles.rf_text2, "TooltipString~," ")
case "Log Normal*®
%if log normal is selected enable input text box and also display
parameter
%required in those text box.
set(handles.rf_text2,"String”, "Scale Param.");
set(handles.rf_text2, "TooltipString~," ")
case "Beta”
%if Beta is selected enable input text box and also display
parameter
%required in those text box.
set(handles.rf_text2,"String”,"b");
set(handles.rf_text2, "TooltipString~", "shape parameter™)
case “Uniform*
%if Uniform is selected enable input text box and also display
parameter
%required in those text box.
set(handles.rf_text2,"String”, "Lower Limit");
set(handles.rf_text2, "TooltipString”,"")
case "Exponential”
%if Exponential is selected enable input text box and also display
parameter
%required in those text box.
set(handles.rf_text2,"String”,"");
set(handles.rf_text2, "TooltipString~," ")
case "Select Distribution”
%if Select distribution is selected disable input text box and also
%disable show plot button.
set(handles.rf_text2,"String”,"");
set(handles.rf_text2, "TooltipString~," ")
end
end
end
set(handles.runall_pushbutton, “Enable®,"on");
end

function result = SaveMARSpecificData(handles) %Save the entered data to the obj
global Parameters
global CurrentMAR

TempArray = Parameters.MAR; %recall existing saved data
if stremp(num2str(str2double(get(handles.mar_textl, "String-))), "NaN") == 0 %Check
that value is numeric
if str2double(get(handles.mar_textl, *"String")) ~= 0 %Check if value is non-
Zero
TempArray(CurrentMAR)
else
TempArray(CurrentMAR)
end
result = 0;
elseif ~strcmp(get(handles.mar_textl, "String”),"") %Check if textbox is empty

str2double(get(handles.mar_textl, "String”));

0;

Appendix B

INL/EXT-16-40755
Revision 0 Page 170 of 249

if ~CheckAcceptableText(get(handles.mar_textl,"String”)) %Check if text is a
preloaded entry, such as mean etc
result = 1;

else
result = 0;
end
else
result = 0;
end

Parameters.MAR = TempArray;

TempArray = Parameters._MARdist;
if get(handles.mar_togglebutton, "Value®) == 0 %Save Currently selected dist, or
single value
contents = get(handles.mar_popup_dist, "String”);
popupmenuvalue = contents{get(handles.mar_popup_dist, "Value®)};
switch popupmenuvalue
case "Select Distribution”
TempArray{CurrentMAR}
case “Normal*

"Select Distribution”;

TempArray{CurrentMAR} = “Normal~;
case "Beta”
TempArray{CurrentMAR} = "Beta“;

case “Uniform*
TempArray{CurrentMAR}
case "Exponential”
TempArray{CurrentMAR}
case "Log Normal*
TempArray{CurrentMAR}
case "User Defined”
TempArray{CurrentMAR}

"Uniform®;

"Exponential " ;

"Log Normal™;

"User Defined”;
end

else
TempArray{CurrentMAR} = "1°7;

end

Parameters._MARdist = TempArray;

TempArray = Parameters.MARZ2;
if ~strcmp(num2str(str2double(get(handles.mar_text2, °"String”))), “NaN®")
if ~get(handles.mar_togglebutton, "Value®)
if str2double(get(handles.mar_text2, "String")) ~= 0
TempArray(CurrentMAR) = str2double(get(handles.mar_text2, "String”));
else
TempArray(CurrentMAR) = O;
end
else
TempArray(CurrentMAR) = O;
end
elseif ~strcmp(get(handles._mar_text2,"String®),"")
if ~get(handles.mar_togglebutton, "Value®)
if ~CheckAcceptableText(get(handles.mar_text2,"String”))
result = result+l;
end
else
TempArray(CurrentMAR) = O;
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 171 of 249

end
Parameters.MAR2 = TempArray;

TempArray = Parameters.DCF;
if ~strcmp(num2str(str2double(get(handles.dcf _textl, °"String”))), "NaN")
if str2double(get(handles.dcf_textl, "String®)) ~= 0
TempArray(CurrentMAR) = str2double(get(handles.dcf _textl, “String”));
else

TempArray(CurrentMAR) 0;

end
elseif ~strcmp(get(handles.dcf_textl, "String®),"")
if ~CheckAcceptableText(get(handles.dcf_textl,"String”))
result = result+l;
end
end
Parameters.DCF = TempArray;

TempArray = Parameters.DCFdist;
if get(handles.dcf_togglebutton, "Value®) == %Save Currently selected dist, or
single value
contents = get(handles.dcf popup_dist,"String”);
popupmenuvalue = contents{get(handles.dcf popup_dist, "Value®)};
switch popupmenuvalue
case "Select Distribution”
TempArray{CurrentMAR}
case “Normal*

"Select Distribution”®;

TempArray{CurrentMAR} = “Normal~;
case "Beta”
TempArray{CurrentMAR} = "Beta“;

case "Uniform*
TempArray{CurrentMAR}
case "Exponential”
TempArray{CurrentMAR}
case "Log Normal*
TempArray{CurrentMAR}
case "User Defined”
TempArray{CurrentMAR}

"Uniform®;

"Exponential " ;

"Log Normal*®;

"User Defined”;

end
else

TempArray{CurrentMAR} = "1°;
end
Parameters.DCFdist = TempArray;

TempArray = Parameters.DCF2;
if ~strcmp(num2str(str2double(get(handles.dcf _text2, °"String”))), "NaN")
if ~get(handles.dcf_togglebutton, "Value®)
if str2double(get(handles.dcf_text2, "String®)) ~= 0
TempArray(CurrentMAR) = str2double(get(handles.dcf_text2, "String"));
else
TempArray(CurrentMAR) = O;
end
else
TempArray(CurrentMAR) = O;
end
elseif ~strcmp(get(handles.dcf _text2,"String®),"")
if ~get(handles.dcf_togglebutton, "Value®)

Appendix B

INL/EXT-16-40755
Revision 0 Page 172 of 249

if ~CheckAcceptableText(get(handles.dcf_text2,"String”))
result = result+l;
end
else
TempArray(CurrentMAR) = O;
end
end
Parameters.DCF2 = TempArray;

TempArray = Parameters.ARF;
if ~strcmp(num2str(str2double(get(handles.arf_textl, °"String”))), “"NaN®)
if str2double(get(handles.arf_textl, °"String")) ~= 0
TempArray(CurrentMAR) = str2double(get(handles.arf _textl, "String”));
else
TempArray(CurrentMAR) = O;
end
elseif ~strcmp(get(handles.arf_textl,"String®),"")
if ~CheckAcceptableText(get(handles.arf_textl,"String”))
result = result+l;
end
end
Parameters.ARF = TempArray;

TempArray = Parameters._ARFdist;
if get(handles.arf_togglebutton, "Value®) == %Save Currently selected dist, or
single value
contents = get(handles.arf _popup_dist,"String”);
popupmenuvalue = contents{get(handles.arf _popup_dist, "Value®)};
switch popupmenuvalue
case "Select Distribution”
TempArray{CurrentMAR}
case "Normal®

"Select Distribution”;

TempArray{CurrentMAR} = “Normal~;
case "Beta“
TempArray{CurrentMAR} = "Beta“;

case “Uniform®
TempArray{CurrentMAR}
case "Exponential”
TempArray{CurrentMAR}
case "Log Normal*
TempArray{CurrentMAR}
case "User Defined”
TempArray{CurrentMAR}

"Uniform®;

"Exponential " ;

"Log Normal™;

"User Defined”;
end

else
TempArray{CurrentMAR} = "1°7;

end

Parameters.ARFdist = TempArray;

TempArray = Parameters.ARF2;
if ~strcmp(num2str(str2double(get(handles.arf_text2, °"String”))), “NaN®)
if ~get(handles.arf_togglebutton, "Value®)
if str2double(get(handles.arf_text2, °"String")) ~= 0
TempArray(CurrentMAR) = str2double(get(handles.arf_text2, "String”));
else
TempArray(CurrentMAR) = O;

Appendix B

INL/EXT-16-40755
Revision 0 Page 173 of 249

end
else
TempArray(CurrentMAR) = O;
end
elseif ~strcmp(get(handles.arf_text2,"String"),"")
if ~get(handles.arf _togglebutton, "Value®)
if ~CheckAcceptableText(get(handles.arf_text2,"String”))
result = result+l;
end
else
TempArray(CurrentMAR) = O;
end
end
Parameters.ARF2 = TempArray;

TempArray = Parameters.RF;
if ~strcmp(num2str(str2double(get(handles.rf_textl, "String"))), "NaN®)
if str2double(get(handles.rf_textl, "String")) ~= 0
TempArray(CurrentMAR) = str2double(get(handles.rf _textl, "String));
else
TempArray(CurrentMAR)

0;
end
elseif ~strcmp(get(handles.rf_textl,"String"),"")
if ~CheckAcceptableText(get(handles.rf _textl, "String"))
result = result+l;
end
end
Parameters.RF = TempArray;

TempArray = Parameters._RFdist;
if get(handles.rf _togglebutton, "Value®™) == 0 %Save Currently selected dist, or
single value
contents = get(handles.rf_popup_dist,"String”);
popupmenuvalue = contents{get(handles.rf_popup_dist, "Value®)};
switch popupmenuvalue
case "Select Distribution”
TempArray{CurrentMAR}
case “Normal*

"Select Distribution”;

TempArray{CurrentMAR} = “Normal”;
case "Beta”
TempArray{CurrentMAR} = "Beta“”;

case “Uniform*
TempArray{CurrentMAR}
case "Exponential”
TempArray{CurrentMAR}
case "Log Normal*
TempArray{CurrentMAR}
case "User Defined”
TempArray{CurrentMAR}

"Uniform®;

"Exponential " ;

"Log Normal™;

"User Defined”;
end

else
TempArray{CurrentMAR} = "1°7;

end

Parameters.RFdist = TempArray;

TempArray = Parameters.RF2;

Appendix B

INL/EXT-16-40755
Revision 0 Page 174 of 249

if ~strcmp(num2str(str2double(get(handles.rf_text2, "String"))), "NaN®)
if ~get(handles.rf_togglebutton, "Value®)
if str2double(get(handles.rf_text2, "String")) ~= 0
TempArray(CurrentMAR) = str2double(get(handles.rf_text2, °“String-));
else
TempArray(CurrentMAR) = O;
end
else
TempArray(CurrentMAR) = O;
end
elseif ~strcmp(get(handles.rf _text2,"String"),"") %if Field is not empty
if ~get(handles.rf_togglebutton, "Value®)
if ~CheckAcceptableText(get(handles.rf_text2,"String")) %check for our
result = result+l; Y%text.
end
else
TempArray(CurrentMAR) = O;
end
end
Parameters.RF2 = TempArray;

end

function result = CheckAcceptableText(str) %Check for Mean, Std, etc.
%1Ff non numeric input is acceptable, returns true. When we put text into
%boxes, we do not want an error message to the user.

if strcmp(str, "Mean®)
result = 1;

elseif strcmp(str, "Std Deviation®)
result = 1;

elseif strcmp(str,"a”)
result = 1;

elseif strcemp(str,™b*)
result = 1;

elseif strcmp(str, "Upper Limit")
result = 1;

elseif strcemp(str, “"Lower Limit")
result = 1;

elseif strcmp(str, "Mode™)
result = 1;

elseif strcmp(str, "Scale Param.")
result = 1;

elseif strcmp(str, "User"®)
result = 1;

elseif strcmp(str, "Defined”)
result = 1;

else
result = 0;

end

end

function result = CheckSamples(handles) %Warn the user if they select too many
samples.

Appendix B

INL/EXT-16-40755
Revision 0 Page 175 of 249

samples = str2double(get(handles.num_sample_text, "string”));
if samples >= 1el0
errordlg("Sample count too high, would result in extreme memory
requirement.”, "Excessive Sample Count®);
result = 0;
else
if samples >= 1e8
str = ["For sample counts in excess of 1E8, a system memory size"...
" of at least 12GB may be required. This requirement is
somewhat” ...
" lessened if single value inputs are used. Do you wish to
proceed?"];
YesNo = questdlg(str, "Sample Size Warning-);
switch YesNo
case "Yes”
result
case "No”
result = 0;
case "Cancel

1l
=

result = 0;
case °°
result = 0;
end
else
result = 1;
end

end
end

function result = Checklnput(hObject) %Check function for inputs, see table below
Input = get(hObject, "String-);
Value = str2double(lnput);
if ((value > 0) && (Value <= 1))
if Value <= 1e-3
result = 11; %result of 11 implies numeric input between O and le-3
else
result = 1; %result of 1 implies numeric input between O and 1
end
elseif Value ==
result = 0; %result of O implies input is O.
elseif isnan(Value)
result = -1; %result of -1 implies non-numeric input.
elseif Value > 1 && Value ~= inf
result = 2; %result of 2 implies numeric input between 1 and inf (not

inclusive)
elseif Value == inf || Value < 0
result = -2; % result of -2 implies numeric input not within acceptable
region of any parameter.
end
end

%Check input returns a flag which tells the Inputlsvalid function
%what type of input was recieved.

% result = 0 => Input is O.
% result = 1 => Numeric between 0 and 1
% result = 2 => non inf numeric greater than 1

Appendix B

INL/EXT-16-40755

Revision 0 Page 176 of 249
% result = -1 => Non numeric
% result = -2 => Invalid numeric for any param.
% result = 11 => Valid for DCF
function result = Inputlsvalid(hObject, Param, specVal)
resl = Checklnput(hObject);
if strcmp(specval, "%)

else

else

else

else

end
end
%specVal
%string)
%lower 1

if strcmp(Param, "MAR™)

if resl == 1 || resl == 11 || resl ==
result = 1;

else
result = 0;

end

elseif strcmp(Param, "DCF™)
if resl == 11
result = 1;

else
result = 0;
end
else
if resl == 1 || resl == 11
result = 1;
else
result = 0;
end
end
if strcmp(specval, "Sig”)

if resl == 1 || resl == 11 || resl == 2
result = 1;

else
result = 0;
end
if strcmp(specval,"LL")

ifresl ==1 || resl == 11 || resl == 0

result = 1;
else
result = 0;
end
if strcmp(specval,"ab™) %ab checks for beta dist case.
if resl == 1 || resl == 11 || resl ==
result = 1;
else
result = 0;
end
if resl == 1 || resl == 11
result = 1;
else
result = 0;
end
specifies what the box 2 input is, If any. Options are " (empty

for the box 1 case, "Sig" for sigma or scale parameter, ""LL" for
imit in the uniform dist, and "b" for the beta dist case.

Appendix B

INL/EXT-16-40755
Revision 0

Page 177 of 249

function result = MARxisValid(handles) %check all entries in a MAR for validity

if ~get(handles.mar_togglebutton, "Value®)
contents = get(handles.mar_popup_dist,"String”);
popupmenuvalue = contents{get(handles.mar_popup_dist, "Value®)};
switch popupmenuvalue
case "Select Distribution”
rli = 0;
r2 = 0;
case “Normal*
rl = Inputlsvalid(handles.mar_textl, "MAR", "%);
r2 = Inputlsvalid(handles.mar_text2, "MAR", "Sig");
case “Uniform®
rl = Inputlsvalid(handles.mar_textl, °"MAR®, "%);
r2 = Inputlsvalid(handles.mar_text2, “MAR®", "LL");
case "Exponential”

rl = InputlsvValid(handles.mar_textl, “MAR", "%);
r2 = 1;
end
else
rl = InputlsvValid(handles.mar_textl, “MAR®", "%);
rz = 1;
end

if ~get(handles.dr_togglebutton, "Value®)
contents = get(handles.dr_popup_dist,“String”);
popupmenuvalue = contents{get(handles.dr_popup_dist, "Value®)};
switch popupmenuvalue
case "Select Distribution”
r3 = 0;
r4d = 0;
case “Normal*
r3 = Inputlsvalid(handles.dr_textl, "DR", "");
r4 = Inputlsvalid(handles.dr_text2, "DR", "Sig");
case "Uniform®
r3 = Inputlsvalid(handles.dr_textl, "DR", "");
r4 = Inputlsvalid(handles.dr_text2, "DR", "LL");
case "Exponential”
r3 = Inputlsvalid(handles.dr_textl, "DR", "");
rd = 1;
case "Log Normal*
r3 = Inputlsvalid(handles.dr_textl, "DR", "%)
r4 = Inputlsvalid(handles.dr_text2, °"DR", "Si
case "Beta“
r3 = InputlsvValid(handles.dr_textl, "DR", "ab®)
r4 = InputlsvValid(handles.dr_text2, "DR", "ab")
case "User Defined”

r3 = 1;
r4 = 1;
end
else
r3 = Inputlsvalid(handles.dr_textl, "DR", "");
r4 = 1;
end

if ~get(handles.arf_togglebutton, "Value®)
contents = get(handles.arf _popup_dist,"String”);
popupmenuvalue = contents{get(handles.arf popup_dist, "Value")};
switch popupmenuvalue
case "Select Distribution”

Appendix B

INL/EXT-16-40755
Revision 0

Page 178 of 249

r5 = 0;
ré = 0;
case “"Normal”

r5 = InputlsvValid(handles.arf_textl,
r6 = Inputlsvalid(handles.arf _text2,

case “Uniform”

r5 = InputlsvValid(handles.arf_textl,
r6 = InputlsvValid(handles.arf_text2,

case "Exponential”

r5 = Inputlsvalid(handles.arf_textl,

ré = 1;
case "Log Normal*

r5 = InputlsvValid(handles.arf_textl,
r6 = InputlsvValid(handles.arf_text2,

case “Beta“

r5 = InputlsvValid(handles.arf_textl,
r6 = Inputlsvalid(handles.arf _text2,

case "User Defined”

r5 = 1;
ré = 1;
end
else
rs5 =
ré = 1;
end

Inputlsvalid(handles._arf_textl,

if ~get(handles.rf_togglebutton, "Value®)

contents = get(handles.rf _popup _dist,"String”);
popupmenuvalue = contents{get(handles.rf_popup_dist, "Value®)};

switch popupmenuvalue

case "Select Distribution”

r7z = 0;
rg8 = 0;
case “"Normal”

r7 = Inputlsvalid(handles.rf_textl,
r8 = Inputlsvalid(handles.rf_text2,

case “Uniform”

r7 = Inputlsvalid(handles.rf_textl,

r8 = InputlsvValid(handles.rf_text2,
case "Exponential”

r7 = Inputlsvalid(handles.rf_textl,

rg = 1;
case "Log Normal*

r7 = InputlsvValid(handles.rf_textl,
r8 = InputlsvValid(handles.rf_text2,

case “Beta“

r7 = Inputlsvalid(handles.rf_textl,
r8 = Inputlsvalid(handles.rf_text2,
case "User Defined”

r7 = 1;
rg = 1;
end
else
r7 =
rg = 1;
end

Inputlsvalid(handles.rf_textl, °“RF-,

if ~get(handles.Ipf_togglebutton, "Value®)
contents = get(handles. pf _popup_dist, "String”);

Appendix B

"ARF",

D)

"ARF", "%)
"ARF*®, "Si

"ARF",
"ARF",

D)

"RF*,
"RF*,
"RF",
"RF",

INL/EXT-16-40755

Revision 0

Page 179 of 249

else

end

popupmenuvalue = contents{get(handles.lpf _popup_dist, "Value")};

switch popupmenuvalue
case "Select Distribution”
ro = 0;
rio = 0;
case “"Normal”

r9 = Inputlsvalid(handles.Ipf_textl,

r10 = InputlsvValid(handles.lpf_text2,

case “"Uniform”

r9 = Inputlsvalid(handles.Ipf_textl,

r10 = Inputlsvalid(handles. lpf_text2,

case "Exponential”

r9 = Inputlsvalid(handles.Ipf_textl,

ri0 = 1;
case "Log Normal*

r9 = Inputlsvalid(handles.lpf_textl,

r10 = Inputlsvalid(handles. lpf_text2,

case “Beta“

r9 = Inputlsvalid(handles.Ipf_textl,

r10 = Inputlsvalid(handles. Ipf_text2,

case "User Defined”

ro = 1;

ri0 = 1;
end
r9 = Inputlsvalid(handles.lpf_textl, "LPF",
rio = 1;

if ~get(handles.dcf_togglebutton, "Value®)
contents = get(handles.dcf _popup_dist, "String”);

popupmenuvalue = contents{get(handles.dcf popup_dist, "Value”)};

switch popupmenuvalue
case "Select Distribution”
ril1 = 0;
ri2 = 0;
case “"Normal”

rll = InputlsvValid(handles.dcf_ textl,
r12 = InputlsvValid(handles.dcf_text2,

case “"Uniform”

rll = Inputlsvalid(handles.dcf_ textl,
r12 = Inputlsvalid(handles.dcf_text2,

case "Exponential”

r11 = InputlsvValid(handles.dcf_textl,

rli2z = 1;
case "Log Normal*

rll = InputlsvValid(handles.dcf_ textl,
r12 = InputlsvValid(handles.dcf_ text2,

case “Beta“

r11 = InputlsvValid(handles.dcf_textl,
r12 = InputlsvValid(handles.dcf_ text2,

case "User Defined”

ril = 1;

riz = 1;
end
rll = Inputlsvalid(handles.dcf textl, "DCF-",
ri2 = 1;

Appendix B

"LPF",
"LPF"

"LPF",
"LPF"

"LPF",
"LPF",
"LPF"

"LPF",
"LPF",

"7)s

)

"DCF",
"DCF*",

"DCF",
"DCF",

"DCF*",
"DCF",
"DCF",

"DCF*",
"DCF",

)
"S

"ab®);
"ab™)

g”)

INL/EXT-16-40755
Revision 0 Page 180 of 249

end

if all([r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12])
result = 1;

else
result = 0;

end

end

function GetResults(handles) %Get CED distribution for currently selected MAR.
global Parameters;
global CurrentMAR;
sample = get(handles.num_sample_text,"String”);
samplesize = str2double(sample);
col = get(handles.run_pushbutton, "backg™);
set(handles.run_pushbutton, "str”, "RUNNING. .. ", "backg”,[-2 -6 .6]);
pause(eps);
get(handles._mar_togglebutton, "Value®);
get(handles.dr_togglebutton, "Value™);
get(handles.arf_togglebutton, "Value®);
get(handles.rf_togglebutton, "Value®™);
get(handles. Ipf_togglebutton, "Value®);
get(handles.br_togglebutton, "Value®);
get(handles.dcf_togglebutton, "Value®);
get(handles.cq_togglebutton, "Value™);
ifa=0] b=0]lc=0]]d=0]le=0]] F=0]1g=01]] h=0;
%1Ff any parameter has distribution input selected, check samples
if strcmp(sample,®®) == 1 || samplesize < 0
waitfor(errordlg("Please enter number of samples”, "Sample
Number®, "*modal ")) ;
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;

SQ =-HD0QOTD

end
end

%compute material at risk

if a==20 ;
numl = str2double(get(handles.mar_textl, "String"));
num2 = str2double(get(handles.mar_text2, "String"));
contents = get(handles.mar_popup_dist, "String”);
popupmenuvalue = contents{get(handles.mar_popup_dist, "Value®)};
switch popupmenuvalue
case “Normal*
pd = makedist("Normal",
t = truncate(pd,0,inf);
mar = random(t,samplesize,l);
case "Log Normal*
pd = makedist("“Lognormal®,"mu”, log(numl)+num2°2, "sigma”,num2);
t = truncate(pd,0,inf);
mar = random(t,samplesize,l);
case "Beta”
pd = makedist("Beta","a",numl, "b",num2);
t = truncate(pd,0,inf);
mar = random(t,samplesize,l);
case “Uniform*
if numl < num2;

mu®,numl, "sigma”,num2);

Appendix B

INL/EXT-16-40755
Revision 0 Page 181 of 249

% In unifrom distribution upper limt must be greater than lower
% Bimit, if not show the error message
waitfor(errordlg("Upper Limit is less than lower limt®,"Uniform
Distribution®, "modal "))
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
else
pd = makedist(“Uniform®, “"Upper®,numl, “Lower",num2);
t = truncate(pd,0,inf);
mar = random(t,samplesize,l);
end
case "Exponential”
pd = makedist("Exponential”®,
t = truncate(pd,0,inf);
mar = random(t,samplesize,l);

mu®,numl);

end
clearvars pd t;
else
mar = str2double(get(handles.mar_textl,"String));
ifT mar <= 0;
waitfor(errordlg("Material at Risk cannot be less than or equal
zero®,"Error®,"modal ")) ;
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
end
end

%compute damage ratio

if b == 0;
numl = str2double(get(handles.dr_textl,"String”));
num2 = str2double(get(handles.dr_text2,"String”));
contents = get(handles.dr_popup_dist,"String”);
popupmenuvalue = contents{get(handles.dr_popup_dist, "Value®)};
switch popupmenuvalue
case “Normal*
pd = makedist("Normal",
t = truncate(pd,0,1);
dr = random(t,samplesize,l);
case "Log Normal*
pd = makedist("Lognormal™, "mu”, log(numl)+num2°2, "sigma”,num2);
t = truncate(pd,0,1);
dr = random(t,samplesize,l);
case "Beta”
pd = makedist("Beta","a",numl, "b",num2);
t = truncate(pd,0,1);
dr = random(t,samplesize,l);
case “Uniform*
if numl < num2;
% In unifrom distribution upper limt must be greater than lower
% Bimit, if not show the error message
waitfor(errordlg("Upper Limit is less than lower limt", "Uniform
Distribution®, "modal "))
set(handles.run_pushbutton, "str®, "Show Plot", "backg”,col);
return;
else

mu®,numl, "sigma”,num2);

Appendix B

INL/EXT-16-40755
Revision 0 Page 182 of 249

pd = makedist("Uniform®, "Upper"®,numl, "Lower",num2);
t = truncate(pd,0,1);
dr = random(t,samplesize,l);
end
case "Exponential”
pd = makedist("Exponential”,
t = truncate(pd,0,1);
dr = random(t,samplesize,l);
case "User Defined”
[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "DR");
dr = zeros(samplesize,l);
for e = 1l:samplesize;
num_rand=rand;
ter = size(X);
for i = 1:ter(2)

mu®,numl);

iSum = 0;
for j = 1:i
iSum = 1Sum + Y(J);
end
if num_rand < iSum
ifi==
dr(e) = rand*(X(i+1)-X(i))+X(1);
else
dr(e) = rand*(X(1)-X(1-1))+X(i1);
end
break;
end
end
end
end
clearvars pd t;
else

dr = str2double(get(handles.dr_textl,"String®));
if dr > 1 || dr <= 0;
waitfor(errordlg("Damage Ratio cannot be greater than 1 or less than or
equal to =zero®,"Error®,"modal®));
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
end
end

%compute airborne release fraction

if c == 0;
numl = str2double(get(handles.arf_textl, "String"));
num2 = str2double(get(handles.arf_text2,"String”));
contents = get(handles.arf _popup_dist,"String”);
popupmenuvalue = contents{get(handles.arf _popup_dist, "Value®)};
switch popupmenuvalue
case “Normal*
pd = makedist("Normal ",
t = truncate(pd,0,1);
arf = random(t,samplesize,l);
case "Log Normal*
pd = makedist("Lognormal®,"mu”, log(numl)+num2°2,"sigma”,num2);
t = truncate(pd,0,1);

mu®,numl, "sigma”,num2);

Appendix B

INL/EXT-16-40755
Revision 0 Page 183 of 249

arf = random(t,samplesize,l);
case "Beta“
pd = makedist("Beta","a",numl, "b",num2);
t = truncate(pd,0,1);
arf = random(t,samplesize,l);

case "Uniform*
ifT numl < num2;
% In unifrom distribution upper limt must be greater than lower
% Bimit, if not show the error message
waitfor(errordlg("Upper Limit is less than lower limt®,*Uniform
Distribution®, "modal "))
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
else
pd = makedist(“Uniform®, “Upper®,numl, “Lower",num2);
t = truncate(pd,0,1);
arf = random(t,samplesize,l);
end
case "Exponential”
pd = makedist("Exponential”®,
t = truncate(pd,0,1);
arf = random(t,samplesize,l);
case "User Defined”
[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "ARF");
arf = zeros(samplesize,1);
for e = 1:samplesize;
num_rand=rand;
ter = size(X);
for i = 1:ter(2)
iSum = O;
for j = 1:i
iSum = 1Sum + Y(§);

mu®,numl);

end
if num_rand < iSum
ifi==
arf(e)
else
arf(e)

rand*(X(i+1)-X(i))+X(i);

rand*(X(i)-X(i-1))+X(i);

end
break;
end
end
end
end
clearvars pd t;
else
arf = str2double(get(handles.arf _textl,"String));
ifarf <=0 |] arf > 1
waitfor(errordlg("Airborne Release Factor cannot be less than O or greater
than 1%, “Error%));
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return
end
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 184 of 249

%compute Respirable fraction

ifd-== ;
numl = str2double(get(handles.rf _textl,"String”));
num2 = str2double(get(handles.rf_text2,"String”));
contents = get(handles.rf_popup_dist,"String”);
popupmenuvalue = contents{get(handles.rf_popup_dist, "Value®)};
switch popupmenuvalue
case “Normal*
pd = makedist("Normal™,"mu”,numl, "sigma”,num2);
t = truncate(pd,0,1);
rf = random(t,samplesize,1);
case "Log Normal*
pd = makedist("Lognormal™, "mu”, log(numl)+num2°2, "sigma”,num2);
t = truncate(pd,0,1);
rf = random(t,samplesize,1);
case "Beta”
pd = makedist("Beta","a",numl,"b",num2);
t = truncate(pd,0,1);
rf = random(t,samplesize,1);
case "Uniform*
if numl < num2;
% In unifrom distribution upper limt must be greater than lower
% Bimit, if not show the error message
waitfor(errordlg("Upper Limit is less than lower limt®,"Uniform
Distribution®, "modal "))
set(handles.run_pushbutton, "str®, "Show Plot", "backg”,col);
return;
else
pd = makedist(“Uniform®, “Upper®,numl, “Lower",num2);
t = truncate(pd,0,1);
rf= random(t,samplesize,l);
end
case "Exponential”
pd = makedist("Exponential®,*mu”,numl);
t = truncate(pd,0,1);
rf = random(t,samplesize,1);
case "User Defined”
[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "RF");
rf = zeros(samplesize,l);
for e = 1:samplesize;
num_rand=rand;
ter = size(X);
for i = 1:ter(2)

iSum = 0O;
for j = 1:i
iSum = 1Sum + Y(J);
end
if num_rand < iSum
ifi==
rf(e) = rand*(X(i+1)-X(1))+X(i);
else
rf(e) = rand*(X(1)-X(i-1))+X(i);
end
break;
end

end

Appendix B

INL/EXT-16-40755

Revision 0 Page 185 of 249
end
end
clearvars pd t;
else

rf = str2double(get(handles.rf_textl,"String”));
ifrf<=01]]| rf > 1;
waitfor(errordlg(“Respirable Factor cannot be less than or equal 0 or
greater than 1%, “Error®));
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return
end
end

%compute leak path factor

if e ==0;
numl = str2double(get(handles.Ipf_textl, "String"));
num2 = str2double(get(handles.lIpf_text2,"String"));
contents = get(handles.lpf_popup_dist, "String”);
popupmenuvalue = contents{get(handles.lpf_popup_dist, "Value®)};
switch popupmenuvalue
case “Normal*
pd = makedist("Normal®,*mu”,numl, "sigma”,num2);
t = truncate(pd,0,1);
Ipf = random(t,samplesize,l);
case "Log Normal*
pd = makedist("Lognormal™, "mu”, log(numl)+num2°2, "sigma”,num2);
t = truncate(pd,0,1);
Ipf = random(t,samplesize,l);
case "Beta”
pd = makedist("Beta","a",numl,"b",num2);
t = truncate(pd,0,1);
Ipf = random(t,samplesize,l);
case “Uniform*
if numl < num2;
% In unifrom distribution upper limt must be greater than lower
% Bimit, if not show the error message
waitfor(errordlg("Upper Limit is less than lower limt®,"Uniform
Distribution®, "modal "))
set(handles.run_pushbutton, "str®, "Show Plot", "backg”,col);
return;
else

pd = makedist(“Uniform®, “Upper®,numl, “Lower",num2);
t = truncate(pd,0,1);
Ipf = random(t,samplesize,l);
end
case "Exponential”
pd = makedist("Exponential”®,
t = truncate(pd,0,1);
Ipf = random(t,samplesize,l);
case "User Defined”
[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "LPF");
Ipf = zeros(samplesize,l);
for e = 1:samplesize;
num_rand=rand;
ter = size(X);

mu®,numl);

Appendix B

INL/EXT-16-40755
Revision 0 Page 186 of 249

for i = 1:ter(2)
iSum = 0;
for j = 1:i
iSum = 1Sum + Y(J);
end
if num_rand < iSum
ifi=1
Ipf(e)
else
Ipf(e)
end

break;

rand*(X(i+1)-X(i))+X(i);

rand*(X(i)-X(i-1))+X(i);

end
end
end

end
clearvars pd t;
else
Ipf = str2double(get(handles. Ipf_textl,"String”));
if IpfF > 1 || Ipf <= 0;
waitfor(errordlg(“Leak Path Factor cannot be less than or equal to O or
greater than 1%, "Error"));
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
end
end

%compute source term

%st = mar.*dr.*arf.*rf.*1pf; %Redunant code, ST is not used until after
%it is recalculated below.

%compute breathing rate

it f==0;

8.33*10"-4;
4._17*%10M-4 ;
1.5%10"-4 ;
1.25*10"-4;

0T
I mn

for e = 1:samplesize;
num_rand=rand;
if num_rand <= 0.17
n(e) = rand*(8.33E-4-4_17E-4)+4_17E-4;
elseif num_rand > 0.17 && num_rand <= 0.34;
n(e) = rand*(4.17E-4-1_.5E-4)+1.5E-4;
elseif num_rand >0.34
n(e) = rand*(1.5E-4-1_.25E-4)+1.25E-4;
end
end

br=n-;
clearvars n;
else
br = str2double(get(handles.br_textl,"String));
if br <= 0;

Appendix B

INL/EXT-16-40755
Revision 0

Page 187 of 249

waitfor(errordlg("Breathing Rate cannot be less than or equal to 07,
"Error-));

set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
end
end

%compute dose conversion factor

if g == 0;
numl = str2double(get(handles.dcf_textl, "String"));
num2 = str2double(get(handles.dcf_text2,"String"));
contents = get(handles.dcf popup_dist, "String”);
popupmenuvalue = contents{get(handles.dcf popup_dist, "Value®)};
switch popupmenuvalue
case “Normal*
pd = makedist("Normal®,"mu”,numl, "sigma”,num2);
t = truncate(pd,0,inf);
dcf = random(t,samplesize,l);
case "Log Normal*
pd = makedist("Lognormal®,"mu”, log(numl)+num2°2, "sigma”,num2);
t = truncate(pd,0,inf);
dcf = random(t,samplesize,l);
case "Beta“
pd = makedist("Beta","a",numl, "b",num2);
t = truncate(pd,0,inf);
dcf = random(t,samplesize,l);
case “Uniform*
ifT numl < num2;
% In unifrom distribution upper limt must be greater than lower
% Bimit, if not show the error message
waitfor(errordlg("Upper Limit is less than lower limt®,“Uniform
Distribution®, "modal "))
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
else
pd = makedist(“Uniform®, “Upper®,numl, “Lower",num2);
t = truncate(pd,0,inf);
dcf = random(t,samplesize,l);

end
case "Exponential”
pd = makedist("Exponential®,*mu”,numl);
t = truncate(pd,0,inf);
dcf = random(t,samplesize,l);
case "User Defined”
[Parameters,X,Y] = Parameters.GetUDD(CurrentMAR, "DCF");
dcf = zeros(samplesize,l);
for e = 1:samplesize;
num_rand=rand;
ter = size(X);
for i = 1:ter(2)
iSum = 0O;
for j = 1:i
iSum = 1Sum + Y(g);

Appendix B

INL/EXT-16-40755

Revision 0 Page 188 of 249
end
if num_rand < iSum
ifi==
dcf(e) = rand*(X(1+1)-X(1))+X(i);
else
dcf(e) = rand*(X(1)-X(1-1))+X(i1);
end
break;
end
end
end
end
clearvars pd t;
else
dcf = str2double(get(handles.dcf _textl,"String));
if dcf <= 0;

waitfor(errordlg("Dose Conversion Factor cannot be less than or equal to
0", "Error®));
set(handles.run_pushbutton, "str®, "Show Plot", "backg”,col);
return;
end
end

%compute chi/Q

if h == 0;
distance = str2double(get(handles.distance_textl, "String-));
distancel = str2double(get(handles.distance_text2,"String”));
pd = makedist("Normal®,"mu®,0, "sigma”,distancel);
crossdistance = random(pd,samplesize,l);

numl
num2

str2double(get(handles.windspeed_textl, "String”));
str2double(get(handles.windspeed_text2,"String”));

contents = get(handles.windspeed_popup_dist,"String-);
popupmenuvalue = contents{get(handles.windspeed popup_dist, "Value")};
switch popupmenuvalue
case “Normal*
pd = makedist("Normal®,"mu”,numl, "sigma”,num2);
t = truncate(pd,0.1,inf);
windS = random(t,samplesize,l);
case “Uniform*
if numl < num2;
% In unifrom distribution upper limt must be greater than lower
% Bimit, if not show the error message
waitfor(errordlg("Upper Limit is less than lower limt", "Uniform
Distribution®, "modal "))
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
else
pd = makedist("Uniform®, "Upper"®,numl, "Lower",num2);
t = truncate(pd,0.1,inf);
windS = random(t,samplesize,l);
end
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 189 of 249

contents2 = get(handles.terrain_popup, "String”);
terrainvalue = contents2{get(handles.terrain_popup, “"Value®)};

contents3
stability

get(handles.stability popup, "String”);
contents3{get(handles.stability_popup, "Value®)};

height = str2double(get(handles.height_text,"String”));

switch terrainvalue
case "Rural/Open Country*
switch stability

case "A”"
sigma_y = 0.22*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.20*distance;
case "B"
sigma_y = 0.l16*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.12*distance;
case "C"
sigma_y = 0.l1*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.08*distance*(1+0.0002*distance)”(-0.5);
case "D-"
sigma_y = 0.08*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.06*distance*(1+0.0015*distance)”(-0.5);
case "E"
sigma_y = 0.06*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.03*distance*(1+0.0003*distance)™(-1);
case "F°
sigma_y = 0.04*distance*(1+0.0001*distance)”(-0.5);
sigma_z = 0.016*distance*(1+0.0003*distance)”™(-1);

case "Select Stability Condition”

waitfor(errordlg(”“Select Stability
Conditions®, "Error"®, "modal *));
set(handles.run_pushbutton, "str®, "Show Plot", "backg”,col);
return;
end
case "Select Terrain”
switch stability

case "A"
waitfor(errordlg("“Select terrain®, "Error®,"modal®));
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;

case "B”"
waitfor(errordlg(“Select terrain®,“Error”,“modal ™))
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;

case "C-
waitfor(errordlg(“Select terrain®,"Error”®,"modal"));
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;

case "D"
waitfor(errordlg("“Select terrain®, "Error”,"modal®));

Appendix B

INL/EXT-16-40755

Revision 0 Page 190 of 249
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;

case “E”

waitfor(errordlg(“Select terrain®, "Error®,"modal®));
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
case "F°
waitfor(errordlg(“Select terrain®, "Error®, "modal®));
set(handles.run_pushbutton, "str®, "Show Plot", "backg”,col);
return;
case "Select Stability Condition”
waitfor(errordlg(“Select Terrain & Stability
Condition®, "Error®, "modal *));
set(handles.run_pushbutton, "str®, "Show Plot", "backg”,col);
return;
end
case "Urban Area”
switch stability
case "A-B-

sigma_y = 0.32*distance*(1+0.0004*distance)”(-0.5);
sigma_z = 0.24*distance*(1+0.001*distance)”(0.5);
case "C"
sigma_y = 0.22*distance*(1+0.0004*distance)”(-0.5);
sigma_z = 0.2*distance;
case "D"
sigma_y = 0.l16*distance*(1+0.0004*distance)”(-0.5);
sigma_z = 0.l1l4*distance*(1+0.0003*distance)”(-0.5);
case "E-F*
sigma_y = 0.l1*distance*(1+0.0004*distance)”(-0.5);
sigma_z = 0.08*distance*(1+0.0015*distance)”(-0.5);

case "Select Stability Condition”
waitfor(errordlg(”“Select Stability
Conditions”, "Error”,"modal*));
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
end

end

cq = (exp((-crossdistance.™2/(2*(sigma_y)"2))-(height"2/(2*(sigma_z)"2)))./- ..
(pi*windS.*sigma_y*sigma_z));
clearvars pd t windS;
else
cq = str2double(get(handles.cq_textl, "String”));
if cq <= 0;
errordlg("\Chi/Q Conversion Factor cannot be less than or equal to 0",
"Error*");
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);
return;
end
end
%Compute Source Term
st = mar.*dr.*arf_*rf.*1pf;
clearvars mar dr arf rf Ipf;
% assignin(“base®,"mar®, mar);

Appendix B

INL/EXT-16-40755
Revision 0 Page 191 of 249

% assignin(“base”,"dr", dr);
% assignin("base”,"arf", arf);
% assignin(“base®,"rf", rf);
% assignin(“base®, "Ipf*, Ipf);
% assignin("base","st", st);
% assignin(“base","cq”, cq);
% assignin(“base","br", br);
% assignin(“base®,"dcf®, dcf);

cla(handles.axesl, "reset”);
ced = (cq-*st.*br.*dcf).*100; %Times 100 for Sv->Rem conversion.
clearvars cqg st br dcf;
axes(handles.axesl)
if length(ced)== 1;
% plot(ced,ced, "*");
% grid off;
strl = sprintf("CED is %0.3e rem”,ced);
text(0.3,0.5,["\fontsize{22}" stril]);
axis auto
set(handles.fit_dist, "Enable”, "off")
else
set(handles.fit_dist, "Enable”,"on")
X = mean(ced); %average ced
% code here
y = std(ced); %Sigma of ced
z = median(ced); % median
prc90 = prctile(ced,95); % 95 percentile
nbins = max(min(length(ced)./10,100),50); %Break domain up into 100 "bins"
xi = linspace(min(ced),max(ced),nbins); % Draw a linespace over the range

assignin(“base”, "cedxi”, Xi); %of the ced.
dx = mean(diff(xi));
fi = histc(ced,xi-dx); %Count the number of ced"s between a point in xi

%and the next point.
Ti fi./sum(Fi)./dx;
assignin(“base”, "cedfi2", fi);
% assignin(“base®,"fi2", Ti);
%Commented out the below due to changes in functionality.
%{
bar(xi,fi,"FaceColor",[.2 .6 .6], "EdgeColor”,[.2 .6 .6], "BarWidth",1);
bar(xi,fi,"FaceColor®,"m", "EdgeColor®, "m", "BarWidth®, 1);

str = sprintf("\\fontsize{13} Mean Value of CED = %0.3e rem with std
devitation= %0.3e rem",X,y);
title(str,"Units®, "normalized®, .
"Position”, [0.5 1.02], "HorizontalAlignment®, “center®)
xlabel (*Commited Effective Dose (rem)®)
ylabel (*Probability Density")
legend("Random Generated®, "Location”®,*NE")
axis tight;
grid on;
%}
end
assignin(“base","ced”, ced);
setappdata(0, "ced”,ced);
set(handles.run_pushbutton, "str”, "Show Plot", "backg”,col);

Appendix B

INL/EXT-16-40755

Revision 0 Page 192 of 249
1 = CurrentMAR;
if ~1== %Save data to object after generating CED.
switch 1
case 1

set(Parameters, "CED1",ced);

TempArray = get(Parameters, "AvgCED");
TempArray(l) = Xx;
set(Parameters, "AvgCED",TempArray);

TempArray = get(Parameters, "StdCED");
TempArray(l) = vy;
set(Parameters, “StdCED",TempArray);

TempArray = get(Parameters, "MedCED");
TempArray(l) = z;
set(Parameters, “MedCED",TempArray);

TempArray = get(Parameters, "Ninty fifth");
TempArray (1) = prc90;

set(Parameters, “Ninty fifth",TempArray);
set(Parameters, "XResultl®,xi);
set(Parameters, "YResultl®,fi);

case 2

set(Parameters, "CED2",ced);
TempArray = get(Parameters, "AvgCED");
TempArray(l) = Xx;

set(Parameters, "AvgCED",TempArray);
TempArray = get(Parameters, "StdCED");
TempArray(l) = vy;

set(Parameters, “StdCED",TempArray);
TempArray = get(Parameters, "MedCED");
TempArray(l) = z;

set(Parameters, "MedCED",TempArray);

TempArray = get(Parameters, "Ninty fifth");
TempArray (1) = prc9o;
set(Parameters, “Ninty fifth",TempArray);
set(Parameters, “XResult2®,xi);
set(Parameters, “YResult2®,fi);

case 3
set(Parameters, "CED3",ced);
TempArray = get(Parameters, "AvgCED");
TempArray(l) = Xx;
set(Parameters, “AvgCED",TempArray);
TempArray = get(Parameters, "StdCED");
TempArray(l) = vy;
set(Parameters, “StdCED",TempArray);
TempArray = get(Parameters, "MedCED");
TempArray(l) = z;
set(Parameters, "MedCED",TempArray);

TempArray = get(Parameters, "Ninty fifth");
TempArray (1) = prc9o;

Appendix B

INL/EXT-16-40755

Revision 0 Page 193 of 249
set(Parameters, “Ninty fifth",TempArray);
set(Parameters, "XResult3",xi);
set(Parameters, “YResult3",fi);

case 4

set(Parameters, "CED4-",ced);
TempArray = get(Parameters, "AvgCED");
TempArray(l) = Xx;
set(Parameters, “AvgCED",TempArray);
TempArray = get(Parameters, "StdCED");
TempArray(l) = vy;
set(Parameters, "StdCED",TempArray);
TempArray = get(Parameters, "MedCED");
TempArray(l) = z;
set(Parameters, “MedCED",TempArray);
TempArray = get(Parameters, "Ninty fifth");
TempArray (1) = prc90;
set(Parameters, “Ninty fifth",TempArray);
set(Parameters, "XResult4~®,xi);
set(Parameters, “YResult4®,fi);

end

else

msgbox("MAR State Exclusivity Error; MAR Selection will close.", "Fatal Error™)

close(handles.SodaMain);

end

end

function 1 = GetCurrentMARQ
%Set a variable to this function®s output to get the number of the currently
selected MAR.

h1l
h2
h3
h4
if

findobj("Tag”,
findobj("Tag”,
findobj("Tag",
findobj("Tag",

get(hl, "Value®)

1 = 1;

"radioMAR1"
"radioMAR2"
"radioMAR3"
"radioMAR4*"

elseif get(h2, "Value®)

els

"Value®)

1 = 2;
elseif get(h3, "Vvalue®)
1 = 3;
elseif get(h4,
1 = 4;
e
1 = 0;

end
end

File 2, MAR_Selection.m:
function varargout

% MAR_SELECTION MATLAB code for MAR_Selection.fig

%
%
%
%

)
)
):
):

MAR_Selection(varargin)

MAR_SELECTION, by itself, creates a new MAR_SELECTION or raises the existing

singleton*.

H = MAR_SELECTION returns the handle to a new MAR_SELECTION or the handle to

Appendix B

INL/EXT-16-40755

Revision 0 Page 194 of 249

%
%
%
%
%
%
the
%
%
%
%
%
%
%
%

the existing singleton*.

MAR_SELECTION("CALLBACK® ,hObject,eventData,handles,...) calls the local
function named CALLBACK in MAR_SELECTION.M with the given input arguments.

MAR_SELECTION("Property”,"Value®,...) creates a new MAR_SELECTION or raises

existing singleton*. Starting from the left, property value pairs are
applied to the GUI before MAR_Selection_OpeningFcn gets called. An

unrecognized property name or invalid value makes property application
stop. All inputs are passed to MAR_Selection_OpeningFcn via varargin.

*See GUI Options on GUIDE"s Tools menu. Choose "'GUI allows only one
instance to run (singleton)".

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help MAR _Selection

% Last Modified by GUIDE v2.5 04-Jan-2016 17:09:15

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct("gui_Name®, mfilename, ...

"gui_Singleton®, gui_Singleton, ...
"gui_OpeningFcn®, @MAR_Selection_OpeningFcn, ...
"gui_OutputFcn®, @MAR_Selection_OutputFcn, ...
"gui_LayoutFcn®, [] , ---

"gui_Callback", [D;

if nargin && ischar(varargin{l})
gui_State.gui_Callback = str2func(varargin{l});

end
iT nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
elsegui_mainfcn(gui_State, varargin{:});
gngnd initialization code - DO NOT EDIT
% --- Executes just before MAR_Selection is made visible.

function MAR_Selection_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to MAR_Selection (see VARARGIN)

% Choose default command line output for MAR_Selection
handles.output = hObject;

axes(handles.logo_axes);

imshow("sodalLogol.png®);

% Update handles structure

Appendix B

INL/EXT-16-40755
Revision 0

Page 195 of 249

guidata(hObject, handles);
%Check Code that Disables Element Buttons for which there
%lsotopes in the database FrA KA KA K
global Parameters
global CurrentMAR
Parameters = SODA Parameters();
if ~isempty(varargin)
Parameters = varargin{l,1};
end
S = csvread("MAR Database.csv®, 1, 0);
for i=1:112 %Step through each element and check for data
if S(i,2) ==
ObjName = strcat("element®, num2str(i));
H = findobj("Tag®, ObjName);

is no

set(H, "Enable®, "inactive®); %Disable if no data

set(H, "BackgroundColor®, [0.5,0.5,0.5]); %Change color gray

end

end

CurrentMAR = 1;

hl = findobj("Tag", “textlso®);
A = size(get(hl,"String”));

assert(A(1) == 0, "textlso String must be empty on load. Check String property for

extra lines or characters.");

%Check for existing MAR1 data.
if Parameters.MAR(1) ~= 0

hl = findobj("Tag", "textlso"); %Get handle to the selected isotope text

h2 = findobj("Tag", "editBqg"); %Get handle to quantity textbox.

set(hl, "String”,Parameters. Isotope{CurrentMAR}) ;
set(h2, "String”,num2str(Parameters.MAR(CurrentMAR)));
set(h2,"Enable®, "on");

end

% UIWAIT makes MAR_Selection wait for user response (see UIRESUME)

uiwait(handles.figurel);

% --- Executes when user attempts to close figurel.

function figurel CloseRequestFcn(hObject, eventdata, handles)

% hObject handle to figurel (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure

if isequal(get(hObject, “waitstatus®), “waiting")
% The GUI is still in UIWAIT, us UIRESUME
uiresume(hObject);

else

% The GUI is no longer waiting, just close it
delete(hObject);

end

% --- Outputs from this function are returned to the command line.

function varargout = MAR_Selection_OutputFcn(hObject, eventdata, handles)

Appendix B

INL/EXT-16-40755
Revision 0 Page 196 of 249

% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

X

% Get default command line output from handles structure
global Parameters;

Parameters = EnsureDatalntegrity(Parameters);
varargout{l} = Parameters;

delete(handles.figurel);

function edit3_Callback(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

t» eventdata reserved - to be defined in a future version of MATLAB
v handles structure with handles and user data (see GUIDATA)

© ©

X

» Hints: get(hObject, "String") returns contents of edit3 as text
% str2double(get(hObject, "String")) returns contents of edit3 as a double

% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

X

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor™, "white");
end

% --- Executes on button press in elementl.

function elementl_Callback(hObject, eventdata, handles)

% hObject handle to elementl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

%Each element button sends its handle to GetAvaillso, where most of the
%work is performed.

% --- Executes on button press in element3.

function element3_Callback(hObject, eventdata, handles)

% hObject handle to element3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 197 of 249

% --- Executes on button press in elementll.

function elementll Callback(hObject, eventdata, handles)

% hObject handle to elementll (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl9.

function elementl9 Callback(hObject, eventdata, handles)

% hObject handle to elementl9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element37.

function element37_Callback(hObject, eventdata, handles)

% hObject handle to element37 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element55.

function element55 Callback(hObject, eventdata, handles)

% hObject handle to element55 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element87.

function element87_Callback(hObject, eventdata, handles)

% hObject handle to element87 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbuttonlO.

function pushbuttonl0_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl0 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbuttonll.

function pushbuttonll Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonll (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 198 of 249

% --- Executes on button press in pushbuttonl?2.

function pushbuttonl2_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbuttonl3.

function pushbuttonl3 Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbuttonl4.

function pushbuttonl4 Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbuttonl5.

function pushbuttonl5 Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element4.

function element4_Callback(hObject, eventdata, handles)

% hObject handle to element4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl2.

function elementl2_ Callback(hObject, eventdata, handles)

% hObject handle to elementl2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element20.

function element20_Callback(hObject, eventdata, handles)

% hObject handle to element20 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

Appendix B

INL/EXT-16-40755
Revision 0 Page 199 of 249

% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element38.

function element38_ Callback(hObject, eventdata, handles)

% hObject handle to element38 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element56.

function element56_Callback(hObject, eventdata, handles)

% hObject handle to element56 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element88.

function element88_ Callback(hObject, eventdata, handles)

% hObject handle to element88 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element2l.

function element21_ Callback(hObject, eventdata, handles)

% hObject handle to element21 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element39.

function element39 Callback(hObject, eventdata, handles)

% hObject handle to element39 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element57.

function element57_Callback(hObject, eventdata, handles)

% hObject handle to element57 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element89.
function element89 Callback(hObject, eventdata, handles)

Appendix B

INL/EXT-16-40755
Revision 0

Page 200 of 249

% hObject handle to element89 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element22.

function element22_Callback(hObject, eventdata, handles)

% hObject handle to element22 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element40.

function element40_Callback(hObject, eventdata, handles)

% hObject handle to element40 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element72.

function element72_Callback(hObject, eventdata, handles)

% hObject handle to element72 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl04.

function elementl104_Callback(hObject, eventdata, handles)

% hObject handle to elementl04 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element23.

function element23 Callback(hObject, eventdata, handles)

% hObject handle to element23 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element4l.

function element4l Callback(hObject, eventdata, handles)

% hObject handle to element4l (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 201 of 249

% --- Executes on button press in element73.

function element73_Callback(hObject, eventdata, handles)

% hObject handle to element73 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl05.

function elementl05_Callback(hObject, eventdata, handles)

% hObject handle to elementl05 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element24.

function element24 Callback(hObject, eventdata, handles)

% hObject handle to element24 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element42.

function element42_Callback(hObject, eventdata, handles)

% hObject handle to element42 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element74.

function element74_Callback(hObject, eventdata, handles)

% hObject handle to element74 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl06.

function elementl106_Callback(hObject, eventdata, handles)

% hObject handle to elementl06 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element25.

function element25 Callback(hObject, eventdata, handles)

% hObject handle to element25 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 202 of 249

% --- Executes on button press in element43.

function element43_Callback(hObject, eventdata, handles)

% hObject handle to element43 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element75.

function element75_Callback(hObject, eventdata, handles)

% hObject handle to element75 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl07.

function elementl107_Callback(hObject, eventdata, handles)

% hObject handle to elementl07 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element26.

function element26_Callback(hObject, eventdata, handles)

% hObject handle to element26 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element44.

function element44_Callback(hObject, eventdata, handles)

% hObject handle to element44 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element76.

function element76_Callback(hObject, eventdata, handles)

% hObject handle to element76 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl08.

function elementl108_Callback(hObject, eventdata, handles)

% hObject handle to elementl108 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

Appendix B

INL/EXT-16-40755
Revision 0 Page 203 of 249

% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element27.

function element27_Callback(hObject, eventdata, handles)

% hObject handle to element27 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element45.

function element45 Callback(hObject, eventdata, handles)

% hObject handle to element45 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element77.

function element77_Callback(hObject, eventdata, handles)

% hObject handle to element77 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl09.

function elementl109_Callback(hObject, eventdata, handles)

% hObject handle to elementl109 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element28.

function element28 Callback(hObject, eventdata, handles)

% hObject handle to element28 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element46.

function element46_Callback(hObject, eventdata, handles)

% hObject handle to element46 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element78.
function element78 Callback(hObject, eventdata, handles)

Appendix B

INL/EXT-16-40755
Revision 0

Page 204 of 249

% hObject handle to element78 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl10.

function elementl110_Callback(hObject, eventdata, handles)

% hObject handle to elementl110 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element29.

function element29 Callback(hObject, eventdata, handles)

% hObject handle to element29 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element47.

function element47_Callback(hObject, eventdata, handles)

% hObject handle to element47 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element79.

function element79_Callback(hObject, eventdata, handles)

% hObject handle to element79 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementlll.

function elementlll Callback(hObject, eventdata, handles)

% hObject handle to elementll1ll (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element30.

function element30_Callback(hObject, eventdata, handles)

% hObject handle to element30 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 205 of 249

% --- Executes on button press in element48.

function element48 Callback(hObject, eventdata, handles)

% hObject handle to element48 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element80.

function element80_Callback(hObject, eventdata, handles)

% hObject handle to element80 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementll2.

function elementl12 Callback(hObject, eventdata, handles)

% hObject handle to elementl12 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element5.

function element5_Callback(hObject, eventdata, handles)

% hObject handle to element5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl3.

function elementl3 Callback(hObject, eventdata, handles)

% hObject handle to elementl3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element31.

function element31_Callback(hObject, eventdata, handles)

% hObject handle to element31l (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element49.

function element49 Callback(hObject, eventdata, handles)

% hObject handle to element49 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 206 of 249

% --- Executes on button press in element81.

function element81_Callback(hObject, eventdata, handles)

% hObject handle to element81 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbutton99.

function pushbutton99 Callback(hObject, eventdata, handles)

% hObject handle to pushbutton99 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element6.

function element6_Callback(hObject, eventdata, handles)

% hObject handle to element6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl4.

function elementl4 Callback(hObject, eventdata, handles)

% hObject handle to elementl4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element32.

function element32_Callback(hObject, eventdata, handles)

% hObject handle to element32 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element50.

function element50_ Callback(hObject, eventdata, handles)

% hObject handle to element50 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element82.

function element82_Callback(hObject, eventdata, handles)

% hObject handle to element82 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

Appendix B

INL/EXT-16-40755
Revision 0 Page 207 of 249

% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbuttonl06.

function pushbuttonl106_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl06 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element7?.

function element7_Callback(hObject, eventdata, handles)

% hObject handle to element7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl5.

function elementl5 Callback(hObject, eventdata, handles)

% hObject handle to elementl5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element33.

function element33_Callback(hObject, eventdata, handles)

% hObject handle to element33 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element51.

function element51 Callback(hObject, eventdata, handles)

% hObject handle to element51 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element83.

function element83_Callback(hObject, eventdata, handles)

% hObject handle to element83 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbuttonl113.
function pushbuttonl113 Callback(hObject, eventdata, handles)

Appendix B

INL/EXT-16-40755
Revision 0

Page 208 of 249

% hObject handle to pushbuttonll3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element8.

function element8_Callback(hObject, eventdata, handles)

% hObject handle to element8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl6.

function elementl6_Callback(hObject, eventdata, handles)

% hObject handle to elementl6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element34.

function element34_Callback(hObject, eventdata, handles)

% hObject handle to element34 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element52.

function element52_Callback(hObject, eventdata, handles)

% hObject handle to element52 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element84.

function element84_ Callback(hObject, eventdata, handles)

% hObject handle to element84 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbutton120.

function pushbuttonl120_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl120 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 209 of 249

% --- Executes on button press in element9.

function element9 Callback(hObject, eventdata, handles)

% hObject handle to element9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl?.

function elementl7_Callback(hObject, eventdata, handles)

% hObject handle to elementl7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element35.

function element35 Callback(hObject, eventdata, handles)

% hObject handle to element35 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element53.

function element53 Callback(hObject, eventdata, handles)

% hObject handle to element53 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element85.

function element85_ Callback(hObject, eventdata, handles)

% hObject handle to element85 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbuttonl27.

function pushbuttonl127_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl27 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element2.

function element2_Callback(hObject, eventdata, handles)

% hObject handle to element2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 210 of 249

% --- Executes on button press in elementlO.

function elementl0_Callback(hObject, eventdata, handles)

% hObject handle to elementl0 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl8.

function elementl8 Callback(hObject, eventdata, handles)

% hObject handle to elementl8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element36.

function element36_Callback(hObject, eventdata, handles)

% hObject handle to element36 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element54.

function element54 Callback(hObject, eventdata, handles)

% hObject handle to element54 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element86.

function element86_Callback(hObject, eventdata, handles)

% hObject handle to element86 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in pushbuttonl34.

function pushbuttonl34_ Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl34 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element58.

function element58 Callback(hObject, eventdata, handles)

% hObject handle to element58 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

Appendix B

INL/EXT-16-40755
Revision 0 Page 211 of 249

% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element59.

function element59 Callback(hObject, eventdata, handles)

% hObject handle to element59 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element60.

function element60_Callback(hObject, eventdata, handles)

% hObject handle to element60 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element6l.

function element6l1l Callback(hObject, eventdata, handles)

% hObject handle to element6l (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element62.

function element62_Callback(hObject, eventdata, handles)

% hObject handle to element62 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element63.

function element63_Callback(hObject, eventdata, handles)

% hObject handle to element63 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element64.

function element64_Callback(hObject, eventdata, handles)

% hObject handle to element64 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 212 of 249

% --- Executes on button press in element65.

function element65 Callback(hObject, eventdata, handles)

% hObject handle to element65 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element66.

function element66_Callback(hObject, eventdata, handles)

% hObject handle to element66 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element67.

function element67_Callback(hObject, eventdata, handles)

% hObject handle to element67 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element68.

function element68_ Callback(hObject, eventdata, handles)

% hObject handle to element68 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element69.

function element69 Callback(hObject, eventdata, handles)

% hObject handle to element69 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element70.

function element70_Callback(hObject, eventdata, handles)

% hObject handle to element70 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element71.

function element71_Callback(hObject, eventdata, handles)

% hObject handle to element7l (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

Appendix B

INL/EXT-16-40755
Revision 0

Page 213 of 249

% --- Executes on button press in element90.

function element90_Callback(hObject, eventdata, handles)

% hObject handle to element90 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element9l.

function element91 Callback(hObject, eventdata, handles)

% hObject handle to element9l (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element92.

function element92_Callback(hObject, eventdata, handles)

% hObject handle to element92 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)\
GetAvaillso(hObject);

% --- Executes on button press in element93.

function element93 Callback(hObject, eventdata, handles)

% hObject handle to element93 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element94.

function element94 Callback(hObject, eventdata, handles)

% hObject handle to element94 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element95.

function element95 Callback(hObject, eventdata, handles)

% hObject handle to element95 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element96.
function element96_Callback(hObject, eventdata, handles)

Appendix B

INL/EXT-16-40755
Revision 0

Page 214 of 249

% hObject handle to element96 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element97.

function element97_Callback(hObject, eventdata, handles)

% hObject handle to element97 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element98.

function element98 Callback(hObject, eventdata, handles)

% hObject handle to element98 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in element99.

function element99 Callback(hObject, eventdata, handles)

% hObject handle to element99 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl00.

function elementl00_Callback(hObject, eventdata, handles)

% hObject handle to elementl00 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl01l.

function elementl101_Callback(hObject, eventdata, handles)

% hObject handle to elementl01 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl02.

function elementl102_Callback(hObject, eventdata, handles)

% hObject handle to elementl02 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in elementl03.

Appendix B

INL/EXT-16-40755
Revision 0

Page 215 of 249

function elementl103_Callback(hObject, eventdata, handles)

% hObject handle to elementl03 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
GetAvaillso(hObject);

% --- Executes on button press in isotopel.

function isotopel_ Callback(hObject, eventdata, handles)

% hObject handle to isotopel (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SetMarDCF(hObject);

% --- Executes on button press in isotope2.

function isotope2_ Callback(hObject, eventdata, handles)

% hObject handle to isotope2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SetMarDCF(hObject);

% --- Executes on button press in isotope3.

function isotope3 Callback(hObject, eventdata, handles)

% hObject handle to isotope3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SetMarDCF(hObject);

% --- Executes on button press in isotope4.

function isotope4_Callback(hObject, eventdata, handles)

% hObject handle to isotope4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SetMarDCF(hObject);

% --- Executes on button press in isotope5.

function isotope5 Callback(hObject, eventdata, handles)

% hObject handle to isotope5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SetMarDCF(hObject);

% --- Executes on button press in isotope6.

function isotope6_Callback(hObject, eventdata, handles)

% hObject handle to isotope6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
SetMarDCF(hObject);

% --- Executes on button press in isotope7.

function isotope7_Callback(hObject, eventdata, handles)

% hObject handle to isotope7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Appendix B

INL/EXT-16-40755
Revision 0 Page 216 of 249

SetMarDCF(hObject);

% --- Executes on button press in exportbtn.
function exportbtn_Callback(hObject, eventdata, handles)
% hObject handle to exportbtn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
CloseCond = SaveMARData();
if CloseCond ==
close(handles.figurel);
else
msgbox("One or more of MAR Selections are Incomplete. Input quantity with any
selected isotope. " ,"Not Ready for Export™)
end

% --- Executes on selection change in isotope list.

function isotope_ list _Callback(hObject, eventdata, handles)

% hObject handle to isotope list (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,"String")) returns isotope list contents as
cell array
% contents{get(hObject, "Value®)} returns selected item from isotope_list

% --- Executes during object creation, after setting all properties.
function isotope_ list CreateFcn(hObject, eventdata, handles)

% hObject handle to isotope_ list (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XX

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end

function editBg_Callback(hObject, eventdata, handles)

% hObject handle to editBq (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

©

X

» Hints: get(hObject, "String") returns contents of editBgq as text
% str2double(get(hObject, "String")) returns contents of editBq as a double

% --- Executes during object creation, after setting all properties.
function editBg_CreateFcn(hObject, eventdata, handles)

% hObject handle to editBq (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

Appendix B

INL/EXT-16-40755
Revision 0 Page 217 of 249

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundCollor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);

end
% --- 1¥ Enable == "on", executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over editBq.

function editBg_ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to editBq (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(hObject, "Enable”, "on");

set(handles.editBq, “string”,[1);

% --- Executes on button press in MAR1 radio.

function MAR1_radio_Callback(hObject, eventdata, handles)

% hObject handle to MAR1 radio (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
ChangeMAR(hObject);

% Hint: get(hObject, "Value®) returns toggle state of MAR1l radio

% --- Executes on button press in MAR2_radio.

function MAR2_radio_Callback(hObject, eventdata, handles)

% hObject handle to MAR2 radio (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
ChangeMAR(hObject);

% Hint: get(hObject, "Value®) returns toggle state of MAR2_radio

% --- Executes on button press in MAR3_radio.

function MAR3_radio_Callback(hObject, eventdata, handles)

% hObject handle to MAR3 radio (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
ChangeMAR(hObject);

% Hint: get(hObject, "Value®) returns toggle state of MAR3_radio

% --- Executes on button press in MAR4 radio.

function MAR4 radio_Callback(hObject, eventdata, handles)

% hObject handle to MAR4 radio (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
ChangeMAR(hObject);

% Hint: get(hObject, "Value®) returns toggle state of MAR4 radio

Appendix B

INL/EXT-16-40755
Revision 0 Page 218 of 249

%**

function GetAvaillso(hObject)
%Get Element Number and Call SetlsoBox for that Element
EleStr = get(hObject, "Tag");

EleStr = EleStr(8:1length(EleStr)); %Get Atomic Number from Tag
EleNum = str2double(EleStr);
EleLet = get(hObject, "String-”);

SizeCheck = size(EleLet);

%1F this assertion is thrown, check element that is clicked for having
%extra lines in its String property.
assert(SizeCheck(1l) == 1, EleLet does not have size 1x2, Property Error.%)

%Find Isotopes of a Clicked Element and Fill Isotope Boxes
h = zeros(7);
S = csvread("MAR_Database.csv®, 1, 0);
global DCFArray
DCFArray = zeros(7);
for i = 1:7 %Loop to set the isotope boxes
str = ["isotope” num2str(i)]; %Set string to object name dynamically
h(i) = findobj("Tag", str); %Get tag to isotope(i)
IsoStr = strcat(num2str(S(EleNum, i+1)), EleLet); %Add element symbol
if S(EleNum, i+l) ~= 0 %after isotope mass
set(h(i), "Enable”, "0On"); %Enable active isotope buttons
set(h(i), °"String®, 1soStr);
DCFArray(i) = S(EleNum, i+8); %Set DCF data for the selected isotp
else
set(h(i), "Enable”, "0Ff"); %Disable unused isotope buttons
set(h(i), °"String®, "");
end
end

function 1 = GetCurrentMARQ
%Set a variable to this function"s output to get the number of selected MAR.

hl = findobj("Tag®, “"MAR1 radio®);
h2 = findobj("Tag®, “"MAR2 radio®);
h3 = findobj("Tag®, "MAR3 radio®);
h4 = findobj("Tag®, "MAR4 radio™);

if get(hl, "Value®)

1 =1;

elseif get(h2, "Value®)
1 = 2;

elseif get(h3, "Vvalue®)
1 = 3;

elseif get(h4, "Value®)
1 = 4;

else
1 = 0;

end

function SetMarDCF(hObject)
%Find and set DCF for selected isotope

Appendix B

INL/EXT-16-40755
Revision 0 Page 219 of 249

IsoStr = get(hObject, "Tag");

IsoStr = IsoStr(8);
IsoNum = str2double(lsoStr); %Get index to select correct DCF
IsoLet = get(hObject, "String"); %Get string to display

global DCFArray %Declare so this function can access this Global.
global Parameters %"

%Select a DCF that is ready for export corresponding to a selection
%by user.
I = GetCurrentMARQ);
TempArray = get(Parameters, "DCF");
if ~I==
TempArray (1) = DCFArray(lsoNum);
set(Parameters, "DCF* ,TempArray) ;
else %This should not happen under any normal circumstance.
msgbox("MAR State Exclusivity Error; MAR Selection will close.", "Fatal Error")
set(Parameters, "DCF",[0 0 O 0]); %Ensure no bad data is returned
set(Parameters, "MAR",[0 O O 0]);
set(Parameters, "Isotope”,{"","","",""}D);
close(handles.figurel);
end
set(findobj("Tag", “textlso"), "String", lIsoLet); %Set text to selected iso
set(findobj("Tag®, “exportbtn®), "Enable®, "0On"); %Enable the export btn

function ChangeMAR(hObject)

%Change Ul on selection of different MAR while saving selections in
%current MAR.

global Parameters

global CurrentMAR

MARStr = get(hObject, °“String");
SizeCheck = size(MARStr);

%1f this assertion is thrown, check Radiobutton that is clicked for having
%extra lines in its String property.
assert(SizeCheck(l) == 1, "MARStr does not have size 1xX, Property Error.")

MARStr = MARStr(5); %Get MAR Number from Tag
MARNum = str2double(MARStr);
SaveMARData();

hl = findobj("Tag", "textlso"); %Get handle to the selected isotope text
h2 = findobj("Tag", "editBq"); %Get handle to quantity textbox.
CurrentMAR = MARNum; %Dont reset this value until end, so that the
%previously selected MAR is known.

set(hl, "String”,Parameters. Isotope{CurrentMAR});
if Parameters.MAR(CurrentMAR) ~= 0O

set(h2, "String”,num2str(Parameters.MAR(CurrentMAR)));

set(h2, "Enable®, "on");
else

set(h2,"Enable®, "off");

set(h2,"String”, "Quantity (Bqg)");

Appendix B

INL/EXT-16-40755
Revision 0 Page 220 of 249

end

function result = SaveMARData()
global Parameters;
global CurrentMAR;

hl = findobj("Tag", "textlso"); %Get handle to the selected isotope text

TempArray = get(Parameters, "lIsotope™);

if size(get(hl,"String"))~= 0 %IT there is a selected isotope, save that
TempArray{CurrentMAR} = get(hl,"String"); %selection to Parameters.

end

set(Parameters, " Isotope”, TempArray); Vi

h2 = findobj("Tag", "editBq"); %Get handle to quantity textbox.
TempArray = get(Parameters, °"MAR");
if ~strcmp(get(h2,"String”), "Quantity (Bqg)")
A = str2double(get(h2,"String")); %This and below check that user
if A>18&& A ~= inf %entered a numeric value.
TempArray(CurrentMAR) = str2double(get(h2,"String”));
result = 1;
elseif isnan(A)
TempArray(CurrentMAR) = O;
it size(get(h2,"String")) == 0 %Set to zero if nothing entered in quantity.
it size(get(hl, "String"))~= 0 %Complain if isotope is selected with no
quantitiy.
msgbox("MAR Quantity not entered. Data not saved. Return to
previous selection and try again.","MAR Quantity Error"®)
result = 0;
else
result = 1;
end
else
msgbox("MAR Quantity is not numeric. Data not saved. Return to previous
selection and try again.","MAR Quantity Error"®)
result = 0;
end
elseif A<=0 |] A = iInf
TempArray(CurrentMAR) = O;
msgbox("MAR Quantity cannot be negative, zero, or infinite. Data not saved.
Return to previous selection and try again.","MAR Quantity Error"®)
result = 0;
else
result = O;
end
else
if size(get(hl,"String"))~= 0 %Complain if isotope is selected with no
quantitiy.
msgbox("MAR Quantity not entered. Data not saved. Return to previous
selection and try again.","MAR Quantity Error"®)
result = 0;
else
result = 1;
end
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 221 of 249

set(Parameters, "MAR" ,TempArray) ;

File 3, UserDefined.m:
function varargout = UserDefined(varargin)
% UserDefined MATLAB code for UserDefined.fig

% UserDefined, by itself, creates a new UserDefined or raises the existing
% singleton*.

%

% H = UserDefined returns the handle to a new UserDefined or the handle to
% the existing singleton*.

%

% UserDefined("CALLBACK" ,hObject,eventData,handles,...) calls the local

% function named CALLBACK in UserDefined.M with the given input arguments.
%

% UserDefined("Property”,“"Value®,...) creates a new UserDefined or raises the
% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before UserDefined OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to UserDefined_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE"s Tools menu. Choose "'GUI allows only one

% instance to run (singleton)".

%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help UserDefined
% Last Modified by GUIDE v2.5 06-Jul-2016 14:18:33

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct("gui_Name®, mfilename, ...
"gui_Singleton®, gui_Singleton, ...
"gui_OpeningFcn®, @UserDefined_OpeningFcn, ...
"gui_OutputFcn®, @UserDefined_OutputFcn, ...
"gui_lLayoutFcn®, [1 , ---
"gui_Callback", [D;

it nargin && ischar(varargin{l})

gui_State.gui_Callback = str2func(varargin{l});
end

iT nargout

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

gui_mainfcn(gui_State, varargin{:});
end

% End initialization code - DO NOT EDIT

end

% --- Executes just before UserDefined is made visible.
function UserDefined OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

Appendix B

INL/EXT-16-40755
Revision 0 Page 222 of 249

X

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

4 varargin command line arguments to UserDefined (see VARARGIN)

o © =

=4

% Choose default command line output for UserDefined
global Parameters

handles.output = hObject;

axes(handles.logo_axes);

imshow("sodalLogol.png”);

axes(handles.axesl);

plot(rand(1));

% Update handles structure

guidata(hObject, handles);

set(handles.Bin_1,"Enable”, "off");
set(handles.Bin_2,"Enable”, "off");
set(handles.Bin_3, "Enable”, "off");
set(handles.Bin_4, "Enable”, "off");
set(handles.Bin_5, "Enable”, "off");
set(handles.Bin_6,"Enable”, "off");
set(handles.Bin_7,"Enable”, "off");
set(handles.Bin_8, "Enable”, "off");
set(handles.Bin_9, "Enable”, "off");
set(handles.Bin_10, "Enable”, "off");

Parameters = SODA Parameters();
it ~isempty(varargin)
Parameters = varargin{l,1};
end
% UIWAIT makes UserDefined wait for user response (see UIRESUME)
uiwait(handles.figurel);
end

% --- Outputs from this function are returned to the command line.
function varargout = UserDefined OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

X

% Get default command line output from handles structure
global Parameters;

varargout{l} = Parameters;

delete(handles.figurel);

end

% --- Executes on selection change in popupmenul.

function popupmenul_Callback(hObject, eventdata, handles)

% hObject handle to popupmenul (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

XX

% Hints: contents = get(hObject,"String") returns popupmenul contents as cell array
% contents{get(hObject, "Value®)} returns selected item from popupmenul

Appendix B

INL/EXT-16-40755
Revision 0 Page 223 of 249

% --- Executes during object creation, after setting all properties.

popup_sel_index = get(handles.popupmenul, "Value®);

switch popup_sel_index

case 1
set(handles.Bins, "String”, "Number of Bins®);
set(handles._binWidth, "String”, "Bin Width");
set(handles.CurrentTotal, "String”,"0");
axes =(handles.axesl);
cla reset;
set(handles.Bin_1,"Enable”, "off");
set(handles.Bin_2,"Enable”, "off");
set(handles.Bin_3, "Enable”, "off");
set(handles.Bin_4,"Enable”, "off");
set(handles.Bin_5, "Enable”, "off");
set(handles.Bin_6, "Enable”, "off");
set(handles.Bin_7,"Enable”, "off");
set(handles.Bin_8, "Enable”, "off");
set(handles.Bin_9, "Enable”, "off");
set(handles.Bin_10, "Enable”, "off");
case 2

set(handles.pushbuttonl, "Enable”, "off");
set(handles.pushbuttonl, "String”, "Enter distribution below.");
axes =(handles.axesl);
cla reset;
set(handles.Bins, "String”, "Number of Bins");
set(handles._binWidth, "String”, "Bin Width");
set(handles.CurrentTotal, "String”,"0");

end
end

function popupmenul_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenul (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XX

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor®))
set(hObject, "BackgroundColor™, "white");
end

set(hObject, "String®, {"Click to generate®, "Type distribution values"});
end

function Bins_Callback(hObject, ~, handles)

% hObject handle to Bins (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Appendix B

INL/EXT-16-40755

Revision 0 Page 224 of 249
% Hints: get(hObject,"String”) returns contents of Bins as text

% str2double(get(hObject, "String")) returns contents of Bins as a double

% --- Executes during object creation, after setting all properties.

Bins = str2double(get(handles.Bins, "String”));
popup_sel_index = get(handles.popupmenul, "Value®);
if Bins>10
TenBins = "The maximum number of bins allowed for this distribution entry
option is 10.7;
msgbox(TenBins);
set(handles.Bins, "String”,"10%);
elseif Bins<2
msgbox("There must be at least 2 bins.","modal");
set(handles.Bins, "String”,"1");
elseif round(Bins) ~= Bins
msgbox("There must be an Integer quantity of bins.","modal®);
set(handles._Bins, "String”, "Number of Bins®);

else
switch popup_sel _index
case 1
set(handles.pushbuttonl, "Enable”, "0n");
it ~isnan(str2double(get(handles.binWidth, "String")))
set(handles.pushbuttonl, "String”, "Start") ;
end
case 2
set(handles.pushbuttonl, "Enable”, "0n");
set(handles.pushbuttonl, "String”, "Enter Values Below, Then Click™);
handlesStructure=guihandles(gcf);
for k=1:10
% sprintf creates the strings Bin_1, Bin_2, etc.
% handlesStructure.(x) retrieves the field x from the handles structure
h = handlesStructure.(sprintf("Bin_%d",k));
set(h, "Enable”, "off");
end
for i=1:Bins
% sprintf creates the strings Bin_1, Bin_2, etc.
% handlesStructure.(x) retrieves the field x from the handles structure
h = handlesStructure. (sprintf("Bin_%d",1));
set(h, "Enable”,"on")
end
end
end
end

function Bins_CreateFcn(hObject, ~, handles)

% hObject handle to Bins (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 225 of 249

end

function binWidth_Callback(hObject, ~, handles)

% hObject handle to binWidth (see GCBO)

» eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

XX

% Hints: get(hObject,"String") returns contents of binWidth as text
% str2double(get(hObject, "String")) returns contents of binWidth as a double

popup_sel_index = get(handles.popupmenul, "Value®);
Bins= str2double(get(handles.Bins, "String"));
switch popup_sel_index
case 1
set(handles.pushbuttonl, "Enablle”,"0n");
it ~isnan(str2double(get(handles.Bins, "String~)))
set(handles.pushbuttonl, "String”, "Start”) ;
end
case 2
set(handles.pushbuttonl, "Enablle”, "0n");
set(handles.pushbuttonl, "String”, "Enter Values Below, Then Click™);
handlesStructure=guihandles(gcf);
for k=1:10
% sprintf creates the strings Bin_1, Bin_ 2, etc.
% handlesStructure.(x) retrieves the field x from the handles structure
h = handlesStructure.(sprintf("Bin_%d",k));
set(h,"Enable”, "off");
end
for i=1:Bins
% sprintf creates the strings Bin_1, Bin_ 2, etc.
% handlesStructure.(x) retrieves the field x from the handles structure
h = handlesStructure.(sprintf("Bin_%d",i));
set(h,"Enable”,"on")

end
end
end
% --- Executes during object creation, after setting all properties.

function binWidth_CreateFcn(hObject, ~, handles)

% hObject handle to binWidth (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor™, "white");
end
end

function Bin_1 Callback(hObject, eventdata, handles)
% hObject handle to Bin_1 (see GCBO)

Appendix B

INL/EXT-16-40755
Revision 0 Page 226 of 249

X

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

X

X

» Hints: get(hObject, "String") returns contents of Bin_1 as text

% str2double(get(hObject, "String")) returns contents of Bin_1 as a double
end
% --- Executes during object creation, after setting all properties.

function Bin_1 CreateFcn(hObject, eventdata, handles)

% hObject handle to Bin_1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

©

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor”®, "white®);
end
end

function Bin_2_Callback(hObject, eventdata, handles)

% hObject handle to Bin_2 (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

XX

% Hints: get(hObject,"String®) returns contents of Bin_2 as text

% str2double(get(hObject, "String")) returns contents of Bin_2 as a double
end
% --- Executes during object creation, after setting all properties.

function Bin_2 CreateFcn(hObject, eventdata, handles)

% hObject handle to Bin_2 (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XXX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundCollor™))
set(hObject, "BackgroundColor”, "white®);
end
end

function Bin_3 Callback(hObject, eventdata, handles)
% hObject handle to Bin_3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

X

=4

» Hints: get(hObject,"String") returns contents of Bin_3 as text

Appendix B

INL/EXT-16-40755

Revision 0 Page 227 of 249
% str2double(get(hObject, "String")) returns contents of Bin_3 as a double

end

% --- Executes during object creation, after setting all properties.

function Bin_3 CreateFcn(hObject, eventdata, handles)

% hObject handle to Bin_3 (see GCBO)

t» eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundCollor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end
end

function Bin_4_Callback(hObject, eventdata, handles)

% hObject handle to Bin_4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

=4

% Hints: get(hObject, "String") returns contents of Bin_4 as text

% str2double(get(hObject, "String")) returns contents of Bin_4 as a double
end
% --- Executes during object creation, after setting all properties.

function Bin_4_ CreateFcn(hObject, eventdata, handles)

% hObject handle to Bin_4 (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end
end

function Bin_5_Callback(hObject, eventdata, handles)

% hObject handle to Bin_5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

©

X

» Hints: get(hObject, "String") returns contents of Bin_5 as text

% str2double(get(hObject, "String")) returns contents of Bin_5 as a double
end
% --- Executes during object creation, after setting all properties.

function Bin_5_CreateFcn(hObject, eventdata, handles)
% hObject handle to Bin_5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

Appendix B

INL/EXT-16-40755
Revision 0 Page 228 of 249

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundCollor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end

end

function Bin_6_Callback(hObject, eventdata, handles)

% hObject handle to Bin_6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

©

X

» Hints: get(hObject, "String") returns contents of Bin_6 as text

% str2double(get(hObject, "String")) returns contents of Bin_6 as a double
end
% --- Executes during object creation, after setting all properties.

function Bin_6_CreateFcn(hObject, eventdata, handles)

% hObject handle to Bin_6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

©

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor”®, "white®);
end

end

function Bin_7_Callback(hObject, eventdata, handles)

% hObject handle to Bin_7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

=4

% Hints: get(hObject, "String") returns contents of Bin_7 as text

% str2double(get(hObject, "String")) returns contents of Bin_7 as a double
end
% --- Executes during object creation, after setting all properties.

function Bin_7_CreateFcn(hObject, eventdata, handles)

% hObject handle to Bin_7 (see GCBO)

» eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

©

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor”®, "white®);

Appendix B

INL/EXT-16-40755
Revision 0 Page 229 of 249

end
end

function Bin_9 Callback(hObject, eventdata, handles)

% hObject handle to Bin_9 (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o © =

=4

t» Hints: get(hObject,"String") returns contents of Bin_9 as text

% str2double(get(hObject, "String")) returns contents of Bin_9 as a double
% --- Executes during object creation, after setting all properties.
end

function Bin_8 Callback(hObject, eventdata, handles)

% hObject handle to Bin_8 (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

XX

% Hints: get(hObject,"String”) returns contents of Bin_8 as text

% str2double(get(hObject, "String")) returns contents of Bin_8 as a double
end
% --- Executes during object creation, after setting all properties.

function Bin_8 CreateFcn(hObject, eventdata, handles)

% hObject handle to Bin_8 (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XXX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundCollor™))
set(hObject, "BackgroundColor”, "white®);
end
end

function Bin_9 CreateFcn(hObject, eventdata, handles)

% hObject handle to Bin_9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor ™))
set(hObject, "BackgroundColor™, "white");
end
end

function Bin_10 Callback(hObject, eventdata, handles)

% hObject handle to Bin_10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Appendix B

INL/EXT-16-40755
Revision 0 Page 230 of 249

% Hints: get(hObject,"String") returns contents of Bin_10 as text

% str2double(get(hObject, "String")) returns contents of Bin_10 as a double
end
% --- Executes during object creation, after setting all properties.

function Bin_10 CreateFcn(hObject, eventdata, handles)

% hObject handle to Bin_10 (see GCBO)

t eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XXX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get(hObject, "BackgroundCollor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”®, "white®);
end
end

% --- Executes on button press in pushbuttonl.
function pushbuttonl_ Callback(hObject, ~, handles)
% hObject handle to pushbuttonl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Parameters;
if checklnput(handles)
axes(handles.axesl);
cla;
popup_sel_index = get(handles.popupmenul, "Value®);
Bins=str2double(get(handles.Bins, "String"));
Width=str2double(get(handles.binWidth, "String"));
switch popup_sel index
case 1
% clicked user defined distribution
set(hObject, "Enable”, "off");
Distance = Bins*Width;
i=1;
while i<5 %sets up plot axes for user to
click (allows 4 chances)
k=1;
yl = zeros(l1,Bins);
%x1 = linspace(0,Bins+1,Bins);
while k<Bins+1
x1 = linspace(0,Distance-Distance/Bins,Bins);

grid on

ax = gca;

ax.XLim = [O,Distance];
ax.YLim = [0,1];

ax.XTick = x1;

ax.YTick = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0];
[x,y]= ginput(l); %takes user clicks as data points
refresh;

if y>1 |] y<O || x>Distance |] x<O
OutOfBounds="You must click on the axes. Please try
again.";

Appendix B

INL/EXT-16-40755
Revision 0 Page 231 of 249

uiwait(msgbox(OutOfBounds, "modal ")) ;
else
y=round(y*20)/20;
yi(k) =y;
plotl = bar(x1,yl,"histc");
set(handles.CurrentTotal, "String”,sum(yl));
k=k+1;
pause(0.1);
end
end
ProbTotal=round(sum(yl),2);
%sums the probabilities
if ProbTotal~=round(str2double("17),2)
%check if probabilities sum to 1
if i>3 % if no, and
max tries, return to main page
MaxTries="Maximum number of tries has been met. You will
now return to main page-”;
uitwait(msgbox(MaxTries, "modal ")) ;
close(gcf);
i=i+l;
else
msg="The probabilities must sum to one. Please try again.";
%if no, and not max tries, try again
uiwait(msgbox(msg, "modal ")) ;
axes(handles.axesl);
cla reset;
set(handles.CurrentTotal, "String”,"0");
i=i+l;
end
else
plotl = bar(x1l,yl, "histc");
% if sum to 1, show plot and ask if correct
yhim([0,11)
YesNo = questdlg("Does this look correct?", ...
"Check Distribution®, ...
"Yes","No","No");
% Handle response
switch YesNo
case "Yes”" % 1f yes,
close plot and set distribution
i =5;
set(Parameters, "UDtempY*", yl);
set(Parameters, "UDtempX®, x1);
close(handles.figurel);
return;
case "No” % 1f no,
try again
TryAgain="Please try again.";
uiwait(msgbox(TryAgain, "modal ")) ;
axes(handles.axesl);
cla reset;
set(handles.CurrentTotal, "String”,"0");
i=i+l;
end
set(hObject, "enable”,"on");
end

Appendix B

INL/EXT-16-40755

Revision 0 Page 232 of 249
end
case 2
set(handles.pushbuttonl, "Enable®, "on");
Distance = Bins*Width ; %calculate the
total distance using bins*width
%i=1;

axes(handles.axesl);
cla reset;
Probability = zeros(1,Bins); % set up
array for probabilities
x1 = linspace(0,Distance-Distance/Bins,Bins);
handlesStructure=guihandles(gcf);
set(handles.CurrentTotal, "String®, "07%);
for i=1:Bins
% sprintf creates the strings editl, edit2, etc.
% handlesStructure.(x) retrieves the field x from the handles
structure
h = handlesStructure. (sprintf("Bin_%d",1));
Probability(i) = (str2double(get(h,"String®)));
Total = sum(Probability);
set(handles.CurrentTotal, "String”, (num2str(sum(Probability))))
end

TotalProb = round(Total,3); %sum them to see if
they equal 1
if TotalProb~=round(str2double("17),3)
msg="The probabilities must sum to one. Please try again."; %
if sum does not equal 1, error message
uiwait(msgbox((msg)));
cla reset;
set(handles.CurrentTotal, "String”,"0");

else
bar(xl1l,Probability, "histc"); %show
plot of probabilities entered by user
YesNo = questdlg("Does this look correct?®, ... %ask If this is

the correct distribution
"Check Distribution®, ...
"Yes","No","No");
% Handle response
switch YesNo
case "Yes”
% 1f yes, set distribution and close plot
set(Parameters, "UDtempY", Probability);
set(Parameters, "UDtempX”, x1);
close(handles.figurel);
return;
case "No-
TryAgain="Please try again.”; %if no, try again,
close plot
uiwait(msgbox((TryAgain)));
cla reset;
set(handles.CurrentTotal, "String”,"0");
end
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 233 of 249

end
set(hObject, "enable”,"on");
else
set(hObject, "enable”,"on");
return
end
end

function result = checklnput(handles) % Check bins and Bin width before allowing
the pushbutton routine to run.
Bins = str2double(get(handles.Bins, "String”));
Width = str2double(get(handles.binWidth, *String));
if ~isnan(Bins) && ~isnan(Width)
if Bins <= 0 || Bins > 10
msgbox("*Number of Bins must be an integer between 1 and 10.7, "Input
Error®);
result = 0;
elseif Width <= 0 || Width == inf
msgbox(*"Bin Width must be a non negative, non infinite, non zero
value. ", "Input Error");
result = 0O;
else
result = 1;
end

else
msgbox(*Number of Bins and Bin Width must be specified.”, "Input Error®);
result = 0;
end
end

) — — -
function FileMenu_Callback(hObject, eventdata, handles)

% hObject handle to FileMenu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

end

) — — -
function OpenMenultem_Callback(hObject, eventdata, handles)
% hObject handle to OpenMenultem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
Ffile = uigetfile("*.Tig");
if ~isequal(file, 0)
open(file);
end
end

U
function PrintMenultem_Callback(hObject, eventdata, handles)
% hObject handle to PrintMenultem (see GCBO)

Appendix B

INL/EXT-16-40755

Revision 0 Page 234 of 249
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
printdlg(handles.figurel)

end

) — — -

function CloseMenultem_Callback(hObject, eventdata, handles)

% hObject handle to CloseMenultem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

selection = questdlg(["Close " get(handles.figurel, "Name®) "?"],...
["Close " get(handles.figurel, "Name®) "..."],.-.
"Yes","No","Yes");

if strcmp(selection, "No")

return;
end

delete(handles.figurel)
end

function CurrentTotal_Callback(hObject, eventdata, handles)

% hObject handle to CurrentTotal (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

X

% Hints: get(hObject, "String") returns contents of CurrentTotal as text

% str2double(get(hObject, "String")) returns contents of CurrentTotal as a
double

end

% --- Executes during object creation, after setting all properties.

function CurrentTotal CreateFcn(hObject, eventdata, handles)

% hObject handle to CurrentTotal (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

XX

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor™, "white");
end
end

% --- Executes during object creation, after setting all properties.
function pushbuttonl CreateFcn(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 235 of 249

% --- Executes when user attempts to close figurel.

function Figurel CloseRequestFcn(hObject, eventdata, handles)

% hObject handle to figurel (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

it isequal(get(hObject, "waitstatus"), "walting")
% The GUI is still in UIWAIT, us UIRESUME
uiresume(hObject);

else
% The GUI is no longer waiting, just close it
delete(hObject);

end

end

File 4, SODA_ Parameters.m:

%{

Data Class for SODA, holds user parameters for each MAR, and includes
methods to sum the individual distributions. Intended to simplify data
handling between the 4 available MAR selections, and across the three
forms used in SODA.

%}

classdef SODA Parameters < matlab.mixin.SetGet %Allow class to inherit
properties %MATLAB get and set methods.
MAR = [0,0,0,0]
MAR2 = [0,0,0,0] %2 versions are for the second parameter slot
DCF = [0,0,0,0] %on SODA, while the unnumbered version is for
DCF2 = [0,0,0,0] %the first box. (EX: mean or single point)
ARF = [0,0,0,0]
ARF2 = [0,0,0,0]
RF = [0,0,0,0]
RF2 = [0,0,0,0]

Isotope = {"","","",""}

MARdist = {"°,"","",""}

ARFdist = {"","","",""}

DCFdist = {"","","",""}

RFdist = {"","","",""}

AvgCED = [0,0,0,0] %Average CED for each individual MAR
StdCED = [0,0,0,0] %STDev for each MAR

MedCED = [0,0,0,0] %Median for each CED

Ninty_fifth = [0,0,0,0] % ninty fifth Percentile

XResultl %Hold graphable results for each MAR to allow for display of
individual MAR result

XResult2 %Under class methods, and results persistance between

XResult3 %MAR selections when plot is set to MAR[x], not total.

XResult4 %These are the xi, and fi results from previous methods

YResultl

YResult2

YResult3

YResult4

CED1

CED2

CED3

Appendix B

INL/EXT-16-40755
Revision 0 Page 236 of 249

CED4
SumX
SumY
SumCED
SumAvgCED
SumStdCED
Sum9s5CI =
SumMed = 0
UbDtempX %Temp storage for UDD data coming from the UDD gui.
UDtempY

ubD1
ubD2

oI

ubDData(); %Mar Specific User defined data for mar 1
ubDData(); %' ' for mar 2

UDD3 = UDDData(); %etc

UbD4 = UDDData();

UDDRX %User defined data for non mar specific data

UDDRY

UDLPFX

UDLPFY

end
methods
function obj =
obj .SumCED
CED distributions

clearvars CED1 CED2 CED3 CED4;
obj .SumAvgCED = mean(obj .SumCED);
obj .SumStdCED = std(obj.SumCED);
obj.SumMed = median(obj.SumCED);
obj.Sum95Cl = prctile(obj.SumCED,95);
nbins = max(min(length(obj.SumCED)./10,100),50); %Break domain up into

SumFinal (obj)
= obj.CED1 + obj.CED2 + obj.CED3 + obj.CED4; %Sum indivdual

100 "bins"
obj.SumX = linspace(min(obj.SumCED),max(obj.SumCED),nbins); %Draw a
linespace over the range

dx = mean(diff(obj.Sumx));
obj.SumY = histc(obj.SumCED,obj.SumX-dx); %Count the number of ced"s
between a point in Xxi
%and the next point.
obj.SumY./sum(obj .SumY)./dx;

obj .SumY
end

function obj = EnsureDatalntegrity(obj) % A check used in MAR_Selection
for 1 = 1:4

if obj.MAR(I) ==

obj .MAR(I) =

obj .DCF(i1) =

obj . Isotope{i

0 || obj.DCF(i) == 0
0;

0;

P=07

end

end
end

function [obj, msg, flag] = CheckUDD(obj, Param) %Check a UDD entry for
validity.
if any(obj.UDtempX) && any(obj.UDtempY)
step = obj.UDtempX(2) - obj.UDtempX(1);
s = size(obj.UDtempX);

Appendix B

INL/EXT-16-40755
Revision 0 Page 237 of 249

s = s(2);
if ~strcmp(Param, "DCFT)
if (obj.UDtempX(s) + step) > 1
msg = "A user defined distribution for a 0 to 1 parameter
may not specify a nonzero probability at values greater than 1.7;

flag = 1;
else
msg = "°;
flag = O;
end
else

if (obj.UDtempX(s) + step) > 0.001
msg = "A user defined distribution for DCF may not specify
a nonzero probability at values greater than 1E-3.°7;

flag = 1;
else
msg = "°;
flag = O;
end
end
return;
else
msg = "Distribution Information not entered. Please try again.";
flag = 1;
end

end

function obj = SaveUDD(obj, CurrentMAR, Param) % Saving user defined data
after entry
if strcmp(Param, °"DR%)
obj . UDDRX = obj.UDtempX;
obj .UDDRY = obj.UDtempY;
elseif strcmp(Param, "LPF")
obj .UDLPFX = obj.UDtempX;
obj .UDLPFY = obj.UDtempY;
else
switch CurrentMAR
case 1
obj.UDD1.Save(Param,obj.UDtempX,obj.UDtempY);
case 2
obj .UDD2.Save(Param,obj.UDtempX,obj .UDtempY);
case 3
obj .UDD3.Save(Param,obj.UDtempX,obj.UDtempY);
case 4
obj .UDD4.Save(Param,obj.UDtempX,obj .UDtempY);
end

end
obj .UDtempX
obj .UDtempY

0;
0;

end
function [obj,X,Y] = GetuUDD(obj,CurrentMAR,Param) %Recall User defined data
if strcmp(Param, °"DR%)
X = obj.UDDRX;
Y = obj.UDDRY;
elseif strcmp(Param, "LPF")

Appendix B

INL/EXT-16-40755

Revision 0 Page 238 of 249
X = obj.UDLPFX;
Y = obj.UDLPFY;
else
switch CurrentMAR
case 1
[obj.UDD1,X,Y] = Recall(obj.UDD1,Param);
case 2
[obj -UDD2,X,Y] = Recall(obj.UDD2,Param);
case 3
[obj.UDD3,X,Y] = Recall(obj.UDD3,Param);
case 4
[obj.UDD4,X,Y] = Recall(obj.UDD4,Param);
end
end
return;
end
end
end

File 5, UDDData.m:

%{

Data Class for SODA, holds user defined values for each possible dist and
MAR selection. Includes methods to facilitate easy access and setting of
UDD data, in conjunction with methods in SODA Parameters. Does not include
selections which remain consistant across mar selections, namely DR and LPF

%}

classdef UDDData < handle %Specify handle class

properties
ARFX = [1
ARFY = [1
RFX = [1
RFY = [1
DCFX = [1
DCFY = [1

end

methods

function obj = Save(obj,Param,UDtempX,UDtempY)
switch Param
case "ARF-
obj.ARFX = UDtempX;

obj .ARFY UDtempY;
case "RF-
obj .RFX = UDtempX;
obj.RFY = UDtempY;
case "DCF"
obj .DCFX = UDtempX;
obj .DCFY = UDtempY;
end
end

function [obj,X,Y] = Recall(obj,Param)
switch Param
case "ARF*"
X = obj.ARFX;
Y = obj.ARFY;

Appendix B

INL/EXT-16-40755

Revision 0 Page 239 of 249
case "RF-
X = obj.RFX;
Y = obj.-RFY;
case °“DCF*
X = obj.DCFX;
Y = obj.DCFY;
end
return;
end
end
end

Appendix B

INL/EXT-16-40755
Revision 0 Page 240 of 249

APPENDIX C:

Damage Ratio Experiment Data

Appendix C

INL/EXT-16-40755
Revision 0

Page 241 of 249

3 m drop (pint)

Container
Break

Yes

No

[N =Y IS R Y =

OO N[OOI WIN|F

=
o

[N
=

iy
N

[EEN
w

[EY
o

[EEN
(63}

[N
(o]

=
\l

[EEN
<o

iy
©

RlRrlRP|R|RRIP|R|R|R|F

N
o

N
[y

N
N

N
w

N
D

N
6]

N
(o]

RlRlP|R|R|F

N
~

N
(o]

N
(o]

w
o

w
s

O8]
N

RlR|R|R|R

w
w

w
N

w
(31

w
»

w
~

w
oo

[O8]
©

N
o

N
Uiy

N T I N N =Y T

Appendix C

INL/EXT-16-40755
Revision 0

Page 242 of 249

3 m drop (pint)

Container
Break

Yes

No

42

1

43

1

44

1

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

RlRr|lRr|R|RP|IP|RR|P|P|R|R|R|~

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

N Y Y N TN =Y [) RN Y Ty S SN TR T o e e =

Appendix C

INL/EXT-16-40755
Revision 0

Page 243 of 249

3 m drop (pint)

Container
Break

Yes

No

83

84

85

86

N T =Y =

87

88

[EnY

89

90

91

92

93

94

95

96

97

98

99

100

RlRlP|IR|RR|IP|IR|R|R|F

Total

(o]
=

Appendix C

INL/EXT-16-40755
Revision 0

Page 244 of 249

Container
3 m drop (quart) Break
Yes No
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1

Appendix C

INL/EXT-16-40755
Revision 0 Page 245 of 249

42 1

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

RlRrRrRIRPRRIRPRRIRRRIRRIPRR|R

58

59 1

60 1

61 1

62 1

63

[EEN

64

=

65 1

66

67

68

69

70

71

72

73

RlRrR|RR(RRR|R

74

75 1

76 1

77 1

78 1

79 1

80 1

81 1

82 1

83 1

84 1

85 1

Appendix C

INL/EXT-16-40755

Revision 0 Page 246 of 249
86 1
87 1
88 1
89 1
a0 1
91 1
92 1
93 1
94 1
95 1
96 1
97 1
98 1
99 1
100 1

Total 27 73

Appendix C

INL/EXT-16-40755
Revision 0

Page 247 of 249

1 m drop (pint)

Container
Break

Z
o

Yes

OO N[OOI WIN|F

=
o

[N
=

iy
N

[EEN
w

[EY
o

[EEN
(63}

[N
(o]

=
\l

[EEN
<o

iy
©

N
o

N
[y

N
N

N
w

N
D

N
6]

N
(o]

N
~

N
(o]

N
(o]

w
o

w
s

O8]
N

w
w

w
N

w
(31

w
»

w
~

w
oo

[O8]
©

N
o

RlRrlRP|IR|RRIPIR|RRP|IP|R|RP|IP|RP|R|P|IP|RP|R|R|P|RP|R[R|P|P|R[R|P|PR|RPR|R|RP|R| R |R (R

N
Uiy

Appendix C

INL/EXT-16-40755

Page 248 of 249

Revision 0
Container
1 m drop (pint) Break
Yes No
42 1
43 1
44 1
45 1
46 1
47 1
48 1
49 1
50 1
51 1
52 1
53 1
54 1
55 1
56 1
57 1
58 1
59 1
60 1
61 1
62 1
63 1
64 1
65 1
66 1
67 1
68 1
69 1
70 1
71 1
72 1
73 1
74 1
75 1
76 1
77 1
78 1
79 1
80 1
81 1
82 1

Appendix C

INL/EXT-16-40755

Page 249 of 249

Revision 0
Container
1 m drop (pint) Break
Yes No
83 1
84 1
85 1
86 1
87 1
88 1
89 1
90 1
91 1
92 1
93 1
94 1
95 1
96 1
97 1
98 1
99 1
100 1
Total 26 74

Appendix C

	1. INTRODUCTION
	2. BACKGROUND
	3. SODA
	3.1. Coding Framework
	3.2. GUI
	3.3. Monte Carlo Method
	3.4. Distribution Mathematics
	3.5. Bayesian Information Criterion
	4. Comparison with RSAC
	5. Conclusion
	APPENDIX A: SODA User Manual
	1. Installation instructions
	1.1 Windows Installation Instructions
	1.2 Mac Installation Instructions

	2. Loading and Saving
	2.1 File Loading
	2.2 Saving
	2.2.1 File Saving
	2.2.2 Image Saving

	3. Entering Values for Parameters
	3.1 Distribution Types
	3.1.1 Normal Distribution
	3.1.2 Beta Distribution
	3.1.3 Uniform Distribution
	3.1.4 Exponential Distribution
	3.1.5 Log-Normal Distribution
	3.1.6 USER Defined Distribution
	3.1.6.1 Clicked Entry
	3.1.6.2 Typed Entry

	3.1.7 Values Needed for Distribution Options

	…
	3.2 Values for Parameters
	3.2.1 Material At Risk (MAR)
	3.2.2 Damage Ratio, Airborne Release Fraction, Respirable Fraction, Leak Path Factor
	3.2.3. Entering Values for χ/Q
	3.2.4. Entering Values for Number of Sample

	4.1. How to Plot

	5. Limitations
	APPENDIX B: MATLAB Code
	APPENDIX C: Damage Ratio Experiment Data

