

LA-UR-17-22412

Approved for public release; distribution is unlimited.

Title: The Prompt Fission Neutron Spectrum of ^{235}U for E_{inc} 0.7-5.0 MeV

Author(s): Gomez, Jaime A.; Devlin, Matthew James; Haight, Robert Cameron; O'Donnell, John M.; Lee, Hye Young; Mosby, Shea Morgan; Taddeucci, Terry Nicholas; Kelly, Keegan John; Fotiadis, Nikolaos; Neudecker, Denise; White, Morgan Curtis; Talou, Patrick; Rising, Michael Evan; Solomon, Clell Jeffrey Jr.; Wu, Ching-Yen; Bucher, Brian Michael; Buckner, Matthew Quinn; Henderson, Roger Alan

Intended for: Conference Proceedings

Issued: 2017-03-23

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

The Prompt Fission Neutron Spectrum of ^{235}U for E_{inc} 0.7-5.0 MeV

J. A. Gomez* and M. Devlin and R.C. Haight and J.M. O'Donnell and H.Y. Lee and S.M. Mosby and T.N. Taddeucci and K.J. Kelly and N. Fotiadis and D. Neudecker and M.C. White and P. Talou and M.E. Rising and C.J. Solomon

*Los Alamos National Laboratory
Los Alamos, New Mexico 87545, U.S.A
*E-mail: Jaime.Gomez@lanl.gov
www.lanl.gov*

C.-Y. Wu and B. Bucher and M.Q. Buckner and R.A. Henderson
*Lawrence Livermore National Laboratory
Livermore, CA 94550, U.S.A.*

The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum (PFNS) for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced using the white neutron source. Using a two arm time of flight (T.O.F) technique; Chi-Nu presents a preliminary result of the low energy component of the ^{235}U PFNS measured using an array of 22-Lithium glass scintillators.

1. Introduction

For applications of low energy nuclear physics, a thorough and precise knowledge of a fissioning system has obvious relevance. Prompt fission neutron spectra (PFNS) are of particular interest, and have recently been the subject of considerable theoretical and evaluation effort as seen in Refs. 1,2. As argued by Neudecker et al. in Ref. 2, there is currently a dearth of reliable and well documented data for many of the actinides of common interest. For fission induced by thermal neutrons, the PFNS of the fissile isotopes: ^{235}U and ^{239}Pu , have been studied by several groups. Fission induced by fast neutrons has received less experimental attention, and for fission of ^{239}Pu or ^{235}U , there are very few measurements, like Ref. 3 of the PFNS except for those made at the Los Alamos Neutron Science Center (LANSCE), see Refs. 4,5.

At LANSCE neutrons are generated via spallation off of a tungsten

target at the end of an 800 MeV LINAC. At the Weapons Neutron Research Facility (WNR), the neutrons are used on various flight paths for a wide range of nuclear research. On the flight path 15° to the left of the target (15L), sits the Chi-Nu experiment. Chi-Nu is an experiment designed to be a high-precision, well-documented measurement of the fast-neutron induced prompt fission neutron spectra for the two major actinides: ^{239}Pu and ^{235}U . The focus of the results presented here is $^{235}\text{U}(n, f)$. Chi-Nu is a joint effort by Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). Previous descriptions of the Chi-Nu experiment and its progress have been reported in various publications, see Refs. 6–10.

1.1. *Experimental Setup*

A Parallel-Plate Avalanche Counter (PPAC) housing ≈ 100 mg of ^{235}U was fabricated at LLNL and described in Ref. 11 to identify fission events and provide timing information. The PPAC is made of 10 plates that are perpendicular to the direction of the beam. Each plate actually consists of several layers, the first and last layer are platinum anodes, and in the middle of the stack that makes up each plate is the actinide sample. The PPAC is positioned in the center of the flight path cave, 21.5 m away from the WNR neutron production target and 106.7 cm above an 18 ft x 18 ft, thin aluminum floor. Incident neutron energies are determined on an event-by-event basis from the time of flight (T.O.F) for a neutron between the production target and the PPAC. Detection of a fission fragment in a PPAC cell also provides a start signal for the TOF measurement of the outgoing fission neutrons. Those neutrons are then detected in one of two arrays: an array of 22-Lithium Glass scintillation detectors (LiGI), 21 of which are doped with ^6Li , is used for measuring the low energy region of the PFNS (10 keV – 2.5 MeV), and an array of 54-liquid organic scintillators for the high energy region (500 keV – 15 MeV).

A significant source of background for measuring the prompt fission neutron spectrum in WNR is down-scattered neutrons, the shielding walls are placed a minimum of 3 m away from the arrays. In addition, beneath the thin aluminum floor there is a 2.1 m deep pit. To quantify the amount of room return and down-scattered neutrons seen by the Chi-Nu experiment, extensive modeling was done using the ‘MCNPX-PoliMi’ code which is a modified version of MCNPX the results of the modeling can be found in Ref. 12.

2. Data Analysis

2.1. ${}^6\text{Li}$ Glass Array Data

The data for ${}^{235}\text{U}$ were taken during the 2015 run cycle. A two-dimensional cut selecting fission neutrons is shown in Fig. 1, which is a histogram showing the outgoing T.O.F of fission neutrons and γ rays against the integral of the charge deposited in the LiG1 detectors.



Fig. 1: A histogram showing TOF for the outgoing fission products versus the pulse height in the LiG1 detector. The red polygon is a 2D cut attempting to select only the outgoing fission neutrons.

In this histogram, one can see the band in the x-direction at $0.01 \text{ V}\mu\text{s}$, that is the Q-value band for the ${}^6\text{Li}(n, \alpha)t$ reaction, with the resonance at 240 keV showing up as a more pronounced area on the band. One also notices that at $t = 0$ we see a vertical band corresponding to fission γ rays. The data that remain after the cut are binned not just by their outgoing neutron energy, but also by the energy of the neutron that was incident on the ${}^{235}\text{U}$. Such a histogram can be seen in the upper panel Fig. 2. Using a robust algorithm for measuring the random coincidence background, described in Ref. 13, the Chi-Nu background is well described and shown in the lower panel of Fig. 2.

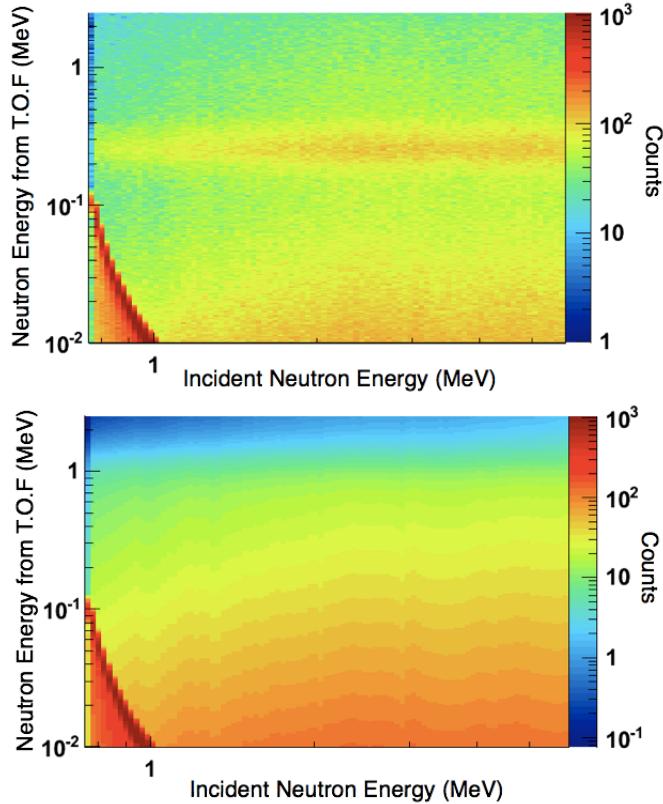


Fig. 2: Top Panel: A χ -matrix histogram for Chi-Nu data as was taken. The x-axis is incoming neutron energy, and the y-axis is the outgoing neutron energy. Bottom Panel: A χ -matrix histogram for the measured random background created using the algorithm in Ref. 13

2.1.1. Low-Energy Results

Using both panels of Fig. 2, one can project the data and the measured background into any arbitrary incident and outgoing bins a user desires. Combining the one dimensional projections of the foreground and the background for an incident neutron energy of (0.7 - 5.0 MeV), we see the result show in Fig. 3.

The PFNS presented in Fig. 4 is made by combining the data seen in Fig. 3 and the corresponding output from a detailed MCNP model.

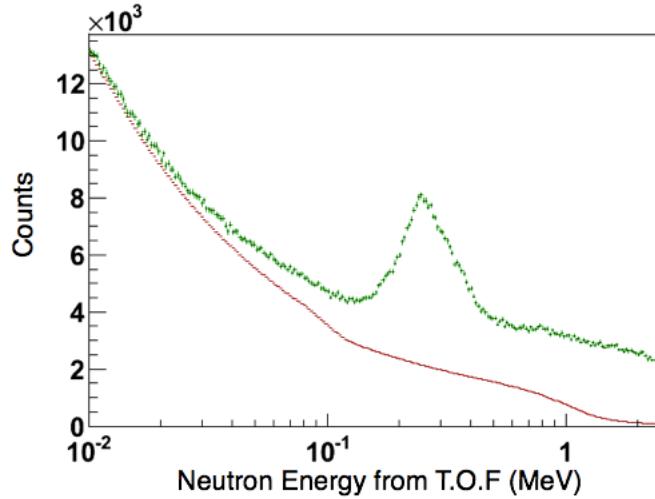


Fig. 3: One dimensional slice of χ -matrix histograms for the incident neutron energy range of (0.7 - 5.0 MeV). Measured total signal is shown by the black line, while measured random background is shown in red.

2.2. Liquid scintillator Array Data

Data were also taken on the PFNS of neutron-induced fission of ^{235}U with the liquid organic scintillator array, for outgoing neutron energies above 0.5 MeV. The analysis of these data is ongoing. These detectors use pulse-shape discrimination to separate neutron detection from γ -ray detection. Like the LiGI array, the response of the array is being modeled extensively with a high-accuracy MCNP model, and the same background determination methods are being used. The results of both the low energy and high-energy arrays for the $^{235}\text{U}(n, f)$ are expected to be presented in the near future.

3. Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The experiment benefits from the use of neutrons at the Los Alamos Neutron Science Center.

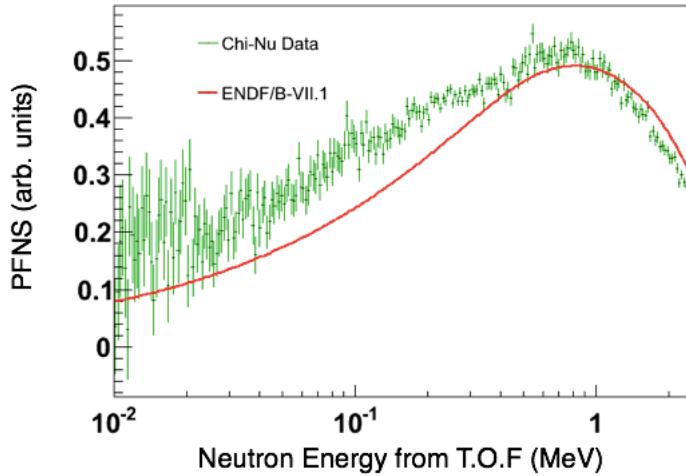


Fig. 4: Low energy portion of the PFNS for ^{235}U , the red curve is the PFNS from ENDF/B-VII.1. Both the data and ENDF are normalized over the plotted range.

References

1. R. Capote and et al., Prompt fission neutron spectra of actinides, *Nuclear Data Sheets* **131**, 1 (2016).
2. D. Neudecker and et al., The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of ^{239}Pu , *Nuclear Data Sheets* **131**, 289 (2016).
3. P. Staples and et al., Prompt fission neutron energy spectra induced by fast neutrons, *Nuclear Physics A* **591**, 41 (1995).
4. S. Noda and et al., Prompt fission neutron spectra from fission induced by 1 to 8 mev neutrons on ^{235}U and ^{239}Pu using the double time-of-flight technique, *Phys. Rev. C* **83**, p. 034604 (Mar 2011).
5. A. Chatillon and et al., Measurement of prompt neutron spectra from the $^{239}\text{Pu}(n,f)$ fission reaction for incident neutron energies from 1 to 200 mev, *Phys. Rev. C* **89**, p. 014611 (Jan 2014).
6. R. C. Haight and et al., The lanl/lnl prompt fission neutron spectrum program at lansce and approach to uncertainties, *Nuclear Data Sheets* **123**, 130 (2015).
7. B. A. Perdue and et al., Development of an array of liquid scintillators to measure the prompt fission neutron spectrum at lansce, *Nuclear*

Data Sheets **119**, 371 (2014).

8. R. C. Haight and et al., The prompt fission neutron spectrum (pfns) measurement program at lansce, *Nuclear Data Sheets* **119**, 205 (2014).
9. H. Y. Lee and et al., Prompt fission neutron spectrum study at lansce: Chi-nu project, in *Fission and Properties of Neutron-Rich Nuclei*, eds. J. H. Hamilton and A. V. Ramayya (World Scientific, 2013).
10. B. A. Perdue and et al., Development of neutron detector arrays for neutron-induced reaction measurements, *IEEE Transactions on Nuclear Science* **60**, 879 (2013).
11. C. Y. Wu and et al., A multiple parallel-plate avalanche counter for fission-fragment detection, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **794**, 76 (2015).
12. T. N. Taddeucci and et al., Multiple-scattering corrections to measurements of the prompt fission neutron spectrum, *Nuclear Data Sheets* **123**, 135 (2015).
13. J. M. O'Donnell, A new method to reduce the statistical and systematic uncertainty of chance coincidence backgrounds measured with waveform digitizers, *Nuclear Instruments and Methods in Physics Research Section A* **805**, 87 (2016).