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1. Overview

The Northwestern-Argonne SISGR program (DOE Grant Number DE-FGO02-
09ER16109) utilized newly developed instrumentation and techniques including integrated ultra-
high vacuum tip-enhanced Raman spectroscopy/scanning tunneling microscopy (UHV-
TERS/STM) and surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS) to
advance the spatial and temporal resolution of chemical imaging for the study of photoinduced
dynamics of molecules on plasmonically active surfaces. An accompanying theory program
addressed modeling of charge transfer processes using constrained density functional theory
(DFT) in addition to modeling of SE-FSRS, thereby providing a detailed description of the
excited state dynamics. This interdisciplinary and highly collaborative research resulted in 62
publications with ~ 48% of them being co-authored by multiple SISGR team members [1-62]. A
summary of the scientific accomplishments from this SISGR program is provided in the
following sections.

2. Ultrafast Tip-Enhanced Raman Spectroscopy

A primary goal of this SISGR program was the development of tools and techniques that
enable ultrafast tip-enhanced Raman spectroscopy with single molecule sensitivity. Toward this
end, progress was made in several areas:

(1) Ultrahigh vacuum (UHYV) tip-enhanced Raman spectroscopy (TERS) integrated with
molecular-resolution UHV scanning tunneling microscopy (STM). The first experimental
accomplishment was the observation of multiple vibrational modes of copper phthalocyanine
(CuPc) adlayers on Ag(111) using UHV-TERS with concurrently obtained sub-nanometer
molecular-resolution STM imaging [2]. The observed vibrational modes agree well with density
functional theory (DFT) calculations, thus confirming the quantitative nature of these
measurements. The combination of molecular-resolution UHV-STM imaging with the detailed
chemical information content of UHV-TERS allows the interactions between large polyatomic
molecular adsorbates and specific binding sites on solid surfaces to be probed with
unprecedented spatial and spectroscopic resolution.

(2) Low-temperature (LT) UHV-
TERS. Low-temperature (19 K) UHV-
TERS was also accomplished on the
Rhodamine 6G (R6G)/Ag(111) system
(Figure 1) [28]. In general, liquid He
cooling minimizes surface diffusion of
adsorbates across solid surfaces. LT-TER
spectra differ from room-temperature
(RT) TER, RT surface-enhanced Raman
(SER), and LT-SER spectra because the
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vibrational lines are narrowed, due to
decreased inhomogeneous broadening,
and shifted, revealing additional chemical
information about the adsorbate-substrate

Figure 1. R6G surface diffusion is suppressed at 19
K. Its adsorption geometry on Ag(111) is
characterized using low-temperature UHV-TERS,
which exhibits line narrowing and peak shifts

compared to room temperature UHV-TERS [28].
interactions. As an example, LT-TER

spectra for the R6G/Ag(111) system are shown in Figure 1 that exhibit such unique spectral
shifts. Specifically, the orientation of R6G on Ag(111) was determined and corroborated by
time-dependent density-functional theory (TDDFT) calculations. LT-TERS has thus been



demonstrated as an effective approach for unraveling the intricacies of adsorbate-substrate
interactions that are inaccessible by other means.

(3) TERS with pulsed laser excitation. In order to obtain kinetic information on the
nanosecond to femtosecond timescales, pulsed laser excitation must be used. This goal was
achieved by coupling picosecond-pulsed excitation from an optical parametric oscillator (OPO)
to an ambient STM, where TERS was observed for two resonant analytes on a silver film [29].
The signal irreversibly degraded on the timescale of tens of seconds, which was not a result of tip
damage. An analysis of the decay kinetics using models for various physical processes revealed
reactive decay chemistry and photothermal desorption as the dominant degradation mechanisms
in ambient conditions. Analogous experiments were then performed in UHV to minimize
reactive decay between excited analytes and small molecules present in ambient [30].
Picosecond excitation from the OPO was coupled to our UHV STM, and the resulting pulsed
UHV-TER spectra were multimodal and similar in character to CW TER spectra. The signal was
observed to fluctuate in intensity over time but not irreversibly degrade. In picosecond SERS, in
which intensity fluctuations are not observed, the signal was found to be slowed by a factor of ~5
in UHV compared to in ambient. Analysis of the picosecond SER signal decay revealed surface
diffusion as the most likely responsible mechanism. By mitigating degradation pathways, these
results demonstrate that a UHV environment is a valuable asset for time-resolved TERS studies.

(4) Analysis of the relative intensity fluctuations observed in SMTERS. The origin of
relative intensity fluctuations among peaks in single-molecule (SM) TERS has been a long-
standing question in the field. The combination of SMTERS and TDDFT results provided insight
into the potential causes of these fluctuations [21]. Molecular orientation and field gradient
effects could not explain the phenomena observed in experimental SMTER spectra, but the
fluctuations were computationally reproducible by allowing small variations (< 20%) in the
excited-state geometry. These variations in excited-state properties reveal detailed information
about adsorbate-adsorbate and/or adsorbate-surface interactions.

3. Chemically Modified Graphene and Silicon on
Plasmonic Substrates

To diversify the substrates and surface
chemistries  compatible with  ultrafast UHV-
TERS/STM  measurements, the SISGR team
developed atomically thin crystalline graphene and
silicon coatings on plasmonically active silver and
gold surfaces. Furthermore, extensive in situ chemical
functionalization methods on graphene and silicon
were developed. Principal research accomplishments
in this theme include:

(1) UHV growth of graphene on Ag(111). The
SISGR team demonstrated the first growth of graphene
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had been a challenge to the scientific community _ _ _ _
because of the inert nature of Ag. Since traditional ~Figure 2. Spatially resolved differential

chemical vapor deposition (CVD) techniques that are tunneling conductance imaging reveals
electron scattering at the edges of

typically utilized for graphene growth are ineffective graphene grown on Ag(111). Image
on Ag substrates, an alternative method based on sizes are both 150 nm x 150 nm [18].



direct deposition of elemental carbon (i.e., carbon evaporated from a graphite rod via e-beam
heating) was developed. The resulting graphene grown on Ag(111) is highly decoupled from the
surface and exhibits electron scattering from its edges at the Fermi wavelength (Figure 2), which
is the first such observation for graphene on any metallic substrate.

(2) Graphene nanoribbons on Au(111). In addition to bulk graphene, progress was made
on the growth of graphene nanoribbons on plasmonically active Au(111) surfaces. Specifically,
halogenated polycyclic aromatic hydrocarbons allowed graphene nanoribbons to be formed via
ring-coupling reactions on Au(111). At the initial stage, the molecules self-assemble to form a
noncovalently interacting adlayer. However, after annealing the substrate to 500 K, the
molecules covalently cross-link via scission of the halogen bonds. Further annealing of the
substrate to 750 K finally results in the formation of graphene nanoribbons. The structural and
electronic properties of the graphene nanoribbons were investigated at the single nanoribbon
level using STM and scanning tunneling spectroscopy, respectively.

(3) Two-dimensional silicon growth on Ag(111). In an effort to diversify the range of
surface chemistries on plasmonically active substrates, the SISGR team also completed an
extensive study that followed the evolution of silicon deposition on Ag(111) from multiple
surface alloy phases to the precipitation of two-dimensional sheets of sp*-bonded silicon [27].
This silicon growth method is compatible with graphene growth on silver, thus allowing the
synthesis of both lateral and vertical graphene-silicon heterostructures. These substrates thus
allow direct interrogation of the interaction of adsorbates with two contrasting surfaces: highly
reactive silicon and relatively inert graphene, which tend to interact with adsorbates in a covalent
and noncovalent manner, respectively.

(4) Chemical functionalization of graphene and silicon. In addition to graphene growth
on plasmonic substrates, methods for chemically functionalizing graphene and silicon were
concurrently developed. For example, the SISGR team achieved the formation of well-defined
one-dimensional organic
nanostructures on graphene via the
self-assembly of 10,12
pentacosadiynoic acid (PCDA) in
UHV [1]. Molecular resolution
UHV STM images confirm the one-
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and chemical properties of the underlying graphene [22]. Subsequent in situ exposure of
graphene epoxide to ALD precursors resulted in the growth of metal oxide nanoparticles, which
were characterized experimentally with STM, X-ray photoelectron spectroscopy, and Raman
spectroscopy, and modeled atomistically with DFT [15]. Additional chemical functionalization
strategies were also demonstrated including covalent modification of silicon with cyclopentene
[24], aqueous-phase oxidation of graphene [36], and noncovalent organic assemblies of
perylenetetracarboxylic diimide (PTCDI) [37] and melamine [38] on graphene.

4. Molecular Heterojunctions

Donor-acceptor molecular heterojunctions are at the heart of organic photovoltaic and
optoelectronic processes because they provide the intrinsic electric fields that separate
photogenerated charges. Since their electronic properties and photophysical behavior hinge on
local morphology down to the atomic scale, molecular heterojunctions were fabricated and
characterized with UHV STM:

(1) Self-assembled in-plane chiral heterojunctions between small molecule acceptors and
donors. Pentacene (Pn) and Ceo — archetypal donor and acceptor molecules — were self-
assembled into in-plane heterojunctions Cu(111) surfaces as shown in the UHV STM image in
Figure 3a. Unexpectedly, these highly symmetric molecules form chiral heterojunctions,
providing a striking demonstration of symmetry-breaking through self-assembly of molecules on
a surface [13]. Using scanning tunneling spectroscopy (STS), the signature shifts of the energy
levels of the Pn molecules were resolved in these heterojunctions. The resulting evidence of
charge transfer between the Pn and Ceo show that these structures are functional donor-acceptor
heterojunctions (Figure 3b). Comparing these measurements with DFT confirms that these
chiral structures are energetically favored and determines the amount of charge transfer between
the Pn and Ceo in these heterojunctions (Figure 3c¢).

(2) Rectification through stacked molecular heterojunctions. Stacked donor-acceptor
heterojunctions on Cu(111) were self-assembled in both orientations (Pn/Ceso/Cu and Ceo/Pn/Cu)
in order to measure and understand transport through these heterojunction systems. By
depositing a monolayer of Ceo on Cu(111) followed by a submonolayer of Pn, a two-molecule-
thick donor-acceptor rectifier was realized as imaged in Figure 3d and modeled in Figure 3e.
Current-voltage curves (Figure 3f) taken over the heterojunction (green), which show strong
rectification, contrast sharply with the curves taken over Ceo alone (black), which are nearly
symmetric. Rectification ratios between forward and reverse bias currents exceed 100x in this
two-molecule thick geometry. The opposite orientation also revealed rectification, albeit weaker,
in the reverse direction. DFT
calculations confirm the large
rectification  ratio in  the
Pn/Ceo/Cu orientation and show
that the metallic nature of Ceo
on Cu plays a critical role in

realizing favorable level
alignment for rectification. Figure 4. Five [3-carotene conformations (left) and (-carotene
complex (right) as revealed by UHV STM.

S. Single Molecule Characterization and Manipulation
In addition to molecular assemblies, the SISGR team pursued UHV STM characterization
down to the single molecule limit at cryogenic temperatures. This work also included single



molecular manipulation experiments, which allow atomically precise geometries to be realized
and also reveal the fundamentals of molecule-substrate interactions. Specific accomplishments
include:

(1) STM manipulation of photosynthetic plant molecular complexes. B-carotene and
chlorophyll-a are vital molecules for the existence of life on Earth, but their detailed structures in
molecular complexes had not previously been investigated at single molecule level. Using single
molecule manipulation schemes, the detailed molecular structures of B-carotene and chlorophyll-
a were resolved in molecular complexes at sub-molecular resolution (Figure 4). Five -carotene
conformations were imaged for the first time, and their structural integrity was tested by STM
manipulation. These experiments reveal that B-carotene destroys ordered chlorophyll-a clusters
to form molecular complexes where the two different molecular species tend to position next to
each other. Moreover, evidence of inducing chlorophyll-a conformational changes by -carotene
was found, thereby revealing their preferential interactions that enhance charge and energy
transfer processes at the molecular scale.

(2) Nanoscale molecule-cavity complexes. STM tip manipulation schemes were used to
create polyatomic nano cavities on the plasmonic surface of Ag(111), and then determine the
resulting electronic structures locally for the first time. In particular, the variation of local surface
potential and the energetic positions of resonances were observed while in the field emission
regime. These experiments revealed the existence of distinct electronic states in these cavities
above the surface Fermi level. Furthermore, the influence of these cavities on the electronic
structure of TBrPP-Co molecules was determined by inserting individual molecules into the
cavities using STM manipulation. Spectroscopic data exhibit significant shifts of the measured
molecular orbitals when compared to molecules on the clean surface. The observed changes are
attributable to the altered local potential above the cavities compared to the clean surface terraces.

(3) Lateral force needed to

move a single molecule on
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graphene nanoribbons. A
molecular-scale study of the lateral
force required to move a single
molecule on  graphene was
performed. Specifically, diffusion
of TBrPP-Co molecules on
graphene nanoribbons was
controlled by STM manipulation
along the long graphene  Figure 5. (a,b) A TBrPP-Co molecule is laterally moved along
nanoribbon axis (Figure 5). From the long axis of a graphene nanoribbon via STM tip
the manipulation signals, the force manipulation. (c) The corresponding STM tip manipulation

was quantified as function of the signal. (d) A mod_el illustrates the TBrPP-Co manipulation on

. , ) a graphene nanoribbon.

tip-height. From the linear

dependence of the force angle on tip-height, the slope of the attractive tip-molecule force was
deduced. These measurements show that piconewton-scale lateral forces are required to move
individual TBrPP-Co molecules on graphene nanoribbons.
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