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During the period covered by this report, significant advances in several diverse areas
have been achieved as outlined below under separate headings:

1. Damage Mechanics .

2. Functionally Gradient Materials with Defects

3. Problems in Heterogenization '

4. Conservation Laws with Application to Fracure and Defect Mechanics

Damage Mechanics

In collaboration with the late Professor J. Kestin of Brown University we succeeded
during the last few years and with the sponsorship, in part, of the Department of Energy,
to develop a rudimentary model of damage based on thermodynamic considerations. This
initial theory leads to results which are in encouraging agreement with the few experimental
data which have been published so far. _

In developing the initial elements of this theory we obviously based oursellves on the
“classical” or “conventiongl” thermodynamics, as expounded by J. Kestin in a series of
recent papers and who was one of the very few thermodynamicists interested in applications
to solid mechanics.

It is the study of irreversible processeé which leads thermodynamicists to rather di-
vergent views. We adopted the following position: A distinction has to be made between
" intensive parameters which appear in physica.l space and those which describe states of
constrained equilibrium in the Gibbsian phase (or state) space. The latter consists of a
set of extensive variables, namely the internal energy, the external deformation variables
and the internal deformation variables, which, by contrast to the intensive ones, can be
measured (in principle) in equilibriurh as well as in nonequilibrium. For a given system
under study, the introduction of these different va:*ia;bles is based on physical insight, ex-
perimental findings, intﬁition, etc. .

Since temperature and entropy can be defined (or introduced) only for reversible
processes it is imperative to introduce the so-called principle of local state (or the rilethod of
local equilibrium). This principle is applied by associating with every nonequilibrium state

an accompanying equilibrium state of equal values of internal energy, as well as external




. and internal deformation variables. It is then asserted that the temperature and entropy in
physical space (irreversible processes) can be approximated by their values in the Gibbsian
phase space (reversible processes) by standard, classical methods. A continuous sequence
of accompanying equilibrium states may be called an accompanying reversible process and
it is conceived as an adiabatic projection of the continuous sequence of nonequilibrium
states which constitute the irreversible process. This allows to express the classical Gibbs
equation in rate form and to derive explicit expressions for the rate of entropy production
by eliminating the rate of internal energy between it and the energy balance equation.

The essential part of this methodology consists in the formulation of the Gibbs equa-
tion for the accompanying process in phase space. This is obtained from the knowledge
of the physif:s of the situation and leads to the identification of the internal deformation
variables (which can be observed and measured, but not controlled) and the imagined
virtual (i.e. reversible) work done agéjnst them by the associated affinities.

Based on the methodology briefly summarized above we were successful in obtaining,
for one-dimensional systems and for isothermal processes, a basic theory of damage in
brittle solids. It was found that the response of the elastic bar depends not only on the
loading or straining processes, but also on some global geometric parameters, as well as on
the temperature. These conclusions seem to agree with the very few experimental results.

A summary of this work was published in [1-2].

Functionally Gradient Materials with Defects

Functionally gradient materials (FGM) were first produced in Japan for the primary
purpose of developing thermal protection for a future space plane which would have to
withstand severe aerdynamic heating. Since that time it was found that FGM, whose
material properties vary continuously in a particular direction, would have useful appli-
cations in a variety of industries. This writer, together with his associates, has already
been involved in some aspects concerning stress analysis of FGM ( e.g., crack mechanics in
smoothly nonhomogeneous materials as well as composites with nonhomogeneous fibers)
and has been invited to present a paper [3] at the 3rd International Symposium on Struc-

tural and Functional Gradient Materials held at the Swiss Federal Institute of technology
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in Lausanne, Switzerland, in October 1994. , ‘

The micromechanical analysis is effected by employing the newly proposed methodol-
ogy of heterogenization, whereby the solution to a heterogeneous problem is obtained by
performing a transformation on the solution to a corresponding homogeneous problem.

We proceeded to write down the solution for a multilayered fiber perfectly bonded to
an infinite matrix, which is subjected to arbitrary loading. The solution is then expressed
" in terms of the solution of the corresponding homogeneous problem i.e., when the fiber is
absent and the matrix material still subjected to the same loading (singularities) occupies
the whole space. We achieve this by exploiting a connection between the solution to the
heterogeneous problem and a group structure on the set (—1,1) of real numbers .z such
that -1 <z < 1. : '

We then considered the case where the shear modulus is a continuous function of
r throughout an annular region. The problem is formulated in a manner that leads to
a Riccati differential equation, the solution of which can be obtained by considering the
limit of our multilayered fiber solution. -
Finally, the results are iﬂustrgtéd by considering the problem of reducing stress con-

centration around holes.

Problems in Heterogenization

It is recalled that in elastostatics this term has been introduced by the writer and his
colleagues and refers to the passage from a homogeneous region subjected to some loads
(singularities), which represents a simple problem, to the same region with inclusions (or
holes) and subjected to the same loads. This novel approach turned out to extremely
fruitful in treating in a most effective manner a variety of problems as follows:

To assess the influence of boundary conditions on the stress distribution around a
single circular inclusion in plane elastostatics, by contrast to previous work for a bonded
inclusion, an inclusion with a slipping interface was considered. This work,-[4], maly be
summarized as follows: _

It i3 shown that the solution, in plane elastostatigs, for an infinite domain subjected to

arbitrary loading and into which a circular inclusion of o different elastic material has been
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inserted (heterogeneous problem) may be obtained, in the case of a slipping interface, from
the solution of the corresponding hom;)géneous problem (i.e., when there i3 no inclusion)
merelﬁj by a 3ingie quadrt;ture and simple algebraic manipulations. This novel procedure of
heterogenization is illustrated by several specific ezamples. _

A summary of the work on heterogenization at that time was also presented at the
Eighth Symposium on Energy Engineering Sciences and published in the Proceedings [5].
An extension of the heterogenization procedure from pure elastostatics to piezoelectricity
was accomplished in [6] and that work can be summarized as follows:

It was recently shown that the solution, in plane elastostatics, for an infinite domain
with a bonded circular inclusion (heterogeneous problem), may be obtained from the solution
of the corresponding homogeneous problem, merely by substitution into a simple algebraic
expression, (heterogenization). This relation is universal in the sense of being independent
of the loading considered.

In the present work the heterogenization procedure is extended to piezoelectric materials
and worked out for antiplane deformation. Both the matriz and the bonded inclusion are
taken to possess the symmetry of a hezagonal crystal in the 6mm class. The system is
subjected to mechanical and electric sources, whi,'ch produce only out-of-plane displacements
and in-plane electric field, but are otherwise arbitrary.

The solution is obtained as a simple transformation, based on involution, applied to
the solution of the corresponding homogeneous problem (i.e.. the problem of the matriz
material occupying the full space and subjected to the same sources). Several special cases
are discussed and specific ezamples illustrate the general methodology.

Some earlier work on bonded inclusions, both with circular and straight boundaries
was presented snd published during the period of this contract [7], and was summarized
as: .

It is shown that the solution, in plane elastostatics, for an infinite domain with a
bonded circular inclusion (heterogeneous problem), may be obtained ﬁom the solution of
the corresponding homageneous problem merely by substitution into a simple algebraic ez-
préssion (heterogenization). This relation is universal in the sense of being independent of
the loading considered. The case of two half-planes occupied by two dissimilar materials

and bonded along a straight boundary is obtained as a limiting case.
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The passage from a single circular inclusion to two inclusions was carried out for
harmonic problems (e.g. anti-plane strain) in [8] with the following summary:

In this paper, we derive the solution for two circular cylindrical elastic inclusions per-
fecily bonded to an elastic matriz of infinite extent, under anti-plane deformation. The
two inclusions have different radii and possess different elastic properties. The matriz is
subjected to arbitrary loading. The solution is obtained, via iterations of Mobius transfor-
mations, as a rapidly convergent series with an explicit general term involving the complex
potential of the corresponding homogeneous problem, i.e., when the inclusions are absent
and the matriz material occupies the entire space and is subjected to the same loading.
This procedure has been termed “heterogenization.” '

The technique used can be applied to problems governed by Laplace’s equation.

Finally some remarks are included concerning the relation of our solution to the theory
of discontinuous groups and automorphic functions and possible generalizations to multiple
wnclusions. ' ¢

This same problem was somewhat reformulated in [9] with the important finding that
it was possible to obtain several exact results. The abstract of this work reads as follows:

The heterogenization technique, recently developed by the authors, is applied to the
problem, in antiplane elastostatics, of two circular inclusions of arbitrary radii and of
different shear moduli, and perfectly bonded to a matriz, of infinite extent, subjected to
arbitrary loading. The solution 1s formulated in @ manner which leads to some ezact results.
Universal formulae are derived for the stress field at the point of contact between two elastic
inclusions. It is also discovered that the difference in the displacement field, at the limit
points of the Apollonius family of circles to which the boundaries of the inclusions belong,
is the same for the heterogeneous problem as for the corresponding homogeneous one. This
discovery leads to ¢ universal formula for the average stress between two circular holes or
rigid inclusions. Moreover, the asymptotic behavior of the stress field at the closest points
of two circular holes or rigid inclusions approaching each other is also studied and given by
universal formulae, i.e., formulae which are independent of the loading being considered.

Some years ago this writer was asked by IUTAM (International Union of Theoret-
ical and Applied Mechanics) and CISM (International Center for Mechanical Sciences)
to organize a summer school ét Udine (Italy), the seat of CISM. He chose the subject
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“Modeling of Defects and Fracture Mechanics” and this Second International Summer
School on Mechanics was held September 2-6, 1991. The Prc;ceeding’s were published by
Springer-Vérlag (Wi;an-NeW York) as “Courses and Lectures No. 331" in 1993. As a part of
the contributions by this writer these proceedings contain an article on the application of
the heterogenization methodology to the analysis of elastic bodies with defects [10] whose
summary is as follows:

Numerous defects in materials may be characterized as cavities or inclusions within the
framework of linear elasticiiy. Recently; the author and co-workers have developed o yeneml.
procedure termed “Heterogénizatz'on, ” which permits an efficient analysis of elastic ‘bodies
with circular cavities or inclusions in terms of correspondingly loaded homogeneous bodies
without such defects. One of the features. of this novel methodology is that the ezpressions
derived are completely independent of the loading. The present contribution summarizes
the essentials. of this methodology, which is based on a certain involution correspondence,
and considers specific applications to cavities, elastic inclusions with different boundary
conditions, as well as to coupled fields such as piezoelectricity and thermoelasticity.

At an International Conference on Micromechanics of Concrete and Cementitious
Composites held at ‘the Swiss Federal Institute of Technology in Lausanne (Switzerland)
this writer was invited to present the opening general lecture on the foundations and current
trends in micromechanics [11] where the heterogenization procedure was also mentioned,
as noted in the abstract: _

In this introductory lecture the goals and the modes of activity in micromechanics will
be briefly described, placing emphasis on current trends and mentioning some gaps in our
knowledge. ' !

The most developed area of analytical micromechanics, namely that whick is based on
a continuum theory of elasticity, will then be discussed in more specific terms. This area
deals w;'th a ‘m:athematical description of defects in materials, such as dislocations, voids,
inclusions, inhomaogeneities, cracks, etc., and attempts to provide predictive tools to cover a
wide range of material behavior, such as plasticity, creep, fracture, fatigue, damage, phase
transformatéons, including the influence of residual stresses, tezture and thermal effects,
among others. Polycrystalline and composite materials are frequently of special concern.

It will be pointed out that, remarkably, the work of one man in micromechanics has
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led to the naming of two different tensors in his memory. It is the late J. D. Eshelby who
‘made in the nineteen fifties the now classical contributions to the stress distributions in and
around inclusions and inhomogeneities, as well as to the concept of forces acting on defects,
such as voids or cracks. In ea.ch of these two areas he found it expedient and.necessary to
introduce a new tensor, in the former of fourth rank, in the latter of second rank. These two
tensors will be derived and their usefulness in micromechanics emphasized: Some current
work which involves both Eshelby tensors will be described and applications to modeling
of damage on the basis of thermodynamics with internal variables will be mentioned. A
recently developed methodalogy to deal with inclusions, termed “Heterogenization” and based
on the Kelvin transformation, will also be discussed. - .

Returning to piezoelectricity, two piezoelectric fibers emioedded in an intelligent mate-
rial were considered in [12] where, again, some exact results were established as described
in the following summary: -«

In this paper we are concerned with the problem of two circular piezoelectric fibers,
of different radii and distinct material properties, perfectly bonded to a host intelligent
material, of infinite extent. The matriz material may be piezoelectric or nonpiezoeleciric
but, together with fibers’ materials, it possesses the symmetry of a hezagonal crystal in
the 6mm class. The system is subjected to eleciromechanical loading (singularities ) which
produce out-of-plane displacement and in-pl'ane electric fields, but are otherwise arbitrary.

Within the framework of the procedure of heterogenization, recently developed by the

" authors, the solution is sought as a transformation epplied to the solution of the corre-
sponding homogeneous problem (i.e., the problem of the host material occupying the full
space and subjected to the same sources). The solution is formulated in a manner which
leads to some ezact results. Universal formulae are derived for the electromechanical field
at the point of contact of two piezoelectric fibers. Some quantities which are invariant
under the transformation, i.e., quantities which take the same values in the heterogeneous
as in the corresponding homogeneous problems, are also discovered. The remifications of l
this discovery are investigated. Moreover, the asymptotic behavior of the electromechanical
field at the closest points of two plated circular holes or rigid conductors, in an intelligent
matric material, approaching each other is dlso studied and.given by universal formulae,

i.e., formulae which are independent of the electromechanical sources. The interaction of
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the fibers with host-material microdefects, such as dislocations, electric line charges and
mic;rovoids, 18 scrutinized. The possibility of manipulating the electrical potential to reduce
the high stress level is also discussed. ‘

A step from homogeneous inclusions to layered ones was undertaken in [13] as sum-
marized below: )

In this paper we consider, within the framework of the linear theory of elasticity, the
problem of gz'r;:ularly cylindrical and plane layered media under antiplane deformations.
The layers are, in the first instance, coazial cylinders of annular cross-sections with arbi-
trary radii and different shear moduli. The number of layers is arbitrary and the system
i3 subjected to arbitrary loading (singularities). The solution is derived by applying the
heterogenization technigue recently developed by the authors. Qur formulation reduces t‘he
problem to 3blving linear functional equations and leads naturally to o group structure on
the set t of real numbers such that —1 < t < 1. This allows us to write down the solution
explicitly in terms of the solution of a corresponding homogeneous problem subjected to
the same loading. In the course of these developments, it is discovered that certain types
of inclusions do not disturb o uniform longitudinal shear. That these inclusions, which
may be termed “stealth,” are important in design and hole reinforcements is pointed out.
By considering a limiting case of the aforementz;oned governing equations, the solution of
plane layered media can be obtained. Alternatively, our formulation leads, in the case of
plane layered media, to linear functional equations of the finite difference type which can
be solved by several standard technigues.

Further aspects of heterogenization were considered in [14], giving emphasis to elas-
tically embedded inclusions which could simulate a coating around fibers in a composite
material, with the following summary: .

In this paper, we briefly review some of the recent developments in the methodology of
heterogenization. A connection between a group structure on the set (—1,1) of real numbers
t such that -1 < t < 1, and the elastostatics of a multilayered fiber perfectly bonded to an
infinite matriz is pointed out. Also, universal formulae, pertaining to the solution of two
circular elastic inclusions perfectly bonded to a matriz, of infinite extent, which is subjected
to arbitrary loading, are discussed. As anovel illustration of the heterogenization procedure,

we study here the case where the inclusions are elastically (i.e.. “imperfectly”) embedded
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in the matriz. Several cases are presented and discussed.

It is to be stressed that the heterogenization methodology, by contrast to other proce-
dures to treat heterogeneous bodies, proved extremely fruitful and can be exploited further
in numerous novel settings.

More recently, in one study this methodology was applied to the problem, in plane
elastostatics, of two circular inclusions of arbitrary radii and of different elastic moduli, and
* perfectly bonded to a matrix, of infinite extent, which is subjected to arbitrary loading.
The solution was formulated in a manner which leads to governing functional differential
equations, i.e., equations were then solved by employing novel techniques. Several illus-
trative examples are being worked out. Particular attention is devoted to the limiting,
but important, cases of two rigid inclusions or circular holes. Moreover, the asymptotic
behavior of the stress field at the closest points of these two defects as they approach each
other is being investigated.

Some of the results were presented by invitation at the recent National Congress of
Applied Mechanics and a paper is being prepared for journal publication.

In another study the effect of .a‘ dislocation in a fiber-reinforced composite was inves-
tigated and presented by invitation at the ASME Annual Meeting in November 1994. A
paper summarizing these findings is being completed and will be also submitted for Journal

publication.
Conservation Laws with Application to Fracture and Defect Mechanics

Our work in the area of conservation laws during the life of the subject contract has
+ successfully proceeded in several different directions.

It has to be realized that the principal basis for constructing ;:onservation laws, i.e.
divergence-free expressions, was E. Noether’s first theorem. Its shortcoming consists in
the fact that Noether’s point of departure is the Lagrangian of the system under consid-
eration, i.e. the strong restriction is imposed that the governing differential equations be
in fact the Euler-Lagrange equations of a variational problem. Thus, specifically, dissipa-
_tive systems, (since, in general, they do not possess a Lagrangian), cannot be treated by

Noether’s theorem and thus no systematic way exists to construct conservation laws. We
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succeeded [15], however, to esta’t;lish a systematic procedure for constructing conservation
lawé which is not based on the Lagrangiaﬁ, but rather directly on the differential equations
of thé system in question. Thus our procedure, which we later began to call the “Neutral
Action” method, may be applied to a system regardless as to whether or not it possesses a
Lagrangian and we showed later that our method, for systems with a Lagrangian, embodies
the so-called Bessel-Hagen extension to Noether’s theorem. In [15] several applications to
dissipativé systems have been worked out. But it turns out that even for non-dissipative
systems our methodology is more advantageous as compared to the usage of a procedure
based on Noether. This is illustrated with regard to non-homogeneous Bernoulli-Euler
beams [16] with the following summary: ‘

It 13 the purpose of this paper to construct conservation laws for the statics and dynam-

ics of nonhomogeneous Bernoulli-Euler beams. To derive these conservation laws, we will
use the newly proposed Neutral Action (NA) method (Honein et al., 1991, Phys. -Lett., 155,
228-294; Chien, 1992, Conservation laws in nonhomogeneous and dissipative mechanical
. systems, Ph.D. Dissertation, Stanford University). The conservation laws derived should
be useful cha;'acterizz'ng concentrated defects, such as cracks and interfaces, in an otherwise
smoothly nonhoﬁzogeneous beam. - '
. Classically, Noether’s first theorem (Noether, 1918, Transport Theory Stat. Phys. 1,
186-207) is available for construction of conservation laws for Lagrangian systems, such as
a Bernoulli-Euler beam. However, since the NA method is applicable to dissipative as well
as to Lagrangian systems, and since it encompasses Noether’s method within the realm of
Lagrangian systems, we choose to employ the NA method to achieve our purpose here. A
comparison of these two methodologies, with an ezample illustrating the relative efficiency
of the NA method over Noether’s a.pp'r.'oach‘, will also be presented.

Conservation laws for non-homogeneous Mindlin plates were established [17].  Again,
these laws should be useful in dealing with conce':ntrated defects, such as cracks and inter-
faces at phase boundaries in otherwise smoothly non-homogeneous ﬁlat-es.

~ Conservation laws for linear viscoelasticity in one and two dimensions were constructed
in [18] again providing potential tools for the study of fracture in such media.

Coupled fields were also considered and, specifically, several conservation laws for

thermoelasticfty and poroelasticity were established. Both, time-independent (uncoupled)
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and time-dependent versions of the theory in two dimensions were investigated. Advantage
was taken due to the analogy between thermoelasticity and poroelasticity. In particular, a
path-independent integral was derived, which represents, as we proved, the energy release
rate accompanying crack growth [19].

In arelated series of papers cracked beams and pipes were investigated further. Novel,
accurate estimates of stress -intensity factors for such systems were advanced in [20] and
[21], including certain asymptotic expansions. Curved cracked beams were considered in
[22]. ' |

Summarizing this section, it should be emphasized that conservation laws play an
important role not only in defect-and fracture-mechanics, but also in numerical work (they
can be built-in into various algorithms), in establishing existence and uniqueness theorems

and in studﬁng stability of systems.

References

[1] E. Honein, T. Honein, J. Kestin, and George Herrmann, “On Thermodynamic
Modeling of Damage in Elastic Solids,” Nonlinear Thermodynaﬁz'cal Processes in
Continua, Ein gemeinsamer Workshop der TU Berlin und des Wissenschaftskol-
legs zu Berlin, Editors: W. Muschik and G.A. Maugm Berlin, Heft 61, 1992, pp.
66-81.

[2] T. Honein, E. Honein, and G. Herrmann, “A Thermodynamically-Based Theory
of Damage in Brittle Structures,” Proc. US-Europe Workshop on Fracture and
Damage of Quasi-Brittle Materials, Prague, 1994

(3] T. Honein, E. Honein, and G. Herrmann, “Stress Analy51s of Fu.ictionally Gradi-
ent Materials Based on a Heterogenization Procedure,” 8rd International Sympo-
sium on Structural and Functional Gradient Materials, October 1994, Lausanne,
Switzerland. : -

[4] T. Honein and G. Herrmann, “A Circular Inclusion with Slipping Interface in
Plane Elastostatics,” Micromechanics and Inhomogeneity, The Toshio Mura 65th
Anniversary Volume, pp. 127-136, Springer-Verlag New York, 1990a.

[5] T. Honein, E. Honein, and G. Herrmann, “Mono- and Poly-Circle Theorems in

11




[6]

[7]

(8]

[9]

[10]

[11]

[12]

Solids and Fluids,”-Proceediﬁgs of the Eighth Symposium on Ehefgy Engineering
Sciences, “Micro/Macro Studies of Multiphase Media.,” Conf-9005183, Argonne
National Laboratory, Argonne, Illinois, pp. 190-196, 1990b.

T. Honein, B. Honein, E. Honein, and G. Herrmann, “On Piezoelectric Circu-
lar Inclusions,” Mechanical Modelling of New Eleciromagnetic Materials, R.K.T.
Hsieh (Editor), pp. 259-266, Elsevier Science Publishers B.V., 1990c.

T. Honein and G. Herrmann, “On Bonded Inclusions with Circular c'>r Straight
Boundaries in Plane Elastostatics,” Journal of Applied Mechanics, 112, pp. 850-
856, 1990. | N

E. Honein, T. Honein, and G. Herrmann, “On Two Circular Inclusions in Har-
monic Problems,” Quarterly of Applied Mathematics, Vol. L, No. 3, pp. 479-499,
1992. '

E. Honein, T. Honein, and G. Herrmann, “Further Aspects of the Elastic Field
for Two Circular Inclusions in Antiplané Elastostatics,” Journal of Applied Me-
chanics, 59, pp. 774-779, 1992.

G. Herrmann, “Application of the Heterogenization Methodology to the Analysis
of Elastic Bodies with Defects,” CISM Courses and Lectures No. 331, Model-
ing of Defects and 'Fracture Mechanics, edited by G. Herrmann, Springer-Verlag
Publisher, pp. 166-20‘6.

G. Herrmann, “Micromechanics: Some Basic Methods and Current Trends,” Mi-
cromechanics of Concrete and Cementitious Composites, edited by C. Huet, pp.
1-18, Presses Polytechniques et Universitaires Romandes, Lausanne, 1993.

T. Honein, B.V..Honein, E. Honein, and IG. Herrmann, “On the Interaction of
Two Piezoelectric Fibers Embedded in an Intelligent Material,” ASME, Adaptive
Structures and Material Syst;ems, AD-Vol.. 35, pp. 105-112, edited by G. P.

" Carman and E. Garcia, Book No. H00873, 1993.

[13]

[24]

T. Honein, E. Honein, G. Herrmaﬁn, “Circularly Cylindrical and Plane Layered
Media in Antiplane Elastostatics,” Journal Applied Mechanics, 61, pp. 243-249,
1994, '

E. Honein, T. Honein, and G. Herrmann, “Aspects of Heterogenization. J. Appl.
Mechs..

12




[15] T. Honein, N. Chien, and G. Herrmann, “On Conservation Laws for Dissipative
Systems,” Ed. Elsevier Science Publishers B.V., Physics Letters A, Vol. 155, No.
4,5, May 1991, pp. 223-224.

[16] N. Chien, T. Honein, and G. Herrmann, “Conservation Laws for Nonhomogeneous
Bernoulli-Euler Beams,” Int. J. Solids Structures, Vol. 30, No. 23, pp. 3321-
3335, 1993.

[17] N. Chien, T. Honein, G. Herrmann, “Conservation Laws for Non-Homogeneous
Mindlin Plates,” Int. J. Engrg. Sci., 1994, in press.

[18] N. Chien, T. Honein, and G. Herrmann, “Conservation Laws for Linear Viscoelas-
ticity,” ZAMP, Vol. 44, 1993, pp. 44-52.

[19] N. Chien and G. Herrmann, “Conservation Laws for Thermo- or Poroel'c;.sticity”,
J. Appl. Mechs., in press.

[20] H. Gao and G. Herrmann, “On Estimates of Stress Intensity Factors for Cracked
Beams and Pipes,” Engineering Fracture Mechanics, Vol. 41, No. 5, 1992, pp‘.
695-706. _ |

[21] W. H. Miiller, G. Herrmann, and H. Gao, “Elementary Strength Theory of
Cracked Beams,” Theoretical and Applied Fracture Mechanics, Vol. 18, 1993,

. pp. 163-177. -

[22] W. H. Miiller, G. Herrmann, and H.'Gao, “A Note on.Curved Cracked Beams,”

Int. Journal of Solids and Structures, Vol. 30, No. 11, 1993, pp. 1527-1532.

Publications

(1] E. Honein, T. Honein, J. Kestin, and George Herrmann, “On Thermodynamic
’ Modeling of Damage in Elastic Solids,” Nonlinear Thermodynamical Processes in
Continue, Ein gérrieinsamer Workshop der TU Berlin und des Wissenschaftskol-
legs zu Berlin, Editors: W. Muschik and G.A. Maugin, Berlin, Heft 61, 1'992, PP. .
66-81. ' - '
[2] T. Honein, E. Honein, and ‘G. Herrmann, “A Thermodynamically-Based Theory
of Damage in Brittle Structures,” Proc. US-Europe Workshop on Fracture and
Damage of Quasi-Brittle Materials, Prague, 1994.

13




[3] T. Honein, E. Honein, and G. Herrmann, “Stress Analysis of Functionally Gradi-
ent Materials Based on a Heterogenization Procedure,” 3rd International Sympo-
sium on Structural and Functional Gradient Materials, October 1994, Lausanne,
Switzerland.

[4] T. Honein and G. Herrmann, “A Circular Inclusion with Slipping Interface in
Plane Elastostatics,” Micromechanics and Inhomogeneity, The Toshio Mura 65th
Anniversary Volume, pp. 127-136, Springer-Verlag New York, 1990a.

[5] T. Honein, E. Honein, and G. Herrmann, “Mono- and Poly-Circle Theorems in
Solids and Fluids,” Proceedings of the Eighth Symposium on Energy Engineering
Sciences, “Micro/ Macro Studies of Multiphase Media-,”. Conf-9005183, Argonne
National Laboratory, Argonne, Illinois, pp. 190-196, 1990b. l

[6] T. Honein, B. Honein, E. Honein, and G. Herrmann, “On Piezoelectric Circu-
lar Inclusions,” Mechanical Modelling of New Electromagnetic Materials, RK.T.
Hsieh (Editar), pp. 259-266, Elsevier Science Publishers B.V., 1990c.

[7] T. Honein and G. Herrmann, “On Bonded Inclusions with Circular er Straight
Boundaries in Plane Elastostatics,” Journal of Applied Mechanics, 112, pp. 850-
856, 1990. _

[8] E. Honein, T. Honein, and G. Herrmann, “On Two Circular Inclusions in Har-
monic Problems,” Quarterly of Applied Mathematics, Vol. L, No. 3, pp. 479-499,
1992. ,

[9] E. Honein, T. Honein, and G. Herrmann, “Further Aspects of the Elastic Field
for Two Circul.ar Inclusions in Antiplane Elastostatics,” Journal of Applied Me-
chanics, 59, pp. 774-779, 1992. _

[10] G. Herrmann, “Application of the Heterogenization Methodology to the Analysis
of Elastic Bodies with Defects,” CISM Courses and Lectures No. 331, ‘Model-
ing of Defects and Fracture Mechanics, edited by G. Herrmann, Springer-Verlag
Publisher, pp. 166-206. -

[11] G. Herrmann, “Micromechanics: Some Basic Methods and Current Trends,” M-
cromechanics of Concrete and Cementitious Comeposites, edited by C. Huet, pp.

- 1-18, Presées Polytechniques et Universitaires Romandes, Lausanne, 1993.

[12] T. Honein, B.V. Honein, E. Honein, and G. Herrmann, “On the Interaction of

14




Two Piezoelectric Fibers Embedded in an Intelligent Material,” ASME, Adaptive
Structures and Material Systems, AD-Vol. 35, pp. 105-112, edited by G. P.
Carman and E. Garcia, Book No. H00873, 1993. '

[13] T. Honein, E. Honein, G. Herrmann, “Circularly Cylindrical and Plane Layered
Media in Antiplane Elastostatics,” Journal Applied Mechanics, 61, pp. 243-249,
1994. _

[14] E. Honein, T. Honein, and G. Herrmann, “Aspects of Heterogenization, J. Appl.
Mechs.. .

[15] T. Honein, N. Chien, and G. Herrmann, “On Conservation Laws for Dissipative
Systems,” Ed. Elsevier Science Publishers B.V., Physics Letters A, Vol. 155, No.
4,5, May 1991, pp. 223-224.

[16] N. Chien, T. Honein, and G. Herrmaﬁn, “Conservation Laws for Nonhomogeneous

" Bernoulli-Euler Beams,” Int. J. Solids Structures, Vol. 30, No. 23, pp. 3321-
3335, 1993. ’

[17) N. Chien, T. Honein, G. Herrmann, “Conservation Laws for Non-Homogeneous
Mindlin Plates,” Int. J. Engrg. Sci., 1994, in press.

[18] N. Chien, T. Honein, and G. Herrmann, “Conservation Laws for Linear Viscoelas-
ticity,” ZAMP, Vol. 44, 1993, pp. 44-52.

[19] N. Chien and G. Herrmann, “Conservation Laws for Thermo- or Poroelasticity”,
J. Appl. Mechs., in press. . »

[20] H. Gao and G. Herrmann, “On Estimates of Stress Intensity Factors for Cracked
Beams and Pipes,” Engineering Fracture Mechanics, Vol. 41, No. 5, 1992, pp.
695-706.

[21] W. H. Miiller, G. Herrmann, and H. Gao, “Elementary Strength Theory of
Cracked Beams,” Theoretical and Applied Fracture Mechanics, Vol. 18, 1993,
pp. 163-177.

[22] W. H. Miiller, G. Herrmann, and H. Gao, “A Note on Curved Cracked Beams,”
Int. Journal of Solids and Structures, Vol. 30, No. 11, 1993, pp. 1527-1532.

(23] E. Honein, T. Honein, and G. Herrmann, “The Elastic Field of Two Circular
Inclusions in Plane Elastostatics.” To be published. . '

[24] E. Honein, T. Honein, and G. Herrmann, “The Effect of a Dislocation in a Fiber-

15




'Reinforced Composite.” To be published.

16




