

## SISGR: Defect Studies of CZTSSe & Related Thin Film Photovoltaic Materials

Michael A. Scarpulla, MSE & ECE Departments, University of Utah

### Program Scope

The research objectives of this project centered around investigations of the basic properties of  $\text{Cu}_2\text{ZnSn}(\text{S},\text{Se})_4$  especially the electronic defects in the bulk, at the interface with heterojunction partners used in solar cells, and at the polycrystalline grain boundaries. In the course of the project we addressed many specific sub-areas in 17 peer reviewed publications listed at the end of this report (2 more are also in preparation). The impact of this research is to generate basic but critical materials knowledge about this emerging alloy system that may be capable of photovoltaic efficiency on par with CdTe and CIGS but at lower cost and having the benefit of avoiding constraints on scale-up from rare and expensive elements using earth abundant elements. In the final phase of this project, Prof. Scarpulla worked with Dr. Kirstin Alberi at NREL and rigorously solved a theoretical problem that is general across all semiconductors – the prediction of point defect concentrations in the presence of excess carriers.

### Recent Progress (other topics have been summarized in past reports)

#### Origins of electronic disorder in CZTS

We completed our data processing and analysis of a large data set of transmission x-ray microscopy tomography taken at SSRL on layers of CZTSe deposited as thin polycrystalline films. Also, we collaborated with NREL transmission electron microscopy scientists on CZTSSe singles. Many techniques have revealed evidence of electronic disorder (both fluctuating potentials and bandgaps) in CZTSSe alloys. We used these real-space compositional measurements to investigate the origins and lengthscales of these energetic variations.

In the x-ray tomography work, we were able to simultaneously measure a unique combination of spatial resolution near 200 nm and area of study 10's of  $\mu\text{m}$ . Additionally, the SSRL beamline allowed us to generate element-specific tomographic reconstructions of the samples. We then analyzed the Cu and Zn spatial densities and showed that these two elements in particular tended to be anticorrelated on the lengthscales of grains. In other words, the origins of compositional and thus electronic inhomogeneity are not simply at the atomic scale in point defects but also at the scale of the microstructure – adjacent grains appear to have significantly different stoichiometry. These are novel findings that broaden the scope of understanding. The work was chosen for the cover article for Solar RRL.

Similarly, our TEM study revealed novel results on a different lengthscale. In this work we obtained single crystals of CZTS from a collaborator in Japan and studied the compositional fluctuations on nm lengthscales with direct imaging. These bulk crystal samples were very slowly cooled from the growth temperature so approach the thermodynamic ground state for the  $\text{Cu}_2\text{ZnSnS}_4$  material, somewhat in contrast to polycrystalline thin films deposited in vacuum which are used for thin film solar cells. In these single crystalline regions, we found statistically-significant composition variations for Cu, Zn, and Sn on 20 nm

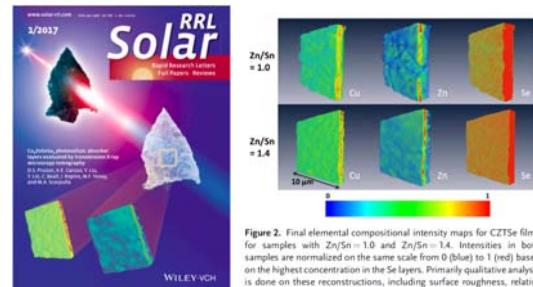
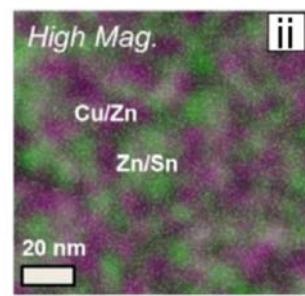
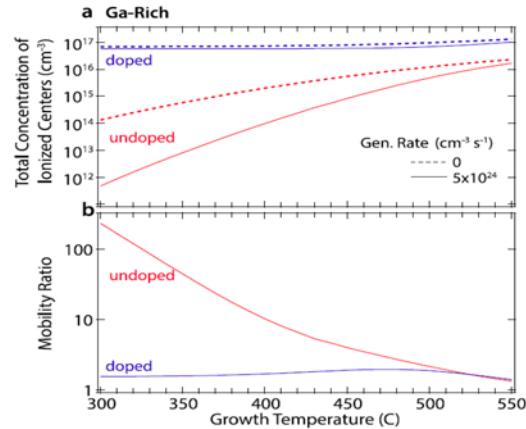




Figure 2. Final elemental compositional intensity maps for CZTSe films for samples with  $\text{Zn/Sn} = 1.0$  and  $\text{Zn/Sn} = 1.4$ . Intensities in both samples are normalized on the same scale from 0 (blue) to 1 (red) based on the total concentration in the samples. A fully quantitative analysis is done on these reconstructions, including surface roughness, relative concentrations and individual elemental distributions.



lengthscales – similar to what might be expected for spinodal decomposition. This shows that even on the smallest lengthscales of a few unit cells CZTS is inhomogeneous.

### Theory of the Influence of Excess Carriers on Point Defect Formation


For nearly a century since the work of Kroger, it has been understood that the equilibrium concentrations of point defects in semiconductors and insulators are determined by the Fermi level (which is the chemical potential of both electrons and holes in equilibrium). For example, the formation enthalpy of a donor defect will increase with increasing n-type doping (higher Fermi level) and decrease with increasing p-type doping (lower Fermi level). Especially in compound semiconductors with wide bandgaps, this effect can lead to doping limits, high compensation of extrinsic doping, and formation of undesirable trap states.

Working with Dr. Kirstin Alberi (NREL), we developed a full, rigorous theory of how excess carriers affect the formation enthalpy of defects, allowing cases beyond thermal equilibrium in the dark such as while currents are flowing or under illumination or ionizing radiation) to be analyzed. In these cases, there are separate quasi-Fermi levels representing the chemical potentials of electrons and holes. The theory essentially merges the established quasi-chemical formalism for defect populations with detailed balance for the rates of capture and emission from the defect's charge transition level. The essential physics is that the excess carriers change the occupation statistics of the defect charge states compared to the thermal equilibrium case.

The most important prediction of the theory is that in the case of compensating defects (i.e. acceptor-like defects in n-type doped material) are suppressed by the presence of excess carriers. Thus it suggests that growing or annealing semiconductors with above-bandgap illumination or with current injection can yield qualitatively different results in material properties than those typically obtained with thermal equilibrium methods. Also, it should be relevant in understanding how materials change over time when used in devices – for example in LEDs where high concentrations of carriers are injected during operation. The initial paper using GaSb as a model system (because only one defect, the Ga antisite, occurs in significant concentrations) was published in *Scientific Reports* and follow-up papers with slight improvements to the model and considering wide bandgap materials are in review and preparation.

### Conclusions

This project was successful in elucidating some of the fundamental materials properties of  $\text{Cu}_2\text{ZnSn}(\text{S},\text{Se})_4$  materials and their origins. It also allowed the development of a new theory of interactions between



(top) Predicted concentrations of Ga antisites as function of temperature for n-type doped and unintentionally-doped GaSb. Solid lines are for illuminated and dashed for dark. (bottom) Ratio of electron mobility for illuminated growth vs dark growth as function of temperature for undoped and doped cases.

**Journal Publications** (each publication listed here acknowledges project DE-SC0001630)

D.S. Pruzan, Y. Liu, A.E. Caruso, Y. Lin, C. Beall, I. Repins, M.F. Toney, M.A. Scarpulla.  
Grain to Grain Composition fluctuations in  $\text{Cu}_2\text{ZnSnSe}_4$  thin film solar cells measured by transmission x-ray tomography  
Solar RRL, 1(1) 1600024 (2017). DOI: <http://dx.doi.org/10.1002/solr.201600024> . (Front cover article)

A Nagaoka, MA Scarpulla, and K Yoshino  
Na-doped  $\text{Cu}_2\text{ZnSnS}_4$  single crystal grown by traveling-heater method  
Journal of Crystal Growth **453**, 119-123 (2016). DOI: <http://dx.doi.org/10.1016/j.jcrysgr.2016.08.014>

Jeffery A. Aguiar, Mehmet E. Erkan, Dennis Pruzan, Akira Nagaoka, Kenji Yoshino, Helio Moutinho, Mowafak Al-Jassim, and Michael A. Scarpulla  
Cation ratio fluctuations in  $\text{Cu}_2\text{ZnSnS}_4$  at the 20 nm length scale investigated by analytical electron microscopy  
Physica Status Solidi A 213: 2392–2399 (2016) DOI: <http://dx.doi.org/10.1002/pssa.201600060> .

K. Alberi and M.A. Scarpulla  
Suppression of native defect formation during semiconductor processing via excess carrier generation  
Scientific Reports **6**, 27954 (2016). DOI: <http://dx.doi.org/10.1038/srep27954>

Mehmet Eray Erkan, Vardaan Chawla, and Michael A. Scarpulla  
Reduced defect density at CZTSSe/CdS interface by atomic layer deposition of  $\text{Al}_2\text{O}_3$   
J. Applied Physics **119**, 194504 (2016). DOI: <http://dx.doi.org/10.1063/1.4948947>

Matthew M. Nowell, Mike A. Scarpulla, Naba R. Paudel, Kristopher A. Wieland, Alvin D. Compaan, and Xiangxin Liu  
Characterization of Sputtered CdTe Thin Films with Electron Backscatter Diffraction and Correlation with Device Performance  
Microscopy and Microanalysis **21**(4), 927-935 (2015). <http://dx.doi.org/10.1017/S143192761500077X>

Akira Nagaoka, Ryoji Katsume, Shigeru Nakatsuka, Kenji Yoshino, Tomoyasu Taniyama, Hideto Miyake, Koichi Kakimoto, Michael A. Scarpulla, and Yoshitaro Nose  
Growth and Characterization of  $\text{Cu}_2\text{ZnSn}(\text{S}_x\text{Se}_{1-x})_4$  Single Crystal Grown by Traveling Heater Method  
J. Crystal Growth, **423** pp. 9-15 (2015). <http://dx.doi.org/10.1016/j.jcrysgr.2015.04.012>

Akira Nagaoka, Yoshitaro Nose, Hideto Miyake, Michael A. Scarpulla, Kenji Yoshino  
Solution growth of chalcopyrite compounds single crystal  
Renewable Energy **79**, pp. 127–130 (2015). <http://dx.doi.org/10.1016/j.renene.2014.10.015>

Mehmet Eray Erkan, Vardaan Chawla, Ingrid Repins, and Michael A. Scarpulla  
Interplay between surface preparation and device performance in CZTSSe solar cells: Effects of KCN and  $\text{NH}_4\text{OH}$  etching  
Solar Energy Materials and Solar Cells **136** 78-85 (2015); <http://dx.doi.org/10.1016/j.solmat.2015.01.006>

Hui Du, Fei Yan, Matthew Young, Bobby To, Chun-Sheng Jiang, Pat Dippo, Darius Kuciauskas, Zhenhuan Chi, Elizabeth A. Lund, Chris Hancock, Win Maw Hlaing OO, Mike A. Scarpulla and Glenn Teeter,

Investigation of combinatorial coevaporated thin film Cu<sub>2</sub>ZnSnS<sub>4</sub>. I. Temperature effect, crystalline phases, morphology, and photoluminescence

Journal of Applied Physics **115**, 173502 (2014); <http://dx.doi.org/10.1063/1.4871664>

Elizabeth A. Lund, Hui Du, Win Maw Hlaing OO, Glenn Teeter, and Michael A. Scarpulla

Investigation of combinatorial coevaporated thin film Cu<sub>2</sub>ZnSnS<sub>4</sub> (II): Beneficial cation arrangement in Cu-rich growth

Journal of Applied Physics **115**, 173503 (2014); <http://dx.doi.org/10.1063/1.4871665>

Akira Nagaoka, Hideto Miyake, Tomoyasu Taniyama, Koichi Kakimoto, Yoshitaro Nose, Michael A. Scarpulla, and Kenji Yoshino

Effects of sodium on electrical properties in Cu<sub>2</sub>ZnSnS<sub>4</sub> single crystal

Applied Physics Letters **104**, 152101 (2014); <http://dx.doi.org/10.1063/1.4871208>

Junyi Zhu, Feng Liu, and Michael A. Scarpulla

Strain tuning of native defect populations: The case of Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub>

APL Materials **2** 012110 (2014). <http://dx.doi.org/10.1063/1.4863076>

V. Kosyak, N.B. Mortazavi Amiri, A.V. Postnikov, and M.A. Scarpulla

A Quasichemical Model of Native Point Defect Equilibrium in Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) and Application to One-Zone Annealing

Journal of Applied Physics, **114** 124501 (2013). <http://dx.doi.org/10.1063/1.4819206>

V. Kosyak, M. A. Karmarkar, and M.A. Scarpulla

Temperature-dependent conductivity of polycrystalline Cu<sub>2</sub>ZnSnS<sub>4</sub> thin films

Applied Physics Letters, **100** 263903 (2012). <http://dx.doi.org/10.1063/1.4731875>

E.A. Lund and M.A. Scarpulla

Photovoltaic heterojunctions of earth abundant semiconductors: band alignments in the defective limit  
Materials Science and Engineering B, **177** 1436-1440 (2012);

<http://dx.doi.org/10.1016/j.mseb.2012.02.015>

W.M. Hlaing Oo, J.L. Johnson, A. Bhatia, E.A. Lund, M.M. Nowell, and M.A. Scarpulla

Grain Size and Texture of Cu<sub>2</sub>ZnSnS<sub>4</sub> Thin Films Synthesized by Co-sputtering Binary Sulfides and Annealing: Effects of Processing Conditions and Sodium

J. Electronic Materials **40**(11) 2214-2221 (2011). <http://link.springer.com/article/10.1007%2Fs11664-011-1729-3>

## Conference Proceedings

Minority carrier electron traps in CZTSSe solar cells characterized by DLTS and DLOS

Kheraj, V., Lund, E.A., Caruso, A.E., (...), Repins, I., Scarpulla, M.A.

2016 Conference Record of the IEEE Photovoltaic Specialists Conference

2016-November, 7750024, pp. 2195-2199

Comparison and interpretation of admittance spectroscopy and deep level transient spectroscopy from co-evaporated and solution-deposited Cu<sub>2</sub>ZnSn(S<sub>x</sub>, Se<sub>1-x</sub>)<sub>4</sub> solar cells

Caruso, A.E., Lund, E.A., Kosyak, V., (...), Repins, I., Scarpulla, M.A.

2016 Conference Record of the IEEE Photovoltaic Specialists Conference

2016-November, 7750218, pp. 3018-3022

Effects of back contact resistance, depletion width and relaxation time distributions in admittance spectroscopy of CZTSe devices Caruso, A.E., Pruzan, D.S., Lund, E.A., Scarpulla, M.A.

2015 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015 7356015

Sub-100 nm resolution 3-D tomography of CZTSe using transmission X-ray Microscopy

Pruzan, D.S., Caruso, A.E., Liu, Y., (...), Toney, M.F., Scarpulla, M.A.

2015 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015 7355781

Temperature dependence of equivalent circuit parameters used to analyze admittance spectroscopy and application to CZTSe devices

Caruso, A.E., Pruzan, D.S., Kosyak, V., (...), Repins, I., Scarpulla, M.A.

2014 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 6925024, pp. 733-736

Modeling Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) solar cells with kesterite and stannite phase variation

Lund, E.A., Scarpulla, M.A.

2013 Proceedings of SPIE - The International Society for Optical Engineering 8620, 862015

Detection of ZnS phases in CZTS thin-films by EXAFS

Hartman, K., Newman, B.K., Johnson, J.L., (...), Scarpulla, M.A., Buonassisi, T.

2011 Conference Record of the IEEE Photovoltaic Specialists Conference 6186455, pp. 002506-002509

Investigating sputtered Cu<sub>2</sub>Si<sub>1-x</sub>Sn<sub>x</sub>S<sub>3</sub> [CSTS] for earth abundant thin film photovoltaics Lund, E.A., Johnson, J.L., Oo, W.M.H., Scarpulla, M.A.

2010 Conference Record of the IEEE Photovoltaic Specialists Conference

5616634, pp. 1948-1950

Effects of 2nd phases, stress, and Na at the Mo/Cu 2ZnSnS<sub>4</sub> interface

Johnson, J.L., Nukala, H., Lund, E.A., (...), Rieth, L.W., Scarpulla, M.A.

2010 Materials Research Society Symposium Proceedings 1268, pp. 85-90

Synthesis of optimized CZTS thin films for photovoltaic absorber layers by sputtering from sulfide targets and sulfurization

Nukala, H., Johnson, J.L., Bhatia, A., (...), Rieth, L.W., Scarpulla, M.A.

2010 Materials Research Society Symposium Proceedings 1268, pp. 91-96