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Abstract

Energies from the GW approximation and the Bethe-Salpeter equation (BSE) are

benchmarked against the excitation energies of transition metal (Cu, Zn, Ag, and Cd)

single atoms and monoxide anions. We demonstrate that best estimates of GW quasi-

particle energies at the complete basis set limit should be obtained via extrapolation or

closure relations, while numerically converged GW -BSE eigenvalues can be obtained

on a finite basis set. Calculations using real-space wave functions and pseudopotentials

are shown to give best-estimate GW energies that agree (up to extrapolation error)

with calculations using all-electron Gaussian basis sets. We benchmark the effects

of a vertex approximation (ΓLDA) and the mean-field starting point in GW and the

BSE, performing computations using a real-space, transition-space basis and scalar-

relativistic pseudopotentials. While no variant of GW improves on perturbative G0W0
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at predicting ionization energies, G0W0ΓLDA-BSE computations give excellent agree-

ment with experimental absorption spectra as long as off-diagonal self-energy terms are

included. We also present G0W0 quasiparticle energies for the CuO−, ZnO−, AgO−,

and CdO− anions, in comparison to available anion photoelectron spectra.

1 Introduction

Excited-state properties of transition metals are of interest for a variety of energy and

electronics applications. However, quantitative simulations of one- and two-particle exci-

tations can be difficult for these systems due to their enhanced correlation interactions.

Density-functional theory (DFT) calculations using hybrid exchange-correlation functionals

or a Hubbard U interaction have been successful and computationally efficient in simulating

excited-state properties of certain transition-metal systems;1–7 however, the transferability

of such functionals across a variety of materials is still being tested and verified. At the other

extreme, the accuracy of quantum chemistry methods can be systematically increased, but

the computational cost of post-Hartree-Fock methods is much larger.

With computational costs between that of DFT and quantum chemistry calculations,

the GW approximation and the Bethe-Salpeter equation (BSE) provide an alternate first-

principles route to modeling one- and two-particle excitations.8–11 When the GW equations

are solved self-consistently, the sole deviation of GW and GW -BSE from the exact one-

and two-particle solutions, respectively, is the vertex approximation. Complications in in-

terpreting GW and BSE results arise, however, as additional numerical and physical ap-

proximations – such as the use of finite basis sets, the pseudopotential approximation, and

non-self-consistency – are applied to reduce computation time. For transition-metal systems,

the impact of these approximations may be magnified due to the larger correlation energies

that must be computed within the GW approximation. For example, GW calculations for

the bulk ZnO band gap received particular attention after values were published in a wide

range from 2.1 to 3.9 eV, as discussed in Ref. 12 and references therein. Materials con-
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taining transition-metal atoms thus act as a rigorous test set for many-body perturbation

theory, and earlier benchmarks examining the effects of core-valence electron partitioning,

mean-field starting points, self-consistency, and relativistic effects have already highlighted

some of the successes and obstacles in simulating such systems.13–17

Motivated by increasing use of the GW approximation and the BSE in studying excited-

state properties, we benchmark the impact of various numerical and theoretical approxima-

tions on excitations of Groups IB and IIB atoms and monoxides. GW quasiparticle energies

are computed for ground state atoms in three valence electron configurations: d10 (Cu+, Ag+,

Zn2+, and Cd2+), d10s1 (Cu0, Ag0, Zn+, and Cd+), and d10s2 (Cu−, Ag−, Zn0, and Cd0). For

the same species, we also determine low-lying GW -BSE neutral excitation energies. Highly

accurate reference data for the corresponding ionization and absorption energies are obtained

from the NIST Atomic Spectra Database.18 This benchmark set allows us to examine d angu-

lar momentum orbitals while avoiding complications associated with partially-filled d-shells,

such as multiplet splitting.19 We address the effect of the basis set and the pseudopotentials,

and study the influence of an approximate vertex and non-self-consistent solutions.

We begin with an overview of GW and BSE theory and methodologies in Sec. 2, in-

cluding discussion of the vertex approximation, eigenvalue self-consistency, and off-diagonal

self-energy terms. In Sec. 3.1, we address the basis set dependence of our computations for

quasiparticles with s, p, and d character. Pseudopotential GW calculations on a real-space

grid are compared to the Gaussian basis set, all-electron GW calculations for the Zn atom

and cations (Zn0, Zn+, and Zn2+), and perturbative G0W0 and eigenvalue self-consistent GW

(evGW ) results are extrapolated to the complete basis set limit. The numerical convergence

of GW -BSE energies relative to basis set size is presented in Sec. 3.2. We then discuss the im-

pact of the pseudopotential approximation, relativistic effects, and exact exchange in mean-

field starting points in Sec. 3.3. This validates the use of scalar-relativistic pseudopotentials

and a real-space, transition-space implementation of GW -BSE within the remainder of this

work, and contextualizes the choice of mean-field starting points associated with local or
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semilocal exchange-correlation density functionals. In Sec. 4, we benchmark the effects of the

vertex approximation and non-self-consistent GW across our full test set. For comparison to

experimental ionization energies, quasiparticle energies are obtained across six levels of GW

theory – G0W0@LDA, G0W0ΓLDA@LDA, evGW@LDA, evGWΓLDA@LDA, G0W0@GGA,

and evGW@GGA – where G0W0 is perturbative GW , evGW is eigenvalue self-consistent

GW , @LDA and @GGA indicate mean-field starting points of DFT with the Perdew-Wang

local-density approximation or the Perdew-Burke-Ernzerhof generalized-gradient approxima-

tion exchange-correlation functional, respectively,20,21 and ΓLDA is a LDA-derived two-point

vertex function.22 The GW quasiparticles computed at each level of theory are subsequently

used in constructing and solving the BSE; the resulting eigenvalues are compared to time-

dependent DFT energies and experimental absorption energies. In Sec. 5, G0W0 energies for

CuO−, ZnO−, and AgO− are compared to experimental anion photoelectron spectra,23–25

and the CdO− spectrum is computed for the first time. We summarize and conclude in

Sec. 6.

2 Theory and methods

2.1 GW approximation

The one-particle Green’s function, whose poles are associated with energies of electron or

hole injection into a system, can be expressed as the Dyson equation,

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)∆Σ(3, 4)G(4, 2) (1)

where (1) ≡ (r1, σ1, t1) is many-body notation for the spatial, spin, and time coordinates,

G0 is defined here as a mean-field Green’s function (possibly including mean-field exchange

and correlation effects), and ∆Σ is the difference between the self-energy term Σ and the

mean-field exchange-correlation potential. In principle, the interacting one-particle Green’s
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function can be determined self-consistently using four other equations that define the po-

larizability χ, screened Coulomb interation W , self energy Σ, and vertex function Γ:8

χ(1, 2) = −i
∫
d(34)G(1, 3)G(4, 1+)Γ(3, 4; 2), (2)

W (1, 2) = VH(1, 2) +

∫
d(34)VH(1, 3)χ(3, 4)W (4, 2), (3)

Σ(1, 2) = i

∫
d(34)G(1, 3)W (4, 1+)Γ(3, 2; 4), (4)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) (5)

+

∫
d(4567)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3),

where 1+ denotes that t1 → t1 + η for some positive infinitesimal η, VH is the bare Coulomb

potential, and δ(1,2) is the Dirac delta function.

Hedin’s equations (Eqs. 1-5) are too computationally expensive for studying realistic

systems, and instead the GW approximation is typically used. In the GW approximation,

Eqs. 1-4 remain unchanged, but the three-point vertex function is reduced to

Γ(1, 2; 3) = δ(1, 2)δ(1, 3), (6)

which removes the need to evaluate a four-point integral. In this work, we compare the

conventional GW approximation (with the vertex defined by Eq. 6) to the GWΓLDA method,

where the two-point vertex satisfies,22,26

ΓLDA(1, 2; 3) = δ(1, 2)δ(1, 3)− iδ(1, 2)fxc(1)

×
∫
d(45)G(1, 4)G(5, 1+)ΓLDA(4, 5; 3),

(7)

fxc = δVxc/δρ, and Vxc is the LDA exchange-correlation potential.22,27 While a three-point

vertex is needed to accurately describe certain physical properties,28–30 this two-point form

of the vertex allows computations that increase the cost relative to conventional GW by only
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a prefactor (with computation time ∼30% longer than conventional GW in our implemen-

tation).

With our focus on atoms and molecules, we perform computations with the software suites

RGWBS26 and molgw,31 both of which use a transition-space and spectral (frequency)

representation of excited-state properties that is particularly efficient for evaluating GW

and BSE energies of isolated systems. In this formulation, the conventional GW self energy

is partitioned into two contributions: a bare exchange part Σx and a correlation part Σc.

The bare exchange self-energy matrix element between quasiparticles j and j′ can be written

as a sum over occupied states:

〈j|Σx|j′〉 = −
occ.∑
n

Kx
njnj′ , (8)

where the exchange kernel is

Kx
vcv′c′ =

∫
dr

∫
dr′ϕv(r)ϕc(r)VH(r, r′)ϕv′(r

′)ϕc′(r
′), (9)

and ϕ(r) are real-valued quasiparticle wave functions. Because only quasiparticles j and j′

and occupied states contribute to this finite summation, the evaluation of Σx is computa-

tionally straightforward.

This leaves the correlation term as the bottleneck for GW computations. In the sum-

over-states formulation, the energy-dependent Σc is expressed as a double infinite sum over

quasiparticles n and transitions s,

〈j|Σc(E)|j′〉 = 2
∞∑
n

∞∑
s

V s
njV

s
nj′

E − εn − ωsηn
, (10)

where ηn is -1 for occupied state n (quasihole) and +1 for empty state n (quasielectron), and

V s
nj =

occ.∑
v

empty∑
c

Kx
njvc

(
εc − εv
ωs

)1/2

Zs
vc, (11)
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where εn are quasiparticle eigenvalues (poles of G), v is the index over occupied states, and

c is the index over empty states. The transition energies ωs (poles of W ) and eigenvectors

with components Zs
vc are from the solution of Casida’s equations.32 The poles of G are

complex-valued, but in this framework, the quasiparticle lifetimes are assumed to be long; the

imaginary part of εn has an infinitesimal negative value for occupied n and an infinitesimal

positive value for empty n.

In addition to the exchange and correlation terms of conventional GW , GWΓLDA has a

vertex correction to the self energy. Similar to the correlation self energy, this vertex term

also involves infinite sums. The LDA vertex contribution is

〈j|Σf (E)|j′〉 =
∞∑
n

∞∑
s

V s
njF

s
nj′ + F s

njV
s
nj′

E − εn − ωsηn
, (12)

where

F s
nj =

occ.∑
v

empty∑
c

KLDA
njvc

(
εc − εv
ωs

)1/2

Zs
vc, (13)

and the LDA exchange-correlation kernel is

KLDA
vcv′c′ =

∫
drϕv(r)ϕc(r)fxc(r)ϕv′(r)ϕc′(r). (14)

The vertex correction Σf is added to the bare exchange and correlation terms (Eqs. 8 and 10)

to give the total GWΓLDA self-energy. Note that for benchmarks simulating spin-polarized

atoms or molecules in this work, the GW self-energies are evaluated separately for the spin-up

and spin-down configurations, i.e., spin-flip and mixed-spin interactions are not considered.

For the evaluation of the correlation self energy (Eq. 10) and the vertex correction

(Eq. 12), the summations converge very slowly, especially for orbitals with larger corre-

lation interactions. More generally phrased, the convergence with basis set size is slow. In

Sec. 3.1, we discuss how the form of the basis set and the properties of the quasiparticle

under investigation affect the convergence of the GW self energy and apply techniques to
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compute best estimates of energies at the complete basis set limit.

The computation of the GW self energy is typically initialized with quasiparticles (occu-

pations, eigenvalues, and wave functions) from a mean-field calculation. The initial electronic

structure has a significant impact on “one-shot” G0W0 energies, although its effect can be

reduced or eliminated through fully self-consistent GW iterations. Our excited-state calcula-

tions in molgw use DFT electronic structures computed directly within the same package,

while RGWBS uses DFT electronic structures computed in PARSEC.33

At GW iteration k, we compute the diagonal terms of the GW Hamiltonian as

E
(k)
jj = E

(k−1)
jj + Re〈j|∆Σ(E

(k)
jj )|j〉, (15)

where E
(0)
jj are the eigenvalues for the initial mean-field electronic structure and ∆Σ is the

difference in self-energies between the current and immediately prior steps. The off-diagonal

terms are computed slightly differently as

E
(k)
ij = Re〈i|∆Σ(E

(k−1)
ii )|j〉, (16)

where the energies are not renormalized to reduce computational cost. Note that because

the energy-dependence of Σ is not well-defined for off-diagonal terms, we choose to associate

the off-diagonal self energy with the “left” quasiparticle.

In this work, we focus on perturbative and eigenvalue self-consistentGW (or self-consistent

GW in the diagonal approximation). Because wave functions remain unchanged in both

types of GW calculation, contrasting G0W0 and evGW energies allows us to differentiate

between the effects of the initial eigenvalues and the initial wave functions. Off-diagonal

terms are only considered in the context of GW -BSE, in computations using smaller basis

sets.
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2.2 Bethe-Salpeter Equation

The energies associated with neutral excitations can be determined from the BSE, which

expresses the two-particle correlation function L as10

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′)

+

∫
d(3456)L0(1, 4; 1′, 3)K(3, 5; 4, 6)L(6, 2; 5, 2′),

(17)

where

L0(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′), (18)

with G being a one-particle Green’s function, and the electron-hole interaction kernel ex-

pressed as

K(3, 5; 4, 6) = −iδ(3, 4)δ(5, 6)VH(3, 6) +
δΣ(3, 4)

δG(6, 5)
. (19)

As in the GW calculations, we use a transition-state basis in our computations. The

electron-hole amplitudes of transition l can then be expressed as

ρl(r, r
′) =

occ.∑
v

empty∑
c

X l
vcϕc(r)ϕv(r

′) + Y l
cvϕv(r)ϕc(r

′) (20)

for some coefficients X l
vc and Y l

cv. Assuming that G can be represented using quasiparticles

and that electron-hole excited states are long-lived, the BSE becomes a generalized eigenvalue

problem with block matrix form:34

 A B

−B −A


Xl

Yl

 = Ωl

Xl

Yl

 , (21)

where Ωl is the energy of an electron-hole excitation, the resonant block A corresponds

to transitions from occupied to empty orbitals, and antiresonant block −A corresponds to

transitions from empty to occupied orbitals. The off-diagonal blocks, B and −B, have been
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found to be important for certain finite systems, and are included in our calculations, i.e.,

we do not use the Tamm-Dancoff approximation.

From the definition of the BSE kernel (Eq. 19), it is clear that G determines the form of A

and B and significantly impacts the quality of ensuing BSE predictions. At the lowest level

of approximation considered in this paper, the BSE uses G constructed directly from wave

functions and energies (ϕ and ε) corresponding to the Kohn-Sham DFT electronic structure,

and the BSE kernel is defined as the exchange-correlation kernel, fxc. This form of the BSE

is well known as linear-response time-dependent DFT (TDDFT) in Casida’s formalism.32

In the GW -BSE framework, G is instead obtained from the GW approximation. Ne-

glecting dynamical effects, the BSE kernel can be split into an exchange part Kx (Eq. 9)

and a direct part,

Kd
vcv′c′ = Kx

vv′cc′ + 4
∑
s

V s
vv′V

s
cc′

ωs
, (22)

and the block submatrices for GW -BSE corresponding to the spin-conserving excitations

(and ignoring spin-orbit interactions) are

A↑↑,↑↑ = A↓↓,↓↓ = D +Kx +Kd,

B↑↑,↑↑ = B↓↓,↓↓ = Kx +Kd,

A↑↑,↓↓ = B↑↑,↓↓ = A↓↓,↑↑ = B↓↓,↑↑ = Kx,

(23)

where

Dvcv′c′ = (εc − εv)δcc′δvv′ , (24)

with c, c′ being indices for empty states and v, v′ being indices for occupied states, and εc

and εv denote the quasiparticle energies. If the ground state is not spin polarized, its neutral

excitations can be computed with a basis set two times reduced, with singlet excitations
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corresponding to a BSE Hamiltonian with

A = D + 2Kx +Kd,

B = 2Kx +Kd.

(25)

When a vertex function is used in GW calculations (as in GWΓLDA), an additional vertex

contribution must be added to the BSE kernel to maintain a consistent level of theory. The

LDA vertex term,

Kf
vcv′c′ = 2

∑
s

V s
vv′F

s
cc′ + F s

vv′V
s
cc′

ωs
, (26)

is added to the BSE Hamiltonian wherever Kd contributes for GWΓLDA-BSE calculations.26

We also note that the terms V s
nj and F s

nj have some ambiguity in their definition during the

computation of the BSE kernel. Before self-consistency is reached, the old quasiparticles,

which were used in calculating the GW quasiparticle energies, are not the same as the new

quasiparticles obtained after the latest GW iteration; these terms can be computed with

either the old or the new quasiparticles. In this work, we use V s
nj and F s

nj corresponding to

the old quasiparticles for our perturbative GW -BSE calculations.

The GW -BSE framework outlined above most often uses G obtained from calculations

using the diagonal approximation; off-diagonal terms of the GW self energy are assumed to

be negligible. However, past work has shown that contributions from off-diagonal terms can

alter G0W0 and G0W0-BSE energies by more than 1 eV when a LDA starting point is used.34

Off-diagonal contributions appear to be largest for unoccupied states in finite systems, but

can also arise for occupied states that are poorly described within DFT.34,35 In this work, we

test the impact of the diagonal approximation by performing GW -BSE computations that

account for off-diagonal terms of the GW self energy through their mean-field contribution.

In quasiparticle self-consistent GW , the GW matrix (Eqs. 15 and 16) is symmetrized and

diagonalized to account for off-diagonal terms and generate improved quasiparticle energies

and wave functions within a mean-field description.36 However, for our comparisons to calcu-
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lations in the diagonal approximation, we would like to keep the same electron density, Vxc,

and DFT wave function basis. We compute improved quasiparticles that leave the electron

density and Vxc unchanged by symmetrizing, then separately diagonalizing the subspace cor-

responding to occupied orbitals and the subspace corresponding to empty orbitals. Applying

Eq. 24 to the transition-space basis of improved quasiparticle wave functions, then changing

back to the transition-space basis of original DFT wave functions, Eq. 24 becomes

Dvcv′c′ = δvv′
∑
c̄

εc̄〈c|c̄〉〈c̄|c′〉

− δcc′
∑
v̄

εv̄〈v|v̄〉〈v̄|v′〉,
(27)

where c and v are indices for the original Kohn-Sham DFT electronic structure and the

overbar indicates energies and wave functions of the diagonalized quasiparticle basis. Our

GW -BSE calculations that account for off-diagonal GW self-energy terms thus retain the

same Kx, Kd, and Kf contributions in the BSE kernel (corresponding to the original quasi-

particles), but Eq. 24 is replaced with Eq. 27.

3 Numerical accuracy

3.1 GW and the basis

In molgw and RGWBS, a finite set of quasiparticles, and the transitions between those

quasiparticles, act as the basis set for computing the GW and BSE energies. In molgw, the

full set of states whose wave functions can be defined on Dunning basis sets – ranging from

aug-cc-pVTZ (93 basis functions) to aug-cc-pV5Z (202 basis functions) – becomes the basis

for the excited-state calculations. In RGWBS, the wave functions are defined on a uniform

real-space grid in a spherical domain, and calculations require convergence of the simulation

cell parameters as well as the quasiparticle and transition space basis sets. The domain must

be sufficiently large, and the grid sufficiently dense, to accurately model the benchmarked
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quasiparticle wave functions’ spatial extents and fluctuations.37 These parameters are listed

in the Supporting Information. In addition, for the quasiparticle and transition-space basis

in RGWBS, cutoffs are used so that the quasiparticle basis set is restricted to the lowest-

energy N states, and the transition space is defined by the transitions between all occupied

and empty states up to state N .
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Figure 1: Contributions to the G0W0@GGA correlation self energy (Eq. 10) for various
orbitals of the Zn2+ ion, summed over transitions, and binned every 4 eV for quasiparti-
cle energies εn. These calculations truncate the correlation self-energy sum at N = 2325
(RGWBS) or use a aug-cc-pVTZ basis set (molgw). Note that molgw has terms in its
summation outside of the range of εn shown here.

As mentioned in Sec. 2.1, the convergence of the correlation self energy (Eq. 10) with

basis set size is slow; therefore, the overall convergence of the GW self energy is dependent

on this term. Part of this basis set dependence is illustrated in Fig. 1, where we plot

Re〈j|Σc(E)|j〉 for j corresponding to the 3d, 4s, and 4p quasiparticles in Zn2+, and E set to

the DFT eigenvalue of the orbital. The correlation self energy is partitioned into quasiparticle

contributions, where each bar corresponds to the correlation self energy associated with

quasiparticles n whose energies lie within 4 eV bins (and summing over all transitions s

in the basis). We observe that the 3d orbitals have correlation self-energies an order of

magnitude larger than that of the 4s or 4p; this illustrates the increased difficulty in obtaining
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d-state correlation self-energies numerically converged to the same absolute cutoff. There

are small but non-negligible contributions for both molgw and RGWBS from high-energy

quasiparticles. We also see that the basis set choice affects the form of the high-energy

quasiparticles, and thus their contributions to the correlation self energy. The atom-centered

orbitals of molgw induce fewer but sharper contributions to the self energy, compared to

orbitals defined on the real-space grid of RGWBS.

The difficulties in obtaining the convergence of excited state energies with basis set size

has motivated the development and testing of techniques to obtain the complete basis set

limit, including extrapolation,38–43 the common energy denominator approximation,44–46 con-

struction of more efficient basis sets,47–50 and terms to approximate the missing basis set

contributions.26,30,42,51–53 In this work, we use extrapolation to estimate the complete ba-

sis set limit after calculating G0W0 quasiparticle energies with a range of basis set sizes.

In molgw, the GW energies at the complete basis set limit are obtained by fitting the

extrapolated energy E∞ and coefficient c1 to

E(X) = E∞ + c1X
−α, (28)

where X = 3, 4, or 5 for aug-cc-pVTZ, aug-cc-pVQZ, or aug-cc-pV5Z, respectively. An X−3

dependence (equivalent to N−1 scaling, where N is the number of basis functions) is most

commonly used for extrapolating the total correlated energy with Dunning basis sets.54–56

However, a smaller exponent (α ≈ 2) is empirically a better fit to the quasiparticle energies

computed on finite basis sets.31,57 Later in this section, we compare extrapolated energies

obtained with α = 2 and α = 3.

For RGWBS, extrapolation to the complete basis set limit applies the same N−1 depen-

dence suggested by earlier works, arising from the electron-electron cusp condition.43 We fit
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E∞ and coefficients c1 and c2 to

E(N) = E∞ +
c1

N + c2

. (29)

The RGWBS extrapolations are performed using at least five GW computations at increasing

values of N , and parameters E∞, c1, and c2 are fit using least-squares regression weighted

by N . The largest computation used to fit each extrapolation has N > 4000, and the DFT

eigenvalue of the highest-energy state, which is a more consistent measure of convergence

than the number of quasiparticles,37 ranges from 60 to 220 eV depending on the species

being studied.

Two different extrapolations are tested for RGWBS, fitting either to (1) the GW energy

computed using the truncated correlation self-energy summation or (2) the GW energy

from the truncated summation plus a static remainder. The remainder term in the second

type of RGWBS extrapolation is derived from the static Coulomb-hole screened exchange

(COHSEX) energy, which can be expressed equivalently as a sum over transitions s, and as a

double summation over both transitions s and quasiparticles n.26 For a given set of transitions

s, the COHSEX quasiparticle basis truncation “remainder” is the difference between the

double summation evaluated up to quasiparticle cutoff N , and the single summation. This

COHSEX remainder can be added directly to truncated GW correlation energies to enhance

numerical convergence.26 However, more recently it was shown for jellium that the high-

energy contributions of the COHSEX energy overestimate the GW correlation terms by a

factor of 2.42,51 In this work, we therefore scale the COHSEX remainder by a factor of 1/2

to use as our static remainder.52 An extrapolation is still used to obtain the complete basis

set limit with respect to transitions s, because the half COHSEX remainder acts as a closure

relation only for the sum over n.

In Fig. 2, the performances of molgw and RGWBS are compared to the experimental

ionization energies of the Zn0, Zn+, and Zn2+ atoms. Each ionization energy corresponds to
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the energy of the quasiparticle associated with the highest occupied molecular orbital (QP-

HOMO) for the same species, as well as the quasiparticle energy of the lowest unoccupied

molecular orbitals (QP-LUMO) for the species with one fewer electron. For example, the top

two sets of lines in the figure both represent the d10s→ d10s2 energy, which is the negative

of the ionization energy of Zn0; the first set of lines is the QP-HOMO energy of Zn0 (d10s2

configuration) at various basis set sizes, and the second set of lines is the QP-LUMO energy

of Zn+ (d10s configuration). G0W0@GGA energies at the complete basis set limit are also

listed in Table 1.

The RGWBS extrapolations shown in Fig. 2 correspond to computations with a non-

relativistic semicore pseudopotential (see Sec. 3.3). For RGWBS, the G0W0 energies ex-

trapolated to the complete basis set limit are 0.1-1.4 eV lower than the most converged

calculations, with the larger differences associated with quasiparticles with d character. In-

clusion of the static remainder can significantly change the computed quasiparticle energies

for the same basis set, but the complete basis set limit from the two RGWBS extrapolations

(for self-energies computed with and without the half COHSEX term) differ by less than

0.2 eV for all Zn G0W0 energies. Since the two extrapolation schemes provide fairly consis-

tent quasiparticle energies, both extrapolations are performed in the remainder of this work,

and we report the extrapolated E∞ with a smaller standard error (or better extrapolation

fit). In practice, a smaller standard error for d quasiparticle energies always corresponds to

the extrapolation of static-remainder-corrected sums, while either extrapolation can produce

smaller error for quasiparticles with s or p character. Using extrapolations and static re-

mainders to estimate GW energies at the complete basis set limit, we expect that numerical

accuracy will be ∼0.1-0.2 eV, with excitations involving only s and p states having minimal

numerical error from basis set effects, and those with d states having numerical errors at the

larger end of the range.

The molgw extrapolations shown in Fig. 2 use a two-parameter fit and α = 2 exponent.

The G0W0 energies at the complete basis set limit differ less than 0.1 eV from the most
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converged calculations, except for the 3d state, which differs nearly 0.3 eV. Thus an increased

difficulty in converging d quasiparticle energies is still observed, even on a localized and

atom-centered basis. Furthermore, the extrapolated d quasiparticle energy tends to have

larger fluctuations depending on the choice of extrapolation scheme, as demonstrated by a

comparison of the two-parameter fit with α = 2, the two-parameter fit with α = 3, and a

three-parameter fit with α = 2 (where X in Eq. 28 is replaced with X+c2). The extrapolated

d quasiparticle energies vary over a range of ∼0.5 eV, while s and p quasiparticle energies are

more consistent, with deviations of less than 0.2 eV (see Table 1). The largest deviations may

be due to overfitting in the three-parameter extrapolation. Nevertheless, future tests across

a wider benchmark set would be beneficial in quantifying the GW convergence properties

for transition metals simulated using Dunning basis sets.

The above results show that the GW energies of transition metal d states at the complete

basis set limit can differ from computations on finite basis sets by more than the desired

numerical accuracy of ∼0.1 eV. However, in the context of self-consistent GW , extrapolating

energies to the complete basis set limit can quickly become prohibitively expensive for larger

molecules or large basis sets. We now quantify the numerical accuracy of evGW using smaller

basis sets, focusing on ∆ev, the energy difference between evGW and G0W0 quasiparticles

on a given basis set.

In molgw, the Gaussian basis functions allow efficient single-atom calculations, such

that evGW energies can be obtained with the same extrapolation scheme as with G0W0.

The complete basis set limits of ∆ev, i.e., the difference between extrapolated evGW and

extrapolated G0W0 energies, are compared to ∆ev computed on specific basis sets in Fig. 3.

The computed ∆ev converge quickly with basis set size over a variety of mean-field starting

points. With extrapolation exponent α = 2, the value of ∆ev at the complete basis set limit

differs less than 30 meV from the ∆ev computed on the aug-cc-pV5Z and the aug-cc-pVQZ

basis sets, and also changes less than 60 meV from values computed on the aug-cc-pVTZ

basis. There is also no noticeable difference in the convergence of ∆ev associated with s, p,
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and d states, and the convergence of ∆ev for all states is even faster with α = 3.

We confirm that similar basis set convergence behavior occurs in RGWBS, with better

convergence if the half COHSEX remainder is not used, and that the same scheme can be

used for GWΓLDA (Fig. 4). In the remainder of this work, we therefore report the evGW

energies at the complete basis set limit as E∞,evGW = E∞,G0W0 + ∆ev, where E∞,G0W0 is the

G0W0 quasiparticle energy extrapolated to the complete basis set limit, and ∆ev is computed

from evGW and G0W0 calculations on smaller basis sets (∼1000 states) without using the

static remainder.

3.2 BSE and the basis

Similar to GW calculations, solving the BSE requires the evaluation of sums over empty

states and transitions (Eqs. 9, 22, and 26); furthermore, the size of the BSE matrix is a

function of the number of transitions. In Fig. 5, we show the dependence of BSE energies on

basis set size, with the three lines indicating different choices for the quasiparticle energies:

(1) the energies are equal to the extrapolated best-estimates regardless of the BSE basis

set size, (2) the energy corresponds to a GW calculation, with the half COHSEX remainder
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contribution, on the same basis set as in the BSE calculation, and (3) the energy corresponds

to a GW calculation, with half COHSEX remainder and off-diagonal self-energy terms, on

the same basis set as in the BSE.

For excitations between only s and p states, using the same basis set for both GW and

BSE results in a faster convergence of BSE eigenvalues, compared to when GW quasiparticle

energies are extrapolated to the complete basis set limit. For an excitation from a d-state,

neither the GW -BSE results with extrapolated energies nor those with energies matching

the basis set are fully converged with basis set size, but the difference is only ∼0.2 eV. The

inclusion of off-diagonal terms does not significantly affect convergence properties. In the

remainder of this work, we therefore report results using matching basis sets for computing

GW and BSE energies. With this scheme, we expect s and p excitations to be converged

well within 0.1 eV, while the accuracy of the d excitations should be underestimated no more

than ∼0.2 eV.

3.3 Pseudopotentials, relativistic effects, and hybrid functional

mean-field

With the finite basis set (or truncated summation) error of GW accounted for, we address a

few more approximations that affect the real-space, transition-space GW -BSE calculations

in Sec. 4. This includes the use of pseudopotentials, the inclusion of scalar-relativistic effects,

and the limiting of DFT mean-field starting points to LDA or GGA exchange-correlation

functionals (no exact exchange in the starting point).

Table 1 lists extrapolated G0W0@GGA energies obtained from molgw and RGWBS. At

the complete basis set limit, and given that molgw and RGWBS both use a spectral rep-

resentation for GW calculations, the remaining energy differences are primarily attributed

to the pseudopotential approximation. Because the accuracy of the pseudopotential approx-

imation necessarily depends on the specific pseudopotential used, we generate high-quality

multireference pseudopotentials in APE;58,59 our Zn “semicore” pseudopotentials have radial
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cutoffs (rc) of 1.3 a.u. and 3s23p64s23d10 valence (pseudized Ne core). For comparison, we

also generate a “regular” Troullier-Martins pseudopotential,60 with a pseudized Ar core and

4s23d10 valence (rc = 2.1 a.u. for the s and p channels and rc = 1.3 for the d channel). Our

computations agree with past results, where the placement of the semicore states (3s and 3p

for Zn) in valence, instead of pseudizing them into the core, has been shown to be essential

in obtaining reasonable GW energies for d quasiparticle energies, due to the spatial overlap

of their wave functions.39,61–65 The GW calculations using the regular pseudopotential re-

sult in a d quasiparticle energy for Zn2+ that differs more than 6 eV from the all-electron

calculation, and s and p quasiparticles also exhibit significant differences up to 0.4 eV. On

the other hand, the resulting quasiparticle energies from “semicore” pseudopotential calcu-

lations generally lie within the range of all-electron complete basis set estimates. Differences

are mostly < 0.1 eV, and even the d quasiparticle differs only up to 0.2 eV from any given

all-electron extrapolated G0W0 energy.

The pseudopotential approximation has been described as the combination of three

effects: the frozen-core approximation, core-valence partitioning, and the pseudo-wave-

function approximation. The frozen core approximation has little effect on overall accuracy

as long as the pseudized core states and the valence electrons are sufficiently separated in

energy, as is the case here when semicore electrons are treated explicitly as “valence”.66 Past

work has tried to separate out solely the core-valence partitioning error associated with the

pseudopotential approximation by using, as a proxy, the difference between an all-electron

GW computation and the same computation with core effects removed.66–69 However, we find

it difficult to disentangle the effects of core-valence partitioning from the changes associated

with pseudizing an atom’s core. Our results in Table 1 instead indicate that directly ignoring

the core electrons in all-electron GW calculations for Zn is a more drastic approximation

than the pseudopotential approximation. These differences arise because of the different

treatments of the nonlinearity of exchange and correlation effects. When core electrons are

ignored in a formerly all-electron calculation, the computed ∆Σ (of Eq. 1 and Eq. 15) has
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brute force partitioning errors from both the nonlinear GW energy and the nonlinear Vxc,

which may cancel out to a certain extent. In contrast, pseudopotential generation combines

the pseudization of the core potential and valence wave functions together with an optimiza-

tion of the partitioning (linearization) of the core and valence parts of Vxc, such that the

eigenvalues of the Kohn-Sham orbitals match the reference all-electron eigenvalues.

Table 1: G0W0@GGA energies at the complete basis set limit, from all-electron calculations
(AE) in molgw using 2-point and 3-point extrapolation schemes, molgw calculations skip-
ping the core electrons (AE no core), and regular and semicore pseudopotential calculations
(PP) in RGWBS with and without scalar-relativistic effects (rel).

Zn2+ Zn+ Zn0

3d 4s 4p 4s(↑) 4s(↓) 4p(↑) 4s 4p
AE (α = 3, 2-pt) -39.71 -17.87 -11.91 -18.32 -9.42 -5.43 -9.14 0.80
AE (α = 2, 2-pt) -39.87 -17.92 -11.95 -18.37 -9.47 -5.48 -9.19 0.75
AE (α = 2, 3-pt) -40.09 -17.93 -11.99 -18.45 -9.51 -5.55 -9.27 0.62
AE no core (α = 3, 2-pt) -38.51 -17.66 -11.80 -18.15 -9.26 -5.35 -9.01 0.83
AE no core (α = 2, 2-pt) -38.65 -17.70 -11.84 -18.20 -9.31 -5.40 -9.06 0.78
AE no core (α = 2, 3-pt) -38.76 -17.73 -11.86 -18.29 -9.37 -5.46 -9.14 0.66
PP (regular) -33.67 -18.35 -12.37 -18.69 -9.75 -5.62 -9.34 0.72
PP (semicore) -39.88 -17.96 -11.94 -18.36 -9.44 -5.45 -9.30 0.71
PP (semicore, rel.) -39.61 -18.34 -12.07 -18.71 -9.65 -5.45 -9.69 0.80
Experiment -39.72 -17.96 - -17.96 -9.39 - -9.39 -

We next compare scalar-relativistic and the non-relativistic pseudopotentials. Table 1

shows that relativistic effects decrease the s and p quasiparticle energies up to 0.4 eV,

while the Zn2+ d quasiparticle energy increases by 0.3 eV. Due to the observed importance

of relativistic effects, scalar-relativistic pseudopotentials are used for all results presented

in Sec. 4 and 5. As in the Zn pseudopotentials tested here, the cores of Cu, Ag, and

Cd pseudopotentials are pseudized through multireference fits, with all semicore electrons

considered part of the “valence”. We also note that, for the elements studied in this work (up

through period five), the use of scalar-relativistic instead of fully-relativistic GW calculations

should affect the starting point by less than 0.1 eV.17

Finally, we use molgw to study the effect of exact exchange in the mean-field starting

point, performing computations where none, half, or all of the exchange density functional
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is replaced with a corresponding amount of exact exchange. We find that the amount

of exact exchange has a significant effect at the DFT, G0W0, and evGW levels of theory

(Fig. 6). As expected, the DFT LUMO become less bound, while the DFT HOMO is

more bound with increasing amounts of exact exchange. However, the GW approximation

decreases or even reverses the trend observed at the DFT level, with the change in trends

most evident at the evGW level of theory. We therefore emphasize that optimization of only

eigenvalues (evGW ) cannot remove the starting-point dependence for this transition metal

atom, in contrast with earlier work benchmarking small water clusters.70 In fact, the largest

GW quasiparticle energy difference of 1.4 eV is between the QP-HOMO energies computed

using evGW@GGA and evGW@HF, which is is larger than the starting point dependence

at the G0W0 level of theory. Combined, these trends demonstrate the importance of the

quasiparticle wave functions in computing GW energies.

Because relativistic effects are not included in these specific all-electron calculations, we

do not attempt to determine the optimal amount of exact exchange that will allow G0W0

or evGW to match experimental ionization energies. Nevertheless, as relativistic effects

are generally observed to decrease the s and p eigenvalues while increasing the value of d

eigenvalues, DFT with exact exchange between 50 and 100% appears to produce the best

mean-field wave functions for both the G0W0 and evGW quasiparticle energies for the Zn

atom and ions. Between 50 and 100% exact exchange, we also observe that G0W0 and

evGW energies are closest to each other in value, consistent with earlier benchmarks on

an organic molecule test set, where a DFT starting point with 75% exact exchange was

found to produce G0W0 and evGW eigenvalues in the best agreement with each other, as

well as with quasiparticle self-consistent GW .56 A possible problem remains where the QP-

HOMO and QP-LUMO that describe the same one-particle excitation do not have the same

energies at any amount of exact exchange. This problem may, in part, be alleviated through

the inclusion of the off-diagonal terms of the GW energy, which lowers the QP-LUMO.34

However, there may be remaining differences due to the two-point vertex approximation, as
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mentioned earlier in Sec. 2.1. While additional benchmarks are needed, these tests suggest

that a good (system-dependent) starting point may allow excited-state energy predictions

at a lower computational cost than fully-self-consistent GW calculations – although self-

consistency remains the only way to satisfy conservation laws and completely remove the

starting point dependence.71

For the semilocal (and local) density functionals used to compute the wave functions in

the remainder of this work, we expect lower accuracies for GW computations than if using

an optimal hybrid starting point. These calculations also suggest that our benchmarked

GW quasiparticle energies will be lower than those computed using hybrid functional wave

functions, with a possible exception for G0W0 quasiparticles with d character.

4 Vertex and self-consistency

4.1 Ionization energies

We now benchmark the effects of self-consistency and the vertex function on GW quasi-

particle energies. The accuracies of computed isovalent Cu, Ag, Zn, and Cd quasiparticle

energies are compared to experiment in Fig. 7. The performance of GW is similar across

each valence electron configuration, and the mean errors are listed in Table 2.

Table 2: Mean error (eV) of GW quasiparticle energies relative to experiment, averaged
across the Cu, Ag, Zn, and Cd test set, with the reference valence electron configurations in
bold.

G0W0 evGW G0W0ΓLDA evGWΓLDA G0W0 evGW
@LDA @GGA

d10s2 ← d10s -0.19 -0.26 0.80 0.69 -0.28 -0.32
d10s→ d10s2 -0.23 0.30 0.34 0.96 -0.24 0.26
d10s← d10 -0.64 -0.67 0.36 0.31 -0.61 -0.67
d10 → d10s -0.32 -0.06 0.52 0.72 -0.36 -0.12
d10 ← d9 -0.59 -1.63 0.22 -0.88 -0.03 -1.06

As in past work, eigenvalue self-consistency widens the fundamental gap. The energies
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for QP-HOMO with s character (d10s and d10s2 valence) remain fairly similar, the energies

of the QP-LUMO (all of which have s character) increase, and energies of QP-HOMO with

d character (d10 valence) decrease. The resulting d quasiparticle energies from evGW are

less acccurate than in G0W0, and there is no systematic improvement for s or p states.

The worsened quasiparticle energies differ from the majority of evGW benchmarks of pri-

marily sp-bonded molecules,56,70,72,73 but similar results were observed in earlier studies of

azabenzenes and small transition metal molecules.14,74

In past works, the LDA-vertex-corrected GW has always been associated with a nearly

rigid shift of all energies from conventional GW values.22,30,75 Here, in contrast, the energy

change associated with the vertex correction ranges from less than 0.6 eV to more than 1.1

eV. The variation is not due to differences in angular momentum character – indeed the

energy differences for d-states are ∼0.8 eV, in the middle of the observed range. However,

the LDA-derived vertex function’s sensitivity to the local wave function amplitude is high-

lighted by the nature of orbitals on single atoms, which range from localized to diffuse. We

observe that the LDA vertex affects the quasiparticle energies most dramatically for the

QP-HOMO corresponding to the d10s← d10 and the d10s2 ← d10s excitations; the quasipar-

ticle wave functions used in computing these states are overly delocalized due to the use of

the LDA exchange-correlation functional. In contrast, the LDA vertex changes the quasi-

particle energies the least for the QP-LUMO corresponding to the d10s → d10s2 excitation;

this wave function is overly localized by the LDA exchange-correlation functional. Despite

the increased versatility of the LDA vertex in this context, the inclusion of ΓLDA still does

not improve agreement with experiment, and G0W0 remains the best predictor of ionization

energies for these single atoms. Eigenvalue self-consistency and the LDA vertex correction

together also do not exhibit any fortuitous cancellation of effects for this test set.

Finally, in a comparison of GGA and LDA starting points, we observe only minimal

differences in the resulting G0W0 and evGW energies of s and p states, with energy dif-

ferences no more than 0.2 eV. However, large differences (0.4-0.8 eV) are observed for the
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localized d states, bringing both G0W0@GGA and evGW@GGA energies closer to experi-

mental measurements. The mean-field GGA electronic structure therefore appears to be a

better starting point than the LDA for GW calculations, and among the variants of GW

tested here (using non-hybrid DFT starting points), quasiparticle energies from G0W0@GGA

provide the best agreement with experimental ionization energies.

4.2 Absorption energies

GW -BSE eigenvalues are computed starting from the variants of GW of the previous sec-

tion, and are compared to spin-orbit-averaged experimental absorption energies and TDDFT

eigenvalues. We focus on low-lying, spin-conserving excitations promoting electrons from

the HOMO to the unoccupied valence s or p shells. Due to the similarity of s and p

quasiparticles from GW with the LDA and GGA starting points, BSE@G0W0@GGA and

BSE@evGW@GGA results are computed only for excitations from d-states.

In Fig. 8, we summarize the error relative to experiment for BSE eigenvalues computed

from quasiparticles in the diagonal approximation (Eq. 24) and BSE eigenvalues computed

from quasiparticles that account for off-diagonal terms of the GW self energy (Eq. 27).

Rectangles indicate the ranges from minimum to maximum error across the Cu, Ag, Zn, and

Cd test set. In the diagonal approximation, perturbative GW -BSE eigenvalues are seen to

underestimate absorption energies, with improvements in accuracy for self-consistent GW -

BSE, which agrees with other recent GW -BSE benchmarks of confined systems.14,70,73 The

inclusion of the LDA vertex increases the predicted energies of optical excitations; how-

ever, without self-consistency (BSE@G0W0ΓLDA@LDA), this still underestimates excitation

energies.

With the inclusion of off-diagonal terms, the predicted absorption energies increase for

all variants of GW -BSE. This effect occurs because the low-lying LDA (and GGA) unoc-

cupied orbitals are too localized, and off-diagonal terms result in improved, more delocal-

ized quasiparticles.34 With this energy increase, eigenvalue self-consistency no longer im-
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Table 3: Mean error of GW -BSE eigenvalues (including off-diagonal terms) associated with
excitations from the QP-HOMO to the lowest empty s or p quasiparticle, relative to exper-
imental energies.

BSE@ BSE@
TDDFT G0W0 evGW G0W0ΓLDA evGWΓLDA G0W0 evGW

Transition @LDA @LDA @GGA
d10s2 → d10sp (1P) -0.03 -0.29 -0.07 -0.10 -0.06 - -
d10s→ d10p (2P) 0.51 -0.21 -0.09 -0.05 -0.04 - -
d10 → d9p (1P) -1.48 -0.28 0.72 0.21 1.11 -0.81 0.18
d10 → d9p (1D) -1.90 -0.56 0.50 -0.01 0.92 -1.08 -0.03
d10 → d9p (1F) -1.95 -0.75 0.25 -0.23 0.67 -1.27 -0.28
d10 → d9s (1D) -1.54 -0.56 0.44 -0.11 0.84 -1.08 -0.10
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proves accuracy for all calculations. BSE@evGW@LDA deteriorates in accuracy compared

to BSE@G0W0@LDA, but BSE@evGW@GGA is the most accurate variant of conventional

GW tested, with errors no more than 0.5 eV (see Table 3). Surprisingly, we find that the

computationally efficient BSE@G0W0ΓLDA@LDA provides excellent agreement with experi-

ment, comparable to BSE@evGW@GGA. DFT-derived vertex corrections, when combined

with the use of the off-diagonal terms of the GW self energy and a consistent level of theory

throughout TDDFT, GW , and BSE computations, therefore may promote a cancellation of

effects that allows an accurate calculation of BSE energies from inexact GW quasiparticles.

5 Monoxide anions

We finally compute the binding energies of CuO−, AgO−, ZnO−, and CdO− from first

principles, limiting our computations here to G0W0@LDA and G0W0@GGA (Tables 4 and

5).

Neglecting spin-orbit coupling for excitations from the ground states (X1Σ+) of CuO−

and AgO−, there are two peaks in the experimental anion photoelectron spectra under 3 eV

corresponding to photodetachment of an electron and the formation of the neutral molecule

in the X2Π ground or the A2Σ+ excited state. The difference between G0W0 results and

the experimental spectra is large, with differences up to 0.9 eV for G0W0@LDA and up

to 0.7 eV for G0W0@GGA. While a small part of this difference may be attributed to our

comparison of vertical binding energy predictions (from G0W0) to experimental adiabatic

binding energies, the bond length changes are small – less than 0.06 Å for CuO− and less

0.07 Å for AgO− from Franck-Condon simulations;23,24 therefore, we believe that the true

adiabatic and vertical energies do not differ significantly. The larger error is attributed to

the partial d character of the orbital, and we see from CuO− and AgO− that even orbitals

with only some admixture of d can be difficult to accurately simulate from GW calculations.

Errors are smaller in the benchmarks of ZnO− – up to 0.4 eV for G0W0@LDA and up
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to 0.3 eV for G0W0@GGA, which is comparable to the errors of s and p excitations for

single atoms at the same levels of theory. These smaller errors, compared to the CuO− and

AgO− results, are likely due to the minimal d character of the states being studied. The

error associated with comparing vertical and adiabatic energies is again expected to be small,

with the Franck-Condon simulations predicting bond length changes less than 0.08 Å.25 Still,

we are unable to determine the neutral CdO ground state from these calculations, since the

1Σ+, 3Π, and 1Π configurations all lie within 0.5 eV of each other. Additional research into

improving the numerical and theoretical accuracy of GW is needed to allow us to predict

these and other properties of transition-metal systems in the future.

Table 4: Vertical binding energies (eV) for excitations from the X1Σ+ ground states of the
CuO− and AgO− anions to the listed neutral CuO and AgO configurations, compared to
adiabatic binding energies from anion photoelectron spectroscopy.23,24

CuO− AgO−

Expt. G0W0@LDA G0W0@GGA Expt. G0W0@LDA G0W0@GGA
X2Π 1.78 2.45 2.05 1.67 2.15 1.81
A2Σ+ 2.75 3.37 3.25 2.70 3.56 3.43

Table 5: Vertical binding energies (eV) for excitations from the X2Σ+ ground states of the
ZnO− and CdO− anions to the listed neutral ZnO and CdO configurations, compared to
adiabatic binding energies from anion photoelectron spectroscopy.25

ZnO− CdO−

Expt. G0W0@LDA G0W0@GGA G0W0@LDA G0W0@GGA
X1Σ+ 2.09 2.31 2.20 2.45 2.36
a3Π 2.40 2.38 2.11 2.08 1.81
A1Π 2.71 2.68 2.37 2.49 2.15
b3Σ+ 3.89 4.32 4.21 4.22 4.17
B1Σ+ - 5.11 4.99 5.11 4.97

6 Conclusions

In this work, we examine the numerical and theoretical contributions to the accuracy of the

GW approximation and the BSE equation, applied to Groups IB and IIB atoms and monox-

ide molecules, and highlight the difficulties in describing excitations involving d orbitals. We
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illustrate the large GW correlation self energy associated with d states, and demonstrate

that the complete basis set limit should be used for numerically accurate GW quasiparticle

energies. We also show that d quasiparticle energies converge more slowly with basis set size

than s and p quasiparticles, regardless of the type of basis set used, or if an additional static

remainder is applied. We find that energy differences between G0W0 and evGW converge

more quickly with basis set size than the energy itself, so that evGW energies can therefore

be obtained from a smaller basis set if the complete basis set limit of the G0W0 energy is

already known. For the BSE, we see that using a consistent basis set throughout speeds

the convergence of energies with basis set size. For our GW and GW -BSE calculations, we

therefore estimate that excitations involving s and p orbitals are computed with accuracies

better than 0.1 eV, while inaccuracies associated with the basis set are ∼0.2 eV for d states.

The other significant numerical approximation, via the use of pseudopotentials, has neg-

ligible effect on s and p states. The d state error also appears to be small (less than the

extrapolation error) as long as semicore orbitals are not pseudized into the core. On the

other hand, our calculations show that relativistic effects can affect self-energies up to a

few hundred meV, and must be included in benchmark comparisons to experiment. We

also demonstrate that exact exchange in the initial mean-field electronic structure can tune

G0W0 and evGW energy by∼1 eV. These results support the use of optimal hybrid functional

starting points for improved accuracy in GW calculations. Starting points using semilocal

and local functionals, as in the remainder of this work, generally produce lower quasiparti-

cle energies (higher predicted ionization energies) than hybrid functional and Hartree-Fock

electronic structures.

Our benchmarks indicate that eigenvalue self-consistency and the LDA vertex do not

improve the ability of the GW approximation to predict ionization energies. However, we

observe a more varied effect of the approximation vertex function, ΓLDA, than in the past.

Instead of resulting in a rigid shift of all quasiparticle energies, the energy changes due to

the vertex correction are seen to be related to the localization of the wave functions. We also
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see that GW@GGA energies are very similar to those of GW@LDA for s and p states, but

for d states and overall, accounting for gradient effects in G0W0@GGA calculations produces

quasiparticle energies that are slightly more accurate than in any variants of GW that use

a LDA starting point.

For two-particle excitations, we are able to obtain excellent agreement between BSE@G0W0ΓLDA@LDA

eigenvalues and experimental measurements of absorption, as long as off-diagonal terms are

included in the self-energy contributions. The more computationally expensive BSE@evGW@GGA

has comparable high accuracy. We observe that a cancellation of errors occurs for the GW

quasiparticles, with the GW -BSE variants producing mean errors ∼0.2 eV. These results

suggest that inclusion of off-diagonal elements and further development of vertex correc-

tions may be another route to cheaper, yet more accurate, GW -BSE computations of optical

properties.

Our benchmarks of transition metal monoxide anions exhibit differences between G0W0

and experimental binding energies that are consistent with the benchmarks of the Groups IB

and IIB single atoms and ions – a few hundred meV, with larger deviations for quasiparticles

with more d character. Multiple states can coexist in such energy ranges, and the uncertainty

prevents a definitive prediction of excited state energy ordering from the GW approximation

for CdO−. Therefore, while we are able to limit numerical errors to ∼0.2 eV, scientific

questions continue to motivate the search for more advanced techniques in GW theory and

computation for transition metal systems.
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(66) Li, X.-Z.; Gómez-Abal, R.; Jiang, H.; Ambrosch-Draxl, C.; Scheffler, M. New J. Phys.

2012, 14, 023006.

(67) Kotani, T.; van Schilfgaarde, M. Solid State Commun. 2002, 121, 461–465.

(68) van Schilfgaarde, M.; Kotani, T.; Faleev, S. V. Phys. Rev. B 2006, 74, 245125.
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