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Discovering how aerosol particles, present in the atmosphere in sizes of a few nanometers to
hundred micrometers, initiate ice crystal formation presents a great challenge. Atmospheric ice nucleation
is important because ice crystals alter the radiative properties of clouds and thus climate, and impact
precipitation and thus the hydrological cycle. The difficulty in predicting atmospheric ice formation is
attributable at least in part to several factors: 1) the diversity of ice nucleation pathways, 2. the physical and
chemical complexity of the diverse particles types acting as ice nucleating particles (INPs), and 3. the
relatively small numbers of INPs (compared with all other aerosol particles), sometimes less than one in
100000. These factors in turn makes constraining ice nucleation parameterizations for modeling
applications challenging. The majority of airborne particles are organic or contain organic biogenic
material. The presence of organic material adds to the complexity of the particles and therefore the
predictability of ice nucleation events since the organic species can be present in different phase states, e.g.
liquid or solid, in response to temperature and humidity. The award DE-SC0008613 to PI Prof. Daniel
Knopf at Stony Brook University, “Relating the Chemical and Physical Properties of Aerosols to the Water
Uptake and Ice Nucleation Potential of Particles Collected During the Carbonaceous Aerosols and
Radiative Effects Study (CARES)”, allowed the examination of laboratory generated aerosol particles and
field-collected particles for their propensity to nucleate ice under typical tropospheric conditions and to
relate ice nucleation to the physicochemical properties of the particles including their morphology and
chemical composition. This in turn allowed for development of ice nucleation parameterizations for
implementation in cloud models.

The award resulted in 10 fully and partially funded peer-reviewed publications and more than 20
seminar and conference presentations as listed below which addressed the ice nucleation conundrum and
improved our predictive capabilities of understanding atmospheric ice crystal formation. This award
resulted in substantial new insights into the processes governing immersion freezing, the role of organic
aerosol particles in ice cloud formation, and the importance of the ambient aerosol population for prediction
of ice nucleation events in an air parcel. These findings have significant implications for modeling and field
measurement strategies of atmospheric ice nucleation.

We examined the physicochemical properties and the ice nucleation potential of particles collected
during CARES using a novel experimental method that allows
identification of the individual INPs within a large population of
particles sampled from an ambient environment. Taking advantage of
a variety of micro-spectroscopic techniques, we characterized the
composition and morphology of INP and non-INP particles present in
Figure 1 STXM/NEXAFS characterization of the airporne popL_JIation (Kr_lopf et al., 2014). Cou_pling our _ice
INP and non-INP as false color X-ray image NUCl€ation —experiments ~with state-of-the art single particle
[Knopfetal., 2014]. Legend gives dominant COmpositional analysis by using scanning transmission X-ray
particle composition. microscopy with near edge X-ray fine structure spectroscopy
(STXM/NEXAFS), we found that the identified INPs belong to the most common particle-type classes
observed in the CARES field samples and as such are not special or rare particles (Fig. 1). In other words,
the INPs are not unique which contrasts with the common paradigm that the INPs are rare and exceptional
particles. Either there are differences between particles acting as INPs and particles not acting as INPs
which are beyond our current detection limit or nucleation occurs randomly on the surface of any one of
the present and compositionally equivalent particles as classical nucleation theory (CNT) suggests. These
results also indicate that total particle surface area of the different particle types present in an aerosol
population is a crucial factor for prediction of ice nucleation in an air mass. Additionally, our measurements
demonstrated that organic aerosol particles can initiate ice nucleation. These findings challenge future field
measurement strategies and particle types to be investigated in the laboratory for their ice forming potential.

The analysis of the CARES aerosol population led to the development of a new parameterization
for quantifying the mixing state of the entire aerosol populations in terms of the particle-specific diversity
and bulk population diversity which we introduced as a mixing state index (O’Brien et al., 2015; Moffet et
al., 2016). During a period of high photochemical activity and pollution buildup, we characterized the
particle mixing state and morphology using STXM. Observations of compacted black carbon (BC) core

NEXAFS:
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morphologies with relatively thick organic coatings at both urban and rural sites highlight the importance
of highly aged particles at urban sites during periods of high photochemical activity. We observed that BC
inclusions were located closer to the edge of particles when inorganic inclusions were present in the

particles which can impact the radiative properties of these internally mixed particles.
To improve our predictive understanding of ice nucleation by the chemically complex ambient
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particles, as observed during CARES, we used a wide range of
laboratory generated particles to systematically examine ice
nucleation for typical tropospheric conditions. We
demonstrated that the rate of immersion freezing, when a
particle immersed in an aqueous droplet acts as an ice nucleus
(IN), can be predicted by knowledge of the IN particle type
present and the droplet’s water activity which is equal to
ambient relative humidity (Knopf and Alpert, 2013, Rigg et al.,
2013). Our water activity based immersion freezing model can
successfully predict freezing data including INPs such as
mineral dusts, marine biological material, organic species, and
surfactant molecules (Fig. 2). The model relates the
heterogeneous ice nucleation rate coefficient to ambient

Aw

temperature and relative humidity using a linear function for
each IN type. Its mathematical simplicity makes it an ideal
candidate for implementation in cloud and climate models.

In a follow up study we were able to demonstrate that
the water activity based immersion freezing model can
reproduce many past laboratory measurements which were
generated using a variety of instruments to study immersion
freezing (Alpert and Knopf, 2016). The CARES data demonstrated that ice nucleation likely follows
stochastic behavior as expected from CNT. Results of our immersion freezing study (Alpert and Knopf,

Figure 2. Concept of the water activity based
immersion freezing model (Knopf and Alpert,
2013). Freezing occurs along solid lines with a
constant nucleation rate coefficient. This freezing
line is parameterized by the water activity criterion
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Figure 3. Application of a stochastic ice nucleation model to describe immersion freezing data. (A) The model can nicely predict
the time dependent freezing of droplets observed by Wright and Petters (2013). (B) and (C) The model can explain the artifact
observed by Herbert et al. (2014) that Jpe: varies with cooling rate. When accounting for actual INP surface areas the experimental
data fall in line with the predictions of the water activity based immersion freezing model (red line) (C).

2016) demonstrated that when accounting for a stochastic and time dependence freezing process with a
realistic estimate of the uncertainty in the INP surface area, discrepancies and interpretation differences
among previous literature freezing data sets can be explained. Figure 3 shows that application of a stochastic
immersion freezing model using the water activity based immersion freezing parameterization can resolve
time dependent (Fig. 3A) and cooling rate dependent (Fig. 3B,C) immersion freezing experimental data.
Application of this physical ice nucleation model allowed us to determine typical experimental uncertainties
when measuring INPs in the laboratory or field. Most importantly, we emphasized the importance of
accurate knowledge of the applied particle surface areas when predicting ice nucleation rates. Lastly, we



demonstrated that a water activity based immersion freezing model can also be derived for field collected
particles providing an ice nucleation parameterization for implementation in cloud and climate models
(China et al., 2017). In a collaborative effort, we are currently working to implement this novel
parameterization of immersion freezing into a global model to estimate ice crystal number concentrations.

The CARES particle samples showed us that secondary organic aerosol (SOA) is ubiquitous and
can participate in ice nucleation. To further our understanding how SOA particles can induce ice nucleation,
we conducted ice nucleation experiments applying SOA particles generated from the OH oxidation of
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M. Shiraiwa (Univ. of California Irvine).
Application of a suite of ice nucleation
experiments in combination with a
numerical diffusion model, we could show

that changes in SOA particle phase state
impact the ice nucleation pathway. For example, although a SOA particle can be solid (glassy) under room
conditions and one would expect it to serve as IN, upon increasing humidity, this particle can deliquesce,
i.e. becoming liquid, before heterogeneous ice nucleation occurs (dotted, dash-dotted, and dashed lines in
Fig. 4). As a consequence, such a particle will not take part in cloud glaciation under mixed-phase cloud
conditions and may only form ice homogeneously at lower temperatures. However, the phase state of the
SOA particle in turn depends on current updraft velocities as shown in Fig. 4. Overall, our results suggest
that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of
sulfate further renders this even less likely. However, anthropogenic SOA may have enhance cloud
glaciation under mixed-phase and cirrus cloud conditions compared with biogenic SOA that dominated
during preindustrial times or dominates in pristine areas. Inspired by the actual particle complexity observed
during the CARES campaign, this study emphasizes the competing effects of changes in organic phase state
and propensity for ice nucleation. These findings provide important information regarding how organic
particles for ice nucleation studies need to be sampled.

Biogenic material including proteins are known to efficiently nucleate ice. The Pl joined a
collaborative effort using sum frequency based interfacial analytical methods and molecular dynamic
simulations to better understand why proteins in P. syringae favorably nucleate ice (Pandey et al., 2016).
This study demonstrated that ice active sites within P. syringae feature unique hydrophilic-hydrophobic
patterns to enhance ice nucleation. Furthermore, the freezing transition is facilitated by the highly effective
removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. These
insights help to formulate improved ice nucleation parameterizations for such biogenic/biological particles
acting as INPs.

This funded project made use of state-of-the-art and novel single particle spectroscopic analytical
techniques to analyze the ambient particle population but also the individual INPs. Because of our findings,
the Pl was invited to contribute to a review article about current progress in the analysis of complex
atmospheric particles (Laskin et al., 2016).
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