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ABSTRACT

Interpreting sensor data require knowledge about sensor
placement and the surrounding environment. For a single sensor
measurement, it is easy to document the context by visual
observation, however for millions of sensors reporting data back
to a server, the contextual information needs to be automatically
extracted from either data analysis or leveraging complimentary
data sources. Data layers that overlap spatially or temporally
with sensor locations, can be used to extract the context and to
validate the measurement. To minimize the amount of data
transmitted through the internet, while preserving signal
information content, two methods are explored; computation at
the edge and compressed sensing. We validate the above
methods on wind and chemical sensor data (1) eliminate
redundant measurement from wind sensors and (2) extract peak
value of a chemical sensor measuring a methane plume. We
present a general cloud based framework to validate sensor data
based on statistical and physical modeling and contextual data
extracted from geospatial data.

NOMENCLATURE

API  Application program interface

HART Highway addressable remote transducer
HTTP Hypertext transfer protocol

ID Identification Document

LoRa Long range, low power wireless platform
M2M Machine to Machine

MQTT Message Queue Telemetry Transportation
NBIoT Narrow Band Internet of Thing

RPi  Raspberry Pi
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INTRODUCTION

It is projected that there will be more than 30 billion devices
connected to the internet by 2020 (1). Many of the devices will
generate structured data from the physical world (temperature,
relative humidity, etc) and unstructured data in form of videos,
text, and machine logs (2). It is argued, that most of the
interaction will be a direct Machine to Machine (M2M)
communications and would require automatic data verifications
on data streams. Automatic validation is even more important if
action is implemented on the data and control is taken on devices
or infrastructure. Determining the right data acquisition
frequency require decisions to be taken by devices in real time,
in response to requests from other devices.

For automatic data curation, contextual data needs to be
integrated along with the sensor data to validate measurements.
Geospatial data in form of satellite, aerial or drones are one
candidate in addition to other type of survey data like
topography, and land cover (3,4). Access to big data platform
that integrate heterogeneous data sources and can filter data
based on flexible query (3) are a pre requisite to enable the
automatic extraction of contextual data.

One area where contextual data can be leveraged is in
remote operations of wireless sensor networks. In the last
decade, wireless sensor networks found applications in building
management, data center operation, precision agriculture, and
environmental monitoring. Wireless sensor network fulfill the
need for spatially dense and very high frequency data
acquisition. Large scale adoption of wireless sensing technology
is still limited by the robustness of current systems that needs to
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stay operational for 5+ years. In the case of outdoor sensor
network access to low cost and reliable communication paths
that allow data transmission from the site to a cloud platform are
still limited in coverage.

Power availability, is another main limitation of outdoor
wireless sensor networks. Power harvesting may enable long
term deployment of sensor networks but currently most of the
wireless sensor networks rely on batteries that may be
supplemented by the solar panels, piezoelectric power
generation, vibration and or wind energy generation (5). The size
of solar panel and battery required for multi day operation, to
maintain operation when solar energy may not be available, can
increase packaging from a matchbox size to shoe box size. Even
with the dramatic drop in solar panel cost, deployment of solar
power generation and batteries carry a burden on sensor network
and long term operation cost.

Intelligence built into the sensor network can enable sensing
and operation of the devices only when power is available.
Dynamically managing the power and communication path can
make systems adaptable to their environment based on
constrained resources. Ongoing research is assessing the tradeoff
between cost effective wireless sensing solution, that can be
quickly deployed, and the possibility to operate such network
reliably. Innovation both in hardware, software and analytics is
required for such solutions to become viable commercial
solutions.

Currently, communication links between sensor networks
and cloud platform is achieved using cellular link, Long Range
and Low Power network( LoRa), Narrow Band Internet of Thing
(NBIoT)), or satellite communication. Indoor sensor network
can leverage Ethernet connection to transmit all the acquired data
to a network server for data processing and analytics. For
outdoor sensor networks the communication bandwidth is
limited; minimizing the amount of transmitted data while
maintaining the information content is a requirement.

Specifically for environmental monitoring application in the
oil and gas industry where well pads are remotely located, when
chemical plumes needs to be identified from multiple potential
leaks, there is a requirement to sample the chemical plumes at
the highest possible frequency in order to quickly detect
chemical that could have detrimental effect on human health and
climate (6). For example, in case of an environmental monitoring
setup containing a wind sensor and 10 volatile organic sensor
that are queried every second, there are more than 1 million data
point generated daily. Acquiring data at this high frequency
improves statistical analysis by increasing the number of
detected events under different wind conditions but transmitting
all data points to a cloud server will strain communication
bandwidth. High frequency sampling is even more important
when detecting plumes dispersion under turbulent wind
condition caused by the infrastructure and surrounding
vegetation (7).

As the size of the sensor network is increased, the volume
of data scales accordingly and quickly data collision and data
packet lost starts to affect the network stability. Since most of the
sampled data may just detect background chemical levels with

little relevance to the plume dispersion a large volume of data
points can be eliminated. Typically, each sensors will generate a

Figure 1 General architecture of data acquisition from a wireless
sensor network and data storage in the cloud. Users access the raw
data and run their analytics on the data.
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packet of data that contains; sensor ID, timestamp and the sensor
value. If all the data is transmitted back to a central server for
storage and processing, sending sensor ID with each data packet
is much of the information like sensor ID is redundant across the
acquisition period and reduce the communication bandwidth.

Multiple data minimization approaches like triggered
detection, data compression or censoring/optimization have been
investigated to minimize data transmission volume (8). A current
area of research is edge computing where most of the data
analytics is carried out at the detection point and only aggregated
data is transmitted back to the servers.

Contextual data

Our study focuses on detection of methane plumes using a
wireless sensor network with integrated wind and methane
sensors where few components have integrated GPS localization
while other components can be located through triangulation and
time of flight measurements between radios. Localization is
carried out automatically by the sensor network and if one
sensing node is changed the new location for all other sensors is
automatically recalculated. Placing these sensors on a map may
require the knowledge of infrastructure location on the site.
Detailed site description may exist but they tend to became
obsolete as new construction or addition may happen on the well
pads. Contextual information can be extracted from satellite,
aerial or camera imagery to reconstruct oil and gas well pad sites
(4). Images from satellite/drone are processed in image
recognition software to identify features and classify land use.
Our previous studies demonstrated that drone based imagery
may be a flexible way to reconstruct buildings or any type of
infrastructure in 3D (4). The advantage of drone image based
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Figure 2 General architecture of edge computing where data from a
wireless sensor network is pre-processed and users retrieve the data that
contain information of interest.

reconstruction is the possibility to acquire imagery and carry out
reconstruction on the fly. Currently multiple nanosatellite are
operated that can provide daily coverage of any location on the
Earth surface. These data streams can be leveraged to observe
change in every location and business activity.

Additional contextual information can be assessed by
analyzing anomalies, outliers and pair wise correlation of signal
from neighbor sensors. For sensors readings that shows little
correlation with neighbor sensors, while they are placed in
similar locations, indicates that sensor performance may be
affected by environmental conditions. Each of the above data
processing steps needs to be aware of sensor placement and
surrounding to validate sensor data.

Wireless sensor network

The sensing solutions rely on a wireless sensor network uisng
low power time synchronized radios based on HART
communication protocol. Each radio is connected to a
microprocessor and sensors; due to their small size the sensing
nodes are called motes. The radios automatically create a mesh
network and send data back to the network manager. The mote
manager aggregates the data from all sensors and communicates
with a Raspberry Pi (RPi) that can handle data formatting and
run the feeders that send data back to network servers. The
choice for RPi is triggered due to its low cost and functionality
in networking, communication and data processing and support
available from a large development community. RPis
additionally supports multiple network connections; Serial
Peripheral Interface (SPI), Inter- Integrated Circuit (I12C), WiFi,
and Bluetooth. The RPi can run Python and image processing
software like OpenCv making then easily adaptable to quick
analytics implementation (10).

Multiple data protocols exist to configure the data message that
is transmitted from the sensor to the cloud platform. The MQTT
(Message Queue Telemetry Transportation) (9) protocol is used
for this implementation. MQTT is a publish-subscribe-based
"lightweight" messaging for use on top of the TCP/IP protocol.
It is designed for connections with remote locations where a
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Figure 3 Feeder hardware and software stack used for sensor data
transmission from point of detection to cloud platform.
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"small code footprint" is required or the network bandwidth is
limited.

In the conventional wireless sensor network approach (Fig 1) all
data is sent back to a network server (Bluemix) where data is
organized, analyzed and stored. For running analytics, each user
will submit a query and will pull a large amount of data that is
processed and analyzed locally on the user computer. The
drawback of this approach is that large amount of data that is
moved across the network and user analytics may be different
based on interpretation and completeness of retrieved data. This
approach require continuous network connections such that data
can be moved from network server to user end device.

Edge Computing

Transmitting massive amounts of raw data over a network strains
network resources. It is much more efficient to process data near
its source and send only the aggregated/analyzed data over the
network to a cloud server. One huge benefit of this approach is
the reduced network traffic (10). Data can be analyzed up front
at the edge of network and processed data sent back to the
network server. The name "edge" in edge computing is derived
from network diagrams; typically, the edge is the point at which
traffic enters or exits the network. The edge is also the point at
which the underlying protocol for transporting data may change.
For example, a smart sensor might use a low-latency protocol
like MQTT to transmit data to a message broker located on the
network edge, and the broker would use the hypertext transfer
protocol (HTTP) to forward the data from the sensor to a remote
server over the Internet (2).

One implementation of edge computing architecture is
shown in Fig 2. The system rely of two RPis running Linux
operating system. RPi-1 is the main data processing unit that
fulfills the same functions as was presented in the previous
paragraphs. RPi-1 can have one or more wind sensors connected
via serial RS-485 links. RPi-1 collects and formats the data
packages and forward to the network server (see Figure 3). The
RPi-1 can also stream the data to RPi-2 (acting as a local MQTT
broker). RPi-2 is used mainly to store a copy of sensor data and
run real time analytics. The analytics running on RPi-2 results
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Figure 4 Experimental setup of the wireless sensor network with a wind
sensor in middle and surrounded by methane sensors.

in new data stream which can be fed back to RPi-1 for
transmission to a remote MQTT broker, or the new data is sent
directly to a remote broker.

The two RPis are operating independently in order to
separate workloads. The separation is necessary as analytics can
be demanding on resources like memory and CPU operations.
One RPi will run data collection while the second RPi will run
the analytics. Overlap in tasks can jam the data orchestration on
the RPis and to overcome this issues require extensive task
scheduling and prioritization.

Data compression

Data compression is the first choice in reducing data size that is
transmitted to the network (8). As a test case, the potential to
reduce wind sensor data is investigated. The wind sensor is
connected to RPi-1 through an RS485 serial link (Fig 2) and is
sampled every second. The feeder software is installed on RPil
while the Listener and Broker (Mosquitto Subscriber and
publisher) are running on RPi-2. A Python script on RPi-2 is
processing the real time wind data and carry out the signal
compression. Once the wind data is run through the analytics
engine, it is then published into IBM’s Bluemix using the MQTT
broker.

Wind data has a persistence in both wind speed and
direction; e.g. where consecutive measurements of wind
direction and speed do not change in value for consecutive points
(Fig 4). If no change is detected in wind data, than the latest data
point is not reported in the data stream. We note that the value
can be reconstructed in analytics once the data is retrieved from
the cloud platform. In case a data point is not acquired, the
missing data is flagged to ensure that no data generation occur
on the server side. The method transmits data only when a
change is detected while eliminating redundant data transmission
(12).

Moving average is the simplest technique to attenuate
additive noise (12). It is based on the assumption that
independent noise is not going to change the underlying structure
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Figure 5 (4) Wind direction sampled at 1Hz and averaged across 100
data points using a rolling mean average,(B) wind speed sampled at
1 Hz and averaged across 100 data points

of the signal. If this is true, averaging few points should attenuate
the contribution of the noise. In this technique, for each signal
point, an average of the neighboring points is calculated. The
neighboring points considered during averaging is called the
window size. Increasing the window size reduces the effect of
the added noise, but it is also likely to cause an excessive
smoothing of the original signal. This technique works well for
signals that are continuous and varying on a daily time scale.
When big fluctuations are present, this filtering technique is
likely to alter the original signal more than the noise itself (12).

The wind data show the typical daily patterns with higher
wind speeds during daytime and reduced speed during night. The
wind direction is more stable during daytime and will be more
turbulence during night (Fig 5). Signal averaging can vary
between daytime and nighttime.

For instantaneous wind direction and speed the unfiltered
data will show very little persistence due to measurement noise
and changing wind conditions. Very few points can be eliminated
from the transmitted stream. Once the averaging window is
increased to 100 data points (example shown in Fig 5) the
amount of data sent to the cloud server can be decreased by 5%.
If the average window is increased to 600 data points (10 min
averaging window) the transmitted data is reduced by 18%.
Averaging 1200 data point (20 min window) the data is reduced
by 25%. As more averaging is carried out on the data, the final
result will be smoother and larger compression can be achieved.

Chemical plumes peak detection

The sensors in the wireless sensor network are
continuously monitoring the methane plumes released from a
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Figure 6 Peak detection in methane sensor signal measurement where
only the event peaks carry information required for analytics.

well control source (Fig 4). Majority of the time, the sensor will
measure just the background methane level fluctuations. When
the methane plume crosses the sensor, the sensor signal increases
up to 10 folds. Methane plumes are detected as narrow peaks in
the methane sensor signal (Fig 6). Our analytics rely on
extracting peaks magnitude, peaks width and timestamp. The
background data can be ignored as it carry very little information
required for advanced analytics to detect leaks location and
magnitude.

Peak detection algorithms can be run on real time data
to identify peak magnitude and their distribution. The simplest
peak detection algorithm will look for change in slope while the
signal is above a certain threshold level. Many more advanced
algorithms are already implemented that can carry out peak
analysis on the fly (13).

In Fig 6 the results of peak detection algorithm is shown
for a time series acquired by methane sensors. The peaks are
identified with the red dots and those represent the data points
that carry information of value. If only those data points are sent
back to the cloud server the overall amount of data from methane
sensors is reduced up to 99%.

In many of the sensor data, periodic outliers and also
data anomalies are measured. These points needs to be
eliminated in a general framework where the sensors data are
bound using physical knowledge about the surroundings and the
contextual data (14,15). The methane plume is moved by wind
and the wind distribution is modeled using computational fluid
dynamics taking into account the infrastructure location and
sensor position. Since the wind turbulence will be driven by the
infrastructure on the site recognizing infrastructure from external
data sources can improve the correctness of the simulations.

CONCLUSION

With large scale sensor networks the capabilities of
communication networks to transmit every single data point to
cloud servers will be limited. Processing of the data streams
close to the sensing “edge” point and transmitting only the
relevant data back to the cloud server is investigated in this study.
In order for machines to validate measurements, contextual data
is required for anomaly detection and outlier identification. Such

contextual databases are developed to offer support for machines
to validate sensor results and automatically determine the right
sampling frequency and data that needs to be recorded. Machines
needs to be aware of power availability and communication
bandwidth to adjust dynamically to data acquisition and
analytics. Fine tuning data compression can reduce by an order
of magnitude the amount of recorded data without losing
information content. We demonstrated a preliminary study in
reducing the number of data points that need to be transmitted
while preserving the information carried by these data streams.

FUTURE WORK

Edge or fog computing will ultimately require dynamic or elastic
components.  That is, an infrastructure where analytic
components can be defined without knowledge of where the
component will be executed. If we model the system as a data
pipeline, then this will require mechanisms for describing
required data input and output streams, mechanisms for moving
computation components to/from various locations in the
pipeline (e.g. edge Feeders and Cloud Virtual Machines) while
maintain the necessary data stream connections. Such an
architecture would facilitate workload re-distribution that could
respond to differences in application processing requirements.
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