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ABSTRACT 

Interpreting sensor data require knowledge about sensor 
placement and the surrounding environment. For a single sensor 
measurement, it is easy to document the context by visual 
observation, however for millions of sensors reporting data back 
to a server, the contextual information needs to be automatically 
extracted from either data analysis or leveraging complimentary 
data sources. Data layers that overlap spatially or temporally 
with sensor locations, can be used to extract the context and to 
validate the measurement. To minimize the amount of data 
transmitted through the internet, while preserving signal 
information content, two methods are explored; computation at 
the edge and compressed sensing. We validate the above 
methods on wind and chemical sensor data (1) eliminate 
redundant measurement from wind sensors and (2) extract peak 
value of a chemical sensor measuring a methane plume. We 
present a general cloud based framework to validate sensor data 
based on statistical and physical modeling and contextual data 
extracted from geospatial data. 

 
NOMENCLATURE 

 
API      Application program interface  
HART  Highway addressable remote transducer 
HTTP  Hypertext transfer protocol  
ID       Identification Document 
LoRa   Long range, low power wireless platform 
M2M   Machine to Machine 
MQTT Message Queue Telemetry Transportation 
NBIoT Narrow Band Internet of Thing 
RPi      Raspberry Pi 

 
 
INTRODUCTION 

 
 It is projected that there will be more than 30 billion devices 
connected to the internet by 2020 (1). Many of the devices will 
generate structured data from the physical world (temperature, 
relative humidity, etc) and unstructured data in form of videos, 
text, and machine logs (2). It is argued, that most of the 
interaction will be a direct Machine to Machine (M2M) 
communications and would require automatic data verifications 
on data streams. Automatic validation is even more important if 
action is implemented on the data and control is taken on devices 
or infrastructure. Determining the right data acquisition 
frequency require decisions to be taken by devices in real time, 
in response to requests from other devices.  
 For automatic data curation, contextual data needs to be 
integrated along with the sensor data to validate measurements. 
Geospatial data in form of satellite, aerial or drones are one 
candidate in addition to other type of survey data like 
topography, and land cover (3,4). Access to big data platform 
that integrate heterogeneous data sources and can filter data 
based on flexible query (3) are a pre requisite to enable the 
automatic extraction of contextual data.   
 One area where contextual data can be leveraged is in 
remote operations of wireless sensor networks. In the last 
decade, wireless sensor networks found applications in building 
management, data center operation, precision agriculture, and 
environmental monitoring. Wireless sensor network fulfill the 
need for spatially dense and very high frequency data 
acquisition. Large scale adoption of wireless sensing technology 
is still limited by the robustness of current systems that needs to 
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stay operational for 5+ years. In the case of outdoor sensor 
network access to low cost and reliable communication paths 
that allow data transmission from the site to a cloud platform are 
still limited in coverage.  
 Power availability, is another main limitation of outdoor 
wireless sensor networks. Power harvesting may enable long 
term deployment of sensor networks but currently most of the 
wireless sensor networks rely on batteries that may be 
supplemented by the solar panels, piezoelectric power 
generation, vibration and or wind energy generation (5). The size 
of solar panel and battery required for multi day operation, to 
maintain operation when solar energy may not be available, can 
increase packaging from a matchbox size to shoe box size. Even 
with the dramatic drop in solar panel cost, deployment of solar 
power generation and batteries carry a burden on sensor network 
and long term operation cost.  
 Intelligence built into the sensor network can enable sensing 
and operation of the devices only when power is available. 
Dynamically managing the power and communication path can 
make systems adaptable to their environment based on 
constrained resources. Ongoing research is assessing the tradeoff 
between cost effective wireless sensing solution, that can be 
quickly deployed, and the possibility to operate such network 
reliably. Innovation both in hardware, software and analytics is 
required for such solutions to become viable commercial 
solutions.  
 Currently, communication links between sensor networks 
and cloud platform is achieved using cellular link, Long Range 
and Low Power network( LoRa), Narrow Band Internet of Thing 
(NBIoT)), or satellite communication. Indoor sensor network 
can leverage Ethernet connection to transmit all the acquired data 
to a network server for data processing and analytics. For 
outdoor sensor networks the communication bandwidth is 
limited; minimizing the amount of transmitted data while 
maintaining the information content is a requirement.  
 Specifically for environmental monitoring application in the 
oil and gas industry where well pads are remotely located, when 
chemical plumes needs to be identified from multiple potential 
leaks, there is a requirement to sample the chemical plumes at 
the highest possible frequency in order to quickly detect 
chemical that could have detrimental effect on human health and 
climate (6). For example, in case of an environmental monitoring 
setup containing a wind sensor and 10 volatile organic sensor 
that are queried every second, there are more than 1 million data 
point generated daily. Acquiring data at this high frequency 
improves statistical analysis by increasing the number of 
detected events under different wind conditions but transmitting 
all data points to a cloud server will strain communication 
bandwidth. High frequency sampling is even more important 
when detecting plumes dispersion under turbulent wind 
condition caused by the infrastructure and surrounding 
vegetation (7).  
 As the size of the sensor network is increased, the volume 
of data scales accordingly and quickly data collision and data 
packet lost starts to affect the network stability. Since most of the 
sampled data may just detect background chemical levels with 

little relevance to the plume dispersion a large volume of data 
points can be eliminated. Typically, each sensors will generate a 

packet of data that contains; sensor ID, timestamp and the sensor 
value. If all the data is transmitted back to a central server for 
storage and processing, sending sensor ID with each data packet 
is much of the information like sensor ID is redundant across the 
acquisition period and reduce the communication bandwidth. 
 Multiple data minimization approaches like triggered 
detection, data compression or censoring/optimization have been 
investigated to minimize data transmission volume (8). A current 
area of research is edge computing where most of the data 
analytics is carried out at the detection point and only aggregated 
data is transmitted back to the servers. 
 
 
Contextual data 

 Our study focuses on detection of methane plumes using a 
wireless sensor network with integrated wind and methane 
sensors where few components have integrated GPS localization 
while other components can be located through triangulation and 
time of flight measurements between radios. Localization is 
carried out automatically by the sensor network and if one 
sensing node is changed the new location for all other sensors is 
automatically recalculated. Placing these sensors on a map may 
require the knowledge of infrastructure location on the site. 
Detailed site description may exist but they tend to became 
obsolete as new construction or addition may happen on the well 
pads. Contextual information can be extracted from satellite, 
aerial or camera imagery to reconstruct oil and gas well pad sites 
(4). Images from satellite/drone are processed in image 
recognition software to identify features and classify land use. 
Our previous studies demonstrated that drone based imagery 
may be a flexible way to reconstruct buildings or any type of 
infrastructure in 3D (4). The advantage of drone image based 

Figure 1 General architecture of data acquisition from a wireless 
sensor network and data storage in the cloud. Users access the raw 
data and run their analytics on the data. 
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reconstruction is the possibility to acquire imagery and carry out 
reconstruction on the fly. Currently multiple nanosatellite are 
operated that can provide daily coverage of any location on the 
Earth surface. These data streams can be leveraged to observe 
change in every location and business activity. 

 Additional contextual information can be assessed by 
analyzing anomalies, outliers and pair wise correlation of signal 
from neighbor sensors. For sensors readings that shows little 
correlation with neighbor sensors, while they are placed in 
similar locations, indicates that sensor performance may be 
affected by environmental conditions. Each of the above data 
processing steps needs to be aware of sensor placement and 
surrounding to validate sensor data.  

Wireless sensor network 

The sensing solutions rely on a wireless sensor network uisng 
low power time synchronized radios based on HART 
communication protocol. Each radio is connected to a 
microprocessor and sensors; due to their small size the sensing 
nodes are called motes. The radios automatically create a mesh 
network and send data back to the network manager. The mote 
manager aggregates the data from all sensors and communicates 
with a Raspberry Pi (RPi) that can handle data formatting and 
run the feeders that send data back to network servers. The 
choice for RPi is triggered due to its low cost and functionality 
in networking, communication and data processing and support 
available from a large development community. RPis 
additionally supports multiple network connections; Serial 
Peripheral Interface (SPI), Inter- Integrated Circuit (I2C), WiFi, 
and Bluetooth. The RPi can run Python and image processing 
software like OpenCv making then easily adaptable to quick 
analytics implementation (10).  

Multiple data protocols exist to configure the data message that 
is transmitted from the sensor to the cloud platform. The MQTT 
(Message Queue Telemetry Transportation) (9) protocol is used 
for this implementation. MQTT is a publish-subscribe-based 
"lightweight" messaging for use on top of the TCP/IP protocol. 
It is designed for connections with remote locations where a 

"small code footprint" is required or the network bandwidth is 
limited.  

In the conventional wireless sensor network approach (Fig 1) all 
data is sent back to a network server (Bluemix) where data is 
organized, analyzed and stored. For running analytics, each user 
will submit a query and will pull a large amount of data that is 
processed and analyzed locally on the user computer. The 
drawback of this approach is that large amount of data that is 
moved across the network and user analytics may be different 
based on interpretation and completeness of retrieved data. This 
approach require continuous network connections such that data 
can be moved from network server to user end device.  

Edge Computing 
 

Transmitting massive amounts of raw data over a network strains 
network resources. It is much more efficient to process data near 
its source and send only the aggregated/analyzed data over the 
network to a cloud server. One huge benefit of this approach is 
the reduced network traffic (10). Data can be analyzed up front 
at the edge of network and processed data sent back to the 
network server.  The name "edge" in edge computing is derived 
from network diagrams; typically, the edge is the point at which 
traffic enters or exits the network. The edge is also the point at 
which the underlying protocol for transporting data may change. 
For example, a smart sensor might use a low-latency protocol 
like MQTT to transmit data to a message broker located on the 
network edge, and the broker would use the hypertext transfer 
protocol (HTTP) to forward the data from the sensor to a remote 
server over the Internet (2). 
 One implementation of edge computing architecture is 
shown in Fig 2. The system rely of two RPis running Linux 
operating system. RPi-1 is the main data processing unit that 
fulfills the same functions as was presented in the previous 
paragraphs. RPi-1 can have one or more wind sensors connected 
via serial RS-485 links.  RPi-1 collects and formats the data 
packages and forward to the network server (see Figure 3). The 
RPi-1 can also stream the data to RPi-2 (acting as a local MQTT 
broker).  RPi-2 is used mainly to store a copy of sensor data and 
run real time analytics.  The analytics running on RPi-2 results 

Figure 2 General architecture of edge computing where data from a 
wireless sensor network is pre-processed and users retrieve the data that 
contain information of interest. 

Figure 3 Feeder hardware and software stack used for sensor data 
transmission from point of detection to cloud platform. 
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in new data stream which can be fed back to RPi-1 for 
transmission to a remote MQTT broker, or the new data is sent 
directly to a remote broker. 

The two RPis are operating independently in order to 
separate workloads. The separation is necessary as analytics can 
be demanding on resources like memory and CPU operations. 
One RPi will run data collection while the second RPi will run 
the analytics. Overlap in tasks can jam the data orchestration on 
the RPis and to overcome this issues require extensive task 
scheduling and prioritization. 

Data compression 
 

Data compression is the first choice in reducing data size that is 
transmitted to the network (8). As a test case, the potential to 
reduce wind sensor data is investigated. The wind sensor is 
connected to RPi-1 through an RS485 serial link (Fig 2) and is 
sampled every second. The feeder software is installed on RPi1 
while the Listener and Broker (Mosquitto Subscriber and 
publisher) are running on RPi-2.  A Python script on RPi-2 is 
processing the real time wind data and carry out the signal 
compression. Once the wind data is run through the analytics 
engine, it is then published into IBM’s Bluemix using the MQTT 
broker.   
 Wind data has a persistence in both wind speed and 
direction; e.g. where consecutive measurements of wind 
direction and speed do not change in value for consecutive points 
(Fig 4). If no change is detected in wind data, than the latest data 
point is not reported in the data stream. We note that the value 
can be reconstructed in analytics once the data is retrieved from 
the cloud platform. In case a data point is not acquired, the 
missing data is flagged to ensure that no data generation occur 
on the server side. The method transmits data only when a 
change is detected while eliminating redundant data transmission 
(12).  
 Moving average is the simplest technique to attenuate 
additive noise (12). It is based on the assumption that 
independent noise is not going to change the underlying structure 

of the signal. If this is true, averaging few points should attenuate 
the contribution of the noise. In this technique, for each signal 
point, an average of the neighboring points is calculated. The 
neighboring points considered during averaging is called the 
window size. Increasing the window size reduces the effect of 
the added noise, but it is also likely to cause an excessive 
smoothing of the original signal. This technique works well for 
signals that are continuous and varying on a daily time scale. 
When big fluctuations are present, this filtering technique is 
likely to alter the original signal more than the noise itself (12).  
 The wind data show the typical daily patterns with higher 
wind speeds during daytime and reduced speed during night. The 
wind direction is more stable during daytime and will be more 
turbulence during night (Fig 5). Signal averaging can vary 
between daytime and nighttime. 
 For instantaneous wind direction and speed the unfiltered 
data will show very little persistence due to measurement noise 
and changing wind conditions. Very few points can be eliminated 
from the transmitted stream. Once the averaging window is 
increased to 100 data points (example shown in Fig 5) the 
amount of data sent to the cloud server can be decreased by 5%. 
If the average window is increased to 600 data points (10 min 
averaging window) the transmitted data is reduced by 18%. 
Averaging 1200 data point (20 min window) the data is reduced 
by 25%. As more averaging is carried out on the data, the final 
result will be smoother and larger compression can be achieved. 
 
Chemical plumes peak detection 
 

The sensors in the wireless sensor network are 
continuously monitoring the methane plumes released from a 

Figure 5 (A) Wind direction sampled at 1Hz and averaged across 100 
data points using a rolling mean average,(B) wind speed sampled at 
1 Hz and averaged across 100 data points 

Figure 4 Experimental setup of the wireless sensor network with a  wind 
sensor in middle and surrounded by methane sensors. 
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well control source (Fig 4). Majority of the time, the sensor will 
measure just the background methane level fluctuations. When 
the methane plume crosses the sensor, the sensor signal increases 
up to 10 folds. Methane plumes are detected as narrow peaks in 
the methane sensor signal (Fig 6). Our analytics rely on 
extracting peaks magnitude, peaks width and timestamp.  The 
background data can be ignored as it carry very little information 
required for advanced analytics to detect leaks location and 
magnitude. 

Peak detection algorithms can be run on real time data 
to identify peak magnitude and their distribution. The simplest 
peak detection algorithm will look for change in slope while the 
signal is above a certain threshold level. Many more advanced 
algorithms are already implemented that can carry out peak 
analysis on the fly (13). 

In Fig 6 the results of peak detection algorithm is shown 
for a time series acquired by methane sensors. The peaks are 
identified with the red dots and those represent the data points 
that carry information of value. If only those data points are sent 
back to the cloud server the overall amount of data from methane 
sensors is reduced up to 99%.  

In many of the sensor data, periodic outliers and also 
data anomalies are measured. These points needs to be 
eliminated in a general framework where the sensors data are 
bound using physical knowledge about the surroundings and the 
contextual data (14,15). The methane plume is moved by wind 
and the wind distribution is modeled using computational fluid 
dynamics taking into account the infrastructure location and 
sensor position. Since the wind turbulence will be driven by the 
infrastructure on the site recognizing infrastructure from external 
data sources can improve the correctness of the simulations. 
 
CONCLUSION 
 

With large scale sensor networks the capabilities of 
communication networks to transmit every single data point to 
cloud servers will be limited. Processing of the data streams 
close to the sensing “edge” point and transmitting only the 
relevant data back to the cloud server is investigated in this study. 
In order for machines to validate measurements, contextual data 
is required for anomaly detection and outlier identification. Such 

contextual databases are developed to offer support for machines 
to validate sensor results and automatically determine the right 
sampling frequency and data that needs to be recorded. Machines 
needs to be aware of power availability and communication 
bandwidth to adjust dynamically to data acquisition and 
analytics. Fine tuning data compression can reduce by an order 
of magnitude the amount of recorded data without losing 
information content. We demonstrated a preliminary study in 
reducing the number of data points that need to be transmitted 
while preserving the information carried by these data streams. 

 

FUTURE WORK 
 

Edge or fog computing will ultimately require dynamic or elastic 
components.  That is, an infrastructure where analytic 
components can be defined without knowledge of where the 
component will be executed.  If we model the system as a data 
pipeline, then this will require mechanisms for describing 
required data input and output streams, mechanisms for moving 
computation components to/from various locations in the 
pipeline (e.g. edge Feeders and Cloud Virtual Machines) while 
maintain the necessary data stream connections.  Such an 
architecture would facilitate workload re-distribution that could 
respond to differences in application processing requirements.  
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