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ABSTRACT OF THE DISSERTATION
THE GLUEX START COUNTER & BEAM ASYMMETRY X IN SINGLE 7°
PHOTOPRODUCTION
by
Eric Pooser
Florida International University, 2016
Miami, Florida

Professor Werner Boeglin, Major Professor

The GlueX experiment aims to study meson photoproduction while utilizing the
coherent bremsstrahlung technique to produce a 9 GeV linearly polarized photon
beam incident on a liquid Hy target. A Start Counter detector was fabricated to
properly identify the accelerator electron beam buckets and to provide accurate
timing information. The Start Counter detector was designed to operate at photon
intensities of up to 10%y/s in the coherent peak and provides a timing resolution
~ 300 ps so as to provide successful identification of the electron beam buckets to
within 99% accuracy. Furthermore, the Start Counter detector provides excellent
solid angle coverage, ~ 90% of 471 hermeticity, and a high degree of segmentation
for background rejection. It consists of a cylindrical array of 30 scintillators with
pointed ends that bend towards the beam at the downstream end. Magnetic field
insensitive silicon photomultiplier detectors were selected as the readout system.

An initial measurement of the beam asymmetry ¥ in the exclusive reaction
yp — mp, where 7 — 7 has been carried out utilizing the GlueX spectrometer
during the Spring 2015 commissioning run. The tagged photon energies ranged from
2.5 < E, < 3.0 GeV in the coherent peak. These measurements were then compared
to the world data set and show remarkable agreement with only two hours of physics

production running.
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CHAPTER 1

GlueX Overview

1.1 The GlueX Experiment in Hall-D

The GlueX experiment is designed to explore the spectrum of light mesons and
search for exotic hybrid mesons and baryons that are predicted by quantum chro-
modynamics (QCD). Through the production of exotic mesons, which gives evidence
for the formation of QCD flux tubes, the GlueX collaboration will be able to further
investigate a fundamental challenge in physics: that is, a quantitative understand-
ing of confinement of quarks and gluons in QCD [1]. Exotic hybrid mesons directly
manifest the degrees of freedom associated with quark confinement [2], thus pro-
viding a suitable laboratory in which to conduct studies regarding the excitation of
flux tube strings binding conventional ¢g mesons (¢ = u, s, or d).

Using a 12 GeV electron beam, a 9 GeV linearly polarized photon beam will be
produced and sent to the GlueX experiment. The tagged photon beam is expected
to be ideal for producing the exotic hybrid meson spectrum. The polarized photon
beam produced wvia the coherent bremsstrahlung technique is incident on a super
cooled liquid hydrogen target located at the center of the GlueX spectrometer.
The GlueX detector (Fig. [L.I), is a solenoid-based 47 hermetic detector. It has
been designed to fit the requirements for conducting Partial Wave Analysis (PWA),
which extracts information about the line shape of a resonance, the production
mechanism, and the associated decay modes [2]. The GlueX collaboration has an
approved experiment to collect a total of 200 days of physics data utilizing 9 GeV
tagged photons in the coherent peak, at an average intensity of 5 x 107 photons on
target per second. This data sample will exceed the current photoproduction data

by several orders of magnitude [4].
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Figure 1.1: GlueX detector overview [3].

1.1.1 Theoretical Framework

Recent lattice QCD predictions indicate a bountiful spectrum of hybrid mesons that
have both exotic and non-exotic J”¢ and can be seen in Fig. Here, J is the
total angular momentum, P is Parity, and C' is Charge parity . Here J =L+ S,
P = (—=1)2*, and C = (=1)* where L and S are the usual orbital angular
momentum and spin of the ¢g system respectively. Permissible values of JF¢ arise
from the usual quantum numbers of a composite fermion-antifermion system. A
few combinations of L and S that are not permitted are 0~—,07~, 17", 2%~ .. and
are referred to as the ezotic quantum numbers. The range of masses of established
conventional meson nonets and the associated light exotic hybrid counterparts range

from the 7 mass up to 2.5 GeV/c? [2], whose production are attainable within the

dynamic energy ranges of GlueX.



3000
[ - I
[ I- - |
. - i :
2500 | . I -
" ! = . =
1 - u — = — 1
- 4 2
. B . | } - 4] -
2000 - —
- [— - ; —
IC | - P )
= [ ] -
= 1500
- -
P
1
1000 F ) - e = 302 Mel
- 247 128
1 L
_ izoscalar [
500 B
Isovector

Figure 1.2: Lattice QCD calculations [5]. The left column are mesons with negative
parity, while the middle column have positive parity. The column on the right are the
exotic meson predictions with the lightest 1~ state being the 71(1600). The boxes
with an orange outline are the predicted lightest hybrid meson supermultiplets.
With high enough beam energy, the string-like flux tube binding the ¢g system
is able to become excited. The vibrational quantum numbers of the string, when
combined with those of ¢, can produce mesons with exotic J©¢. They are dubbed
hybrids because the mesons manifest both their quark and gluonic content. Since
gluons carry color charge it is also possible to form bound states of glue with no
quarks present. Such mesons are called glueballs |2]. Since the expected quantum
numbers of glueballs with masses below 4 GeV are not exotic, their detection is
complicated by the fact they can mix with other ¢q states. Lattice QCD and flux
tube models show strong evidence suggesting the existence of the lightest exotic
mesons and glueballs to be in the mass range of 1.5 —2.5GeV/c?.. The GlueX
detector is designed to observe exotic quantum number and hybrid sates due to
its 4m hermeticity resulting in the reconstruction of final-state particles and the

subsequent application of a sophisticated partial wave analysis (PWA) [2].



While some hints of exotic mesons have been observed e.g., the E852 experi-
ment, there are either a number of inconsistencies in understanding the production
mechanisms or the data suffer from limited statistics |1]. The linear polarization of
the photon beam in GlueX aids in the determination of the J”¢ quantum numbers
and is essential in determining the production mechanism for various observed and
predicted qq states. Within the first year of running, GlueX is expected to collect
data that will exceed the current photoproduction world data set by at least one

order of magnitude [2].

1.2 GlueX Beamline

The Continuous Electron Beam Accelerator Facility (CEBAF), as seen in Fig. [1.3]
produces a 12 GeV electron beam (0.05 —2.2uA) that is steered to the HallD tagger

hall, upstream of the GlueX spectrometer. An overview of the GlueX beam line

NEW Hall D
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Experimental Halls

Figure 1.3: CEBAF Schematic. Labels indicate the 12 GeV upgrades.

is illustrated in Fig. A secondary photon beam is produced wvia the coherent
bremsstrahlung technique in which the incident electron beam strikes a thin 20 um
diamond wafer. The photon rate and energy spectrum is shown in Fig. [1.5, The

tagged photon beam ranges in energy from E, € [3.0,11.8] GeV. The coherent
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Figure 1.4: Overview of the GlueX beamline. CEBAF provides a 12 GeV electron
(blue) that is converted into linearly polarized photons (red) by the diamond radia-
tor. The photons travel 75 meters downstream and are collimated prior to entering
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Figure 1.5: Simulated GlueX photon rates and energy spectrum [@

peak ranges from E. € [8.4,9.0] GeV and contains photons with an average linear
polarization of ~ 40%. A 2.2uA electron beam results in an on target, polarized

photon rate of 100 MHz.

1.2.1 GlueX Tagger Spectrometers

The scattered electrons from the aforementioned bremsstrahlung process enter into
the tagger magnet and spectrometer which is an Elbek-type spectrometer [7]. The
tagger magnet bends, via the Lorentz Force, the electron beam away from the

photon beam, towards the tagger spectrometer. The magnetic field of the tagger



magnet is constant, thus the Lorentz force acting on the scattering electrons will
result in them having a particular radii of curvature that is directly proportional
their respective momentum (energy). Therefore by placing the tagger spectrometer
in the focal plane of the scattering electrons, it is possible to reconstruct the energy
of the electrons in the focal plane. By precisely knowing the energy of the electrons
i.e., B+ 0FE, conservation of energy provides a precise measurement of the photon
beam energy. The aforementioned procedure is known as “tagging.” The tagger
microscope measures finely the coherent peak, while the tagger hodoscope measures
coarsely the remaining large range of photon energies.

The tagger microscope (TAGM), seen in Fig. consists of 102 columns of

5 BCF-20 scintillating fibers which are 20 4= 2m long and 2 x 2 mm? wide. The

:;"‘% Microscope

Hodoscope

Figure 1.6: GlueX tagger spectrometers. The combined e~y beam enter the tagger
magnet and the deflected e~ beam is measured by the tagger hodoscope and mi-
croscope. The electrons that are not measured are collected in the electron beam

dump [3].

scintillators are coupled to 1 meter long BCF-98 light guides which are also 2x 2 mm?
wide and are read out via 110 Hamamatsu S10931-050P silicon photomultipliers
(SiPMs) also known as multi-pixel photon counters (MPPCs) (50 pm pixel size).
The microscope measures the tagged photon beam in the coherent peak with 5 MeV
resolution in an energy range of 8.1 — 9.1 GeV [8]. The microscope was constructed

atop a platform such that it may be moved in order to achieve the best alignment



possible with the focal plane of the scattered electrons pertaining to the coherent
peak.

The tagger hodoscope (TAGH) consists of 218 counters made of EJ-228 scintilla-
tor material coupled to a cylindrical UVT PMMA light guide readout by Hamamatsu
R9800 PMTs. The hodoscope counter continuously samples the photon energy range
E, € [9.1,11.78] GeV and 30 - 50 % sampling rate for E., € [3.048,8.1] GeV [g].
The reduction in sampling rate is an effective pre-scaling which reduces the amount
of data that is recorded by the ADCs and TDCs per triggered event. This is done
so that overload in the buffers is minimized as a result of the high event rate in the
lower electron energy range.

During the Spring 2015 commissioning run, the beam energy was significantly
reduced due to technical issues with the accelerator. For this reason the pair spec-
trometer’s (PS) magnetic field was reduced slightly to accommodate the lower beam
energy. Therefore an ad-hoc energy spectrum correction was performed between the
PS and the tagger spectrometers so that the tagging efficiency could be calculated.
The tagging efficiency is a measure of how often an electron of a particular energy
produces a hit in the tagger spectrometer while the corresponding photon of iden-
tical energy produces a hit in the pair spectrometer for each triggered event. The
results of the tagging efficiencies are shown in Fig. [I.7, The reduction in tagging
efficiency in the TAGH, below the TAGM energy range, is attributed to the 50%
sampling rate relative to the energy region above the TAGM which has a 100%
sampling rate resulting in tagging efficiencies above 90%. The nominal design of the
TAGM was to have 77% tagging efficiency and the Spring 2015 data measured a
70-75% tagging efficiency in the focal plane [9]. Upon comparing the photon beam
energy spectrum between an amorphous and diamond radiator run (as seen in Fig.

1.8)) it is clear that with a oriented diamond radiator it is possible to obtain a high
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Figure 1.7: Tagging efficiency in the Spring 2015 commissioning run. The dip in
tagging efficiency at 3.8 GeV results from a physical gap between the TAGM and
TAGH [9].

degree of polarization. A fit to the coherent peaks yielded a maximum linear photon

polarization of 65% [3].
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Figure 1.8: Polarized photon beam energy spectrum. The blue histogram is the
amorphous radiator photon energy spectrum in which the bremsstrahlung spectrum
is clearly visible. The red histogram is the oriented diamond photon energy spectrum
in which the coherent edge is clearly visible.



1.2.2 Photon Beam Flux & Polarization Monitoring

The photon beam is collimated by a 3.4-mm-diameter collimator. Downstream of
the collimator and upstream of the GlueX spectrometer is the pair spectrometer
(PS) that is composed of thin foil converters which create e*/e™ pairs via pair
production, a magnet to separate their trajectories, and a hodoscope to track the

charged particle trajectories. The configuration of the PS is seen in Fig. . Since

P5S-A PSC-A

Dipole Magnet

Vacuum Chamber

Converter

0.5m

ala
|3 I B I

Figure 1.9: Pair spectrometer configuration. PS and PSC correspond to the ho-
doscope and coarse scintillator counters respectively [10].

pair production is a well known Quantum Electro-Dynamic (QED) process, the pair
spectrometer allows for monitoring of the photon beam’s flux, polarization, and
energy [7].

The nominal design of the PS counters is to detect beam photons in the range
E, € [6,12.5] GeV with a resolution of ~ 30 MeV. The converter thickness has yet
to be determined however, they will most likely range from 10~* — 10~2 radiation
lengths [§].

During the Spring 2015 commissioning run, the pair spectrometer was found to
have a detection efficiency larger than 95% with random coincidental background
contribution to be less than 1.5% @[] Figure m, illustrates the energy resolution

and photon energy spectrum of the PS during the Spring 2015 commissioning run ﬂg[]



Furthermore the time resolution of all PS counters was found to be < 150 ps relative

Z 30 E3.5
= 23
c 25 H }#\\ Hh &
= =25
= i =)
= | *a‘# =
g2 Wm : b, =2
Gqgfl| ".\,’| 1.5
o
& 3}' 1
10
{ 0.5
1 1 1 'l 1 1 1 1 L L
40 60 80 100 120 140 160 180 200 220 2.5 3 3.5 4 4.5
TAGH counter E? (GeV)

Figure 1.10: Pair spectrometer performance.The data is from the Spring 2015 com-
missioning run. Left: energy resolutions of the PS hodoscope. Right: photon energy

spectrum with a diamond radiator run.
to the design resolution of 250 ps.

In order to measure the degree of linear polarization contained in the collimated
photon beam a triplet polarimeter (TPOL) was constructed down stream of the
collimator and upstream of the PS as illustrated in Fig. [L.11} Triplet photoproduc-

Pair Spectrometer
Triplet Polarimeter 7 'X’ o

Collimator

Figure 1.11: Collimator cave configuration [3].

tion, Ye~ — e~ ete™, occurs when a beam photon interacts with an atomic electron’s
electric field, provided by a thin beryllium foil, and results in the production of e~ e*
pair, detected in the PS, and a recoil e~. The e"e™ pair is forward going, and the
transverse momentum is carried away by the slow moving recoil e~ at potentially
large polar angles [11]. The resulting angular distribution of the recoil e~ provides

information regarding the degree of beam polarization.
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The TPOL was constructed as a double sided silicon strip detector with a thick-
ness of 1.034 mm. The detector consists of 32 azimuthal sectors on the ohmic side
(seen in Fig. and 24 concentric rings on the junction side, providing 768 dis-
tinct angular regions that measures the azimuthal distribution of the recoil electron

with a high degree of precision [11].

Figure 1.12: Sector side of triplet polarimeter [12]. It has an outer active diameter
of 70 mm and an inner active diameter of 22 mm [11].

During the Spring 2015, one run was taken with an amorphous radiator (3180, ~
4 hrs and another with an oriented diamond radiator (3185, ~ 2 hrs). The resulting
data were then analyzed to measure the degree of polarization in the beam with both

the amorphous and diamond radiator and is shown in Fig. [1.13] The polarization

40,
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o(degree) ¢ldegree]

Figure 1.13: TPOL Measure of beam polarization. Left: amorphous run illustrating
zero beam polarization as expected. Right: oriented diamond run producing a beam
polarization of 0.632 £ 0.175.
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(P) was extracted from the data by fitting the azimuthal distribution of the recoiling
e~ to the functional form A[l + Bcos(2¢)] with B = PY. where X is the assumed
beam asymmetry. The results indicate that with an oriented diamond the beam
had a polarization of 63.2 & 17.5%, which was consistent with other various physics
analyses and a direct fit to the coherent peak to extract the polarization. The large
statistical errors seen in Fig. [1.13| are the result of severely low statistics obtained

in the run which only lasted a few hours [9).

1.3 GlueX Spectrometer

A schematic top view of the GlueX detector is show in Fig. [1.14. The beamline and

Solenoid

Start BCAL _ _ _ _

Counter —_ | C FCAL
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Future ‘W

PID

Figure 1.14: GlueX spectrometer schematic (top view) [13].

associated detector components were discussed in detail in section [I.2] Surrounding
the GlueX target is the start counter (ST), the central drift chamber (CDC), and
the barrel calorimeter (BCAL). Downstream of the target and CDC is the forward
drift chamber (FDC). All of these detector systems are enveloped by a supercon-
ducting solenoid magnet. Downstream of the solenoid is the time of flight (TOF)
and forward calorimeter (FCAL) detectors. The incident linearly polarized photon
beam interacts with a liquid hydrogen target, which is 30 ¢m in length, and has an

upstream inner diameter of 2.42 e¢m, tapering down to a 1.56 ¢m inner diameter [8].
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The resulting charged particles and photons produced in the vp collisions are then
detected by the GlueX detector. Measuring the charged particle trajectories in the
solenoidal magnetic field allows one to extract their charge and their momentum.
The GlueX solenoid consists of four coils that each run at a nominal current of
1350 A, producing a magnetic field of 2.08 T" at nominal design. It is 4.795 m long,

has an inner diameter of 2.946 m, and an outer diameter of 3.759 m [§].

1.3.1 Drift Chambers

Surrounding both the ST and the LH, target is the CDC. The CDC is a large straw
tube cylindrical drift chamber that consists of 3522, 1.5 m long straw tubes each with

an inner diameter of 15.55 mm. A side view of the CDC is seen in Fig. [1.15| Each

20 em space for electronics

/ 150 em (inside)

59.75 cm
8.75em
photon beam -
48 cm
active volume
—— . -
3.2 em thick gas flange 2.5 cm thick gas flange

Figure 1.15: CDC schematic (side view). The CDC’s active region covers charged
tracks with polar angles 6 € [6°,168°] while being optimized for polar angles 6 €
[29°,132°]. The blue cylinder is the target [§]. The ST is not shown however it
would occupy the space between the CDC and the target.

straw tube contains an anode wire of 20 um diameter gold-plated tungsten. The
inner wall of the tube forms the cathode which ensures uniformity of the electric field
around the wire. The CDC has 28 layers of straw tubes arranged in both axial and

stereo (£6°) configurations (seen in Fig. [1.16]) located within a cylindrical volume of

13



inner diameter of 20 ¢m and outer diameter 1.12 m and is filled with a 50% Argon,

50% CO4 gas mixture. The CDC provides both r and ¢ position measurements for

Figure 1.16: CDC design. Left: schematic of the CDC straw tube configuration at
the upstream end plate. The axial straws are in black, the 4+6° stereo layers are red,
while the —6° stereo layers are blue. Right: straw tubes in stereo layers 8 and 9 .

charged tracks with an expected position resolution of 150 um along with timing
and dE/dz measurements from the F125ADC’s FPGA [8]. A picture of the fully

assembled CDC is seen in Fig. [1.17

Figure 1.17: Fully assembled CDC in Hall D.

Forward-going charged particles are tracked by the FDC, which is downstream
of the CDC and ST and is seen in Fig. [1.18] The FDC system consists of 24 planar

drift chambers (cells) with cathode strip and wire readouts that are grouped into
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Packages

Figure 1.18: FDC schematic. The spacers separate the 4 FDC packages each con-
sisting of 6 planar drift chambers (cells).

four identical packages of six cells [14]. Each cell contains 1 layer of 216 U cathode
strips which are 5 mm in front (upstream) of 1 layer of 96 sense wires and 97 field
wires. 5 mm behind (downstream) the wires is 1 layer of 216 V cathode strips. The
U and V cathode strips are oriented +75° and —75° relative to the wires (seen in
Fig. . Six cathode-wire-cathode assemblies, also known as cells, comprise one
package with each cell being rotated 60° relative to the one preceding it. The 2328
field wires are 80 pm thick, gold plated copper-beryllium wires, while the 2304 sense
wires, 5 mm apart from the field wires, are 20 pm thick, gold plated tungsten wires.
Each of the six cells comprising one package is filled with a 40% argon 60% CO, gas
mixture [8].

The arrangement described above allows the FDC to provide tracking, and
dE /dz information, of forward-going charged particles with polar angles 6 € [1°,20°]
with a resolution on the order of 250 pum. The cathode cells provide a three-
dimensional space point from each active cell layer whose schematic is seen in Fig.
In addition the timing information from the wires is readout by F1TDCs
while the cathode strips timing is readout by the F125ADC FPGA which enables

the reconstruction of both the coordinate of the hit along the wire and a coordinate
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Figure 1.19: FDC cathode chamber schematics. Left: front view of the cathode
cell. Facing downstream the wires are vertical while the U strips are in front of
the wires and the V strips are behind the wires. Middle: side view of a package.

Right: illustrates an event with two nearby hits and how they are resolved from the
cathode and wire readouts [14].

transverse to the wire i.e., drift time. Thus, the reconstruction of space points is
achievable and facilitates the association of adjacent hits with each other, thereby

enhancing pattern recognition . The fully assembled FDC is shown in Fig. {1.20

Figure 1.20: Fully assembled FDC.
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During the Spring 2015 commissioning run the CDC and FDC efficiencies were

calculated along with wire resolutions and are summarized in Fig. It is clear
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Figure 1.21: Drift chamber performance in Spring 2015 commissioning run. Left:
CDC straw efficiencies as a function of the track to wire distance. The efficiency
decreases close to the straw walls due to the shorter track length in the active volume
of the cell ﬂg[] The achieved position resolution is close to the design resolution.
Middle: FDC tracking efficiencies in package 3, chamber 5. Right: wire resolution
as a function of the track to wire distance. The achieved position resolution is close
to the design resolution.

that the drift chambers are close to design resolution and efficiencies are acceptable.
Moreover, quality track reconstruction was observed in the Spring 2015 commission-

ing run and is seen in Fig. [1.22
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Figure 1.22: Track reconstruction in the Spring 2015 commissioning run. Left: z-
coordinate of track vertices in an empty target run. A tracking spatial resolution of
4 mm was achieved. Middle: full target run where the target is clearly reconstructed
along with other prominent features. Right: xy-coordinate of track vertices where
the ST and target geometries are visible.
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1.3.2 Calorimeters

By detecting photons, the primary goal of the calorimeters are to reconstruct 7%’s
and 7n’s that are produced in the decays of heavier states . Residing immedi-
ately inside the solenoid is the electromagnetic barrel calorimeter (BCAL) modelled
closely after the EmCal utilized in the KLOE experiment at DA®NE [8]. The BCAL
envelopes all of the solenoid based detectors i.e.; the CDC, FDC, ST, as well as the
LH, target. The BCAL, seen in Fig. [1.23] consists of 48 modules (each spanning

7.5° in ¢) that are 3.90 m in length. It is cylindrical in design with an outer diameter

30-cm target
BCAL top half cutaway

(b)

[=— 11.77 cm —|
T
; Readout:
| 4X6+4X4
=40 SiPMs
[ per side,
I - grouped in
| | 16 summed
cells
[«851 cm «|
single module
BCAL end view end
(0 (d)

Figure 1.23: BCAL schematic. (a) isometric view of BCAL geometry, (b) side view
of BCAL with polar angle acceptances, (c) end view of BCAL geometry, (d) readout
module and light guide geometry [§].

of 1.8 m and inner diameter of 1.3 m. The geometry of the BCAL, relative to the

target allows for a large acceptance of polar angles e.g., ¢ € [11°,126°).
Each of the 48 modules in the BCAL is comprised of a lead and scintillating

fiber (SciFi) matrix in which the fibers are embedded directly into lead sheets as
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illustrated in Fig. [1.24 There are 683000, 1 mm? Kuraray SCSF-78MJ multi-clad

1.35 mm azimuthal
T " direction
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Figure 1.24: BCAL readout schematic. Left: lead and scintillating fiber matrix.
Right: CAD drawing of the BCAL module readout system.

scintillating fibers in total which are embedded into 5 mm sheets of lead. Both ends
of the modules are coupled to ultraviolet transmitting (UVT) acrylic light guides
which are 8 mm in length and are wrapped in Tedlar to prevent cross-talk between
adjacent light guides. For each of the 10 rows of light guides (seen in Fig. [1.24] (d))
the trapezoidal geometry of the light guides are designed so as to accommodate the
unique module geometry as seen in Fig. The base of each light guide is coupled
to a Hamamatsu 144 mm? S12045 MPPC with an active area of 1.27 x 1.27 cm? via
500 pm air gap . The partially assembled BCAL is shown in Fig. m

During the Spring 2015 commissioning run the BCAL was able to reconstruct
electromagnetic showers so as to successfully identify the two photon decay of 7°
mesons through the decay 7% — v as seen in Fig. [1.25

The FCAL has planar geometry orthogonal to the beam axis and is placed down-
stream (behind) of the forward TOF system and is shown in Fig. [1.26, The FCAL
is composed of 2800, 4 x 4 x 45 cm? lead glass F8-00 modules, stacked in a cir-
cular array, with each module coupled to a 12 stage FEU 84-3 PMT with custom

IU Cockeroft-Walton bases. Fringe fields from the solenoid can distort energy mea-
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Figure 1.25: BCAL 7 reconstruction. It is clear that the mass resolution of the 7°
improves with increasing shower energy as expected. [9).

Figure 1.26: Assembled BCAL & FCAL. Left: partially assembled BCAL in Hall
D. Fully assembled FCAL without dark room enclosure.
surements reported by the PMT’s so 0.36 mm AD-MU-80 p-metal was installed to
provide magnetic shielding for the PMT’s. Not shown in Fig. is the dark box
enclosure which measures 5 (deep) x 9 (wide) x 11 (high) ft*> and keeps the FCAL
light tight [§].

In the Spring 2015 commissioning run a severe lack of statistics made a reliable

79 calibration of the FCAL impossible. However, with the limited statistics available
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the 7° mass resolutions as a function of photon energy is illustrated in Fig. [1.27]

As a comparison, Fig. shows the 7° reconstructed mass resolutions obtained
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Figure 1.27: FCAL 7° mass resolutions. Shown are the energies of the photons
matched to the FCAL as a function of the minimum energy of the two decay photons.
The solid red line is the design resolution while the points with errors are the current
resolutions [9)].

with the minimum data obtained from the Spring 2015 commissioning run.

1.3.3 Start Counter

The Start Counter (ST) detector, seen in Fig. [1.29] provides excellent solid angle
coverage of ~ 90% of 47, and a high degree of segmentation for background rejection.

The purpose of the GlueX Start Counter is, in coincidence with the tagger, to
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Figure 1.28: BCAL & FCAL 7 reconstructed mass resolutions. It is clear that due
to the lack of statistics the FCAL is far from design resolution. However, the BCAL
is close to design resolution for small photon energies.

Figure 1.29: Start Counter geometry.

identify the electron beam bucket associated with the detected particles resulting
from linearly polarized photons incident on a liquid Hy target. It is designed to

operate at tagged photon intensities of up to 108 v/s.
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The EJ-200 scintillator material from Eljen Technology, which provides a decay
time on the order of 2 ns and a long attenuation length, was used in order to prop-
erly identify the beam buckets that are about 2 ns apart. The detector consists
of an array of 30 scintillators with pointed ends that bend towards the beam at
the downstream end. The support structure was kept at an absolute minimum in
the active region of the detector and is made up of low density Rohacell. Silicon
Photomultiplier (SiPM) detectors were selected as the readout system. These de-
tectors are not affected by the high magnetic field produced by the superconducting
solenoid magnet. Moreover, the SiPMs were placed as close as possible (< 250 pm)
to the upstream end of each scintillator element, thereby minimizing the loss of
scintillation light.

Each individual paddle of the Start Counter is machined from a long, thin,
plastic (polyvinyl toluene) EJ-200 scintillator bar that was manufactured to be 600
mm in length, 3 mm thick, and 20+ 2 mm wide, manufactured by Eljen Technology.
Eljen Technology bent each scintillator around a highly polished aluminum drum
by applying localized infrared heating to the bend region. The bent scintillator bars
were then sent to McNeal Enterprises, a plastic fabrication company, where they
are machined to the following desired geometry (see Fig. [1.30)).

The paddles consist of three sections, described from the upstream to the down-
stream end of the target. First is the straight section, that runs parallel to the
target cell, is 394.65 mm in length. Second is the bend region which is an 18.5° arc
of radius 120 cm and is downstream of the straight section. Third is the tapered
nose region, which is downstream of the target chamber, that bends towards the
beam line to end at a height of 2 cm above the beam line.

After the straight bar was bent to the desired geometry, the two flat surfaces

that are oriented orthogonal to the wide, top and bottom, surfaces were cut at a 6°
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angle. During this process the width of the top and bottom surfaces are machined
to be 16.92 mm and 16.29 mm wide, respectively. Each of the 30 paddles are rotated
12° with respect to the paddle that preceded it so that they form a cylindrical shape
with a conical end. The geometry of the ST increases solid angle coverage while
minimizing multiple scattering.

The 30 scintillator paddles are placed atop a Rohacell support structure that
envelopes the target vacuum chamber seen in Fig. [1.31] Rohacell is a rigid, low
density foam (p = 0.075 g/cm?®). The Rohacell, which is 11 mm thick, is rigidly
attached to the upstream support chassis and extends down the length of paddles
however, not to include the end of the conical section. Glued to the inner diameter
of the Rohacell support structure are 3 layers of carbon fiber (p = 1.523 g/cm?)
which are 650 pm thick. A cross section of the ST can be seen in Fig. [I.31] where
the carbon fiber is visible. The carbon fiber serves as to provide additional support
during the assembly process as well as long term rigidity.

The SiPM detectors are held in a fixed position while being attached to the lip of
the upstream chassis via two screws. The scintillators are placed as close as possible
to the active region of the SiPMs (see Fig.|1.32)).

The ST scintillators are coupled via an air gap (< 250um) into groups of four
SiPMs set in a circular arrangement. The individual SiPMs are single-cell SiPMs
(Hamamatsu MPPC, S10931-50P) with a 3 x 3 mm? active area. Four individual
SiPMs, grouped together in a linear array, are arranged such that they are parallel
to the end of the upstream end of a scintillator as seen in Fig. [1.33]

Four SiPMs, reading out one individual paddle, are current summed prior to
pre-amplification. The output of each preamp is then split, buffered for the Analog
to Digital Converter (ADC) output, and amplified for the Time to Digital Converter

(TDC) output by a factor five relative to the ADC. The ADC outputs are readout
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via flash ADCs (JLab 250 MHz Flash, fADC250), while the TDC outputs are input
into leading edge discriminators (JLab LE discriminator), followed by a 32 channel
flash TDC (TDC JLab F1-TDC). Furthermore, each group of four SiPMs utilizes a
thermocouple for temperature monitoring. There are 120 SiPMs in total, for a total
of 30 pre-amplifier channels, as seen Fig. [1.34]

There are three components that comprise the SiPM detector and readout sys-
tem. The first component is the ST1 which holds three groups of 4 SiPMs. The
SiPMs are housed in a ceramic case, while being rigidly attached to the ST1. In
order to mimic the geometry of the 30 paddle design one group (of four SiPM’s) is
offset by 12° relative to the central group, while another group is offset by —12°. One
ST1 unit will collect light from three paddles individually. The ST1 implements the
current sum and bias distribution per group of 4 SiPMs. It also has a thermocouple
for temperature monitoring.

The second component is the ST2 which is a Printed Circuit Board (PCB) that
houses the electronics of the readout system. It has three channels of pre-amplifiers,
three buffers, and three factor five amplifiers. Furthermore, it has three bias dis-
tribution channels with individual temperature compensation via thermistors. The
ST2 is attached to the ST1 via 90° hermaphroditic connector.

The third component, the ST3, provides interface to the power and bias supplies.
It also routes the three ADC, and three TDC outputs as well as the thermocouple
output. The ST3 connects to the ST2 emphvia a signal cable assembly. The ST3
is installed in the upstream chassis upstream of the Start Counter and next to
the beam pipe seen in Fig. [I.35] Calibrations and performance of the ST will be

discussed in chapter [4
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1.3.4 Time of Flight and Future Particle Identification

The time of flight (TOF) detectors are comprised of the forward TOF system as well
as a portion of BCAL which was discussed in section[I.3.2] The forward TOF system
consists of an array of, 2.54 cm thick and 6 cm wide, EJ-200 scintillator paddles
coupled to 30 cm long fish-tail UVT polymethylmethacrylate (PMMA) light guides,
readout on each end by Hamamatsu H105three4AMOD PMT’s. It has two planes of
scintillator paddles. In one plane 84 paddles are stacked vertically, in the other 84
paddles are stacked horizontally to determine charged track multiplicity and provide
excellent TOF information with respect to the accelerator RF beam buckets [7] and
is shown in Fig. [1.36]

The TOF is positioned 550 cm downstream from the target center in front of
the FCAL covering an area of 252 x 252 cm? with a 12 x 12 em? central hole for the
photon beam to pass through to the downstream FCAL. The TOF detector provides
particle identification (PID) through the measurement of the particles velocity in
the low momentum range [13]. The geometrical design of the TOF allows for the
acceptance of charged tracks with polar angles 6 € [1°,11°] [7].

During the Spring 2015 commissioning run the TOF performed in such a way
that the per paddle time resolution met design resolution. Furthermore, it was able
to successfully perform PID for €'s, 7's, K's, and p's as illustrated in Fig. [1.37]

The FDIRC (forward detection of internally reflected Cherenkov) detector will
significantly enhance the identification of kaons, as well as reduce the experimental
backgrounds from misidentified particles, within the GlueX spectrometer so as to
significantly enhance GlueX’s ability to study hybrid mesons decaying into kaon
final states. The FDIRC will be constructed utilizing 48 of the decommissioned
synthetic fused silica bars, contained in four boxes, from the BaBar DIRC detector

and is seen in Fig. [15]. In addition the DIRC will allow for 7/ K separation up
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to 4 GeV. A compact focusing optics system, ~ 15,000 channels, is currently being
developed which will be read out with the CLAS12 RICH (ring imaging Cherenkov)

MaPMT (multi-anode PMT) readout and electronics.
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Carbon Fiber Support Rohacell

Figure 1.31: Cross section of the ST.

Low Density
Rohacell Support
Structure

Figure 1.32: Partially assembled Start Counter.
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Figure 1.33: ST1 of SiPM.
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Figure 1.34: Start counter electronics.
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ST3-30 Ch (ADC and
TDC), LV, Bias, Temp.
Monitor Chassis.

Signal Cables (3)

LV, Bias Cable

ST2 (3 Ch Preamp, Bias)

8T1 (12 SiPMs, 3x3 mm)

Figure 1.36: TOF wall. The horizontally stacked scintillators comprise the visible

upstream plane, while the vertically stacked scintillators comprise the second down
stream plane.
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Figure 1.37: TOF performance in the Spring 2015 commissioning run. Left: the
difference in hit mean times between two planes for charged tracks matched to the
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Right: 3 wvs.p for positively charged tracks. Bands corresponding to e*, 7, KT,
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Figure 1.38: Conceptual drawing of the FDIRC . The DIRC will be place
upstream (in front) of the TOF and FCAL detector systems.
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CHAPTER 2

Start Counter Research & Development

2.1 Prototype Scintillator Studies

Many data were collected at FIU regarding long thin scintillator bars, of different
dimensions, and materials. Early studies aimed to determine the most optimal di-
mensions the scintillators should have in order to maximize the light output and
minimize time resolution. As the nominal geometrical design required the ST scin-

tillators to be 600 mm in length the optimal thickness and width were investigated.

2.1.1 Testing Straight Scintillator bars

A collimated % Sr source was used to produce minimum ionizing electrons at various
locations along the length of the scintillator as seen in Fig. 2.1} A trigger PMT was

Scintillator

906 Source

—
SiPM — . at | +———  VM2000
\Trigger

Detector

Figure 2.1: Straight paddle testing schematic.

used for timing purposes and either a fine mesh PMT or a BCAL prototype SiPM
were used to read out the scintillator at one end. It is required to note that the
SiPM results discussed in this section were taken at a time when the signal processing
electronics had yet to be optimized and the results shown here are much worse than

what was measured with the finalized SiPM readouts used in the ST. Furthermore,
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it was known from the beginning of these studies that the ST scintillator paddles
would be wrapped in a reflective material. Therefore, studies were also performed
utilizing a strip of radiant mirror film produced by 3M adhered to the opposite end
of the scintillator relative to the end which was being read out as seen in Fig. [2.1}

Quantifying the amount of light loss, or attenuation, in scintillators is usually
measured in terms of the materials attenuation length. Light loss occurs in plastic
scintillator material via escape of light through the scintillator boundaries and by
absorption in the material. When the dimensions of the scintillator are such that the
total path lengths travelled by the photons is comparable to the attenuation length,
absorption can occur. This is the case for the Start Counter scintillators whose
length is ~ 600 mm. The attenuation length is defined to be the length in which
the scintillation light intensity is reduced by a factor of 1/e (36.8%). Moreover,
the functional form to describe light intensity as a function of length is given by
A(x) = Age™®/* where Ay is the initial intensity, and a is the attenuation length.
Therefore, the attenuation length of the scintillator material determines the number
of photons arriving at the readout detector and therefore has significant influence
on the time resolution.

Figure illustrates attenuation measurements made for the 3 x 15 x 600 mm?
scintillator bar with and without VM2000 backing. Similar data were collected for
scintillator bars with dimensions 2 x 15 x 600 mm? and 3 x 12 x 600 mm?®. These data
were fit in an identical manner to Fig. and the resulting attenuation lengths are
summarized in Table 2.1]

The propagation speed of photons in the scintillator medium were also measured
via the TDC data collected. The results of these studies are seen in Fig. [2.3] In most
instances the effective velocity of light in straight scintillator bars is approximately

15 em/ns which is clearly observed in the data.
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Figure 2.2: Attenuation length measurements for a straight scintillator bar. The
dimensions of the bar are 3 x 15 x 600 mm?. Left: No VM200 backing. Right: With

Distance from PMT {cm)

VM200 backing. The fit range was limited to [20 e¢m, 50 cm).

e Attenuation Attenuation
Scintillator
Dimensions (mm?) Length (cm) Length (cm)
No VM200 Backing | With VM200 Backing
2 x 15 x 600 81.2 135.0
3 x 12 x 600 50.8 76.2
3 x 15 x 600 69.6 125.0

Table 2.1: Attenuation lengths of various scintillator dimensions. From these mea-
surements it appears as though the 15 mm wide scintillators have the largest atten-
uation lengths.

While the attenuation length is in fact an important characteristic in scintil-
lators, for the purpose of the ST the time resolution is in fact the most crucial
parameter to have minimized. The time resolutions corresponding to various scin-
tillator dimensions, without VM200 backing, are shown in Fig. 2.4 It is interesting
to note that there exists a linear increase in time resolution as a function of source
distance. It is clear from the data that the 2 mm thick scintillator performs the
worst in terms of time resolution and was therefore no longer considered as a viable
option for comprising the final ST design.

The time resolutions of the same scintillator bars with the VM2000 backing are

shown in Fig. [2.5] It is interesting to note that there is no longer a linear increase
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Figure 2.3: Propagation time of straight scintillator bars. The width of the scin-
tillator bars does not effect the effective velocity of light in the scintillator medium

which is to be expected.
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Figure 2.4: Time resolution measurements with no VM2000 backing. Left: PMT
readout detector. Right: SiPM readout detector.

in time resolution as a function of source distance. Once the source gets sufficiently

close to the end of the scintillator with the VM2000 backing, the light is reflected

and ultimately detected. A table summarizing the time resolution measurements

are given in Table [2.2]

The 3 x 15 x 600 mm? scintillator bar had the best time

resolution regardless of the readout detector and whether or not there was VM2000

backing.
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Figure 2.5: Time resolution measurements with VM2000 backing. Left: PMT read-
out detector. Right: SiPM readout detector.

Scintillator
Dimensions (mm?)

No VM200 Backing

SiPM Time
Resolution (ps)

PM Time
Resolution (ps)
No VM200 Backing

SiPM Time
Resolution (ps)
VM200 Backing

PM Time
Resolution (ps)
No VM200 Backing

2 x 15 x 600 800 < o < 1000 300 < o < 350 720 < o0 < 820 300 < o < 400
3 x 12 x 600 500 < o < 700 300 < o < 360 500 < o < 600 300 < o < 400
3 x 15 x 600 550 < o < 650 220 < o < 300 520 < o < 550 270 < o < 320

Table 2.2: Time resolutions of various scintillator dimensions.

As illustrated in Fig. , the 3 x 15 x 600 mm? scintillator bar had the best

performance in time resolution both with and without the VM2000 backing. This

particular bar also had a good attenuation length as compared to the other bars. The

data illustrated that the optimal dimensions of the paddles, relative the scintillators

we had, were 3 x 15 x 600 mm?. However, for manufacturing purposes the straight

scintillators bars were cut by Eljen into strips with the dimensions of 3 x 20.3 x

610 mm? prior to bending and machining into the nominal design.

2.1.2 Fabricating Machined Scintillator Bars

Over the course of approximately two years, a company who could properly han-

dle and machine the scintillators to the finalized geometry, seen in Fig. [1.29] was

sought out. The first company Plastic-Craft [16], who machined scintillators for the
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CTOF in Hall B, attempted to machine and polish scintillators to our standards.
However, they proved unable to properly handle the scintillator material nor polish
the machined edges to a standard that was suitable for the ST. Figure [2.6] shows

the time resolution performance of a scintillator machined by Plastic-Craft. A sec-
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Figure 2.6: Machined scintillator by Plastic Craft. The red data points are the time
resolutions of the straight bar. The blue data points are the time resolutions for
the machined scintillator bar. The time resolution of the machined bar is almost a
factor 2 worse than the straight bar. The red vertical line indicates where the bend
region begins.

ond company, McNeal Enterprises |17] (McNeal), attempted to machine and polish
prototype scintillators.

While McNeal seemed to be able to better machine the scintillator paddles to
the designed geometry as compared to Plastic Craft, they had no experience with
handling scintillator material. Thus, there was a steep learning curve for them.
Initially, two scintillators machined to the desired geometry were ordered from Mc-
Neal. When they arrived at FIU it was discovered that one paddle was ruined during

the machining process while the other scintillator possessed unsatisfactory light col-
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lection properties and its performance began to quickly deteriorate. However, the
performance of the scintillators machined by McNeal was significantly better than

the scintillators machined by Plastic-Craft as can be observed by comparing Figs.

and 2.6
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Figure 2.7: Machined scintillator by McNeal Enterprises. The green data points
are the time resolutions of the straight bar. The blue data points are the time
resolutions for the machined scintillator bar. There is no substantial difference
(=~ 40 ps) between the two bars. The red vertical line indicates where the bend
region begins.

After approximately five months, the scintillator which survived the machining
by McNeal began to show clear signs of crazing as seen in Fig. [2.8] The scintillator
was then measured to see the effects that crazing imposes on a machined scintillator
bar. The measurements are shown in Fig. 2.9

A second batch of prototypes, consisting of 3 machined scintillators, was then
manufactured by McNeal. Upon arrival at FIU it was discovered that one paddle had
been broken during shipping. The remaining two paddles showed less than desirable

initial time resolution measurements which was expected since both paddles had

suffered large amounts of surface damage specifically in the bend region seen in

39



Figure 2.8: Crazing in first scintillator machined by McNeal. A diffuse laser was
shone into the end of the straight section. Surface crazing is immediately obvious
due to the large amount of light loss.

Fig. [2.10] Shortly after arrival the scintillators from the second batch began to
deteriorate which is clearly visible in Fig. 2.9

After lengthy discussions with the project manager at McNeal it was learned that
they did not handle the scintillators correctly as a result of their ignorance in proper
scintillator handling. They were ultimately provided with all the necessary materials
needed to properly handle scintillator material and educated on its sensitive nature.
The discussions also led to the decision for Eljen to perform the bending of the
scintillators prior to being machined by McNeal.

A third and final prototype batch consisting of five machined scintillators was
ordered from McNeal. Upon arrival at FIU it was learned that all five machined
scintillators had survived both the machining and shipping process. Moreover, the
quality of the scintillators appeared to be far superior to what was observed with
the previous two batches as can be seen in Fig. 2.11]

Machined scintillator paddles from the third batch were monitored closely for

possible signs of deterioration. Figure [2.12 shows the time resolution measurement
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Figure 2.9: Deterioration in scintillators machined by McNeal. An average reduction
of =~ 175 ps in time resolution is observed over the course of five months. Paddle
1 was from the first batch of machined scintillators while paddle 3 was from the
second.

Figure 2.10: Scratches in bend region of McNeal’s machined scintillators. A diffuse
laser was shone into paddle 3 of the second batch at the wide end of the straight
section.

data for all five prototype paddles. It was immediately obvious that the third batch
of scintillators were far superior to any others received in the previous batches. Aside
from paddles 1 and 3, which were erroneously handled with medical examining gloves
which had lotion deposits on the surface of the gloves, no paddles seemed to show
any observable signs of deterioration. The third batch of prototype scintillators

proved that with Eljen performing the precision bend and McNeal performing the
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Figure 2.11: Good quality machined scintillators from McNeal. This was paddle
1 from the third batch. It is useful to note that there are no locations along the
surface of the scintillator where numerous scratches have occurred.
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Figure 2.12: Deterioration monitoring of the third prototype batch from McNeal.
Left: time resolution measurements of all five paddles taken immediately upon
arrival. Right: time resolution measurements of all five paddles taken three and
a half months after arrival.

machining to the desired geometry, the ST scintillator paddles could meet, if not

exceed, the design time resolution of 350 ps.

2.2 Wrapping Studies

Wrapping scintillators in reflective materials has many advantages. Not only does
the reflective material enhance the overall performance, it protects the surface of the

scintillator from incurring any damage from handling. Another advantage is that
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the reflective material reduces the amount of cross talk between adjacent scintillator

paddles.

2.2.1 Wrapping Prototypes in Reflective Materials

A few different reflective materials were investigated as potential materials which
would be wrapped around the individual ST scintillators paddles. While VM2000
from 3M has extremely good reflective properties it is quite thick ~ 75 um and
not very malleable. Thus, it was decided that VM2000 was not a viable candidate
for wrapping the individual ST paddles. Instead, studies were carried out while
wrapping the machined prototypes with 2 pm thick aluminized Mylar and food
grade Reynolds Wrapg aluminium foil which is 16.5 pm thick. Figure shows a

machined scintillator paddle wrapped in the two aforementioned reflective materials.

Figure 2.13: Machined scintillators wrapped in reflective materials. Left: 2 pum
aluminized Mylar. Right: 16.5 ym aluminum foil.

While the prototype was wrapped, the scintillators were tested in a similar man-

ner to what was discussed in section 2.1.1] Figure shows the results of the
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measurements. The tests concluded that there was no substantial difference in per-
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Figure 2.14: Time resolutions of wrapped machined scintillators. It is interesting to
note the drastic improvement in time resolution as the source moves further away
from the SiPM in the nose region.

formance enhancement among the Mylar and Al foil wrapping. However, it was
learned that 2pm aluminized Mylar is quite difficult to work with when attempt-
ing to wrap machined scintillator paddles while the Al foil proved relatively simple.
Therefore, it was decided to wrap the machined scintillator paddles with Al foil.
A systematic procedure for wrapping machined scintillator paddles in Al foil was

eventually developed and implemented.

2.2.2 Cross-Talk Measurements

If two scintillators are placed adjacent to one another it is possible that light travel-
ling in one scintillator can escape the scintillator medium and enter into the medium
of the adjacent scintillator. Assuming there are two independent detectors collect-
ing light from each respective scintillator, then some amount of light detected by
the detectors could in fact have originated from the adjacent scintillator. This phe-
nomenon is known as cross-talk. Cross-talk is something to be minimized when

dealing with arrays of adjacent scintillators such as the ST.
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To perform cross talk measurements the gain of the PMT being used in the
measurements was required to be known. To measure the gain of a PMT one must
analyze the single photo-electron (SPE) spectrum. The SPE spectrum was produced
with a light emitting diode (LED) which sends pulses of light to the photocathode
of a Photonis XP2262 PMT which had a mask of Tedlar, cut to the dimensions of
the scintillator paddle (3 x 15 mm?). The Tedlar mask ensured that the area of the
photocathode that was being illuminated by the LED source was identical to the
area of the end of a machined scintillator paddle. The LED source was then varied
in intensity until the SPE spectrum was clearly visible in the ADC data.

To determine the gain of a PMT the procedures outlined in [18] were followed
to fit the SPE spectrum. It is assumed that the distribution of the number of
photoelectrons released via the photoelectric effect due to the photons generated
by the LED source, is governed by Poissonian statistics. The probability (P(n; u))
that n photoelectrons will be observed with a mean (¢) number of photons incident
on the photocathode is given by Eq. 2.1} Furthermore, u is defined to be the mean
number of photoelectrons collected by the first dynode in the PMT.

pre
n!

P(n; p) = (2.1)

It is useful to note that the parameter u is dependent on the light intensity of the
LED, the quantum efficiency of the PMT’s photocathode, as well as the electron
collection efficiency of the PMT’s dynodes.

The backgroundless signal response of a PMT can be described by the convo-
lution of a Poisson distribution and a convolution of a Gaussian distribution corre-
sponding to the PMT output charge distribution when n photoelectrons are collected

at the first dynode and is given by Eq. 2.2
(x —nQ;)?

Sidear () = P(1; 12) @ Gi( Z“ m@ 2nof (2.2)

45



The 1 index corresponds to the Gaussian variables associated with the PMT re-
sponse if a single photoelectron was collected at the first dynode. Assuming the
background events contributing to the total charge collected by the PMT is given
by a convolution of a Gaussian and an exponential discussed in [18], then the re-

alistic PMT signal response distribution is given by the convolution seen in Eq.

2.3
Sreat(x) = /Sideal (2")B(x — 2)da'
(2.3)

— Z K n€! (1 —w)G,(z — Qo) + wlg,ge(x — Q)]

n=0
Where Ig,or(z — Qo) is given by Eq.
IG,L@)E(x — QO) — /Gn(x/ N Qo)ae_a(x_x/)dl‘/ _
Qo

X {erf (‘QO _acjr:/; Ug&’) + sign(z — Qn — aoy) x erf (|$ — fnnﬂagal)}( |
24

ge—a(I—Qn—aJ%)

It is useful to note that Qg & o define the pedestal and ()1 & o define the single
photoelectron peak. Moreover, the nt" photoelectron peak is given by Q,, = Qo+nQ;
and the variance is 02 = 02 +no?. The parameters w and « are parameters defining
the exponential background.

Fitting Eq. with parameters Q,,o,, w, and « as fit parameters to ADC
data collected in the manner previously discussed, allowed the gain of the Photonis
XP2262 PMT to be determined and is given by the parameter ¢y [18]. It is useful
to note that up to fifteen photoelectron peaks were used to fit the SPE ADC data
when only four fits were drawn in Fig. [2.15]

With the gain of the Photonis XP2262 PMT known it was then possible to
perform cross talk measurements for two machined scintillators placed adjacent to
each other with one scintillator rotated 180° relative to the other. The scintillator

edges were arranged such that the edges were flush against one another so as to
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Figure 2.15: Determination of the gain for the Photonis XP2262 PMT. The red
line is the fit to the SPE spectrum utilizing the convolution function given by Eq.
2.3l The green line is the fit to the pedestal. The blue line is the fit to the SPE
peak, the cyan line is the two photoelectron peak and the purple line is the three
photoelectron peak
simulate the arrangement of adjacent scintillators in the final ST configuration.
One scintillator was read out at the upstream end by a SiPM while the adjacent
scintillator was readout by the Photonis XP2262 PMT, whose gain was known, which
had been masked with Tedlar as was discussed in the gain calibration. Data were
then collected by alternating a collimated *Sr source coupled to the wide flat surface
of the adjacent scintillators as seen in Fig. [2.16| with and without reflective material
(Al foil and 2 pm aluminized Mylar) placed between the adjacent scintillators.
After the six sets of SPE ADC data were collected, the spectra were fit utiliz-
ing the function given by Eq. with the gain factor parameter (), fixed to the
gain factor of the Photonis XP2262 PMT which was determined previously. The
SPE ADC data and corresponding fits when no reflective material had been placed
between the two adjacent machined scintillators is show in in Fig. The SPE
ADC data and corresponding fits when Al foil had been placed between the two

adjacent machined scintillators is show in Fig. 2.18| It is useful to note that the Al
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Figure 2.16: Experimental set-up for cross talk measurements. Top left: source cou-
pled the scintillator being readout by the Photonis XP2262 PMT with no reflective
material between adjacent scintillators. Bottom left: source coupled the scintillator
being readout by the SiPM with no reflective material between adjacent scintillators.
Top right: source coupled the scintillator being readout by the Photonis XP2262
PMT with reflective material between adjacent scintillators. Bottom right: source
coupled the scintillator being readout by the SiPM with reflective material between
adjacent scintillators.
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Figure 2.17: Single photoelectron spectrum with no reflective foil. ADC spectrum
as read out by the Photonis XP2262 PMT with no reflective foil placed between the
adjacent machined scintillators. Left: source coupled to scintillator being read out
by the SiPM. Right: source coupled to scintillator being read out by the Photonis
XP2262 PMT.

foil was oriented such that the reflective side was always flush against the edge of
the scintillator which had the source coupled to it. For brevity only the Al foil and

no reflective material are shown.
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Figure 2.18: Single photoelectron spectrum with Al foil. ADC spectrum as read out
by the Photonis XP2262 PMT with Al foil placed between the adjacent machined
scintillators. Left: source coupled to scintillator being read out by the SiPM. Right:
source coupled to scintillator being read out by the Photonis XP2262 PMT.

The parameter of importance, the mean number of photoelectrons collected by
the first dynode p, was extracted from the aforementioned fits. Effectively, p is
proportional to the intensity of the light source . Therefore, the mean number of
photoelectrons collected by the first dynode in the Photonis XP2262 PMT when the
source was coupled to the scintillator read out by the SiPM (ug;pas), and similarly
when the source was coupled to the scintillator read out by the Photonis XP2262

PMT (psipar), is a measure of how much cross talk exists between the two adjacent

machined scintillators. The results of the cross talk measurements are summarized

in Table 2.3
Reflective Material SiPM PMT IMSiPM/,upMT
None HUsiPM = 0.713 UPMT = 1.501 48.7 %
Aluminum Foil wsipavr = 0.108 | ppyr = 1.137 9.5 %
2 pum Mylar psipn = 0.129 | ppyr = 1.362 9.5 %

Table 2.3: Results from cross talk studies.

From the data it is clear that having reflective material between two adjacent
scintillator paddles reduces cross talk by nearly a factor of five. The data also show

that there is no difference in the reduction of cross talk when using Al foil and 2 um
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aluminized Mylar. Due to the inherent difficulty of wrapping machined scintillators
with 2 gm aluminized Mylar and no clear enhancement of scintillator performance
relative to Al foil, it was decided that the machined scintillators comprising the ST

would be wrapped in Al foil.

2.3 GEANT4 Simulations

Monte Carlo (MC) simulations were conducted in order to better understand the
performance and characteristics of scintillators machined to the 30 paddle design
of the GlueX Start Counter. Comparisons were made with the data observed in
experiments conducted on the bench at FIU. The MC studies were performed with
the use of the simulation tool-kit GEANT4 which simulates the passage of particles

through and interacting with matter [19].

2.3.1 Simulating a Simplified Model of the ST

As discussed previously, the scintillator paddles comprising the ST have a unique
geometry in which the nose section tapers down in width as the paddles approach
the beam line. The tapering effect caused for a unique phenomenon in which the
light output of the paddle begins to increase as the source moves further away from
the readout detector. At first, this phenomenon is completely contrary to what one
might expect. When the source moves further away from the end being readout the
photons have a larger effective path length and thus have an increased probability
in light being lost for detection.

A primitive GEANT4 simulation was conducted to investigate if the unique
geometry of the nose section was responsible for the increased light collection as the

source moved further away from the readout detector. For simplicity and robustness
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only the two trapezoidal regions of a machined scintillator bar were considered.
Namely, the wide straight section and the tapered nose section which are illustrated

in the GEANT4 event display seen in Fig. [2.19]

Tapered Nose
Scintillator

Figure 2.19: Simulated straight & nose section geometries. Shown is the GEANT4
event display. Left: wide straight section. Right: tapered nose section. The sections
have been oriented such that they are in the same coordinate system as defined in
HallD. The yellow lines are the scintillator boundaries, while the red lines are the

boundaries of the SiPM.

The EJ200 scintillator material (p = 1.023 g/cc®, n = 1.58) [20] was simulated
with only one free parameter utilized to characterize the scintillator bar i.e., the
reflectivity of the G4LogicalSkinSurface, was set to 98% so there remained some
finite probability that photons could be lost in the scintillator medium. Furthermore,
the SiPM readout detector was placed at the wide end of the two sections, seen in
Fig. and was constructed as a G4SensitiveDetector made of Silicon with a
100% detection efficiency.

In order to simulate a charged particle traversing through the scintillator medium
resulting in the production of photons along its path through the material, optical
photons were generated inside the simulated scintillator. The scintillation yield was
defined to be 10,000v's/ 1 MeV [20]. For visual purposes, Fig. shows 100
optical photons being produced at the tip of the far end of the two sections of the

simulated scintillator paddle.
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Figure 2.20: 100 Optical photons generated in the staight & nose sections. Left:
wide straight section. Right: tapered nose section. The neon green lines are the
paths of the optical photons. It is clear that some photons do in fact escape the
scintillator medium, while others are collected in the simulated SiPM detector.

In order to sample the entirety of the two sections 10,000 optical photons were

generated at 16 different locations inside the medium of the scintillator. The photon

Figure 2.21: Optical photon gun locations along the straight & nose sections. Left:
wide straight section. Right: tapered nose section. The magenta geometries indicate
the scintillator boundaries of the two sections. The red box is the sensitive SiPM
detector, and the green cylinders represent the location of the 16 optical photon
gun locations. The locations of the source were chosen to be equal distances apart
relative to each of the two sections.

energies ranged between 0.5 — 3.0 eV [21] and were generated randomly in 47 along
a 3 mm path (y —axis) in the scintillator medium, orthogonal to the wide surface of
the scintillator so as to simulate a charged particle traversing through the scintillator

medium with a 0,4, = 90° in hall coordinates. The number of photons collected by
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the SiPM at each of the 16 source locations is counted and correlated to the source

location. The results can be seen in Fig. [2.22] From the data it is clear that the
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Figure 2.22: Simulation results for simplified two section scenario. The total number
of photons which were collected by the SiPM detector at each of the 16 source
locations is plotted against the sources distance from the sensitive detector. Left:
wide straight section. Right: tapered nose section.

unique geometry of the nose sections causes an improvement in light collection as
the source moves further away from the readout detector. In fact, there is a factor
~ 1/2 light loss observed in the straight section upon comparing the number of
hits collected at the closest and furthest locations relative to the readout detector.
However, there is factor &~ 3/2 light gain observed in the nose region. These results
are primarily due to the unique scintillator geometry. This phenomenon is advan-
tageous in the case of the ST since the majority of forward going charged particles

will traverse through the nose region.

2.3.2 Simulating the Machined Scintillator Geometry

Further simulations were conducted by P. Khetarpal [22] to simulate more real-
istically the effects of light collection that results from the unique ST scintillator

geometry and optical surface quality.
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The ST scintillator geometry was imported into GEANT4 from a Vectorworks
CAD drawing utilizing the CADMesh utility [23] and can be seen utilizing the

GEANT4 event display in Fig. [2.23] The SiPM was constructed as a 12 x 12 x

Al

S %

G

Figure 2.23: Scintillator geometry imported into GEANT4 utilizing CADMesh Util-
ity. The scintillator is coupled to a SiPM detector. Left: isometric view. Right: top
view. The tapering of the nose section is clearly visible.

10 mm?® volume with a 100 ym air gap between it and the wide end of the straight
section. Furthermore, the volume surrounding the scintillator volume was air. The
EJ-200 scintillator material, SiPM silicon detector, and optical photons were defined
in an identical manner discussed in section 2.3.11

To simulate the imperfections, due to the manufacturing and machining, on
the scintillator surfaces an optical surface “skin” was defined to exist on the the
scintillator surfaces and between the surrounding air. The material was defined to be
of they type “dielectric-dielectric” and made use of the UNIFIED physics model [24]
to define an imperfect scintillator surface. Both the transmission efficiency and
reflection parameters were implemented as free parameters to study their various
effects on light transmission.

The UNIFIED model allows one to define the finish of the scintillator surface as

polished, ground, or unified and is illustrated in Fig. [24].
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Figure 2.24: UNIFIED Model of scintillator surfaces. Left: Polar plot of the radiant
intensity of the polished (left) and ground (right) models. Right: Polar plot of the
radiant intensity in the UNIFIED model.

In the polished model, Fresnel reflection and refraction is assumed, where as the
ground model allows for Lambertian reflection, Fresnel refraction, backscattering, as
well as spike and lobe reflections. The spike (Cj;) reflection parameter assumes the
optical photons are reflected as if the surface was a perfect mirror. The backscatter-
ing (Cs) reflection parameter assumes the photon is reflected in the same direction
of incidence. The Lambertian (Cy) reflection parameter assumes that the photons
are reflected corresponding to a Lambertian distribution. The lobe (Cy;) reflec-
tion parameter assumes that the photons will reflect based on the orientation of
the micro-facet on the scintillator surface, where o, defined the standard deviation
of the distribution of the micro-facets orientation [24]. One caveat of the afore-
mentioned models is that they assume identical parameters for the entire optical
surface [22].

As was done in section 10,000 optical photons were generated in the scintil-
lator medium every 2.5 cm and the number of hits in the SiPM were recorded. The
results of these simulations are show in Fig. [2.25] It is clear the transmission effi-

ciency increases assuming a polished surface and so does the overall light collected
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Figure 2.25: UNIFIED Model results. Left: polished model while varying the trans-
mission efficiency. Right: ground model with varying o, which characterizes the
standard deviation of the surfaces micro-facet orientation.

in the SiPM as seen in Fig. Similarly, as the number of possible micro-facet
orientations increases, meaning a more coarsely ground surface, the light input de-
creases as expected. Moreover, in the instances where the surface quality of the
machined scintillators are good, the phenomenon of light increase in the nose region
as the source moves further from the readout detector is clearly observed.

It is clear, in both simulation and experiment, that the unique geometry of
the ST scintillator paddles causes the straight region and the nose region to have

drastically different light output properties.

2.4 Misalignment Studies

To protect both the active area of the SiPMs and the scintillator surface at the
upstream end of the straight section, the coupling distance between the two was
required to be larger than zero. Similarly, the scintillator paddles were also shimmed

radially such that the top edge of the scintillator was level with the top edge of
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the active area of the SiPM thereby maximizing light collection. It was therefore
necessary to study the effects of SiPM /scintillator misalignments on light collection
and time resolution.

A CAD drawing of the custom test stand, seen in Fig. [2.26] illustrates all the

components of the custom test stand used in the misalignment studies. The SiPM

Trigger PMT

Figure 2.26: CAD Drawing of custom test stand. The test stand was used in the
misalignment studies.

sits atop a Newport MT-XYZ (MT) compact dovetail XYZ linear translation stage
with three fine adjustment screws with 80 threads per inch as seen in Fig. [2.27]
Each translation knob for the three axes of translation provides a translation of
318 pum per rotation. It is useful to note that for each location of the SiPM, relative
to the scintillator, the source and trigger PMT were located at z = 24.467 cm and

10,000 event triggers were collected.
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Figure 2.27: The SiPM case is the aluminum matt finished metal. The translation
stage is black. Left: isometric view of SiPM case and MT-XYZ translation stage.
Right: front view (looking upstream).

2.4.1 Vertical Alignment of SiPM & Scintillator

To study the effects of the various horizontal (translations along the z — axis)
coupling distances, the relative position of the active area of the SiPM and the top
edge of the scintillator paddle was required to be known. Vertical alignment is the
most critical since the 3 mm thickness of the scintillator matches the 3 mm height of
the active area of the SiPM. To test the 50 machined scintillators in a reproducible
manner, the vertical alignment of the SiPM and scintillator must be replicated in a
robust manner.

Utilizing an Edmund Optics CMOS camera, and a ruler (seen in Fig. the
vertical alignment of the top edges of the SiPM and scintillators could be measured
within 0.025 mm accuracy relative to the ST2 PCB Board. The 3 x 3 mm? SiPMs,
which are mounted to the ST1, are housed in a ceramic case mounted on the ST1
PCB. Therefore, there exists some area between the top of the SiPM ceramic case
and the active area of the SiPM which must be taken into account. The distance is
also measured both optically and manually relative to the ST2 PCB.

Figure illustrates a labelled schematic similar to what was seen in Fig.
and depicts the variables measured and monitored so as to quantify the vertical

alignment. Of all the variables in Fig. y is of the utmost importance since it
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Figure 2.28: Vertical alignment optics set-up. The reference line corresponds to
the top surface of the scintillator, while the micrometer position on the ST2 is
clearly marked so that the absolute difference could be measured both optically and
manually with a micrometer.
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Figure 2.29: Vertical alignment optics schematic. Left: labelled cartoon of SiPM &
scintillator vertical alignment. Right: variables used to quantify vertical alignment.
The scintillator is intentionally misaligned in this cartoon so that the misalignment
parameter y is visible.

is the distance between the top edge of the scintillator paddle and the active area
of the SiPM and is the quantization of the vertical misalignment. That is to say
the at y = 0 the SiPM and scintillator are aligned vertically. Both the distance
between the top of the SiPM and ST2 PCB (a), and the distance between the top

of the SiPM and the active area of the SiPM (c), are measured optically and define
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the distance between the top edge of the active area of the SiPM and the ST2 PCB
(d) via d = a — ¢, which are all constants. It is necessary to note that the coupling
distance between the active area of the SiPM and scintillator (z) was done by eye
and then measured optically until a desirable coupling distance was found. The

values of the aforementioned variables are summarized in Table 2.4l The variable b

Variable | Value (mm)
a 5.22
c 0.91
d 4.32
zZ 0.25

Table 2.4: Vertical alignment variables. All variables were measured five times and
the numbers reported are averages of those values.

defines the distance between the top edge of the scintillator and the ST2 PCB and
is measured both optically and manually. This distance, coupled with the constant
d, provides the measured quantity y through the difference y = b — d.

The coordinate system used to quantify the vertical misalignment studies is
illustrated in Fig. [2.30] The scintillator remained fixed, while the SiPM was lowered,
relative to the scintillator, to the minimum location governed by the range of the
MT translation stage at approximately y = —4 mm. Coarse measurements were
then taken at half turns (159 pm) intervals until the maximum height of the MT
translation stage was reached which was approximately ¥y = +4 mm. The results
of these measurements can be seen in Fig. [2.31] Once the coarse measurements
concluded, the SiPM was lowered to y &~ —1 mm and then the translation stage
was moved in quarter turn (79.5 pum) intervals until y ~ +1 mm was reached. The
results of both the coarse and fine measurements are seen in Fig. 2.32] It is useful
to note that at every location of the SiPM the distance traversed was verified by a

manual measurement made with a micrometer (1 mal precision).
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Figure 2.30: Vertical alignment schematic. The scintillator is fixed while the SiPM
effectively scans across the face of the scintillator along the y-axis.
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Figure 2.31: Coarse vertical misalignment results. The minimum time resolution
obtained was approximately 350 ps which was expected. Once the SiPM exceeded
y = 3 mm there is no active area of the SiPM coupled to the face of the scintillator.
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Figure 2.32: Fine vertical misalignment results. Note that the coarse and fine
measurements were overlapped so the reproducibility of the measurements were
depicted.

From the vertical misalignment studies it is clear that there is no significant
variation of time resolution within a +300 um range of the ideal alignment. These

results were also simulated in a manner similar to what was discussed in section

2.3.2] and the results are seen in Fig. [2.33] The Geant4 simulations indicate that
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Figure 2.33: Vertical alignment simulation studies . It is important to note the
x-axis corresponds to the y-axis as discussed with the experimental measurements.
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the acceptable range of vertical misalignment is approximately £250 pm which

is consistent with what was measured on the bench at FIU.

2.4.2 Coupling Distance of SiPM & Scintillator

With the vertical alignment between the scintillator and SiPM optimized, the effects
of varying the coupling distance was studied. Using an identical set-up as was
described in section the coupling distance, and resulting time resolutions, was

measured at various locations with three distances shown in Fig. While the

1.96 mm
8

=

0.122 mm

Figure 2.34: Coupling distance optics. Various coupling distances as measured with
the CMOS camera. The high degree of precision is clearly visible.

coupling distance was varied, the vertical alignment was kept constant at the optimal
location determined from the studies outlined in section 2.4.1] and was monitored
both optically and manually.

With the optimal vertical alignment having been verified, the SiPM was moved
via the MT translation stage along the z — axis such that the active area of the
SiPM was flush against the face of the machined scintillator paddle at z = 0 mm.
In the coupling region z < 1 mm the SiPM was receded from the face of the SiPM
in 1/4 turn (79.5 pm) intervals. For 1 mm < z < 2 mm, the SiPM was receded from
the face of the SiPM in 1/2 turn (159 pm) intervals, and for 2 mm < z < 4 mm data

were collected in 1 turn (318 pm) intervals and is illustrated in Fig. [2.35
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Optimization of SiPM Coupling
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Figure 2.35: Coarse coupling distance studies. It is useful to note that at a coupling
distance of 251 pm the time resolution was identical to what was measured in Fig.
[2.32) while conducting the vertical alignment studies.

Figure zooms in on the (z < 1 mm) region of the coupling distance stud-
ies shown in Fig. [2.35 It is clear from the data the optimal coupling range
was b0 pm < z < 350 um and there was no significant reduction in time resolu-
tion performance over a 0 ym < z < 600 pum range. Similarly, the simulation re-

sults also indicate that there is no significant reduction in light collection in the

0 pm < z < 600 pm range [25].
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Optimization of SIPM Coupling
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Figure 2.36: Fine coupling distance studies. The blue shaded region (50 um < z <
350 pm) indicates the optimal coupling range.
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Figure 2.37: Coupling distance simulations. Simulations indicated that the optimal
coupling distance is in the 50 pm < z < 350 pum range.

65



CHAPTER 3

Start Counter Construction

3.1 Polishing Machined Scintillators

Prior to polishing 50 machined scintillators, received from McNeal Enterprises [17],
a coarse measurement of the paddles performance was conducted to understand the
magnitude of damage the paddles had incurred as a result of mishandling during
edge polishing. The time resolution was measured at three precise locations along
the length of the scintillators utilizing a custom fabricated test stand discussed in
section [2.4.1] The upstream end of the scintillator where the light is readout out by
the SiPM is defined to be z = 0.0 cm. One measurement is taken in the middle of
the straight section at z = 24.47 c¢m, one in the middle of the bend at z = 42.190
cm and one at in the tip of the nose at z = 59.02 cm.

In doing so, we were able to quickly determine the properties of the three sections
of the paddles which we then used to predict the behavior of the remaining untested
scintillator areas. Thus, we were able to determine which scintillators, at their
current state, were defective and were essentially unusable for the final construction
of the start counter. These scintillators were then utilized so that the optimal
polishing procedures could be developed.

Figure illustrates the erratic fluctuation in time resolution performance that
existed from paddle to paddle prior to polishing the scintillators. On average, even
at the tip of the nose, the 50 paddles did not meet the design resolution of 350 ps.

Once the appropriate polishing procedures had been developed and implemented
the surface quality was greatly improved as can be seen in Fig. [3.2l The same
scintillator paddle is shown in Fig. [3.2]before and after polishing. Instead of shinning

a diffuse laser into the upstream end of the straight section, the laser beam was shone
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Initial Paddle Properties
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Figure 3.1: Coarse time resolution measurements prior to polishing. Paddle number
is on the x-axis and time resolution in ns on the y-axis. The scintillators were
tested on the custom test stand and were not wrapped in aluminum foil. The red
points correspond to the time resolution in the bend region, the blue points are the
average of the three measurements, while the green points occur at the tip of the
nose. The red, blue, and green horizontal lines are the weighted averages of the
three measurements for all 50 paddles.
into the scintillator medium from the upstream end aimed at one edge so that the
total internal reflection towards the tip of the nose was visible. The unpolished
scintillator had such poor surface quality that the reflections in the bend region
could not be seen due to multiple scattering of light at the scintillator boundaries.
However, the reflections in the polished scintillator can clearly be seen traversing
down through the nose region.

After the scintillators were polished they were required to have their performance
remeasured, in an identical manner outlined above and illustrated in figure, [3.1], so

that an initial understanding of the effects of polishing could be understood. As ex-

pected, the time resolutions were greatly improved as seen in Fig. On average,
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Figure 3.2: Effects of polishing scintillators. Left: non-diffuse laser incident on an
edge, before polishing, at the upstream end of the straight section. Right: non-
diffuse laser incident on the same edge, after polishing, at the upstream end of the
straight section.
at the tip of the nose, the 50 scintillators improved in time resolution by approxi-
mately 15%. Furthermore, there was a substantial reduction in erratic fluctuations
in time resolution that was exhibited across the whole lot of 50 scintillators prior to
polishing.

From these measurements, careful consideration was given to the data so as to

determine the best 30 scintillators that would comprise the GlueX Start Counter.

3.2 Testing of Machined Scintillators

Each of the 50 machined scintillators were tested to study light output and time
resolution. They were measured in an identical manner utilizing a custom fabricated
test stand shown in Fig. [2.26] The test stand allows each scintillator paddle to be

measured in an identical and reproducible fashion. There exist 12 precise locations
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Initial Paddle Properties
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Figure 3.3: Coarse time resolution measurements after polishing. Paddle number
is on the x-axis and time resolution in ns on the y-axis. The scintillators were
tested on the custom test stand and were not wrapped in aluminum foil. The red
points correspond to the time resolution in the bend region, the blue points are the
average of the three measurements, while the green points occur at the tip of the
nose. The red, blue, and green horizontal lines are the weighted averages of the
three measurements for all 50 paddles.

in which a %Sr source and trigger PMT can be placed so that each of the 50

scintillators are tested at the same locations. More specifically 4 locations in the

straight section, 3 in the bend, and 5 in the nose were tested.

3.2.1 NIM Electronics

When testing machined scintillator paddles, the signal processing outlined in the
electronics diagram seen in Fig. [3.4] was utilized so that the desired light output
and time resolution measurements could be made.

All discriminator thresholds, associated delays, and gate widths were set to the

values indicated in tables & It is useful to note that the leading edge
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Electronics Diagram

PMT —{ Fan-Out (Ch. 6) |——{ cFD(cn. 1)
Siooet ——{ ADC Gate |
Signal 20nsDelay |—>{ ADC3
SiPM Fan-Out |—3 Amplifier |—{ Fan-Out |—3 CFD 90 ns A TDC 4
Raw (Ch.2) (Ch.2) (Ch. 4) (Ch.2) Delay
Signal
LED 100 ns TDC 6
(Ch. 6) Delay
40 ns jADCA |
Delay
SiPM Intrinsic | .} Fan-Out Amplifier Fan-Out CFD 90 ns TDC 5
Amplified (x5) (Ch.3) (Ch.3) (Ch.3) (Ch.3) Delay
Signal |
LED 100 ns TDC 7
(Ch.7) Delay
40 ns
Delay ADC 5

CFD: Constant Fraction Discriminator
LED: Leading Edge Discriminator

Figure 3.4: Electronics diagram for testing scintillator.

discriminators (LED) were implemented for the purpose of time-walk correction

studies. All DC offsets, controlled by the linear fan out modules, were set to the
CFD Channel | Threshold (mV) | Delay (ns) | Gate Width (ns)
1 -100 5 56.0
2 -100 8 40.8
3 -145 8 40.8

Table 3.1: CFD settings

LED Channel

Threshold (mV)

Gate Width (ns)

6

-100

36.4

7

-145

40.8

values indicated in Table[3.4] Similarly, all amplification factors associated with the

Table 3.2: LED settings

SiPM were set to the values indicated in Table 3.3
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SiPM Signal Amplification Factor
Raw signal 7.05
Intrinsically amplified signal (x5) 2.54

Table 3.3: SiPM signal amplification factors.

Channel | DC Offset (mV)
2 -1.8
3 -6.2
4 -30.5
5 -12.0
6 -3.2

Table 3.4: DC Offsets. These offsets correspond to linear fan out modules.

3.2.2 Testing a Machined Scintillator Paddle

Utilizing a dedicated data acquisition computer configured with CEBAF online data
acquisition CODA software, 10,000 event triggers and associated data were collected
at each of the 12 locations along the scintillator path. Subsequently, ADC and TDC
data for the machined scintillators were analyzed in detail as outlined in section
4.4.2

Once the best 30 scintillator paddles were selected, they were wrapped in Al foil
and then tested at all 12 locations on the test stand.

The measured time resolutions for the 30 best scintillators, which would eventu-
ally comprise the ST, were found to be satisfactory and even below design resolution
in the nose region which is illustrated in Fig.

The unique geometry of the machined scintillator paddles exhibit the phenomenon
of an increase in light collection in the nose region as the light source moves towards
the tip at the downstream end. It is hypothesized that the relatively poor time
resolution in the straight section is due to a reflective smearing effect in which light
is able to traverse from the straight section down to the tip of the nose, and then

back up to the upstream end.
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Figure 3.5: Time resolution of 30 the best scintillator paddles. The performance of
the lot of scintillators is remarkably similar and only show a spread of =~ 50 ps in
the nose region.

The overall time resolution of the individual scintillators are shown in Fig. 3.6

3.3 Assembly of the Start Counter

A custom fabricated support structure (assembly jig) was constructed to provide

aid in the assembly of the Start Counter and is seen in Fig. [3.7]

3.3.1 Assembly Jig Components

The assembly jig consisted of a rotating cylindrical mounting bracket rigidly at-
tached to a 2”7 diameter shaft housed in two cast iron mounted steel ball bearings.

The rotating bracket was engineered such that it was free to rotate unless engaged
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Figure 3.6: Average time resolution of 30 best scintillator paddles. The red data
points correspond to the maximum time resolution obtained in all 12 data points.
The blue data points are the weighted average of all 12 data points. The green data
points indicate the minimum time resolution obtained in all 12 data points.

by a spring loaded locking plunger which would cause the assembly jig to move
in discretized 12° intervals. Furthermore each 12° interval corresponded a paddle
being oriented perfectly parallel to the table so that alignment and coupling could
be performed reliably and reproducibly.

The Rohacell support was manufactured by a vendor approved by JLab while
the upstream chassis was fabricated, and rigidly attached to the Rohacell support
structure by Jlab technicians. They also installed the 3 layers of 650 pm thick carbon
fiber to the inner surface of the Rohacell which reinforced the support structure
during the assembly process. While mounted to the assembly jig, the upstream
chassis (and Rohacell) was attached to the rotating bracket. A few gaps existed in

the Rohacell at the glue joints, and were filled in with black RTV silicone caulking

73



Gas System
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Rohacell

Figure 3.7: Assembly jig and lockout system. Rohacell support structure mounted
on assembly jig and lockout system.
for light tightening purposes. Moreover, it was painted with black latex paint and
allowed to dry overnight.

The vertical bar running parallel to the table above the Rohacell served as a
mount for the pneumatic cylinders so that the scintillators could be held firmly in

place during installation. Furthermore, it provided a surface in which a portable
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flex arm could hold the Edmund Optics complementary metal oxide semiconductor
(CMOS) camera to monitor the coupling of the scintillators and SiPMs.

A pressurized gas system was implemented to provide manual control of the
two pneumatic cylinders with soft, semi-dense rubber feet attached to the ends

illustrated in Fig. [3.8 The rubber feet would hold the scintillator being installed

Pneumatic
Cylinders

== |

Bi-directional §

Solenoids

Figure 3.8: Pressurized gas system. At the end of each solenoid was a soft, semi-
dense rubber foot which would hold the scintillator being installed firmly in place.

firmly in place by activating two switches which controlled each pneumatic cylinder
independently via bi-directional solenoids connected in a 5 psi nitrogen gas system.

Two free floating acrylic rings, with 30 tapped holes 12° apart, were fabricated
so as to firmly hold the 30 scintillator paddles in place during assembly. Each
tapped hole housed a 10° swivel pad thumb screw which had silicone foam foot
(0.25 x 0.25 in?) adhered to it in order to provide a soft barrier between swivel pad
and the scintillator surface. Swivel pad screws were chosen so that there existed a
maximal amount of play between the scintillator and swivel pad in the event that
the screw was not perfectly orthogonal to the scintillator surface.

The camera and its associated software were utilized to measure scintillator /SiPM

coupling distances and shimming heights with a precision of < 10 um in real time.
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Figure 3.9: Free floating acrylic rings. Left: Rohacell prior to being painted with
black latex paint. Each free floating ring is supported by 30 swivel pad screws.
Right: Rohacell after being painted black. One wrapped scintillator paddled is
being held firmly in place by two swivel pad screws.

The camera was calibrated such that at various magnification settings the distance

to pixel ratio was known.

3.3.2 Mounting ST1 boards

The 10 ST1 boards, housing 3 sets of 4 3 x 3 mm? SiPMs were mounted to the
pre-fixed tapped holes along the lip of the upstream support hub as seen in Fig.
3.10l Black 1 mm spacers were installed between the ST1 PCB and the support hub
to avoid any possibility of the electrical contact between the two. After installation

it was evident that the through holes in the ST1 PCB were quite a bit larger in
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Figure 3.10: SiPMs mounted to support hub. Left: 1.5 ST1 PCBs mounted to
support hub. Right: 30 ST1 PCBs (120 SiPMs) mounted to support hub

diameter relative to the screws used to connect it with the support hub. Thus, the
ST1 PCB was free to move in the zy plane (hall coordinates).

A wrapped scintillator, known to not be a candidate for final installation, was
then used as a reference so that the relative positions of the ST1 PCBs could be
determined in a reproducible manner. The scintillator was placed at all 30 locations
and coupled to each SiPM readout. This was done with all 10 ST1s fixed to the
support hub. In the final configuration of the ST all 30 scintillators would be held
in place by 0.8 mil thick bundling wrap. Therefore, it was required to wrap the
reference scintillator to the Rohacell support structure so that it was as flush as
possible to the surface as illustrated in Fig. [3.11} The position of the ST1 was
adjusted such that the distance between the top edge of the scintillator and the top
edge of the active area of the SIPM was offset by 30 mils (30 mil = 0.03 in = 762 pum)
of radial shimming.

The offset was measured with the CMOS camera. If the alignment deviated from
30 mils, by more than 10 mils, the ST1 boards were realigned as close as possible to

the nominal 30 mils by readjusting the ST1 before securing it to the support hub.
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Figure 3.11: Aligning ST1 to support hub. Left: CMOS camera and lamp prepared
to monitor ST1 positioning. Right: Reference scintillator wrapped to Rohacell
during ST1 alignment.

3.3.3 Scintillator Paddle Installation

In order to avoid biasing the orientation of the best 30 paddles based on their
performance, their locations on the ST were randomized and numbered from channel
0-29. To install a paddle the assembly jig was locked into the desired orientation
via the spring loaded plunger. Next, the swivel screws corresponding to the channel
being installed, were then raised as high as possible to provide maximum clearance
between the Rohacell and the acrylic rings.

The paddle was then carefully positioned into place with upstream end of the
wide straight section located a approximately a millimeter away (downstream) from
the active area of the SiPM. The pneumatic cylinders were then extended so that

the feet came into firm contact with the scintillator and held the paddle firmly in
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place. If repositioning was required then the pneumatic cylinders were retracted,
and the scintillator was adjusted to the desired orientation.

Once the scintillator was being held firmly in the optimal orientation, relative to
the SiPM, the set screws were tightened and a piece of bundling wrap was wrapped
firmly around the scintillator and the Rohacell structure as seen in Fig. [3.11} This
was required for each scintillator paddle being installed since it was discovered that
the scintillators would sometimes bow at the upstream end. This ultimately would
result in false measurements while determining the distance between the top edge of
the scintillator and the top edge of the active area of the SiPM. This distance was
then measured with the camera to determine the amount of shimming necessary for
radial alignment.

In order to determine the approximate amount of radial shimming required for
each paddle, a reference paddle was used to simulate the installation of each of the
30 scintillator paddles prior to the final installation of the paddles as seen in Fig.

[3.12] This was done so as to reduce the amount of handling of the good scintillator

[

-Bundling
Wrap

Figure 3.12: Shimming effects. Left: Before and Right: after shimming.

paddles. Three different thickness’s (5, 10, 20 mil) of Kapton polyimide heavy
duty film (type HN, p = 1.42 g/cm3) were cut into 0.5 X 12 in? strips and utilized
for shimming the scintillators in the radial direction. The 10 and 20 mil material

were an opaque black while the 5 mil material was a semi-translucent yellow. The
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shimming material was stacked in order to have the bottom and top film piece be a
10 or 20 mil piece for light tightening purposes.

Even though measurements with a reference bar were taken, the radial alignment
of the scintillator with the active area of the SIPM was remeasured at the time of
final installation so as to ensure the most optimal coupling. The identical process
of alignment was repeated with the good bars and the final shimming required was
recorded and can be seen in Table 3.5

The Kapton strips were neatly stacked atop each other and placed along the
surface of the Rohacell. They were centered along the the paddle outlines cut into
the Rohacell. While ensuring the Kapton did not move, a paddle would be installed
on top of the Kapton and held firm in place by the pneumatic cylinders with the
upstream end of the straight section being ~ 1 cm away from the active area of the
SiPM. The final coupling took place later.

The paddle was carefully positioned that the center of the upstream paddle
was aligned with the center of the SIPM. Any misalignment or offset would quickly
propagate to the adjacent paddles and it would be impossible to install the remaining
paddles. Once the position of the scintillator was satisfactory the swivel screws were
extended to hold the scintillator in place and pneumatic cylinders were retracted
and the assembly jig was rotated to the next adjacent location. This procedure was

repeated until all 30 scintillator paddles were installed.

3.3.4 Coupling a Scintillator to SiPM on Assembly the Jig

Once all 30 scintillators were shimmed and installed the scintillators were coupled
to the active area of their respective SiPM’s. The paddle was removed from the

assembly jig and the shimming material was positioned ~ 1 cm away from the
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ST1 ST1 Required | Amount FIU
Board | Channel | Shimming | Shimmed | Paddle
Number | Number (mils) (mils) Number

0 34 35 20
1 1 29 30 27
2 24 25 42
0 28 30 48
2 1 28 30 25
2 26 30 22
0 15 20 34
3 1 22 25 16
2 25 30 36
0 34 35 19
4 1 31 30 49
2 37 35 11
0 32 35 17
5 1 32 35 39
2 33 30 10
0 25 25 37
6 1 31 30 50
2 29 30 46
0 20 20 28
7 1 30 30 47
2 25 30 18
0 26 30 03
8 1 32 30 23
2 35 35 38
0 29 30 35
9 1 36 35 14
2 38 35 1
0 35 35 7
10 1 30 30 6
2 25 25 44

Table 3.5: Shimming material used. Amount of shimming material calculated rel-
ative to how much material was used in the final assembly. Table ?? provides a
translation table to equate the FIU paddle numbers to JLab sector numbers.

active area of the SiPM. A piece of computer paper sandwiched between two pieces

of Al foil (= 150 pum thick) was then placed parallel to the active are of the SiPM
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and the paddle was then pressed firmly against the outer most piece of Al foil which

is seen in Fig. [3.13

4 N
S GRS
Coupling B

material —— = @8

Figure 3.13: Steps of coupling paddles to SiPM. Left: Paddle prior to being coupled
to SiPM. Center: Paddle pressed firmly against spacing material and SiPM. Right:
Paddle properly coupled to SiPM at a distance of 162 um.

With the upstream end of the scintillator firmly pressing against the face of the
SiPM the piece of computer paper was carefully removed. Then, the Al foil pieces
were removed individually so as to ensure no damage was incurred on the paddle
surface or SiPM. It is useful to note that studies showed that the coupling of the
SiPM /scintillator could not exceed 300 pum without a substantial amount of light
loss occurring.

Once the paddle had been couple to the SiPM in a manner that was satisfactory
(see Fig. , the paddle was secured via swivel pad screws and the the assembly
jig rotated to the adjacent paddle and the process was repeated in an identical

manner until all 30 paddles had been coupled to their respective paddles.
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3.3.5 Securing the Start Counter Paddles to Rohacell

In order to secure paddles to the Rohacell support structure the Start Counter
was wrapped along its length using self-adhesive transparent bundling wrap (0.8
mil thick, 6 in wide) at six different locations perpendicular to the central axis of
rotation. Four of the locations were wrapped along the straight section at equal
distance (=~ 8 c¢cm) from one another. One section was wrapped around the bend
section and the nose region was wrapped in a symmetrical manner. While wrapping
the straight section, the three most downstream sections were wrapped first, followed
by the upstream end of the start counter. This was done to ensure that the least
amount of torque would be applied to the area closest to the SiPM /paddle coupling.

For the four locations in the straight section ~ 2 ft of bundling wrap was cut for
each section. The bundling wrap was slid under the start counter and centered on
the location to be wrapped. With equal lengths of bundling wrap on each side, the
bundling wrap was placed firmly along the bottom of the start counter. One side of
the wrap was firmly wrapped over the top side of the ST and held in place while the
other end was wrapped over the first. At the end of the overlap area a small piece
of electrical tape was placed to mark the overlap and keep a count of how many
overlaps were placed at one position. This process was repeated for a total of five
times at each of the four positions in the straight section. This procedure was also
done for the bend region. It is useful to note that with every addition of bundling
wrap, it was applied in the reverse manner to the one preceding it so as to reduce
effects of torque during application and to not disturb the paddle/SiPM alignment.

In order to wrap the nose region a strip of bundling wrap centered along the
bottom side, downstream edge of the nose. That is to say that the strips edge was
lined up with the edge of the tip of the start counter nose. The wrap was then firmly

wrapped around the nose region crossed over like a ribbon with the ends stuck onto
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the wrapping along the bend region on the top side of the start counter. Another
strip was quickly applied to the bend region so as to hold the tips of the ribbon in
place. Then the start counter was rotated 180 degrees and the process was repeated.
This was done a total of 4 times at every 90 degrees. Once all the bundling wrap had

been applied the acrylic rings were no longer required to hold the paddles securely

to the Rohacell support structure as illustrated in Fig. [3.14]

—

Figure 3.14: Isometric view of assembled Start Counter. The pieces are black elec-
trical tape which mark the ends of bundling wrap are clearly visible.

3.3.6 Light Tightening of the Start Counter

After wrapping the Start Counter the free floating acrylic rings were removed. It

is necessary to note that prior to installing all 30 paddles an inner cone of black
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Tedlar® (polyvinyl fluoride p ~ 1.5 g/cm?) was taped to the Rohacell for light

tightening purposes as seen in Fig. [3.15]

Bundling
wrap

Figure 3.15: Inner Tedlar cone. Shown is before and after wrapping with bundling
wrap. The cone was specifically engineered to have the same dimensions of the
Rohacell support structure to avoid crumpling of the light tightening material.

The support hub was also was wrapped with Tedlar® and taped down with black
electrical tape. The spacing between the ST1 PCBs along with the bottom side of
the support hub, was filled with RTV black opaque silicone caulking illustrated in
Fig. Similarly, RTV silicone caulking was then applied to the inner edge of
the collar which encompassed the ST1 PCBs at their our diameter as seen in Fig.
5. 10

A cone of Tedlar was wrapped around the nose region and taped down with
electrical tape as seen in Fig. [3.17 The tips of the inner and outer cones in the

nose region were then taped together with electrical tape and eventually trimmed
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RTV Caulking Edges

Figure 3.16: RTV caulking. Left: RTV caulking of ST1 PCBs and hub for light
tightness. Right: Collar designed for light tightening purposes.

of any excess material. Furthermore, a cylindrical piece of Tedlar was taped down

at the bend region and to the collar covering the ST1 boards.

) Outer Cylindrical
Outer Tedlar Cone ' Tedlar Section

Figure 3.17: Light tight Start Counter. Left: Outer cone Tedlar® piece. Right:
Fully light tight Start Counter mounted to the Fall 2015 commissioning target.

Once the ST was thought to be light tight, extensive tests were conducted so as

to ensure that there were no light leaks prior to mounting to the target.
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CHAPTER 4

Start Counter Calibration

4.1 GlueX 250 MHz Flash Analog to Digital Converters

Each of the 30 Start Counter (ST) analog channels are fed into the front panels of
two Jefferson Lab 16 channel 250 MHz VMEG4x flash analog-to-digital converters
(FADC250). The FADC250 readouts for the ST have been configured to the avail-
able 2 volt dynamic range setting. The FADC250s measure a predefined number
of raw samples, at 4 ns intervals, of each incoming pulse corresponding to an event
trigger. If at least one sample of the incoming pulse is larger than the user defined
threshold, then pulse identification will be initiated [26]. There are a number of
useful pulse data that can be reported by the FADC250’s field programmable gate
array (FPGA) for each analog pulse that crosses the programmed threshold value,
depending on the operating mode in which the FADC250 was configured to run.

The various data that can be reported are discussed below.

4.1.1 FADC250 Pulse Pedestal

The pulse pedestal information is reported for every pulse that falls within the
trigger window. The pulse pedestal is calculated by averaging the first four raw
pulse samples within the trigger window, once at least one pulse sample has crossed
the threshold [26]. An example of one ST sector pulse pedestal spectrum can be
seen in Fig. [£.I This quantity provides information regarding the base line of
each pulse, which is predominately determined by the user defined digital to analog
converter (DAC) values in a detector specific configuration file. There is of course an

overall contribution from the readout electronics to the baseline for each pulse. The
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Figure 4.1: Typical Start Counter FADC250 pulse pedestal spectrum. The spectrum
is from sector 15, during the Spring 2015 run 2931. In this histogram, the Gaussian
distribution has a ¢ ~ 1.1 channels

pedestal information is crucial since the true pulse peak, and pulse integral, data
need to be pedestal subtracted in order to properly interpret the absolute value

being reported by the FPGA.

4.1.2 FADC250 Pulse Integral

For a given pulse that is above threshold and falls within the trigger window, the
pulse integral data is reported. The pulse integral is defined to be the sum of all raw
data samples within the trigger window. This data, when subtracted from the value
of the pulse pedestal, is useful for energy deposition measurements, e.g. dF/dx. An
example of a typical pedestal subtracted pulse integral spectrum can be seen in
Fig. 1.2 In modes 2, 3, & 4, up to three pulses can be identified in the trigger

window [26].
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Figure 4.2: Typical Start Counter FADC250 pulse integral spectrum. The spectrum
has been pedestal subtracted. This spectrum is from sector 15, during the Spring
2015 run 2931.

4.1.3 FADC250 Pulse Peak

The FPGA also provides information pertaining to the amplitude of the signal which
has crossed the threshold. This quantity is also known as the “pulse peak.” This
particular data can only be obtained when the FADC250 is operating in modes 1, 4,
7 & 8. In order to locate the sample which is in fact the maximum sample value of
the raw pulse data, the FPGA locates the first instance of a sample value which has
decreased relative the sample preceding it, and reports the preceding sample value
as the pulse peak. An example of a typical pulse spectrum can be seen in Fig. [£.3]
This quantity is of particular importance since it provides information required to
properly characterize the amplitude of each pulse. This in turn allows for a proper

“time-walk” correction to be made to the data, which is discussed further in section

43T
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Figure 4.3: Typical Start Counter FADC250 pulse peak spectrum. The spectrum
has not been pedestal subtracted. This spectrum is from sector 15, during the Spring
2015 run 2931.

4.1.4 FADC250 Pulse Time

The pulse time is a quantity of particular importance that is calculable by the
FADC250’s FPGA. The specific mode in which the FADC250 is set to acquire data
will dictate which of the two available pulse times will be recorded. One form of pulse
time that may be calculated is the “coarse” pulse time which is reported as the time
corresponding to the first pulse sample which has crossed the threshold. In modes 2
& 3 the coarse pulse time is reported. The coarse time may not be used as a reference
time since it contains an inherent minimum 4 ns time-walk effect. Fortunately, there
exists an alternate pulse time calculable by the FADC250’s FPGA. This is known
as the “high resolution” pulse time. In modes 4, 7, & 8 the high resolution pulse
times will be computed and reported for each pulse crossing threshold. The pulse
time that is reported corresponds to the time in which the signal has reached 50%

of its maximum amplitude. A representative high resolution pulse time spectrum

can be seen in figures [1.4] &
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Figure 4.4: Typical Start Counter FADC250 pulse time spectrum. The spectrum
has an applied offset to center the time around 0 ns. This spectrum is from sector
15, during the Spring 2015 run 2931.

The algorithm utilized by the FADC250’s FPGA in order to calculate a high
resolution pulse time is the following. Table 4.1 outlines the various variables needed
by the FPGA to calculate a signals corresponding pulse time. A simulation of how
the FADC250’s FPGA handles pulse data can be seen in Fig. The pulses
pedestal, V,q, is determined by averaging the signal size of the first four samples in

the trigger window which is illustrated by Eq.

4
1
Vied = Z.ZZZI:SNZ. (4.1)

This was discussed in more detail in section [f.I.1} The pulse peak Vjear, discussed
in section [4.1.3] is the sample with the maximum value of the entire pulse sample

data. We define V},;4 to be the location where the signal crosses 50% of its maximum

value and is calculated by Eq. .2

‘/peak: + ‘/ped

Vmid = 9
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Variable Description Units

SN Sample number Samples (au)
Ved Signal pedestal Volts (V)
Vieak Signal Amplitude Volts (V)
Vinid 50% of Signals Amplitude Volts (V)
Size of sample number
V(SN —1) which occurs immediately Volts (V)

before V,,,;4 is reached
Size of sample number
V(SN +1) which occurs immediately Volts (V)
after Vj,,;4 is reached
Time when signal

tmid reached 50% of amplitude Picoseconds (ps)
Time of sample number
t(SN —1) which occurs immediately Picoseconds (ps)

before V,,;4 is reached
Time of sample number
t(SN +1) which occurs immediately Picoseconds (ps)
after V,,,;4 is reached
. High resolution time when signal
fine reached 50% of amplitude

Samples (au)

Table 4.1: FADC250 FPGA Pulse time variables. These variables are used in the
FADC250 calculation of pulse time objects determined by the FPGA.

In order to determine the time t,,;4 in which V,,,;4 is reached by the pulse data, the
method of linear interpolation is utilized by the FPGA which is briefly discussed
below.

Once V,,;q has been calculated the FPGA can then deduce numerically what
sample numbers are, and their respective data, immediately adjacent to the point
in which the pulse data has reached its half maximum. That is to say that Vsy_1
& Vsyy1 are known. Since these quantities are definitively known, a linear inter-
polation can be calculated. The two discrete points in the data that are of interest
are (tsy_1,Vsy—1) and (tsy+1, Vsni1) which are represented by red data points in
Fig. As previously mentioned V,,;4 has already been calculated. However, the

quantity of interest is the time associated with the half maximum of the pulse data,
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Figure 4.5: FADC250 FPGA Constant fraction algorithm. Graphical representation
of the FADC250 FPGA constant fraction algorithm utilized to calculate the pulse
time for pulse data. It should be noted that a signal can cross the threshold anywhere
in time, albeit within the trigger window which is usually on the order of 400 ns or
100 samples.

tmia. From linear interpolation we have the relationship given by Eq. [4.3
Vinia— V(SN —=1)  V(SN+1)—-V(SN —1)

p— 4.
b — (SN —1) — SN+ 1) — (SN —1) (4:3)
Solving for the quantity ¢4 — t(SN — 1) we obtain Eq. [4.4]
bt — HSN — 1) = H(SN + 1) — H(SN — 1) - —vmia = VSN = 1) (4.4)

V(SN +1) - V(SN —1)
When the FPGA is operating in high resolution timing modes there exists 64
sub-samples, each separated by 62.5 ps in time, associated with each 4 ns sample
period. Therefore, it is clear that ¢(SN + 1) — t(SN — 1) = 4 ns = 64 sub samples
and Eq. reduces to Eq. where we have defined ¢, = tniq — t(SN — 1).

Vinia — V(SN — 1)

tine: 4 -
fine = 6 V(SN +1) - V(SN —1)

(4.5)

When the FPGA is not running in high resolution timing modes, the time in which

the first sample crosses threshold is reported. The situations in which the FPGA
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fails to correctly calculate the pulse time, or any of its associated data, are discussed

in further detail with reference [26]. In order to convert the high resolution pulse

FADC

time (?fine) to units of time a conversion factor «; is required. Omne count
corresponds to one period of the 250 MHz system clock divided by the number of
sub samples for each period which is 64, i.e. 62.5 ps . The final form of the
pulse time is offset such that the spectrum is approximately centered about zero
illustrated by Eq. [4.6]

thDC = OélFADC “Trapc + O; (46)

When computing the high resolution pulse time, the sampling interval of the FADC250
causes the pulse time spectrum to be populated by a series of convoluted Gaussian
distributions, with centroids separated 4 ns in time. This effect is clearly observ-

able in Fig. .4 This is due to the fact that ¢z, can technically occur at any

lslice_py of h2 adc pt ssctor
| Entries 3036171

Mean 1.197
RMS 7.331

Counts /0.500 ns

-10 0 10
Offset FADC250 Pulse Time (ns)

Figure 4.6: Start Counter FADC250 4 ns pulse time spectrum structure. Zoomed in
look at a typical pulse time spectrum which has an applied offset to center the time
around 0 ns. This spectrum is from sector 15, during the Spring 2015 run 2931.

time within the 4 ns sampling interval (¢(SN — 1), (SN + 1)) within the FADC250

readout window. Thus, each 4 ns time interval within the readout window will have
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subsequent Gaussian distributions of ¢ 4;,,. quantities separated by 4 ns in time. This
phenomenon is illustrated in Fig. 4.6

The advantage of the FADC250’s FPGA high resolution pulse time calculation
is that the algorithm mimics that of a constant fraction discriminator (CFD) tim-
ing algorithm and effectively removes all time-walk effects [28] in the pulse time
spectrum relative to signal amplitude. This effect is clearly illustrated in Fig. 4.7

Therefore, the high resolution pulse times returned by the FADC250 for hits in the

FADC250 FPGA Constant Fraction Pulse Time

T — Analog Signal A
— Analog Signal B
fE — Analog Signal C
—
S
1
r-- Threshold
1 Baseline
: Pulse Time Output A
!_I Pulse Time Output B
!_I Pulse Time Output C
L
—pj4— No "Timewalk"
ty= tg = t¢
Time —

Figure 4.7: FADC250 FPGA Constant fraction pulse time. Simulation of three
coincident signals of varying amplitude as read out by the FADC250s. The half-
max of each signal is calculated as well as the corresponding pulse times.

ST can serve as a reference time when performing time-walk corrections. The time-
walk effect, and lack thereof in the high resolution pulse time calculation, will be

discussed in further detail in section 4.3.11
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4.2 GlueX Time to Digital Converters

The 30 ST analog signals dedicated for timing measurements have been amplified by
a factor 5 relative to the ADC channels, are first fed into two 16 channel VME leading
edge discriminator/scaler modules. The discriminator logic signals are output as
differential ECL logic signals [29] and are fed into the front panel of Jefferson Lab’s 32
channel high resolution, multi-hit, VME64x F1 time-to-digital converter (F1TDC)
[30].

4.2.1 Start Counter F1TDC Configuration Parameters

The ST F1TDC channels are configured to run in the synchronous, high resolution
mode. During the Spring 2015 run, the ST F1TDC’s were configured to have in-
dividual channel resolutions (bin sizes) equal to 58.1 ps. This value can in fact be
modified as needed by changing various F1TDC configuration parameters which are

described in Table 4.2

Variable Definition Value
CLKPER F1TDC System clock period | 32 ns (31.25 MHz)
REFCNT Number of clock pe‘riods 115

before value counter is reset

REFCLKDIV | Reference clock divider factor 128
HSDIV High speed divider factor 232
TFRAME Period of TDC Counter 3744 (ns)

N Number of time bins 64466
T Channel resolution (bin size) 0.0581 (ns)

Table 4.2: F1TDC configuration variables. Variables used in the F1TDC resolution
calculation during the Spring 2015 commissioning run.

In order to configure the F1TDC’s to have a particular resolution one must first
begin by defining certain configuration parameters to achieve the desired resolution.

The clock period (CLKPER) is the clock period of the FITDC, while the number of
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clock periods before the value counter is reset is defined to be the reference counter
(REFCNT). Therefore, Eq. defines the period of the F1ITDC counters, namely

TFRAME.
TFRAME = CLKPER x (REFCNT + 2) = (32 1s) x (115+2) = 3744 ns  (4.7)

To define the resolution of each F1TDC bin, one must then determine the number of
time bins (N) which will populate the full period (TFRAME) of the F1TDC counters.

Equation [4.8] describes the this very quantity.

HSDIV 232

N=2x (REFCNT+2) X 152X ———————— = 2 11 2 152 X — =644 4.
X ( ) X X e CIRDTV X (1154 2) x 15 X 158 64466 (4.8)

The reference clock divider factor REFCLKDIV is always set to 27 = 128 for the GlueX
F1TDC systems. Therefore the two parameters dictating the number of time bins,
and thus channel resolution, are the high speed divider factor (HSDIV) and the
number of clock periods (REFCNT). It is useful to note that the factor 2 in Eq.
arises from the fact the ST F1TDC’s are operating in high resolution mode and thus
N must be doubled and 7 halved. Moreover, the factor 152 in Eq. is a constant
within the F1TDC system [31]. Lastly, in order to determine the resolution of each

F1TDC time bin, one needs only to calculate the quantity 7 as shown in Eq. 4.9

_ TFRAME

T = 0.0581 ns (4.9)

4.2.2 Start Counter F1TDC & Hit Times

As discussed previously in section the ST F1TDC system clock has been con-
figured to have a window (TFRAME) of 64466 channels (3.744 us) during the Spring
2015 run. This means that the F1TDC counters will return integer values in the

interval [0, N] for every channel corresponding to an event trigger. These integer
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values are easily converted to units of nanoseconds via the channel resolution pa-
rameter 7. Thus, the distribution of F1TDC times for each of the 30 ST channels
will result in a spectrum uniform in time spanning the interval [0, TFRAME| which is
illustrated in Fig. [4.§

Channel 15, ¢ =[168 , 180 ]

15000

0000

Counts / 10 ns

5000

0 2000 4000
F1TDC Time (ns)

Figure 4.8: Typical F1TDC time spectrum. It is clearly visible that the distribution
is uniform in time for the time interval [0, TFRAME|]. This spectrum is from sector
15, during the Spring 2015 run 2931.

In order to extract a meaningful time relative to the event trigger time, it is
imperative to define what exactly the trigger time is. There exists a global system
clock, governed by a 250 MHz oscillator, which resides on the trigger supervisor (TS)
board. Furthermore, there exists a register on the trigger interface (TI) board that
counts the number of system clock cycles which have occurred since the beginning of
the run and is readily available in the data stream. Therefore, for each triggered
event there exists a time (7}.,) that is equal to the period of the system clock times
the number of system clock cycles (ny;) that have elapsed since the beginning of
the run (see Eq. [4.10))).

Tirig = (4 ns) - nyy (4.10)
In a similar fashion, the ST F1TDC channels report how many TRFRAME roll over

periods have occurred since the beginning of the run (ngp) as well as the high
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resolution time since the most recent roll over (Tyindow). Since TFRAME is a fixed

parameter, the F1TDC time for each ST channel corresponding to an event trigger

(Tior) is given by Eq. [4.11]
Tt = Npo - TFRAME + Tyindow (4.11)

In order to then know what the hit time in the ST F1TDC is relative to the time in
which the trigger occurred for that particular event, one simply needs to calculate

the difference shown in Eq. 4.12]
TTDC’ = Erig — Thot (412>

An example of a ST trigger corrected FITDC time spectrum can be seen in Fig.

It is important to note that not all times recorded in Fig. are useful or

10°
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Figure 4.9: Typical Start Counter trigger corrected F1TDC time spectrum. There
is indeed a preferred number of events that occur around 380 ns after the trigger
arrived in the ST F1TDC crates. This spectrum is from sector 15, during the Spring
2015 run 2931.

even meaningful. There are a multitude of time differences that are completely out

of time relative to the trigger time. Therefore, we define times of interest to only
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be those that occur within £60 ns of the main centroid located within the trigger
corrected F1TDC time spectrum. In Fig. the aforementioned times of interest
are located at approximately 381 4+ 60 ns. It is also useful to apply an arbitrary
offset to the trigger corrected F1TDC time spectrum so that the centroid of useful
times is located at zero. Thus, we are able to write the full expression for times
reported by the ST F1TDC channels with where O; is an arbitrary offset that
has been applied so that the centroid of the trigger corrected F1TDC time spectrum
is centered around zero.

tlTDC =T- TTDC’ + OZ (413)

The index ¢ € [1,30] indicates the particular ST channel of interest. Figure
illustrates a typical spectrum of useful offset trigger corrected F1TDC hit times for

channel 15 in the ST (¢7P¢).

120 slice_py_of_h2 1TDC_sec
r Entries 3224034
Mean -0.2895
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Figure 4.10: Typical Start Counter offset F1TDC hit time spectrum. This spectrum
is merely a modification to the spectrum shown in Fig. However, only times
that occur within 0 + 60 ns are considered as useful times. This spectrum is from
sector 15, during the Spring 2015 run 2931.
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4.3 Time-Walk Corrections

The time-walk effect is a well understood consequence of leading edge discriminators
(LED). LEDs, as the name suggests, outputs a logic signal as soon as the leading
edge of an incoming analog signal crosses a fixed threshold. Analog signals of varying
amplitudes crossing a fixed threshold, as determined by the discriminator threshold

setting, will do so at varying times.

4.3.1 Time-walk Effect

The time-walk effect is attributed to larger signals having faster rise times as com-
pared to signals which have amplitudes close to the threshold setting, see Fig. [4.11]

Due to the signal A having a larger amplitude as compared to signals B & C, it is

Timewalk Effect

_—

‘ — Analog Signal A

Baseline

Threshold

«— Volts

— Analog Signal B

—— Analog Signal C

g8

Discriminator Output A

Discriminator Output B

Ll
1
1
L
——f¢— "Timewalk"

tatp to

Discriminator Output C

Time —

Figure 4.11: Example of the time-walk effect. Three coincident analog signals A, B,
& C of varying amplitudes crossing a fixed threshold in a LED. The discriminator
logic output signals vary in time relative to the amplitude of the incoming analog
signal. The signals shown above are simulated analog signals being fed into the
LED’s thus, they have negative polarity.
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clear that the logic signal output from the discriminator will “walk about” in time,
resulting in the undesirable increase in time resolution of the systems TDC channels.

The time-walk effect can be corrected for in a number of ways. From a hardware
standpoint, constant fraction discriminators (CFD) virtually eliminate all time-walk
effects by generating the logic signal output when a particular fraction of the incom-
ing signals amplitude is reached |28]. Unfortunately, this is a costly solution from
a financial standpoint. However, software corrections for the time-walk effect are in
fact achievable. The methods to perform time-walk corrections for the thirty Start
Counter (ST) F1ITDC channels are discussed below.

As mentioned in section the TDC times reported by the LEDs are subject
to the time-walk effect and must be corrected for via software so as to optimize the
time resolution for each of the thirty Start Counter channels. In order to correct the
TDC times (Eq. returned by the F1TDC’s one must first acquire a reference

time for each hit in the ST, for each event.

4.3.2 F1TDC & FADC250 Time Difference

The TDC time, given by Eq. alone will not suffice as the time spectrum to
be time-walk corrected without a reference time since the trigger operates on a 250
MHz clock and causes an inherent 4 ns jitter associated with each event. However,
this jitter is also present in the FADC250 pulse time, given by Eq. [£.6] Thus, a
time difference between the TDC time and the ADC pulse time eliminates the 4 ns
trigger jitter effect. Furthermore, as was illustrated in Fig. [4.7) in section the
FADC250 high resolution pulse time is not subject to time-walk effects thus making

it a suitable time reference. Moreover, the FADC and TDC signals emanate from
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the same location in the readout electronics and the cable lengths are identical.
Thus, there are no cable propagation times to take into account.

A measure of this time difference distribution can be though of as a measurement
of the “self-timing” resolution of each of the 30 ST sectors. It is useful to note that
there exists another suitable time reference which could be used for these calibra-
tions. That is the RF time provided by the accelerator. However, this time was not
available at the time of these calibrations so the aforementioned time difference was

implemented.

4.3.3 Time-walk Spectrum

Table describes the necessary variables to describe the time-walk spectrum for
the ST. The TDC/FADC time difference is given by Eq. 4.14]

Variable Definition
a Pulse peak (amplitude)
athresh Discriminator threshold converted to ADC units
c0;, cl;, c2; Fit parameters
a? Most probable pulse peak
i Functional form of time-walk fit
tIpe TDC time
A Time walk corrected TDC time

Table 4.3: Time walk correction variables. Variables used in for the time walk
corrections for the Start Counter.

5ty = tIPC —FADC (4.14)

In Fig. it was illustrated that the amplitude of each analog signal characterizes
the time in which the leading edge crosses the threshold and thus, the time returned
by the F1TDC. Figure shows a typical time-walk spectrum for one sector of the

ST. It is immediately obvious that there exists a correlation between the time and the
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Figure 4.12: Typical Start Counter time-walk spectrum. Shown is the time-walk
spectrum for sector 3 of the Start Counter during the Spring 2015 run 2931. On
the y-axis is dt3 and on the x-axis is the corresponding pedestal subtracted pulse
peak spectrum. From this histogram it is clear that there is a correlation between
the amplitude of the analog signal and the time in which the signal crosses the
discriminator threshold.

pulse peak for hits in the ST. This correlation is nonlinear and requires a polynomial

functional form to describe the correlation. Equation from reference [27] was

chosen to characterize the correlation between 6t; and the amplitude of the signal.

Cli

—_— 4.15
(a/aghresh)cz- ( )

wa (a/athresh) — COZ‘ +

i

The projection of the dt3 (y-axis) is show in Fig. [4.13, The non time-walk corrected
spectrum results in a poor time resolution due to the large time differences occurring
among signals close to threshold and the more probable amplitudes being registered
in the FADC. Figure is the projection of the pedestal subtracted pulse peak
(x-axis) of Fig. . It is required to subtract the pedestal from the pulse peak so

that the absolute amplitude is being calculated.
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Hit Time vs. Pulse Peak
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Figure 4.13: Typical Start Counter time difference spectrum. Shown is the time
difference dt3 spectrum for sector 3 of the Start Counter during the Spring 2015 run
2931. The uncorrected time-walk time spectrum has s, ~ 516ps.
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Figure 4.14: Typical Start Counter pedestal subtracted pulse peak spectrum. Shown
is the pedestal subtracted pulse peak spectrum for sector 3 of the Start Counter
during the Spring 2015 run 2931. It is important to note that the most probable
value of the pulse peak spectrum is located somewhere within the minimum ionizing
peak located around pulse peak value of 450.
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4.3.4 Fitting the Time-walk Spectrum

In order to fit the nonlinear time-walk spectrum shown in Fig. [4.12|with the function
given by Eq. a custom fitting procedure was implemented instead of making use
of ROOT’s default fitter. The custom fitting procedure ultimately provides more
control and a better understanding of how the correlation of the time difference and
pulse peak behaves. For each individual pulse peak channel ranging from [50, 2100]
the associated time difference for that channel was histogramed.

The time difference distributions contained within the individual pulse peak
channels were first fit with a Gaussian function over the full 10 ns range of the
histogram. The resulting fit parameters were then utilized to initialize, and subse-
quently perform, a second Gaussian fit which was fit over the range [u — FW HM -
o, iu+ FWHM - o] with the fir parameters x and o obtained from the previous fit,
and FWHM being the full width half maximum (2.355) of a Gaussian distribution.
This fit is illustrated in Fig. f.15] This method provides the most accurate measure
of the mean time corresponding to a particular pulse peak channel.

Pulse peak channels below 50 correspond to signals that are very close the thresh-
old and are potentially polluted with noise. While channels greater than 2100 have
very low statistics and fitting the time difference distributions for these channels
produced unreliable fits. Thus, these channels were deemed to be unfit to charac-
terize the time difference and pulse peak correlation and were omitted from the time
walk spectrum fit.

With the time difference mean and associated errors obtained from the method
outlined above, they were plotted against their respective pulse peak channels seen
in Fig. [4.16] The most probable value (MPV) of the minimum ionizing peak was
chosen to be the location in which the time-walk correction was zero. This location

effectively serves as a reference point for the correction. Since the location of this
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Figure 4.15: Typical Start Counter time difference/pulse peak channel spectrum.
Shown is the pulse peak spectrum for channel 496 in sector 3 during the Spring 2015
run 2931.

Time Difference vs. Pulse Peak Channel 3
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Figure 4.16: Typical Start Counter custom time-walk fit. Shown is the custom
time-walk fit for sector 3 during the Spring 2015 run 2931. ROOT’s fitting library
Minuit was utilized to perform a y? minimization to the data. It should be noted
that in the plot above the parameters p0, pl, p2 are c03, clz, c23 respectively.
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point is completely arbitrary no effort was put forth to properly determine the
MPYV by fitting the individual pulse peak spectrum with a Vavilov or convoluted
Landau-Gaussian distribution. Instead, as seen in Fig. a “pseudo” MPV was

utilized. The “pseudo” MPV (a?) was determined on a sector by sector basis by

Hit Time vs. Pulse Peak
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Figure 4.17: Typical Start Counter pulse peak minimum ionizing distribution.
Shown is the pulse peak minimum ionizing distribution for sector 3 during the
Spring 2015 run 2931. The red, verticle, dashed line in the histogram corresponds
to the “pseudo” MPV (a3) which was determined to be 469.

simply acquiring the pulse peak channel which had the most number of entries after
the pulse peak channel 200. The large spike in the pulse peak spectrum at very low
pulse peak values are most likely due to electromagnetic background in the event
and do not correspond to a true minimum ionizing particle traversing the scintillator
medium.

With all the necessary parameters, i.e. a?, c0;, cl;, ¢2;, determined the time-
walk correction factor can be applied to the original TDC time. The functional form

of the time-walk corrected time is given by Eq. [4.16]

jﬂiw — tZTDC . fiw(a/aghresh) + f;u(a?/azhresh) (416)
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4.3.5 Time-walk Correction Effects

Once the time walk corrections have been applied, the corrected timing distribu-
tions appear much more uniform in nature and exhibit a factor 1.75 improvement
in resolution. Figure [4.1§ illustrates the vast improvement in the time difference

spectrum (dt3) due to the applied time-walk corrections. Studies showed that not

Corrected Hit Time vs. Pulse Peak
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Figure 4.18: Time-walk Start Counter corrected time difference spectrum. Shown
is the time-walk corrected time difference spectrum for sector 3 during the Spring
2015 run 2931. The time-walk corrected time difference spectrum has s, ~ 293ps

only did the custom fitting procedures provide for a better, and more uniform, self
timing resolution, the constants determined from the custom fitting procedure have
much less variation than what was determined using the default ROOT fitter. The
default ROOT fitter here is defined to be the utilization of ROOT’s MINUIT y?
minimization fitting library to data which have been arbitrarily correlated. As can
be seen in Fig. the custom fitting procedures did no worse than the default

ROOQT fitter procedure. While the improvement of the custom fitting procedure is
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Figure 4.19: Start Counter self timing resolutions. Comparison of the self timing
resolutions obtained after the time-walk corrections have been applied. The custom
fitting procedures discussed above resulted in an average time resolution of 268+ 2ps
among the 30 sectors of the ST.

not significantly better than the default ROOT fitter, it is more robust and well

understood.

4.4 Attenuation Corrections

When photons traverse through a scintillator medium, or any medium containing
matter, they can be lost through scattering, absorption, or escape at the boundaries.
Attenuation corresponds to the reduction in observed light relative to the amount

of initial scintillation light produced in the medium.

4.4.1 Attenuation of Photons in a Scintillator Medium

Photons produced in a scintillator medium, as a result of charged particles traversing
through the material, are subject to the property of total internal reflection. The
scintillator material for the ST paddles is EJ-200 with polyvinyltoluene acting as the
polymer base [20]. If the resulting photons incident on the scintillator-air boundary

have an angle of incidence which is smaller than the critical angle, then the photons

110



will leave the scintillator medium and be lost for detection and thus contribute to the
overall attenuation. However, if the incident photon has an angle of incidence which
is equal to or greater than the critical angle then those photons will totally internally
reflect and may possibly be detected. It is useful to note that the EJ-200 scintillator
material used in the Start Counter has an index of refraction of 1.58 |20] which results
in the scintillator-air interface to have a critical angle of 39.3°. The photons that do
in fact totally internally reflect however, are still subject to additional phenomena
which contribute to the overall attenuation of photons in the scintillator medium.
With the above factors considered, one can define a parameter known as the
“attenuation coefficient” which characterizes a particular materials ability to absorb
photons. The attenuation coefficient is defined to be the length in the medium in
which the initial number of primary photons are reduced by a factor of 1/e (36.8%).
Since the loss of photons in scintillators equates to the loss of information relative
to the event of interest, it is highly desirable to have a scintillator material with a
long attenuation length. As a reference a flat 2 x 20 x 300 cm® EJ-200 scintillator

has a relatively long attenuation length on the order of 4 m.

4.4.2 Data Acquisition for Attenuation Corrections

In order to characterize the attenuation properties of the 30 ST scintillator paddles
bench data obtained at FIU utilizing the custom test stand and °Sr source were
analysed to provide an initial attenuation correction. Many efforts to utilize beam
data acquired in the Spring 2015 commissioning run proved futile as there was a
clear lack of statistics to perform such a calibration. Thus, the bench data was used
since it at least provided a first order correction to account for attenuation in the

ST scintillator paddles.
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The custom test stand fabricated at FIU allows a °Sr beta source, which
produces minimum ionizing electrons ranging in energy from 0.5 - 2.3 MeV elec-
trons |32 [33], to be placed at twelve precise locations along the scintillator paddle.
We define the variable z to be the distance along the scintillator path, which takes
into account the paddle geometry, with the origin (z = 0 cm) being located at the
beginning of the straight section and the end (z ~ 59 cm) being the tip of the nose.

The 87 source is placed at four locations in the straight section, ~ 8 cm apart
starting at z = 8.68 cm. Additionally the source is placed at three locations in the
bend section ~ 1.3 cm apart, and five locations in the nose section ~ 3 cm apart.
Light produced in the scintillators by the °Sr beta spectrum are readout utilizing
silicon photomultipliers (SiPM) detectors configured in the same manner as was
used in the ST readout installed in HallD. An event trigger photomultiplier (PMT)
was implemented so as to provide a reference (start) time. Both ADC and TDC
data, corresponding to 10,000 event triggers, were collected for all 30 ST scintillator
paddles at the exact same 12 discrete locations described above utilizing the same
087 source.

For each of the twelve locations along the scintillator paddle ADC data was col-
lected. A typical ADC spectrum at one location in the straight section is illustrated
in Fig. The peak corresponding to scintillation light being detected by the
SIPM detector is clearly visible and located around ADC channel 225, while the
pedestal governed by DC offset and electronic noise is centered around channel 50.
In order to calculate the true ADC value of interest, it is required to completely
isolate the peak and pedestal and fit the corresponding spectra with a Gaussian
distribution so that the relative difference in their means, determined by the fit,

may be calculated.
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Figure 4.20: Typical Start Counter bench ADC spectrum. Shown is the ADC
spectrum for sector 1 with the 90°" source located in the straight section at z
= 32.36 cm. Both the pedestal (left) and peak (right) are clearly visible in this
spectrum.

One way to do this is to make use of the TDC data that was taken simultaneously
with the ADC data. The TDC data, which corresponds to the time difference
between the trigger time and the hit time in the SiPM, was collected utilizing a
CFD. Thus, no time-walk corrections to the data were necessary. A typical TDC
time spectrum can be seen in Fig. [£.21] An initial fit to the entire dynamic range of
the TDC data was performed so as to “hunt” for the Gaussian distribution. Utilizing
the parameters determined from the initial fit, a second fit was performed so that
the explicit fit range pu 4= 70 could be determined. Once the fit range was defined
any ADC event with a corresponding hit time that fell within the p =+ 70 TDC time
window, was declared as a good peak signal. However, any ADC event not satisfying
the aforementioned condition was declared as a pedestal signal. It is useful to note
that the o obtained from the second fit is a measure of the time resolution of a ST
paddle at that particular location along the length of the scintillator.

Once the peak and pedestal histograms were isolated a similar fitting procedure

to the data, outlined in detail in section 4.3.4] was implemented so as to extract
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Figure 4.21: Typical Start Counter bench TDC spectrum. Shown is the TDC
spectrum for sector 1 with the 90°" source located in the straight section at z =
32.36 cm. The blue line indicates a Gaussian fit to the data while the red vertical
dashed red lines indicate the p £ 70 range which defines the hit to be and out of
time. At this location o ~ 390ps.

their mean values so that the true ADC mean value could be obtained. Figure [4.22
shows the ADC pedestal corresponding to the aforementioned TDC cuts.
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Figure 4.22: Typical Start Counter bench ADC pedestal spectrum. Shown is the
ADC pedestal spectrum for sector 1 with the 90°" source located in the straight
section at z = 32.36 cm. The hit time returned by the TDC was outside the p =+ 7o
time window. A similar fit was applied to the ADC peak data.
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Upon calculating the difference ftpeqar — fipea from the ADC spectra at each of the
twelve locations along the length of the ST sector 1 one obtains Fig. which is
the pedestal corrected mean ADC values characterizing the attenuation properties

of the unique ST scintillator geometry.
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Figure 4.23: Typical Start Counter bench attenuation data. Shown is the attenu-
ation data for sector 1. It is clear that there exists attenuation (light loss) in the
straight section as the source moves further away from the SiPM. However, the
interesting, and beneficial, phenomenon of light amplification as the source moves
further away in the nose section is also noticeable.

Figure illustrates the time resolution characteristics of a typical ST paddle
at the twelve individual *°Sr locations. The time resolution in the straight section
at z = 32.36 cm was found to be =~ 390 ps while the time resolution at the tip of
nose was found to be &~ 235 ps. This effect is due to the unique tapering trapezoidal
geometry of the nose section. It is worth noting that the same increase in light
output in the nose section was observed utilizing beam data and selecting fast pions
(p > 1.0 GeV) matched to the ST so as to ensure the particles were minimum

ionizing.
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Figure 4.24: Typical Start Counter bench time resolution data. Shown is the time
resolution data for sector 1. It is clear that there is a linear increase in time resolution
in the straight section as the source moves further away from the SiPM. However,
the interesting, and beneficial, phenomenon of time resolution improvement as the
source moves further away in the nose section is also noticeable.

Upon comparing figures and it is adamantly clear that the geometry
of the nose section gives rise to an increase in light collection at the upstream end
of the straight section. This phenomenon is at first counterintuitive. However, the
effective path length and number of reflections of photons traversing through this
tapered section of the scintillator paddle is reduced relative to the non-tapering
section present in the straight section. These figures also indicate that the while

straight section is trapezoidal, it exhibits the behaviour of a typical rectangular

scintillator bar which is to be expected.

4.4.3 Attenuation Corrections

As was discussed in section the unique geometry of the ST causes for the the

two distinct regions, i.e straight and bend/nose, to have differing properties in terms
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of light output and thus, time resolution. Therefore, when performing attenuation
corrections the two regions must be treated independently in order to properly
characterize photon attenuation in their respective regions. At the transition region,
where the end of the straight section meets the start of the bend/nose section, the
difference in the two independent fit functions evaluated at z = 40.0 cm was found
to be minimal. Thus, no effort was put forth to ensure that this transition region
was continuous.

After many studies it was empirically determined that the ideal fit function for

the straight section would follow Eq. [£.17]
fs(z) = AgePs* (4.17)
Similarly, the functional form of the bend/nose section follows Eq. .
fen(2) = ApnePPN* 4 Cpy (4.18)

Exponential decay functions are typically used to describe the attenuations of pho-
tons in scintillator material. However, for the unique case of the bend/nose section,
an exponential growth function was utilized. In order to investigate the possibility
of utilizing a single functional form to describe the entire length of a scintillator
paddle, a polynomial of O(5) was also studied.

Figure illustrates the ADC mean vs. °Sr distance for sectors 5 and 23. In
the bend/nose region it is clear that both the polynomial and exponential growth
function fit the data well and are very similar in nature. For the straight section there
is also good agreement between the exponential decay function and the polynomial
for 2 > 9 cm. While Fig. [£.25]serves as two examples in which the polynomial could
potentially describe the attenuation of photons for the region z < 9 cm, Fig.
illustrates that for sectors 15 & 13 the polynomial fit can severely under or over

estimate the ADC mean values respectively.
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Figure 4.25: Attenuation corrections: Good ADC fits. Two particular cases in
which the polynomial of O(5) fits the ADC mean data relatively well. The red line
corresponds to the polynomial of O(5) fit. The magenta line is the exponential fit
to straight section [0 cm, 40 cm] while the green line is the exponential fit to the
bend/nose section [40 cm, 60 cm]. Sector 5 is on the left while sector 23 is on the
right. The red horizontal dashed line corresponds to the value of the exponential fit
in the straight section evaluated at z = 0 cm.
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Figure 4.26: Attenuation corrections: Bad ADC fits. Two particular cases in which
the polynomial of O(5) fails to fit the ADC mean data. The red line corresponds
to the polynomial of O(5) fit. The magenta line is the exponential fit to straight
section [0 cm, 40 cm| while the green line is the exponential fit to the bend/nose
section [40 c¢cm, 60 cm|. Sector 15 is on the left while sector 13 is on the right.
The red horizontal dashed line corresponds to the value of the exponential fit in the
straight section evaluated at z = 0 cm.

Because the region z < 9 cm has no data it is critical that the fit function in this
region be well behaved and provide a reliable extrapolation as z — 0. Polynomial
fits “blowing up” in regions with a lack of data is a well known effect and since fits

to many of the ADC bench data exhibited this feature, the method of utilizing two
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individual piecewise exponential functions to fit the two distinct regions of the ST
paddles were implemented.

The exponential fits seem to do a decent job of estimating the attenuation be-
haviour in situations where the data is somewhat unreliable.

The energy deposited (dEp;;) by a charged particle in a scintillator medium is
proportional the number of photons created, which is in turn proportional to the
pulse integral of the signal read out by the FADC250. However, since the photons
created wia. ionization are subject to attenuation as they traverse through the
scintillator medium, the energy deposition measured by the SiPM does not correctly
measure the energy deposited by the charged particle at the location of intersection
with the scintillator. A plot of the uncorrected energy deposition per unit length
versus momentum (dEp;;/dx vs. p) in the ST is shown in Fig. 4.2

Uncorrected dEdx vs P

08 1 1.2
P (GeV)/5 MeV

Figure 4.27: Typical uncorrected dF/dx vs. p distribution in the Start Counter.
Shown is the uncorrected dE/dx vs. p distribution for tracks matched to the Start
Counter in the Spring 2015 run 2931. The “banana band” corresponds to protons
while the horizontal band corresponds to charged electrons, pions, and kaons. It
is clear that pion/proton separation is quite difficult to achieve for tracks with
p> 0.6 GeV/e.

Evaluating the fit function in the straight section at z = 0 cm is representative

of a minimum ionizing particle traversing through virtually no scintillator material,
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and is thus subject to no effects of attenuation. Therefore, for all charged particles
passing trough the ST scintillator paddles we apply an attenuation correction to
the deposited energy measurement (dFy;) to preserve the information regardless of
where the track intersects the paddles. The corrected energy deposition (dE...)
is given by Eq. where the index ¢ indicates which section the charged track
intersected with.

dEcorr - dEhit : Rz (4].9)
For the straight section we have Eq. |4.20|

_ fS(OO) _ e—Bgnz
Rg = o) (4.20)

For the bend/nose section we have Eq. 4.21}

~ fs(0.0) Asg

Rin — _
By fen(z)  ApnePsnz 4+ Cpn

(4.21)

Thus, for every hit along the length of the ST paddles we find equations &
423
fs(z) . RS = AS (4.22)

feNn(2) - Rpn = As (4.23)

Once all energy deposition measurements have had the appropriate attenuation
corrections applied as was discussed above, a plot of the energy deposition per unit
length versus momentum (dE,/dz vs. p) in the ST is shown in Fig. [4.28]

Granted the Start Counter was not designed with particle identification (PID)
in mind, it is pleasant to know that the ST can in fact be used, at some level, for

PID studies.
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Figure 4.28: Typical corrected dE/dz vs. p distribution in the Start Counter. Shown
is the corrected dE/dx vs. p distribution for tracks matched to the Start Counter
in the Spring 2015 run 2931. The “banana band” corresponds to protons while the
horizontal band corresponds to charged electrons, pions, and kaons. It is clear that
pion/proton separation is achievable for tracks with p > 1.1 GeV/c.

4.5 Propagation Time Corrections

As a charged particle traverses through the Start Counter scintillator material the
molecules become excited and a small fraction (= 3%) [34] of the excitation energy
is released in the form of “optical” photons. The photons produced will be emitted
uniformly in all directions and some will escape the medium, some will be reflected
back into the medium by virtue of the reflective AL foil wrapping, and some will be
lost. However, the photons which are in fact not lost, will totally internally reflect
until they reach the SiPM detector placed at the upstream end. The moment the
photons are produced they will begin to propagate through the scintillator medium
until they are eventually detected. The time from production to the time of detection

in the ST scintillator paddles must be accounted for and is discussed below.

121



4.5.1 Light Propagation in Scintillators

The EJ-200 scintillator material has a refractive index equal to 1.58 [20] meaning
that light in the medium will travel with a velocity ~ 19 e¢m/ns. However, what
is measured in the lab is known as the effective velocity which is slower due to
the fact that the majority of photons are not travelling in straight lines parallel to
the medium boundaries. Instead they are constantly reflecting off the boundaries
meaning there is an increase in their respective path lengths which contributes to
an observed reduction in velocity. This velocity is known as the effective velocity.
Both the CLAS Start Counter and the GlueX Start Counter were manufactured
with the EJ-200 scintillator material and are comparable in thickness’s and lengths.
CLAS’s Start Counter was 2.15 mm thick and 50.2 cm long [35]. While the GlueX
Start Counter is 3 mm thick and 60.0 cm long. Therefore the effective velocities of
photons should be quite similar. In fact, bench studies made at FIU, as well as beam
studies with 77 ’s, illustrated that the straight section had an effective velocity on
the order of 14 em/ns. It was found that photons propagating in the straight section
(“leg”) of the CLAS Start Counter, had an effective velocity of 13 + 1 em/ns [35].
Correcting for the time in which light spends traversing through the scintillator
material is an important correction since the ST paddles are 60 ¢m in length. Thus,
light produced in the tip of the nose will take on the order of 4 ns to reach the
SiPM at the upstream end. Performing the propagation time corrections utilizing
the common effective velocity method is not the most robust procedure for the case
of the ST. Both bench and beam studies showed that the unique geometry in the
bend and nose region cause the effective velocity of light in these two regions to
be larger than that of the straight section. It was found that the light in the bend

region had an effective velocity of ~ 17 ¢m/ns while the nose region had an effective
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velocity of ~ 20 ¢m/ns. These corrections proved to not be the most optimal

correction so as to minimize the time resolution of the ST paddles.

4.5.2 Propagation Time Correction Event Selection

In order to conduct the propagation time corrections for the ST a distinct set of
events needed to be selected so that a well understood reference time was being
utilized. This reference time would then act as a measure of the event time for
all other charged tracks intersecting the ST in the same event. For every charged
track in a given event, three global tracking requirements were required. First, only
charged tracks with a tracking confidence level, or tracking figure of merit (FOM),

greater than 0.0027 were considered as can be seen in Fig. |4.29] Secondly all charged
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Figure 4.29: Spring 2015 run 2931 confidence level of charged tracks. Shown is the
confidence level (FOM) for charged tracks in the Spring 2015 run 2931. The inset
histogram illustrates the confidence level cut. All tracks with a confidence level <
0.0027 were not considered. Note the log scale on the y-axis.

tracks were required to have the z coordinate of its vertex to be contained with in
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the target geometry i.e. 50.0 cm < Zyertex < 80.0 cm illustrated in Fig. and the
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Figure 4.30: Spring 2015 run 2931 charged track z vertex distribution. Shown is the
charged track z vertex distribution. Downstream of the target, from left to right,
is the thin kapton exit window of the target and a thin plastic target placed at the
end of the Start Counter. The area between the red dashed vertical lines indicate
the range of z coordinates comprising the target length.

r coordinate of its vertex be contained with the geometry of the scattering chamber

B.e. Toerter = \/T2orter + Verter < 3-T45 cm illustrated in Fig. [4.5.20 Tt is useful to
note that in an ideal situation only tracks with their respective r,eq4er coordinate
occurring within the beam diameter should be considered. However, the severe limit
in statistics from the Spring 2015 commissioning run required this cut to be loose
so that a first order calibration could be conducted.

For each event, if there existed a single 7~ track with p > 0.5 GeV /¢, while pass-
ing the aforementioned “global” tracking requirements, this track was considered to
be a candidate to serve as the event time for that event. Figure |4.32] illustrates the

n~ track candidates for this particular study. Fast m~’s were chosen as a suitable
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Figure 4.31: |
Spring 2015 run 2931 charged track r vertex distribution. Shown is the charged
track r vertex distribution. The area inside the red dashed circle indicate the
range of r coordinates comprising the scattering chamber.
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Figure 4.32: 7= [ vs. p distribution. Shown is the 7= [ vs. p distribution from the
Spring 2015 run 2931. Only 7~ tracks with p > 0.5 GeV/c were selected. This cut
corresponds to all tracks to the right of the red dashed vertical line.
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track to serve as the reference time since these tracks have the least amount of
background associated with them.

Once a good 7~ track was acquired it was then required to match to a hit in
the TOF and not also match to a hit in the ST. This was done in order to avoid
any potential bias in the calibration. The advantage of using the TOF time is that
the time resolution of the TOF is the best of any detector in HallD (= 96 ps) [36].
The calibrated (time-walk & propagation) hit time returned by the TOF (TZF)

TTOF

was then corrected for the flight time from the 7~ track vertex to the TOF (T7,;,)-

Equation is the TOF measure of the 7~ track vertex time.

T = Tl " — T (4.24)

vertex

4.5.3 Obtaining the RF Reference Time

The RF signal that is readout in HallD is provided by the CEBAF accelerator at a
rate of 499 MHz (2.004 ns) while the beam bunches in the Spring 2015 commissioning
are produced at a rate of 249.5 MHz (4.008 ns). The RF signal from the accelerator is
multiplexed into four detector system TDC’s namely the TAGH, FDC, PSC, & TOF.
However, the provided signal rate is too high to readout without causing overflow
in the TDC buffers thus the RF signal is pre-scaled [37]. A typical pre-scale factor
is 128 and consequently the RF signal is readout every 128 x 2.004 ns = 256.512 ns.
Thus, the time associated with the beam bucket that produced the event of interest
must be calculated since it is not provided directly.

For every event, the associated RF time provided by the CEBAF accelerator
and by the HallD analysis library (DANA) is the pre-scaled time the RF signal

TRF

arrived at the center of the target (7..,.,

). This time must be propagated out to

the vertex location of the track since the photon responsible for the track spends a
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finite amount of time traversing through the target before interacting with it. This

propagation time (T2 ) correction is given by Eq. m

prop
1
REF __ target
Tprop - (quertea: - Zcente'r) ’ E (425)

TRF

center) one

Once the propagation time is summed with the centered RF time (

obtains the measure of the RF time at the vertex of the 7~ track and is given by

Eq. (26,

ThE =TEE 4+ THE (4.26)

vertex center prop

Due to the inherent ambiguity associated with pre-scaling, T#F  is not the

vertex

correct measurement of the time the beam bunch actually produced the 7~ track.

Therefore, one must “step” TZE_ to the time the 7~ track was produced as mea-

TTOF

vertex*

sured by

Eq. f27

To do this one must first calculate the time difference 67" given by

0T = ij;?tlgx - Tﬁfteac (427)
Next, one must calculate the number of beam buckets (NZr**) that have elapsed

during the 0T time period and is given by Eq. m, where (Nbukets) is rounded to

step

the nearest integer.

6T 5T
Nbuckets — — 4.98
step TEE ,  4.008 ns (4.28)

Lastly one can now calculate the time the beam bunch arrived at the vertex that

vertex

produced the 7~ track (T2 _ ) and is given by Eq. |4.29,

TBB — TRF + TBB . Nbuckets (429)

vertex vertex period step

For every event, the first 7~ track satisfying the aforementioned event selections

outlined in section will then have the associated T2 time calculated which

vertex

will serve as the reference time for all other tracks that have intersected the ST.
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4.5.4 Start Counter Propagation Time Corrections

In order to properly calculate the propagation time (Tzﬁzp) of photons produced by
a charged track intersecting the ST, a few quantities must be known. Particularity
the time-walk corrected hit time (7357), the flight time from the track vertex to the
ST intersection point (Tﬁz;ht), and a well defined reference time corresponding to
the event (25 ).

vertex

Once TBE_ has been determined, all other charged tracks in the event were ana-
lyzed. These charged tracks were then subject to the same event selection procedure
outlined in section except that they must also have a matched hit in the ST.

It is required to note that for each charged track reported by DANA, there are
multiple time-based tracks associated with it. For instance, if the track is negatively
charged then there will exist three time-based tracks associated with it that contain
different mass hypotheses i.e. ¢e=, 7=, K~. For each time based track, and its asso-
ciated mass hypothesis, there exists a tracking FOM which quantifies how “good”
the track is based on it’s respective mass hypothesis.

Since each charged track has multiple time based tracks associated with it, cor-
responding to various mass hypotheses, only the time based track with the highest
tracking FOM was considered so as to avoid double counting. Each of those charged
tracks were then required to match to a hit in the ST. Charged tracks satisfying
these conditions then had their respective hit times and flight times recorded so that

a relative time difference between the beam bunch time, which serves as the event

reference time, could be calculated and is given by Eq. [£.30
Tl =Tt — Thiigne — Toor (4.30)

prop — vertex

This time difference is a direct measure of the amount of time the detected light

produced by the intersecting charged track spent traversing the scintillator medium.
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In order to perform the propagation time corrections the z-coordinate of the tracks
intersection point with the ST (21) was also recorded for every charged track inter-
secting the ST. Once both T57 and 2 were calculated the propagation correction

calculation could be performed. Figure illustrates correlation between these

two quantities.
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Figure 4.33: Typical Start Counter propagation time correlation. Shown is the ST
propagation time correlation for sector 15 of the ST during the Spring 2015 run
2931. T5T is plotted on the y-axis and the 271 is plotted along the x-axis. There

prop
is a clear correlation between the time in which optical photons are detected by the

SiPM and the location of the charged track intersection point with the ST. z is in
hall coordinates.

For each 0.5 ¢cm bin in z;I the corresponding propagation time distributions
were fit utilizing the identical two-step fitting procedure discussed in section [£.3.4]
It should be noted that only bins in z which had more than 65 entries were fit so
that the means extracted were reliable. The lack of statistics from the Spring 2015

run is the direct cause for not having data for in the regions 271 < 30.0 cm and
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27T > 50.0 cm. The mean value of the propagation time, and it’s associated error,

were then plotted versus the center of each 0.5 cm bin in z; 1 as can be seen in Fig.

[4.34] 1t is important to note that the data in Fig. has been offset relative to Fig.
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Figure 4.34: Typical Start Counter propagation time projection correlation. Left:
Typical propagation time projection correlation for sector 15 of the ST during the
Spring 2015 run 2931. The red line serves as a reference for the propagation time
assuming it was a constant 15 cm/ns. The magenta line is the fit corresponding to
the straight section. The green and dark blue solid lines correspond to the fits in
the bend and nose section respectively. Right: zoomed in view of data points.

4.33in both z and 7)) . This was done so that when zp; = 0.0 cm, T)7 = 0.0 ns.

The mean propagation times were then grouped into three distinct regions cor-
responding to the three unique geometrical sections of the ST namely the straight,
bend, and nose regions. These three regions were then fit utilizing the x? minimiza-

tion technique with a linear function whose functional form is given by Eq. [4.31

where the index 7 indicates which region the fit is being performed.
fi(z) = Ai+B; -z (4.31)

With the fit parameters determined an explicit time difference correction for
each of the 30 ST channels could then be applied to calculate the ST measure of

the vertex time given by Eq. which must be a function of where the charged
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track intersects with the ST.

75T (2) =TT — ng;ht — T3 (%) (4.32)

vertex prop

4.6 Start Counter Time Resolution

Measuring the ST vertex time relative to the RF beam bunch vertex time is the
most optimal way to determine the Start Counters ability to successfully identify
the beam buckets associated with a particular event. The design resolution of the
ST was to have all 30 sectors have a time resolution no larger than 350 ps so as to

successfully identify the beam buckets to within a 99% accuracy.

4.6.1 Time Resolution Event Selection

The charged tracks used to perform the time resolution measurement are very similar
to those which were used in section [1.5.2] Every charged track was required to have
a tracking FOM > 0.0027 and only the time based track with the best FOM was
utilized to avoid double counting. Each charged track was required to have zyep4e be
contained within the target geometry while the 7., Was required to be contained
within the scattering chamber geometry. Lastly, each charged track was required
to have a matched hit in the ST. All charged tracks satisfying the aforementioned

conditions were used in the time resolution measurements discussed below.

4.6.2 Time Resolution Measurements

With both the time-walk corrections and the propagation time corrections complete
it is relatively simple to calculate the time resolution of the ST relative to the RF

(beam bunch) signal. All that is needed is to calculate the ST measure of the
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vertex time for each charged track given by Eq. [£.32] Then in an identical manner

outlined in section m TEE  must be “stepped” to the time the charged track

vertex

TBB

vertex”

vertex was produced so as to obtain a proper measure of the The resulting

distribution in the time difference of these two times provides a measure of the ST

time resolution and is seen in Fig. [4.35] It is useful to note that while Fig. [4.35
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Figure 4.35: Typical Start Counter/RF time resolution distribution. Shown is the
time resolution distribution for sector 15 during the Spring 2015 run 2931. The

x-axis is the time difference between TS, and TBB_ . The blue histogram is the

resolution in the straight section. The red and purple histograms correspond to the
resolution in the bend and nose sections respectively. The black histogram is a sum
of the three sections and corresponds to the resolution along the entire length of the
paddle.

only shows a Gaussian fit to the entire length of sector 15, identical fits were made
to fit the individual sections as well so as to compare with data taken on the bench
at FIU and is discussed below.

The aforementioned fits were then carried out for each of the 30 ST sectors with
o, and its associated error being calculated. Then a weighted average of the 30 ¢’s
were calculated so that the ST could have its time resolution characterized in its

entirety. The same procedure was also conducted for the three individual sections.
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Figure illustrates the uniformity in time resolution among all 30 sectors of the

ST. Figure 4.36|indicates that the average time resolution of 300 ps is well below the

Start Counter Time Resolution Performance
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Figure 4.36: Start Counter time resolutions. Shown is the time resolution for all 30
sectors of the ST. The inset histogram illustrates the mean value of the Gaussian fit
which characterizes the time resolution measurement for each of the 30 ST sectors.

design resolution of 350 ps. Table [1.4] details the weighted average time resolution

of all 30 ST sectors in the different geometrical regions. It is clear from Table

ST Section Oall Ostraight Obend Onose
Cavg 290 ps | 299 ps | 292 ps | 264 ps

Table 4.4: Average time resolutions by section. Shown is the average of all 30 ST
sectors by independent geometrical regions.

[4.4] that the average time resolution measured with beam data is identical to the
average of the data measured on the bench at FIU which was shown in Fig. [.24]
In addition what is observed is that measurements made with beam data exhibit
the same phenomenon of substantial improvement in light collection, and thus time

resolution, as light is produced further downstream in the nose region.
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When these measurements were first conducted approximately 16 months had
elapsed since polishing studies were being conducted at FIU on scintillators with
severe surface damage. The 30 ST sectors are comprised of 30 of those very scin-
tillators which were at one point unusable. Prior experience with degrading scin-
tillators indicates that degradation in time resolution will be visible in a matter of
weeks. However, after 16 months no degradation has been observed and the ST is

performing well below design resolution.
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CHAPTER 5

Beam Asymmetry Y in Single 7° Photoproduction

5.1 Measurement of the Beam Asymmetry ¥ in Single 7"
Photoproduction

An initial measurement of the beam asymmetry > in the exclusive reaction vp —
7%, where 7% — 77, has been carried out utilizing linearly polarized photons pro-
duced via the coherent Bremsstrahlung process, incident on a LHs target in Hall
D. The tagged photon energies ranged from 2.5 < E, < 3.0 GeV in the coherent
peak. The resulting photoproduced 7 meson, and its subsequent decay constituents
(7% — 77), as well as the recoiling proton were reconstructed with the GlueX spec-

trometer. The details of the GlueX spectrometer was outlined in section .

5.1.1 Event Selection

In order to isolate the Yp — 7°p reaction the linearly polarized photon data from
runs 3185 and 3186, ~ 33 M events, were analyzed. The particle combinations were
required to contain 2 neutral particles, and one positive particle with the aim of
properly selecting the corresponding 2 7's and the recoil proton respectively. The

run conditions are given in Table [5.1] Furthermore, for these two runs the beam

Run Events Beam Beam Solenoid
Number Energy (GeV) | Current (uA) | Current (A)

3185 19,866,480 5.5 11.8 1300

3186 13,117,090 5.5 17.6 1300

Table 5.1: Spring 2015 polarized photon beam run conditions. These runs consist

of ~ 2 hours of production data.

was collimated with a 5 mm diameter active collimator. The radiator used was the
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J1A50, a 50 pum thick diamond from Hall B. The trigger was an energy sum between
the FCAL and BCAL with the conditions that the shower energy in the calorimeters
satisfied the relation ship: Ercar +4 - Egcar, > 0.5 GeV.

For each event the beam photon and the reconstructed particles were required to
originate in the same beam bunch while all other beam photons were rejected. Fur-
thermore, the minimum shower energy in both the BCAL and FCAL was required
to be larger than 0.1 GeV on an individual basis. Furthermore, each track in the
event was required to have a tracking confidence level greater than 5.73 x 1077,

For proton candidates the TOF, BCAL, and FCAL detector systems can measure
the track vertex time by correcting for the tracks flight time from its vertex to each
respective detector. The difference (At) of the vertex time relative to the RF beam
bunch time provides a robust way to ensure the proper particle identification (PID)
has been made for that particular candidate. A similar calculation can be done for
photon candidates in the calorimeters, namely the FCAL and BCAL. Figure [5.1
illustrates two examples of PID timing cuts made in the BCAL for both proton and

photon candidates. Table summarizes the various PID At cuts made for the

p Candidates BCAL y Candidates

Mocn . ar

T 1
25

3 as 4
Shower Energy (GeV)

g
p (GeVie)

Figure 5.1: PID At cuts. Left: PID At = 41 ns cut made for proton candidates in
the BCAL. Right: PID At = 4+1.5 ns cut made for photon candidates in the BCAL.
The horizontal dashed red lines indicate the cut region.
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proton and photon candidates.

Candidate | Detector System | At cut (ns)
Proton TOF £1.0
Proton BCAL +1.0
Proton FCAL +£2.0
Photon BCAL +1.5
Photon FCAL +2.0

Table 5.2: Summary of PID At cuts.

To better isolate the proton candidates from other positively charged particles,
the CDC was utilized in measuring the tracks energy deposition per unit length
(dE/dz) in correlation with the tracks momentum (p). The dE/dx vs. p distribution

for proton candidates as measured by the CDC is shown in Fig. [5.2] According to

p Candidates

CDC dE/dx (keVicm)

Figure 5.2: dFE/dx vs. p in the CDC. Left: dE/dx vs. p in the CDC before applying
exponential cut. Right: dE/dx vs. p in the CDC after applying exponential cut.
There is clear proton/hadron separation for tracks with p < 1.0 GeV

the Bethe-Bloch equation, dE/dx o« M/ implying then that protons with
slower momenta will deposit more energy per unit length than lighter particles
with same momentum. As seen in Fig. the “banana band” corresponds to
protons while the horizontal band ~ 1.5 GeV corresponds to other positively charged
particles which have been misidentified as protons. Therefore, in order to reduce

the number of misidentified proton candidates an exponential cut, whose parameters

=
T

CDC dEidx (keViem)

S . N W B @~ @@
AL N AR AR ARSI RAR RN LR R RRN RS

p Candidates
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were determined empirically, was applied to the dE/dzvs.p data. The functional

form is given by Eq. 5.1}

% = 1.0 + 9130 (5.1)
The effects of applying the exponential cut are illustrated in Fig. and there
is a clear reduction in contamination for proton candidates with low momentum.
The advantage to utilizing an exponential cut is that it is better at maximizing the
number of “good” proton candidates as opposed to imposing a horizontal dF/dx
cut.

With the fiducial PID cuts having been implemented to the data, kinematic
constraints were then applied to the data. In order to more easily discuss the
kinematic variables associated with the topology ¥p — 7°p, four momentum vectors
are labelled as P, x where X is the particle label. Moreover, the label P% will refer
to the transverse momentum (P% = (P, x, P, x)) of particle X.

The proton initial four vector is assumed to be at rest and P,, = (m,,0,0,0).
The incident polarized photon is assumed to have momentum only in the z direc-
tion P, = (E,,0,0, P, ). If we define the initial transverse momentum vector as
PT = P;F + Pg‘ it follows that the composite initial system will have zero transverse
momentum.

Conservation of momentum gives P = P{ where P§ = PL, + P} and p/ is
the recoil proton. Since the initial state four vector has zero transverse momentum
it must be that PT, = —P7 and therefore the 7% system will be coplanar, eg.
dp(m%p) = 180°, in the lab frame where ¢ is the azimuthal angle between the 7° and
the recoil proton. Figure illustrates the coplanar nature of the 7% system. Only
events which have passed the aforementioned PID cuts and have d¢(7"p) = 180°+5°

were considered for further analysis.
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Figure 5.3: 7% coplanarity cut. There is a clear coplanar preference of the 7%
system. The vertical red dashed lines indicate the coplanarity cut.

To further improve the ¥p — 7°p event selection we required that the vertex of
the recoil proton be located within the target geometry. In Fig. the z coordinate
of the recoil proton track vertex is required to occur within the 30 cm target, located

at eg. 50 cm < Zyerter < 80 cm. Furthermore, the track vertex is constrained to
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Figure 5.4: Recoil proton vertex cuts. Left: r coordinate of recoil proton vertex.
Right: z coordinate of recoil proton vertex. The peak immediately downstream of
the z = 80 cm cut is the vacuum chamber exit window, and the more prominent
peak is a thin plastic target placed at the end of the ST. The vertical dashed red
lines indicate the cuts.
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have its position of closest approach to the beam line within the diameter of the
collimated beam, i.e. ryeper < D mm.

Let us define a “missing” four momentum vector given by Eq.

Pyumiss = Pui — Puf = (Puy+ Pup) = (Pyro 4+ Puy) (5.2)

Conservation of energy and momentum require P, 55 = (0,0,0,0). However, this
is not the case for every event due to the uncertainty of determining the particles
four vectors. Therefore it is required to ensure that the missing mass and energy of
the events are close to zero. The missing mass squared can be calculated for each

event.

Mpiea = Puniss - P = (B, +my — Eno — By)* = B, = P = Byl* (5.3)

Moreover, the energy component of the missing four momentum vector, given by
Eq. 5.2 should also be equal to zero. Figure [5.5] illustrates both the missing mass

squared (|M?2,.,] < 0.020 GeV) and missing energy cuts (| Episs| < 0.200 GeV) that

1S5S

were applied to the data. It is useful to note that in Fig. the missing mass
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Figure 5.5: Missing mass squared & missing energy cuts. Left: Missing mass squared
cut. Right: missing energy cut. The vertical dashed red lines indicate the cuts.

squared cut was applied prior to the missing energy cut.
One of the most crucial kinematic constraints that was applied to the data to

cleanly select the Yp — 7’p topology was the cut applied to the v invariant mass
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spectrum. Figure illustrates the effects of the PID At, CDC dE/dx vs. p cut,

and the 7¥p coplanarity cut in the v~ invariant mass spectrum. Figure shows
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Figure 5.6: Effects of cuts on the 77 invariant mass spectrum. Left: PID At,
and CDC dE/dx vs. p cuts on the raw 77 invariant mass spectrum. Right: 7%
coplanarity cut on the CDC dE/dx vs. p cut data.

the effects of the recoil proton vertex cut, the missing mass squared cut, the missing

energy cut, and lastly the |m o] < 0.035 GeV cut. It is clear from figures[5.6 and [5.7]

f:“:‘ - [ ] 2 . ‘-":_’ -
E 8000 = i p Coplanarity Cut E 1200 — D All Cuts
] [ L Proton Vertex Cut n -
[%] _ w B
8 E ! £ 1000 =134,
2 s L ! ]]]]D] M2, Cut g - m_ = 134.9766 MeV (PDG)
(s] E | 1§ Q
S F ; [ e cut < w0l
5000 — d n vensnss M| = 35 MeV Cut
E i — m, = 134.9766 MeV (PDG) - =
4000 — [' 4 500 —
E iyeg o) r
3000 — | i C
E i35 400—
2000 — 52 -
E p:: h 200 —
1000 11__;'9"_/ Eb;:::::‘x""ﬂ—e C
B 1 A Bh RS Bipdrii i e o= AR . C i i e ;
% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 o 0.3 0.4 05 06 07
¥y Invariant Mass (GeVic®) ¥y Invariant Mass (GeV/ic®)

Figure 5.7: Final vy invariant mass spectrum. Left: recoil proton vertex, missing
mass squared, and missing energy cuts on the 7°p coplanarity cut data. Right: v~y
invariant mass cut. It is useful to note that the n mass peak is seen at approximately
0.550 GeV.

that the most significant cuts came from the 7% coplanarity cut and the missing
mass squared cut.
In order to extract the beam asymmetry 3 for the reaction yp — 7% only

events occurring in the coherent peak were analyzed. Therefore, a cut on the tagged
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photon energy was applied to the data with the aforementioned event selection
criteria. The tagged photon energy spectrum is shown in Fig. with the coherent

peak cut (2.5 < E, < 3.0 GeV) shown. It is required to note that the number of
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Figure 5.8: Coherent peak cut. For E, < 2.5 GeV the low energy Bremsstrahlung
spectrum is clearly visible. Furthermore for photon energies 2.5 < E, < 3.0 GeV
the sharp coherent peak is also visible.

7V candidates shown in Fig. was reduced by a factor of 6 upon selecting tagged
photons in the coherent peak.

All of the events passing the aforementioned cuts were classified as events corre-
sponding to the 4p — 7°p topology and were used to extract the associated beam

asymmetry .

5.1.2 Measuring the beam asymmetry X

In order to calculate the degree of polarization of the photon beam in the coherent
peak a fit to the enhancement spectrum was performed [38|. The enhancement spec-
trum is calculated by dividing the tagged polarized photon energy spectrum by the

unpolarized Bremsstrahlung photon energy spectrum produced with an amorphous
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radiator. The enhancement spectrum is then fit to obtain the average and peak de-
gree of polarization for the linearly polarized photon beam and is illustrated in Fig.

m. The fit to the enhancement spectrum yields a peak polarization of ~ 65% [3§]
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Figure 5.9: Beam polarization in run 3185. Left: fit to the enhancement spectrum
where only the coherent peak is visible. Right: calculated polarization resulting
from the fit to the enhancement spectrum .

and an average polarization P ~ 47% [39].

The polarized photon beam during runs 3185 and 3186 in the Spring 2015 com-
missioning run had its electric vector oriented parallel to the floor whose degree of
polarization is denoted as F|. The differential cross section for the incident photon

beam polarization is given by Eq. where o, is the unpolarized cross section, and

> is the associated beam asymmetry .

doy, _dog
aQ  dQ

(1 - PyScos(26)) (5.4)

Moreover, the variable ¢ is the azimuthal angle of the 7° in the lab frame. The ¢
dependence of ¥ arises from the partial wave expansion of the helicity amplitude
elements . Therefore, the ¢ distribution of the photoproduced 7° meson can be
fit with the functional form A(14 Bcos(2¢)) where B = P|X. Figure shows the
modulation of ¢ for the 7° for runs taken with an amorphous radiator and oriented

diamond. There is a clear modulation in ¢ due to the polarization transfer from
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Figure 5.10: ¢ distribution of the photoproduced 7% meson. Left: ¢ distribution of
the photoproduced 7 meson utilizing a unpolarized photon beam produced with an
amorphous radiator. Right: ¢ distribution of the photoproduced 7° meson utilizing
a polarized photon beam produced with an oriented diamond. There is a clear
modulation in ¢ due to the polarization transfer from the beam to the 7°

the beam to the 7¥ as opposed to the non existent modulation for the amorphous
radiator runs.

The world data for measuring the beam asymmetry ¥ of the photoproduced 7°
meson with linearly polarized photons in the 2.5 < E, < 3.0 GeV is quite sparse.
One experiment was carried out 46 six years prior at the Massachusetts Institute
of Technology (MIT) utilizing the Cambridge electron accelerator (CAE) in which
linearly polarized photons in the energy range 2.7 < E, < 3.3 GeV were incident on

a LH, target [43]. Figure illustrates the definition of the kinematic variables

for the 4p — 7% topology. The Mandelstam variable ¢ for the reaction of interest

P

P P

p!

P, P o

Figure 5.11: Two body reaction schematic.
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is given by Eq. [5.5]
t=Pp,—Py)? =m’ —2E,E, +2P,Py +m’, (5.5)

Therefore, t is a measure of the squared four momentum transfer of the photon to
the target proton. The experiment at CEA measured X for 0.1 <t < 1.2 GeV2.

Utilizing the Spring 2015 polarized photon data, the modulation in ¢ of the
photoproduced 7% meson was measured in three ranges of Mandelstam ¢ namely,
0.0<t<0.5GeV? 0.5 <t<10GeV? and 1.0 < t < 1.5 GeV2. Due to the severe
lack of statistics produced in only two hours of physics production, the binning had
to be quite coarse. Figure shows fits to the data to extract P32 the three bins
in Mandelstam ¢. Assuming the average beam polarization to be P = 47% [39] the
beam asymmetry ¥ was measured from the relationship ¥ = B/P} for each of the
three bins in Mandelstam ¢ and is shown in Fig. [5.13 relative to the > determined
at CEA [43]. Figure shows that with only the 2 hours of physics data, the
GlueX beam asymmetry measurements agree well with MIT data within error.

A similar beam asymmetry measurement was attempted in the Yp — 77 (n)
topology where the neutron was missing. A nearly identical event selection as was
carried out for the 7 as was discussed previously. However, upon investigating
the missing mass spectrum, shown in Fig. [5.14] no clear neutron candidates were
observed after implementing various fiducial cuts and cutting on tagged photons
in the coherent peak. Due to the large background observed in this particular
topology, the beam asymmetry could not be extracted. It is important to realize
that the trigger type used in these runs was an energy sum between the FCAL and
BCAL with the conditions that the shower energy in the calorimeters satisfied the

relation ship: Ercar +4 - Epcar, > 0.5 GeV. Furthermore, the minimum ionizing
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Figure 5.12: ¢ modulation fits in different bins of Mandelstam ¢. There is clear lack
of statistics for |t > 0.5 GeV?.

energy in the FCAL for pions is &~ 0.4 GeV and therefore suppresses the detection

of a single 7.
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