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DETECTION OF CONCEALED MERCURY WITH THERMAL NEUTRONS

Zane W. Bell

Computing and Telecommunications Services Division
Oak Ridge Y-12 Plant’

Martin Marietta Energy Systems, Inc.

Oak Ridge, TN 37381-8142

INTRODUCTION

In the United States today, governments at all levels and the citizenry are paying
increasing attention to the effects, both real and hypothetical, of industrial activity on the
environment. Responsible modern industries, reflecting this heightened public and
regulatory awareness, are either substituting benign materials for hazardous ones, or
using hazardous materials only under carefully controlled conditions. In addition,
present-day environmental consciousness dictates that we deal responsibly with legacy
wastes.

The decontamination and decommissioning (D&D) of facilities at which mercury
was used or processed presents a variety of challenges. Elemental mercury is a liquid at
room temperature and readily evaporates in air. In large mercury-laden buildings,
droplets may evaporate from one area only to recondense in other cooler areas. The rate
of evaporation is a function of humidity and temperature; consequently, different parts
of a building may be sources or sinks of mercury at different times of the day or even
the year. Additionally, although mercury oxidizes in air, the oxides decompose upon
heating. Hence, oxides contained within pipes or equipment, may be decomposed when
those pipes and equipment are cut with saws or torches. Furthermore, mercury seeps
through the pores and cracks in concrete blocks and pads, and collects as puddles and
blobs in void spaces within and under them.

Mercury is a hazardous to the health of humans and wildlife. It can be ingested
through the food chain (fish, for example, accumulate mercury in their fatty tissue),
inhaled as a vapor, or absorbed directly through the skin. Acute inhalation may result in
a cough, pneumonitis, pulmonary edema and hemorrhage, fever, vomiting and diarrhea,
headache, fatigue, irritability, and ulceration of the mouth and lips. In humans chronic
exposure to the vapor affects the kidneys causing kidney disease, the eyes causing
discoloration of the lens and opacity of the cornea, the nervous system causing tremors,
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memory loss, and psychological disorders, and the reproductive system. Mercury
crosses the placenta and can affect fetal health. The well-known expression "mad as a
hatter" derives from the psychological effects observed among workers in the fur hat
industry induced by prolonged exposure to mercury. During the 18" and 19" centuries,
it was the practice to wash fur hats in mercury to remove oils from the pelts.

Since chronic exposure to mercury can lead to such unpleasant consequences, it
is necessary to locate pockets of the material and remove them in a controlled fashion.

That is, it is necessary from both the regulatory and ethical points of view to perform

the D&D of a facility in such a way as to minimize releases of mercury to the ground,
water, and the air. While this task is relatively straightforward when mercury is in pipes
or tanks that can be drained, or in equipment that can be dismantled, or even in puddies
on the floor (these can be removed with a vacuum cleaner), mercury that has collected
inside hollow spaces either as a liquid, oxide, or amalgam presents difficulties.

Foremost among them is the problem of detection and quantification. Various
technologies for these are described below.

Consider mercury concealed within a hollow wall. Often, there is convenient
access to only one side of the wall. Hence, a DXT probe using a low energy x or
gamma ray may not be appropriate. (Such a probe is most appropriate for determining
the level of elemental mercury in pipes or tanks.) A gauge based on Compton
backscattering might be useful only if the wall is sufficiently thin so as not to absorb
significant amounts of radiation. Similarly, a device based on x ray resonance
fluorescence would be hindered by the absorption of both the excitation x rays and the
fluorescent x rays. If the wall is painted, a vapor detector cannot "sniff" out the
mercury because layers of paint effectively block the vapor. In scenarios in which walls
are not painted, there could conceivably be sufficient ambient vapor to make
unambiguous location of a pocket impossible. If the mercury is chemically combined
(as in an oxide or amalgam), then devices based on obtaining chemical signatures
without contact are also unfeasible.

Thus it is seen that the inherent problems encountered in the detection and
quantification of concealed mercury are related to the penetration of the probe to the
mercury and the escape of the signature to the detector. Neutrons are an attractive
probe because they interact only with the nuclei of atoms, and do not distinguish
between elemental and chemically combined species. They behave essentially as an
inert gas at low pressure and have ranges in concrete and steel that varies from
centimeters to meters, depending on energy. Their interactions with nuclei often result
in artificial radioactivity and/or the emission of gamma rays, especially upon capture.

Mercury possesses a thermal neutron capture cross section that is two orders of
magnitude larger than that of most materials. Upon capturing a neutron, an energetic
gamma ray, which can penetrate centimeters of concrete or steel, is emitted. The
penetrating power of probe neutrons and gamma ray signature has made it worthwhile to
investigate a detection scheme based on capture gamma rays.

The remainder of this paper discusses the design and development of a gauge to
detect mercury, regardless of its chemical state, based on the detection of neutron
capture gamma rays. The basic physics is described, the design of the neutron source is
detailed, and the considerations for the detector are given. The results of bench-top tests
are shown, and the status of the system is given.



BASIC PRINCIPLES

Natural mercury has a thermal neutron capture cross section of 384 barns and
occurs naturally as 7 isotopes[1]. Almost all the cross section is due to the 2200 barn
cross section of '®Hg which comprises 17% of the natural. The absorption of neutrons
as they traverse a layer of mercury is given by e where t is the thickness of the layer,
o is the capture cross section, and p is the atom density of the mercury. The large cross
section of mercury means that a 3 mm thick layer of natural mercury captures 99% of
the thermal neutrons incident on it via the reaction Hg(n,y)**Hg.

Capture of a neutron produces **Hg in an excited state. In 77% of captures, the
deexcitation proceeds through the first excited state of **Hg and results in the emission
of a gamma ray with energy 368 keV[2]. This gamma ray can penetrate centimeters of
concrete or steel and is therefore a detectable signature of the presence of mercury.

For a flux of neutrons, ¢, irradiating a mass of mercury, M, the rate, r, of
captures is given by
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where N, is Avogadro’s number, and W is the atomic weight of mercury. The rate r is
inferred from the count rate of the 368 keV capture gamma ray corrected for the 77%
branching ratio and absorption in the material matrix. Although inversion of equation 1
to obtain M is obviously trivial if r is measured and ¢ is known, this simple treatment is
seldom possible because the estimates of r and ¢ are flawed. The estimate of r is
uncertain because of assumptions made about the material through which the gamma
rays must pass, while that of ¢ is uncertain because of scattering of neutrons by the
matrix. In addition, since the capture cross section of mercury is so high, there is
significant self-absorption of the neutron flux and the entire mass of a large blob is not
exposed to the neutrons. For these reasons, the work to date has concentrated on the
development of a mercury detecting device.

In order to get capture gamma rays from mercury, it is necessary to get neutrons
to the mercury. In the present work, a radioactive Am-Li source was used to generate
neutrons. This source produces a spectrum with energies up to about 1.5 MeV and an
average energy of about 340 keV. Since thermal neutrons are required (the capture
cross section of mercury falls like 1/VE until about 5 eV, and then averages about 15
barns with many resonances at higher energies[3]), it is necessary to degrade the
energies of the neutrons by surrounding the source with a moderator. In addition, it is

necessary to direct neutrons toward the volume under interrogation. To accomplish
these goals, the moderator was designed with the simulation program, MCNP.

MCNP is a Monte Carlo code developed by Los Alamos National Laboratory for
the design of neutron shielding and criticality calculations. There have been over 300
person-years invested in its development and it is used over 500 times per month at Los
Alamos alone[4]. MCNP determines the behavior of neutrons in the presence of
materials by analytically modelling the geometry and then tracking many thousands of

simulated neutrons through the material matrix. At each step interactions are selected



according to the relative probabilities of each occurring (that is, the probability of a
particular interaction is proportional to the cross section for that process). By simulating
the passage of hundreds of thousands of neutrons, estimates of the distribution of

neutron energies, direction of travel, probability of capture, and the like may be
obtained.

Figure 1 shows a cross section of the final design of the moderator. The central
structure is a plexiglas cradle holding a cylindrical source. The cradle/source is
surrounded by a polyethylene reflector carved in the shape of an inverted letter W. The
opening at the bottom is approximately 36 cm square. The cradle is held in place from
below by two plexiglas T bars. This design exposes maximum reflector area to the
volume under interrogation (presumably below the moderator) and minimizes the
number of neutrons leaking through the reflector. MCNP reports that approximately
40% of the source neutrons are directed toward the target volume, and thermal neutrons
make up 80% of those.

Mercury, of course, is not alone in its ability to capture neutrons and emit
gamma rays. Notable among other common elements is iron, the main isotope of
which, **Fe, emits gamma rays at 352.4 and 366.8 keV via the *Fe(n,y)*'Fe reaction.
These gamma rays occur in 10.9% and 1.5% of neutron captures, respectively. In
addition, a natural source, 351.9 keV from 2'Pb, from the decay chain of uranium, is
often found in lead used for the shielding of detectors. The proximity of these gamma
ray energies to that from mercury means that a high purity germanium (HPGe) detector
must be used to distinguish them from each other. Such detectors have approximately 1

keV energy resolution at 370 keV in contrast to Nal which may have 40 keV resolution.
An HPGe detector was used for the present work.
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Figure 1. Cross section of moderator/source cradle.
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Figure 2. Schematic arrangement of experiment (not to scale).

Figure 2 shows schematically the arrangement of the source, detector and target.
The detector is surrounded by a lead collimator wrapped in Cd (to reduce neutron
captures in the germanium crystal) and a SLiF disc. The disc also captures all thermal
neutrons incident on it, but emit no capture gamma rays. Thus it does not contribute to
the background. The lead collimator is an annulus 9 cm internal diameter, 10 cm thick
walls. :

Before beginning this work, it was necessary to determine if the neutron source
would activate, to any significant extent, structural materials found in buildings. MCNP
was used to estimate the behavior of concrete, cold rolled steel, stainless steel,
aluminum, copper, and nickel after 10 minutes of irradiation. It was found that those
materials whose activation products have the shortest half-lives (Al, Cu, and Na) activate
the most. However, they present no danger since they also decay away in a matter of
hours. The remaining materials either have very low capture cross sections or half-lives
long compared to 10 minutes, and never build up significant amounts of radioactive
material. They, too, are of no concern.

RESULTS

The experimental arrangement shown in Figure 2 was used in the laboratory with
a 50,000 neutron/sec Am-Li source. (A gauge for use at a sparsely populated
remediation site would use a 500,000 neutron/sec source so that the counting time could
be decreased without risk of exposure to other workers.) Five mercury batteries
(Mallory TR289) containing 37 grams of mercury each[5] (185 grams in total) were
placed inside a 3 kg steel pot about 30 cm from both the source and the detector.

Figure 3 shows a typical spectrum obtained after 800 seconds of counting. The leftmost
peak is caused by neutrons captured by Ge in the detector crystal itself. It is useful as a
flux monitor. The middle peak is caused by the 352.4 keV iron capture gamma ray and
the 351.9 keV gamma ray from *“Pb present in the shielding material. The rightmost
peak results from mercury capture gamma rays at 368.1 keV. The
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Figure 3. HPGe spectrum showing peaks due to Ge, Fe+?'*Pb, and Hg.

background on which all these peaks sit is caused primarily by the registration of
gamma rays that undergo Compton scattering in the HPGe detector and then escape the
Ge crystal.

Table I summarizes the data from spectra (all 800 second counts) taken with
various target materials. It obvious that the major component in the Fe+Pb peak in
figure 3 is the contribution from **Pb. From the table, the net counts in the Fe+Pb peak
due to iron are 88 + 74.

The mercury counts are clearly affected by the presence of the steel pot. The
linear attenuation for 368 keV gamma rays in steel is approximately 1.3 cm[6]. This
means that the 0.25 inch thick walls of the pot account for a loss of 40% of the mercury
gamma rays by absorption. This measured values of the mercury counts in rows two
and four of the table are consistent with this.

To obtain the true number of mercury gamma rays, it is necessary to correct the
mercury counts in the last row of the table for the attenuation in the steel (a factor of
1.63), and for the contribution of the 366 keV iron gamma rays. This correction is
13.7% (1.5/10.9, the ratio of the occurrences of each gamma ray per captured neutron)
of the counts due to the 352 keV gamma from iron.

Table I. Contributions to gamma ray spectrum

Run Mercury counts Fe + Pb counts
Background 0 261 =27
Mercury only 678 £ 125 263 + 64
Steel pot only 0 349 + 69
Mercury and steel pot 435 £ 110 342 £ 73




An estimate of the minimum level of detection of mercury in the presence of
iron may be obtained by setting the count rate of the 366 keV iron gamma ray equal to

that of the mercury gamma ray. Correcting equation 1 for the numbers of each gamma
ray per captured neutron results in the expression shown in equation 2.

MHg = oFe . WHg . 0.015 (2)
Mg, oy W, 077

Substitution of the cross sections, and atomic weights yields a ratio of 460ppm by
weight. This result is only an statement of the ability of such a gauge to distinguish
events due to iron from those due to mercury, and does not include the effects of
statistics.

SUMMARY

A scheme based on the detection of thermal neutron capture gamma rays from
mercury has been designed and tested in the laboratory. A neutron source and
moderator that directs 40% of the source neutrons toward the test volume has also been
designed. It has been shown that mercury can be detected even when it is enclosed in
0.25 inch thick steel. It was found that a high purity germanium detector was necessary
for this device because of the close (in energy) proximity of capture gamma rays from
iron. It is estimated that mercury in the presence of iron may be detected at the 500
ppm level.

A device as described above was originally envisioned as a transportable gauge
to be used inside buildings to detect pockets of mercury concealed within hollow walls
and pipes. It may be possible to adapt the method to scan a waste stream for mercury
and to act a quick sorter. In this mode, the device would be configured similarly to an
airport baggage scanner, with material loaded into an irradiation/counting chamber. The
device would then need to be fitted either with several HPGe detectors (a very
expensive proposition) or with tin or lead loaded plastic scintillators. Such scintillators,
although having very poor energy resolution, could be calibrated against the spectra
obtained from a single HPGe detector also viewing the counting chamber. Alternatively,
the samples to be checked could be put on a turntable and simply scanned. Further
investigation along these lines are planned.
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