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(U) Introduction to Monte Carlo Methods 

Abstract

Monte Carlo methods are very valuable for representing solutions to particle transport 
problems.  Here we describe a “cook book” approach to handling the terms in a 
transport equation using Monte Carlo methods.   Focus is on the mechanics of a 

numerical Monte Carlo code, rather than the mathematical foundations of the method.

Aimee Hungerford
April 4, 2017
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(U) Introduction to Monte Carlo Methods 

Outline

Particle vs. Continuum Methods
Function Sampling Techniques

Transport Equation: Term by Term
Monte Carlo Estimators

Aimee Hungerford
April 4, 2017
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Deterministic Methods 

•  Take a differential volume in phase 
space (energy, angle, space,time) 

•  ψ represents sort of an average 
solution in the phase space 
volume. 

•  Evolve ψ in every phase space 
volume according to the transport 
equation. 

ψ(r,t,Ω,E) 
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Particle Methods 

•  Pick out points on the function 
–  not phase space volumes 
–  individual instances of the sol’n 

•  Evolve them according to the 
microphysics that the terms in the 
transport equation represent 

•  In the limit as NpacketèNparticles in 
the system, then we are modeling 
the true microphysical processes 
of nature 

•  Generally, each packet represents 
some large number of neutrons or 
photons. Angle 
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Comparison: Particle vs Deterministic 

•  Inherently local 
–  Conservation enforced on an 

event by event basis 

•  No ψ 
–  Only when we back out and 

look at all of our instances in 
an ensemble do we have a 
sense of ψ as a function 

•  If we want to know mean values of 
a function, we must keep a 
separate tally for it 

•  Global Solutions 
–  We do the same solution for 

every phase space volume 

•  ψ is what we are tracking, so any 
value computed from ψ is readily 
available everywhere 

•  We must pay for the whole 
solution, even if we only care about 
a small piece of it 

Particle Deterministic 
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Sampling - Inversion 
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•  2 Classes 
–  Inversion 
–  Rejection 

•  Cumulative Distribution Function 

f(x) 

F(x) 

€ 

F(x) =

f (x ')dx '
−∞

x
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Sampling - Rejection 

•  Choose   x  from a uniform distribution. 
•  Choose a random number ξ on [0,1] 
•  If f(x) > ξ then keep x as a sample. 
•  Else reject x as a sample and start over.  
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Reject 

Accept 

Sampling - Rejection 

•  Choose   x  from a uniform distribution. 
•  Choose a random number ξ on [0,1] 
•  If f(x) > ξ then keep x as a sample. 
•  Else reject x as a sample and start over.  

Calculate the area of a shape by throwing 
random darts at a square board.   

shapeA
squareA

= green_darts#
total _darts#

Red   = Reject 
Green = Accept 
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Transport Equation 

1
vn
∂Ψ
∂t

+Ω•∇Ψ+ (σ f +σ s )Ψ = Ψ(r, t,Ω ', E ')σ (E ' → E,Ω ' → Ω)dΩ 'dE '∫∫ +

Ψ(r, t,Ω ', E ')σ f (E ',Ω ')ν '(E ',Ω ')Sf (E,Ω)dΩ 'dE '∫∫ +Q(r, t,Ω, E)

Scattering Term Streaming and Removal Term 

Fission Term Source Term 
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Streaming Term 
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•  Basically a translation of the former solution in space 

•  Direction Ω and Energy Ε of packet are unchanged 

•  New values for position and time are updated: 
  

–    

–     

Streaming Term 
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+Ω•∇Ψ
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rnew = rold + ν n∂t
tnew = told + ∂t
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Removal Term 

€ 

1
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∂Ψ
∂t

+ (σ f +σ s)Ψ

€ 

vn∂t = ∂s
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∂Ψ
∂s

+σ tΨ = 0

1
Ψ
∂Ψ = −σ t∂s

lnΨ = −σ t s+ C

Ψ = Ψ0e
−σ t s

€ 

σ t
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Ψ0

Fraction of original angular flux remaining  
is given by an exponential distribution in s. 
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Sample a Distance to Collision 
(by inversion technique) 

•  PDF  è 

•  CDF  è 

»          

€ 

f (x) = e−σx

€ 

F(x) =
e−σxdx

0

x

∫

e−σxdx
0

∞

∫
=1− e−σx = ξ

Random Number 

€ 

x =
−ln(1−ξ)

σ
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Distance to Collision 
(Homework Problem) 

•  Write a code to sample an 
exponential function 

•  Use the two sampling techniques 
discussed: 
–  Inversion 
–  Rejection 

•  What is the efficiency of the 
rejection scheme 
–  i.e. what fraction of samples 

are accepted? 
•  Could use ran2 program    

(random number generator from 
Numerical Recipes.) 
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Scattering Term 

€ 

Ψ(r,t,Ω',E ')σ (E '→ E,Ω'→Ω)dΩ'dE '∫∫

E1’ 
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Ω2’�Ω 

σ (E1 '→ E,Ω1 '→Ω) ≠σ (E2 '→ E,Ω2 '→Ω)
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Scattering Example 
(isotropic, coherent) 

•  Sample angle uniformly in solid angle 

€ 

f (Ω) = C
dΩ = sinθdθdφ

F(Ω) =

dφ sinθdθ
0

θ
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0
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0

π
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(cosθ −1)

2
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2π
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φ
2π

= ξ

•  Outgoing energy is same as incoming energy 
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Fission Term 

€ 

Ψ(r,t,Ω',E ')σ f (E ',Ω')ν '(E ',Ω')S f (E,Ω)dΩ'dE '∫∫

E’ E1 

E2 

E3 

•  Can rewrite 

–  Looks a lot like scattering 
kernel, except for the ν’ term 

–  Scattering with more than one 
daughter product 

•  ν’(E’,Ω’) must be sampled for an 
integer 

•  Sf(E,Ω) provides outgoing 
distribution for energy and angle 

€ 

σ f (E ',Ω')S f (E,Ω) =σ f (E ',Ω',E,Ω)
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Source Term 

€ 

Q(r,t,Ω,E)

•  Surface Source 
–  External Flux 
–  Boundary Condition 

•  Volume Source 
–  Radioactive Decay 
–  Thermal Emission 

x 

y 

z 

Volume Source 
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Source Term 
Thermal Emission Example 

•  Sample energy from opacity weighted planckian 

•  Kirchoff’s Law gives emissivity  η=κΒ   
 (usually this is sampled from a table) 

•  Sample angle uniformly in solid angle 
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Monte Carlo Estimators 

•  Angular flux                  doesn’t show 
up directly in our particle treatment 

–  If you want it, you’d need to tally it… 
–  When have you ever actually used this 

directly? 
•  How do I multiply it by σf to get a 

reaction rate? 
 

•  How do I convolve it with my 
detector’s response function?  

•  How do I take its first moment to get a 
current? 

Tally ψ 

•  100 groups X 100 angles 
•  10,000 quantities to store per 

grid cell each time step 
 

ψ(r,t,Ω,E) 
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Monte Carlo Estimators 
(Neutron Current Example) 

•  Why not just keep a tally of the 
quantities we want? 

–  Multiple tally types or approaches exist 

•  Neutron Current (via Surface Estimator) 
–  For every packet that crosses a 

surface, tally the packet weight 

–  Divide by surface area A and 
timestep Δt to get neut/cm2-sec 

Surface Estimator 

Event Estimator 

Track Length Estimator     Δt 
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Monte Carlo Estimators 
(Reaction Rate Example) 

•  Reaction Rate (via Event Estimator) 

–  Tally the packet weight for every 
packet that undergoes the 
reaction you are interested in. 

•  Fission 
•  Absorption (by a particular isotope) 

–  Divide timestep Δt to get 
reactions/sec 

Surface Estimator 

Event Estimator 

Track Length Estimator 
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Monte Carlo Estimators 
(Flux Examples) 

•             Ψ dµ 

•             µ Ψ dµ 
–  Surface estimator Σ wgt 
–  Get φ from surface estimator      
Σ wgt/µ 

•              σf Ψ dµ 
–  Event estimator Σ wgt 

–  Get φ from event estimator         
Σ wgt/σf 

•  Multiple ways to tally the same thing 
 

Surface Estimator 

Event Estimator 

Track Length Estimator 

€ 

ϕ = ∫

€ 

J = ∫

€ 

Rx = ∫
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Monte Carlo Estimators 
(Continuous Moment Tallies) 

•  What if you really needed the 
angular flux? 
–  Memory intensive to tally into 

space, time, angle and energy 
bins. 

•  Why not tally a functional form that 
represents the angular flux? 
–  As example, consider just the 

angular dependence of ψ. 

Surface Estimator 

Event Estimator 

Track Length Estimator 
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Legendre Moment Tallies 

•  Imagine representing the phase space distrib’n function in terms of a 
set of orthogonal basis functions  
–  For example, Legendre Polynomials in 1D (Pn) 
–  Spherical Harmonics in 3D 

•  Any function can be represented as a sum of Legendre Polynomials 
–      

•  Taking advantage of the orthogonality of the basis set 
–    

•  Monte Carlo is great for calculating integrals! 
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Legendre Moment Method Comparison 
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Step by Step 

•  Create a new packet according 
to S(r,t,E,Ω) 

•  Choose a distance to collision 
•  Update position and time to 

arrive at collision location 
•  Sample what type of collision 

–  Fission 
–  Scatter 

•  Sample outgoing packet 
properties 

•  Start over again by choosing a 
distance to collision  



U N C L A S S I F I E D

28/29

Step by Step 
(want material motion correction?) 

•  Create a new packet according 
to S(r,t,E,Ω) 

•  Choose a distance to collision 
•  Update position and time to 

arrive at collision location 
•  Sample what type of collision 

–  Fission 
–  Scatter 

•  Sample outgoing packet 
properties 

•  Start over again by choosing a 
distance to collision  

•  Transform to lab frame 

•  Transform to fluid frame 

•  Transform back to lab frame 
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Step by Step 
(want thermal up-scatter?) 

•  Create a new packet according 
to S(r,t,E,Ω) 

•  Choose a distance to collision 
•  Update position and time to 

arrive at collision location 
•  Sample what type of collision 

–  Fission 
–  Scatter 

•  Sample outgoing packet 
properties 

•  Start over again by choosing a 
distance to collision  

•  Transform to lab frame 

•  Transform to fluid frame 
•  Sample a target from a Maxwellian, 

and transform to the target frame 
•  Double transform back to lab frame 
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Particle Man Meets Deterministic Man 
(apologies to They Might Be Giants) 

Angle 
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•  Monte Carlo packets are not 
always tracked continuously in 
all variables 

•  Often we smear the particles 
out in energy 
–  Multigroup or gray MC 
–  Each packet represents an 

energy averaged particle 
–  Sort of like a deterministic 

phase space dimension in 
energy 


